
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
C# 4.0, the Dynamic
Keyword and COM
Dino Esposito page 6

CLR INSIDE OUT
F# Fundamentals
Luke Hoban page 16

TEST RUN
Generating Graphs with WPF
James McCaffrey page 92

BASIC INSTINCTS
Multi-Targeting Visual Basic
Applications in Visual Studio 2010
Spotty Bowles page 98

THE WORKING PROGRAMMER
Going NoSQL with MongoDB, Part 2
Ted Neward page 104

UI FRONTIERS
The Ins and Outs of ItemsControl
Charles Petzold page 109

DON’T GET ME STARTED
We’re All in This Together
David Platt page 112

JUNE 2010 VOL 25 NO 6

SOA TIPS
Address Scalability Bottlenecks with Distributed Caching
Iqbal Khan . 24

THREAD PERFORMANCE
Resource Contention Concurrency Profi ling in Visual Studio 2010
Maxim Goldin . 38

CLOUD DIAGNOSTICS
Take Control of Logging and Tracing in Windows Azure
Mike Kelly . 50

EXPRESS YOURSELF
Encoding Videos Using Microsoft Expression Encoder 3 SDK
Adam Miller . 62

INPUT VALIDATION
Enforcing Complex Business Data Rules with WPF
Brian Noyes . 74

PRACTICAL ODATA
Building Rich Internet Apps with the Open Data Protocol
Shayne Burgess . 82

This month at
msdn.microsoft.com/magazine:
SILVERLIGHT ONLINE
Silverlight in an Occasionally
Connected World
Mark Bloodworth and Dave Brown

APPFABRIC CACHE
Real-World Usage and Integration
Andrea Colaci

http://msdn.microsoft.com/magazine

Untitled-5 2 3/5/10 10:16 AM

http://infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

http://infragistics.com

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
MARTI LONGWORTH Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

JUNE 2010 VOLUME 25 NUMBER 6

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

S
N
A
P

I
T

Untitled-1 1 3/25/10 10:38 AM

www.VisualStudio.com

msdn magazine4

oft en from the minority, making that group seem larger than it
is. Th e other possibility, of course, is that the response properly
refl ects our readers, and we do need more articles dealing with lower-
level topics. Again, this is something we cover in the magazine; the
question is how oft en we should dip into that well.

Existing products/technologies vs. new/future products
and technologies. Do you prefer more coverage of products
and technologies you’re using day-to-day, or more looking-ahead
coverage so you can get an idea of what else is out there that you’d
like to try out?

Also, remember that we won’t be totally upending the ship if we
change a little rigging. What I mean is that any changes we make
in our coverage will be gradual and incremental. If we add some
more C++ articles, we won’t be doing drastically fewer C# stories,
for example. Th is is a fi ne-tuning process, to make sure this is your
must-read magazine each month. I encourage you to take a little
time when you can and let us know your feelings on these topics.
To paraphrase the inimitable Frasier Crane: We’re listening.

One final note: I’ll be at Tech·Ed this June, and would love to
chat with you in person. Look for me in the 1105 Media booth,
and other places. If you see me, please grab me (gently) so we
can talk a bit. I hope I get a chance to speak with many of you
there. If you’re unable to make it, be sure to drop me a line at
mmeditor@microsoft .com.

We’re All Ears

One of the most important parts of my job as editor in chief is
listening to you. As in, You the Readers. Th is magazine’s value is
in presenting the kind of information that helps you better do
your primary job; for most, that means sharpening your soft ware
development skills.

Over the past half-year or so, I’ve been talking to readers, and,
especially, reading your e-mail comments about ways to improve
the magazine (keep those comments coming to mmeditor@
 microsoft .com). I’ve gathered enough information from various
sources now to get an idea of what many of you are looking for.
Th e next step is to ask you which of these things you’d most like to
see in the magazine.

More coverage of non-C# languages. Our core coverage, at
least for the foreseeable future, will feature C#. Of course, we do have
articles that use other languages like F#, where those languages are
the most appropriate to use for a given task. And we have regular
coverage of Visual Basic through our Basic Instincts column.

A number of readers, however, have stated their desire to have
more regular coverage of C# alternatives, particularly C++.

What do you think: Would you like to see a regular column cover-
ing C++ programming, or are you fi ne with the occasional C++, like
the one we ran in April on new C++ features in Visual Studio 2010
(msdn.microsoft.com/magazine/ee336130)? Or do you feel we have the
right mix?

Articles targeted toward beginning or inexperienced
developers. Numerous readers have expressed their frustration
that too much of our content is over their heads, and they’d like
to see more coverage of basic development or coding practices.

Th is is a tricky problem. Th e reason is that people who are
dissatisfi ed with something are much more likely to speak up
than those who aren’t. So, even though our coverage is properly
targeted toward more-experienced developers, we’re hearing more

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

We won’t be totally upending
the ship if we change a

little rigging.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx
http://msdn.microsoft.com/magazine/ee336130

Untitled-1 1 3/10/10 2:49 PM

www.axosoft.com

msdn magazine6

Th e reason this works, however, is due to a particular capability
off ered by VBScript—late binding. Late binding means that the type of
a given object isn’t known until the execution fl ow hits the object. When
this happens, the runtime environment fi rst ensures that the member
invoked on the object really exists and then invokes it. No preliminary
check whatsoever is made before the code is actually executed.

As you may know, a scripting language such as VBScript doesn’t
have a compiler. However, Visual Basic (including the CLR
version) for years had a similar feature. I confess I frequently
envied my Visual Basic colleagues for their ability to more easily use
COM objects—oft en valuable building blocks of an application you need
to interop with, such as Offi ce. In some cases, in fact, my team ended up
writing some portions of our interop code in Visual Basic, even
when the entire application was in C#. Should this be surprising?
Isn’t polyglot programming a new frontier to reach?

In Visual Basic, the CreateObject function exists for (strong)
compatibility reasons. Th e point is that .NET Framework-based
languages were designed with early binding in mind. COM
interoperability is a scenario addressed by the .NET Framework

 C# 4.0, the Dynamic Keyword and COM

I grew up as a C/C++ developer
and, especially before the advent
of the Microsoft .NET Framework,
I oft en chided my colleagues who
programmed in Visual Basic for
using such a weakly typed language.

There was a time when static
typing and strongly typed pro-
gramming were the obvious way
to soft ware happiness. But things
change, and today the communi-
ty of C# developers—to which it seems nearly all former C/C++
developers have migrated—oft en feel the distinct need for a much
more dynamic programming model. Last month, I introduced
some features of dynamic programming that Microsoft makes
available through C# 4.0 and Visual Studio 2010. Th is month, I’ll
delve deeper into some related scenarios, starting with one of the
most compelling reasons for using C# 4.0—easy programming
with COM objects within the .NET Framework.

Easy Access to COM Objects
An object is said to be dynamic when its structure and behavior
aren’t fully described by a statically defi ned type that the compiler
knows thoroughly. Admittedly, the word dynamic sounds a bit
generic in this context, so let’s look at a simple example. In a scripting
language such as VBScript, the following code runs successfully:

Set word = CreateObject("Word.Application")

Th e CreateObject function assumes that the string it gets as an argu-
ment is the progID of a registered COM object. It creates an instance
of the component and returns its IDispatch automation interface. Th e
details of the IDispatch interface are never visible at the level of the
scripting language. What matters is that you can write code such as:

Set word = CreateObject("Word.Application")
word.Visible = True
Set doc = word.Documents.Add()
Set selection = word.Selection
selection.TypeText "Hello, world"
selection.TypeParagraph()
doc.SaveAs(fileName)

In this code, you first create a reference to a component that
automates the behavior of the underlying Microsoft Office Word
application. Next, you make the Word main window visible,
add a new document, write some text into it and then save the
document somewhere. The code is clear, reads well and, more
importantly, works just fine.

CUTTING EDGE DINO ESPOSITO

Code download available at code.msdn.microsoft.com/mag201006CutEdge.

Figure 1 IntelliSense for a Dynamic Object in Visual Studio 2010, with and Without ReSharper

I often chided my colleagues
who programmed in Visual Basic

for using such a weakly
typed language.

http://code.msdn.microsoft.com/mag201006CutEdge

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies
and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,919.99

Paradise #
Q13ZM6101A01

List Price:
$799.00

Your Price:
$599.25

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition SDK
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded Forms, OCR,
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performanceParadise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing
staff three times over

• Control downtime—whether planned
or not

• Save more than 50% on the cost of
managing, powering and cooling servers

Make your time (and money) count for
more with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/multiedit

Multi-EditX

by Multi Edit Software

Multi-EditX is “The Solution”
for your editing needs with
support for over 50 languages.
Edit plain text, ANY Unicode, hex,
XML, HTML, PHP, Java, Javascript,
Perl and more! No more file size
limitations, unlimited line length,
any file, any size Multi-EditX is
“The Solution”!

Pre-Order Your Copy and Save!

1-49 Users
Paradise #

A30Z10101A01
$223.20

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

NEW
RELEASE!

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS

Pro + Silver Mtn
Paradise #

I21 09401S05

$4,228.99

NEW
RELEASE!

Extend Your Visual Studio Development to Oracle
Toad Extension for Visual Studio is an Oracle database schema provider that goes beyond online development
to offer you:
• Easier Oracle development in Visual Studio 2010 • Assure application code is synchronized with the database
• Oracle change management for application teams • Team collaboration and Microsoft’s ALM methodology

* Exclusive to MSDN subscribers — from now until 31st July, 2010 programmers.com/toad_VS2010

for Visual Studio
Toad®

EXTENSION Save
25%!

EXCLUSIVE OFFER FOR MSDN SUBSCRIBERS!

SAVE 25% ON Toad® Extension for Visual Studio 2010*

READY

ComponentOne Studio® Enterprise
The world’s most complete VS2010-ready
component suite for developing all layers of
Windows, Web, and Mobile applications.

2010

programmers.com/componentone

Studio Enterprise
w/Platinum Support

Paradise #
C18 01101E02

$1,280.00

Studio Enterprise
Paradise #

C18 01101A07
$1,040.00

SPECIAL PROMOTION

SAVE 20%

Untitled-1 1 5/4/10 3:44 PM

www.programmersparadise.com

msdn magazine8 Cutting Edge

but never specifi cally supported by languages with keywords and
facilities—not until C# 4.0.

C# 4.0 (and Visual Basic) has dynamic lookup capabilities that
indicate late binding is now an approved practice for .NET Frame-
work developers. With dynamic lookup, you can code access to
methods, properties, indexer properties and fi elds in a way that
bypasses static type checking to be resolved at run time.

C# 4.0 also enables optional parameters by recognizing default
value in a member declaration. Th is means that when a member with
optional parameters is invoked, optional arguments can be omitted.
Furthermore, arguments can be passed by name as well as by
position. At the end of the day, improved COM binding in C# 4.0

simply means that some common features of scripting languages are
now supported by an otherwise static and strongly typed language.
Before we look at how you can leverage the new dynamic keyword
to operate seamlessly with COM objects, let’s delve a bit deeper into
the internal mechanics of dynamic type lookup.

Dynamic Language Runtime
When you declare a variable as dynamic in Visual Studio 2010, you
have no IntelliSense at all in the default confi guration. Interestingly,
if you install an additional tool such as ReSharper 5.0 (jetbrains.com/
resharper), you can get some partial information through
Intelli Sense about the dynamic object. Figure 1 shows the code
editor with and without ReSharper. Th e tool just lists the mem-
bers that appear to be defi ned on the dynamic type. At the very
minimum, the dynamic object is an instance of System.Object.

Let’s see what happens when the compiler encounters the
following code (the code is deliberately trivial to simplify under-
standing the implementation details):

class Program
{
 static void Main(string[] args)
 {
 dynamic x = 1;
 Console.WriteLine(x);
 }
}

In the second line, the compiler doesn’t attempt to resolve the
symbol WriteLine, and no warning or error is thrown as would
happen with a classic static type checker. As far as the dynamic
keyword is concerned, C# is like an interpreted language here.
Consequently, the compiler emits some ad hoc code that interprets
the expression where a dynamic variable or argument is involved.
Th e interpreter is based on the Dynamic Language Runtime (DLR),
a brand-new component of the .NET Framework machinery.
To use more specific terminology, the compiler has to gener-
ate an expression tree using the abstract syntax supported by the

DLR and pass it to the DLR libraries
for processing. Within the DLR, the
compiler- provided expression is en-
capsulated in a dynamically updated
site object. A site object is responsible
for binding methods to objects on the
fl y. Figure 2 shows a largely sanitized
version of the real code emitted for the
trivial program shown earlier.

Th e code in Figure 2 has been ed-
ited and simplifi ed for readability, but
it shows the gist of what’s going on.
The dynamic variable is mapped to a
System.Object instance and then a
site is created for the program in the
DLR. The site manages a binding
between the WriteLine method with its
parameters and the target object. The
binding holds within the context of the
type Program. To invoke the method
Console.WriteLine on a dynamic vari-
able, you invoke the site and pass the

internal class Program
{
 private static void Main(string[] args)
 {
 object x = 1;

 if (MainSiteContainer.site1 == null)
 {
 MainSiteContainer.site1 = CallSite<
 Action<CallSite, Type, object>>
 .Create(Binder.InvokeMember(
 "WriteLine",
 null,
 typeof(Program),
 new CSharpArgumentInfo[] {
 CSharpArgumentInfo.Create(...)
 }));
 }
 MainSiteContainer.site1.Target.Invoke(
 site1, typeof(Console), x);
 }

 private static class MainSiteContainer
 {
 public static CallSite<Action<CallSite, Type, object>> site1;
 }
}

Figure 2 The Real Implementation of a Dynamic Variable

Figure 3 Referencing the Word Object Library

http://jetbrains.com/resharper
http://jetbrains.com/resharper

Untitled-7 1 5/6/10 3:33 PM

www.DevExpress.com/XtraReports

msdn magazine10 Cutting Edge

target object (in this case the Console type) and its parameters
(in this case the dynamic variable). Internally, the site will check
whether the target object really has a member WriteLine that
can accept a parameter like the object currently stored in the
variable x. If something goes wrong, the C# runtime just throws
RuntimeBinderException.

Working with COM Objects
New C# 4.0 features working with COM objects from within .NET
Framework-based applications considerably easier today. Let’s see
how to create a Word document in C# and compare the code you
need in .NET 3.5 and .NET 4. Th e sample application creates a new
Word document based on a given template, fi lls it up and saves it
to a fi xed location. Th e template contains a couple of bookmarks

for common pieces of information. Whether you target the .NET
Framework 3.5 or the .NET Framework 4, the very fi rst step on the
way to programmatically creating a Word document is adding the
Microsoft Word Object Library (see Figure 3).

Before Visual Studio 2010 and the .NET Framework 4, to accom-
plish this you needed code such as that in Figure 4.

To interact with a COM automation interface, you often need
Variant types. When you interact with a COM automation
object from within a .NET Framework-based application, you
represent Variants as plain objects. Th e net eff ect is that you can’t
use a string to indicate, say, the name of the template fi le you
intend to base your Word document on, because the Variant
parameter must be passed by reference. You have to resort to an
Object instead, as shown here:

Object template = TemplateName;
var doc = wordApp.Documents.Add(ref template,
 ref missingValue, ref missingValue, ref missingValue);

A second aspect to consider is that Visual Basic and scripting
languages are much more forgiving than C# 3.0. So, for example,
they don’t force you to specify all parameters that a method on
a COM object declares. The Add method on the Documents
collection requires four arguments, and you can’t ignore them
unless your language supports optional parameters.

As mentioned earlier, C# 4.0 does support optional parameters.
Th is means that while simply recompiling the code in Figure 4 with

public static class WordDocument
{
 public const String TemplateName = @"Sample.dotx";
 public const String CurrentDateBookmark = "CurrentDate";
 public const String SignatureBookmark = "Signature";

 public static void Create(String file, DateTime now, String author)
 {
 // Must be an Object because it is passed as a ref
 Object missingValue = Missing.Value;

 // Run Word and make it visible for demo purposes
 var wordApp = new Application { Visible = true };

 // Create a new document
 Object template = TemplateName;
 var doc = wordApp.Documents.Add(ref template,
 ref missingValue, ref missingValue, ref missingValue);
 doc.Activate();

 // Fill up placeholders in the document
 Object bookmark_CurrentDate = CurrentDateBookmark;
 Object bookmark_Signature = SignatureBookmark;
 doc.Bookmarks.get_Item(ref bookmark_CurrentDate).Range.Select();
 wordApp.Selection.TypeText(current.ToString());
 doc.Bookmarks.get_Item(ref bookmark_Signature).Range.Select();
 wordApp.Selection.TypeText(author);

 // Save the document
 Object documentName = file;
 doc.SaveAs(ref documentName,
 ref missingValue, ref missingValue, ref missingValue,
 ref missingValue, ref missingValue, ref missingValue,
 ref missingValue, ref missingValue, ref missingValue,
 ref missingValue, ref missingValue, ref missingValue,
 ref missingValue, ref missingValue, ref missingValue);

 doc.Close(ref missingValue,
 ref missingValue, ref missingValue);
 wordApp.Quit(ref missingValue,
 ref missingValue, ref missingValue);
 }
}

Figure 4 Creating a New Word Document in C# 3.0

public static class WordDocument
{
 public const String TemplateName = @"Sample.dotx";
 public const String CurrentDateBookmark = "CurrentDate";
 public const String SignatureBookmark = "Signature";

 public static void Create(string file, DateTime now, String author)
 {
 // Run Word and make it visible for demo purposes
 dynamic wordApp = new Application { Visible = true };

 // Create a new document
 var doc = wordApp.Documents.Add(TemplateName);
 templatedDocument.Activate();

 // Fill the bookmarks in the document
 doc.Bookmarks[CurrentDateBookmark].Range.Select();
 wordApp.Selection.TypeText(current.ToString());
 doc.Bookmarks[SignatureBookmark].Range.Select();
 wordApp.Selection.TypeText(author);

 // Save the document
 doc.SaveAs(fileName);

 // Clean up
 templatedDocument.Close();
 wordApp.Quit();
 }
}

Figure 5 Creating a New Word Document in C# 4.0

My team also ended up writing
some portions of our interop

code in Visual Basic even when
the entire application was in C#.

.NET Framework-based
languages were designed with

early binding in mind.

Untitled-7 1 5/6/10 3:34 PM

www.DevExpress.com/WPFGrid

msdn magazine12 Cutting Edge

C# 4.0 works, you could even rewrite it and drop all ref parameters
that carry only a missing value, as shown here:

Object template = TemplateName;
var doc = wordApp.Documents.Add(template);

With the new C# 4.0 “Omit ref ” support, the code in Figure 4
becomes even simpler and, more importantly, it becomes easier to
read and syntactically similar to scripting code. Figure 5 contains the

edited version that compiles well with C# 4.0 and produces the
same eff ect as the code in Figure 4.

Th e code in Figure 5 allows you to use plain .NET Framework
types to make the call to the COM object. Plus, optional param-
eters make it even simpler.

The dynamic keyword and other COM interop features
introduced in C# 4.0 don’t make a piece of code necessarily fast-
er, but it enables you to write C# code as if it were script. For
COM objects, this achievement is probably as important as an
increment of performance.

No PIA Deployment
Since the beginning of the .NET Framework, you could wrap a
COM object into a managed class and use it from a .NET-based
application. For this to happen, you need to use using a primary
interop assembly (PIA) provided by the vendor of the COM ob-
ject.PIAs are necessary and must be deployed along with client
applications. However, more oft en than not, PIAs are too big and
wrap up an entire COM API, so packing them with the setup may
not be a pleasant experience.

Visual Studio 2010 off ers the no-PIA option. No-PIA refers to
the compiler’s ability to embed required defi nitions you’d get from
a PIA in the current assembly. As a result, only defi nitions that are
really needed are found in the fi nal assembly and there’s no need for
you to pack vendor’s PIAs in your setup. Figure 6 shows the option
in the Properties box that enables no-PIA in Visual Studio 2010.

No-PIA is based on a feature of C# 4.0 known as type equiva-
lence. In brief, type equivalence means that two distinct types can be
considered equivalent at run time and used interchange-
ably. Th e typical example of type equivalence is two interfaces
with the same name defined in different assemblies. They’re
different types, but they can be used interchangeably as long as
the same methods exist.

In summary, working with COM objects can still be expen-
sive, but the COM interop support in C# 4.0 makes the code you
write far simpler. Dealing with COM objects from .NET Frame-
work-based applications connects you to legacy applications and
critical business scenarios over which you’d otherwise have little
control. COM is a necessary evil in the .NET Frameworok, but
dynamic makes it a bit less so.

DINO ESPOSITO is the author of “Programming ASP.NET MVC” from
Microsoft Press and has coauthored “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Alex TurnerFigure 6 Enabling the No-PIA Option in Visual Studio 2010

To interact with a COM
automation interface, you

need Variant types.

http://weblogs.asp.net/despos

Untitled-7 1 5/6/10 3:32 PM

www.DevExpress.com/XtraGrid

Untitled-1 2 4/28/10 3:30 PM

www.telerik.com

Untitled-1 3 4/28/10 3:31 PM

www.telerik.com

msdn magazine16

F# leverages the .NET Framework libraries for many tasks, such as
accessing data from a rich variety of data sources. .NET libraries can be
used from F# in the same way they are used in other .NET languages:

let http url =
 let req = WebRequest.Create(new Uri(url))
 let resp = req.GetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 reader.ReadToEnd()

F# is also an object-oriented language and can defi ne any .NET
class or struct, similar to C# or Visual Basic:

type Point2D(x,y) =
 member this.X = x
 member this.Y = y
 member this.Magnitude =
 x*x + y*y
 member this.Translate(dx, dy) =
 new Point2D(x + dx, y + dy)

In addition, F# supports two special kinds of types: records and
discriminated unions. Records provide a simple representation
of data values with named fi elds, and discriminated unions are an
expressive way to represent types that can have a number of diff erent
kinds of values, with diff erent associated data in each kind:

type Person =
 { Name : string;
 HomeTown : string;
 BirthDate : System.DateTime }

type Tree =
 | Branch of Tree * Tree
 | Leaf of int

F# on the CLR
F# is in many ways a higher-level language than C#, with its type system,
syntax and language constructs being further away from the metadata
and intermediate language (IL) of the CLR. Th is has a few interesting
implications. Most importantly, it means F# developers can oft en
solve problems and think about their programs at a higher level,

F# Fundamentals

F# is a new, functional and object-oriented programming language
for the Microsoft .NET Framework, and it’s integrated into this year’s
release of Microsoft Visual Studio 2010. F# combines simple, suc-
cinct syntax with strong static typing, and it scales from lightweight
explorative programming in the F# Interactive up to large-scale .NET
Framework-based component development with Visual Studio.

F# is designed from the ground up to run on the CLR. As a .NET
Framework-based language, F# leverages the rich libraries available
on the .NET Framework platform, and can be used to build .NET
libraries or implement .NET interfaces. F# also takes advantage of
many of the CLR core features, including generics, garbage collec-
tion, tail call instructions and the fundamental Common Language
Infrastructure (CLI) type system.

Th is article takes a look at some of the core concepts of the F#
language and its implementation on top of the CLR.

A Quick Look at F#
Let’s start with a brief look at a number of the core language
features in F#. For more details on any of these features and the
many other interesting concepts in the F# language, see the docu-
mentation available via the F# Developer Center at fsharp.net.

Th e most fundamental feature of F# is the let keyword, which
binds a value to a name. Let can be used to bind both data and
function values, and for both top-level and local bindings:

let data = 12

let f x =
 let sum = x + 1
 let g y = sum + y*y
 g x

F# provides a few core datatypes and a language syntax for working
with structured data, including lists, typed optional values and tuples:

let list1 = ["Bob"; "Jom"]

let option1 = Some("Bob")
let option2 = None

let tuple1 = (1, "one", '1')

Th ese pieces of structured data, and others, can be matched
against by using F# pattern matching expressions. Pattern matching
is similar to using switch statements in C-like languages, but
provides a richer way to both match and extract parts out of matched
expressions, somewhat akin to the way regular expressions are used
for pattern-matching strings:

let person = Some ("Bob", 32)

match person with
| Some(name,age) -> printfn "We got %s, age %d" name age
| None -> printfn "Nope, got nobody"

CLR INSIDE OUT LUKE HOBAN

Post your questions and comments on the CLR Team blog at
blogs.msdn.com/clrteam.

F# is designed from the ground
up to run on the CLR.

http://blogs.msdn.com/clrteam

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more
from your data. Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2010 ESRI. All rights reserved. ESRI, the ESRI globe logo, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the
European Community, or certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Visit us at

M
icrosoft TechEd booth #2044.

Untitled-9 1 4/30/10 3:41 PM

http://www.esri.com/edn
http://www.esri.com

msdn magazine18 CLR Inside Out

closer to the domain of the problem at hand. But it also means the
F# compiler does more work in mapping F# code onto the CLR,
and that the mapping is less direct.

Th e C# 1.0 compiler and the CLR were developed at the same
time, and the features of both were closely aligned. Almost all C#
1.0 language constructs have a very direct representation in the
CLR type system and in CIL. Th is has become less true in later
C# releases as the C# language evolved faster than the CLR it-
self. Iterators and anonymous methods were fundamental C# 2.0
language features that didn’t have direct CLR equivalents. In C#
3.0, query expressions and anonymous types followed this trend.

F# takes this a step further. Many of the language constructs
don’t have direct IL equivalents, so features like pattern matching
expressions get compiled into a rich set of IL instructions used to
accomplish the pattern matching effi ciently. F# types such as records
and unions automatically generate many of the members needed.

Note, however, that I’m discussing the compilation techniques
used by the current F# compiler. Many of these implementation
details are not directly visible to the F# developer and could be
modifi ed in future versions of the F# compiler for performance
optimizations or to enable new features.

Immutable By Default
Th e basic let binding in F# is similar to var in C#, except for one
very important diff erence: you can’t change the value of a let-bound
name later. Th at is, values are immutable by default in F#:

let x = 5
x <- 6 // error: This value is not mutable

Immutability has big benefi ts for concurrency because there is
no need to worry about locking when using immutable state—it
can be safely accessed from multiple threads. Immutability also
tends to decrease coupling between components. Th e only way
for one component to infl uence another is to make an explicit call
to the components.

Mutability can be opted into in F#, and is oft en used when calling
other .NET libraries, or to optimize particular code paths:

let mutable y = 5
y <- 6

Similarly, types in F# are immutable by default:
let bob = { Name = "Bob";
 HomeTown = "Seattle" }
// error: This field is not mutable
bob.HomeTown <- "New York"

let bobJr = { bob with HomeTown = "Seattle" }

In this example, when mutation is not available, it’s common
to instead use copy-and-update to make a new copy from an old
one while changing one or more fi elds. Although a new object is
created, it shares many pieces with the original. In this example,

only a single string—“Bob”—is needed. Th is sharing is an important
part of the performance of immutability.

Sharing can also be seen in F# collections. For example, the F# list
type is a linked-list data structure that can share a tail with other lists.

let list1 = [1;2;3]
let list2 = 0 :: list1
let list3 = List.tail list1

Because of the copy-and-update and sharing inherent in pro-
gramming with immutable objects, the performance profi le of these
programs is oft en quite diff erent from typical imperative programs.

Th e CLR plays a big role here. Immutable programming tends
to create more short-lived objects as a result of transforming data
rather than changing it in place. Th e CLR garbage collector (GC)
deals well with these. Short-lived small objects are relatively very
cheap due to the generational mark-and-sweep used by the CLR GC.

Functions
F# is a functional language and, not surprisingly, functions play
an important role throughout the language. Functions are a fi rst-
class part of the F# type system. For example, the type “char -> int”
represents F# functions that take a char and return an int.

Although similar to .NET delegates, F# functions have two
important diff erences. First, they’re not nominal. Any function
that takes a char and returns an int is of type “char -> int”, whereas
multiple differently named delegates may be used to represent
functions of this signature, and are not interchangeable.

Second, F# functions are designed to effi ciently support either
partial or full application. Partial application is when a function with
multiple parameters is given only a subset of the parameters, thus
resulting in a new function that takes the remaining parameters.

let add x y = x + y

let add3a = add 3
let add3b y = add 3 y
let add3c = fun y -> add 3 y

All fi rst-class F# function values are instances of a type FSharp-
Func<, > as defi ned in the F# runtime library, FSharp.Core.dll. When
using an F# library from C#, this is the type that all F# function values
taken as parameters or returned from methods will have. Th is class
looks roughly like the following (if you were defi ning it in C#):

public abstract class FSharpFunc<T, TResult> {
 public abstract TResult Invoke(T arg);
}

Note in particular that all F# functions fundamentally take a single
argument and produce a single result. Th is captures the concept of
partial application—an F# function with multiple parameters will
actually be an instance of a type like:

FSharpFunc<int, FSharpFunc<char, bool>>

Th at is, a function that takes an int and returns another function, which
itself takes a char and returns a bool. Th e common case of full application
is made fast by using a set of helper types in the F# core library.

When an F# function value is created using a lambda expression
(the fun keyword), or as a result of a partial application of anoth-
er function (as in the add3a case shown earlier), the F# compiler
generates a closure class:

internal class Add3Closure : FSharpFunc<int, int> {
 public override int Invoke(int arg) {
 return arg + 3;
 }
}

F# supports two special
kinds of types: records and

discriminated unions.

19June 2010msdnmagazine.com

These closures are similar to closures created by the C# and
Visual Basic compilers for their lambda expression constructs.
Closures are one of the most common compiler-generated
constructs on the .NET Framework platform that do not have di-
rect CLR-level support. Th ey exist in almost all .NET programming
languages and are used especially heavily by F#.

Function objects are common in F#, so the F# compiler uses
many optimization techniques to avoid the need to allocate these
closures. Using inlining, lambda-lifting, and direct represen-
tation as .NET methods when possible, the internal code gen-
erated by the F# compiler will oft en look somewhat diff erent
than described here.

Type Inference and Generics
One notable feature of all the code examples so far is the lack of any
type annotation. Although F# is a statically typed programming
language, explicit type annotations are oft en not needed because
F# makes extensive use of type inference.

Type inference will be familiar to C# and Visual Basic developers
who use it for local variables, as in this C# 3.0 code:

var name = "John";

Th e let keyword in F# is similar, but type inference in F# goes
substantially further, applying also to fi elds, parameters and return
types. In the following example, the two fi elds x and y are inferred
to have type int, which is the default for the + and * operators used
on these values within the body of the type defi nition. Th e Translate
method is inferred to have type “Translate : int * int -> Point2D”:

type Point2D(x,y) =
 member this.X = x
 member this.Y = y
 member this.Magnitude =
 x*x + y*y
 member this.Translate(dx, dy) =
 new Point2D(x + dx, y + dy)

Of course, type annotations can be used when needed or desired
to tell the F# compiler what type is really expected for a certain value,
fi eld or parameter. Th is information will then be used for type
inference. For example, you can change the defi nition of Point2D to
use fl oat instead of int by adding just a couple of type annotations:

type Point2D(x : float,y : float) =
 member this.X = x
 member this.Y = y
 member this.Magnitude =
 x*x + y*y
 member this.Translate(dx, dy) =
 new Point2D(x + dx, y + dy)

One of the important results of type inference is that functions
not tied to a specific type are automatically generalized to be
generic functions. So your code will become as generic as possible
without you needing to explicitly specify all the generic types. Th is
causes generics to play a fundamental role in F#. Th e compositional
style of functional programming with F# also encourages small

reusable pieces of functionality, which benefi t greatly from being
as generic as possible. Th e ability to author generic functions with-
out the complex type annotations is an important feature of F#.

For example, the following map function walks a list of values and
generates a new list by applying its argument function f to each element:

let rec map f values =
 match values with
 | [] -> []
 | x :: rest -> (f x) :: (map f rest)

Note that there are no type annotations needed, but the type
inferred for map is “map : ('a -> 'b) -> list<'a> -> list<'b>”. F# is able
to infer from the use of pattern matching, and from the use of the
parameter f as a function, that the types of the two parameters
have a certain shape, but are not completely fi xed. So F# makes the
function as generic as possible while still having the types needed
by the implementation. Note that generic parameters in F# are
indicated using a leading ' character, to distinguish them syntacti-
cally from other names.

Don Syme, the designer of F#, was previously the lead researcher
and developer on the implementation of generics in the .NET
Framework 2.0. The concept of a language like F# critically
depends on having generics in the runtime, and Syme’s interest in
doing F# came in part from wanting to really take advantage of this
CLR feature. F# leverages .NET generics heavily; for example, the
implementation of the F# compiler itself has more than 9,000 ge-
neric type parameters.

Ultimately, type inference is just a compile-time feature, though,
and every piece of F# code gets an inferred type that’s encoded in
the CLR metadata for an F# assembly.

Tail Calls
Immutability and functional programming tend to encourage the
use of recursion as a computational tool in F#. For example, an F#
list can be walked and the sum of the squares of the values in the
list collected using a simple piece of recursive F# code:

let rec sumOfSquares nums =
 match nums with
 | [] -> 0
 | n :: rest -> (n*n) + sumOfSquares rest

While recursion is oft en convenient, it can use a lot of space
on the call stack because each iteration adds a new stack frame.
For suffi ciently large inputs this can even lead to stack-overfl ow
exceptions. To avoid this stack growth, recursive code can be
written tail-recursively, meaning that recursive calls are always the
last thing done, just before the function returns:

let rec sumOfSquaresAcc nums acc =
 match nums with
 | [] -> acc
 | n :: rest -> sumOfSquaresAcc rest (acc + n*n)

F# is in many ways a higher-level
language than C#.

Every piece of F# code gets
an inferred type that’s encoded

in the CLR metadata.

http://msdnmagazine.com

msdn magazine20 CLR Inside Out

Th e F# compiler implements tail-recursive functions using two
techniques that aim to ensure the stack will not grow. For direct
tail calls to the same function being defi ned, such as the call to
sumOfSquaresAcc, the F# compiler automatically converts the
recursive call into a while loop, thus avoiding making any call at all,
and generating code very similar to an imperative implementation
of the same function.

Tail recursion is not always as simple as this, though, and can
instead be a result of multiple mutually recursive functions. In this
case, the F# compiler relies on the CLR native support for tail calls.

The CLR has an IL instruction specifically to help with tail
recursion: the tail. IL prefi x. Th e tail. instruction tells the CLR
it can discard the caller’s method state prior to making the associat-
ed call. Th is means that the stack will not grow when taking this
call. It also means, at least in principle, that it may be possible for
the JIT to make the call effi ciently using just a jump instruction.
This is useful for F#, and ensures that tail recursion is safe in
almost all cases:

IL_0009: tail.
IL_000b: call bool Program/SixThirtyEight::odd(int32)
IL_0010: ret

In CLR 4.0, a few key improvements have been made to the
treatment of tail calls. Th e x64 JIT had previously implemented tail
calls very effi ciently, but using a technique that could not be applied
to all cases where the tail. instruction appeared. Th is meant some
F# code that ran successfully on x86 platforms would fail with a
stack overfl ow on x64 platforms. In CLR 4.0, the x64 JIT extends its
effi cient implementation of tail calls to more cases, and also imple-
ments the higher-overhead mechanism needed to ensure that tail
calls are taken anytime they would be on the x86 JIT.

