

Richter

CLR via C#

Programming/Windows

ISBN: 978-0-7356-6745-7

About the Author
Jeffrey Richter is a cofounder of
Wintellect (www.wintellect.com),
a training and consulting firm
dedicated to helping companies

build better software faster. In addition to
this book’s highly regarded previous editions,
he’s written several other popular titles,
including Windows via C/C++. A longtime
consultant to the Microsoft .NET Framework
Team, Jeff worked with Microsoft to develop
a new asynchronous programming model
that’s part of .NET Framework 4.5.

The definitive guide to mastering CLR and .NET
development—from the ground up
Dig deep and master the intricacies of the common language
runtime, C#, and .NET development. Led by programming expert
Jeffrey Richter, a longtime consultant to the Microsoft .NET Team—
you’ll gain pragmatic insights for developing robust, reliable, and
responsive apps and components.

Discover how to:
•	 Build, package, and deploy applications and their types

•	 Understand how primitive, value, and reference types behave
	 so you use them more efficiently
•	 Use generics and interfaces to define reusable algorithms
•	 Work effectively with special CLR types—delegates, custom
	 attributes, nullable types, arrays, strings
•	 Understand how the managed heap and the garbage
	 collector work
•	 Get a quick start with serialization and deserialization services
•	 Design responsive, scalable solutions using thread pools, tasks, 	
	 cancellations, timers, and asynchronous functions
•	 Use exception handling to assist with state management
•	 Construct dynamically extensible apps using CLR hosting,
	 AppDomains, assembly loading, and reflection
•	 Interoperate with Windows® Runtime (WinRT) components

microsoft.com/mspress

U.S.A.	 $59.99
Canada 	$62.99

[Recommended]

Get Visual C#® 2012 code samples
Download from the author’s website:
http://wintellect.com/books

Jeffrey Richter

CLR via C#
Fourth Edition

About the Fourth Edition
•	 Fully updated for Microsoft® .NET
	 Framework 4.5 and Visual Studio® 2012

•	 Focuses on core types in the Framework
	 Class Library

•	Expertly teaches multicore programming,
	 generics, threading, and other essentials

•	Shares practical advice from extensive
	 insider and field experience

edition

D
ev

el
op

er
 R

ef
er

en
ce

spine = 1.64”

Fourth Edition
CLR via C#

Sample Chapters
Copyright © 2012 by Jeffrey Richter

All rights reserved.

To learn more about this book visit:
http://go.microsoft.com/FWLink/?Linkid=266602

		 vii

Contents

Introduction. . xxiii

PART I	 CLR BASICS

Chapter 1	 The CLR’s Execution Model	 3
Compiling Source Code into Managed Modules. . 3

Combining Managed Modules into Assemblies. . 6

Loading the Common Language Runtime. . 8

Executing Your Assembly’s Code. . 11

IL and Verification . . 16

Unsafe Code. . 17

The Native Code Generator Tool: NGen.exe . . 19

The Framework Class Library . . 22

The Common Type System. . 24

The Common Language Specification . . 26

Interoperability with Unmanaged Code. . 30

Chapter 2	 Building, Packaging, Deploying, and
Administering Applications and Types	 33

.NET Framework Deployment Goals. . 34

Building Types into a Module. . 35

Response Files. . 36

A Brief Look at Metadata. . 38

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii	 Contents

Combining Modules to Form an Assembly. . 45

Adding Assemblies to a Project by Using the Visual Studio IDE. . . 51

Using the Assembly Linker. . 52

Adding Resource Files to an Assembly. . 53

Assembly Version Resource Information . . 54

Version Numbers. . 58

Culture . . 59

Simple Application Deployment (Privately Deployed Assemblies) 60

Simple Administrative Control (Configuration). . 62

Chapter 3	 Shared Assemblies and Strongly Named Assemblies	 65
Two Kinds of Assemblies, Two Kinds of Deployment. 66

Giving an Assembly a Strong Name. . 67

The Global Assembly Cache. . 72

Building an Assembly That References a Strongly Named Assembly. . . . 74

Strongly Named Assemblies Are Tamper-Resistant. 75

Delayed Signing . . 76

Privately Deploying Strongly Named Assemblies. . 79

How the Runtime Resolves Type References. . 80

Advanced Administrative Control (Configuration). 83

Publisher Policy Control. . 86

PART II	 DESIGNING TYPES

Chapter 4	 Type Fundamentals	 91
All Types Are Derived from System.Object . . 91

Casting Between Types . . 93

Casting with the C# is and as Operators. . 95

Namespaces and Assemblies . . 97

How Things Relate at Run Time. . 101

	 Contents	 ix

Chapter 5	 Primitive, Reference, and Value Types	 111
Programming Language Primitive Types. . 111

Checked and Unchecked Primitive Type Operations. 115

Reference Types and Value Types . . 118

Boxing and Unboxing Value Types . . 124

Changing Fields in a Boxed Value Type by Using Interfaces
(and Why You Shouldn’t Do This). . 136

Object Equality and Identity . . 139

Object Hash Codes. . 142

The dynamic Primitive Type . . 144

Chapter 6	 Type and Member Basics	 151
The Different Kinds of Type Members . . 151

Type Visibility. . 154

Friend Assemblies . . 154

Member Accessibility. . 156

Static Classes. . 158

Partial Classes, Structures, and Interfaces. . 159

Components, Polymorphism, and Versioning. . 160

How the CLR Calls Virtual Methods, Properties, and Events 162

Using Type Visibility and Member Accessibility Intelligently. 166

Dealing with Virtual Methods When Versioning Types. 169

Chapter 7	 Constants and Fields	 175
Constants. . 175

Fields. . 177

Chapter 8	 Methods	 181
Instance Constructors and Classes (Reference Types) 181

Instance Constructors and Structures (Value Types). 184

Type Constructors. . 187

x	 Contents

Operator Overload Methods . . 191

Operators and Programming Language Interoperability. 193

Conversion Operator Methods. . 195

Extension Methods. . 198

Rules and Guidelines. . 200

Extending Various Types with Extension Methods 201

The Extension Attribute . . 203

Partial Methods. . 204

Rules and Guidelines. . 207

Chapter 9	 Parameters	 209
Optional and Named Parameters . . 209

Rules and Guidelines. . 210

The DefaultParameterValue and Optional Attributes. 212

Implicitly Typed Local Variables. . 212

Passing Parameters by Reference to a Method. . 214

Passing a Variable Number of Arguments to a Method. 220

Parameter and Return Type Guidelines. . 223

Const-ness . . 224

Chapter 10	 Properties	 227
Parameterless Properties. . 227

Automatically Implemented Properties. . 231

Defining Properties Intelligently. . 232

Object and Collection Initializers . . 235

Anonymous Types. . 237

The System.Tuple Type. . 240

Parameterful Properties. . 242

The Performance of Calling Property Accessor Methods. 247

Property Accessor Accessibility . . 248

Generic Property Accessor Methods. . 248

	 Contents	 xi

Chapter 11	 Events	 249
Designing a Type That Exposes an Event. . 250

Step #1: Define a type that will hold any additional information
that should be sent to receivers of the event notification. 251

Step #2: Define the event member. . 252

Step #3: Define a method responsible for raising the event
to notify registered objects that the event has occurred. 253

Step #4: Define a method that translates the input
into the desired event. . 256

How the Compiler Implements an Event. . 256

Designing a Type That Listens for an Event. . 258

Explicitly Implementing an Event. . 260

Chapter 12	 Generics	 265
Generics in the Framework Class Library . . 270

Generics Infrastructure. . 271

Open and Closed Types . . 272

Generic Types and Inheritance . . 274

Generic Type Identity . . 275

Code Explosion. . 277

Generic Interfaces. . 277

Generic Delegates. . 278

Delegate and Interface Contra-variant and Covariant
Generic Type Arguments. . 279

