
1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

S T U D E N T A C T I V I T Y 2 . 1 : U N D E R S T A N D I N G . N E T C L A S S H I E R A R C H I E S

MTA Course: 10754 Microsoft .NET Fundamentals
Topic: Understanding .NET class hierarchies
File name: 10754_Msft.NET_SA_2.1

Lesson Objective

2.1: Understand .NET class hierarchies. This objective may include but is not limited to:
understanding system classes, classifications of classes, and logical organization of classes

Works Cited

Gunderloy, Mike. (2002). Understanding and Using Assemblies and Namespaces in .NET.
Retrieved April 4, 2011, from MSDN® Library:
http://msdn.microsoft.com/en-us/library/ms973231.aspx.

Understanding and Using Assemblies and Namespaces in .NET

(Mike Gunderloy, 2002)

Summary: Creating assemblies and namespaces in Microsoft® Visual Basic® .NET.

Directions to the student:

Read the following article and complete the hands-on activities described. Ask your instructor to
further explain concepts that you do not fully understand. The instructor will verify your work.

Objectives

 Understand assemblies in Microsoft .NET.
 Understand namespaces in .NET.
 Use Microsoft Visual Basic .NET to create and customize an assembly.
 Use Visual Basic .NET to create a namespace.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Assumptions

The following should be true for you to get the most out of this document:

 You are familiar with Visual Basic programming.
 You understand the basic concept of object-oriented programming (OOP).
 You have access to Visual Basic .NET.

Contents

Introduction
Assemblies
Namespaces
Practice Creating an Assembly
Practice Creating a Namespace
What's New Since Visual Basic 6.0?
Summary

Introduction

Microsoft .NET provides several ways to think of your code as more than just a bunch of
disconnected lines. As a Visual Basic programmer, you're already familiar with the concept of a
class, a section of code that defines an object and its behavior. But two of the higher-level
groupings may be unfamiliar to you:

 An assembly provides a fundamental unit of physical code grouping.
 A namespace provides a fundamental unit of logical code grouping.

As you'll see in this document, you can use Visual Basic .NET to create both assemblies and
namespaces. You'll need to understand both of these concepts to be a productive Visual Basic
.NET developer.

Assemblies

An assembly is a collection of types and resources that forms a logical unit of functionality. All
types in the Microsoft .NET Framework must exist in assemblies; the common language runtime
does not support types outside of assemblies. Each time you create a Microsoft Windows®
Application, Windows Service, Class Library, or other application with Visual Basic .NET,
you're building a single assembly. Each assembly is stored as an .exe or .dll file.

Note Although it's technically possible to create assemblies that span multiple files, you're not
likely to use this technology in most situations.

The .NET Framework uses assemblies as the fundamental unit for several purposes:

 Security
 Type identity
 Reference scope
 Versioning
 Deployment

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Security

An assembly is the unit at which security permissions are requested and granted. Assemblies are
also the level at which you establish identity and trust. The .NET Framework provides two
mechanisms for this level of assembly security: strong names and Signcode.exe. You can also
manage security by specifying the level of trust for code from a particular site or zone.

Signing an assembly with a strong name adds public key encryption to the assembly. This
ensures name uniqueness and prevents substituting another assembly with the same name for the
assembly that you provided.

The Signcode.exe tool embeds a digital certificate in the assembly. This allows users of the
assembly to verify the identity of the assembly's developer by using a public or private trust
hierarchy.

You can choose to use either strong names, Signcode.exe, or both, to strengthen the identity of
your assembly.

The common language runtime also uses internal hashing information, in conjunction with
strong names and signcode, to verify that the assembly being loaded has not been altered after it
was built.

Type Identity

The identity of a type depends on the assembly where that type is defined. That is, if you define a
type named DataStore in one assembly, and a type named DataStore in another assembly, the
.NET Framework can tell them apart because they are in two different assemblies. Of course,
you can't define two different types with the same name in the same assembly.

Reference Scope

The assembly is also the location of reference information in general. Each assembly contains
information on references in two directions:

 The assembly contains metadata that specifies the types and resources within the
assembly that are exposed to code outside of the assembly. For example, a particular
assembly could expose a public type named Customer with a public property named
AccountBalance.