A detailed account of the CLR 4.0 improvements for tail calls is avail-
able on the CLR Code Generation blog (blogs.msdn.com/clrcodegeneration/
archive/2009/05/11/tail-call-improvements-in-net-framework-4.aspx).

F# Interactive
F# Interactive is a command-line tool and Visual Studio tool
window for interactively executing F# code (see Figure 1). Th is
tool makes it easy to experiment with data, explore APIs and test
application logic using F#.

F# Interactive is made possible by
the CLR Refl ection.Emit API. Th is
API allows a program to generate
new types and members at run
time and call into this new code
dynamically. F# Interactive uses
the F# compiler to compile code
the user inputs at the prompt,
then uses Reflection.Emit to
generate the types, functions
and members instead of writing
an assembly to disk.

One key result of this approach
is that the user code being exe-
cuted is fully compiled and fully
JITed, including all the useful
optimizations in both of these

steps, instead of being an interpreted version of F#. Th at makes
the F# Interactive an excellent, high-performance environment
for trying out new problem-solving approaches and interactively
exploring large datasets.

Tuples
Tuples in F# provide a simple way to package data and pass it
around as a unit, without needing to defi ne new custom types or
use complicated parameter schemes such as out parameters to
return multiple values.

let printPersonData (name, age) =
 printfn "%s is %d years old" name age

let bob = ("Bob", 34)

printPersonData bob

let divMod n m =
 n / m, n % m

let d,m = divMod 10 3

Tuples are simple types, but have a few important properties
in F#. Most signifi cantly, they’re immutable. Once constructed,
the elements of a tuple cannot be modifi ed. Th is allows tuples to
be safely treated as just a combination of their elements. It also
enables another important feature of tuples: structural equality.
Tuples and other F# types such as lists, options, and user-defi ned records
and unions are compared for equality by comparing their elements.

In the .NET Framework 4, tuples are now a core datatype
defined in the base class libraries. When targeting the .NET
Framework 4, F# uses the System.Tuple type to represent these
values. Having support for this core type in mscorlib means F#
users can easily share tuples with C# APIs and vice versa.

Although tuples are conceptually simple types, there are many
interesting design decisions involved in building the System.Tuple

Figure 1 Executing Code in F# Interactive

F# Interactive is made possible
by the CLRRefl ection.Emit API.

http://blogs.msdn.com/clrcodegeneration/archive/2009/05/11/tail-call-improvements-in-net-framework-4.aspx
http://blogs.msdn.com/clrcodegeneration/archive/2009/05/11/tail-call-improvements-in-net-framework-4.aspx

21June 2010msdnmagazine.com

type. Matt Ellis covered the design process for Tuple in detail in a
recent CLR Inside Out column (msdn.microsoft.com/magazine/dd942829).

Optimizations
Because F# translates less directly to the CLR instructions, there’s
more room for optimization to be done in the F# compiler instead
of just relying on the CLR JIT compiler. Th e F# compiler takes
advantage of this and implements more signifi cant optimizations
in Release mode than the C# and Visual Basic compilers.

One simple example is intermediate tuple elimination. Tuples
are frequently used to structure data while it’s being processed. It’s
common for tuples to be created and then deconstructed within
a single function body. When this happens, there’s an unnecessary
allocation of a tuple object. Because the F# compiler knows that
creating and deconstructing a tuple can’t have any important side
eff ects, it will attempt to avoid allocating the intermediate tuple.

In this example, no tuple object needs to be allocated, as it is
used only by being deconstructed in the pattern match expression:

let getValueIfBothAreSame x y =
 match (x,y) with
 | (Some a, Some b) when a = b -> Some a
 |_ -> None

Units of Measure
Units of measure, like meters and seconds, are commonly used in
science, engineering and simulation, and are fundamentally a type
system for working with numerical quantities of diff erent kinds.
In F#, units of measure are brought into the language’s type system
directly so that numerical quantities can be annotated with their
units. Th ese units are carried through computations, and errors
are reported when units do not match. In the following example,
it’s an error to try to add kilograms and seconds, though note that
it’s not an error to divide kilograms by seconds.

/// Kilograms
[<Measure>] type kg
/// Seconds
[<Measure>] type s

let x = 3.0<kg>
//val x : float<kg>

let y = 2.5<s>
// val y : float<s>

let z = x / y
//val z : float<kg/s>

let w = x + y
// Error: "The unit of measure 's'
// does not match the unit of measure 'kg'"

Units of measure become a fairly lightweight addition thanks
to F# type inference. Using type inference, user-provided unit
annotations need to appear only on literals and when accepting
data from outside sources. Type inference then propagates these
through the program, and checks that all computations are being
done correctly according to the units being used.

Although part of the F# type system, units of measure are erased
at compilation time. Th is means the resulting .NET assembly does
not include the information about units, and the CLR just treats
unitized values as their underlying type—thereby incurring no
performance overhead. Th is is in contrast to .NET generics, which
are fully available at run time.

If, in the future, the CLR were to integrate units of measure into the
core CLR type system, F# would be able to expose the unit information
so it could be seen from other.NET programming languages.

Get Interactive with F#
As you’ve seen, F# provides an expressive, functional, object-oriented
and explorative programming language for the .NET Framework.
It’s integrated into Visual Studio 2010—including the F# Interactive
tools for jumping straight in and experimenting with the language.

Th e language and tools leverage the full breadth of the CLR and
introduce some higher-level concepts that are mapped onto the meta-
data and IL of the CLR. Yet F# is ultimately just another .NET language
and can be easily incorporated as a component of new or existing
.NET projects, thanks to the common type system and runtime.

LUKE HOBAN is the program manager for the F# team at Microsoft . Before mov-
ing to the F# team, he was the program manager for the C# compiler and worked
on C# 3.0 and LINQ.

Once constructed, the elements
of a tuple cannot be modifi ed.

www.teoinnovations.com
http://msdn.microsoft.com/magazine/dd942829
http://msdnmagazine.com

AMCOM
Software

Untitled-1 2 3/25/10 2:58 PM

www.visualstudiogallery.com
http://msdn.com/vsip

Untitled-1 3 3/25/10 2:59 PM

www.visualstudiogallery.com

msdn magazine24

S OA T IP S

Address Scalability
Bottlenecks with
Distributed Caching

After the explosion of Web applications to accommodate
high-traffi c usage, the next big wave has become service-oriented
architecture (SOA). SOA is destined to become a standard way for
developing extremely scalable applications, and cloud computing
platforms like Windows Azure represent a giant leap in moving
SOA toward achieving this goal.

SOA allows users to distribute applications to multiple locations,
multiple departments within an organization, and multiple busi-
nesses across the Internet. Plus, it permits reuse of existing code
within an organization and, more importantly, collaboration among
diff erent business units.

A SOA application is usually deployed in a server farm in a load-
balanced environment. Th e goal is to allow the application to han-
dle as much load as you throw at it. Th e question thus becomes:
What are some of the considerations you should have in mind for
improving both performance and scalability of your SOA application?

Iqbal Khan

Although SOA, by design, is intended to provide scalability, there
are many issues you must address before you can truly achieve
scalability. Some of these issues involve how you code your SOA
application, but the most important bottlenecks oft en relate to how
you store and access your data. I’ll explore those issues and provide
some solutions in this article.

Find Scalability Bottlenecks
A true SOA application should scale easily as far as the application
architecture is concerned. A SOA application has two components:
service components and client applications. Th e client application
may be a Web application, another service or any other application
that relies on the SOA service components to do its job.

One of the key ideas behind SOA is to break up the applica-
tion into small chunks so these components can be run on multiple
servers as separate services.

Ideally, these services should be stateless as much as possible.
Stateless means they don’t retain any data with them across multiple
calls, allowing you to run the services on multiple computers.
There’s no dependence on where the data was the last time, so
there’s no data being kept on any particular server across multiple
service calls.

As a result, the architecture of SOA applications is inherently
scalable. It can easily grow onto multiple servers and across data-
centers. However, as with every other application, SOA applications
do have to deal with the data, and that can be a problem. Th is data

This article discusses:
• Code for performance

• Choose the right communication protocol

• Using a distributed cache for scalability

• Synchronizing the cache with a database

Technologies discussed:
ASP.NET, Windows Communication Foundation

25June 2010msdnmagazine.com

access becomes the scalability bottleneck. Bottlenecks typically
involve the application data, which is stored in some database,
usually a relational database. If the SOA application is using
session data, the storage of that data is also another potential
scalability bottleneck.

One SOA application relying on other SOA applications is
another likely area of poor performance and scalability. Say your
application calls one service to do its job, but that service calls out
to other services. Th ose services may be on the same intranet or
across the WAN in other locations. Such a data trip can be costly.
You can’t scale the application eff ectively if you’re making those
calls over and over again, and these are areas where scalability
bottlenecks occur, as shown in Figure 1.

Code for Performance
There are a number of programming techniques that can help
improve your SOA application performance.

One thing you can do is design your application to use “chunky”
Web method calls. Don’t make frequent calls between the SOA cli-
ent application and the SOA service layer. Th ere’s usually a great
distance between those because they’re not running on the same
computer or even in the same datacenter. Th e fewer calls you make
from the client application to the service layers, the better the
performance. Chunky calls do more work in one call than multiple
calls to do the same work.

Another useful technique is to employ the asynchronous Web meth-
od calls supported by the Microsoft .NET Framework. Th is allows your

SOA client application to continue
doing other things while the Web
method of the service layer is being
called and is executing.

The cost of serialization is
another aspect to factor in so you
don’t serialize any unnecessary
data. You should only send data
that is required back and forth,
allowing you to be highly selective
about the type of serialization you
want to perform.

Choose the Right
Communication Protocol
For SOA applications developed
in Windows Communication
Foundation (WCF), there are three
diff erent protocols that let SOA
clients talk to SOA services. Th ese
are HTTP, TCP and named pipes.

If both your client and your
service are developed in WCF
and are running on the same
machine, named pipes offer the
best performance. A named pipe
uses shared memory between
client and server processes.

TCP is good if both SOA client and server are developed in WCF,
but are running on diff erent computers in the same intranet. TCP is
faster than HTTP, but a TCP connection stays open across multiple
calls and therefore you can’t automatically route each WCF call to a
diff erent server. By employing the NetTcpBinding option that uses
connection pools, you can expire TCP connections frequently to
restart them so they get routed to a diff erent server, thereby giving
you a form of load balancing.

Please note that TCP can’t work reliably across the WAN because
socket connections tend to break frequently. If your SOA client
and service are not based on WCF or they’re hosted in diff erent
locations, then HTTP is your best option. Although HTTP is not
as fast as TCP, it off ers great scalability due to load balancing.

Use Caching to Improve Client Performance
Th oughtful use of caching can really improve SOA client per-
formance. When a SOA client makes a Web method call to the
service layer, you can cache the results at the client application’s
end. Th en, the next time this SOA client needs to make the same
Web method call, it gets that data from the cache instead.

Figure 1 SOA Architecture with Potential Scalability Bottlenecks

Load Balancer

SOA CLIENTS

ASP.NET Apps

SOA CLIENTS

WCF Services

SOA CLIENTS

Grid Computing Apps

SOA (WCF) SERVICES SERVER FARM

Server Farm Scales Horizontally

DATABASE SERVERS

Limited Scalability

App Data

A true SOA application
should scale easily.

http://msdnmagazine.com

msdn magazine26 SOA Tips

By caching data at the client end, the SOA client application
reduces the number of calls it’s going to make to the service layer.
Th is step boosts performance because it didn’t have to make an
expensive SOA service call. It also
reduces overall pressure on the
service layer and improves scal-
ability. Figure 2 shows a WCF
client using caching.

In many situations, your client
is physically removed from the
service layer and is running across
the WAN. In that case, you have no
way of knowing whether the data
you have cached has been updated.
Th erefore, you have to identify only
those data elements for caching
that you feel will not change for
at least a few minutes to perhaps
a few hours, depending on your
application. You can then specify
expiration for these data elements
in the cache so the cache will auto-
matically remove them at that time.
Th is helps ensure that cached data
is always fresh and correct.

Distributed Caching for
Service Scalability
The real scalability gains through
caching are found in the SOA
service layer. Scalability bottle-
necks are not always removed de-

spite many of the programming techniques mentioned already
because the major scalability bottlenecks are with data storage
and access. Services often live in a load-balanced server farm,
allowing the service itself to scale quite nicely—except the data
storage can’t scale in the same manner. Data storage thus becomes
the SOA bottleneck.

You can scale the service layer by adding more servers to the
server farm, increasing the computing capacity through these
additional application servers. But all those SOA transactions still
deal with some data. Th at data has to be stored somewhere, and
that data storage can easily become the bottleneck.

Th is data storage barrier to scalability can be improved at
multiple levels. SOA services deal with two types of data. One is
session-state data and the other is application data that resides in
the database (see Figure 3). Both cause scalability bottlenecks.

Figure 3 How Distributed Caching Reduces Pressure on a Database

DATABASE SERVERS

App Data

DISTRIBUTED CACHE CLUSTER

Scales Horizontally

Load Balancer

SOA CLIENTS

ASP.NET Apps

SOA CLIENTS

WCF Services

SOA CLIENTS

Grid Computing Apps

SOA (WCF) SERVICES SERVER FARM

Server Farm Scales Horizontally

App Data Cache
Session Data Storage

using System;
using Client.EmployeeServiceReference;

using Alachisoft.NCache.Web.Caching;

namespace Client {
 class Program {
 static string _sCacheName = "mySOAClientCache";
 static Cache _sCache = NCache.InitializeCache(_sCacheName);

 static void Main(string[] args) {
 EmployeeServiceClient client =
 new EmployeeServiceClient("WSHttpBinding_IEmployeeService");

 string employeeId = "1000";
 string key = "Employee:EmployeeId:" + employeeId;

 // first check the cache for this employee
 Employee emp = _sCache.Get(key);

 // if cache doesn't have it then make WCF call
 if (emp == null) {
 emp = client.Load("1000");

 // Now add it to the cache for next time
 _sCache.Insert(key, emp);
 }
 }
 }
}

Figure 2 WCF Client Caching

The fewer calls you make
from the client application

to the service layers, the better
the performance.

Untitled-1 1 4/6/10 1:23 PM

www.syncfusion.com

msdn magazine28 SOA Tips

Storing Session State in a Distributed Cache
One of the limitations of the default session-state storage is that it
does not support Web farms because it is in-memory storage living
inside the WCF service process. A much better alternative is to use
ASP.NET compatibility mode and the ASP.NET session state in
WCF services. Th is allows you to specify OutProc storage including
StateServer, SqlServer, or a distributed cache as session state storage.

Enabling ASP.NET compatibility mode is a two-step process.
First, you have to specify ASP.NET compatibility in your class
defi nition, as shown in Figure 4. Th en you have to specify this in
your app.confi g fi le, as shown in Figure 5. Notice that Figure 4
also demonstrates how to specify a distributed cache as your Ses-
sionState storage in the same web.confi g fi le.

StateServer and SqlServer session storage options do not scale
well and, in the case of StateServer, it is also a single point of failure.
A distributed cache is a much better alternative because it scales
nicely and replicates sessions to multiple servers for reliability.

Caching Application Data
Application data is by far the heaviest data usage in a WCF
service, and its storage and access is a major scalability bottleneck. To
address this scalability-bottleneck problem, you can use distributed
caching in your SOA service-layer implementation. A distributed
cache is used to cache only a subset of the data that is in the
database based on what the WCF service needs in a small window
of a few hours.

Additionally, a distributed cache gives a SOA application a
signifi cant scalability boost because this cache can scale out as a
result of the architecture it employs. It keeps things distributed
across multiple servers—and still gives your SOA application one
logical view so you think it’s just one cache. But the cache actually
lives on multiple servers and that’s what allows the cache to really
scale. If you use distributed caching in between the service layer
and the database, you’ll improve performance and scalability of
the service layer dramatically.

Th e basic logic to implement is that, before going to the data-
base, check to see if the cache already has the data. If it does, take
it from the cache. Otherwise, go to the database to fetch the data
and put it in the cache for next time. Figure 6 shows an example.

By caching application data, your WCF service saves a lot of
expensive database trips and instead finds the frequently used
transactional data in a nearby in-memory cache.

Expiring Cached Data
Expirations let you specify how long data should stay in the cache
before the cache automatically removes it. Th ere are two types of

expirations you can specify: absolute-time expiration and sliding-
or idle-time expiration.

If the data in your cache also exists in the database, you know
that this data can be changed in the database by other users or
applications that may not have access to your cache. When that
happens, the data in your cache becomes stale, which you do not
want. If you’re able to make a guess as to how long you think it’s
safe for this data to be kept in the cache, you can specify absolute-
time expiration. You can say something like “expire this item 10
minutes from now” or “expire this item at midnight today.” At that
time, the cache expires this item:

using Vendor.DistCache.Web.Caching;
...
// Add an item to ASP.NET Cache with absolute expiration
_sCache.Insert(key, employee, null,
 DateTime.Now.AddMinutes(2),
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default, null);

You can also use idle-time or sliding-time expiration to expire an
item if nobody uses it for a given period. You can specify something

The real scalability gains
through caching are found in the

SOA service layer.

using System;
using System.ServiceModel;
using System.ServiceModel.Activation;

namespace MyWcfServiceLibrary {
 [ServiceContract]
 public interface IHelloWorldService {
 [OperationContract]
 string HelloWorld(string greeting);
 }

 [ServiceBehavior (InstanceContextMode =
 InstanceContextMode.PerCall)]
 [AspNetCompatibilityRequirements (RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]

 public class HelloWorldService : IHelloWorldService {
 public string HelloWorld(string greeting) {
 return string.Format("HelloWorld: {0}", greeting);
 }
 }
}

Figure 4 Specifying ASP.NET Compatibility
for WCF Services in Code

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <sessionState cookieless="UseCookies"
 mode="Custom"
 customProvider="DistCacheSessionProvider"
 timeout="20">
 <providers>
 <add name="DistCacheSessionProvider"
 type="Vendor.DistCache.Web.SessionState.SessionStoreProvider"/>
 </providers>
 </sessionState>
 <identity impersonate="true"/>
 </system.web>

 <system.serviceModel>
 <!-- ... -->
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled="true"/>
 </system.serviceModel>
</configuration>

Figure 5 Specifying ASP.NET Compatibility
for WCF Services in Confi g

Untitled-1 1 4/14/10 3:23 PM

www.CodeFluentEntities.com/msdn
www.CodeFluentEntities.com

msdn magazine30 SOA Tips

like “expire this item if nobody reads or updates it for 10 minutes.”
Th is is useful when your application needs the data temporarily
and when your application is done using it, you want the cache to
automatically expire it. ASP.NET compatibility-mode session state
is a good example of idle-time expiration.

Notice that absolute-time expiration helps you avoid situations
where the cache has an older or stale copy of the data than the mas-
ter copy in the database. On the other hand, idle-time expiration
serves a totally diff erent purpose. It’s meant really to simply clean
up the cache once your application no longer needs the data. In-
stead of having your application keep track of this clean up, you
let the cache take care of it.

Managing Data Relationships in the Cache
Most data comes from a relational database, and even if it’s not com-
ing from a relational database, it’s relational in nature. For example,
you’re trying to cache a customer object and an order object and both
objects are related. A customer can have multiple orders.

When you have these relationships, you need to be able to
handle them in a cache. Th at means the cache should know about
the relationship between a customer and an order. If you update or
remove the customer from the cache, you may want the cache to
automatically remove the order object from the cache. Th is helps
maintain data integrity in many situations.

If a cache can’t keep track of these relationships, you’ll have to
do it yourself—and that makes your application more cumber-
some and complex. It’s a lot easier if you just tell the cache when
you add the data about this relationship. The cache then knows
if that customer is ever updated or removed, the order also has
to be removed.

ASP.NET has a useful feature called CacheDependency that
allows you to keep track of relationships between diff erent cached
items. Some commercial caches also have this feature. Here’s an
example of how ASP.NET lets you keep track of relationships
among cached items:

using Vendor.DistCache.Web.Caching;
...
public void CreateKeyDependency() {
 Cache["key1"] = "Value 1";

 // Make key2 dependent on key1.
 String[] dependencyKey = new String[1];
 dependencyKey[0] = "key1";
 CacheDependency dep1 =
 new CacheDependency(null, dependencyKey);

 _sCache.Insert("key2", "Value 2", dep2);
}

Th is is multi-layer dependency, meaning A can depend on B
and B can depend on C. So, if your application updates C, both A
and B have to be removed from the cache.

using System;
using System.Collections.Generic;
using System.ServiceModel;
using Vendor.DistCache.Web.Caching;

namespace MyWcfServiceLibrary {
 [ServiceBehavior]
 public class EmployeeService : IEmployeeService {
 static string _sCacheName = "myServiceCache";
 static Cache _sCache =
 DistCache.InitializeCache(_sCacheName);

 public Employee Load(string employeeId) {
 // Create a key to lookup in the cache.
 // The key for will be like “Employees:PK:1000”.
 string key = "Employee:EmployeeId:" + employeeId;

 Employee employee = (Employee)_sCache[key];
 if (employee == null) {
 // item not found in the cache.
 // Therefore, load from database.
 LoadEmployeeFromDb(employee);

 // Now, add to cache for future reference.
 _sCache.Insert(key, employee, null,
 Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default);
 }

 // Return a copy of the object since
 // ASP.NET Cache is InProc.
 return employee;
 }
 }
}

Figure 6 WCF Service Using Caching

Application data is by far
the heaviest data usage in

a WCF service.

Absolute-time expiration helps
you avoid situations where the

cache has an older or stale copy .

using Vendor.DistCache.Web.Caching;
using System.Data.SqlClient;
...

public void CreateSqlDependency(
 Customers cust, SqlConnection conn) {

 // Make cust dependent on a corresponding row in the
 // Customers table in Northwind database

 string sql = "SELECT CustomerID FROM Customers WHERE ";
 sql += "CustomerID = @ID";
 SqlCommand cmd = new SqlCommand(sql, conn);
 cmd.Parameters.Add("@ID", System.Data.SqlDbType.VarChar);
 cmd.Parameters["@ID"].Value = cust.CustomerID;

 SqlCacheDependency dep = new SqlCacheDependency(cmd);
 string key = "Customers:CustomerID:" + cust.CustomerID;
_ sCache.Insert(key, cust, dep);
}

Figure 7 Synchronizing Data via SQL Dependency

Untitled-1 1 4/28/10 11:21 AM

www.aspose.com

msdn magazine32 SOA Tips

Synchronizing the Cache
with a Database
Th e need for database synchroniza-
tion arises because the database is
really being shared across multiple
applications, and not all of those ap-
plications have access to your cache.
If your WCF service application is the
only one updating the database and it
can also easily update the cache, you
probably don’t need the database-
synchronization capability.

But, in a real-life environment,
that’s not always the case. Th ird-
party applications update data in the
database and your cache becomes
inconsistent with the database. Syn-
chronizing your cache with the data-
base ensures that the cache is always
aware of these database changes
and can update itself accordingly.

Synchronizing with the database
usually means invalidating the
related cached item from the
cache so the next time your appli-
cation needs it, it will have to fetch
it from the database because the cache doesn’t have it.

ASP.NET has a SqlCacheDependency feature that allows you to
synchronize the cache with SQL Server 2005, SQL Server 2008 or
Oracle 10g R2 and later—basically any database that supports the
CLR. Some of the commercial caches also provide this capability.
Figure 7 shows an example of using SQL dependency to synchronize
with a relational database.

One capability that ASP.NET does not provide, but some com-
mercial solutions do, is polling-based database synchronization.
Th is is handy if your DBMS doesn’t support the CLR and you can’t
benefi t from SqlCacheDependency. In that case, it would be nice
if your cache could poll your database at confi gurable intervals
and detect changes in certain rows in a table. If those rows have
changed, your cache invalidates their corresponding cached items.

Enterprise Service Bus for SOA Scalability
Enterprise Service Bus (ESB) is an industry concept where many
technologies are used to build it. An ESB is an infrastructure for
Web services that mediates communication among components. Put
plainly, an ESB is a simple and powerful way for multiple applications
to share data asynchronously. It is not meant to be used across

organizations or even across a WAN, however. Usually SOA ap-
plications are by design broken up into multiple pieces, so when
they need to share data with each other, ESB is a powerful tool.

Th ere are many ways to build an ESB. Figure 8 shows an example
of an ESB created with a distributed cache. Multiple loosely coupled
applications or service components can use it to share data with
each other in real time and across the network.

A distributed cache by its nature spans multiple computers. Th is
makes it highly scalable, which meets the fi rst criterion of an ESB. In
addition, a good distributed cache replicates all its data intelligently
to ensure that no data loss occurs if any cache server goes down.
(I’ll discuss this later.) Finally, a good distributed cache provides
intelligent event-propagation mechanisms.

Th ere are two types of events that a distributed cache must pro-
vide to be fi t for an ESB. First, any client application of the ESB
should be able to register interest in a data element on the ESB so
if anybody modifi es or deletes it, the client application is notifi ed
immediately. Second, the cache should allow client applications
to fi re custom events into the ESB so all other applications con-
nected to the ESB that are interested in this custom event are
immediately notifi ed, no matter where they are on the network (of
course, within the intranet).

With the help of an ESB, a lot of data exchange that would oth-
erwise require SOA calls from one application to another can be
done very easily through the ESB. Additionally, asynchronous data
sharing is something a simple WCF service is not designed to do
easily. But the ESB makes this job seamless. You can easily create
situations where data is even pushed to the clients of the ESB if they
have shown interest in it up front.

Figure 8 An ESB Created with a Distributed Cache

ASP.NET Apps WCF Services

ASP.NET AppsWCF Services

Grid Computing Apps

Request/Response
Communication

Event Driven
Communication

Intelligent
Messaging Routing

Server Farm Scales Horizontally

ENTERPRISE SERVICE BUS (ESB)

ESB is a simple and powerful way
for multiple applications to share

data asynchronously.

Untitled-3 1 4/1/10 1:48 PM

http://www.purecm.com/start10-1

msdn magazine34 SOA Tips

Cache Scalability and High Availability
Caching topology is a term used to indicate how data is actually
stored in a distributed cache. Th ere are various caching topolo-
gies that are designed to fi t diff erent environments. I’ll discuss
three here: partitioned cache, partitioned-replicated cache and
replicated cache.

Partitioned and partitioned-replicated are two caching topologies
that play major roles in the scalability scenario. In both topologies,
the cache is broken up into partitions, then each partition stored in
diff erent cache servers in the cluster. Partitioned-replicated cache
has a replica of each partition stored on a diff erent cache server.

Partitioned and partitioned-replicated caches are the most
scalable topology for transactional data caching (where writes to
the cache are as frequent as reads) because, as you add more cache
servers to the cluster, you’re not only increasing the transaction

capacity, you’re also increasing the
storage capacity of the cache be-
cause all those partitions together
form the entire cache.

A third caching topology, rep-
licated cache, copies the entire
cache to each cache server in the
cache cluster. Th is means the repli-
cated cache provides high availabil-
ity and is good for read-intensive
usage. It is not good for fre-
quent updates, however, because
updates are done to all copies syn-
chronously and are not as fast as
with other caching topologies.

As shown in Figure 9, parti-
tioned-replicated cache topology
is ideal for a combination of scal-
ability and high availability. You
don’t lose any data because of the
replicas of each partition.

High availability can be further
enhanced through dynamic cache
clustering, which is the ability to
add or remove cache servers from
the cache cluster at run time with-
out stopping the cache or the client
applications. Because a distributed
cache runs in a production envi-
ronment, high availability is an
important feature requirement.

Next Steps
As you’ve seen, an SOA application can’t scale eff ectively when the
data it uses is kept in a storage that is not scalable for frequent trans-
actions. Th is is where distributed caching really helps.

Distributed caching is a new concept but rapidly gaining
acceptance among .NET developers as a best practice for any high-
transaction application. Th e traditional database servers are also
improving but without distributed caching, they can’t meet the
exploding demand for scalability in today’s applications.

Th e techniques I’ve described should help take your SOA
apps to new levels of scalability. Give them a try today. For more
discussion on distributed caching, see the MSDN Library article
by J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mack-
man at msdn.microsoft.com/library/ms998562.

IQBAL KHAN is president and technology evangelist at Alachisoft. Alachisoft
provides NCache, an industry-leading .NET distributed cache for boosting
performance and scalability in enterprise applications. Khan has a master’s in
computer science from Indiana University, Bloomington. You can reach him at
iqbal@alachisoft.com.

THANKS to the following technical experts for reviewing this article:
Kirill Gavrylyuk and Stefan Schackow

Figure 9 Partitioned-Replicated Caching Topology for Scalability

DISTRIBUTED CACHE CLUSTER

Cache Server 1

Partition 1

Partition 2 Replica

1 3 4

4

2

5 6 7

Cache Server 2

Partition 2

Partition 1 Replica

2

5 6 7

1 3 4

8

Load Balancer

SOA (WCF) SERVICES SERVER FARM

PARTITIONED-REPLICATED CACHE TECHNOLOGY

Scale Web Farm Horizontally

App Data Cache
Session Data

High availability can be further
enhanced through dynamic

cache clustering.

mailto:iqbal@alachisoft.com
http://msdn.microsoft.com/library/ms998562

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

www.dart.com

Untitled-10 2 4/30/10 3:44 PM

www.componentone.com/here

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343
© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. While supplies last. Void where prohibited or
restricted by law. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Experience all the rich, new features of
Visual Studio 2010 along with the ability to:

• Improve your entire Web Form apps in minutes with
AJAX 4.0 controls.

• Style your Silverlight applications using visual brush
creation and ComponentOne ClearStyle technology.

• Add more data visualization such as charts and gauges
in WinForms and ASP.NET AJAX.

• Add docking and floating capabilities to WPF windows.

With a sighting this big, you have to download it to believe.

Untitled-10 3 4/30/10 3:45 PM

www.componentone.com/here

msdn magazine38

TH RE A D PER FOR MANC E

Resource Contention
Concurrency Profi ling
in Visual Studio 2010

As multicore processors become ever more commonplace,
soft ware developers are building multithreaded applications that
take advantage of the additional processing capacity to achieve better
performance. Using the power of parallel threads, you can split the
overall work into separate tasks and execute those tasks in parallel.

Th reads, however, oft en need to communicate with each other to
complete a task, and sometimes need to synchronize their behavior
if an algorithm or data access requires it. For example, simultaneous
write access to the same data should be granted to threads in a
mutually exclusive fashion to avoid data corruption.

Synchronization is frequently accomplished through the use of
shared synchronization objects, where the thread acquiring the
object is granted either shared or exclusive access to the sensitive
code or data. When access is no longer required, the thread relin-
quishes ownership and other threads can attempt to acquire access.
Depending on the type of synchronization used, simultaneous

Maxim Goldin

requests for ownership might allow multiple threads to access shared
resources at the same time, or some of the threads might be blocked
until the object is released from previous acquisition. Examples
include critical sections in C/C++ that use EnterCriticalSection and
LeaveCriticalSection access routines, the WaitForSingleObject func-
tion in C/C++ and the lock statement and the Monitor class in C#.

Th e choice of synchronization mechanism must be made with
care, because improper synchronization between threads can
reduce rather than enhance the performance gains that are the
objective of multithreading. Th us, it is increasingly important to
be able to detect situations where threads are blocked due to lock
contentions that make no progress.

Th e performance tools in Visual Studio 2010 include a new
profi ling method—resource contention profi ling—that helps you
detect concurrency contention among threads. You can fi nd a great
fi rst look at this feature in John Robbins’ Wintellect blog post at
wintellect.com/CS/blogs/jrobbins/archive/2009/10/19/vs-2010-beta-2-concurrency-

resource-profi ling-in-depth-fi rst-look.aspx.
In this article, I walk through a contention-profi ling investigation

and explain the data that can be collected using both the Visual
Studio 2010 IDE and command-line tools. I’ll also show you how
you can analyze the data in Visual Studio 2010, and you’ll see how
to move from one analysis view to another while conducting your
contention investigation. Th en I will fi x the code and compare
profi ling results of the modifi ed application with the original profi ling
results to validate that the fi x reduces the number of contentions.

This article discusses:
• Profi ling data collection

• Resource contention blocks

• Function and thread details

• Chasing down a problem

Technologies discussed:
Visual Studio 2010

http://wintellect.com/CS/blogs/jrobbins/archive/2009/10/19/vs-2010-beta-2-concurrency-resource-profiling-in-depth-first-look.aspx

39June 2010msdnmagazine.com

Start with the Problem
As an example, I’ll use the same matrix multiplication application
Hazim Shafi used in his blog post “Performance Pattern 1: Iden-
tifying Lock Contention” (blogs.msdn.com/hshafi /archive/2009/06/19/

performance-pattern-1-identifying-lock-contention.aspx). Th e code example is
written in C++, but the concepts I’ll discuss are equally applicable
to managed code.

The example matrix multiplication application uses several
threads to multiply two matrixes. Each thread gets a portion of
the job and runs the following code snippet:

for (i = myid*PerProcessorChunk;
 i < (myid+1)*PerProcessorChunk;
 i++) {
 EnterCriticalSection(&mmlock);
 for (j=0; j<SIZE; j++) {
 for (k=0; k<SIZE; k++) {
 C[i][j] += A[i][k]*B[k][j];
 }
 }
 LeaveCriticalSection(&mmlock);
}

Each thread has its own ID (myid), and
is responsible for calculating the number
of rows (one or more) in the resulting
matrix C, using matrixes A and B as an
input. Close code inspection shows that no
truly ambiguous write-sharing happens,
and each thread writes to a diff erent row of
C. Yet the developer decided to guard the

assignment to the matrix with a critical sec-
tion. I thank the developer for this, as it gives
me a good opportunity to demonstrate the
new Visual Studio 2010 performance tools
to easily fi nd the redundant synchronization.

Profi ling Data Collection
Assuming you have a Visual Studio project
with the code shown earlier (although it’s not
required—you can attach the profi ler to any
application that’s already running), you start
contention profiling by clicking Launch
Performance Wizard on the Analyze menu.

On the fi rst page of the wizard, shown in
Figure 1, choose Concurrency and make sure
the “Collect resource contention data” option
is checked. Note that resource contention
concurrency profi ling works on any version of
the Windows OS. Th e “Visualize the behavior
of a multithreaded application” option requires
Windows Vista or Windows 7.

On the second page of the wizard, make
sure the current project is targeted. On the

last page of the wizard, make sure “Launch profi ling aft er the wizard
fi nishes” option is checked, then click Finish. Th e application starts
running under the profi ler. When it exits, the profi ling data fi le
appears in the Performance Explorer window (see Figure 2).