Generic Methods. . 281

Generic Methods and Type Inference . . 283

Generics and Other Members . . 284

Verifiability and Constraints . . 284

Primary Constraints. . 287

Secondary Constraints. .288

Constructor Constraints . . 289

Other Verifiability Issues. . 290

xii	 Contents

Chapter 13	 Interfaces	 295
Class and Interface Inheritance . . 296

Defining an Interface. . 296

Inheriting an Interface. . 298

More About Calling Interface Methods. . 300

Implicit and Explicit Interface Method Implementations
(What’s Happening Behind the Scenes) . . 301

Generic Interfaces. . 303

Generics and Interface Constraints. . 305

Implementing Multiple Interfaces That Have the Same
Method Name and Signature. . 307

Improving Compile-Time Type Safety with Explicit Interface
Method Implementations . . 308

Be Careful with Explicit Interface Method Implementations 310

Design: Base Class or Interface?. . 312

PART III	 ESSENTIAL TYPES

Chapter 14	 Chars, Strings, and Working with Text	 317
Characters. .317

The System.String Type. . 320

Constructing Strings . . 320

Strings Are Immutable. .323

Comparing Strings. . 323

String Interning. . 329

String Pooling. . 332

Examining a String’s Characters and Text Elements. 333

Other String Operations. . 335

Constructing a String Efficiently. . 336

Constructing a StringBuilder Object. . 336

StringBuilder Members . . 337

	 Contents	 xiii

Obtaining a String Representation of an Object: ToString 339

Specific Formats and Cultures. . 340

Formatting Multiple Objects into a Single String. 344

Providing Your Own Custom Formatter. . 345

Parsing a String to Obtain an Object: Parse. . 348

Encodings: Converting Between Characters and Bytes. 350

Encoding and Decoding Streams of Characters and Bytes.355

Base-64 String Encoding and Decoding. . 356

Secure Strings . . 357

Chapter 15	 Enumerated Types and Bit Flags	 361
Enumerated Types . . 361

Bit Flags. . 367

Adding Methods to Enumerated Types . . 371

Chapter 16	 Arrays	 373
Initializing Array Elements. . 376

Casting Arrays. . 378

All Arrays Are Implicitly Derived from System.Array. 380

All Arrays Implicitly Implement IEnumerable, ICollection,
and IList. . 381

Passing and Returning Arrays. . 382

Creating Non-Zero Lower Bound Arrays . . 383

Array Internals. . 384

Unsafe Array Access and Fixed-Size Array. . 388

Chapter 17	 Delegates	 391
A First Look at Delegates. . 391

Using Delegates to Call Back Static Methods . . 394

Using Delegates to Call Back Instance Methods. . 395

xiv	 Contents

Demystifying Delegates. . 396

Using Delegates to Call Back Many Methods (Chaining). 400

C#’s Support for Delegate Chains. . 404

Having More Control over Delegate Chain Invocation. 404

Enough with the Delegate Definitions Already (Generic Delegates). . . . 407

C#’s Syntactical Sugar for Delegates. . 408

Syntactical Shortcut #1: No Need to Construct a
Delegate Object. . 409

Syntactical Shortcut #2: No Need to Define a Callback Method
(Lambda Expressions). . 410

Syntactical Shortcut #3: No Need to Wrap Local Variables
in a Class Manually to Pass Them to a Callback Method 413

Delegates and Reflection. . 416

Chapter 18	 Custom Attributes	 421
Using Custom Attributes. . 421

Defining Your Own Attribute Class . . 425

Attribute Constructor and Field/Property Data Types. 428

Detecting the Use of a Custom Attribute. . 430

Matching Two Attribute Instances Against Each Other. 434

Detecting the Use of a Custom Attribute Without Creating
Attribute-Derived Objects. . 437

Conditional Attribute Classes. . 440

Chapter 19	 Nullable Value Types	 441
C#’s Support for Nullable Value Types. . 443

C#’s Null-Coalescing Operator. . 446

The CLR Has Special Support for Nullable Value Types. 447

Boxing Nullable Value Types. . 447

Unboxing Nullable Value Types. . 448

Calling GetType via a Nullable Value Type. 448

Calling Interface Methods via a Nullable Value Type 448

	 Contents	 xv

PART IV	 CORE FACILITIES

Chapter 20	 Exceptions and State Management	 451
Defining “Exception” . . 452

Exception-Handling Mechanics. . 453

The try Block. . 454

The catch Block. . 455

The finally Block. . 456

The System.Exception Class. . 460

FCL-Defined Exception Classes. . 463

Throwing an Exception . . 466

Defining Your Own Exception Class. . 467

Trading Reliability for Productivity . . 469

Guidelines and Best Practices. . 478

Use finally Blocks Liberally . . 478

Don’t Catch Everything. . 480

Recovering Gracefully from an Exception. . 481

Backing Out of a Partially Completed Operation When
an Unrecoverable Exception Occurs—Maintaining State. 482

Hiding an Implementation Detail to Maintain a “Contract”. 483

Unhandled Exceptions. . 485

Debugging Exceptions. . 490

Exception-Handling Performance Considerations. 492

Constrained Execution Regions (CERs). . 494

Code Contracts. . 498

Chapter 21	 The Managed Heap and Garbage Collection	 505
Managed Heap Basics. . 505

Allocating Resources from the Managed Heap. 506

The Garbage Collection Algorithm. . 507

Garbage Collections and Debugging. . 510

xvi	 Contents

Generations: Improving Performance. . 513

Garbage Collection Triggers . . 519

Large Objects. . 519

Garbage Collection Modes. . 520

Forcing Garbage Collections. . 522

Monitoring Your Application’s Memory Usage 524

Working with Types Requiring Special Cleanup. . 525

Using a Type That Wraps a Native Resource. 532

An Interesting Dependency Issue. . 537

Other GC Features for Use with Native Resources. 538

Finalization Internals. . 542

Monitoring and Controlling the Lifetime of Objects Manually 545

Chapter 22	 CLR Hosting and AppDomains	 553
CLR Hosting. . 554

AppDomains . . 556

Accessing Objects Across AppDomain Boundaries. 559

AppDomain Unloading. . 570

AppDomain Monitoring . . 571

AppDomain First-Chance Exception Notifications. 573

How Hosts Use AppDomains. . 574

Executable Applications. . 574

Microsoft Silverlight Rich Internet Applications. 574

Microsoft ASP.NET and XML Web Services Applications 575

Microsoft SQL Server. . 575

Your Own Imagination . . 576

Advanced Host Control. . 576

Managing the CLR by Using Managed Code. 576

Writing a Robust Host Application. . 577

How a Host Gets Its Thread Back . . 578

	 Contents	 xvii

Chapter 23	 Assembly Loading and Reflection	 583
Assembly Loading. . 584

Using Reflection to Build a Dynamically Extensible Application 588

Reflection Performance. . 589

Discovering Types Defined in an Assembly. 590

What Exactly Is a Type Object?. . 591

Building a Hierarchy of Exception-Derived Types. 593

Constructing an Instance of a Type . . 594

Designing an Application That Supports Add-Ins. 596

Using Reflection to Discover a Type’s Members. . 599

Discovering a Type’s Members . . 599

Invoking a Type’s Members. . 603

Using Binding Handles to Reduce Your Process’s
Memory Consumption. . 608

Chapter 24	 Runtime Serialization	 611
Serialization/Deserialization Quick Start. . 613

Making a Type Serializable. . 617

Controlling Serialization and Deserialization. . 619

How Formatters Serialize Type Instances. . 623

Controlling the Serialized/Deserialized Data. . 624

How to Define a Type That Implements ISerializable
When the Base Type Doesn’t Implement This Interface. 630

Streaming Contexts . . 631

Serializing a Type As a Different Type and Deserializing
an Object As a Different Object. . 633

Serialization Surrogates. . 636

Surrogate Selector Chains . . 639

Overriding the Assembly and/or Type When Deserializing
an Object. . 640

xviii	 Contents

Chapter 25	 Interoperating with WinRT Components	 643
CLR Projections and WinRT Component Type System Rules. 645