 The assembly contains metadata specifying the other assemblies on which it depends. For
example, a particular assembly might specify that it depends on the
System.Windows.Forms.dll assembly.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Versioning

Each assembly has a 128-bit version number that is presented as a set of four decimal pieces:
Major.Minor.Build.Revision

For example, an assembly might have the version number 3.5.0.126.

By default, an assembly will only use types from the exact same assembly (name and version
number) that it was built and tested with. That is, if you have an assembly that uses a type from
version 1.0.0.2 of another assembly, it will (by default) not use the same type from version
1.0.0.4 of the other assembly. This use of both name and version to identify referenced
assemblies helps avoid the "DLL Hell" problem of upgrades to one application breaking other
applications.

Tip An administrator or developer can use configuration files to relax this strict version
checking. Look for information on publisher policy in the .NET Framework Developer's Guide.

Deployment

Assemblies are the natural unit of deployment. The Windows Installer Service 2.0 can install
individual assemblies as part of a larger setup program. You can also deploy assemblies in other
ways, including by a simple xcopy to the target system or via code download from a website.
When you start an application, it loads other assemblies as a unit as types and resources from
those assemblies are needed.

The Assembly Manifest

Every assembly contains an assembly manifest, a set of metadata with information about the
assembly. The assembly manifest contains these items:

 The assembly name and version
 The culture or language the assembly supports (not required in all assemblies)
 The public key for any strong name assigned to the assembly (not required in all

assemblies)
 A list of files in the assembly with hash information
 Information on exported types
 Information on referenced assemblies

In addition, you can add other information to the manifest by using assembly attributes.
Assembly attributes are declared inside of a file in an assembly, and are text strings that describe
the assembly. For example, you can set a friendly name for an assembly with the AssemblyTitle
attribute:

Copy

<Assembly: AssemblyTitle("Test Project")>

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Table 1. Standard Assembly Attributes

Attribute Meaning

AssemblyCompany Company shipping the assembly

AssemblyCopyright Copyright information

AssemblyCulture Enumeration indicating the target culture for the assembly

AssemblyDelaySign True to indicate that delayed signing is being used

AssemblyDescription Short description of the assembly

AssemblyFileVersion String specifying the Win32 file version. Defaults to the
AssemblyVersion value.

AssemblyInformationalVersion Human-readable version; not used by the common language
runtime

AssemblyKeyFile Name of the file containing keys for signing the assembly

AssemblyKeyName Key container containing a key pair to use for signing

AssemblyProduct Product name

AssemblyTitle Friendly name for the assembly

AssemblyTrademark Trademark information

AssemblyVersion Version number expressed as a string

You can also define your own custom attributes by inheriting from the System.Attribute class.
These attributes will be available in the assembly manifest just like the attributes listed above.

The Global Assembly Cache

Assemblies can be either private or shared. By default, assemblies are private, and types
contained within those assemblies are only available to applications in the same directory as the
assembly. But every computer with the .NET Framework installed also has a global assembly
cache (GAC) containing assemblies that are designed to be shared by multiple applications.
There are three ways to add an assembly to the GAC:

 Install them with the Windows Installer 2.0
 Use the Gacutil.exe tool
 Drag the assemblies to the cache with Windows Explorer

Note that in most cases, you should plan to install assemblies to the GAC on user computers by
using the Windows Installer. The Gacutil.exe tool and the drag method exist for use during the
development cycle. You can view the contents of your GAC by using Windows Explorer to
navigate to the WINNT\assembly folder, as shown in Figure 1.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Figure 1. Viewing the GAC in Windows Explorer

Assembly Info.vb

When you create a new project using Visual Basic .NET, one of the components of the project
will be a file named AssemblyInfo.vb. This file contains all of the assembly attributes that
describe the assembly. To characterize your assembly, you should customize this information.
You can edit the AssemblyInfo.vb file just like any other Visual Basic .NET source file. The
default contents of this file look like this:

Copy

Imports System.Reflection

Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through

 the following

' set of attributes. Change these attribute values to modify

 the information

' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle("")>

<Assembly: AssemblyDescription("")>

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

<Assembly: AssemblyCompany("")>

<Assembly: AssemblyProduct("")>

<Assembly: AssemblyCopyright("")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant(True)>

'The following GUID is for the ID of the typelib if this project

 is exposed to COM

<Assembly: Guid("0C23E636-A54A-4F44-9432-E4ED4BD3017D")>

' Version information for an assembly consists of the following

 four values:

'

' Major Version

' Minor Version

' Build Number

' Revision

'

' You can specify all the values or you can default the Build

 and Revision Numbers

' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.*")>

Namespaces

Another way to organize your Visual Basic .NET code is through the use of namespaces.
Namespaces are not a replacement for assemblies, but a second organizational method that
complements assemblies. Namespaces are a way of grouping type names and reducing the
chance of name collisions. A namespace can contain both other namespaces and types. The full
name of a type includes the combination of namespaces that contain that type.

The Namespace Hierarchy and Fully Qualified Names

You're probably already familiar with namespaces from the .NET Framework Class Library. For
example, the Button type is contained in the System.Windows.Forms namespace. That's actually
shorthand for the situation shown in Figure 2, which shows that the Button class is contained in
the Forms namespace that is contained in the Windows namespace that is contained in the root
System namespace.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Figure 2. A namespace and class hierarchy

The fully qualified name of a class is constructed by concatenating the names of all the
namespaces that contain the type. For example, the fully qualified name of the Button class is
System.Windows.Forms.Button. The namespace hierarchy helps distinguish types with the same
name from one another. For example, you might define your own class named Button, but it
might be contained in the ControlPanel namespace within the PowerPlant namespace, making
its fully qualified name PowerPlant.ControlPanel.Button.

Tip There's no need to use fully qualified names in your code unless you need to resolve an
ambiguity between two types with the same type name used in the same project.

Declaring Namespaces

You can use the Namespace statement to declare a namespace in your own code. Namespace
statements can be nested. For example, a Visual Basic .NET module could contain these lines of
code:

Copy

Namespace PowerPlant

 Namespace ControlPanel

 Public Class Button

 ' Statements to implement Button

 End Class

 End Namespace

End Namespace

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

An alternative way to express this same hierarchy is to combine the Namespace statements:

Copy

Namespace PowerPlant.ControlPanel

 Public Class Button

 ' Statements to implement Button

 End Class

End Namespace

By default, a Visual Basic .NET project declares a root namespace that has the same name as the
project. If the above declaration was in a project called PowerLib, then the fully qualified name
of the Button class would be PowerLib.PowerPlant.ControlPanel.Button. You can change the
name of the root namespace by following these steps:

1. In Project Explorer, right-click the project and select Properties.

2. Click Common Properties.

3. Enter a new name for the root namespace. It's good practice to use a name such as
CompanyName.Technology for the root namespace, to avoid conflicts with namespaces
defined by other developers.

4. Click OK.

Note Strictly speaking, assemblies and namespaces are orthogonal. That is, you can
declare members of a single namespace across multiple assemblies, or declare multiple
namespaces in a single assembly. Unless you have a good reason for such an
arrangement, though, it's best to keep things simple, with one namespace per assembly
and vice versa.

Practice Creating an Assembly

In the following example, you'll create a class library containing a class that exposes a single
method and a single event. Then you'll use assembly attributes to customize the assembly
information.