Th e profi ling report automatically opens in Visual Studio and
displays the performance investigation results in the Summary
view, which is shown in Figure 3.

Profi ling Data Analysis
Not all synchronization causes lock contention. If a lock is available,
an attempt to take an ownership of the lock does not block thread
execution and no contention happens. In Resource Contention
Profi ling mode, the profi ler collects data only for synchronization
events that cause contention and does not report successful
(unblocked) resource acquisitions. If your application does not
cause any contentions, no data will be collected. If you get data, it
means your application has lock contentions.

For each contention, the profi ler reports which thread was
blocked, where the contention occurred (resource and call stack),
when the contention occurred (timestamp) and the amount of time
(length) that the thread was blocked trying to acquire a lock, enter
a critical section, wait for a single object, and so on.

When you open the fi le, you’ll fi rst see
the Summary view (Figure 3), with three
main areas you can use for brief diagnostics:
1. Th e contentions chart shows the number
of contentions per second plotted for the
lifetime of your application. You can visually
inspect contention spikes or select a time
interval and either zoom into it or fi lter the
results. Filtering re-analyzes the data and
removes data outside the selected interval.

F igure 1 Enabling Concurrency Resource Profi ling

Fi gure 2 Performance Profi ling Result File
in Performance Explorer

Not all synchronization causes
lock contention.

http://blogs.msdn.com/hshafi/archive/2009/06/19/performance-pattern-1-identifying-lock-contention.aspx
http://blogs.msdn.com/hshafi/archive/2009/06/19/performance-pattern-1-identifying-lock-contention.aspx
http://msdnmagazine.com

msdn magazine40 Thread Performance

2. Th e Most Contended Resources table lists the resources that
caused the most detected contentions.

3. Th e Most Contended Th reads table lists the threads with the
highest number of contentions. Th is table uses the number of
contentions as a criterion, not the length of the contentions.
Th erefore, you might have a thread that’s blocked in a single
contention for a long time, but it won’t be displayed in Summary
view. On the other hand, a thread that experienced many very
short contentions, with each contention blocking the thread for
only a very short time, would be presented in the Summary view.
If you see a resource that’s responsible for the majority of conten-

tions, inspect that resource in more detail. If you observe a thread
that experiences a large number of contentions you did not expect,
inspect the contentions of the thread.

For example, in Figure 3, you can see that Critical Section 1
is responsible for nearly all (99.90 percent) contentions in that
application. Let’s investigate that resource more closely.

Resource names and thread IDs on the Summary view are hyper-
links. Clicking on Critical Section 1 transfers you to the Resource
Details view (see Figure 4), where the context is set to the specifi c
resource—Critical Section 1.

Resource Details
Th e upper part of the Resource Details view
shows a time-based chart where each horizontal
line belongs to a thread. Th e lines are labeled by
the thread root function unless you name the
managed thread in your code (for example, by
using the C# System.Th read ing.Th read.Name
property). A block on this line represents a
contention of the thread on the resource. Th e
block length is the contention length. Blocks
from diff erent lines might overlap in time,
which means several threads blocked on the
resource at the same time.

Th e Total line is special. It doesn’t belong to any
specifi c thread, but contains all contentions of all
threads on this resource (it is actually a projection
of contention blocks to the line). As you can see,
Critical Section 1 was quite busy—it doesn’t seem
to have any empty slots on its Total line.

You can zoom into a specifi c portion of the
chart by selecting a time range using the left mouse
button (left -click at the point in the chart you want
to start and then drag the pointer to the right).
Th ere are two links on the upper-right part of the
chart—Zoom reset and Zoom out. Zoom reset
restores the original chart view. Zoom out takes
you back step by step, un-zooming the chart the
same way you zoomed in.

Th e overall pattern of contention blocks might
lead you to some conclusions about your appli-
cation execution. For example, you can see that
contentions of various threads are heavily overlapped
in time, which hints at a less than optimal parallelization.

Each thread is blocked on the resource much longer than it’s running,
and it’s yet another indication of the application’s ineffi ciency.

Function Details
Th e bottom part of the Resource Details view is a contention call
stack—no data is displayed until you select a specifi c contention.
When you select a block, the corresponding stack shows up in the
bottom panel. You can also hover over a contention block on the
chart without clicking on it, and a pop-up window will give you
the stack and the contention length.

Figu re 4 Resource Details View

Fig ure 3 Summary View of the Profi ling Report

The overall pattern of contention
blocks might lead you to

some conclusions about your
application execution.

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine42 Thread Performance

As you can see in the contention call stack, one of the example app
functions called MatMult is listed, so you know it was the cause of the
contention. To determine which line of the function code is responsible
for the contention, double-click the function name in the call stack panel.
Th at takes you to the Function Details view, shown in Figure 5.

In this view you see a graphical presentation of functions that
called MatMult, as well as functions that
were called inside of it. Th e bottom section
of the view clearly shows that EnterCritical-
Section(&mmlock) is responsible for the
threads being blocked all the time.

When you know which line of your code is
responsible for contentions, you may reconsider
your decision to implement synchronization
that way. Is it the best way to protect your code?
Is protection required at all?

In the example app, using a critical section in
this code is unnecessary because threads don’t
share writes to the same result matrix rows. Th e
Visual Studio performance tools bring you to
the point where you can comment out the use
of mmlock, signifi cantly speeding up the appli-
cation. If only it were always that easy!

For a more in-depth description of
Function Details view, see the Visual Studio
Profi ler Team blog at blogs.msdn.com/profi ler/

archive/2010/01/19/vs2010-investigating-a-sample-

profi ling-report-function-details.aspx.

Thread Details
As I mentioned earlier, Summary view
provides a good starting point for your inves-
tigation. By looking at the Most Contended
Resources and Most Contended Th reads
tables, you can decide how to proceed. If you
fi nd that one of the threads looks suspicious
because you didn’t expect it to be in the top list of
contended threads, you might decide to give
the thread a closer look.

Click the thread ID on the Summary
view to jump to the Th read Details view (see
Figure 6). Th ough this view looks similar to
the Resource Details view, it has a diff erent
meaning because it displays contentions in
the context of the selected thread. Each hori-
zontal line represents a resource the thread
was contending for during the thread lifetime.
On this chart you won’t see contention blocks
overlapping in time because that would mean
the same thread was blocked on more than
one resource at the same time.

Note that WaitForMultipleObjects (which
I’m not showing here) is handled separately
and is represented with a single chart line for
the set of objects. Th is is because the profi ler

treats all parameter objects of WaitForMultipleObjects as a single entity.
Any manipulations you can do in Resource Details view (zooming the

chart in and out, selecting specifi c contentions and viewing the length in
milliseconds, and the calling stack) are applicable to the Th read Details
view as well. Double-click the function name in the Contention Call
Stack panel to navigate to the Function Details view of that function.

Figur e 5 Function Details View

Figure 6 Thread Details View with Selected Contention Block

http://blogs.msdn.com/profiler/archive/2010/01/19/vs2010-investigating-a-sample-profiling-report-function-details.aspx
http://blogs.msdn.com/profiler/archive/2010/01/19/vs2010-investigating-a-sample-profiling-report-function-details.aspx

Image Formats & Compression: Supports 150+ image formats and
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64

bit development.
Forms Recognition and Processing: Automatically identify forms and

extract user lled data.
Barcode: Detect, read and rite 1D and 2D barcodes for multithreaded 32 and

64 bit development.
Document Cleanup/Preprocessing: Des e , despec le, hole punch, line

and border removal, inverted text correction and more.
PDF and PDF/A: ead and rite searchable PDF ith text, images and

annotations.
Annotations: Interactive UI for document mark-up, redaction and image

measurement (including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly

build high- uality, full-featured, eb-based medical image delivery and vie er
applications.
Medical Image Viewer: igh level display control ith built-in tools for image

mark-up, indo level, measurement, zoom pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the 200

DICOM standard (including Encapsulated PDF CDA and a Data).
PACS Communications: Full support for DICOM messaging and secure

communication enabling uick implementation of any DICOM SCU and SCP
services.
JPIP: Client and Server components for interactive streaming of large images

and associated image data using the minimum possible band idth.
Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver

settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, re ind and fast-for ard live capture and UDP or TCP IP streams.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3,

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to

create scalable, robust enterprise applications.

Mark-up

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

Document

ig evel Design ow evel Control

Develop your application ith the same robust imaging technologies used by
Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and
Veterans Affairs Hospitals.

EADTOO S provides developers easy access to decades of
expertise in color, grayscale, document, medical, vector and multmedia
imaging development. Install EADTOO S to eliminate months of research
and programming time hile maintaining high levels of uality, performance
and functionality.

Silverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Free 60 Day Evaluation! www.leadtools.com/msdn 800 637-1840

Untitled-9 1 4/30/10 3:42 PM

http://www.leadtools.com/msdn

msdn magazine44 Thread Performance

In the example you can see that the thread spends more time
being blocked than running in the early part of the execution, and
then it’s blocked for a long time on some set of multiple handles. As
the last block is caused by waiting for other threads to complete,
early contentions indicate non-optimal thread usage, causing the
thread to be in a blocked state more than in an executing state.

Chasing Down the Problem
As you might have noticed, the chart axis labels are hyperlinks.
Th is allows switching between detailed views of resources and
threads, setting the required context for the view each time. Th is
can be helpful in an iterative approach to fi nding and solving a
problem. For example, you can inspect resource R1 that blocked
many threads. You can go from the Resource Details view to a

detailed view of thread T1 and fi nd out that it was blocked not
only on R1, but sometimes also on resource R2. You can then dive
into the details of R2 and observe all threads that were blocked by
R2. Next you can click on the label of thread T2 that draws your
attention to check all resources that blocked T2, and so on.

Contention profiling data won’t give you an explicit answer
to the question of who is holding a lock at any given time. But
given fair use of synchronization object between threads, and
your knowledge of the application’s behavior, you can identify a
possible lock owner (a thread that succeeded in synchronization
lock acquisition) by pivoting your data from resource details to
thread details and back.

For example, suppose in the Th read Details view you see a thread
T that’s blocked on resource R at time t. You can switch to the

Resource Details view of R by clicking on the R
label, and see all threads that were blocked on R
during the application lifetime. At time t you’ll
see a number of them (including T) blocked on
R. A thread that’s not blocked on R at time t is a
possible lock holder.

I noted earlier that the chart’s Total line is a
projection of all contention blocks. Th e Total
label is also a hyperlink, but from Resource
Details view it takes you to the Contention view
(see Figure 7), which is a collection of contention
call trees per resource. Th e hot path of the
appropriate resource call tree is activated for you.
Th is view shows contentions and blocking- time
statistics for each resource and for each node
(function) in the resource call tree. Unlike the
other views, this one aggregates contention stacks
to the resource call tree, just like in other profi ling
modes, and gives you statistics for the whole run
of the application.

Figure 7 Contention View with Hot Path Applied to Critical Section 1

Figure 8 Processes View

Figure 9 Summary View of Profi ling Results for Fixed Code

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com

msdn magazine46 Thread Performance

From the Contention view, you can go back to the Resource
Details view of any resource using the context menu. Point to a
resource, right-click your mouse and select Show Contention
Resource Details. Other interesting actions are also available in the
context menu. As a general suggestion, explore the context menus
in Profi ler views—they can be quite helpful!

Click the Total label of the Th read Details view to display the Pro-
cesses view, where the thread is selected (see Figure 8). In this view
you can see when the thread was started relative to the application start
time, when it was terminated, how long it ran, how many contentions
it experienced, and how long it was blocked across all contentions (in
milliseconds, and in percentage of the thread’s lifetime).

Again, it is possible to come back to the Th read Details view for
any thread by using the context menu—select a thread of interest,
right-click and select Show Th read Contention Details.

Another possible investigation fl ow would be to display the
Processes view directly when the fi le is opened, sort the threads by
clicking on the title of one of the available columns (for example,
sorting threads by the number of contentions), select one of the
threads and then switch to the contention details chart of the thread
through the context menu.

Fix the Problem and Compare Results
After you find the root cause of the lock contentions in the
application, you can comment out the mmlock critical section and
then rerun profi ling:

for (i = myid*PerProcessorChunk;
 i < (myid+1)*PerProcessorChunk;
 i++) {
 // EnterCriticalSection(&mmlock);
 for (j=0; j<SIZE; j++) {
 for (k=0; k<SIZE; k++) {
 C[i][j] += A[i][k]*B[k][j];
 }
 }
 // LeaveCriticalSection(&mmlock);
}

You would expect the number of con-
tentions to decrease, and indeed profi ling
of the modifi ed code reports only one
lock contention, as shown in Figure 9.

We can also compare the new and previ-
ous performance results in Visual Studio.
To do this, select both fi les in Performance

Explorer (select one fi le, press Shift or Ctrl
and then select another), then right-click and
select Compare Performance Reports.

A Comparison Report appears, as shown
in Figure 10. In the example app, you can see
that number of Inclusive Contentions of the
MatMult function dropped from 1,003 to 0.

Alternative Data
Collection Methods
If you create your performance session for
either Sampling or Instrumentation profi ling,
you can always convert it later to Concurrency
mode. One way to do it quickly is to use the

profi ling mode menu in the Performance Explorer. Just select the
mode you’d like to be in, and you’re good to go.

You can also go through the Properties setting of your session.
Point to your session in Performance Explorer, right-click to
display the context menu, then select Properties. Th e General tab
of Property Pages gives you control over your profi ling session
mode and other profi ling parameters.

Once your profi ling mode is set for Concurrency (or Sampling,
for that matter), you can either launch your application (it’s
already in your Targets list if you used Performance Wizard, or you
can add it there manually), or you can attach to an application that’s
up and running. Performance Explorer gives you the controls to
do these tasks, as Figure 11 shows.

Th e Visual Studio UI automates a number of the steps necessary
to collect profi ling data. However, it is possible to collect profi ling
data by using command-line tools, which can be useful for auto-
mated runs and scripts.

To launch your application in contention profi ling mode, open
the Visual Studio command prompt (which puts all profi ler binaries
in your path, either x86 or x64 tools), and then do the following:
1. VSPerfCmd.exe /start:CONCURRENCY,RESOURCEONLY

/output:<YourOutputFile>
2. VSPerfCmd.exe /launch:<Your
Application> /args:“<Your Application
Arguments>”
3. Run your scenario
4. VSPerfCmd.exe /detach
 • Th is step is not required if your ap-

plication terminates, but it causes no
harm so you can add it to your scripts.

5. VSPerfCmd.exe /shutdown
Now you can open YourOutput File.VSP

in Visual Studio for analysis.

Figure 10 Comparison Report

Figure 11 P rofi ling Controls of
Performance Explorer

Summary view provides
a good starting point for

your investigation.

47June 2010msdnmagazine.com

text menus, or you can switch directly to any available view through
a drop-down menu. Figure 12 briefl y describes each of the views.

Th e new resource contention profi ling features in Visual Studio should
help you discover performance issues by using thread synchronization
in the code, and allow you to improve your application runtime by
changing, reducing or eliminating unnecessary synchronization.

MIKE GOLDIN is a senior soft ware design engineer at Microsoft . He has worked
on the Visual Studio Engineering team since 2003. He can be reached at
mgoldin@microsoft .com, and he blogs at blogs.msdn.com/mgoldin.

THANKS to the following technical experts for reviewing this article:
Steve Carroll, Anna Galaeva, Daryush Laqab, Marc Popkin-Paine, Chris
Schmich and Colin Th omsen

If you have an application that’s running already, you can attach
the profi ler to it using these steps:
1. VSPerfCmd.exe /start:CONCURRENCY,RESOURCEONLY

/output:<YourOutputFile>
2. VSPerfCmd.exe /attach:<PID or Process Name>
3. Run your scenario
4. VSPerfCmd.exe /detach
5. VSPerfCmd.exe /shutdown

A more detailed explanation of available command-line
options can be found at msdn.microsoft.com/library/bb385768(VS.100).

Other Analysis Data Views
A variety of Visual Studio views let you closely inspect the collected data.
Some views give a picture of the application lifetime in whole, while
others focus on specifi c contentions—use those you fi nd most valuable.

When you analyze the results of profi ling, you can use transitions
from one view to another through hyperlinks, double-clicks or con-

View Description
Summary Summary information is presented to serve as a

starting point for your investigation. This is the fi rst
view you see, and it opens automatically after a
profi ling session is over and the result fi le is ready.

Call Tree An aggregated call tree of all contention stacks. Here
you can see which stacks were responsible for your
contentions.

Modules A list of modules that contain functions, each resulting
in a contention. Each module has a list of relevant
functions and the number of detected contentions.

Caller/Callee A three-panel view that presents function F, all
functions that call F, and functions that are called by F
(only calls resulted in contentions, of course).

Functions A list of all detected functions on any contention stack,
with associated data.

Lines The function lines in the source code.
Resource Details Details about a specifi c resource (for example, a lock),

showing all threads that were blocked on it during the
application lifetime.

Thread Details Details about a specifi c thread, showing all resources
(such as locks) the thread was blocked on.

Contention Similar to the call tree view, but here call trees are
separated per contention resource. In other words, this
view presents a set of call trees, each containing stacks
that were blocked on a specifi c resource.

Marks A list of automatically and manually recorded marks,
where each mark is associated with its timestamp and
the values of Windows counters.

Processes A list of inspected processes, where each process has
a list of its threads, and each thread is attributed with
the number of contentions it experienced and the
summarized length of blocked time.

Function Details Details about a specifi c function, including the
functions it calls and collected data.

IPs A list of instruction pointers where contention
happened (well, a list of functions like
EnterCriticalSection, WaitForSingleObject and so on,
because this is where contention actually happens).

Figure 12 Analysis Views

It is possible to collect profi ling
data by using command-line

tools, which could be useful for
automated runs and scripts.

www.nwoods.com
http://msdn.microsoft.com/library/bb385768(VS.100)
mailto:mgoldin@microsoft.com
http://blogs.msdn.com/mgoldin
http://msdnmagazine.com

Untitled-2 2 3/2/10 10:44 AM

www.xceed.com

Untitled-2 3 3/2/10 10:45 AM

www.xceed.com

msdn magazine50

Like many programmers, when I fi rst started writing code
I used print statements for debugging. I didn’t know how to use a
debugger and the print statements were a crude but eff ective way
to see what my program was doing as it ran. Later, I learned to use a
real debugger and dropped the print statements as a debugging tool.

Fast forward to when I started writing code that runs on servers.
I found that those print statements now go under the more sophis-
ticated heading of “logging and tracing,” essential techniques for
any server application programmer.

Even if you could attach a debugger to a production server
application—which oft en isn’t possible due to security restric-
tions on the machines hosting the application—the types of issues
server applications run into aren’t easily revealed with traditional

CLO U D D IAG NOST IC S

Take Control of
Logging and Tracing
in Windows Azure
Mike Kelly

This article discusses:
• Logging, tracing and debug output

• Tracing and logging in Windows Azure

• Selectively enabling tracing and logging

• Managing logging for a running service

Technologies discussed:
Windows Azure, Visual Studio 2010, Windows PowerShell

Code download available at:
code.msdn.microsoft.com/mag201006Azure

debuggers. Many server applications are distributed, running
on multiple machines, and debugging what’s happening on one
machine isn’t always enough to diagnose real-world problems.

Moreover, server applications oft en run under the control of
an operations staff that wouldn’t know how to use a traditional
debugger—and calling in a developer for every problem isn’t
desirable or practical.

In this article I’ll explain some basic logging, tracing and
debugging techniques used for server applications. Th en I’ll dive
into how these techniques can be employed for your Windows Azure
projects. Along the way you’ll see how logging and tracing are used
with some real-world applications, and I’ll show you how to use
Windows PowerShell to manage diagnostics for a running service.

A Logging Strategy
Ideally, any server application—and basically any Web application,
including those running under Windows Azure—has a logging
and tracing strategy designed in from the beginning. Th e logging
information should be robust enough to describe nearly every thing
that’s happening within each component. However, just as those
print statements I added to my fi rst programs could produce a lot
of output, so too can logging. Well-designed logging and tracing
thus includes ways of adjusting the type and volume of logging from
any component. Th is allows operational staff and developers to
focus on a particular misbehaving component, perhaps even on a
particular machine, to get much more information on exactly

http://code.msdn.microsoft.com/mag201006Azure

51June 2010msdnmagazine.com

what’s happening inside it—without generating a lot of noise
in the log that can be distracting and perhaps slow down the
application signifi cantly.

Furthermore, because server applications are commonly
distributed applications, information must be collected and
aggregated from multiple machines (perhaps in diff erent application
roles) to get a full picture of what was going on when a particular
problem occurred. So a way to identify a transaction thread through
the machines is important, allowing the aggregation aft er the fact.

Th e logging available in Windows Azure has matured through the
Community Technology Preview (CTP) releases. Th e early logging
wasn’t much more sophisticated than a print statement, captured
as text in Windows Azure table storage. Starting with the PDC09
release, Windows Azure began to off er a much more full-featured
logging and tracing infrastructure, based on the Event Tracing for
Windows (ETW) framework.

Th is ETW framework is supported in ASP.NET through classes
in the System.Diagnostics namespace. Th e Microsoft .Windows-
Azure.Diagnostics namespace, which inherits from and extends
standard System.Diagnostics classes, enables the use of
System.Diagnostics as a logging framework in the Windows Azure
environment. Figure 1 shows how ETW is implemented by
Windows Azure Diagnostics.

ETW provides a model in which code logs to one or more
TraceSources. Th e level of logging allowed through each source
is controlled by a SourceSwitch. Sources are in turn connected to
one or more consumers, which persist the logging information in
diff erent ways.

Windows Azure provides a standard consumer or listener to
persist the logging information you generate either to Windows
Azure table storage or to blob storage. You also can write your own
consumer if you want to do something diff erent with the event data,
or use an off -the-shelf consumer (although some might have to be
modifi ed to work in the Windows Azure environment).

Th e ETW framework associates a TraceEventType with each
event, as shown in Figure 2. Th e
fi rst fi ve severity rows are the values
most commonly used and they
indicate the relative importance
of the trace output. Note that the
Suspend, Resume and Transfer
types are used by Windows Com-
munication Foundation (WCF).

If you’re looking only for really
bad things, you’ll want to be sure
to capture Critical and probably
Error values. If you want lots of
information about what’s going on,
look at everything above Verbose.

Your logging strategy should
include consistent use of the event
type and copious logging entries
with the values further down the
hierarchy. It should be possible to
virtually follow the execution fl ow

of your application if logging for all the highlighted values is enabled
in your application. Th is can be invaluable in troubleshooting an
error or problem in production.

You can hook up listeners, sources and switches to enable
diff erent levels of output programmatically, but this is typically
done through confi guration fi les. You can confi gure the output in
app.confi g (for Windows Azure worker roles) or web.confi g (for
Windows Azure Web roles). However, as I’ll explain in detail later
in the article, putting this in ServiceConfi guration.cscfg lets you
adjust logging and tracing options while the Windows Azure service
is running, without having to redeploy any updates to the running
code or to even stop the service. Windows Azure also exposes
a RESTful interface to allow control over some logging options
remotely. Windows PowerShell can make use of the RESTful interface.

Logging, Tracing and Debug Output
Th e terms logging, tracing and debug output can sometimes be
used interchangeably. In this article, I’m going to distinguish among
four different types of what can generally be called diagnostic
output in your code. Th ese are roughly ordered from most verbose
to least verbose.

• Debug Output: Th is is information that appears only in the
debug builds of your application and is excluded at compile time
from release builds (based on whether the DEBUG preprocessor

F igure 1 High-Level Overview of Windows Azure Diagnostics

TraceSource2 MyCustom
TraceListener

Scheduled
Transfer
LogLevel

Filter

Windows Azure
Table StorageTraceSource1 DiagnosticMonitor

TraceListener

YourAssembly1

YourAssembly2

YourAssembly3 Source
Switch 2

Source
Switch 1

Your Code
System.Diagnostics Code
Windows Azure Code

Windows Azure
Blob Storage

IIS Logs

Failed Request Logs

Crash Dump Logs

Well-designed logging
and tracing includes ways
of adjusting the type and

volume of logging.

http://msdnmagazine.com

msdn magazine52 Cloud Diagnostics

symbol is defi ned at compile time, which Visual Studio by
default defi nes only in debug builds). Typically, debug output
includes things like Asserts that you add to help fi nd cases where
code is not complying with expected preconditions, leading to
bugs, or even dumps of data structures. Adding these helps you
debug algorithms during debugging and testing.

• Tracing: Th ese are statements that are intended to help track
the fl ow of control and state of the program as it’s executing.
Imagine running a debugger, stepping along through code
and checking the values of key variables in the Watch
window. Tracing statements are intended to replicate that
experience in cases where you can’t attach a debugger. Th ey
should ideally provide enough context that you can see which
path is taken at each control point in the application and sort
of follow along in the code from reading the trace statements.
Tracing is enabled when the TRACE preprocessor symbol
is defi ned at compile time, and can be in both release and
debug builds. (By default, Visual Studio defi nes TRACE in both
debug and release builds, but you can of course change this.)

• Event Logging: Th ese are statements that are intended to capture

major events in the course of running the application—
for instance, the start of a transaction or the addition of an item
to a database. Event logging is diff erent from tracing in that
it captures major states rather than detailed fl ow of control.

• Error Logging: Th ese are special cases of event logging in which
you capture exceptional or potentially dangerous situations.
Examples include any caught exception; cases where you can’t
access a resource on another machine you expect to be able to
access (and which, of course, your application will gracefully
handle but would like to note); and cases where errors come
back from APIs from which you don’t expect errors.
Error logging can also be useful to operations staff in situations

where problems aren’t yet occurring, but indications are that they
soon will—for instance, a quota that is nearing its maximum or a
transaction that is succeeding but taking more time than usual. Th ese
sorts of logging events can help operations staff proactively address
problems before they occur, avoiding downtime in the application.

Most good developers have gotten used to including debug
output in their applications to help them diagnose problems
during development, and many have developed some sort of
solution for error logging.

However, you need to be sure you’re considering not just the
debug output and error logging options, but also have a robust
strategy for tracing and event logging, which can really help
diagnose problems that occur only under stressful loads in
production environments.

Also, carefully consider whether much of what you now think
of as debug output shouldn’t instead be tracing and available in
both release and debug builds. A misbehaving application in
production will typically be running the release build. If you have
the tracing statements present but disabled (as I’ll explain how to
do later), you can selectively enable them to get very rich debug-like
output from the release build, helping you diagnose problems.

Tracing and Logging in Windows Azure
You can use Windows Azure logging right out of the box—it’s part
of the Windows Azure SDK. Th ere are some advantages to using a
logging framework like Logger.NET, Enterprise Library, log4net or
Ukadc.Diagnostics. These add additional structure to your logging
messages and also can help provide some of the confi gurability
mentioned earlier. However, most have not been tweaked to work
in the Windows Azure environment and some are much more than
just a logging framework.

For the sample code for this article, I decided to use just the
standard Windows Azure logging and tracing APIs with a thin

Fi gure 3 Logs Persisted in Development Storage

TraceEventType Value Meaning
Critical 0x0001 Fatal error or application crash
Error 0x0002 Recoverable error
Warning 0x0004 Non-critical problem—may be an indication

of more serious problems to come
Information 0x0008 Informational message
Verbose 0x0010 Debugging trace (such as detailed execution

fl ow information, parameters, and so forth)
Start 0x0100 Starting of a logical operation
Stop 0x0200 Stopping of a logical operation
Suspend 0x0400 Suspension of a logical operation
Resume 0x0800 Resuming a logical operation
Transfer 0x1000 Transfer to a new activity

Figure 2 Trace Event Types

The terms logging, tracing and
debug output can sometimes be

used interchangeably.

53June 2010msdnmagazine.com

layer on top to provide dynamic confi guration. You will probably
fi nd building some helper classes and a framework for your logging
and tracing strategy on top of this helpful, or watch for the other
frameworks to provide Windows Azure versions.

When you create a new service in Windows Azure using Visual
Studio, it’s already enabled to do basic logging. Th e boilerplate Worker
Role and Web Role code generated by the Windows Azure templates
has the diagnostics listener already confi gured and enabled.

To enable simple logging in a Windows Azure service, start a
new project in Visual Studio using the Windows Azure Cloud
Service (Visual C#) template. Give the project a name. For my
sample I used MSDNSampleLoggingService. Click OK.

Th e New Cloud Service Project wizard will run. In the wizard, add
one Worker Role and one Web Role to the project. Rename the Worker
Role to LoggingWorkerRole and the Web Role to Logging WebRole,
then click OK. Visual Studio will create the project.

At this point, you can explore the generated code. Look at the
app.confi g in the LoggingWorkerRole project and note that the
following code appears:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <trace autoflush="false" indentsize="4">
 <listeners>
 <add name="AzureDiagnostics" type="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener, Microsoft.WindowsAzure.Diagnostics,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

This hooks up the standard Windows Azure diagnostics
listener to your code, meaning that any logging and tracing you
do from the worker role will be directed to the Windows Azure

listener (DiagnosticMonitorTraceListener) unless you change
this. You’ll fi nd a similar entry in the web.confi g for the Web Role
created for this service.

If you look at the WorkerRole.cs fi le in the worker role project,
you’ll also see this line in the OnStart method:

DiagnosticMonitor.Start("DiagnosticsConnectionString");

And in the Run method, you’ll see a call to trace:
// This is a sample worker implementation. Replace with your logic.
Trace.WriteLine("LoggingWorkerRole entry point called", "Information");

Finally, if you look in the ServiceConfi guration.cscfg fi le in
the Service root, you’ll see this line for both the Worker Role and
the Web Role:

<Setting name="DiagnosticsConnectionString"
 value="UseDevelopmentStorage=true" />

Th is tells the Windows Azure listener which storage account to
use for persisting the logging and tracing information. In this case,
the logging information will be stored in development storage on
your local machine. By switching this to a Windows Azure cloud-
storage account, you can have the logs go to cloud storage. Here is
an example of the format for that from the sample code provided
with this article:

<Setting name="DiagnosticsConnectionString"
 value="DefaultEndpointsProtocol=https;AccountName=Xxxxxx;AccountKey=Yyyyyy" />

Th e AccountName and AccountKey values need to be customized
to your particular Azure account and key. You get this information
from the storage account portal for your service at windows.azure.com.
AccountName is the fi rst portion of the URL for the table and
blob storage endpoints (the part before “.table.core.windows.net”).
AccountKey is the base-64 encoded Primary Access Key for your
storage account.

Note that because there is a distinct storage account used for
diagnostics, you can choose to store your diagnostics information
separate from your other application data. To do this, set up a sep-
arate storage account by clicking New Service on the portal page,

<configuration>
 <system.diagnostics>
 <sharedListeners>
 <add type="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener, Microsoft.WindowsAzure.Diagnostics,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </sharedListeners>
 <sources>
 <source name="ConfigTrace">
 <listeners>
 <add name="AzureDiagnostics" />
 </listeners>
 </source>
 <source name="WorkerTrace">
 <listeners>
 <add name="AzureDiagnostics" />
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="ConfigTrace" value="Verbose"/>
 <add name="WorkerTrace" value="Error"/>
 </switches>
 <trace>
 <listeners>
 <add name="AzureDiagnostics" />
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Figure 4 Confi guring Trace Sources and Listeners

System.Diagnostics.TraceEventType

SourceLevel

Va
lu

e

Tr
an

sfe
r

Re
su

m
e

Su
sp

en
d

St
op

St
ar

t

Ve
rb

os
e

In
fo

rm
at

io
n

W
ar

ni
ng

Er
ro

r

Cr
iti

ca
l

Off 0x0
All 0xFFFF X X X X X X X X X X
Critical 0x1 X
Error 0x3 X X
Warning 0x7 X X X
Information 0xF X X X X
Verbose 0x1F X X X X X
ActivityTracing 0xFF00 X X X X X

Figure 5 Tracing Source Levels and TraceEventType

You can use Windows Azure
logging right out of the box.

http://msdnmagazine.com
http://windows.azure.com

msdn magazine54 Cloud Diagnostics

selecting Storage Account, then giving it a name (MyAppLogs, for
instance). You might want to set up an affi nity group so the storage
for your logs is in the same region as your service.

Now that you’ve taken a quick tour of the tracing code in Windows
Azure services, you can run the simple Web Role project you’ve cre-
ated. Note that the default listener provided by Windows Azure also
directs the output to the Output window in Visual Studio for debug
builds, so you’ll see the OnStart message appear in the debug window:

Information: LoggingWorkerRole entry point called

What if you want to look at logs aft er the service runs? By default,
Windows Azure does not persist the logs to storage. You can tell it
to do so by adding a few lines of code to your role’s OnStart method:

TimeSpan tsOneMinute = TimeSpan.FromMinutes(1);
DiagnosticMonitorConfiguration dmc =
DiagnosticMonitor.GetDefaultInitialConfiguration();

// Transfer logs to storage every minute
dmc.Logs.ScheduledTransferPeriod = tsOneMinute;
// Transfer verbose, critical, etc. logs
dmc.Logs.ScheduledTransferLogLevelFilter = LogLevel.Verbose;
// Start up the diagnostic manager with the given configuration
DiagnosticMonitor.Start("DiagnosticsConnectionString", dmc);

Adding this code to WorkerRole.cs and rerunning will cause
Windows Azure to transfer the logs to development storage every
minute. You also can choose to do an on-demand transfer of logs
(see the code in admin.aspx.cs in my sample app for how to do
this) or use the Windows PowerShell commands described later
in this article. Remember that once you transfer logs to storage,
you’ll be charged for the storage space and it’s up to you to delete the
information when it’s no longer needed.

Once you’ve gotten the logs into Windows Azure storage, you’ll
need a tool to look at the storage tables to see the logs. I used
Cerebrata’s Cloud Storage Studio (cerebrata.com). Cerebrata has since
come out with a tool called Azure Diagnostics Manager, and there
are also free tools available on CodePlex (codeplex.com) for looking

at cloud storage and diagnostics. Th e logs are put in a table called
WADLogsTable, which you can see in Figure 3.

You’ll notice a couple of things when you look at the logs in
storage. First, Windows Azure automatically associates some infor-
mation with each logged event: a timestamp, a tick count (which
provides more detailed timing with 100-nanosecond granularity),
and information about the deployment, role and role instance. Th is
allows you to narrow down logs to specifi c instances if you want.

Second, there’s a Level and an EventId associated with each
event. Level corresponds to the values in Figure 2—those Trace
events logged as Information will have a Level value of 4, while
those logged as Error will have a Level of 2. Generic events sent
through Trace.WriteLine (as the boilerplate code does) will have
Level 5 (Verbose).

Th e EventId is a value you specify. Th e basic Trace.WriteLine call
shown earlier doesn’t let you specify it; you have to use other Trace
methods to pass the EventId.