WinRT Type System Core Concepts . . 645

Framework Projections. .649

Calling Asynchronous WinRT APIs from .NET Code 649

Interoperating Between WinRT Streams and .NET Streams. 654

Passing Blocks of Data Between the CLR and WinRT 656

Defining WinRT Components in C#. . 658

PART V	 THREADING

Chapter 26	 Thread Basics	 669
Why Does Windows Support Threads?. . 669

Thread Overhead . . 670

Stop the Madness. . 674

CPU Trends. . 677

CLR Threads and Windows Threads. . 678

Using a Dedicated Thread to Perform an Asynchronous
Compute-Bound Operation . . 678

Reasons to Use Threads. . 681

Thread Scheduling and Priorities. . 683

Foreground Threads vs. Background Threads. . 688

What Now?. . 689

Chapter 27	 Compute-Bound Asynchronous Operations	 691
Introducing the CLR’s Thread Pool . . 692

Performing a Simple Compute-Bound Operation. 693

Execution Contexts. . 694

Cooperative Cancellation and Timeout . . 696

Tasks . . 700

Waiting for a Task to Complete and Getting Its Result. 702

Canceling a Task. . 704

	 Contents	 xix

Starting a New Task Automatically When Another
Task Completes. . 705

A Task May Start Child Tasks . . 707

Inside a Task . . 707

Task Factories. . 709

Task Schedulers. . 711

Parallel’s Static For, ForEach, and Invoke Methods. 713

Parallel Language Integrated Query. . 717

Performing a Periodic Compute-Bound Operation. 720

So Many Timers, So Little Time. . 723

How the Thread Pool Manages Its Threads. . 723

Setting Thread Pool Limits. . 724

How Worker Threads Are Managed. . 724

Chapter 28	 I/O-Bound Asynchronous Operations	 727
How Windows Performs I/O Operations . . 727

C#’s Asynchronous Functions. . 732

How the Compiler Transforms an Async Function
into a State Machine. . 734

Async Function Extensibility. . 738

Async Functions and Event Handlers. 741

Async Functions in the Framework Class Library 742

Async Functions and Exception Handling . . 744

Other Async Function Features . . 745

Applications and Their Threading Models. . 748

Implementing a Server Asynchronously. . 751

Canceling I/O Operations. . 751

Some I/O Operations Must Be Done Synchronously. 752

FileStream-Specific Issues. . 753

I/O Request Priorities. . 754

xx	 Contents

Chapter 29	 Primitive Thread Synchronization Constructs	 757
Class Libraries and Thread Safety. . 759

Primitive User-Mode and Kernel-Mode Constructs. 760

User-Mode Constructs. . 762
Volatile Constructs. . 762
Interlocked Constructs . . 768
Implementing a Simple Spin Lock. . 773
The Interlocked Anything Pattern. . 776

Kernel-Mode Constructs. . 778
Event Constructs. . 782
Semaphore Constructs. . 784
Mutex Constructs. . 785

Chapter 30	 Hybrid Thread Synchronization Constructs	 789
A Simple Hybrid Lock. . 790

Spinning, Thread Ownership, and Recursion. . 791

Hybrid Constructs in the Framework Class Library. 793
The ManualResetEventSlim and SemaphoreSlim Classes. . . . 794
The Monitor Class and Sync Blocks. . 794
The ReaderWriterLockSlim Class. . 800
The OneManyLock Class. . 802
The CountdownEvent Class. . 804
The Barrier Class. . 805
Thread Synchronization Construct Summary. 805

The Famous Double-Check Locking Technique . . 807

The Condition Variable Pattern . . 811

Asynchronous Synchronization . . 814

The Concurrent Collection Classes. . 818

Index	 823

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

		 505

C H A P T E R 2 1

The Managed Heap and Garbage
Collection

In this chapter:
Managed Heap Basics . 505
Generations: Improving Performance . 513
Working with Types Requiring Special Cleanup 525
Monitoring and Controlling the Lifetime of Objects
Manually . 545

In this chapter, I’ll discuss how managed applications construct new objects, how the managed heap
controls the lifetime of these objects, and how the memory for these objects gets reclaimed. In short,
I’ll explain how the garbage collector in the common language runtime (CLR) works, and I’ll explain
various performance issues related to it. I’ll also discuss how to design applications so that they use
memory most efficiently.

Managed Heap Basics

Every program uses resources of one sort or another, be they files, memory buffers, screen space,
network connections, database resources, and so on. In fact, in an object-oriented environment, every
type identifies some resource available for a program’s use. To use any of these resources requires
memory to be allocated to represent the type. The following steps are required to access a resource:

1.	 Allocate memory for the type that represents the resource (usually accomplished by using
C#’s new operator).

2.	 Initialize the memory to set the initial state of the resource and to make the resource usable.
The type’s instance constructor is responsible for setting this initial state.

3.	 Use the resource by accessing the type’s members (repeating as necessary).

4.	 Tear down the state of a resource to clean up.

5.	 Free the memory. The garbage collector is solely responsible for this step.

506	 PART IV  Core Facilities

This seemingly simple paradigm has been one of the major sources of problems for programmers
that must manually manage their memory; for example, native C++ developers. Programmers respon-
sible for managing their own memory routinely forget to free memory, which causes a memory leak. In
addition, these programmers frequently use memory after having released it, causing their program to
experience memory corruption resulting in bugs and security holes. Furthermore, these two bugs are
worse than most others because you can’t predict the consequences or the timing of them. For other
bugs, when you see your application misbehaving, you just fix the line of code that is not working.

As long as you are writing verifiably type-safe code (avoiding C#’s unsafe keyword), then it is im-
possible for your application to experience memory corruption. It is still possible for your application
to leak memory but it is not the default behavior. Memory leaks typically occur because your applica-
tion is storing objects in a collection and never removes objects when they are no longer needed.

To simplify things even more, most types that developers use quite regularly do not require Step 4
(tear down the state of the resource to clean up). And so, the managed heap, in addition to abolish-
ing the bugs I mentioned, also provides developers with a simple programming model: allocate and
initialize a resource and use it as desired. For most types, there is no need to clean up the resource
and the garbage collector will free the memory.

When consuming instances of types that require special cleanup, the programming model remains
as simple as I’ve just described. However, sometimes, you want to clean up a resource as soon as
possible, rather than waiting for a GC to kick in. In these classes, you can call one additional method
(called Dispose) in order to clean up the resource on your schedule. On the other hand, implement-
ing a type that requires special cleanup is quite involved. I describe the details of all this in the “Work-
ing with Types Requiring Special Cleanup” section later in this chapter. Typically, types that require
special cleanup are those that wrap native resources like files, sockets, or database connections.

Allocating Resources from the Managed Heap
The CLR requires that all objects be allocated from the managed heap. When a process is initialized,
the CLR allocates a region of address space for the managed heap. The CLR also maintains a pointer,
which I’ll call NextObjPtr. This pointer indicates where the next object is to be allocated within the
heap. Initially, NextObjPtr is set to the base address of the address space region.

As region fills with non-garbage objects, the CLR allocates more regions and continues to do this
until the whole process’s address space is full. So, your application’s memory is limited by the proc
ess’s virtual address space. In a 32-bit process, you can allocate close to 1.5 gigabytes (GB) and in a
64-bit process, you can allocate close to 8 terabytes.

C#’s new operator causes the CLR to perform the following steps:

1.	 Calculate the number of bytes required for the type’s fields (and all the fields it inherits from
its base types).

2.	 Add the bytes required for an object’s overhead. Each object has two overhead fields: a type
object pointer and a sync block index. For a 32-bit application, each of these fields requires

	 CHAPTER 21  The Managed Heap and Garbage Collection	 507

32 bits, adding 8 bytes to each object. For a 64-bit application, each field is 64 bits, adding 16
bytes to each object.