Create the Class Library

Follow these steps to create the class library that will raise the events:

1. Open Microsoft Visual Studio® .NET, click Start, and then click New Project.

2. In the left pane tree view, select Visual Basic Project.

3. Select Class Library as the project template.

4. Set the name of the application to PowerLib and click OK.

5. In Solution Explorer, highlight the class called Class1.vb and rename it to Button.vb.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

6. Select the code for Class1 in Button.vb (this be an empty class definition) and replace it
with the following code:

Copy

Public Class Button

 Private mfState As Boolean

 Public Sub Toggle()

 mfState = Not mfState

 End Sub

 Public Property State() As Boolean

 Get

 State = mfState

 End Get

 Set(ByVal Value As Boolean)

 mfState = Value

 End Set

 End Property

End Class

Customize the Assembly

Follow these steps to customize the assembly attributes:

1. In Solution Explorer, double-click the AssemblyInfo.vb file to open it in the code editor.

2. Select the first block of assembly attributes and modify them as follows:

Copy

<Assembly: AssemblyTitle("PowerPlant")>

<Assembly: AssemblyDescription("Power plant user interface")>

<Assembly: AssemblyCompany("Your Company")>

<Assembly: AssemblyProduct("PowerLib")>

<Assembly: AssemblyCopyright("Copyright 2002")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant(True)>

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

3. Select the version attribute and modify it as follows:

Copy

<Assembly: AssemblyVersion("1.0.0.0")>

Practice Creating a Namespace

In the following example, you'll add namespace information to the PowerLib project. Follow
these steps to create the namespace information:

1. In the code editor, open the Button.vb file and add this line to the top of the module,
above the declaration for the Button class:

Copy

Namespace ControlPanel

2. Visual Basic .NET automatically creates a corresponding End Namespace statement.
Move this statement below the End Class statement that terminates the Button class.

3. In Solution Explorer, right-click the PowerLib project node and choose Properties.

4. Change the Root namespace property to PowerPlant.

5. On the File menu, click Save All.

Try It Out

On the Build menu, click Build Solution (or press Ctrl+Shift+B) to build the project. This will
create the assembly and the namespaces that it contains. To view the assembly manifest, you can
use the Ildasm.exe utility that ships with the .NET Framework. Follow these steps:

1. Click Start, click Programs, click Microsoft Visual Studio .NET 7.0 (or newer), click
Visual Studio .NET Tools, and then click Visual Studio .NET Command Prompt.

2. At the command prompt, type ildasm and press Enter.

3. In the Ildasm interface, on the File menu, click Open. Navigate to My Documents\Visual
Studio Projects\PowerLib\bin\PowerLib.dll and click Open.

4. In the ildasm window, expand the PowerPlant.ControlPanel namespace and you'll find
the Button class. Expand the class and you'll see the members of its interface.

5. In the tree view, double-click the Manifest node and Ildasm will open the Manifest
viewer. Scroll down and to the right, and you'll find the values of your custom assembly
attributes, as shown in Figure 3.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

Figure 3. Viewing assembly manifest information

What's New Since Visual Basic 6.0?

The concepts of assemblies and namespaces are completely new to Visual Studio .NET. Visual
Basic 6.0 can create class libraries, but those class libraries lack the versioning, deployment,
security, and other special features of assemblies. Visual Basic 6.0 also provides no way to create
a hierarchy of namespaces.

Summary

Visual Basic .NET allows you to group your code into logical units in several ways. First, by
grouping code in assemblies, you can establish security, version, reference, and deployment
boundaries. Second, by grouping classes into namespaces, you can create a hierarchy in which
it's easy to identify classes by their fully qualified names. These two methods of organization
complement one another, and you'll need to use both of them in your own Visual Basic .NET
development.

About the Author

Mike Gunderloy writes about software and raises chickens in eastern Washington State. He's the
coauthor of Access 2002 Developer's Handbook and author of SQL Server Developer's Guide to
OLAP with Analysis Services, both from Sybex. He's been writing code for Microsoft products
since the prehistoric pre-Windows era and has no intention of stopping any time soon.

1 0 7 5 4 M I C R O S O F T . N E T F U N D A M E N T A L S

About Informant Communications Group

Informant Communications Group, Inc. (www.informant.com) is a diversified media company
focused on the information technology sector. Specializing in software development
publications, conferences, catalog publishing, and websites, ICG was founded in 1990. With
offices in the United States and the United Kingdom, ICG has served as a respected media and
marketing content integrator, satisfying the burgeoning appetite of IT professionals for quality
technical information.

Copyright © 2002 Informant Communications Group and Microsoft Corporation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (PDF e-books from InDesign book file.)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