<tracing>
 <traceFailedRequests>
 <add path="*">
 <traceAreas>
 <add provider="ASP" verbosity="Verbose" />
 <add provider="ASPNET"
 areas="Infrastructure,Module,Page,AppServices"
 verbosity="Verbose" />
 <add provider="ISAPI Extension" verbosity="Verbose" />
 <add provider="WWW Server"
 areas="Authentication,Security,Filter,StaticFile,CGI,Compres
sion,Cache,RequestNotifications,Module"
 verbosity="Verbose" />
 </traceAreas>
 <failureDefinitions timeTaken="00:00:15" statusCodes="400-599" />
 </add>
 </traceFailedRequests>
</tracing>

Figure 7 Failed Request Logging for LoggingWebRole

Type of Log

Windows
Azure
Storage
Format

Collected
by
Default? Notes

Windows Azure logs
generated from your code

Table ✔ Trace listener must be added to web.confi g or app.confi g fi le as shown in the sample code. Stored in
WADLogsTable.

IIS 7.0 logs Blob ✔ Web Roles only. Stored in a Blob container under the path wad-iis-logfi les\<deployment ID>\<web
role name>\<role instance>\W3SVC1.

Windows Diagnostic
Infrastructure logs

Table ✔ Information about the diagnostics service itself. Stored in WADDiagnosticInfrastructureLogsTable.

Failed request logs Blob Web Roles only. Enable by setting tracing options under system.WebServer settings in web.confi g.
Stored in a blob container under the path wad-iis-failedreqlogfi les\<deployment ID>\<web role
name>\<role instance>\W3SVC1.

Windows Event logs Table Enable by altering DiagnosticMonitor Confi guration.WindowsEventLog when setting up initial
confi guration. Stored in WADWindowsEventLogsTable. Steve Marx’s blog (blog.smarx.com/posts/capturing-

fi ltered-windows-events-with-windows-azure-diagnostics) explains how to use this.
Performance counters Table Enable by altering DiagnosticMonitor Confi guration. PerformanceCounters. Stored in

WADPerformanceCountersTable. The sample code Worker Role sets up a performance counter.
Crash dumps Blob Enable by calling CrashDumps.EnableCollection. Stored in a blob container under the path wad-crash-

dumps. Because ASP.NET handles most exceptions, this is generally useful only for a Worker Role.
Custom error logs Blob Beyond the scope of this article, but see Neil Mackenzie’s blog (nmackenzie.spaces.live.com/blog/

cns!B863FF075995D18A!537.entry) for a helpful example of how to use this.

Figure 6 Standard Azure Logging Options

http://blog.smarx.com/posts/capturing-filtered-windows-events-with-windows-azure-diagnostics
http://blog.smarx.com/posts/capturing-filtered-windows-events-with-windows-azure-diagnostics
http://nmackenzie.spaces.live.com/blog/cns!B863FF075995D18A!537.entry
http://nmackenzie.spaces.live.com/blog/cns!B863FF075995D18A!537.entry
http://cerebrata.com
http://codeplex.com

©2000-2010 Newegg Inc. All rights reserved. Newegg is not responsible for errors
and reserves the right to cancel orders arising from such errors. All third party logos are the ownership of the respective owner.

ONCE YOU KNOW, YOU NEWEGG.®

Follow us on:
business SM

ONE LUCKY SMALL BUSINESS WILL WIN A $15,000 OFFICE MAKEOVER.
ADDITIONAL WINNERS WILL BE ANNOUNCED BI-WEEKLY.

Nominate and spread the word, every vote counts! Go to:

www.neweggbusiness.com/bigimpact

Registration on NeweggBusiness.com is Free

Over $30,000 in prizes!

small bus ness

Nominate Someone Today!

Speedy Dry
Cleaning

Fast and friendly
service!

Betty’s Bake
Shop

Great selection!

Sponsored by

PhotoSnap

The Auto Co.

BIG IMPACTBIG IMPACT

One-Stop Shopping One Account
Multiple Users

 Volume Savings

Lower Shipping Cost Availability StatusCheck Out Using
Purchase Order

FREE

Get Microsoft Visual Studio 2010 and Microsoft Server 2008 Today!
32-116-871 Visual Studio 2010 Professional w/MSDN $1099.00

32-116-813 Windows Server Standard 2008 R2 64-bit 5 CLT $899.99

32-116-866 Visual Studio 2010 Professional Upgrade $499.00

www.neweggbusiness.com/microsoft

Untitled-1 1 5/7/10 11:02 AM

http://www.neweggbusiness.com/bigimpact
http://www.neweggbusiness.com/microsoft

msdn magazine56 Cloud Diagnostics

Selectively Enabling
Tracing and Logging
A typical application consists of
multiple logical components. For
instance, you might have a database
component that deals with the data
model in Windows Azure storage.
Your Web Role might in turn be
divided into an administrative com-
ponent and a user component
(and that might even be divided
further into logical components
based on the needs of your application).

You can tie the logging and tracing
options—what type of logging is
enabled and at what level of detail—to
these components. Th is allows you to
selectively enable tracing in only the
components for which you need it,
avoiding a lot of clutter.

The key approach here is to not
call Trace directly, but to use multiple
TraceSource instances, typically one
per namespace. A TraceSource has an
associated SourceSwitch that controls
whether the source is enabled, as well as what level of output is
desired. Importantly, the SourceSwitch values are not set at compile
time, but at run time. As a result, you can enable or disable
diagnostic output from various parts of your application without
having to recompile it, or even redeploy a diff erent version.

WorkerDiagnostics.cs and WebDiagnostics.cs contain the
configuration of the trace sources and switches in the sample
code. Here’s an excerpt:

// Trace sources
public TraceSource ConfigTrace;
public TraceSource WorkerTrace;
// Add additional sources here

// Corresponding trace switches to control
// level of output for each source
public SourceSwitch ConfigTraceSwitch { get; set; }
public SourceSwitch WorkerTraceSwitch { get; set; }
// Add additional switches 1:1 with trace sources here

Th en, in the confi g fi le for your role, you hook these up to listeners
as shown in Figure 4. Th is fi rst sets up the standard Windows Azure
diagnostics listener as a shared listener so it can be referred to in the
<sources> items. It then confi gures two sources: a WorkerTrace source

and a Confi gTrace source. It also sets up
corresponding switches to enable you to
adjust the level of output. Confi gTrace
gives you the most verbose output;
WorkerTrace gives you Errors only.

You don’t have to name the switches
the same as the sources, but it makes
life easier. If they’re not the same, you
add a switchName attribute to the
source element to indicate the name
of the switch that controls output for
this source. Th is allows you to share
a single switch across multiple trace
sources. Note that the trace source
and switch names are case-sensitive
and must exactly match the case you
pass to the constructor in your code.

You can avoid the switch altogether
if you want by simply adding a switch-
Value attribute to the source element
specifying the desired switch value for
this source. Th e switch values you use
are actually parsed from the confi g fi le
as one of the SourceLevels defi ned in
Figure 5, which also shows how the

TraceEventType you pass to TraceSource calls interacts with the
SourceLevel set for the source to determine what passes through.

You might have noticed that the SourceLevel is just a bitmask
that is ANDed at run time with the TraceEventType to determine
whether to log the event. To get combinations like Warning and
Activity Tracing, specify the numeric value for the bitfi eld as the
switch value rather than using the symbolic values shown.

In addition to switches, a listener can have a TraceFilter, which
adds more sophisticated runtime logic as to whether a particular
message is allowed through. Writing a custom TraceFilter is
beyond the scope of this article, but you’ll fi nd a helpful example
in the Ukadc.Diagnostics project documentation on CodePlex
(ukadcdiagnostics.codeplex.com/wikipage?title=LoggingPrimer).

Changing What Is Logged at Run Time
Th is is the default way that ASP.NET tracing works and it will work
fi ne with services deployed to Windows Azure. Th e problem is
that you’d like to be able to change the switch values at run time,
and Windows Azure doesn’t allow you to just replace the
web.confi g or app.confi g without redeploying the service. Th e
generic ASP.NET solution for this is to use WebConfi guation-
Manager to alter confi guration values, but Windows Azure doesn’t
currently allow you to do this for cloud-deployed services, either.

Th e solution is to mirror the values for these switches in Service-
Configuration.cscfg. Windows Azure lets you edit that file (or
upload a new one) through the development portal while your
service is running. You’ll have to write some additional code to
make this work, though.

The default System.Diagnostics code knows about settings
only in app.confi g or web.confi g, but your roles will get run-time

Figure 8 Opening Logs Saved to Local Development
Fabric Storage

The key approach here is to not
call Trace directly, but to use

multiple TraceSource instances,
typically one per namespace.

http://ukadcdiagnostics.codeplex.com/wikipage?title=LoggingPrimer

0610msdn_DevExpress_Insert.indd 1 5/6/10 3:49 PM

www.DevExpress.com/eval

0610msdn_DevExpress_Insert.indd 2 5/6/10 3:50 PM

www.DevExpress.com/eval

0610msdn_DevExpress_Insert.indd 3 5/6/10 3:50 PM

www.DevExpress.com/eval

0610msdn_DevExpress_Insert.indd 4 5/6/10 3:50 PM

www.DevExpress.com/eval

57June 2010msdnmagazine.com

notification of changes in ServiceConfiguration.cscfg through
the RoleEnvironmentChanging and RoleEnvironmentChanged
events. You can then decide whether to recycle (restart) the role or
simply update a confi guration value. Th e latter is what you want for
tracing switches. Restarting the role may make intermittent prob-
lems disappear. Th e sample code for this article shows how to do
this by adding a couple of values to ServiceConfi guration.cscfg (note
that you have to also edit ServiceDefi nition.csdef, which provides
the schema) and adding some code to your roles.

Testing on Development Fabric
What about testing on development fabric, where you don’t have
the Windows Azure portal to edit the confi guration as you do
for cloud-deployed services? First, determine the deployment
ID Windows Azure has assigned to your running development
fabric service. You can see this by showing the development
fabric UI from the system tray while the service is running. Th is
will be a number like 177.
1. Go to the directory where your service binaries have been put

by build—typically \bin\debug or \bin\release under your
service code. You’ll fi nd the copy of ServiceConfi guration.cscfg
that was created when you built the app.

2. Next, using a text editor, edit this fi le to use the tracing switch
you want. For instance, in the sample code, change WebTrace
from Off to Verbose.

3. Next, in a Windows Azure SDK command prompt (Start | All
Programs | Windows Azure SDK v1.1 | Windows Azure SDK
Command Prompt), run this command:
csrun /update:NNN;ServiceConfiguration.cscfg

NNN is the Windows Azure deployment ID you found earlier.
Th is will do in development fabric what clicking the Confi gure
button on the Windows Azure development portal does for cloud-
deployed services—update the confi guration settings and trigger
the events.

Other Diagnostic Information
While this article has focused on tabular data that your application
logs using System.Diagnostics, Windows Azure can also capture IIS
logs and Failed Request Tracing (formerly known as Failed Request
Buff ering, or FREB) logs, among others. Some of these are placed
into Windows Azure blob storage, some in Windows Azure table
storage. Figure 6 lists the available logs and where they’re stored.
Note that for those not enabled by default, you typically have to
make a change in web.confi g or app.confi g for Windows Azure to
collect these logs. Let’s drill into one example not collected by de-
fault to show how this works.

As an example, let’s look at how to enable FREB logging from
IIS on your Web Role. To see this in action, download the sample
code for the MSDNSampleLoggingService provided with this
article. Open web.confi g for the LoggingWebRole and fi nd the
section labeled <system.webServer>. Notice that the lines shown in
Figure 7 have been added to the default Windows Azure
web.confi g. Th is results in failure logging for any requests that take
longer than 15 seconds or with status codes between 400 and 599
(the failureDefi nitions element).

If you open about.aspx.cs in the LoggingWebRole project, you’ll
note that in the PageLoad method I’ve added an arbitrary delay of
18 seconds with this line of code:

System.Threading.Thread.Sleep(18000);

Th is will force the load of this page to be considered a failed
request under the defi nition specifi ed earlier.

To see the FREB log, rebuild and deploy the app into the devel-
opment fabric and then fi nd the development fabric controller

Windows Azure also will capture
IIS logs and FREB logs.

Name Description
Get-ActiveTransfers Returns the set of active diagnostic transfers with associated transfer information.
Get-CommonConfi gurationLogs Gets the common confi guration values for all logging buffers. This includes the time interval at which changes in

confi guration are polled for and the buffer size allocated for in-memory logs.
Get-DiagnosticAwareRoleInstances Returns a list of IDs of active role instances that have a diagnostic monitor running.
Get-DiagnosticAwareRoles Lists the set of roles that have successfully started at least one diagnostic monitor.
Get-DiagnosticConfi guration Gets the buffer confi guration for the specifi ed buffer name (Logs, Directories, PerformanceCounters,

WindowsEventLogs or DiagnosticInfrastructureLogs).
Set-CommonConfi gurationLogs Sets the common confi guration values for all logging buffers.
Set-FileBasedLog Sets the buffer confi guration for fi le-based logs.
Set-InfrastructureLog Sets the buffer confi guration for the logs generated by the underlying Windows Azure diagnostics infrastructure. The

diagnostic infrastructure logs are useful for troubleshooting the diagnostics system itself.
Set-PerformanceCounter Sets the buffer confi guration for performance counter data being collected by your service.
Set-WindowsAzureLog Sets the buffer confi guration for basic Windows Azure logs being generated by your service.
Set-WindowsEventLog Sets the buffer confi guration for Windows event logs being generated by your service.
Start-OnDemandTransfer Starts an on-demand transfer of the specifi ed data buffer. This moves the data to Windows Azure storage (either table

or blob storage).
Stop-ActiveTransfer Stops active on-demand transfer, given a transfer ID.

Figure 9 Windows Azure Management Diagnostics Cmdlets

http://msdnmagazine.com

msdn magazine58 Cloud Diagnostics

in the notifi cation area of the taskbar (you may have to click the
Show Hidden Icons button on the taskbar because it’s oft en hid-
den as inactive). Right-click it and select Show Development Fabric
UI. While your application is running, this will show information
about the application.

Expand the Web Role and right-click on the role instance (0).
Select Open local store to open the folder on the local machine
where logs are being saved (see Figure 8). Within that folder, the
logs are in the \directory\DiagnosticStore folder. Th is is because
the Web Role in the sample code is confi gured to store diagnostics
information in development storage. If instead you set the
DiagnosticsConnectionString to a cloud-storage account, the
persisted logs will be in the blob storage associated with that
storage account. You can use Cloud Storage Studio to look at the
blob storage containers to see the logs.

Managing Diagnostics for a Running Service
While you may deeply instrument your code with logging, you
typically don’t want all the logging information persisted into
storage while your production service is running. You might want
only error and critical information to go to the persisted logs,
while more detailed information (logged as Verbose or Informa-
tion) is suppressed.

But what if a problem occurs? You don’t want to redeploy a new
version of your service or the problem might magically go away—
you probably know how effective rebooting can be at making
elusive problems disappear.

Instead, it’s more eff ective to increase the amount of informa-
tion going to the logging tables or blob storage while allowing
the misbehaving code to continue running. Th is is more likely to

reveal the cause of the problem in your application while it’s
currently operating.

Earlier I described how to fi ne-tune the details of what logging
is passed through to Windows Azure diagnostics for a particular
TraceSource. Th at’s a sort of upstream editing of what information
gets logged. In this section, I’ll show you the general Windows Azure
diagnostics settings that determine how information that passes
through a TraceSource gets into persisted storage.

Windows PowerShell cmdlets can manage many aspects of
your running Windows Azure services, including diagnostics.
You run these from your local machine and they connect over
the Internet to the Windows Azure cloud servers running
your service, providing information and adjusting parameters.
Windows PowerShell is installed with Windows 7 and can be
downloaded for Windows Vista from microsoft.com/powershell.
Download the Windows Azure Service Management CmdLets
from code.msdn.microsoft.com/azurecmdlets and follow the directions
for installing them. The Windows Azure diagnostics-related
commands are shown in Figure 9.

Figu re 11 Changing Diagnostics Confi guration from Windows PowerShell

Figure 10 Diagnostics Confi guration for a Running Service Using Windows PowerShell

Windows PowerShell cmdlets
can manage many aspects of
your running Windows Azure
services, including diagnostics.

http://code.msdn.microsoft.com/azurecmdlets
http://microsoft.com/powershell

I KNOW A PLACE THAT’S
DIFFERENT, BUT FAMILIAR

Code in the cloud … with the development
technologies you already know
With Windows AzureTM

You have the freedom to focus.

You can code in the language you choose.

You’re already equipped for the cloud.

® ®

Find out more.

® www.windowsazure.com/msdn

Untitled-1 1 4/15/10 11:51 AM

http://www.windowsazure.com/msdn%ED%AF%80%ED%B0%83%ED%AF%80%ED%B1%91%ED%AF%80%ED%B1%92%ED%AF%80%ED%B1%9A%ED%AF%80%ED%B0%91

msdn magazine60 Cloud Diagnostics

For example, to find the current transfer parameters for a
particular role instance, pass the deployment ID (from the
Windows Azure developer portal where you deploy the service) and the
storage account name and key you used for Diagnostics ConnectionString
in the app.confi g or web.confi g for the service role (see Figure 10). No-
tice that Windows PowerShell prompts for a couple of missing required
parameters—the role instance and the name of the buff er I want. Logs is
the standard Windows Azure logs. Th e result shows that the fi lter level
is Verbose and a transfer is scheduled every minute.

To change the confi guration for this role, use the Set-Diagnostic-
Confi guration cmdlet, as shown in Figure 11. Note that I changed
the transfer period from one minute to two minutes and the fi lter
from Verbose to Error, meaning that only events logged as Error
and Critical will be sent to the persisted storage.

Perhaps the most useful thing you can do remotely from Windows
PowerShell is to force a transfer of log information immediately.
Figure 12 shows how to do this.

First, I query for any existing on-demand transfer of logs. Th ere
is a restriction in the current Windows Azure diagnostics imple-
mentation that only one on-demand transfer of a particular type
can take place at a time. Seeing that none is in progress, I request
one, passing in the deployment ID of the service, the role and
instance, the type of log I want transferred and the time interval
of data to transfer. (For the log type, Directories means fi le-based
logs, including the IIS logs. Logs would be the Windows Azure
table-based logs sent through TraceSource.)

I also pass a notifi cation queue name, which is where Windows
Azure diagnostics will send a notifi cation that the transfer has

completed. Th rough experimentation, I found that if I didn’t pass
a notifi cation queue, the transfer seemed not to happen. I get
back a GUID identifying the transfer request. I then query for the
request status and see that it’s published, meaning it’s in progress.

Th e current version of the Windows Azure Service Manage-
ment CmdLets doesn’t seem to show when the request has been
completed, but if you query the blob storage for your diagnostics
storage you’ll see the logs pop up in the Containers hierarchy shortly
(or in Windows Azure table storage if you requested transfer of
information stored in table storage).

Wrapping Up
Using a combination of adjusting confi guration parameters for
the TraceSources you defi ne in your code and using the Windows
Azure Service Management CmdLets to move information into
persisted storage, you should be able to fully control what diagnostic
output you get from your Windows Azure services.

Of course, the most important thing you can do to trouble-
shoot your production code is to develop a robust strategy
for diagnostic output early in development, then follow that
strategy throughout coding. The use of TraceSources and the
tools that Windows Azure provides for configuring the verbosity
of diagnostic output that flows from your application to storage
will help you to tap into that to get just the amount of informa-
tion you need when a problem arises.

Th ere’s nothing worse than feeling like the code behaving errati-
cally on a server is a black box, opaque to you. Solid diagnostics
code and the tools described here will let you open the covers of
that box and peer inside.

MIKE KELLY is a consultant focused on soft ware development and helping integrate
acquisitions to larger corporations. He previously worked for 15 years at Microsoft in
a variety of product development roles and as director of Emerging Practices on the
Engineering Excellence team. He can be reached at himself@mikekellyconsulting.com.

THANKS to the following technical experts for reviewing this article:
Sumit Mehrotra, Michael Levin and Matthew Kerner from Microsoft , as well
as Neil Mackenzie and Steven Nagy

Figure 12 Using Windows PowerShell to Initiate a Transfer of IIS Logs

If I didn’t pass a notifi cation
queue, the transfer seemed not

to happen.

mailto:himself@mikekellyconsulting.com

Get your free evaluation at
www.nevron.com

The leading set of Charting, Diagramming, Gauge and Map Components

for .NET-centric technologies.

Choose the right set of components for your

Presentation, Scientific, Financial and Business Intelligence applications.

Our products will deliver rich data visualization functionality,

with exceptional features to your projects - on budget and on time.

solutions for (888) 201-6088 | sales@nevron.com

Microsoft, .NET, ASP.NET, SharePoint, SQL Server and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Some Nevron components only available for certain platforms. For details visit www.nevron.com or send an email to support@nevron.com.

Advanced Diagramming
Interactive Maps Financial Functions

Automatic Graph Layouts

Advanced Charting

Gauges and KPIs

Untitled-1 1 5/3/10 1:03 PM

http://www.nevron.com
mailto:sales@nevron.com
http://www.nevron.com
mailto:support@nevron.com

msdn magazine62

E XPRE S S YOUR SEL F

Encoding Videos Using
Microsoft Expression
Encoder 3 SDK

In one of my favorite movie scenes of all time, Clark W.
Griswold (Chevy Chase in “Christmas Vacation”) gets trapped in
his attic while hiding Christmas presents. To keep warm, he dons
pink gloves, a green hat and a brown fur stole pulled from a dusty
chest. At the bottom of the chest he fi nds home movies from his
youth, and passes the time watching them (with tears in his eyes),
using an old fi lm projector.

Home movies have come a long way since then, but people still have
to deal with one of the same issues: How do I show my movie to friends
and family? Sites like YouTube, Vimeo and Facebook make sharing
easy; but at 100-plus megabytes per minute for high-defi nition video,
getting the data to those sites can be a time-consuming task. Chances
are, your portable device, gaming system or home theater media
center won’t even play the fi le. To solve these problems, you need to
convert the video to another format. Th is process is known as encoding.

Adam Miller

About Expression Encoder
Th e Microsoft video encoding tool, Expression Encoder 3, is
part of the Expression family of products for creating compel-
ling UIs for Web and desktop applications. Expression Encoder
comes in free and paid versions; the paid version is part of both
Expression Studio 3 Suite ($599) and Expression Web 3 Suite ($149).
Th e free download does not support encoding to Silverlight Smooth
Streaming or H.264 video or using H.264 video as a source, but
it does let you encode to Windows Media Video fi les and it has a
nice SDK. Many of the code samples in this article require the paid
version of the program; however, all the code samples will build in the
free version of the SDK. You’ll just receive an Invalid MediaException
or a FeatureNotAvailableException when running.

If you aren’t ready to purchase Expression Suite, you can get
started with Expression Encoder by downloading the free version from
microsoft.com/expression. It’s also available as part of Expression Professional
MSDN Subscription, or Visual Studio Professional with MSDN
Premium Subscription. Keep in mind that $149 for a professional
video encoding soft ware application with this feature set, wide range
of input formats and supported output targets is a relative steal.
Similar video encoding solutions can cost upward of $3,000.

No matter which version you choose, you’ll want to install the
Encoder 3 QFE. It adds support for additional fi le types and input
devices, improves performance in certain situations, and includes
minor bug fi xes. Th e QFE installer can be found on the Expression
Encoder page on the Microsoft Expression Web site.

This article discusses:
• How video encoding works

• Encoding for various types of videos

• Adding Silverlight Smooth Streaming

• Using the Microsoft Expression Encoder 3 SDK

Technologies discussed:
C#, Microsoft Expression Encoder 3, Silverlight,
Silverlight Smooth Streaming

http://microsoft.com/expression

63June 2010msdnmagazine.com

Supported Formats
Th e following are supported input video formats:

• Windows Media Video (.wmv)
• DVD video (.vob)
• MPEG (.mpg, .mpeg)
• Audio Video Interleave (.avi)
• Microsoft Digital Video Recording (.dvr-ms)

Th e paid version adds the following formats (plus a handful of
other formats):

• MPEG-4 (.mp4, .m4v)
• Quicktime (.mov)
• AVC HD (.mts)
• Mobile Device Video (.3gp, .3g2)

For the most part, Expression Encoder supports any media fi le
Windows Media Player can play. If you want to support even more
fi les (and be able to play them in Windows Media Player), you can
install a codec pack such as K-Lite Codec Pack (codecguide.com) or
Community Combined Codec Pack (cccp-project.net). Both are based
on the open source ff dshow project and will add support for VP6-
encoded Flash (.flv) files, H.264 video in the Matroska (.mkv)
container, and Ogg (.ogg) video fi les.

The free version of Expression Encoder supports only the
Microsoft VC-1 as an output codec. However, this still allows you to
encode videos for Silverlight (single bitrate only), Xbox 360, Zune
and Zune HD. Also, the VC-1 codec is no slouch; its compression
is as good (if not better in certain situations) as H.264. Upgrading
to the paid version lets you output Silverlight Smooth Streaming
video (multi-bitrate) as well as H.264, which means you can
encode videos playable on the iPhone, PS3, Flash player (version
10 supports H.264/.mp4) and countless other devices.

Encoding 101
Supporting certain output devices requires changing some of
the video profi le settings, so you’ll need to understand the basics
of video encoding. Re-encoding video is actually the process of
decompressing a video and re-compressing it using another codec
or manually changing attributes such as size, aspect ratio or frame
rate. Although there are lossless compression methods, they’re
rarely used because the resulting video fi les are still quite large.
So in order to reduce the amount of space necessary to store (and
therefore transfer) the video, an algorithm, known as a codec, is
used to compress and decompress the video. Th e compressed video
stream is then stored according to a specifi cation known as a con-
tainer (such as WMV or MP4). Containers and codecs are oft en
not an exclusive contract, so although H.264 is the most common
codec found in the MP4 container, other codecs could be used.

Bitrate, expressed in kilobits per second, defi nes how much data
should be used to store the compressed video. Reducing the bitrate
tells the encoder to compress the video at a higher rate, degrading
video quality. Th ere are diff erent ways to tell the encoder how to
determine the video’s bitrate. Th e simplest way is to use a constant
bitrate (CBR), which forces the encoder to use the same amount
of data for every second of video. A variable bitrate (VBR) can be
used to tell the encoder what the overall bitrate of the fi le should
be, but the encoder is allowed to raise or lower the bitrate based

on the amount of data needed for a particular section of the video.
Variable constrained bitrate is similar to unconstrained VBR,
except that you give not only an average bitrate to use, but also a
maximum bitrate that can’t be exceeded.

Variable constrained bitrate is useful when encoding Silverlight
Smooth Streaming video. It helps ensure the bitrate doesn’t exceed
the client bandwidth, forcing the client to request a lower-quality
stream. CBR and VBR indicate the amount of compression to use
by specifying an overall video fi le size.

Alternatively, you can tell the encoder to use a quality-based
VBR. Instead of specifying the overall size of the video, you specify a
percentage of quality (that is, how much data) of the decompressed
source video to retain. It takes less data to retain good quality for
a cartoon, for example, than for a nature or action-fi lled video.
So if you have a high-quality source and your goal is to convert
the source to another format and retain optimal quality, consider
using quality-based VBR. Th ese defi nitions are just the tip of the
iceberg, but they are core to choosing your output settings. You’ll
fi nd additional encoding defi nitions throughout this article as they
apply to code samples.

Using the SDK
To follow the code samples, you’ll want to use a good-quality
video. If you don’t have any high-resolution video lying around,
you can get some nice HD videos from microsoft.com/windows/

using Microsoft.Expression.Encoder;

namespace TestApp
{
 class Program
 {
 static void Main(string[] args)
 {
 MediaItem src = new MediaItem(@"C:\WMdownloads\AdrenalineRush.wmv");
 Job job = new Job();
 job.MediaItems.Add(src);
 job.ApplyPreset(Presets.VC1ZuneHD);
 job.OutputDirectory = @"C:\EncodedFiles";
 job.Encode();
 }
 }
}

Figure 1 Creating a Video for Zune HD

Sites like YouTube, Vimeo
and Facebook make the act

of sharing easy; but at
100-plus megabytes per minute
of high-defi nition video, getting
the data to those sites can be a

time-consuming task.

http://codecguide.com
http://cccp-project.net
http://microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx
http://msdnmagazine.com

msdn magazine64 Express Yourself

windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx. I’ll use the Adren-
aline Rush video as the source for these examples.

After installing Expression Encoder 3, create a new Visual
Studio C# Console Application project. Add references to
Microsoft. Expres sion.Encoder.dll and Microsoft.Expression.
Encoder. Utilities.dll, located at \Program Files (x86)\Microsoft
Expression\Encoder 3\SDK. You’ll also need to add a reference to
WindowsBase, which you’ll fi nd in the .NET tab of the Add Ref-
erences dialog. Many of the classes used will be in the Microsoft .
Expression.Encoder namespace, so add a using statement for it.

Th e fi rst item to instantiate will be a MediaItem object. Th e
MediaItem constructor takes a string as the only parameter to the
constructor. Pass the path to the fi le you’re using as the source for
the encoding project:

MediaItem src = new MediaItem(@"C:\WMdownloads\AdrenalineRush.wmv");

Creating a MediaItem object takes just a second or two. Th e SDK
is doing a fair amount of work behind the scenes, though, gathering
information about the source video, such as its height, width, frame
rate (the frequency that individual images should be displayed on
the screen) and duration. Information about the audio stream is
also gathered at this time.

Next you create an instance of the Job class (which has only a
parameterless constructor), and add your MediaItem to its list of
MediaItems. Th e Job class serves as the manager for desired output
formats (known as profi les):

Job job = new Job();
job.MediaItems.Add(src);

Now you need to tell the job which audio and video profi les to
use during encoding; the easiest way is to use one of the profi les
defi ned in the UI. To create a video for the Zune HD, for example,
you can use the VC1ZuneHD preset:

job.ApplyPreset(Presets.VC1ZuneHD);

Finally, specify an output directory and start the encoding process:
job.OutputDirectory = @"C:\EncodedFiles";
job.Encode();

Your Program.cs fi le should be similar to Figure 1.
Th ere’s one last thing to do before running the application: If

you’re using a 64-bit version of Windows, you’ll need to modify
the project to build to x86. In the Visual Studio menu bar, select
Project and (Project Name) Properties. In the dialog box that

opens, select the build tab and change the Platform Target from
“Any CPU” to “x86.”

You are now ready to run the application and create a video
playable on the Zune HD. The encoding process will take a
couple minutes to complete and is extremely CPU-intensive. Video
encoding benefi ts from being a parallel computed task, so multi-
core computers have a big advantage here.

Expression Encoder also includes presets for encoding to online
services such as YouTube, Vimeo and Facebook. 720p video
recorded from my Panasonic Lumix DMC-ZS3 digital camera
consumes about 110MB per minute of recorded video. Converting
the video using the YouTube HD preset (also 720p) reduces the
video to just 16MB. Th is makes it much more effi cient to upload
and store locally. Converting it to an .mp4 file also makes it
compatible with many more video editing programs.

Custom Settings
To manually produce the same output as the VC1ZuneHD preset, you’d
need to use code similar to Figure 2 to set the video and audio profi les.

For the code in Figure 2 to compile, you’ll need to add references
to Microsoft .Expression.Encoder.Utilities and System.Drawing. Also
add using statements for Microsoft .Expression.Encoder. Profi les and
System.Drawing. Th e OutputFormat essentially specifi es the container
for the output fi le. I say essentially because encoding for Silverlight
works just a little bit diff erently (as I’ll discuss shortly).

Th e VideoProfi le specifi es the video codec to use, along with the
detailed settings to use when encoding. Similarly, the AudioProfi le
specifies the audio codec to use along with its settings. When
constructing a VariableConstrainedBitrate, the first parameter
specifi es the average bitrate and the second parameter specifi es the
maximum bitrate. Th e size setting indicates the box the encoded
video should fi t in. Th e correctly scaled size for the Adrenaline
Rush video is actually 480x272 to maintain the aspect ratio, but
if I entered 480x480 the resulting video still would be 480x272.

Figure 2’s KeyFrameDistance property refers to a video-encoding
concept I haven’t yet discussed. Th e way the most video encoding works

MediaItem src = new MediaItem(@"C:\WMdownloads\AdrenalineRush.wmv");
src.OutputFormat = new WindowsMediaOutputFormat();

src.OutputFormat.VideoProfile = new AdvancedVC1VideoProfile();
src.OutputFormat.VideoProfile.Bitrate = new
VariableConstrainedBitrate(1000, 1500);
src.OutputFormat.VideoProfile.Size = new Size(480, 272);
src.OutputFormat.VideoProfile.FrameRate = 30;
src.OutputFormat.VideoProfile.KeyFrameDistance = new TimeSpan(0, 0, 4);

src.OutputFormat.AudioProfile = new WmaAudioProfile();
src.OutputFormat.AudioProfile.Bitrate = new
VariableConstrainedBitrate(128, 192);
src.OutputFormat.AudioProfile.Codec = AudioCodec.WmaProfessional;
src.OutputFormat.AudioProfile.BitsPerSample = 24;

Job job = new Job();
job.MediaItems.Add(src);
job.OutputDirectory = @"C:\EncodedFiles";
job.Encode();

Figure 2 Video and Audio Profi le Settings for Zune HD

MediaItem src = new MediaItem(@"C:\WMdownloads\AdrenalineRush.wmv");
src.OutputFormat = new WindowsMediaOutputFormat();

src.OutputFormat.VideoProfile = new AdvancedVC1VideoProfile();
src.OutputFormat.VideoProfile.KeyFrameDistance = new TimeSpan(0, 0, 2);
src.OutputFormat.VideoProfile.SmoothStreaming = true;

src.OutputFormat.VideoProfile.Streams.Clear();
src.OutputFormat.VideoProfile.Streams.Add(new StreamInfo(new
VariableConstrainedBitrate(2000, 3000), new Size(1280, 720)));
src.OutputFormat.VideoProfile.Streams.Add(new StreamInfo(new
VariableConstrainedBitrate(1400, 1834), new Size(848, 476)));
src.OutputFormat.VideoProfile.Streams.Add(new StreamInfo(new
VariableConstrainedBitrate(660, 733), new Size(640, 360)));

src.OutputFormat.AudioProfile = new WmaAudioProfile();
src.OutputFormat.AudioProfile.Bitrate = new
VariableConstrainedBitrate(128, 192);
src.OutputFormat.AudioProfile.Codec = AudioCodec.WmaProfessional;
src.OutputFormat.AudioProfile.BitsPerSample = 24;

Job job = new Job();
job.MediaItems.Add(src);
job.OutputDirectory = @"C:\EncodedFiles";
job.Encode();

Figure 3 Adding Silverlight Smooth Streaming

http://microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12 1 4/9/10 2:27 PM

www.infragistics.com/wow

msdn magazine66 Express Yourself

is to store only the changes from one frame to the next, rather than
the entire picture for each video frame. Key frames are the frames
that contain the entire image. Th is code will create key frames ev-
ery four seconds. Key frames will be created automatically when
there are large changes in the video such as a scene change, but you
should also create them at pre-defi ned intervals to support seeking
within the movie during playback.