3.	 The CLR then checks that the bytes required to allocate the object are available in the region.
If there is enough free space in the managed heap, the object will fit, starting at the address
pointed to by NextObjPtr, and these bytes are zeroed out. The type’s constructor is called
(passing NextObjPtr for the this parameter), and the new operator returns a reference to
the object. Just before the reference is returned, NextObjPtr is advanced past the object and
now points to the address where the next object will be placed in the heap.

Figure 21-1 shows a managed heap consisting of three objects: A, B, and C. If another object were
to be allocated, it would be placed where NextObjPtr points to (immediately after object C).

A B

NextObjPtr

C

FIGURE 21-1  Newly initialized managed heap with three objects constructed in it.

For the managed heap, allocating an object simply means adding a value to a pointer—this is
blazingly fast. In many applications, objects allocated around the same time tend to have strong rela-
tionships to each other and are frequently accessed around the same time. For example, it’s very com-
mon to allocate a FileStream object immediately before a BinaryWriter object is created. Then
the application would use the BinaryWriter object, which internally uses the FileStream object.
Because the managed heap allocates these objects next to each other in memory, you get excellent
performance when accessing these objects due to locality of reference. Specifically, this means that
your process’s working set is small, which means your application runs fast with less memory. It’s also
likely that the objects your code is accessing can all reside in the CPU’s cache. The result is that your
application will access these objects with phenomenal speed because the CPU will be able to perform
most of its manipulations without having cache misses that would force slower access to RAM.

So far, it sounds like the managed heap provides excellent performance characteristics. However,
what I have just described is assuming that memory is infinite and that the CLR can always allocate
new objects at the end. However, memory is not infinite and so the CLR employs a technique known
as garbage collection (GC) to “delete” objects in the heap that your application no longer requires
access to.

The Garbage Collection Algorithm
When an application calls the new operator to create an object, there might not be enough address
space left in the region to allocate the object. If insufficient space exists, then the CLR performs a GC.

508	 PART IV  Core Facilities

Important  What I’ve just said is an oversimplification. In reality, a GC occurs when genera-
tion 0 is full. I’ll explain generations later in this chapter. Until then, it’s easiest for you to
think that a garbage collection occurs when the heap is full.

For managing the lifetime of objects, some systems use a reference counting algorithm. In fact,
Microsoft’s own Component Object Model (COM) uses reference counting. With a reference count-
ing system, each object on the heap maintains an internal field indicating how many “parts” of the
program are currently using that object. As each “part” gets to a place in the code where it no longer
requires access to an object, it decrements that object’s count field. When the count field reaches 0,
the object deletes itself from memory. The big problem with many reference counting systems is that
they do not handle circular references well. For example, in a GUI application, a window will hold a
reference to a child UI element. And the child UI element will hold a reference to its parent window.
These references prevent the two objects’ counters from reaching 0, so both objects will never be
deleted even if the application itself no longer has a need for the window.

Due to this problem with reference counting garbage collector algorithms, the CLR uses a ref-
erencing tracking algorithm instead. The reference tracking algorithm cares only about reference
type variables, because only these variables can refer to an object on the heap; value type variables
contain the value type instance directly. Reference type variables can be used in many contexts: static
and instance fields within a class or a method’s arguments or local variables. We refer to all reference
type variables as roots.

When the CLR starts a GC, the CLR first suspends all threads in the process. This prevents threads
from accessing objects and changing their state while the CLR examines them. Then, the CLR per-
forms what is called the marking phase of the GC. First, it walks through all the objects in the heap
setting a bit (contained in the sync block index field) to 0. This indicates that all objects should be
deleted. Then, the CLR looks at all active roots to see which objects they refer to. This is what makes
the CLR’s GC a reference tracking GC. If a root contains null, the CLR ignores the root and moves on
to examine the next root.

Any root referring to an object on the heap causes the CLR to mark that object. Marking an object
means that the CLR sets the bit in the object’s sync block index to 1. When an object is marked, the
CLR examines the roots inside that object and marks the objects they refer to. If the CLR is about to
mark an already-marked object, then it does not examine the object’s fields again. This prevents an
infinite loop from occurring in the case where you have a circular reference.

Figure 21-2 shows a heap containing several objects. In this example, the application roots refer
directly to objects A, C, D, and F. All of these objects are marked. When marking object D, the gar-
bage collector notices that this object contains a field that refers to object H, causing object H to be
marked as well. The marking phase continues until all the application roots have been examined.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 509

Once complete, the heap contains some marked and some unmarked objects. The marked objects
must survive the collection because there is at least one root that refers to the object; we say that the
object is reachable because application code can reach (or access) the object by way of the variable
that still refers to it. Unmarked objects are unreachable because there is no root existing in the ap-
plication that would allow for the object to ever be accessed again.

Managed heap

Roots:
Fields & variables

A B C D E H

GF I J

NextObjPtr

•

FIGURE 21-2  Managed heap before a collection.

Now that the CLR knows which objects must survive and which objects can be deleted, it begins
the GC’s compacting phase. During the compacting phase, the CLR shifts the memory consumed
by the marked objects down in the heap, compacting all the surviving objects together so that they
are contiguous in memory. This serves many benefits. First, all the surviving objects will be next to
each other in memory; this restores locality of reference reducing your application’s working set size,
thereby improving the performance of accessing these objects in the future. Second, the free space
is all contiguous as well, so this region of address space can be freed, allowing other things to use it.
Finally, compaction means that there are no address space fragmentation issues with the managed
heap as is known to happen with native heaps.1

When compacting memory, the CLR is moving objects around in memory. This is a problem be-
cause any root that referred to a surviving object now refers to where that object was in memory; not
where the object has been relocated to. When the application’s threads eventually get resumed, they
would access the old memory locations and corrupt memory. Clearly, this can’t be allowed and so, as
part of the compacting phase, the CLR subtracts from each root the number of bytes that the object it
referred to was shifted down in memory. This ensures that every root refers to the same object it did
before; it’s just that the object is at a different location in memory.

After the heap memory is compacted, the managed heap’s NextObjPtr pointer is set to point to
a location just after the last surviving object. This is where the next allocated object will be placed
in memory. Figure 21-3 shows the managed heap after the compaction phase. After the compac-
tion phase is complete, the CLR resumes all the application’s threads and they continue to access the
objects as if the GC never happened at all.

1	 Objects in the large object heap (discussed later in this chapter) do not get compacted, and therefore address space
fragmentation is possible with the large object heap.

510	 PART IV  Core Facilities

Managed heap

A C D F H

NextObjPtr

•

Roots:
Fields & variables

FIGURE 21-3  Managed heap after a collection.

If the CLR is unable to reclaim any memory after a GC and if there is no address space left in the
processes to allocate a new GC segment, then there is just no more memory available for this process.
In this case, the new operator that attempted to allocate more memory ends up throwing an Out­
OfMemoryException. Your application can catch this and recover from it but most applications do
not attempt to do so; instead, the exception becomes an unhandled exception, Windows terminates
the process, and then Windows reclaims all the memory that the process was using.

As a programmer, notice how the two bugs described at the beginning of this chapter no longer
exist. First, it’s not possible to leak objects because any object not accessible from your application’s
roots will be collected at some point. Second, it’s not possible to corrupt memory by accessing an
object that was freed because references can only refer to living objects, because this is what keeps
the objects alive anyway.

Important  A static field keeps whatever object it refers to forever or until the AppDomain
that the types are loaded into is unloaded. A common way to leak memory is to have a
static field refer to a collection object and then to keep adding items to the collection ob-
ject. The static field keeps the collection object alive and the collection object keeps all its
items alive. For this reason, it is best to avoid static fields whenever possible.