Silverlight Smooth Streaming
Silverlight Smooth Streaming dynamically switches the bitrate of
the media fi le being played based on current network conditions.
A Smooth Streaming project consists of individual videos stored
in .ismv fi les, as well as .ism and .ismc metadata fi les that support
Smooth Streaming playback.

To create a Silverlight Smooth Streaming project, multiple changes
must be made. First, change the KeyFrameDistance to two seconds.
Th e video will still play if the KeyFrameDistance is left at four seconds,
but you may notice hiccups in playback when the player switches
bitrates. Th e Silverlight player will request the video in two-second
chunks, so playback is more consistent if there’s a key frame at the
beginning of each request. You also need to add the following line:

src.OutputFormat.VideoProfile.SmoothStreaming = true;

Setting SmoothStreaming to true tells the encoder to output
the videos to .ismv fi les and create the .ism and ismc fi les. Having
only one bitrate isn’t really a smooth streaming project, so to create
multiple output bitrates, you need to add multiple streams to the
VideoProfi le. Do this using code similar to Figure 3.

Here the code specifies three different bitrates and sizes to
encode. For optimum quality, the video size needs to shrink as the bi-
trate is reduced. When specifying your own bitrates, you can use the IIS
Smooth Streaming settings in the Expression Encoder 3 UI. Note that
it’s not possible to gain quality by encoding a video at a higher resolu-
tion than the source fi le. And it only makes sense to encode at a higher
bitrate than the source fi le if using a weaker compression method. If
the SDK was able to determine the bitrate of the source fi le, it will be
present in the MediaItem’s SourceVideo Profi le property:

int bitrate = ((ConstantBitrate)src.SourceVideoProfile.Bitrate).Bitrate;

If the SDK couldn’t obtain the bitrate of the source fi le, you can
get a pretty close estimate based on the fi le size. Here’s the formula:

Approximate bitrate in kb/s = (fi le size in kilobytes * 8 / video
duration in seconds) - audio bitrate in kb/s

You can use the System.IO.FileInfo class to get the source-fi le
size, and the SDK to get the duration (MediaItem.FileDuration

property) and possibly the audio bitrate. If you don’t know the
audio bitrate, use 128 or 160 to estimate (most audio bitrates are
between 64 and 192); you may also be able to get the audio bitrate
in the Windows Media Player Properties window (Press Alt to
show the menu, then File | Properties).

Monitoring Progress
Because an encoding job can take hours to complete, it’s helpful to be
able to see the encoding progress. Th e SDK provides a simple way to
monitor the encoding process via an event you can add a handler for:

job.EncodeProgress += new EventHandler<EncodeProgressEventArgs>(OnProgress);

Add a method like the following to handle the event:
static void OnProgress(object sender, EncodeProgressEventArgs e)
{
 Console.Clear();
 Console.WriteLine((100 * (e.CurrentPass - 1) + e.Progress) /
e.TotalPasses + "%");
}

Multi-pass encoding is a new concept relevant to this code sample.
When using a variable bitrate to encode, the process is done in two
steps, known as passes. During the fi rst pass, the source video is
analyzed to determine which parts are most complex and would ben-
efi t from an increased bitrate. During the second pass, the video is
encoded using the information obtained during the fi rst pass. Th us,
if you use a constant bitrate, there’s no need to use the CurrentPass
or TotalPasses properties of the EncodeProgressEventArgs class.

Combining Videos
If you want to encode only part of a video or combine multiple
videos into one, the SDK provides support. To modify the start and
stop time for a source media item, you can modify the Clips property.
To encode only the fi rst six seconds of a video, use code similar to:

src.Sources[0].Clips[0].StartTime = new TimeSpan(0);
src.Sources[0].Clips[0].EndTime = new TimeSpan(0, 0, 6);

To add other videos as source fi les, you can append additional
videos to the Sources property of your MediaItem. Th is will
encode the source fi les in order to a single output fi le:

MediaItem src = new MediaItem(@"C:\WMdownloads\AdrenalineRush.wmv");
src.Sources.Add(new Source(@"C:\WMdownloads\Video2.wmv"));

Live Encoding
Expression Encoder also supports encoding from live sources such
as a webcam. Th e concept (and code) is similar to encoding video
fi les, but you use a diff erent set of classes. Th ese are found in the
Microsoft .Expression.Encoder.Live namespace.

using (LiveJob job = new LiveJob())
{
 LiveDevice videoDevice = job.VideoDevices[0];
 LiveDevice audioDevice = job.AudioDevices[0];
 LiveDeviceSource liveSource = job.AddDeviceSource(videoDevice, audioDevice);
 job.ActivateSource(liveSource);
 WindowsMediaBroadcastOutputFormat outputFormat =
 new WindowsMediaBroadcastOutputFormat();
 outputFormat.BroadcastPort = 8080;
 job.OutputFormat = outputFormat;
 Console.WriteLine("Press enter to stop encoding...");
 job.StartEncoding();
 Console.ReadLine();
 Console.WriteLine("Stopping");
 job.StopEncoding();
}

Figure 4 Encoding Live Video

Silverlight Smooth Streaming
dynamically switches the

bitrate of the media fi le being
played based on current

network conditions.

Word Processing Components
for Windows Forms & ASP.NET www.textcontrol.com

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0

WORD PROCESSING
COMPONENTS

(WHAT YOU SEE IS WHAT YOU GET)

WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

Visit our booth #2444 at:

June 7-10, 2010 · New Orleans, LA

Untitled-1 1 5/6/10 10:13 AM

http://www.textcontrol.com

msdn magazine68 Express Yourself

Th e fi rst class to use is LiveJob. LiveJob works like Encoder.Job—it
handles the work of encoding the video. However, in a live scenario the
OutputFormat is a property of LiveJob instead of a MediaItem object
(which is not necessary). When a LiveJob object is instantiated, it will
look for video input devices attached to your computer and populate
VideoDevices and AudioDevices properties. You can then use these
as an input source for the encoder. Figure 4 shows an example.

Th is will start a live encoding session using a webcam (assuming
you have one connected) and broadcast it on your local machine
on port 8080. To view the live encoding, open Windows Media
Player and select File | Open URL and enter mms://localhost:8080.
Aft er some buff ering, you should see the video from your web-
cam, though you’ll notice a 20- to 30-second lag due to the time it
takes to encode and transport the stream. You could potentially use
this video as a source for Windows Media Services or IIS Media
Services to broadcast to the world.

Additional Tools
If you aren’t sure whether the encoding settings you’ve chosen will
give you the output quality you need, the Expression Encoder 3 UI
provides a handy feature called A/B Compare. Th is lets you encode

fi ve seconds of video surrounding the current playback position.
Th e encoded video will appear split-screen with your source video
(see Figure 5), so you can easily compare the quality of the encoded
video with the original.

You can then save the current settings as a user-defi ned preset
by clicking Edit | Save current settings as preset. Th e preset will be
stored as an XML fi le, which you can use with the SDK:

job.ApplyPreset(@"C:\WMdownloads\NewPreset.xml");

If you’re already thinking about how easy it would be to automate
the video conversion process with a console application, take a look
at the Convert-Media PowerShell Module for Expression Encoder,
available at convertmedia.codeplex.com. Th is PowerShell module wraps
the Expression Encoder SDK, providing a command-line encoding
interface without writing any code. As with all CodePlex projects,
it is open source.

Hopefully you now understand the core terminology related
to video encoding and can make educated decisions on which
codec and bitrate to use. You also know how to use the Expression
Encoder 3 SDK to encode videos for specifi c targets such as Xbox
360, iPhone and Silverlight, as well as live streaming video. So don’t
wait to be trapped in your attic like Clark W. Griswold to realize
the value of your home videos and forgotten memories. Convert
them to a format that will make them accessible to the world.

ADAM MILLER is a soft ware engineer for Nebraska Global in Lincoln, Neb. You
can follow Miller’s blog at blog.milrr.com.

THANKS to the following technical expert for reviewing this article:
Ben Rush

Figure 5 A/B Compare in Expression Encoder 3

LiveJob works like Encoder.Job—
it handles the work of encoding

the video.

http://convertmedia.codeplex.com
http://blog.milrr.com

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-12 1 4/9/10 2:28 PM

www.infragistics.com/sldv

0610msdn_VSLive.indd 1 5/7/10 10:34 AM

www.vslive.com

0610msdn_VSLive.indd 2 5/7/10 10:34 AM

www.vslive.com

0610msdn_VSLive.indd 3 5/7/10 10:35 AM

www.vslive.com/redmond

0610msdn_VSLive.indd 4 5/7/10 10:35 AM

www.vslive.com/redmond

msdn magazine74

IN PU T VAL IDAT ION

Enforcing Complex
Business Data Rules
with WPF

Microsoft Windows Presentation Foundation (WPF)
has a rich data-binding system. In addition to being a key enabler
for loose coupling of the UI defi nition from the supporting logic
and data through the Model-View-ViewModel (MVVM) pattern,
the data-binding system has powerful and fl exible support for busi-
ness data-validation scenarios. Th e data-binding mechanisms in
WPF include several options for evaluating the validity of input data
when you create an editable view. Plus, WPF templating and styling
capabilities for controls give you the ability to easily customize the
way you indicate validation errors to the user.

To support complex rules and to display validation errors to the
user, you generally need to employ a combination of the available
validation mechanisms. Even a seemingly simple data input form can
present validation challenges when the business rules get complex.

Brian Noyes

Common scenarios involve both simple rules at an individual
property level, and cross-coupled properties where the validity of
one property depends on the value of another property. However,
the validation support in WPF data binding makes it easy to
address these challenges.

In this article, you’ll see how to use the IDataErrorInfo interface
implementation, ValidationRules, BindingGroups, exceptions, and
validation-related attached properties and events to address your
data-validation needs. You’ll also see how to customize the display
of validation errors with your own ErrorTemplates and ToolTips.
For this article, I assume you are already familiar with the basic
data-binding capabilities of WPF. For more background on that,
see John Papa’s December 2007 MSDN Magazine article, “Data
Binding in WPF” (msdn.microsoft.com/magazine/cc163299).

Data Validation Overview
Almost any time you enter or modify data in an application, you
need to ensure that the data is valid before it gets too far away from
the source of those changes—in this case, the user. Moreover, you
need to give users a clear indication when the data they entered is
invalid, and hopefully also give them some indication of how to
correct it. Th ese things are fairly easy to do with WPF as long as
you know which capability to use and when.

When you use data binding in WPF to present business data,
you typically use a Binding object to provide a data pipeline
between a single property on a target control and a data source

This article discusses:
• Data validation in WPF

• Exceptions and validation rules

• Cross-coupled properties

• Custom validation error display

Technologies discussed:
Windows Presentation Foundation

Code download available at:
code.msdn.microsoft.com/mag201006WPF

http://code.msdn.microsoft.com/mag201006WPF
http://msdn.microsoft.com/magazine/cc163299

75June 2010msdnmagazine.com

object property. For validation to be relevant, you’re typically doing
TwoWay data binding—meaning that, in addition to data fl owing
from the source property into the target property for display, the
edited data also fl ows from target to source as shown in Figure 1.

Th ere are three mechanisms for determining whether data entered
through a data-bound control is valid. Th ese are summarized in Figure 2.

When a user enters or modifi es data in TwoWay data binding,
a workfl ow kicks off :

• Data is entered or modifi ed by the user through keystrokes,
mouse, touch, or pen interaction with the element, resulting
in a change of a property on the element.

• Data is converted to the data-source property type, if needed.
• Th e source property value is set.
• Th e Binding.SourceUpdated attached event fi res.
• Exceptions are caught by the Binding if thrown by the setter

on the data-source property, and can be used to indicate a
validation error.

• IDataErrorInfo properties are called on the data source object,
if implemented.

• Validation error indications are presented to the user and the
Validation.Error attached event fi res.
As you can see, there are several points in the process where

validation errors can result, depending on which mechanism
you choose. Not shown in the list is where the ValidationRules
fi re. Th at’s because they can fi re at various points in the process,
depending on the value you set for the ValidationStep property on
the ValidationRule, including before type conversion, aft er con-
version, aft er the property is updated or when the changed value
is committed (if the data object implements IEditableObject).
Th e default value is RawProposedValue, which happens before
type conversion. Th e point when the data is converted from the
target control property type to the data source object property
type usually happens implicitly without touching any of your code,
such as for a numeric input in a TextBox. Th is type-conversion
process can throw exceptions, which should be used to indicate a
validation error to the user.

If the value can’t even be written to the source object property,
clearly it is invalid input. If you choose to hook up Validation-
Rules, they are invoked at the point in the process indicated by the
ValidationStep property, and they can return validation errors
based on whatever logic is embedded in them or called from
them. If the source object property setter throws an exception,
that should almost always be treated as a validation error, as with
the type conversion case.

Finally, if you implement IDataErrorInfo, the indexer property
you add to your data source object for that interface will be called
for the property that was being set to see if there is a validation
error based on the returned string from that interface. I’ll cover
each of these mechanisms in more detail a bit later.

When you want validation to occur is another decision you’ll
have to make. Validation happens when the Binding writes the
data to the underlying source object property. When validation
takes place is specifi ed by the UpdateSourceTrigger property of
the Binding, which is set to PropertyChanged for most properties.
Some properties, such as TextBox.Text, change the value to

FocusChange, which means that validation happens when the fo-
cus leaves the control that’s being used to edit data. Th e value can
also be set to Explicit, which means that validation has to be ex-
plicitly invoked on the binding. Th e BindingGroup that I discuss
later in the article uses Explicit mode.

In validation scenarios, particularly with TextBoxes, you typ-
ically want to give fairly immediate feedback to the user. To
support that, you should set the UpdateSourceTrigger property on
the Binding to PropertyChanged:

Text="{Binding Path=Activity.Description, UpdateSourceTrigger=PropertyChanged}

It turns out that for many real validation scenarios, you’ll need
to leverage more than one of these mechanisms. Each has its pros
and cons, based on the kind of validation error you’re concerned
with and where the validation logic can reside.

Business Validation Scenario
To make this more concrete, let’s walk through an editing scenario
with a semi-real business context and you’ll see how each of these
mechanisms can come into play. Th is scenario and the validation
rules are based on a real application I wrote for a customer in which
a fairly simple form required the use of almost every validation
mechanism due to the supporting business rules for validation.
For the simpler application used in this article, I’ll employ each of
the mechanisms to demonstrate their use, even though they’re not
all explicitly required.

Let’s suppose you need to write an application to support fi eld
technicians who perform in-home customer support calls (think
the cable guy, but one who also tries to up-sell additional features
and services). For each activity the technician performs in the fi eld,
he needs to enter an activity report that tells what he did and relates
it to several pieces of data. Th e object model is shown in Figure 3.

Th e main piece of data users fi ll out is an Activity object, including
a Title, the ActivityDate, an ActivityType (a drop-down selection
of predefi ned activity types) and a Description. Th ey also need
to relate their activity to one of three possibilities. Th ey need to
select either a Customer the activity was performed for from a list
of customers assigned to them or an Objective of the company the
activity was related to from a list of company objectives, or they can
manually enter a Reason if neither a Customer nor an Objective
apply for this activity.

Here are the validation rules the application needs to enforce:
• Title and Description are required fi elds.
• Th e ActivityDate must be no earlier than seven days prior to

the current date and no later than seven days in the future.
• If the ActivityType Install is selected, the Inventory field is

required and should indicate the pieces of equipment from
the technician’s truck that were expended. Th e inventory items
need to be entered as a comma-separated list with an expected
model number structure for the input items.

• At least one Customer, Objective or Reason must be provided.

Figure 1 Data Flow in TwoWay Data Binding

Load

Update

Target Element Property
(Example: TextBox.Text)

Source Object Property
(Example: Activity.Title)

http://msdnmagazine.com

msdn magazine76 Input Validation

Th ese may seem like fairly simple requirements, but the last two in
particular are not so straightforward to address because they indicate
cross-coupling between properties. Th e running application with
some invalid data—indicated by the red box—is shown in Figure 4.

Exception Validation
Th e simplest form of validation is to have an exception that’s raised
in the process of setting the target property treated as a validation
error. Th e exception could result from the type conversion process
before the Binding ever sets the target property; it could result from
an explicit throw of an exception in the property setter; or it could
result from a call out to a business object from the setter where the
exception gets thrown further down the stack.

To use this mechanism, you simply set the ValidatesOnExceptions
property to true on your Binding object:

Text="{Binding Path=Activity.Title, ValidatesOnExceptions=True}"

When an exception is thrown while trying to set the source
object property (Activity.Title in this case), a validation error will
be set on the control. Th e default validation error indication is a
red border around the control as shown in Figure 5.

Because exceptions can occur in the type conversion process,
it’s a good idea to set this property on input Bindings whenever
there’s any chance of the type conversion failing, even if the backing
property just sets the value on a member variable with no chance
of an exception.

For example, suppose you were to use a TextBox as the input control
for a DateTime property. If a user enters a string that can’t be converted,
ValidatesOnExceptions is the only way your Binding could indicate an
error, because the source object property will never be called.

If you need to do something specific in the view when there
is invalid data, such as disable a command, you can hook the
Validation.Error attached event on the control. You’ll also need to
set the NotifyOnValidationError property to true on the Binding.

<TextBox Name="ageTextBox"
 Text ="{Binding Path=Age,
 ValidatesOnExceptions=True,
 NotifyOnValidationError=True}"
 Validation.Error="OnValidationError".../>

ValidationRule Validation
In some scenarios, you might want to tie the validation in at the UI
level and need more complicated logic to determine whether the
input is valid. For the sample application, consider the validation
rule for the Inventory field. If data is entered, it needs to be a
comma-separated list of model numbers that follow a specific
pattern. A ValidationRule can easily accommodate this because
it depends entirely on the value being set. Th e ValidationRule can
use a string.Split call to turn the input into a string array, then use
a regular expression to check whether the individual parts comply

with a given pattern. To do this, you can defi ne a ValidationRule
as shown in Figure 6.

Properties exposed on a ValidationRule can be set from the XAML
at the point of use, allowing them to be a little more fl exible. Th is
validation rule ignores values that can’t be converted to a string array.
But when the rule can execute the string.Split, it then uses a RegEx to
validate that each string in the comma-separated list complies with
the pattern set through the InventoryPattern property.

When you return a ValidationResult with the valid fl ag set to
false, the error message you provide can be used in the UI to present
the error to the user, as I’ll show later. One downside to Validation-
Rules is that you need an expanded Binding element in the XAML
to hook it up, as shown in the following code:

<TextBox Name="inventoryTextBox"...>
 <TextBox.Text>
 <Binding Path="Activity.Inventory"
 ValidatesOnExceptions="True"
 UpdateSourceTrigger="PropertyChanged"
 ValidatesOnDataErrors="True">
 <Binding.ValidationRules>
 <local:InventoryValidationRule
 InventoryPattern="^\D?(\d{3})\D?\D?(\d{3})\D?(\d{4})$"/>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

In this example, my Binding will still raise validation errors if
an exception occurs due to the ValidatesOnExceptions property
being set to true, and I also support IDataErrorInfo validation
based on the ValidatesOnDataErrors being set to true, which I’ll
talk about next.

If you have multiple ValidationRules attached to the same
property, those rules can each have different values for the
ValidationStep property or they can have the same value. Rules
within the same ValidationStep are evaluated in order of declaration.
Rules in earlier ValidationSteps obviously run before those in later
ValidationSteps. What may not be obvious is that if a ValidationRule
returns an error, none of the subsequent rules are evaluated. So the

Validation Mechanism Description
Exceptions By setting the ValidatesOnExceptions property

on a Binding object, if an exception is raised in
the process of trying to set the modifi ed value
on the source object property, a validation error
will be set for that Binding.

ValidationRules The Binding class has a property to supply
a collection of ValidationRule-derived class
instances. These ValidationRules need to override
a Validate method that will be called by the
Binding whenever the data in the bound control
changes. If the Validate method returns an
invalid ValidationResult object, a validation error
is set for that Binding.

IDataErrorInfo By implementing the IDataErrorInfo interface
on a bound data-source object and setting the
ValidatesOnDataErrors property on a Binding
object, the Binding will make calls to the
IDataErrorInfo API exposed from the bound
data-source object. If non-null or non-empty
strings are returned from those property calls, a
validation error is set for that Binding.

Figure 2 Binding Validation Mechanisms

When you want validation to
occur is another decision you

will have to make.

77June 2010msdnmagazine.com

fi rst validation error will be the only one indicated when the er-
rors result from ValidationRules.

IDataErrorInfo Validation
Th e IDataErrorInfo interface requires the implementer to expose
one property and one indexer:

public interface IDataErrorInfo {
 string Error { get; }
 string this[string propertyName] { get; }
}

Th e Error property is used to indicate an error for the object as
a whole, and the indexer is used to indicate errors at the individual
property level. Th ey both work the same: returning a non-null or
non-empty string indicates a validation error. In addition, the string
you return can be used to display the error to the user, as I’ll show later.

When you’re working with individual controls bound to individual
properties on a data source object, the most important part of the
interface is the indexer. Th e Error property is used only in scenarios
such as when the object is displayed in a DataGrid or in a Binding-
Group. Th e Error property is used to indicate an error at the row
level, whereas the indexer is used to indicate an error at the cell level.

Implementing IDataErrorInfo has one big downside: the
implementation of the indexer typically leads to a big switch-case
statement, with one case for each property name in the object,
and you have to switch and match based on strings and return
strings to indicate an error. Furthermore, your implementation of
IDataErrorInfo is not called until the property value has already
been set on the object. If other objects have subscribed to INotify-
PropertyChanged.PropertyChanged on your object, they will
already have been notifi ed of the change and could have started
working based on data that your IDataErrorInfo implementation
is about to declare invalid. If that could be a problem for your
application, you’ll need to throw exceptions from the property
setters when you’re unhappy with the value being set.

Th e good thing about IDataErrorInfo is that it makes it easy
to address cross-coupled properties. For example, in addition to
using the ValidationRule to validate the input format of the Inventory
fi eld, remember the requirement that the Inventory fi eld must be
fi lled in when the ActivityType is Install. Th e ValidationRule itself

has no access to the other properties on the
data-bound object. It just gets passed a value
that’s being set for the property the Binding
is hooked up to. To address this requirement,
when the ActivityType property gets set you
need to cause validation to occur on the
Inventory property and return an invalid
result when ActivityType is set to Install if
the value of Inventory is empty.

To accomplish this, you need IData-
ErrorInfo so that you can inspect both the
Inventory and ActivityType properties when
evaluating Inventory, as shown here:
public string this[string propertyName] {
 get { return IsValid(propertyName); }
}

private string IsValid(string propertyName) {
 switch (propertyName) {
 ...
 case "Inventory":
 if (ActivityType != null &&
 ActivityType.Name == "Install" &&
 string.IsNullOrWhiteSpace(Inventory))
 return "Inventory expended must be entered for installs";
 break;
}

Additionally, you need to get the Inventory Binding to invoke vali-
dation when the ActivityType property changes. Normally, a Binding
only queries the IDataErrorInfo implementation or calls Validation-
Rules if that property changed in the UI. In this case, I want to trigger
the re-evaluation of the Binding validation even though the Inventory
property has not changed, but the related ActivityType has.

Th ere are two ways to get the Inventory Binding to refresh when
the ActivityType property changes. Th e fi rst and simplest way is
to publish the PropertyChanged event for Inventory when you set
the ActivityType:

ActivityType _ActivityType;
public ActivityType ActivityType {
 get { return _ActivityType; }
 set {
 if (value != _ActivityType) {
 _ActivityType = value;
 PropertyChanged(this,
 new PropertyChangedEventArgs("ActivityType"));
 PropertyChanged(this,
 new PropertyChangedEventArgs("Inventory"));
 }
 }
}

Th is causes the Binding to refresh and re-evaluate the validation
of that Binding.

Th e second way is to hook the Binding.SourceUpdated attached
event on the ActivityType ComboBox or one of its parent
elements, and trigger a Binding refresh from the code-behind
handler for that event:

<ComboBox Name="activityTypeIdComboBox"
 Binding.SourceUpdated="OnPropertySet"...

private void OnPropetySet(object sender,
 DataTransferEventArgs e) {

 if (activityTypeIdComboBox == e.TargetObject) {
 inventoryTextBox.GetBindingExpression(
 TextBox.TextProperty).UpdateSource();
 }
}

Figure 3 Object Model for the Sample Application

http://msdnmagazine.com

msdn magazine78 Input Validation

Calling UpdateSource on a Binding programmatically causes
it to write the current value in the bound target element into the
source property, triggering the validation chain as if the user had
just edited the control.

Using BindingGroup for Cross-Coupled Properties
Th e BindingGroup feature was added in the Microsoft .NET Frame-
work 3.5 SP1. A BindingGroup is specifi cally designed to allow you to
evaluate validation on a group of bindings all at once. For example,
you could allow a user to fill in an entire form and wait until
she pressed the Submit or Save button to evaluate the validation
rules for the form, then present the validation errors all at once.
In the sample application, I had the requirement that at least one
Customer, Objective, or Reason had to be provided. A Binding-
Group can be used to evaluate a subset of a form as well.

To use a BindingGroup, you need a set of controls with normal
Bindings on them that share a common ancestor element. In the
sample application, the Customer ComboBox, Objective Combo-
Box and Reason TextBox all live within the same Grid for layout.
BindingGroup is a property on FrameworkElement. It has a
ValidationRules collection property that you can populate with
one or more ValidationRule objects. Th e following XAML shows
the BindingGroup hookup for the sample application:

<Grid>...
<Grid.BindingGroup>
 <BindingGroup>
 <BindingGroup.ValidationRules>
 <local:CustomerObjectiveOrReasonValidationRule
 ValidationStep="UpdatedValue"
 ValidatesOnTargetUpdated="True"/>
 </BindingGroup.ValidationRules>
 </BindingGroup>
</Grid.BindingGroup>
</Grid>

In this example, I added an instance of the CustomerObjectiveOr-
ReasonValidationRule to the collection. Th e ValidationStep prop-
erty allows you to have some control over the value that’s passed to
the rule. UpdatedValue means to use the value that was written to
the data source object aft er it is written. You can also choose values
for ValidationStep that let you use the raw input from the user, the
value aft er type and value conversion is applied, or the “committed”
value, which means implementing the IEditableObject
interface for transactional changes to the properties of your object.

Th e ValidatesOnTargetUpdated fl ag causes the rule to be evalu-
ated each time the target property is set through the Bindings. Th is
includes when it is set initially, so you have immediate validation error
indications if the initial data is invalid, as well as each time the user
changes the values in the controls that are part of the BindingGroup.

A ValidationRule that is hooked up to a BindingGroup works a
little diff erently than a ValidationRule hooked up to a single Bind-

ing. Figure 7 shows the ValidationRule hooked up to the Binding-
Group shown in the previous code sample.

In a ValidationRule hooked up to a single Binding, the value
that’s passed in is the single value from the data source property
that’s set as the Path of the Binding. In the case of a BindingGroup,
the value that is passed to the ValidationRule is the BindingGroup
itself. It contains an Items collection that is populated by the
DataContext of the containing element, in this case the Grid.

For the sample application, I’m using the MVVM pattern, so the
DataContext of the view is the ViewModel itself. Th e Items collection
contains just a single reference to the ViewModel. From the View-
Model, I can get to the Activity property on it. Th e Activity class
in this case has the validation method that determines whether
at least one Customer, Objective, or Reason has been entered so I
don’t have to duplicate that logic in the ValidationRule.

As with other ValidationRules covered earlier, if you’re happy with
the values of the data passed in, you return a ValidationResult.Vali-
dResult. If you’re unhappy, you construct a new ValidationResult
with a false valid fl ag and a string message indicating the problem,
which can then be used for display purposes.

Setting the ValidatesOnTargetUpdated fl ag is not enough
to get the ValidationRules to fire automatically, though. The
BindingGroup was designed around the concept of explicitly
triggering validation for an entire group of controls, typically
through something like a Submit or Save button press on a form.
In some scenarios, users don’t want to be bothered with validation
error indications until they consider the editing process complete,
so the BindingGroup is designed with this approach in mind.

The default way WPF displays
validation errors is to draw a red

border around the control.

Figure 4 A Dialog Showing ToolTips and Invalid Data

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/06

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

BEST SELLER LEADTOOLS Recognition SDK from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

BEST SELLER

Untitled-2 1 5/5/10 10:48 AM

http://www.componentsource.com

msdn magazine80 Input Validation

In the sample application, I want to
provide immediate validation-error
feedback to the user any time he changes
something in the form. To do that with
a BindingGroup, you have to hook
the appropriate change event on the individual input controls
that are part of the group, and have the event handler for those
events trigger the evaluation of the BindingGroup. In the sample
application, this means hooking the ComboBox.SelectionChanged
event on the two ComboBoxes and the TextBox.TextChanged event
on the TextBox. Th ose all can point to a single handling method
in the code-behind:

private void OnCommitBindingGroup(
 object sender, EventArgs e) {

 CrossCoupledPropsGrid.BindingGroup.CommitEdit();
}

Note that for the validation display, the default red border
will be displayed on the FrameworkElement that the Binding-
Group resides on, such as the Grid in the sample application, as in
Figure 4. You can also alter where the validation indication is
displayed by using the Validation.ValidationAdornerSite and
Validation.ValidationAdornerSiteFor attached properties. By
default, the individual controls will also display red borders for
their individual validation errors. In the sample application,
I turn those borders off by setting the ErrorTemplate to null
through Styles.

With BindingGroup in the .NET Framework 3.5 SP1, you may
encounter problems with the proper display of validation errors
on initial form load, even if you set the ValidatesOnTargetUpdated
property on the ValidationRule. A workaround I found for this was
to “jiggle” one of the bound properties in the BindingGroup. In the
sample application, you could add and remove a space at the end
of whatever text is initially presented in the TextBox in the Loaded
event of the view like so:

string originalText = m_ProductTextBox.Text;
m_ProductTextBox.Text += " ";
m_ProductTextBox.Text = originalText;

Th is causes the BindingGroup ValidationRules to fi re since one of
the contained Binding properties has changed, causing the valida-
tion of each Binding to be called. Th is behavior is fi xed in the .NET
Framework 4.0, so there should be no need for the workaround
to get initial display of validation errors—just set the ValidatesOn-
TargetUpdated property to true on the validation rules.

Validation Error Display
As mentioned previously, the default way WPF displays validation
errors is to draw a red border around the control. Oft en you’ll want
to customize this to display errors in some other way. Moreover, the
error message associated with the validation error is not displayed
by default. A common requirement is to display the error message
in a ToolTip only when the validation error exists. Customizing
the validation error displays is fairly easy through a combination
of Styles and a set of attached properties associated with validation.

To add a ToolTip that displays the error text is trivial. You just need
to defi ne a Style that applies to the input control that sets the ToolTip
property on the control to the validation error text whenever there

is a validation error. To support this, there
are two attached properties you’ll need to
employ: Validation.HasError and Valida-
tion.Errors. A Style targeting the TextBox
type that sets the ToolTip is shown here:

<Style TargetType="TextBox">
 <Style.Triggers>
 <Trigger Property="Validation.HasError"
 Value="True">
 <Setter Property="ToolTip">
 <Setter.Value>
 <Binding
 Path="(Validation.Errors).CurrentItem.ErrorContent"
 RelativeSource="{x:Static RelativeSource.Self}" />
 </Setter.Value>
 </Setter>
 </Trigger>
 </Style.Triggers>
</Style>

You can see that the Style just contains a property trigger for the
Validation.HasError attached property. Th e HasError property will
be set to true when a Binding updates its source object property
and the validation mechanisms generate an error. Th at could come
from an exception, ValidationRule or IDataErrorInfo call. Th e
Style then uses the Validation.Errors attached property, which will
contain a collection of error strings if a validation error exists. You
can use the CurrentItem property on that collection type to just grab
the fi rst string in the collection. Or you could design something
that data binds to the collection and displays the ErrorContent
property for each item in a list-oriented control.

To change the default validation error display for a control to
something other than the red border, you will need to set the
Validation. ErrorTemplate attached property to a new template
on the control you want to customize. In the sample application,
instead of displaying a red border, a small red gradient circle is
displayed to the right of each control with an error. To do that, you
defi ne a control template that will be used as the ErrorTemplate.

public class InventoryValidationRule : ValidationRule {

 public override ValidationResult Validate(
 object value, CultureInfo cultureInfo) {

 if (InventoryPattern == null)
 return ValidationResult.ValidResult;

 if (!(value is string))
 return new ValidationResult(false,
 "Inventory should be a comma separated list of model numbers as a
string");

 string[] pieces = value.ToString().Split(',');
 Regex m_RegEx = new Regex(InventoryPattern);

 foreach (string item in pieces) {
 Match match = m_RegEx.Match(item);
 if (match == null || match == Match.Empty)
 return new ValidationResult(
 false, "Invalid input format");
 }

 return ValidationResult.ValidResult;
 }

 public string InventoryPattern { get; set; }
}

Figure 6 ValidationRule to Validate a String Array

Figure 5 A Validation Error

msdnmagazine.com

<ControlTemplate x:Key="InputErrorTemplate">
 <DockPanel>
 <Ellipse DockPanel.Dock="Right" Margin="2,0"
 ToolTip="Contains invalid data"
 Width="10" Height="10">
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Color="#11FF1111" Offset="0" />
 <GradientStop Color="#FFFF0000" Offset="1" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 <AdornedElementPlaceholder />
 </DockPanel>
</ControlTemplate>

To hook up that control template to a control, you just need to
set the Validation.ErrorTemplate property for the control, which
you can again do through a Style:

<Style TargetType="TextBox">
 <Setter Property="Validation.ErrorTemplate"
 Value="{StaticResource InputErrorTemplate}" />
 ...
</Style>

Wrap Up
In this article, I’ve shown how you can use the three validation mech-
anisms of WPF data binding to address a number of business data
validation scenarios. You saw how to use exceptions, Validation-
Rules, and the IDataErrorInfo interface to address single property
validation, as well as properties whose validation rules depend on
the current values of other properties on the control. You also saw
how to use BindingGroups to evaluate several Bindings at once, and
how to customize the display of errors beyond the defaults of WPF.

Th e sample application for this article has the full set of validation
that satisfi es the described business rules in a simple application that
uses MVVM to hook up the view to the data supporting it.

BRIAN NOYES is chief architect of IDesign (idesign.net), a Microsoft regional direc-
tor and Microsoft MVP. Noyes is an author and a frequent speaker at Microsoft
Tech·Ed, DevConnections, DevTeach and other conferences worldwide. Contact
him through his blog at briannoyes.net.