Garbage Collections and Debugging
As soon as a root goes out of scope, the object it refers to is unreachable and subject to having its
memory reclaimed by a GC; objects aren’t guaranteed to live throughout a method’s lifetime. This can
have an interesting impact on your application. For example, examine the following code.

using System;
using System.Threading;

public static class Program {
 public static void Main() {
 // Create a Timer object that knows to call our TimerCallback
 // method once every 2000 milliseconds.
 Timer t = new Timer(TimerCallback, null, 0, 2000);

	 CHAPTER 21  The Managed Heap and Garbage Collection	 511

 // Wait for the user to hit <Enter>.
 Console.ReadLine();
 }

 private static void TimerCallback(Object o) {
 // Display the date/time when this method got called.
 Console.WriteLine("In TimerCallback: " + DateTime.Now);

 // Force a garbage collection to occur for this demo.
 GC.Collect();
 }
}

Compile this code from the command prompt without using any special compiler switches. When
you run the resulting executable file, you’ll see that the TimerCallback method is called just once!

From examining the preceding code, you’d think that the TimerCallback method would get
called once every 2,000 milliseconds. After all, a Timer object is created, and the variable t refers
to this object. As long as the timer object exists, the timer should keep firing. But you’ll notice in the
TimerCallback method that I force a garbage collection to occur by calling GC.Collect().

When the collection starts, it first assumes that all objects in the heap are unreachable (garbage);
this includes the Timer object. Then, the collector examines the application’s roots and sees that
Main doesn’t use the t variable after the initial assignment to it. Therefore, the application has no
variable referring to the Timer object, and the garbage collection reclaims the memory for it; this
stops the timer and explains why the TimerCallback method is called just once.

Let’s say that you’re using a debugger to step through Main, and a garbage collection just hap-
pens to occur just after t is assigned the address of the new Timer object. Then, let’s say that you try
to view the object that t refers to by using the debugger’s Quick Watch window. What do you think
will happen? The debugger can’t show you the object because it was just garbage collected. This
behavior would be considered very unexpected and undesirable by most developers, so Microsoft has
come up with a solution.

When you compile your assembly by using the C# compiler’s /debug switch, the compiler applies a
System.Diagnostics.DebuggableAttribute with its DebuggingModes’ DisableOptimizations
flag set into the resulting assembly. At run time, when compiling a method, the JIT compiler sees this
flag set, and artificially extends the lifetime of all roots to the end of the method. For my example,
the JIT compiler tricks itself into believing that the t variable in Main must live until the end of the
method. So, if a garbage collection were to occur, the garbage collector now thinks that t is still a
root and that the Timer object that t refers to will continue to be reachable. The Timer object will
survive the collection, and the TimerCallback method will get called repeatedly until Console.
ReadLine returns and Main exits.

To see this, just recompile the program from a command prompt, but this time, specify the C#
compiler’s /debug switch. When you run the resulting executable file, you’ll now see that the Timer­
Callback method is called repeatedly! Note, the C# compiler’s /optimize+ compiler switch turns op-
timizations back on, so this compiler switch should not be specified when performing this experiment.

512	 PART IV  Core Facilities

The JIT compiler does this to help you with JIT debugging. You may now start your application
normally (without a debugger), and if the method is called, the JIT compiler will artificially extend the
lifetime of the variables to the end of the method. Later, if you decide to attach a debugger to the
process, you can put a breakpoint in a previously compiled method and examine the root variables.

So now you know how to build a program that works in a debug build but doesn’t work correctly
when you make a release build! Because no developer wants a program that works only when debug-
ging it, there should be something we can do to the program so that it works all of the time regard-
less of the type of build.

You could try modifying the Main method to the following.

public static void Main() {
 // Create a Timer object that knows to call our TimerCallback
 // method once every 2000 milliseconds.
 Timer t = new Timer(TimerCallback, null, 0, 2000);

 // Wait for the user to hit <Enter>.
 Console.ReadLine();

 // Refer to t after ReadLine (this gets optimized away)
 t = null;
}

However, if you compile this (without the /debug+ switch) and run the resulting executable file,
you’ll see that the TimerCallback method is still called just once. The problem here is that the JIT
compiler is an optimizing compiler, and setting a local variable or parameter variable to null is the
same as not referencing the variable at all. In other words, the JIT compiler optimizes the t = null;
line out of the code completely, and therefore, the program still does not work as we desire. The cor-
rect way to modify the Main method is as follows.

public static void Main() {
 // Create a Timer object that knows to call our TimerCallback
 // method once every 2000 milliseconds.
 Timer t = new Timer(TimerCallback, null, 0, 2000);

 // Wait for the user to hit <Enter>.
 Console.ReadLine();

 // Refer to t after ReadLine (t will survive GCs until Dispose returns)
 t.Dispose();
}

Now, if you compile this code (without the /debug+ switch) and run the resulting executable file,
you’ll see that the TimerCallback method is called multiple times, and the program is fixed. What’s
happening here is that the object t is required to stay alive so that the Dispose instance method can
be called on it. (The value in t needs to be passed as the this argument to Dispose.) It’s ironic: by
explicitly indicating where you want the timer to be disposed, it must remain alive up to that point.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 513

Note  Please don’t read this whole discussion and then worry about your own objects be-
ing garbage collected prematurely. I use the Timer class in this discussion because it has
special behavior that no other class exhibits. The “problem/feature” of Timer is that the
existence of a Timer object in the heap causes something else to happen: A thread pool
thread invokes a method periodically. No other type exhibits this behavior. For example,
the existence of a String object in memory doesn’t cause anything else to happen; the
string just sits there. So, I use Timer to show how roots work and how object-lifetime works
as related to the debugger, but the discussion is not really about how to keep objects alive.
All non-Timer objects will live as needed by the application automatically.

Generations: Improving Performance

The CLR’s GC is a generational garbage collector (also known as an ephemeral garbage collector, al-
though I don’t use the latter term in this book). A generational GC makes the following assumptions
about your code:

■■ The newer an object is, the shorter its lifetime will be.

■■ The older an object is, the longer its lifetime will be.

■■ Collecting a portion of the heap is faster than collecting the whole heap.

Numerous studies have demonstrated the validity of these assumptions for a very large set of ex-
isting applications, and these assumptions have influenced how the garbage collector is implemented.
In this section, I’ll describe how generations work.

When initialized, the managed heap contains no objects. Objects added to the heap are said to be
in generation 0. Stated simply, objects in generation 0 are newly constructed objects that the garbage
collector has never examined. Figure 21-4 shows a newly started application with five objects allo-
cated (A through E). After a while, objects C and E become unreachable.

A B D

Generation 0

EC

FIGURE 21-4  A newly initialized heap containing some objects, all in generation 0. No collections have
occurred yet.

When the CLR initializes, it selects a budget size (in kilobytes) for generation 0. So if allocating a
new object causes generation 0 to surpass its budget, a garbage collection must start. Let’s say that
objects A through E fill all of generation 0. When object F is allocated, a garbage collection must start.

514	 PART IV  Core Facilities

The garbage collector will determine that objects C and E are garbage and will compact object D, caus-
ing it to be adjacent to object B. The objects that survive the garbage collection (objects A, B, and D)
are said to be in generation 1. Objects in generation 1 have been examined by the garbage collector
once. The heap now looks like Figure 21-5.

A B D

Gener-
ation 1

Generation 0

FIGURE 21-5  After one collection, generation 0 survivors are promoted to generation 1; generation 0 is empty.

After a garbage collection, generation 0 contains no objects. As always, new objects will be al-
located in generation 0. Figure 21-6 shows the application running and allocating objects F through
K. In addition, while the application was running, objects B, H, and J became unreachable and should
have their memory reclaimed at some point.

A B D

Gener-
ation 1

Generation 0

F G H I J K

FIGURE 21-6  New objects are allocated in generation 0; generation 1 has some garbage.

Now let’s say that attempting to allocate object L would put generation 0 over its budget. Because
generation 0 has reached its budget, a garbage collection must start. When starting a garbage col-
lection, the garbage collector must decide which generations to examine. Earlier, I said that when the
CLR initializes, it selects a budget for generation 0. Well, it also selects a budget for generation 1.