THANKS to the following technical expert for reviewing this article:
Sam Bent

public class CustomerObjectiveOrReasonValidationRule :
 ValidationRule {

 public override ValidationResult Validate(
 object value, CultureInfo cultureInfo) {

 BindingGroup bindingGroup = value as BindingGroup;
 if (bindingGroup == null)
 return new ValidationResult(false,
 "CustomerObjectiveOrReasonValidationRule should only be used with
a BindingGroup");

 if (bindingGroup.Items.Count == 1) {
 object item = bindingGroup.Items[0];
 ActivityEditorViewModel viewModel =
 item as ActivityEditorViewModel;
 if (viewModel != null && viewModel.Activity != null &&
 !viewModel.Activity.CustomerObjectiveOrReasonEntered())
 return new ValidationResult(false,
 "You must enter one of Customer, Objective, or Reason to a valid entry");
 }
 return ValidationResult.ValidResult;
 }
}

Figure 7 ValidationRule for a BindingGroup

www.scaleoutsoftware.com
http://briannoyes.net
http://msdnmagazine.com

msdn magazine82

PRACT ICAL ODATA

Building Rich Internet
Apps with the Open
Data Protocol

At PDC09 the Microsoft WCF Data Services team (formerly
known as the ADO.NET Data Services team) fi rst unveiled OData,
the Open Data Protocol. Th e announcement was in a keynote on the
second day of the conference, but that wasn’t where OData started.
People familiar with ADO.NET Data Services have been using
OData as the data transfer protocol for resource-based applications
since ADO.NET Data Services became available in the Microsoft
.NET Framework 3.5 SP1. In this article, I’ll explain how developers
of Rich Internet Applications (RIAs) can use OData, and I’ll also
show the benefi ts of doing so.

I’ll start by answering the No. 1 question I’ve been asked since
the unveiling of OData in November: What is it? In very simple
terms, OData is a resource-based Web protocol for querying and

Shayne Burgess

updating data. OData defi nes operations on resources using HTTP
verbs (PUT, POST, UPDATE and DELETE), and it identifi es those
resources using a standard URI syntax. Data is transferred over
HTTP using the AtomPub or JSON standards. For AtomPub,
the OData protocol defi nes some conventions on the standard
to support the exchange of query and schema information. Visit
odata.org for more information on OData.

The OData Ecosystem
In this article, I’ll introduce a few products, frameworks and
Web Services that consume or produce OData feeds. Th e proto-
col defi nes the resources and methods that can be operated on
and the operations (GET, PUT, POST, MERGE and DELETE,
which correspond to read, create, replace, merge and delete)
that can be performed on those resources.

In practice this means any client that can consume the OData
protocol can operate over any of the producers. It’s not necessary to
learn the programming model of a service to program against the
service; it’s only necessary to choose the target language to program in.

If, for example, you’re a Silverlight developer who learns the ODa-
ta library for that platform, you can program against any OData
feed. Beyond the OData library for Silverlight you’ll fi nd libraries
for the Microsoft .NET Framework client, AJAX, Java, PHP and
Objective-C, with more on the way. Also, Microsoft PowerPivot
for Excel supports an OData feed as one of the options for data
import to its in-memory analysis engine.

This article discusses:
• The OData ecosystem

• What’s new in WCF Data Services

• Using OData with SharePoint

• Consuming Open Government Data Initiative services

• Using OData with Silverlight

• Using OData with PowerPivot

Technologies discussed:
OData, Silverlight, WCF Data Services, Entity Framework,
SharePoint, Windows Azure Platform, PowerPivot

83June 2010msdnmagazine.com

And just as clients capable of consuming the OData protocol
can operate over any of the producers, a service or application
created using OData can be consumed by any OData-enabled
client. Aft er creating a Web service that exposes relational data as
an OData endpoint (or exposes the data in a SharePoint site, tables
in Windows Azure or what have you), you can easily build a rich
desktop client in the .NET Framework or a rich AJAX-based Web
site that consumes the same data.

Th e long-term goal for OData is to have an OData client library for
every major technology, programming language and platform so that
every client app can consume the wealth of OData feeds. Combined,
the producers and consumers of OData create an OData “ecosystem.”

What’s New in WCF Data Services?
WCF Data Services, a component of the .NET Framework, is a
framework that off ers a turnkey solution for creating OData Web ser-
vices and includes a client library with which you can build clients that
consume OData feeds. Th e WCF Data Services team recently released
an update to the .NET Framework 3.5 SP1 that introduces a host of new
features you’ll also fi nd in the .NET Framework 4. Th is is the second
version of the Data Services framework. Visit blogs.msdn.com/astoriateam/
archive/2010/01/27/data-services-update-for-net-3-5-sp1-available-for-download.aspx,
where you’ll fi nd a description and a link for downloading.

Th e WCF Data Services framework is not just a protocol for RIA
applications. It was also designed for high-scale service developers
and has many features that appeal to them, such as server paging
limits, HTTP caching support, stateless services, streaming sup-
port and a pluggable provider model. Let’s look at the new features
that are generally of most interest to RIA developers.

One of the top feature wishes customers expressed aft er the initial
release was the ability to request the number of entities in a set. Th e
new “count” feature addresses that need with two parts. First, it lets
you request only the count—that is, the number of values a query
would return. Second, it adds a query option that tells the service to
include a count of the total number of entities in a set when the query
result is a partial set (for example, when server paging is enabled).

To enhance the experience when binding data from an OData
service, a new type, DataServiceCollection, has been added to the

WCF Data Services client library. It implements change tracking
on the items it contains (through the use of the INotifyProperty-
Changed and INotifyCollectionChanged interfaces). When it’s
bound to a control—a DataGrid in Silverlight, for example—it will
track the changes made to the objects and to the collection itself.
Th is new collection greatly simplifi es the process of creating OData
clients with an interface component.

Another frequently requested feature was the ability to project
a subset of the properties of an entity returned in a query result.
LINQ support has been added for this through the LINQ Select
statement. This has two benefits: It reduces the size of the HTTP
responses to queries, and it reduces the memory footprint of the
client-side objects. This can be especially useful when you’re
developing a client application against a service you don’t own and
in which each entity may have many properties of no interest to the
client. Later in this article, I’ll demonstrate working with a large,
publicly available service that has many entities with numerous
properties on each entity. Projections will be useful in the example
because it includes only a few needed properties on one entity.

To help you understand the value of the OData ecosystem, we’ll
create a Web application that lets visitors browse the site of my
fi ctional real estate company, Contoso Ltd., to see the listings of the
properties it manages.

Relational Data
Th e main data source for the Contoso.com Home Finder application
is a SQL Server database that contains information about all of the
properties the company is managing and all of the listings (current
and previously sold) it has published for those properties.

Since the release of WCF Data Services and the ADO.NET
Entity Framework in the .NET Framework 3.5 SP1, it has been easy
to expose a relational database as an OData feed. All that’s needed
is an Entity Framework model created over the relational data. An
OData feed is HTTP-based, so you need a Web site or Web service
to host the service.

To create the OData feed over the relational data, the fi rst step
is to create an ASP.NET Web application in Visual Studio 2010 to
host the OData service. In Visual Studio, select File | New | Project
| ASP.NET Web Application. Th is will create the skeleton of a Web
service that can be used to host the OData feed.

// The ListingsEntities is the Entity Framework Context that the Service exposes
public class Listings : DataService< ListingsEntities >
{
 public static void InitializeService(DataServiceConfiguration config)
 {
 // These lines set the access rights to "Read Only" for both entity sets
 config.SetEntitySetAccessRule("Listings", EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("Properties", EntitySetRights.AllRead);

 // There are currently no service operations in the service
 config.SetServiceOperationAccessRule("MyServiceOperation",
 ServiceOperationRights.All);

 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
}

Figure 2 Defi ning the WCF Data Service

Figure 1 The Entity Framework Data Model for the Relational Data

http://blogs.msdn.com/astoriateam/archive/2010/01/27/data-services-update-for-net-3-5-sp1-available-for-download.aspx
http://blogs.msdn.com/astoriateam/archive/2010/01/27/data-services-update-for-net-3-5-sp1-available-for-download.aspx
http://msdnmagazine.com

msdn magazine84 Practical OData

Aft er the Web service is created and confi gured, we’ll create the
Entity Framework data model that the OData feed will expose.
Visual Studio makes this easy using the Add New Item wizard,
which lets you auto-generate a model from an existing database.
Figure 1 shows a simple data model created using the Add New
Item wizard over the SQL Server data containing the properties
and listings managed by Contoso.

Now let’s create a WCF Data Service that exposes this data model
as an OData feed. Visual Studio also makes this simple with the
WCF Data Service option in the Add New Item wizard. When
you select this option, Visual Studio provides a code fi le (in this
example the fi le is called Listings.svc.cs) that’s used to confi gure
the Data Service.

Th e code in Figure 2 demonstrates how to defi ne a WCF Data
Service. Th e Listings class is the service class that’s exposing the
Data Service, and it implements the generic DataService<T>. Th e
type used to defi ne the DataService<T> in Figure 2 is the Listings-
Entities type, which is the Entity Framework context created
in Figure 1. Because this class will accept an Entity Framework
context, this is a quick and easy way to get a WCF Data Service
that exposes relational data up and running. Th e DataService class

isn’t restricted to just working over
Entity Framework contexts, however;
the class will accept any collection
of CLR objects that implements the
IQuery able interface. In the .NET
Framework 4, a new custom provider
model for WCF Data Services has been
added that allows a service to be created
over almost any data source.

Let’s look a little closer at what else
the InitalizeService method in Figure 2
is doing. Th e method is calling the Set-
EntitySetAccessRule for both of the
entity sets the service will expose and
setting the access rights to AllRead. Th is
tells the service to make both entity sets
fully readable but not allow any inserts,

updates or deletes. Th is is a great way to control access to the service.
WCF Data Services also support methods called Query Interceptors
that allow the service author to configure finer-grained access
control for the service on a per-entity-set basis. Set the Listings.svc
fi le as the project start page and run the project. A browser window
will open and display the service document, as shown in Figure 3.

OData URI Conventions
Th e service document lists the entity sets that are exposed by the ser-
vice. Remember, you can access the resources in this service using the
powerful URI syntax defi ned as an optional part of the OData protocol.
Let’s take a quick look at the URI syntax for this service. To access a feed
for each entity set, you append the name of the entity set to the base
URI for the service; for example, http://myhost/Listings.svc/Properties
would address the set of entities in the Properties entity set.

It’s also possible to address a particular entity individually using
its key value; the URI http://myhost/ Listings.svc/Properties(0) would
address the property with ID = 0. You can address a relationship
from this entity to another entity or set of entities by appending the
name of the relationship to the end of the URI, so http://myhost/
Listings.svc/Properties(0)/Listings would access the set of listings
associated with the property entity with ID = 0. Using this syntax,
it’s possible to navigate through many levels of relationships.

Th e URI syntax also defi nes a number of query options that can
be appended to a URI to modify the base query in some way, and

$top=n Restricts the query to the fi rst n entities.
$skip=n Skips the fi rst n entities in the set.
$inlinecount=allpages Includes the count of all entities of the set in

the result.
$fi lter=<expression> An expression can be supplied to restrict

the results returned by the query (example:
$fi lter=Status eq 'Available' restricts the results
to entities that have a Status property with the
value "Available").

$orderby=<expression> Orders the results by a set of properties of
the entity

$select=<expression> Specifi es a subset of the properties of the
entity to be returned.

$format Specifi es the format of the feed to be returned
(ATOM or JSON). This option is not supported
in WCF Data Services.

Figure 4 OData Query Options

Figure 3 Service Document for the SharePoint Site

The Open Government Data
Initiative is a service built on

the Microsoft Windows Azure
platform that makes it easier for
government agencies to publish

a wide variety of public data.

85June 2010msdnmagazine.com

each query option is defi ned as a name/value pair. For example,
by appending the query option $top=10, you restrict the query to
only the fi rst 10 entries in the result. Figure 4 lists all of the query
options available in the URI syntax.

Exposing Data from SharePoint
In the preceding section I showed you how to expose the data stored
in my relational database, the property and listing information
for the real estate Web site. Let’s say I also have information about the
real estate agents who are selling the properties, but that data is stored
in a SharePoint site. Microsoft SharePoint 2010 has the ability to ex-
pose all lists and documents within those lists as an OData feed. Th is
is great for the real estate site because it means the agent information
that company employees have entered is available as an OData

feed that can be included in the listings application I’m building.
The users who have processes using the SharePoint interface
for entering and updating this data don’t have to change their
workfl ow to suit my application. Th e data entered into the company
SharePoint site is available in real time to the Listings application
that’s being created.

Figure 5 shows the simple SharePoint portal the real estate agents
use to record and update their contact information.

When the ADO.NET Data Services Update for the .NET
Framework 3.5 SP1 is installed on the SharePoint system, a new
HTTP endpoint becomes available for each site that exposes the
list data as an OData feed. Because an OData feed is accessed using
HTTP, it can be examined by using just Internet Explorer. Figure
6 shows the feed for the agents list in SharePoint.

Consuming Reference
Data from OGDI
By default, an OData feed will return
an ATOM representation for the feed,
and when accessed from a Web browser
the result will be an ATOM feed. If the
accept header of the request is changed
to “application/json,” the result will be
the same data as a JSON feed.

The feed in Figure 6 starts with a
<feed> element that represents a set of
entities. Contained within each feed is
a set of <entry> elements, each of which
represents a single entity in the feed (the
fi rst three entry elements are collapsed to
make the whole feed visible in one screen).

In this example, the entity has a con-
currency token defi ned on it; as a result,
each entity in the feed has an etag prop-
erty on it. Th e etag is the token used by
the data service to enforce a concurrency
check when a change is made to the
requested entity. Each entity, formatted
using an <entry> tag, consists of a set of

Figure 5 SharePoint Site for Agent Information

Figure 6 Agents Feed from the SharePoint Agent Service

http://msdnmagazine.com

msdn magazine86 Practical OData

links that contain both the link to be used when editing the entity
and the entity’s relationships. Each relationship link points either to
another entity or to a set of entities (these are called reference and
navigation properties, respectively). Each <entry> element also
includes an <m:properties> element that contains the primitive and
complex type properties for the entity; the property values consist of
the name of the property on the entity and the value for that property.

Th e Open Government Data Initiative (OGDI) is a service
built on the Microsoft Windows Azure platform that makes it easi-
er for government agencies to publish a wide variety of public data.
Th e OGDI project provides a starter kit that can be used by govern-
ment agencies to expose their data. For example, the city of Edmon-
ton has adopted the starter kit to expose its government data, and a
service at ogdisdk.cloudapp.net has a data set with a variety of data about
the Washington, D.C., area. Another example is the Microsoft
Codename “Dallas” project that aims to make it simple for anyone with
a data set to expose the data as a service to the Web. Th is project is also
built on the Windows Azure platform and exposes data using OData.
Th ese are examples of high-scale services that expose large reference
data sets that can be further consumed by Web applications. As I will
show, when these services expose their data using OData, it’s simple
to consume that data from a variety of applications.

As explained, the OGDI Web site features publicly available data
about the Washington, D.C., area. Contoso’s real estate application
is used for browsing listings in that area, and it would be helpful for
users to have available some of this reference data about the area
around a particular property when viewing it. When I create the
client for the sample application, I’ll demonstrate how to include
the OData feed from the OGDI Web site as one of the sources of
data for the application.

Other OData Producers
So far I’ve shown examples of consuming data from SQL Server,
SharePoint and a generic OData service on the Web, but more options
exist. Th e cloud-based Windows Azure platform has a table service that
exposes data stored in Windows Azure tables, and the API for this is
built using OData. As mentioned, the Microsoft Dallas project is a data

marketplace for fi nding and querying data exposed by the Dallas
service, and this service exposes its data using the OData protocol. OData
producers aren’t just limited to Microsoft products either; IBM recently
announced that its WebSphere eXtreme Scale 7.0 product now
supports the OData protocol.

Silverlight Client
Contoso’s real estate fi nder application now has an ASP.NET Web
service that exposes the relational data in SQL Server about the real
estate listings and properties managed by the company; a SharePoint
site that’s being used to manage the data about company agents;
and a government Web service that exposes data about the region
around the properties the company is advertising. I want to put all
of these sources together into one Silverlight application that can
work with this data in a meaningful way.

In Silverlight 3, a WCF Data Services client library is
included in the Silverlight SDK that makes it simple for
Silverlight applications to communicate with a service that’s
OData- enabled. To do this, in Visual Studio from a Silverlight
project, right-click the project and select Add Service Reference.
Th is walks you through the process of creating a service reference.
Th e main input to a service reference is the URI of the service that’s
being referenced from the Silverlight application. Figure 7shows an
example of adding a service reference to the OGDI sample service.

Th e service reference wizard creates a client-side context class
that’s used to interact with the data service. Th e client context

Figure 7 Add Service Reference for the OGDI Sample Service

Figure 8 The Contoso Home Finder

http://ogdisdk.cloudapp.net

DynamicPDF Generator v6.0 for .NET

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

 Easy-to-use Highly efficient
 Industry leading support Huge feature set

DynamicPDF…Proven .NET Components for Real-Time PDFs

Layout reports in DynamicPDF Designer with its Visual Studio look and feel.

.

Untitled-1 1 3/15/10 11:50 AM

www.cete.com

msdn magazine88 Practical OData

abstracts the details of working with HTTP and URIs away from the
client programming model and allows the client developer to think
only about C# classes and XAML. Th e client context also includes
a LINQ provider implementation and, as a result, LINQ queries on
the proxy are supported. Th e Add Service Reference wizard will also
generate a set of client proxy classes that mirror the types that are
exposed by the referenced service. Aft er creating the OGDI service
reference, I will also create a service reference to both the SharePoint
and Listings services I created. Th is code shows how to create the
contexts that are used to interact with the three OData services:

// OGDI service context
OGDIService.dcDataService OGDIService =
 new dcDataService(new Uri(OGDIServiceURI));

// SharePoint service context
AgentsReference.AgentsDataContext agentsService =
 new AgentsReference.AgentsDataContext(new Uri(sharepointServiceURI));

// Listings Service context
ListingReference.ListingsEntities listingsService =
 new ListingReference.ListingsEntities(new Uri(listingsServiceURI));

Figure 8 shows the outline of the Silverlight real estate Home
Finder application. Th e application will be hosted in SharePoint so
that it’s easily available for my existing users who are used to working
in the SharePoint environment.

Figure 9 contains the code for querying the listings service
and binding the result to the grid at the top of the Home Finder
Silverlight application.

The code in Figure 9 creates a DataServiceCollection that’s a
tracked collection and binds the collection to the ItemsSource

property of the main listings grid. Because this collection im-
plements change tracking, any changes made to the items in the
grid will automatically be reflected on the entities in the listings
collection. The changes in the grid can be persisted to the ser-
vice by calling the BeginSaveChanges method on the context
for the listings service.

In Silverlight, all network calls are made asynchronously, so
executing any operations against a service using the WCF Data
Services client library involves making the initial call to the op-
eration and then writing a separate callback method that’s passed
to the method to handle the result of the asynchronous call. To
improve this asynchronous experience, a method was added to the
Data ServiceCollection class, LoadAsync, which does all the work
of handling the asynchronous callback function and loading the
results into the collection.

In the Figure 9 code, the collection is bound to a grid before the
LoadAsync call is made, and the values won’t be loaded into the col-
lection until aft er the asynchronous call completes. Th e collection
will raise collection-changed events when the results are returned
from the service, and the grid will catch those events and display
the results when the asynchronous call completes.

When a listing is selected from the data grid, the SharePoint site
needs to be queried to get the information about the agent managing
that listing. In this application architecture, a second query is needed
because the data sources for the listing type and the agent type are
separate and there’s no explicit relationship between the two (if you
are a person who thinks in terms of models, this example involves
two completely separate models, and the relationship between
the models is an artifi cial one created and enforced by the client).

Figure 10 shows how to query the SharePoint service for
the agent entity, given the name of the agent. A similar code
sequence is used to query the OGDI data for the neighborhood
statistics in the chart at the bottom of the Home Finder page.
The code up to this point demonstrates only the query capa-
bilities of the Silverlight client, but the client isn’t limited to
queries only; it has rich capabilities in writing back changes to
the service from the client.

OData in PowerPivot
PowerPivot is a new in-memory business intelligence tool
that’s delivered as an add-in for Microsoft Excel 2010—visit
powerpivot.com for more information. Th e tool provides support for
importing large data sets from a data source and doing complex data
analysis and reporting. PowerPivot can import data from a number
of diff erent data sources, including directly from an OData feed. Power-
Pivot’s From Data Feeds option (shown in Figure 11), accepts an OData
service endpoint as the location of the feed to import.

private void getListings()
{
 DataServiceCollection<Listing> listings = new
 DataServiceCollection<Listing>();

 listingsGrid.ItemsSource = listings;

 var query = from listing in
 listingsService.Listings.Expand("Property")
 select listing;
 listings.LoadAsync(query);
}

Figure 9 Creating the Client Proxy Contexts

private void GetAgentData(string agentName)
{
 var query = agentsService.Agents.Where(a => a.FullName == agentName) as
 DataServiceQuery;

 query.BeginExecute(
 AgentQueryCallBack, query);
}

private void AgentQueryCallBack(IAsyncResult result)
{
 Dispatcher.BeginInvoke(() =>
 {
 var queryResult = result.AsyncState as DataServiceQuery<AgentsItem>;
 if (queryResult != null)
 {
 var agents = queryResult.EndExecute(result);
 this.grdAgent.DataContext = agents.First();
 }
 });
}

Figure 10 Executing an Asynchronous Query

Figure 11 PowerPivot Imports from an OData Feed

http://powerpivot.com

You have the vision, but time, budget and staff
constraints prevent you from seeing it through.
With rich user interface controls like Gantt Charts
that Infragistics NetAdvantage® for .NET adds to
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!” Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12 1 4/9/10 2:29 PM

www.infragistics.com/spark

msdn magazine90 Practical OData

Figure 12 shows a chart made from the summary of crime
statistics in the OGDI’s Washington, D.C., data feed.

Th e chart in Figure 12, made using the same data set as the real
estate application in the previous example, shows a summary of all
data for each district. I encourage you to download PowerPivot for
Excel 2010 and import data from the OGDI site at ogdi.cloudapp.net/
v1/dc, and see for yourself how quickly you’ll be doing rich data
analysis over this data.

The Open Data Protocol Visualizer
Th e OGDI data service is essentially a “black box” to an external
developer who creates an application that consumes the data
exposed by the service. Th ankfully, the OGDI service exposes its
data using the OData protocol, so there’s no need to know anything
about the internal details of the service to interact with it. Th e

programming model for the service
is the OData protocol. Th e service
endpoint describes the shape of the
data and, as I showed you in the pre-
vious section, that’s all you need to
interact with the service. However,
it’s oft en useful to view the shape of
the data in the service and get a bet-
ter understanding of the relation-
ships between parts of the service.
Th e Open Data Protocol Visualizer
was created for just this purpose. It’s
available from the Tools | Extension
Manager menu item in Visual Studio
2010. Figure 13 shows two views from
the visualizer that display the struc-
ture of the OGDI service.

Th e top view in Figure 13 shows
the entire service; the bottom view
is zoomed in to show only four of
the boxes in the display. Th e visual-
izer represents entity sets as boxes,
and relationships between entities as
lines connecting the boxes. It’s clear
from the top view in Figure 13 that
the OGDI service is entirely fl at and
doesn’t contain any relationships at
all, as there are no connecting lines
between any boxes. Th is is only a
characteristics of the OGDI ser-
vice and isn’t typical of most OData
services. Th e bottom view shows a
close- up of four of the entity sets
in the service. Just from examining
the view, you can determine that the
service exposes data about fi re sta-
tions, elementary school attendance,
dialysis clinics and government
locations, as well as the properties
and keys for each of those types.

Learning More
Th is article introduces the Open Data Protocol and the ecosystem
that has been built around it, including the WCF Data Services
Framework. For more information, visit the Open Data Protocol
Web site at odata.org. To learn more about WCF Data Services, see
msdn.microsoft.com/data/bb931106 or the WCF Data Services blog
at blogs.msdn.com/astoriateam.

SHAYNE BURGESS is a program manager in the Data and Modeling Group
at Microsoft , working specifi cally on WCF Data Services and the Open Data
Protocol. Burgess regularly blogs on the WCF Data Services team blog at
blogs.msdn.com/astoriateam.

THANKS to the following technical experts for reviewing this article:
Elisa Flasko and Mike Flasko

Figure 13 Open Data Visualizer Views of the OGDI Sample Service

Figure 12 PowerPivot Chart from OData Feed

http://ogdi.cloudapp.net/v1/dc
http://ogdi.cloudapp.net/v1/dc
http://msdn.microsoft.com/data/bb931106
http://blogs.msdn.com/astoriateam
http://blogs.msdn.com/astoriateam

For more information please visit
www.syncfusion.com

ADVERTISEMENT

VSP2

VISUAL STUDIO PARTNER PROFILE

A Visual Studio 2010
Q&A with Daniel Jebaraj
of Syncfusion

Daniel Jebaraj
Vice President

Syncfusion

Syncfusion provides a broad range of enterprise-class .NET
software components that help developers deliver business
innovation in their applications.

Q How do developers typically use Syncfusion controls?
A Our customers range from small ISVs to global IT
consultancies to Fortune 100 companies. Whether they’re
working in Windows Forms, ASP.NET, AS P.NET MVC, WPF, or
Silverlight, they use our controls to deliver the elegant user
interfaces and sophisticated reports that business users need,
in the familiar formats they prefer.

Q When did you fi rst decide to integrate with Visual
Studio 2010?
A Syncfusion made the decision as soon as the fi rst CTP was
available. Visual Studio 2010 was highly anticipated by the
.NET developer community and we were eager to support it.
The 2010 Volume 2 release of our Essential Studio suite
sim-shipped with VS2010 in April and fully supports the
new IDE.

Q How do you help light up the new functionality of
Visual Studio 2010?
A Our controls for WPF and Silverlight off er
tight integration with the IDE enabling a drag
and drop experience for our customers. The
VS2010 IDE also off ers tight integration
for the development and deployment of ASP.
NET MVC applications. We off er a wide set of
components for the ASP.NET MVC environment.

Q What sets Syncfusion apart from other
component vendors?
A As developers ourselves, each decision we
make about how our products are built,
delivered, and supported is based on our
common viewpoint and we uncompromisingly
strive for excellence in order to off er the very
best value to our customers.

• Built with the future in mind: Syncfusion provides
comprehensive support for the latest technologies,
including .NET 4, WPF, Silverlight, MVC 2, as well as
Windows Forms and SharePoint.

• Full source code available: You can use our components in
debug mode at the fl ick of a switch, which is invaluable in
improving overall productivity and application quality. With
a Source license, you can step directly into our code from
within the IDE, just as you would your own code.

• First-rate support: Online, forum-based, and 24x5 phone
support at no extra cost ensure that you’ll get the help you
need, when you need it—even while you’re evaluating our
products with a free 30-day trial.

• Straightforward, fl exible licensing: Our components are
licensed on a simple per-developer basis with no royalties,
run-time, or server-deployment fees. Each licensed
developer may install on multiple personal machines and
both Binary and Source licenses are available.

For more detailed information about Syncfusion controls and a
free 30-day trial, visit www.syncfusion.com.

Untitled-1 1 5/7/10 1:21 PM

http://www.syncfusion.com
http://www.syncfusion.com

msdn magazine92

You can download the library for free from the CodePlex open
source hosting site at codeplex.com/dynamicdatadisplay. I saved my
copy in the root directory of my BugGraph project, then added a
reference to the DLL in my project by right-clicking on the
project name, selecting the Add Reference option and pointing to
the DLL fi le in my root directory.

Next, I created my source data. In a production environment,
your data could be located in an Excel spreadsheet, a SQL database
or an XML fi le. For simplicity, I used a simple text fi le. In the Visual
Studio Solution Explorer window, I right-clicked on my project
name and selected Add | New Item from the context menu. I then
chose the Text File item, renamed the fi le to BugInfo.txt and clicked
the Add button. Here’s the dummy data:

01/15/2010:0:0
02/15/2010:12:5
03/15/2010:60:10
04/15/2010:88:20
05/15/2010:75:50
06/15/2010:50:70
07/15/2010:40:85
08/15/2010:25:95
09/15/2010:18:98
10/15/2010:10:99

Th e fi rst colon-delimited fi eld in each line holds a date, the second
contains the number of open bugs on the associated date and the

Generating Graphs with WPF

Generating a graph from a set of test-related
data is a common soft ware-development task.
In my experience, the most common approach
is to import data into an Excel spreadsheet,
then produce the graph manually using
the Excel built-in graphing features. This
works well in most situations, but if the
underlying data changes frequently, creating
graphs by hand can quickly become tedious.
In this month’s column, I’ll show you how
to automate the process using Windows
Presentation Foundation (WPF) technology.
To see where I’m heading, look at Figure 1.
The graph shows a count of open versus
closed bugs by date, and it was generated
on the fl y using a short WPF program that
reads data from a simple text fi le.

Th e open bugs, represented by red circles
on the blue line, increase rapidly near the
beginning of the development effort, then trail off over time—
information that might be useful when estimating a zero-bug
bounce date. Th e closed bugs (the triangular markers on the green
line) steadily increase.

But while the information may be useful, in production envi-
ronments development resources are oft en limited, and manually
generating such a graph might not be worth the eff ort. But using
the technique I’ll explain, creating graphs like this is quick and easy.

In the following sections, I’ll present and describe in detail
the C# code that generated the graph in Figure 1. Th is column
assumes you have intermediate-level knowledge of C# coding and
a very basic familiarity with WPF. But even if you’re new to both,
I think you’ll be able to follow the discussion without too much
diffi cultly. I’m confi dent you’ll fi nd the technique an interesting
and useful addition to your skill set.

Setting up the Project
I started by launching Visual Studio 2008 and creating a new C#
project using the WPF Application template. I selected the .NET
Framework 3.5 library from the drop-down control in the upper
right-hand area of the New Project dialog box. I named my project
BugGraph. Although you can programmatically generate graphs
using WPF primitives, I used the convenient DynamicDataDisplay
library developed by a Microsoft Research lab.

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201006TestRun.

Figure 1 Programmatically Generated Bug-Count Graph

http://codeplex.com/dynamicdatadisplay
http://code.msdn.microsoft.com/mag201006TestRun

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine94 Test Run

third fi eld shows the number of closed bugs. As you’ll see shortly,
the DynamicDataDisplay library can deal with most types of data.

Next I double-clicked on the fi le Window1.xaml to load the
UI defi nitions for the project. I added a reference to the graphing
library DLL and slightly modifi ed the default Height, Width and
Background attributes of the WPF display area, as follows:

xmlns:d3="http://research.microsoft.com/DynamicDataDisplay/1.0"
Title="Window1" WindowState="Normal" Height="500" Width="800"
Background="Wheat">

Aft er that, I added the key plotting object, shown in Figure 2.
Th e ChartPlotter element is the main display object. In the defi ni-

tion for it, I added declarations for a horizontal date axis and a vertical
integer axis. Th e default axis type for the DynamicDataDisplay library
is a number with a decimal, that is type double in C# terms; no ex-
plicit axis declaration is necessary for that type. I also added a header title
declaration and axis title declarations. Figure 3 shows my design so far.

Going to the Source
Once I’d confi gured the static aspects of my project, I was ready to add
the code that would read the source data and programmatically gener-

ate my graph. I double-clicked on Window1.xaml.cs in the Solution Ex-
plorer window to load the C# fi le into the code editor. Figure 4 lists the
entire source code for the program that generated the graph in Figure 1.

I deleted the unnecessary using namespace statements (such
as System.Windows.Shapes), which were generated by the Visual
Studio template. Th en I added using statements to three namespaces
from the DynamicDataDisplay library so I wouldn’t have to fully
qualify their names. Next, in the Window1 constructor I added an
event for the main program-defi ned routine:

Loaded += new RoutedEventHandler(Window1_Loaded);

Here’s how I began the main routine:
private void Window1_Loaded(object sender, RoutedEventArgs e)
{
 List<BugInfo> bugInfoList = LoadBugInfo("..\\..\\BugInfo.txt");
 ...

I declared a generic list object, bugInfoList, and populated
the list with the dummy data in the file BugInfo.txt by using a
program-defi ned helper method named LoadBugInfo. To organize
my bug information, I declared a tiny helper class—BugInfo— as

Figure 5 shows.
I declared the three data fi elds

as type public for simplicity, rather
than as type private combined with
get and set Properties. Because Bug-
Info is just data, I could’ve used a
C# struct instead of a class. Th e
LoadBugInfo method opens the
BugInfo.txt fi le and iterates through
it, parsing each fi eld, then instan-
tiates a BugInfo object and stores
each BugInfo object into a result
List, as shown in Figure 6.

Rather than reading and pro-
cessing each line of the data fi le, I
could have read all the lines into a
string array using the File.ReadAll-
Lines method. Notice that both to
keep the size of my code small and
for clarity, I omitted the normal
error-checking you’d perform in
a production environment.

Next I declared and assigned
values to three arrays, as you can
see in Figure 7.

<d3:ChartPlotter Name="plotter" Margin="10,10,20,10">
 <d3:ChartPlotter.HorizontalAxis>
 <d3:HorizontalDateTimeAxis Name="dateAxis"/>
 </d3:ChartPlotter.HorizontalAxis>
 <d3:ChartPlotter.VerticalAxis>
 <d3:VerticalIntegerAxis Name="countAxis"/>
 </d3:ChartPlotter.VerticalAxis>

 <d3:Header FontFamily="Arial" Content="Bug Information"/>
 <d3:VerticalAxisTitle FontFamily="Arial" Content="Count"/>
 <d3:HorizontalAxisTitle FontFamily="Arial" Content="Date"/>
</d3:ChartPlotter>

Figure 2 Adding the Key Plotting Object

Figure 3 BugGraph Program Design

When working with the
DynamicDataDisplay library,

organizing the display data into
a set of one-dimensional arrays

is often convenient.

95June 2010msdnmagazine.com

When working with the DynamicDataDisplay library, organizing
the display data into a set of one-dimensional arrays is often
convenient. As an alternative to my program design, which read
data into a list object and then transferred the list data into arrays,
I could have read data directly into arrays.

Next I converted my data arrays into special Enumerable-
DataSource types:

var datesDataSource = new EnumerableDataSource<DateTime>(dates);
datesDataSource.SetXMapping(x => dateAxis.ConvertToDouble(x));

var numberOpenDataSource = new EnumerableDataSource<int>(numberOpen);
numberOpenDataSource.SetYMapping(y => y);

var numberClosedDataSource = new EnumerableDataSource<int>(numberClosed);
numberClosedDataSource.SetYMapping(y => y);
...