When starting a garbage collection, the garbage collector also sees how much memory is occu-
pied by generation 1. In this case, generation 1 occupies much less than its budget, so the garbage
collector examines only the objects in generation 0. Look again at the assumptions that the genera-
tional garbage collector makes. The first assumption is that newly created objects have a short life-
time. So generation 0 is likely to have a lot of garbage in it, and collecting generation 0 will therefore
reclaim a lot of memory. The garbage collector will just ignore the objects in generation 1, which will
speed up the garbage collection process.

Obviously, ignoring the objects in generation 1 improves the performance of the garbage collec-
tor. However, the garbage collector improves performance more because it doesn’t traverse every
object in the managed heap. If a root or an object refers to an object in an old generation, the gar-
bage collector can ignore any of the older objects’ inner references, decreasing the amount of time
required to build the graph of reachable objects. Of course, it’s possible that an old object’s field re-
fers to a new object. To ensure that the updated fields of these old objects are examined, the garbage
collector uses a mechanism internal to the JIT compiler that sets a bit when an object’s reference field
changes. This support lets the garbage collector know which old objects (if any) have been written to

	 CHAPTER 21  The Managed Heap and Garbage Collection	 515

because the last collection. Only old objects that have had fields change need to be examined to see
whether they refer to any new object in generation 0.2

Note  Microsoft’s performance tests show that it takes less than 1 millisecond to perform a
garbage collection of generation 0. Microsoft’s goal is to have garbage collections take no
more time than an ordinary page fault.

A generational garbage collector also assumes that objects that have lived a long time will con-
tinue to live. So it’s likely that the objects in generation 1 will continue to be reachable from the ap-
plication. Therefore, if the garbage collector were to examine the objects in generation 1, it probably
wouldn’t find a lot of garbage. As a result, it wouldn’t be able to reclaim much memory. So it is likely
that collecting generation 1 is a waste of time. If any garbage happens to be in generation 1, it just
stays there. The heap now looks like Figure 21-7.

A B D

Generation 1 Generation 0

F G I K

FIGURE 21-7  After two collections, generation 0 survivors are promoted to generation 1 (growing the size of
generation 1); generation 0 is empty.

As you can see, all of the generation 0 objects that survived the collection are now part of genera-
tion 1. Because the garbage collector didn’t examine generation 1, object B didn’t have its memory
reclaimed even though it was unreachable at the time of the last garbage collection. Again, after a
collection, generation 0 contains no objects and is where new objects will be placed. In fact, let’s say
that the application continues running and allocates objects L through O. And while running, the
application stops using objects G, L, and M, making them all unreachable. The heap now looks like
Figure 21-8.

A B D

Generation 1 Generation 0

F G I K L M N O

FIGURE 21-8  New objects are allocated in generation 0; generation 1 has more garbage.

Let’s say that allocating object P causes generation 0 to exceed its budget, causing a garbage
collection to occur. Because the memory occupied by all of the objects in generation 1 is less than its

2	For the curious, here are some more details about this. When the JIT compiler produces native code that modifies a ref-
erence field inside an object, the native code includes a call to a write barrier method. This write barrier method
checks whether the object whose field is being modified is in generation 1 or 2 and if it is, the write barrier code sets
a bit in what is called the card table. The card table has 1 bit for every 128-byte range of data in the heap. When the next
GC starts, it scans the card table to know which objects in generations 1 and 2 have had their fields changed because the
last GC. If any of these modified objects refer to an object in generation 0, then the generation 0 objects survive the col-
lection. After the GC, the card table is reset to all zeroes. The write barrier code causes a slight performance hit when
writing to a reference field in an object (as opposed to a local variable or static field) and that performance hit is slightly
worse if that object is in generation 1 or 2.

516	 PART IV  Core Facilities

budget, the garbage collector again decides to collect only generation 0, ignoring the unreachable
objects in generation 1 (objects B and G). After the collection, the heap looks like Figure 21-9.

A B D

Generation 1 Generation 0

F G I K N O

FIGURE 21-9  After three collections, generation 0 survivors are promoted to generation 1 (growing the size of
generation 1 again); generation 0 is empty.

In Figure 21-9, you see that generation 1 keeps growing slowly. In fact, let’s say that generation 1
has now grown to the point in which all of the objects in it occupy its full budget. At this point, the
application continues running (because a garbage collection just finished) and starts allocating ob-
jects P through S, which fill generation 0 up to its budget. The heap now looks like Figure 21-10.

A B D

Generation 1 Generation 0

F G I K P Q R SN O

FIGURE 21-10  New objects are allocated in generation 0; generation 1 has more garbage.

When the application attempts to allocate object T, generation 0 is full, and a garbage collection
must start. This time, however, the garbage collector sees that the objects in generation 1 are occupying
so much memory that generation 1’s budget has been reached. Over the several generation 0 collec-
tions, it’s likely that a number of objects in generation 1 have become unreachable (as in our example).
So this time, the garbage collector decides to examine all of the objects in generation 1 and generation
0. After both generations have been garbage collected, the heap now looks like Figure 21-11.

D

Generation 2 Generation 0

F I Q SN O

Gener-
ation 1

FIGURE 21-11  After four collections: generation 1 survivors are promoted to generation 2, generation 0 survivors
are promoted to generation 1, and generation 0 is empty.

As before, any objects that were in generation 0 that survived the garbage collection are now in
generation 1; any objects that were in generation 1 that survived the collection are now in generation
2. As always, generation 0 is empty immediately after a garbage collection and is where new objects
will be allocated. Objects in generation 2 are objects that the garbage collector has examined two or
more times. There might have been several collections, but the objects in generation 1 are examined
only when generation 1 reaches its budget, which usually requires several garbage collections of
generation 0.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 517

The managed heap supports only three generations: generation 0, generation 1, and genera-
tion 2; there is no generation 3.3 When the CLR initializes, it selects budgets for all three generations.
However, the CLR’s garbage collector is a self-tuning collector. This means that the garbage collector
learns about your application’s behavior whenever it performs a garbage collection. For example, if
your application constructs a lot of objects and uses them for a very short period of time, it’s pos-
sible that garbage collecting generation 0 will reclaim a lot of memory. In fact, it’s possible that the
memory for all objects in generation 0 can be reclaimed.

If the garbage collector sees that there are very few surviving objects after collecting generation 0,
it might decide to reduce the budget of generation 0. This reduction in the allotted space will mean
that garbage collections occur more frequently but will require less work for the garbage collector, so
your process’s working set will be small. In fact, if all objects in generation 0 are garbage, a garbage
collection doesn’t have to compact any memory; it can simply set NextObjPtr back to the begin-
ning of generation 0, and then the garbage collection is performed. Wow, this is a fast way to reclaim
memory!

Note  The garbage collector works extremely well for applications with threads that sit
idle at the top of their stack most of the time. Then, when the thread has something to do,
it wakes up, creates a bunch of short-lived objects, returns, and then goes back to sleep.
Many applications follow this architecture. For example, GUI applications tend to have the
GUI thread sitting in a message loop most of its life. Occasionally, the user generates some
input (like a touch, mouse, or keyboard event), the thread wakes up, processes the input
and returns back to the message pump. Most objects created to process the input are
probably garbage now.

Similarly, server applications tend to have thread pool threads sitting in the pool waiting
for client requests to come in. When a client request comes in, new objects are created to
perform work on behalf of the client request. When the result is sent back to the client, the
thread returns to the thread pool and all the objects it created are garbage now.

On the other hand, if the garbage collector collects generation 0 and sees that there are a lot of
surviving objects, not a lot of memory was reclaimed in the garbage collection. In this case, the gar-
bage collector will grow generation 0’s budget. Now, fewer collections will occur, but when they do,
a lot more memory should be reclaimed. By the way, if insufficient memory has been reclaimed after
a collection, the garbage collector will perform a full collection before throwing an OutOfMemory­
Exception.