For the DynamicDataDisplay library, all data to be graphed
must be in a uniform format. I just passed the three arrays of data
to the generic EnumerableDataSource constructor. Additionally,
the library must be told which axis, x or y, is associated with
each data source. Th e SetXMapping and SetYMapping methods

accept method delegates as arguments. Rather than defi ne explicit
delegates, I used lambda expressions to create anonymous methods.
Th e DynamicDataDisplay library’s fundamental-axis data type is dou-
ble. Th e SetXMapping and SetYMapping methods map my particular
data type to type double.

On the x-axis, I used the ConvertToDouble method to explicitly
convert DateTime data into type double. On the y-axis, I simply
wrote y => y (read as “y goes to y”) to implicitly convert the input
int y to the output double y. I could have been explicit with my type
mapping by writing SetYMapping(y => Convert.ToDouble(y). My
choices of x and y for the lambda expressions’ parameters were
arbitrary—I could have used any parameter names.

Th e next step was to combine the x-axis and y-axis data sources:
CompositeDataSource compositeDataSource1 = new
 CompositeDataSource(datesDataSource, numberOpenDataSource);

CompositeDataSource compositeDataSource2 = new
 CompositeDataSource(datesDataSource, numberClosedDataSource);

...

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Media; // Pen

using System.IO;
using Microsoft.Research.DynamicDataDisplay; // Core functionality
using Microsoft.Research.DynamicDataDisplay.DataSources; //
EnumerableDataSource
using Microsoft.Research.DynamicDataDisplay.PointMarkers; //
CirclePointMarker

namespace BugGraph
{
 public partial class Window1 : Window
 {
 public Window1()
 {
 InitializeComponent();
 Loaded += new RoutedEventHandler(Window1_Loaded);
 }

 private void Window1_Loaded(object sender, RoutedEventArgs e)
 {
 List<BugInfo> bugInfoList = LoadBugInfo("..\\..\\BugInfo.txt");

 DateTime[] dates = new DateTime[bugInfoList.Count];
 int[] numberOpen = new int[bugInfoList.Count];
 int[] numberClosed = new int[bugInfoList.Count];

 for (int i = 0; i < bugInfoList.Count; ++i)
 {
 dates[i] = bugInfoList[i].date;
 numberOpen[i] = bugInfoList[i].numberOpen;
 numberClosed[i] = bugInfoList[i].numberClosed;
 }

 var datesDataSource = new EnumerableDataSource<DateTime>(dates);
 datesDataSource.SetXMapping(x => dateAxis.ConvertToDouble(x));

 var numberOpenDataSource = new EnumerableDataSource<int>(numberOpen);
 numberOpenDataSource.SetYMapping(y => y);

 var numberClosedDataSource = new EnumerableDataSource<int>(numberClosed);
 numberClosedDataSource.SetYMapping(y => y);

 CompositeDataSource compositeDataSource1 = new
 CompositeDataSource(datesDataSource, numberOpenDataSource);
 CompositeDataSource compositeDataSource2 = new
 CompositeDataSource(datesDataSource, numberClosedDataSource);

 plotter.AddLineGraph(compositeDataSource1,
 new Pen(Brushes.Blue, 2),
 new CirclePointMarker { Size = 10.0, Fill = Brushes.Red },
 new PenDescription("Number bugs open"));

 plotter.AddLineGraph(compositeDataSource2,
 new Pen(Brushes.Green, 2),
 new TrianglePointMarker { Size = 10.0,
 Pen = new Pen(Brushes.Black, 2.0),
 Fill = Brushes.GreenYellow },
 new PenDescription("Number bugs closed"));

 plotter.Viewport.FitToView();

 } // Window1_Loaded()

 private static List<BugInfo> LoadBugInfo(string fileName)
 {
 var result = new List<BugInfo>();
 FileStream fs = new FileStream(fileName, FileMode.Open);
 StreamReader sr = new StreamReader(fs);

 string line = "";
 while ((line = sr.ReadLine()) != null)
 {
 string[] pieces = line.Split(':');
 DateTime d = DateTime.Parse(pieces[0]);
 int numopen = int.Parse(pieces[1]);
 int numclosed = int.Parse(pieces[2]);
 BugInfo bi = new BugInfo(d, numopen, numclosed);
 result.Add(bi);
 }
 sr.Close();
 fs.Close();
 return result;
 }

 } // class Window1

 public class BugInfo {
 public DateTime date;
 public int numberOpen;
 public int numberClosed;

 public BugInfo(DateTime date, int numberOpen, int numberClosed) {
 this.date = date;
 this.numberOpen = numberOpen;
 this.numberClosed = numberClosed;
 }

}} // ns

Figure 4 Source Code for the BugGraph Project

http://msdnmagazine.com

msdn magazine96 Test Run

Th e screenshot in Figure 1 shows two data series—the number
of open bugs and the number of closed bugs—plotted on the same
graph. Each composite data source defi nes a data series, so here I
needed two individual data sources—one for the number of open
bugs and one for the number of closed bugs. With the data all
prepared, a single statement actually plotted the data points:

plotter.AddLineGraph(compositeDataSource1,
 new Pen(Brushes.Blue, 2),
 new CirclePointMarker { Size = 10.0, Fill = Brushes.Red },
 new PenDescription("Number bugs open"));

...

Th e AddLineGraph method accepts a CompositeDataSource,
which defi nes the data to be plotted, along with information about ex-
actly how to plot it. Here I instructed the plotter object named plotter
(defi ned in the Window1.xaml fi le) to do the following: draw a graph
using a blue line of thickness 2, place circular markers of size 10
that have red borders and red fi ll, and add the series title Number
bugs open. Neat! As one of many alternatives, I could have used

plotter.AddLineGraph(compositeDataSource1, Colors.Red, 1, "Number Open")

to draw a thin red line with no markers. Or I could have created a
dashed line instead of a solid line:

Pen dashedPen = new Pen(Brushes.Magenta, 3);
dashedPen.DashStyle = DashStyles.DashDot;
plotter.AddLineGraph(compositeDataSource1, dashedPen,
 new PenDescription("Open bugs"));

My program fi nished by plotting the second data series:
 ...
 plotter.AddLineGraph(compositeDataSource2,
 new Pen(Brushes.Green, 2),
 new TrianglePointMarker { Size = 10.0,
 Pen = new Pen(Brushes.Black, 2.0),
 Fill = Brushes.GreenYellow },
 new PenDescription("Number bugs closed"));

 plotter.Viewport.FitToView();

} // Window1_Loaded()

Here I instructed the plotter to use a green line with triangular
markers that have a black border and a green-yellow fill. The
FitToView method scales the graph to the size of the WPF window.

Aft er instructing Visual Studio to build the BugGraph project, I
got a BugGraph.exe executable, which can be launched manually or
programmatically at any time. I can update the underlying data by
simply editing the BugInfo.txt fi le. Because the entire system is based
on .NET Framework code, I can easily integrate graphing capability
into any WPF project without having to deal with cross-technology
issues. And there’s a Silverlight version of the DynamicDataDisplay
library so I can add programmatic graphing to Web applications, too.

A Scatter Plot
Th e technique I presented in the previous section can be applied to
any kind of data, not just test-related data. Let’s take a brief look at
another simple but rather impressive example. Th e screenshot in
Figure 8 shows 13,509 U.S. cities. You can probably identify where
Florida, Texas, Southern California and the Great Lakes are. I obtained
the data for the scatter plot from a library of data intended for use with
the traveling salesman problem (iwr.uni-heidelberg.de/groups/ comopt/software/
TSPLIB95), one of the most famous and widely studied topics in com-
puter science. Th e fi le I used, usa13509.tsp.gz, looks like:

NAME : usa13509
(other header information)
1 245552.778 817827.778
2 247133.333 810905.556
3 247205.556 810188.889
...

13507 489663.889 972433.333
13508 489938.889 1227458.333
13509 490000.000 1222636.111

 DateTime[] dates = new DateTime[bugInfoList.Count];
 int[] numberOpen = new int[bugInfoList.Count];
 int[] numberClosed = new int[bugInfoList.Count];

 for (int i = 0; i < bugInfoList.Count; ++i)
 {
 dates[i] = bugInfoList[i].date;
 numberOpen[i] = bugInfoList[i].numberOpen;
 numberClosed[i] = bugInfoList[i].numberClosed;
 }
 ...

Figure 7 Building Arrays

public class BugInfo {
 public DateTime date;
 public int numberOpen;
 public int numberClosed;

 public BugInfo(DateTime date, int numberOpen, int numberClosed) {
 this.date = date;
 this.numberOpen = numberOpen;
 this.numberClosed = numberClosed;
 }
}

Figure 5 The Helper Class BugInfo

private static List<BugInfo> LoadBugInfo(string fileName)
{
 var result = new List<BugInfo>();
 FileStream fs = new FileStream(fileName, FileMode.Open);
 StreamReader sr = new StreamReader(fs);

 string line = "";
 while ((line = sr.ReadLine()) != null)
 {
 string[] pieces = line.Split(':');
 DateTime d = DateTime.Parse(pieces[0]);
 int numopen = int.Parse(pieces[1]);
 int numclosed = int.Parse(pieces[2]);
 BugInfo bi = new BugInfo(d, numopen, numclosed);
 result.Add(bi);
 }
 sr.Close();
 fs.Close();
 return result;
}

Figure 6 The LoadBugInfo Method

The AddLineGraph
method accepts a

CompositeDataSource, which
defi nes the data to be plotted,
along with information about

exactly how to plot it.

http://iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

97June 2010msdnmagazine.com

Th e fi rst fi eld is a 1-based index ID. Th e second and third fi elds
represent coordinates derived from the latitude and longitude of
U.S. cities with populations of 500 or greater. I created a new WPF
application as described in the previous section, added a text-fi le
item to the project and copied the city data to the fi le. I commented
out the header lines of the data fi le by prepending double-slash (//)
characters to those lines.

To create the scatter plot shown in Figure 8, I only needed to
make minor changes to the example presented in the previous
section. I modifi ed the MapInfo class members as follows:

 public int id;
 public double lat;
 public double lon;

Figure 9 shows the key processing loop in the revised Load-
MapInfo method.

I had the code check to see if the current line begins with
my program-defined comment tokens, and if so, skip over it.
Notice that I multiplied the longitude-derived field by -1.0
because longitudes go from east to west (or right to left) along
the x-axis. Without the -1.0 factor, my map would be a mirror
image of the correct orientation.

When I populated my raw data arrays, all I had to do was
ensure I correctly associated latitude and longitude to the y-axis
and the x-axis, respectively:

for (int i = 0; i < mapInfoList.Count; ++i)
{
 ids[i] = mapInfoList[i].id;
 xs[i] = mapInfoList[i].lon;
 ys[i] = mapInfoList[i].lat;
}

If I had reversed the order of the associa-
tions, the resulting map would have been
tilted on its edge. When I plotted my data,
I needed only one small tweak to make a
scatter plot instead of a line graph:
plotter.AddLineGraph(compositeDataSource,
 new Pen(Brushes.White, 0),
 new CirclePointMarker { Size = 2.0, Fill = Brushes.Red },
 new PenDescription("U.S. cities"));

By passing a 0 value to the Pen constructor,
I specifi ed a 0-width line, which eff ectively
removed the line and created a scatter plot
rather than a line graph. The resulting
graph is pretty cool, and the program that
generated the graph took only a few minutes
to write. Believe me, I’ve tried many other
approaches to plotting geographic data, and

using WPF with the DynamicDataDisplay library is among the
best solutions I’ve found.

Graphing Made Easy
Th e techniques I’ve presented here can be used to programmatically
generate graphs. Th e key to the technique is the DynamicData Display
library from Microsoft Research. When used as a standalone tech-
nique to generate graphs in a soft ware production environment, the
approach is most useful if the underlying data changes frequently.
When used in an application as an integrated technique to generate
graphs, the approach is most useful with WPF or Silverlight
applications. And as those two technologies evolve, I’m sure we’ll
see more great visual-display libraries based on them.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc. where he manages
technical training for soft ware engineers working at the Microsoft Redmond, Wash.,
campus. He has worked on several Microsoft products, including Internet Explorer and
MSN Search. McCaff rey is the author of “.NET Test Automation Recipes: A Problem-
Solution Approach” (Apress, 2006). He can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Paul Newson, Paul Koch and Anne Loomis; all of Microsoft Research

while ((line = sr.ReadLine()) != null)
{
 if (line.StartsWith("//"))
 continue;
 else {
 string[] pieces = line.Split(' ');
 int id = int.Parse(pieces[0]);
 double lat = double.Parse(pieces[1]);
 double lon = -1.0 * double.Parse(pieces[2]);
 MapInfo mi = new MapInfo(id, lat, lon);
 result.Add(mi);
 }
}

Figure 9 Loop for Scatter Plot

Figure 8 Scatter Plot Example

I’ve tried many other approaches
to plotting geographic data,

and using WPF with the
DynamicDataDisplay library

is one of the best
solutions I’ve found.

mailto:jammc@microsoft.com
http://msdnmagazine.com

msdn magazine98

features to be used for down-targeting and provides a much-
simplifi ed development experience.

However, one downside of being able to use Visual Studio
2010 features for down-level targets is that source fi les may not be
design-time compatible if used with earlier versions of Visual Studio.
Th is may be an issue if you’re sharing source code for projects built
using diff erent versions of Visual Studio and targeting diff erent
.NET Framework versions.

If you keep the projects within Visual Studio 2010 for all design-
time work, you’ll have a better experience. You’ll be able to generate
assemblies targeting the .NET Framework 2.0 upward using only
Visual Studio 2010 and the .NET Framework 3.5 SP1.

Design-Time Compatibility
Now let’s take a look at an example of a design-time compatibility
gotcha. Th e code in Figure 2 uses both implicit line continuation
and the auto-implemented property feature, both introduced in
Visual Studio 2010. Th is code can be compiled to target any frame-
work from 2.0 onward when compiled using Visual Studio 2010.
So the generated assembly is runtime-compatible.

However, take this same source code fi le and try compiling using
either the 3.5 or 2.0 versions of the compiler—you’ll generate the
errors shown in Figure 3.

Th is occurs because the earlier versions of the compiler know
nothing about these features and treat this as invalid code. So the source
fi les are not design-time compatible. To make this design-time com-
patible, you’d have to use only features available in the 3.5 compiler.

Design-time compatibility has implications for Web projects as
well. For many Web projects, compilation takes place on the server,
and the server, of course, compiles the pages using the target frame-
work compiler installed on the server. So if you have a Web page
written in Visual Basic targeting the 3.5 compiler, the page would
be compiled on the server using the 3.5 version of the Visual Basic
Compiler (vbc.exe). Any use of new Visual Studio 2010 language
features would fail as the 3.5 compiler knows nothing about them.

Multi-Targeting Visual Basic Applications
in Visual Studio 2010

Prior to Visual Studio 2008, writing applications that targeted
different versions of the Microsoft .NET Framework required
installation of diff erent versions of the Visual Studio development
environment. Each installation of Visual Studio off ered a diff erent
developer experience and used signifi cant disk space. Moreover, the
project fi le format changed between each version of Visual Studio.
As a result, you could end up with multiple versions of a project or
solution while developing a component for use in projects targeting
diff erent .NET Framework versions.

Visual Studio 2008 was the fi rst version to fully support multi-
targeting within a single IDE, which allowed developers to write
applications targeting diff erent versions of the .NET Framework
(2.0, 3.0 and 3.5) using a single Visual Studio installation. The
result? A single, consistent developer experience with reduced
disk-space requirements.

Multi-targeting in Visual Studio 2008 worked because each
of the available frameworks used the same underlying CLR 2.0.
Furthermore, each version of the framework built upon the .NET
Framework 2.0 foundation, providing additional functionality
through the use of referenced assemblies. Ultimately, all used the
.NET Framework 3.5 command-line Visual Basic compiler (vbc.exe).

In this article I discuss the 3.5 and 4 compilers, referring to the
compilers installed as part of the respective .NET Framework 3.5
and 4 installations. Th e 3.5 compiler is the version shipped with
Visual Studio 2008 and Visual Basic 9, while the 4 compiler is the
version shipped with Visual Studio 2010 and Visual Basic 10.

So let’s take a look at how multi-targeting works in Visual Studio
today, and how you should approach multi-targeting in your projects.

Multi-Targeting in Visual Studio
In Visual Studio 2008, changing the desired target framework was
as simple as selecting the target from a drop-down list in the project
properties, as shown in Figure 1. Th is added or removed specifi c
references required for each framework version and made changing
frameworks painless.

For command-line compilation it was simply a matter of changing
the reference assemblies used.

Some big changes came with Visual Studio 2010, however. Th e
new .NET Framework 4 brings a new version of the CLR. Th is
means the approach taken in Visual Studio 2008 is not practical in
Visual Studio 2010. As a result, Visual Studio 2010 uses the version
4 compiler for all multi-targeting, even when targeting previous
.NET Framework versions. Th is allows many of the newer language

BASIC INSTINCTS SPOTTY BOWLES

Visual Studio 2010 uses
the version 4 compiler for

all multi-targeting.

Untitled-1 1 5/7/10 10:45 AM

www.vslive.com/redmond
www.vslive.com/redmond

msdn magazine100 Basic Instincts

For code developed in Visual Studio 2010, which uses the version
4 compiler, you need a way to identify this requirement at compile
time to prevent unexpected errors when the Web page is deployed
to the server. You can do this with the /langversion switch, which is
used when developing Web projects to generate errors about newer
language syntax features that won’t compile on an earlier framework’s
compiler. When building ASP.NET project types, this switch is used
internally to generate errors if your code uses new Visual Studio
2010 features but you are targeting earlier versions of the framework.

Although the /langversion switch is not used by default for any
of the other project types, it can be useful if you want to verify
that your source code is design-time compatible with previous
versions of Visual Studio.

Multi-Targeting in the Visual Studio 2010 IDE
Th e multi-targeting user expe-
rience in the Visual Studio 2010
IDE is almost identical to that of
Visual Studio 2008. It is still con-
trolled from within the proj-
ect properties, but in a default
installation you may not see the
earlier target frameworks. To cut
down on install size, the Visual
Studio team decided not to ship
the 3.5 framework in the default
installation of Visual Studio 2010.
This change means that you
would not see these framework
options appearing in the Target

framework drop-down or New
Project dialog box.

To add these additional frame-
works, you need to install the
.NET Framework 3.5 SP1. You
can do this right from the IDE.
At the top of the New Project di-
alog box, you’ll see a drop-down
menu for choosing the target
framework. If only the .NET
Framework 4 is installed, the
menu contains a link to down-
load more. If you install any
others, however, you’ll see only
the .NET Framework 3.5 SP1 on
the drop-down menu because
Visual Studio only recognizes
installation of the .NET Frame-
work 3.5 SP1 here.

Another change has to do with
client profi les. Th ese were intro-
duced in the .NET Framework
3.5 SP1 and they let applications
use a lightweight version of the
framework, which can improve

deployments by not requiring the inclusion of server-side pieces of
the framework, like ASP.NET. Th ese profi les are available for both
3.5 and 4 framework targets.

As a result, the default profi le for various project types has changed.
Th e client project types—Windows, Console, Offi ce and Windows
Presentation Foundation (WPF) applications—will default to the
client profi le. However, for Web applications the default profi le will
be “full” because of references to libraries that are not deployed with
the client profi le, such as System.Web.

Class libraries also default to the full profi le, but can be easily
changed back to a client profile if you’re depending only on
references deployed with the client profi le. If your class library is
set to full profi le and is then used in a project with a client profi le,
it will still work as long as the library doesn’t depend upon refer-
ences that are not part of the client framework assemblies.

Figure 2 Using New Language Features That Will Work in Down-Level Targets

Figure 1 Changing the Desired Target Framework in Visual Studio 2008

101June 2010msdnmagazine.com

By default, none of the references added to the class library project
type require a full profi le. However, because they’re deployed with
an application, the application deployment profi le is the important
setting to ensure full application functionality. If your library
depends on references outside of the client scope, both the library
and the application using it need to employ the full profi le.

Multi-Targeting Using
the Command-Line Compiler
Th e version 4 compiler has a number of command-line switches,
none of which, unfortunately, controls the target framework so
it’s important to understand a little about each of the switches and
how they work.

If the .NET Framework 4 is installed, it is possible to build
applications using vbc.exe that target earlier versions of the frame-
work without having Visual Studio installed on the build machine.
Build scripts that call the command-line compiler directly are oft en
used in larger development environments. If you’re targeting
earlier versions from the command line, this requires fi les installed
with the previous framework version you’re targeting, so the
best plan is to have both .NET Framework 3.5 SP1 and .NET
Framework 4 installed on the machine.

With this in mind, some of the potential switches for multi-
targeting are detailed in Figure 4.

Th is table provides a quick description of each switch, but in
order to actually create a down-targeted compilation, you’ll need
to use a combination—there’s no single multi-target switch. For a
version 3.5 target, the most important switch is sdkpath, which you

can use to specify the 2.0 version of MSCorlib. Th en ensure your
references point to the correct versions of System.dll, System.core.
dll and any other prior target framework assemblies. (Th ese can
be found in the %programfi les%\Reference Assemblies\Microsoft \
Framework\v3.5 folder.)

You need to specify the noconfi g switch to avoid using the de-
fault switches in the version 4 of vbc.rsp, which contains the default
settings for compilation. Without adding this critical switch, the
compiler would add those default 4 references, imports and so on.

Multi-targeted command-line compilation is best demonstrated by
an example. Here I’m simply compiling a simple source fi le, test.vb, to
target the .NET Framework 3.5:

vbc.exe /noconfig /sdkpath:D:\WINDOWS\Microsoft.NET\Framework\v2.0.50727
/r:"D:\Program Files\Reference
Assemblies\Microsoft\Framework\v3.5\System.Core.dll" d:\school\test.vb
/out:\school\test.exe

When you understand the switches to compile a 3.5 assembly, tar-
geting 2.0 instead simply involves removing some of the references,

Figure 3 Source Code from Visual Studio 2010 Is Not Design-Time Compatible with Visual Studio 2008

The idea of design-time
compatibility leads to an
interesting gotcha with

Web projects.

http://msdnmagazine.com

msdn magazine102 Basic Instincts

such as system.core.dll, that are required for the 3.5 framework. Th e
sdkpath and noconfi g switches remain the same:

vbc.exe /noconfig /sdkpath:D:\WINDOWS\Microsoft.NET\Framework\v2.0.50727
d:\school\test.vb /out:\school\test.exe

Once you have the compiled binary, you can employ a tool such
as the MSIL Disassembler (Ildasm.exe) or .NET Refl ector to look at
the versions of the references being used. Th is lets you determine
whether an executable will run on a desired target framework.

Client-Profi le and Mixed-Target Solutions
Earlier in the article I mentioned that client profi les were the
default for most project types. When such applications are deployed,
a smaller-footprint framework installation occurs. As part of this
deployment you can observe that the command-line compiler is
deployed. Th is is the same version of the compiler that’s deployed
with the full framework, but there’s a potential gotcha when trying
to compile a simple application on a client profi le.

Using this command on a client framework machine would fail
because the client frameworks do not ship with a vbc.rsp that contains
the default references:

vbc.exe test.vb /out: test.exe

You’d have to either specify all the references and imports statements
that would normally be contained in the vbc.rsp fi le or create your own.

Th e bare minimum switches required to compile a Visual Basic
application on a client framework installation are:

/r:System.dll
/imports:System
/imports:Microsoft.VisualBasic

By including these switches you can compile a basic Visual Basic
application. However, you should compile applications on a machine
that has the full framework installed.

Mixed-target solutions—class libraries built with the .NET
Framework 3.5 used with a client application targeting the
.NET framework 4—are supported, but with some caveats.
Within the Visual Studio 2010 IDE, if you’re using project ref-
erences and are accustomed to the experience they provide,

you can still get this experience if the target frameworks in the
project references use the same version of MSCorlib. Figure 5
shows the MSCorlib versions and supported framework versions.

So if you’re using a class library targeting MSCorlib 2.0 on the
.NET Framework 3.5 application, you are still able to use project
references. Similarly, a .NET Framework 4 full-profile class library
referenced by a .NET Framework 4 client-profi le Windows appli-
cation can have a project reference to the library.

However, if you use a project-to-project reference where a
diff erent version of MSCorlib is used, the project reference will be
converted into a fi le reference. Th is means you’ll need to manually
rebuild the solution when you correct errors. Th e experience will
be familiar if you’ve worked with solutions that have multiple refer-
enced projects written in both C# and Visual Basic. You lose some
of the convenient features available with project references, such as
renaming across projects and automatic background compilation.

Th e IDE shields you somewhat from what happens behind the
scenes during compilation, but not everyone builds from the IDE.
Th e fi le reference will automatically change back to a project reference
if the target frameworks are changed so that both use frameworks
with a common version of MSCorlib—so it’s not a true fi le reference.

What happens if you use a down-target (3.5) class library within a
version 4 application? Th e class library will actually run against the
.NET Framework 4. Considerable testing has occurred to ensure that
this scenario works at run time with few problems. However, trying
to use a 4.0 framework class library on a 3.5 framework application is
not supported and will result in a compile-time error if building with
either Visual Studio or MSBuild. To use 4.0 framework class libraries
in a 3.5 framework-targeted application, however, you would need
to down-target the class library to the .NET Framework 3.5.

Keep in mind, though, that with the ability to use the Visual Studio
2010 language features on down-target scenarios, targeting the

MSCorlib version Supported Frameworks Profi les
2.0 2.0, 3.0, 3.5 Client and Full Profi les
4.0 4 Client and Full Profi les

Figure 5 MSCorlib and Framework Version Compatibility

Switch Description
langversion Provides errors for source code using features that don’t meet the specifi c language version. (9.0 relates to targets up to the .NET Framework

3.5; 10 relates to .NET Framework 4 targets.) This does not actually determine the target framework or CLR being used, but it allows Web
projects to identify Visual Studio 2010 features used in down-target scenarios.

vbruntime Although there’s a different version of Microsoft.VisualBasic for the .NET Framework 4, simply trying to specify the 2.0 version of Microsoft.
VisualBasic.dll doesn’t work and results in an assembly that’s dependent on the version 4 NetFX.

nostdlib Prevents the standard reference to system.dll from being added to the assembly. Although it is possible to use this option along with a
reference to the version of system.dll in the 2.0 framework, the result is still a version 4 assembly.

sdkpath A key option that specifi es which version of MSCorLib.dll and Microsoft.VisualBasic.dll to use if the vbruntime switch does not specify which
will be used. However, this is not an explicit reference you’ll typically see in the list of references. Instead, the compiler includes this in its
standard references. Adding it is part of the solution for multi-targeting when you want the version 2.0 MSCorLib, not the version 4.

noconfi g Causes the compiler to avoid adding the default references, imports and switches contained in the vbc.rsp fi le, which would otherwise be used.

Figure 4 Command-Line Build Switches to Control Multi-Targeting

The IDE shields you somewhat
from what happens behind the

scenes during compilation.

103June 2010msdnmagazine.com

class library to the .NET Framework 3.5 should not be a big issue.
Figure 6 summarizes the new features you can expect to work in
down-target projects.

PIAs and Interop
Using the .NET Framework to program against the Microsoft Offi ce
object model requires the use of Primary Interop Assemblies (PIAs),
which must be deployed to the user’s machine. Th ese assemblies are
oft en very large and deploying them can be a nuisance.

Th e new type-embedding feature allows these applications
to be deployed without requiring PIAs on the user’s machine. It
does this by generating embedded interop types that perform
the interop calls to the COM library directly. Th ese types are
annotated by the compiler in such a way that the CLR treats all
embedded interop type instances as equivalent. Th e compiler will
not copy every type in the PIA into your assembly, just the ones
you actually use. For more information, see “Type Equivalence and
Embedded Interop Types” in the MSDN library (msdn.microsoft.com/
library/dd997297(VS.100)).

Th e functionality of this feature is not supported for down-target
scenarios below the .NET Framework 4. Using the Visual Studio
IDE, this would not be immediately obvious as setting the reference
embedded interop property to true in a down-target scenario
results in normal references being used. Th e user experience for
the feature from the IDE is that the assembly will continue to build,
but would revert back to the behavior of standard references, which
would require PIAs to be deployed.

From the command line, references are normally added using
the /reference switch. For embedding, the /link switch is used
instead. Attempting to use the /link switch for down-target scenarios
results in compile errors.

Here’s an example of a command line embedding types from the
Word interop assembly:

D:\Windows\Microsoft.NET\Framework\v4.0.30128\Vbc.exe /
imports:Microsoft.VisualBasic,System /link:"D:\Program Files\Microsoft
Visual Studio 10.0\Visual Studio Tools for Office\PIA\Office14\
Microsoft.Office.Interop.Word.dll" /reference:"D:\Program Files\
Reference Assemblies\Microsoft\Framework\.NETFramework\v4.0\Profile\
Client\System.Core.dll","D:\Program Files\Reference Assemblies\
Microsoft\Framework\.NETFramework\v4.0\Profile\Client\System.dll" /
out:ConsoleApplication16.exe /target:exe Module1.vb

Th is behavior is important because, by default, COM references
added to a project in Visual Studio 2010 set the Embed Interop
property to true. So changing the target framework should not
result in additional errors, but should provide the benefit of
embedded interop types where possible.

Another new feature in Visual Studio 2010 that is not supported
for down-target scenarios is dynamic interop because, prior to Visual
Studio 2010, the Dynamic Language Runtime (DLR) didn’t exist.

Other Issues
Covariance and contravariance are supported for use with user-defi ned
interfaces. However, Base Class Library (BCL) interfaces for down-
level targets are not changed and therefore using the feature with these
base classes is not supported. For more information on covariance and
contravariance, see the Basic Instincts column in the March 2010 issue
of MSDN Magazine (msdn.microsoft.com/magazine/ee336029).

If you have a project or solution created in a previous version of
Visual Studio that you open in Visual Studio 2010, you’ll see the
standard upgrade dialog box. Visual Studio will make the necessary
changes to the project or solution fi les to work with Visual Studio
2010. However, there are two diff erent actions involved in upgrading
your fi les that could aff ect multi-targeting.

If you have the .NET Framework 3.5 SP1 installed, the upgrade
dialog box will allow the project or solution fi les to be upgrad-
ed to Visual Studio 2010, but the target frameworks specifi ed for
the project will remain untouched. So if you’re upgrading a .NET
Framework 3.5-targeted application, aft er upgrade it should still
target the 3.5 framework.

If you do not have the .NET Framework 3.5 SP1 installed, you
can’t build multi-targets correctly because you need the 2.0 version
of MSCorlib and the reference assemblies. Th e dialog will provide
the option to change the target to a version 4 framework or to not
upgrade the project. Your best course in this case is to cancel the
upgrade, install the .NET Framework 3.5 SP1, then run through
the process to upgrade the project again.

By understanding a little more of the imple mentation details of
Visual Basic multi-targeting in Visual Studio 2010, you should be
able to write code that produces assemblies that can be deployed
on prior versions of the framework using the IDE or command
line, but still take advantage of some of the new Visual Studio 2010
features. Although multi-targeting has some caveats, you retain the
ability to develop and deploy applications that can’t immediately
be upgraded to use the .NET Framework 4.

ADRIAN SPOTTY BOWLES has developed using every version of Visual
Basic and managed to fi nd his way to Redmond, Wash., where he works on the
Visual Basic product team as a soft ware design engineer tester focused on the
Visual Basic compiler. He is still passionate about Visual Basic and can oft en be
found answering questions in the MSDN Visual Basic forums. You can reach
Bowles at Abowles@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Kevin Halverson and Beth Massi

Language Feature Works in Down-Target Scenarios
Collection initializers Yes
Array initializers Yes
Auto-implemented properties Yes
Implicit line continuation Yes
Statement lambdas Yes
No PIA No
Dynamic interop No
Co/contravariance Partially

Figure 6 New Visual Studio Features in Down-Target Scenarios

Covariance and contravariance
are supported for use with user-

defi ned interfaces.

http://msdn.microsoft.com/library/dd997297(VS.100)
http://msdn.microsoft.com/library/dd997297(VS.100)
http://msdn.microsoft.com/magazine/ee336029
mailto:Abowles@microsoft.com
http://msdnmagazine.com

msdn magazine104

library or framework. Th e tests do so by providing a lightweight,
application-neutral environment for experimentation without the
overhead of the application.

With that in mind, let’s create MongoDB-Explore, a Visual C# test
project. Add MongoDB.Driver.dll to the list of assembly references
and build to make sure everything is good to go. (Building should
pick up the one TestMethod that’s generated as part of the project
template. It will pass by default, so everything should be good, which
means that if the project fails to build, something’s screwed up in
the environment. Checking assumptions is always a good thing.)

As tempting as it would be to jump into writing code right away,
though, a problem surfaces pretty quickly: MongoDB needs the
external server process (mongod.exe) to be running before
client code can connect against it and do anything useful. While

Going NoSQL with MongoDB, Part 2

In my previous article, MongoDB’s basics took front and center:
getting it installed, running and inserting and fi nding data. However,
I covered only the basics—the data objects used were simple name/
value pairs. That made sense, because MongoDB’s “sweet spot”
includes unstructured and relatively simple data structures. But surely
this database can store more than just simple name/value pairs.

In this article, we’ll use a slightly diff erent method to investigate
MongoDB (or any technology). Th e procedure, called an exploration
test, will help us fi nd a possible bug in the server and, along the way,
highlight one of the common issues object-oriented developers
will run into when using MongoDB.

In Our Last Episode …
First we’ll make sure we’re all on the same page, and we’ll also cover
some slightly new ground. Let’s look at MongoDB in a bit more struc-
tured fashion than we did in the previous article (msdn.microsoft.com/
magazine/ee310029). Rather than just create a simple application and
hack on it, let’s kill two birds with one stone and create exploration
tests—code segments that look like unit tests but that explore
functionality rather than try to verify it.

Writing exploration tests serves several diff erent purposes when
investigating a new technology. One, they help discover whether
the technology under investigation is inherently testable (with the
assumption that if it’s hard to exploration-test, it’s going to be hard
to unit-test—a huge red fl ag). Two, they serve as a sort of regression
when a new version of the technology under investigation comes
out, because they give a heads-up if old functionality no longer
works. And three, since tests should be relatively small and granular,
exploration tests inherently make learning a technology easier by
creating new “what-if ” cases that build on previous cases.

But unlike unit tests, exploration tests aren’t continuously devel-
oped alongside the application, so once you consider the technology
learned, set the tests aside. Don’t discard them, however—they
can also help separate bugs in application code from those in the

THE WORKING PROGRAMMER TED NEWARD

Code download available at code.msdn.microsoft.com/mag201006WorkProg.

namespace MongoDB_Explore
{
 [TestClass]
 public class UnitTest1
 {
 private static Process serverProcess;

 [ClassInitialize]
 public static void MyClassInitialize(TestContext testContext)
 {
 DirectoryInfo projectRoot =
 new DirectoryInfo(testContext.TestDir).Parent.Parent;
 var mongodbbindir =
 projectRoot.Parent.GetDirectories("mongodb-bin")[0];
 var mongod =
 mongodbbindir.GetFiles("mongod.exe")[0];

 var psi = new ProcessStartInfo
 {
 FileName = mongod.FullName,
 Arguments = "--config mongo.config",
 WorkingDirectory = mongodbbindir.FullName
 };

 serverProcess = Process.Start(psi);
 }
 [ClassCleanup]
 public static void MyClassCleanup()
 {
 serverProcess.CloseMainWindow();
 serverProcess.WaitForExit(5 * 1000);
 if (!serverProcess.HasExited)
 serverProcess.Kill();
 }
...