Throughout this discussion, I’ve been talking about how the garbage collector dynamically modi-
fies generation 0’s budget after every collection. But the garbage collector also modifies the budgets
of generation 1 and generation 2 by using similar heuristics. When these generations are garbage
collected, the garbage collector again sees how much memory is reclaimed and how many objects
survived. Based on the garbage collector’s findings, it might grow or shrink the thresholds of these

3	 The System.GC class’s static MaxGeneration method returns 2.

518	 PART IV  Core Facilities

generations as well to improve the overall performance of the application. The end result is that the
garbage collector fine-tunes itself automatically based on the memory load required by your applica-
tion—this is very cool!

The following GCNotification class raises an event whenever a generation 0 or generation 2
collection occurs. With these events, you could have the computer beep whenever a collection occurs
or you calculate how much time passes between collections, how much memory is allocated between
collections, and more. With this class, you could easily instrument your application to get a better
understanding of how your application uses memory.

public static class GCNotification {
 private static Action<Int32> s_gcDone = null; // The event's field

 public static event Action<Int32> GCDone {
 add {
 // If there were no registered delegates before, start reporting notifications now
 if (s_gcDone == null) { new GenObject(0); new GenObject(2); }
 s_gcDone += value;
 }
 remove { s_gcDone -= value; }
 }

 private sealed class GenObject {
 private Int32 m_generation;
 public GenObject(Int32 generation) { m_generation = generation; }
 ~GenObject() { // This is the Finalize method
 // If this object is in the generation we want (or higher),
 // notify the delegates that a GC just completed
 if (GC.GetGeneration(this) >= m_generation) {
 Action<Int32> temp = Volatile.Read(ref s_gcDone);
 if (temp != null) temp(m_generation);
 }

 // Keep reporting notifications if there is at least one delegate registered,
 // the AppDomain isn't unloading, and the process isn’t shutting down
 if ((s_gcDone != null)
 && !AppDomain.CurrentDomain.IsFinalizingForUnload()
 && !Environment.HasShutdownStarted) {
 // For Gen 0, create a new object; for Gen 2, resurrect the object
 // & let the GC call Finalize again the next time Gen 2 is GC'd
 if (m_generation == 0) new GenObject(0);
 else GC.ReRegisterForFinalize(this);
 } else { /* Let the objects go away */ }
 }
 }
}

	 CHAPTER 21  The Managed Heap and Garbage Collection	 519

Garbage Collection Triggers
As you know, the CLR triggers a GC when it detects that generation 0 has filled its budget. This is the
most common trigger of a GC; however, there are additional GC triggers as listed here:

■■ Code explicitly calls System.GC’s static Collect method  Code can explicitly request that
the CLR perform a collection. Although Microsoft strongly discourages such requests, at times
it might make sense for an application to force a collection. I discuss this more in the “Forcing
Garbage Collections” section later in this chapter.

■■ Windows is reporting low memory conditions  The CLR internally uses the Win32 Create­
MemoryResourceNotification and QueryMemoryResourceNotification functions to
monitor system memory overall. If Windows reports low memory, the CLR will force a garbage
collection in an effort to free up dead objects to reduce the size of a process’s working set.

■■ The CLR is unloading an AppDomain  When an AppDomain unloads, the CLR considers
nothing in the AppDomain to be a root, and a garbage collection consisting of all generations
is performed. I’ll discuss AppDomains in Chapter 22, “CLR Hosting and AppDomains.”

■■ The CLR is shutting down  The CLR shuts down when a process terminates normally (as op-
posed to an external shutdown via Task Manager, for example). During this shutdown, the CLR
considers nothing in the process to be a root; it allows objects a chance to clean up but the
CLR does not attempt to compact or free memory because the whole process is terminating,
and Windows will reclaim all of the processes’ memory.

Large Objects
There is one more performance improvement you might want to be aware of. The CLR considers each
single object to be either a small object or a large object. So far, in this chapter, I’ve been focusing
on small objects. Today, a large object is 85,000 bytes or more in size.4 The CLR treats large objects
slightly differently than how it treats small objects:

■■ Large objects are not allocated within the same address space as small objects; they are al-
located elsewhere within the process’ address space.

■■ Today, the GC doesn’t compact large objects because of the time it would require to move
them in memory. For this reason, address space fragmentation can occur between large
objects within the process leading to an OutOfMemoryException being thrown. In a future
version of the CLR, large objects may participate in compaction.

4	 In the future, the CLR could change the number of bytes required to consider an object to be a large object. Do not
count 85,000 being a constant.

520	 PART IV  Core Facilities

■■ Large objects are immediately considered to be part of generation 2; they are never in gen-
eration 0 or 1. So, you should create large objects only for resources that you need to keep
alive for a long time. Allocating short-lived large objects will cause generation 2 to be col-
lected more frequently, hurting performance. Usually large objects are large strings (like XML
or JSON) or byte arrays that you use for I/O operations, such as reading bytes from a file or
network into a buffer so you can process it.

For the most part, large objects are transparent to you; you can simply ignore that they exist and
that they get special treatment until you run into some unexplained situation in your program (like
why you’re getting address space fragmentation).

Garbage Collection Modes
When the CLR starts, it selects a GC mode, and this mode cannot change during the lifetime of the
process. There are two basic GC modes:

■■ Workstation  This mode fine-tunes the garbage collector for client-side applications. It is op-
timized to provide for low-latency GCs in order to minimize the time an application’s threads
are suspended so as not to frustrate the end user. In this mode, the GC assumes that other
applications are running on the machine and does not hog CPU resources.

■■ Server  This mode fine-tunes the garbage collector for server-side applications. It is opti-
mized for throughput and resource utilization. In this mode, the GC assumes no other appli-
cations (client or server) are running on the machine, and it assumes that all the CPUs on the
machine are available to assist with completing the GC. This GC mode causes the managed
heap to be split into several sections, one per CPU. When a garbage collection is initiated, the
garbage collector dedicates one special thread per CPU; each thread collects its own section
in parallel with the other threads. Parallel collections work well for server applications in which
the worker threads tend to exhibit uniform behavior. This feature requires the application to
be running on a computer with multiple CPUs so that the threads can truly be working simul-
taneously to attain a performance improvement.

By default, applications run with the Workstation GC mode. A server application (such as ASP.NET
or Microsoft SQL Server) that hosts the CLR can request the CLR to load the Server GC. However, if the
server application is running on a uniprocessor machine, then the CLR will always use Workstation GC
mode. A stand-alone application can tell the CLR to use the Server GC mode by creating a configura-
tion file (as discussed in Chapter 2, “Building, Packaging, Deploying, and Administering Applications
and Types,” and Chapter 3, “Shared Assemblies and Strongly Named Assemblies”) that contains a
gcServer element for the application. Here’s an example of a configuration file.

<configuration>
 <runtime>
 <gcServer enabled="true"/>
 </runtime>
</configuration>

	 CHAPTER 21  The Managed Heap and Garbage Collection	 521

When an application is running, it can ask the CLR if it is running in the Server GC mode by query-
ing the GCSettings class’s IsServerGC read-only Boolean property.

using System;
using System.Runtime; // GCSettings is in this namespace

public static class Program {
 public static void Main() {
 Console.WriteLine("Application is running with server GC=" + GCSettings.IsServerGC);
 }
}

In addition to the two modes, the GC can run in two sub-modes: concurrent (the default) or non-
concurrent. In concurrent mode, the GC has an additional background thread that marks objects
concurrently while the application runs. When a thread allocates an object that pushes generation 0
over its budget, the GC first suspends all threads and then determines which generations to collect. If
the garbage collector needs to collect generation 0 or 1, it proceeds as normal. However, if genera-
tion 2 needs collecting, the size of generation 0 will be increased beyond its budget to allocate the
new object, and then the application’s threads are resumed.