Figure 1 Partial Code for Test Initializer and Cleanup

Writing exploration tests serves
several different purposes when
investigating a new technology.

http://msdn.microsoft.com/magazine/ee310029
http://msdn.microsoft.com/magazine/ee310029
http://code.msdn.microsoft.com/mag201006WorkProg

VISUAL STUDIO AND .NET

GET TIPS
GET CODE
 GET THE BEST
HOW-TO ARTICLES
 ON THE NET
Visit VisualStudioMagazine.com

Untitled-1 1 5/7/10 1:21 PM

www.VisualStudioMagazine.com

msdn magazine106 The Working Programmer

it’s tempting to simply say “Fine, fi ne, let’s start it and get back to
writing code,” there’s a corollary problem. It’s an almost sure bet that
at some point, 15 weeks later when looking back at this code, some
poor developer (you, me or a teammate) will try to run these tests,
see them all fail and lose two or three days trying to fi gure out what’s
going on before she thinks to look to see if the server’s running.

Lesson: Try to capture all the dependencies in the tests somehow.
Th e issue will arise again during unit-testing, anyway. At that point
we’ll need to start from a clean server, make some changes and then
undo them all. Th at’s easiest to accomplish by simply stopping and
starting the server, so solving it now saves time later.

Th is idea of running something before testing (or aft er, or both) isn’t
a new one, and Microsoft Test and Lab Manager projects can have both
per-test and per-test-suite initializers and cleanup methods. Th ese are
adorned by the custom attributes ClassInitialize and ClassCleanup
for per-test-suite bookkeeping and TestInitialize and TestCleanup for
per-test bookkeeping. (See “Working with Unit Tests” at msdn.microsoft.com/
library/ms182515(v=VS.80) for more details.) Th us, a per-test-suite
initializer will launch the mongod.exe process, and the per-test-suite
cleanup will shut the process down, as shown in Figure 1.

Th e fi rst time this runs, a dialog box will pop up informing the
user that the process is starting. Clicking OK will make the dialog
go away ... until the next time the test is run. Once that dialog gets
too annoying, fi nd the radio box that says, “Never show this dialog
box again” and check it to make the message goes away for good. If

fi rewall soft ware is running, such as Windows Firewall, the dialog
will likely make an appearance here also, because the server wants to
open a port to receive client connections. Apply the same treatment
and everything should run silently. Put a breakpoint on the fi rst
line of the cleanup code to verify the server is running, if desired.

Once the server is running, tests can start fi ring—except another
problem surfaces: Each test wants to work with its own fresh data-
base, but it’s helpful for the database to have some pre-existing data
to make testing of certain things (queries, for example) easier. It
would be nice if each test could have its own fresh set of pre-existing
data. Th at will be the role of the TestInitializer- and TestCleanup-
adorned methods.

But before we get to that, let’s look at this quick TestMethod, which
tries to ensure that the server can be found, a connection made, and an
object inserted, found and removed, to bring the exploration tests up
to speed with what we covered in the previous article (see Figure 2).

If this code runs, it trips an assertion and the test fails. In par-
ticular, the last assertion around “birthday” is fi red. So apparently,
sending a DateTime into the MongoDB database without a time
doesn’t round-trip quite correctly. Th e data type goes in as a date
with an associated time of midnight but comes back as a date with
an associated time of 8 a.m., which breaks the AreEqual assertion
at the end of the test.

Th is highlights the usefulness of the exploration test—without
it (as is the case, for example, with the code from the previous
article), this little MongoDB characteristic might have gone un-
noticed until weeks or months into the project. Whether this is a
bug in the MongoDB server is a value judgment and not something

[TestMethod]
public void ConnectInsertAndRemove()
{
 Mongo db = new Mongo();
 db.Connect();

 Document ted = new Document();
 ted["firstname"] = "Ted";
 ted["lastname"] = "Neward";
 ted["age"] = 39;
 ted["birthday"] = new DateTime(1971, 2, 7);
 db["exploretests"]["readwrites"].Insert(ted);
 Assert.IsNotNull(ted["_id"]);

 Document result =
 db["exploretests"]["readwrites"].FindOne(
 new Document().Append("lastname", "Neward"));
 Assert.AreEqual(ted["firstname"], result["firstname"]);
 Assert.AreEqual(ted["lastname"], result["lastname"]);
 Assert.AreEqual(ted["age"], result["age"]);
 Assert.AreEqual(ted["birthday"], result["birthday"]);

 db.Disconnect();
}

Figure 2 TestMethod to Make Sure the Server Can Be Found
and a Connection Made

[TestMethod]
public void StoreAndCountFamily()
{
 Mongo db = new Mongo();
 db.Connect();

 var peter = new Document();
 peter["firstname"] = "Peter";
 peter["lastname"] = "Griffin";

 var lois = new Document();
 lois["firstname"] = "Lois";
 lois["lastname"] = "Griffin";

 var cast = new[] {peter, lois};
 db["exploretests"]["familyguy"].Insert(cast);
 Assert.IsNotNull(peter["_id"]);
 Assert.IsNotNull(lois["_id"]);

 db.Disconnect();
}

Figure 3 A Simple Object Collection

Apparently, sending a DateTime
into the MongoDB database

without a time doesn’t
round-trip quite correctly.

Whether this is a bug in the
MongoDB server is a value

judgment and not something to
be explored right now.

http://msdn.microsoft.com/library/ms182515(v=VS.80)
http://msdn.microsoft.com/library/ms182515(v=VS.80)

107June 2010msdnmagazine.com

to be explored right now. Th e point is, the exploration test put the
technology under the microscope, helping isolate this “interesting”
behavior. That lets developers looking to use the technology
make their own decisions as to whether this is a breaking change.
Forewarned is forearmed.

Fixing the code so the test passes, by the way, requires the
DateTime that comes back from the database to be converted to
local time. I brought this up in an online forum, and according
to the response from the MongoDB.Driver author, Sam Corder,
“All dates going in are converted to UTC but left as UTC coming
back out.” So you must either convert the DateTime to UTC time
before storing it via DateTime.ToUniversalTime, or else convert
any DateTime retrieved from the database to the local time zone via
the DateTime.ToLocalTime, by using the following sample code:

Assert.AreEqual(ted["birthday"],
 ((DateTime)result["birthday"]).ToLocalTime());

Th is in itself highlights one of the great advantages of community
eff orts—typically the principals involved are only an e-mail away.

Adding Complexity
Developers looking to use MongoDB need to understand that,
contrary to initial appearances, it isn’t an object database—that is,
it can’t handle arbitrarily complex object graphs without help. Th ere
are a few conventions that deal with ways to provide that help, but
thus far doing so remains on the developer’s shoulders.

For example, consider Figure 3, a simple collection of objects de-
signed to refl ect the storage of a number of documents describing
a well-known family. So far so good. In fact, while it’s at it, the test really
should query the database for those objects inserted, as shown in Figure
4, just to make sure they’re retrievable. And … the test passes. Awesome.

Actually, that might not be entirely true—readers following along
at home and typing in the code might fi nd that the test doesn’t pass
aft er all, as it claims that the expected count of objects isn’t matching
2. Th is is because, as databases are expected to do, this one retains
state across invocations, and because the test code isn’t explicitly
removing those objects, they remain across tests.

This highlights another feature of the document-oriented
database: Duplicates are fully expected and allowed. Th at’s why
each document, once inserted, is tagged with the implicit_id
attribute and given a unique identifi er to be stored within it, which
becomes, in eff ect, the document’s primary key.

So, if the tests are going to pass, the database needs to be cleared
before each test runs. While it’s pretty easy to just delete the fi les

in the directory where MongoDB stores them, again, having this
done automatically as part of the test suite is vastly preferable. Each
test can do so manually aft er completion, which could get to be a
bit tedious over time. Or the test code can take advantage of the
TestInitialize and TestCleanup feature of Microsoft Test and Lab
Manager to capture the common code (and why not include the
database connect and disconnect logic), as shown in Figure 5.

Th ough the last line of the CleanDatabase method is unneces-
sary because the next test will overwrite the fi eld reference with
a new Mongo object, sometimes it’s best to make it clear that the
reference is no longer good. Caveat emptor. Th e important thing
is that the test-dirtied database is dropped, emptying the files
MongoDB uses to store the data and leaving everything fresh and
sparkly clean for the next test.

As things stand, however, the family model is incomplete—the
two people referenced are a couple, and given that, they should have
a reference to each other as spouses, as shown here:

 peter["spouse"] = lois;
 lois["spouse"] = peter;

[TestMethod]
public void StoreAndCountFamily()
{
 Mongo db = new Mongo();
 db.Connect();

 var peter = new Document();
 peter["firstname"] = "Peter";
 peter["lastname"] = "Griffin";

 var lois = new Document();
 lois["firstname"] = "Lois";
 lois["lastname"] = "Griffin";

 var cast = new[] {peter, lois};
 db["exploretests"]["familyguy"].Insert(cast);
 Assert.IsNotNull(peter["_id"]);
 Assert.IsNotNull(lois["_id"]);

 ICursor griffins =
 db["exploretests"]["familyguy"].Find(
 new Document().Append("lastname", "Griffin"));
 int count = 0;
 foreach (var d in griffins.Documents) count++;
 Assert.AreEqual(2, count);

 db.Disconnect();
}

Figure 4 Querying the Database for Objects

private Mongo db;

[TestInitialize]
public void DatabaseConnect()
{
 db = new Mongo();
 db.Connect();
}

[TestCleanup]
public void CleanDatabase()
{
 db["exploretests"].MetaData.DropDatabase();

 db.Disconnect();
 db = null;
}

Figure 5 Taking Advantage of TestInitialize and TestCleanup

Developers looking to use
MongoDB need to understand

that, contrary to initial
appearances, it isn’t an

object database.

http://msdnmagazine.com

msdn magazine108 The Working Programmer

Running this in the test, however, produces a StackOverfl ow-
Exception—the MongoDB driver serializer doesn’t natively
understand the notion of circular references and naively follows
the references around ad infi nitum. Oops. Not good.

Fixing this requires you to choose one of two options. With
one, the spouse fi eld can be populated with the other document’s
_id fi eld (once that document has been inserted) and updated, as
shown in Figure 6.

Th ere’s a drawback to the approach, though: It requires that the
documents be inserted into the database and their _id values (which
are Oid instances, in the MongoDB.Driver parlance) be copied into
the spouse fi elds of each object as appropriate. Th en each docu-
ment is again updated. Although trips to the MongoDB database
are fast in comparison to those with a traditional RDBMS update,
this method is still somewhat wasteful.

A second approach is to pre-generate the Oid values for each
document, populate the spouse fi elds, and then send the whole
batch to the database, as shown in Figure 7.

Th is approach requires only the Insert method, because now
the Oid values are known ahead of time. Note, by the way, that the
ToString calls on the assertion test are deliberate—this way, the
documents are converted to strings before being compared.

What’s really important to notice about the code in Figure 7,
though, is that de-referencing the document referenced via the Oid can
be relatively diffi cult and tedious because the document-oriented style
assumes that documents are more or less stand-alone or hierarchical
entities, not a graph of objects. (Note that the .NET driver pro-
vides DBRef, which provides a slightly richer way of referencing/
dereferencing another document, but it's still not going to make this

into an object-graph-friendly system.) Th us, while it’s certainly possi-
ble to take a rich object model and store it into a MongoDB database,
it’s not recommended. Stick to storing tightly clustered groups of data,
using Word or Excel documents as a guiding metaphor. If something
can be thought of as a large document or spreadsheet, then it’s probably
a good fi t for MongoDB or some other document-oriented database.

More to Explore
We’ve fi nished our investigation of MongoDB, but before we wrap
up, there are a few more things to explore, including carrying out
predicate queries, aggregates, LINQ support and some production
administration notes. We’ll tackle that next month. (Th at article is
going to be a pretty busy piece!) In the meantime, explore
the Mongo DB system, and be sure to drop me an e-mail with
suggestions for future columns.

TED NEWARD is a principal with Neward & Associates, an independent fi rm
specializing in enterprise .NET Framework and Java platform systems. He has
written more than 100 articles, is a C# MVP, INETA speaker and the author or
coauthor of a dozen books, including the forthcoming “Professional F# 2.0” (Wrox).
He consults and mentors regularly. Reach him at ted@tedneward.com and read
his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Sam Corder

[TestMethod]
public void StoreAndCountFamilyWithOid()
{
 var peter = new Document();
 peter["firstname"] = "Peter";
 peter["lastname"] = "Griffin";
 peter["_id"] = Oid.NewOid();

 var lois = new Document();
 lois["firstname"] = "Lois";
 lois["lastname"] = "Griffin";
 lois["_id"] = Oid.NewOid();

 peter["spouse"] = lois["_id"];
 lois["spouse"] = peter["_id"];

 var cast = new[] { peter, lois };
 var fg = db["exploretests"]["familyguy"];
 fg.Insert(cast);

 Assert.AreEqual(peter["spouse"], lois["_id"]);
 Assert.AreEqual(
 fg.FindOne(new Document().Append("_id",
 peter["spouse"])).ToString(),
 lois.ToString());

 Assert.AreEqual(2,
 fg.Count(new Document().Append("lastname", "Griffin")));
}

Figure 7 A Better Way to Solve the Circular References Problem

While it’s certainly possible
to take a rich object model

and store it into a MongoDB
database, it’s not recommended.

[TestMethod]
public void StoreAndCountFamily()
{
 var peter = new Document();
 peter["firstname"] = "Peter";
 peter["lastname"] = "Griffin";

 var lois = new Document();
 lois["firstname"] = "Lois";
 lois["lastname"] = "Griffin";

 var cast = new[] {peter, lois};
 var fg = db["exploretests"]["familyguy"];
 fg.Insert(cast);
 Assert.IsNotNull(peter["_id"]);
 Assert.IsNotNull(lois["_id"]);

 peter["spouse"] = lois["_id"];
 fg.Update(peter);
 lois["spouse"] = peter["_id"];
 fg.Update(lois);

 Assert.AreEqual(peter["spouse"], lois["_id"]);
 TestContext.WriteLine("peter: {0}", peter.ToString());
 TestContext.WriteLine("lois: {0}", lois.ToString());
 Assert.AreEqual(
 fg.FindOne(new Document().Append("_id",
 peter["spouse"])).ToString(),
 lois.ToString());

 ICursor griffins =
 fg.Find(new Document().Append("lastname", "Griffin"));
 int count = 0;
 foreach (var d in griffins.Documents) count++;
 Assert.AreEqual(2, count);
}

Figure 6 Overcoming the Circular References Problem

mailto:ted@tedneward.com

109June 2010

later.) You can use the same concepts
presented in this Silverlight program in
a WPF program.

The program displays two Items
Controls, both contained in ScrollViewers.
You can visualize the ItemsControl at the
left as a “market” selling produce. Th e one
at the right is your “basket.” You use the
mouse to pick produce items from the
market and move them into the basket.
Figure 1 shows the Corn item in transition
from market to basket.

Although the Corn item has been moved
out of the market, notice the gap in the ItemsControl that continues to
indicate the source of the item. If the user releases the mouse button
before the dragged item has been positioned over the basket Items-
Control, the program animates the item back into the market. Only
when the item is dropped into the basket does that gap close, again with
an animation. Depending on where the item is dropped, an animated
gap opens to receive the item, and the item is animated into position.

Once an item has been moved from the market, it no longer
exists there, but that’s a program detail that could easily be changed.
No facility exists to remove an item from the basket and move it
back into the market, but that feature or something similar could
be added fairly easily as well.

Figure 2 shows the bulk of the XAML fi le responsible for the
basic layout. (Missing are two storyboards with seven animations
that I’ll describe later.)

Th e Resources section contains a DataTemplate for displaying
the produce items, and a reference to this resource is set to the
ItemsTemplate property of the two ItemsControls.

In addition, a Canvas covers the entire area occupied by the
program. You’ll recall from last month’s column how you can use
a Canvas to host items that need to “fl oat” over the rest of the UI.
Th e only child of this Canvas is a ContentControl, with its Content-
Template also set to that DataTemplate. But the Visibility property
is set to Collapsed so this ContentControl is initially invisible.

Controls that derive from ContentControl are common in
WPF and Silverlight applications, but it’s not oft en you see a
ContentControl itself. It turns out to be extremely handy if all you
want is to display an object using a DataTemplate. Visually, it’s very
much like a single item in an ItemsControl.

The Ins and Outs of ItemsControl

If someone were to ask me what single class
most epitomizes the power and fl exibil-
ity of Windows Presentation Foundation
(WPF) and Silverlight, I’d fi rst say that it’s
a stupid question and then, without a mo-
ment’s hesitation, respond “DataTemplate.”

A DataTemplate is basically a visual
tree of elements and controls. Program-
mers use DataTemplates to give a visual
appearance to non-visual data objects.
Properties of elements in the visual
tree are linked to properties of the data
objects through bindings. Although the
DataTemplate is most commonly used to defi ne the appearance
of objects in an ItemsControl or a ListBox (one of the classes that
derive from ItemsControl), you can also use a DataTemplate to
defi ne the appearance of an object set to the Content property of a
ContentControl or a ContentControl derivative, such as a button.

Creating a DataTemplate—or any other type of Framework-
Template derivative such as ControlTemplate or Hierarchical-
DataTemplate—is one of the few Silverlight programming tasks
that can’t be done in code. You need to use XAML. It was once
possible to create WPF templates entirely in code using Framework-
ElementFactory, but I think I was the only person to actually pub-
lish examples (in chapters 11, 13 and 16 of my book, “Applications =
Code + Markup” [Microsoft Press, 2006]) and the technique has
now been deprecated.

What I want to show you in this article is a variation of drag-
and-drop: Th e user simply moves an item from one ItemsControl
to another. But my major objective is to implement this whole
process with an entirely fl uid look and feel that seems natural, and
where nothing suddenly jerks or disappears. Of course, “the natural
look” is oft en painstakingly achieved, and any program that strives
for fl uidity needs to avoid revealing all the awkward machinations
just underneath the surface.

I’ll be using a combination of techniques I showed in last month’s
column (“Th inking Outside the Grid,” msdn.microsoft.com/magazine/ff646962)
as well a DataTemplate that’s shared among two ItemsControls and a
ContentControl—a concept essential to this whole program.

Program Layout
The downloadable code that accompanies this article contains
a single Silverlight project named ItemsControlTransitions,
which you can run from my Web site at charlespetzold.com/silverlight/
ItemsControlTransitions2. (I’ll explain the “2” at the end of this URL

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201006UIF.

Figure 1 The ItemsControlTransitions Display

http://msdn.microsoft.com/magazine/ff646962
http://charlespetzold.com/silverlight/ItemsControlTransitions2
http://charlespetzold.com/silverlight/ItemsControlTransitions2
http://code.msdn.microsoft.com/mag201006UIF

msdn magazine110 UI Frontiers

Th e program begins by loading in a little XML database of some
produce—using the same fi les from the ItemsControlPopouts project
in last month’s column—and then fi lling up the market ItemsControl
with objects of type ProduceItem. Th is class has Name and Photo
properties that the DataTemplate references to display each item.

Pulling Items from ItemsControl
Th e ItemsControl for the market has a handler set for MouseLeft -
Button Down. On receipt of this event, the program needs to dislodge
an item from the four-wall confi nes of the ItemsControl and allow
it to track the mouse. But the item can’t actually be removed from
the ItemsControl or the gap will automatically close up.

As I demonstrated in last month’s column, you can access the
ItemContainerGenerator property of an ItemsControl to get a class
that can associate each item in an ItemsControl with the visual tree
that’s been generated to display that particular item. Th is visual tree
has a root element of type ContentPresenter.

My fi rst impulse was to apply a TranslateTransform to the Render-
Transform property of the ContentPresenter, to allow it to fl oat
outside the ItemsControl. I know from experience, however, that
this doesn’t work at all. Th e problem isn’t the ItemsControl itself; the
problem is the ScrollViewer, which of necessity clips its children to
its interior. (More about the rationale behind this clipping shortly.)

Instead, the program copies the clicked ProduceItem in the Items-
Control to the ContentControl, and positions the ContentControl
precisely over the ContentPresenter of the clicked item. (The
program can obtain the location of the ContentPresenter relative
to the Canvas using the always handy TransformToVisual method.)
You’ll recall that the XAML fi le sets the Visibility property of the
ContentControl to Collapsed, but now the program toggles that
property to Visible.

At the same time, the ContentPresenter in the ItemsControl
is made invisible. In WPF, you can do this simply by setting the
Visibility property to Hidden, which makes the item invisible
but otherwise causes the element’s size to be observed for layout
purposes. Th e Visibility property in Silverlight doesn’t have a Hidden
option, and if you set the Visibility property of the ContentPresenter
to Collapsed, the gap will close up. Instead, you can mimic a Visibility
setting of Hidden by simply setting the Opacity property to zero. Th e
element is still there, but it’s invisible. As you experiment with the
program, you’ll discover that the transition from the item in the
ItemsControl to the draggable ContentControl is imperceptible.

At this point, the ContentPresenter in the ItemsControl displays
nothing but an empty hole, and the ContentControl displaying
the item can now be dragged around the screen with the mouse.

The Item Drop
Back when I was writing books about the Win16 and Win32 APIs,
I spent whole chapters showing how to use scroll bars to display
more text in a window than can fi t there. Today we simply use a
ScrollViewer, and everyone is much happier—me most of all.

Despite its essential role in WPF and Silverlight layout, the Scroll-
Viewer can be a little tricky to use at times. It has some peculiarities
that can be a little puzzling, and this program reveals one of them.
See if you can anticipate the problem.

We left the user moving a produce item around the screen with
the mouse. If the user drops the produce item somewhere over
the ItemsControl representing the basket, it becomes part of that
collection. (More on this process shortly.) Otherwise, the program
animates the item back to its origin using two animations in the
returnToOriginStoryboard in MainPage.xaml. At the conclusion of
the animation, the Opacity property of the ContentPresenter is set to
one, the Visibility property of the ContentControl is set to Collapsed,
and the drag event is concluded with everything back to normal.

To determine if the produce item is being dropped on the Items-
Control, the program calculates a Rect object representing the
location and size of the dragged ContentControl and another Rect
object representing the location and size of the ItemsControl. In
both cases, the program uses the TransformToVisual method to
obtain the location of the upper-left corner of the control—the point
(0, 0)—relative to the page, and the ActualWidth and Actual Height
properties to obtain the control’s size. Th e Rect structure’s Intersect

<UserControl x:Class="ItemsControlTransitions.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Name="this">
 <UserControl.Resources>
 <DataTemplate x:Key="produceDataTemplate">
 <Border Width="144"
 Height="144"
 BorderBrush="Black"
 BorderThickness="1"
 Background="AliceBlue"
 Margin="6">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Image Grid.Row="0"
 Source="{Binding Photo}" />
 <TextBlock Grid.Row="1"
 Text="{Binding Name}"
 HorizontalAlignment="Center" />
 </Grid>
 </Border>
 </DataTemplate>

 ...

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <ScrollViewer HorizontalAlignment="Left"
 Margin="48">
 <ItemsControl Name="market"
 ItemTemplate="{StaticResource produceDataTemplate}"
 Width="156"
 MouseLeftButtonDown="OnMarketItemsControlMouseLeftButtonDown" />
 </ScrollViewer>

 <ScrollViewer HorizontalAlignment="Right"
 Margin="48">
 <ItemsControl Name="basket"
 ItemTemplate="{StaticResource produceDataTemplate}"
 Width="156" />
 </ScrollViewer>

 <Canvas Name="dragCanvas">
 <ContentControl Name="dragControl"
 ContentTemplate="{StaticResource produceDataTemplate}"
 Visibility="Collapsed" />
 </Canvas>
 </Grid>
</UserControl>

Figure 2 Partial XAML File Responsible for Basic Layout

111June 2010msdnmagazine.com

method then calculates an intersection of the two rect-
angles, which will be non-empty if there’s some overlap.

Th is works fi ne except when the ItemsControl has
more items than can fi t in the vertical space allowed
for it. Th e ScrollViewer then kicks into action by
making its vertical scrollbar visible so you can scroll
through the items. However, the ItemsControl inside
the ScrollViewer actually believes itself to be larger
than what you’re seeing; in a very real sense, the Scroll-
Viewer is providing only a viewable window (called
a “viewport”) on the ItemsControl. Th e location and
size information you obtain for that ItemsControl
always indicates the full size (called the “extent” size)
and not the viewport size.

Th is is why ScrollViewer needs to clip its child. If
you’ve been working with Silverlight for a while, you might be
particularly accustomed to a certain laxity regarding clipping of
children. You can almost always use RenderTransform to escape
from a parent’s boundaries. However, ScrollViewer defi nitely needs
to clip or it simply can’t work right.

Th is means that you can’t use the apparent dimensions of the
ItemsControl to determine a valid drop, because in some cases
the ItemsControl extends above and below the ScrollViewer. For
that reason, my program determines a valid drop rectangle based
on horizontal dimensions of the ItemsControl—because it wants
to exclude the area occupied by the scrollbar—but the vertical
dimensions of the ScrollViewer.

When the ContentControl is dropped on the ItemsControl, it
could be overlapping two existing items, or just one if it’s being
dropped on the top or bottom of the stack of items, or none at
all. I wanted to insert the new item in the spot closest to where it’s
dropped, which required enumerating through the items in the
ItemsControl (and their associated ContentPresenter objects) and
determining a good index to insert the new item. (Th e GetBasket-
DestinationIndex method is responsible for determining this
index.) Aft er the item is inserted, the ContentPresenter associated
with that new item is given an initial height of zero and an opacity
of zero, so it isn’t initially visible.

Following this insertion, the program initiates the storyboard
called transferToBasketStoryboard with fi ve animations: one to
decrease the height of the invisible ContentPresenter in the Items-
Control for the market; another to increase the height of the invisible
ContentPresenter newly created in the basket ItemsControl; and
two more to animate the Canvas.Left and Canvas.Top attached
properties to slide the ContentControl into place. (I’ll discuss the
fi ft h animation shortly.) Figure 3 shows the gap widening as the
ContentControl approaches its destination.

When the animation ends, the new ContentPresenter is given
an opacity of one and the ContentControl is given a visibility of
Collapsed, and now we’re back to just dealing with two normal
ItemsControls inside ScrollViewers.

The Top and Bottom Problem
Earlier in this article I gave you the URL charlespetzold.com/silverlight/
ItemsControlTransitions2 to try out the program. An earlier version of

the program can be run from charlespetzold.com/silverlight/
ItemsControlTransitions, without the “2” on the end. Using
this earlier version, move several produce items over
to the basket—enough to make the vertical scrollbar
appear. Now drag another one over and position it
straddling the bottom of the ScrollViewer. When
you release the mouse button, the ContentControl
moves down toward an area of the ItemsControl that’s
invisible, and then suddenly disappears. Th e item has
been correctly inserted (as you can verify by scrolling
down), but not very elegantly.

Now scroll the ScrollViewer so the top item is only
partially visible. Move another item from the basket
and position it so it will be inserted before that item.
Th e new item slides into the ItemsControl, but it’s not

entirely visible. It’s not quite as bad as the problem at the bottom
of the ItemsControl, but it still needs some help.

Th e fi x? Some way to programmatically scroll the ScrollViewer
is required. Th e amount of vertical scrolling currently in eff ect for a
ScrollViewer is provided through the VerticalOff set property. Th is
number is a positive off set from the top of the entire ItemsControl to
the location in the control that’s displayed at the top of the ScrollViewer.

Wouldn’t it be nice to simply animate that VerticalOffset
property? Unfortunately, only the get accessor is public. Fortunately,
it’s possible to programmatically scroll the ScrollViewer, but you
need to call a method named ScrollToVerticalOff set.

To accomplish this little scrolling job through the Silverlight
animation facility, I defi ned a dependency property named Scroll in
MainPage itself. In the XAML fi le, I gave the page a name of “this,”
and defi ned a fi ft h animation in transferToBasketStoryboard to
target this property:

<DoubleAnimation x:Name="scrollItemsControlAnima"
 Storyboard.TargetName="this"
 Storyboard.TargetProperty="Scroll" />

Th e OnMouseLeft ButtonUp override calculates the From and To
values of this animation. (You can compare the eff ect of this additional
animation by commenting out the block of code beginning with the
comment “Calculate ScrollViewer scrolling animation.”) As this Scroll
property is animated, its property-changed handler calls the ScrollTo-
VerticalOff set method of the ScrollViewer with the animated value.

Toward a Fluid UI
Many, many years ago, computers were much slower than they
are now, and nothing that happened on the screen was ever very
startling. Today, programs can implement UIs that entirely change
their appearances in the blink of an eye. But that’s unsatisfactory
as well. Oft en we can’t even see what’s going on, so now we fi nd it
necessary to deliberately slow down the UI and make transitions
more fl uid and natural. Silverlight 4 introduced some “fl uid UI”
features that I’m eager to discuss, but even in Silverlight 3 it’s
possible to begin the journey in that direction.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
He is currently writing “Programming Windows Phone 7 Series,” which will be
published as a free downloadable e-book in the fall of 2010. A preview edition is
currently available through his Web site charlespetzold.com.

Figure 3 The Anima-
tion to Move a New
Item into Place

http://charlespetzold.com/silverlight/ItemsControlTransitions2
http://charlespetzold.com/silverlight/ItemsControlTransitions2
http://charlespetzold.com/silverlight/ItemsControlTransitions
http://charlespetzold.com/silverlight/ItemsControlTransitions
http://charlespetzold.com
http://msdnmagazine.com

112 msdn magazine

context menus, have evolved over time, and they continue to evolve
today (the Offi ce Ribbon control, for example). No one ever reads
a manual. Users expect a new Windows program to instantly ex-
plain itself through its UI, and will dump any that don’t.

We don’t have these standards for the new features of WPF
yet, and that’s a real problem. For example, many articles explain
how to program animation in WPF. But besides my paper, “Using
WPF for Good and Not Evil” (rollthunder.com/SoftwareThatDoesntSuck/
WpfForGoodAndNotEvil.htm), I see no discussions in the Windows community
of what information an animation communicates to a user, what
eff ects an animation therefore has on the user’s productivity and
satisfaction, or any sort of guidelines on where animation should
be used and where it shouldn’t. Th at’s why, whenever I teach a class
on WPF, I always insist on devoting at least a day to UI design,
teaching my clients not just to write WPF code, but to start from
the user’s needs and work inward, rather than starting from the
toolkit and working outward.

WPF is much more powerful than Windows Forms, as a chainsaw
is more powerful than a handsaw. I see great exultation over that
power, and the exalters are absolutely correct about its magnitude.
But I see zero discussion of the careful thought needed to safely and
productively manage that power to make users happier—which is
our ultimate goal.

Th is needs to change, and it needs to change now. Aft er four-plus
years of experimentation, we ought to have some notion of which
usage patterns in WPF make users happier and which accomplish the
opposite. With WPF poised to become the mainstream of Windows
desktop development, I call on Microsoft to publish UI design
guidelines for it; not how to program this or that feature, but when and
where and why to use it. A company that manufactures a chainsaw
incurs a duty to teach its customers which end of it to hold.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He is the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and
“Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft -
ware Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

It takes Microsoft three versions to get a product right, Windows
itself being the classic example. Visual Studio 2010 and the Micro-
soft .NET Framework 4 represent the third release of Windows
Presentation Foundation (WPF) and its tools. Right on schedule,
my clients are telling me, “Yeah, looks about ready now, help us
learn it, then we’ll try a pilot project.” But newcomers to WPF are
oft en distracted by its glitz: Th ey forget that their ultimate goal is
making their users happier and more productive, not titillating
their own vanity by cramming fl ashy gizmos into a program for
the sheer pain of it. Above all, they forget that their program is just
one of many that users switch among, all day every day, and that
commonality among UIs—in other words, most Windows programs
working more or less like each other—is the key to their users’
satisfaction and hence to their programs’ success.

Few people under age 35 remember DOS programs, when UIs
had no commonality whatsoever. For example, most DOS programs
had no menus, requiring snap-on keyboard templates to remind
users of commands. (OK, I guess that’s some commonality.) A few
DOS programs contained menus but didn’t show them until the
user pressed a specifi c key, and naturally every program used a
diff erent key and showed the menu in a diff erent place. Microsoft
Word used ESC and the menu appeared below the document; Lotus
1-2-3 used the forward slash ‘/’ and the menu appeared above the
document; Farsight (another spreadsheet) used F3. Every user had
to (gak!) read the manual (remember those?) to even start poking
at a new app, and then had to switch mental command sets every
time he switched applications.

The biggest growth driver of the Windows user platform,
besides Solitaire, is the standardized UI that its

API encourages. Th e primary control structure
is a menu at the top of a program’s window. Key-

board shortcuts are listed on the menu items
as a teaching aid, toolbars provide graphic

shortcuts and so on. Th ese standards, like
tool tips and right-click

DON’T GET ME STARTED DAVID PLATT

WPF is much more powerful
than Windows Forms.

Chainsaw Development

http://rollthunder.com/SoftwareThatDoesntSuck/WpfForGoodAndNotEvil.htm
http://rollthunder.com/SoftwareThatDoesntSuck/WpfForGoodAndNotEvil.htm
http://rollthunder.com

Untitled-7 1 5/6/10 3:24 PM

www.GCPowerTools.com/switch

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, June 2010
	Contents
	CUTTING EDGE: C# 4.0, the Dynamic Keyword and COM
	CLR INSIDE OUT: F# Fundamentals
	SOA TIPS: Address Scalability Bottlenecks with Distributed Caching
	THREAD PERFORMANCE: Resource Contention Concurrency Profiling in Visual Studio 2010
	CLOUD DIAGNOSTICS: Take Control of Logging and Tracing in Windows Azure
	EXPRESS YOURSELF: Encoding Videos Using Microsoft Expression Encoder 3 SDK
	INPUT VALIDATION: Enforcing Complex Business Data Rules with WPF
	PRACTICAL ODATA: Building Rich Internet Apps with the Open Data Protocol
	TEST RUN: Generating Graphs with WPF
	BASIC INSTINCTS: Multi-Targeting Visual BasicApplications in Visual Studio 2010
	THE WORKING PROGRAMMER: Going NoSQL with MongoDB, Part 2
	UI FRONTIERS: The Ins and Outs of ItemsControl
	DON’T GET ME STARTED: We’re All in This Together