While the application’s threads are running, the garbage collector has a normal priority back-
ground thread that finds unreachable objects. Once found, the garbage collector suspends all
threads again and decides whether to compact memory. If the garbage collector decides to com-
pact memory, memory is compacted, root references are fixed up, and the application’s threads are
resumed. This garbage collection takes less time than usual because the set of unreachable objects
has already been built. However, the garbage collector might decide not to compact memory; in fact,
the garbage collector favors this approach. If you have a lot of free memory, the garbage collector
won’t compact the heap; this improves performance but grows your application’s working set. When
using the concurrent garbage collector, you’ll typically find that your application is consuming more
memory than it would with the non-concurrent garbage collector.

You can tell the CLR not to use the concurrent collector by creating a configuration file for the ap-
plication that contains a gcConcurrent element. Here’s an example of a configuration file.

<configuration>
 <runtime>
 <gcConcurrent enabled="false"/>
 </runtime>
</configuration>

The GC mode is configured for a process and it cannot change while the process runs. However,
your application can have some control over the garbage collection by using the GCSettings class’s
GCLatencyMode property. This read/write property can be set to any of the values in the GCLatency­
Mode enumerated type, as shown in Table 21-1.

The LowLatency mode requires some additional explanation. Typically, you would set this mode,
perform a short-term, time-sensitive operation, and then set the mode back to either Batch or In­
teractive. While the mode is set to LowLatency, the GC will really avoid doing any generation 2

522	 PART IV  Core Facilities

collections because these could take a long time. Of course, if you call GC.Collect(), then genera-
tion 2 still gets collected. Also, the GC will perform a generation 2 collection if Windows tells the CLR
that system memory is low (see the “Garbage Collection Triggers” section earlier in this chapter).

TABLE 21-1  Symbols Defined by the GCLatencyMode Enumerated Type

Symbol Name Description

Batch (default for the
Server GC mode)

Turns off the concurrent GC.

Interactive (default for
the Workstation GC mode)

Turns on the concurrent GC.

LowLatency Use this latency mode during short-term, time-sensitive operations (like drawing ani-
mations) where a generation 2 collection might be disruptive.

SustainedLowLatency Use this latency mode to avoid long GC pauses for the bulk of your application’s execu-
tion. This setting prevents all blocking generation 2 collections from occurring as long
as memory is available. In fact, users of these applications would prefer to install more
RAM in the machine in order to avoid GC pauses. A stock market application that must
respond immediately to price changes is an example of this kind of application.

Under LowLatency mode, it is more likely that your application could get an OutOfMemory­
Exception thrown. Therefore, stay in this mode for as short a time as possible, avoid allocating many
objects, avoid allocating large objects, and set the mode back to Batch or Interactive by using a
constrained execution region (CER), as discussed in Chapter 20, “Exceptions and State Management.”
Also, remember that the latency mode is a process-wide setting and threads may be running concur-
rently. These other threads could even change this setting while another thread is using it, so you may
want to update some kind of counter (manipulated via Interlocked methods) when you have mul-
tiple threads manipulating this setting. Here is some code showing how to use the LowLatency mode.

private static void LowLatencyDemo() {
 GCLatencyMode oldMode = GCSettings.LatencyMode;
 System.Runtime.CompilerServices.RuntimeHelpers.PrepareConstrainedRegions();
 try {
 GCSettings.LatencyMode = GCLatencyMode.LowLatency;
 // Run your code here...
 }
 finally {
 GCSettings.LatencyMode = oldMode;
 }
}

Forcing Garbage Collections
The System.GC type allows your application some direct control over the garbage collector. For
starters, you can query the maximum generation supported by the managed heap by reading the
GC.MaxGeneration property; this property always returns 2.

You can also force the garbage collector to perform a collection by calling GC class’s Collect
method, optionally passing in a generation to collect up to, a GCCollectionMode, and a Boolean

	 CHAPTER 21  The Managed Heap and Garbage Collection	 523

indicating whether you want to perform a blocking (non-current) or background (concurrent) collec-
tion. Here is the signature of the most complex overload of the Collect method.

void Collect(Int32 generation, GCCollectionMode mode, Boolean blocking);

The GCCollectionMode type is an enum whose values are described in Table 21-2.

TABLE 21-2  Symbols Defined by the GCCollectionMode Enumerated Type

Symbol Name Description

Default The same as calling GC.Collect with no flag. Today, this is the same as passing
Forced, but this may change in a future version of the CLR.

Forced Forces a collection to occur immediately for all generations up to and including
the specified generation.

Optimized The garbage collector will only perform a collection if the collection would be
productive either by freeing a lot of memory or by reducing fragmentation. If the
garbage collection would not be productive, then the call has no effect

Under most circumstances, you should avoid calling any of the Collect methods; it’s best
just to let the garbage collector run on its own accord and fine-tune its generation budgets based on
actual application behavior. However, if you’re writing a console user interface (CUI) or GUI applica-
tion, your application code owns the process and the CLR in that process. For these application types,
you might want to suggest a garbage collection to occur at certain times using a GCCollectionMode
of Optimized. Normally, modes of Default and Forced are used for debugging, testing, and look-
ing for memory leaks.

For example, you might consider calling the Collect method if some non-recurring event has just
occurred that has likely caused a lot of old objects to die. The reason that calling Collect in such a
circumstance may not be so bad is that the GC’s predictions of the future based on the past are not
likely to be accurate for non-recurring events. For example, it might make sense for your applica-
tion to force a full GC of all generations after your application initializes or after the user saves a data
file. Because calling Collect causes the generation budgets to adjust, do not call Collect to try to
improve your application’s response time; call it to reduce your process’s working set.

For some applications (especially server applications that tend to keep a lot of objects in memory),
the time required for the GC to do a full collection that includes generation 2 can be excessive. In
fact, if the collection takes a very long time to complete, then client requests might time out. To help
these kinds of applications, the GC class offers a RegisterForFullGCNotification method. Using
this method and some additional helper methods (WaitForFullGCApproach, WaitForFullGC­
Complete, and CancelFullGCNotification), an application can now be notified when the garbage
collector is getting close to performing a full collection. The application can then call GC.Collect
to force a collection at a more opportune time, or the application could communicate with another
server to better load balance the client requests. For more information, examine these methods and
the “Garbage Collection Notifications” topic in the Microsoft .NET Framework SDK documentation.
Note that you should always call the WaitForFullGCApproach and WaitForFullGCComplete
methods in pairs because the CLR handles them as pairs internally.

524	 PART IV  Core Facilities

Monitoring Your Application’s Memory Usage
Within a process, there are a few methods that you can call to monitor the garbage collector. Specifi-
cally, the GC class offers the following static methods, which you can call to see how many collections
have occurred of a specific generation or how much memory is currently being used by objects in the
managed heap.

Int32 CollectionCount(Int32 generation);
Int64 GetTotalMemory(Boolean forceFullCollection);

To profile a particular code block, I have frequently written code to call these methods before and
after the code block and then calculate the difference. This gives me a very good indication of how
my code block has affected my process’s working set and indicates how many garbage collections
occurred while executing the code block. If the numbers are high, I know to spend more time tuning
the algorithms in my code block.

You can also see how much memory is being used by individual AppDomains as opposed to
the whole process. For more information about this, see the “AppDomain Monitoring” section in
Chapter 22.

When you install the .NET Framework, it installs a set of performance counters that offer a lot of
real-time statistics about the CLR’s operations. These statistics are visible via the PerfMon.exe tool or
the System Monitor ActiveX control that ships with Windows. The easiest way to access the System
Monitor control is to run PerfMon.exe and click the + toolbar button, which causes the Add Counters
dialog box shown in Figure 21-12 to appear.

FIGURE 21-12  PerfMon.exe showing the .NET CLR Memory counters.

To monitor the CLR’s garbage collector, select the .NET CLR Memory performance object. Then
select a specific application from the instance list box. Finally, select the set of counters that you’re
interested in monitoring, click Add, and then click OK. At this point, the System Monitor will graph the

	 CHAPTER 21  The Managed Heap and Garbage Collection	 525

selected real-time statistics. For an explanation of a particular counter, select the desired counter and
then select the Show Description check box.

Another great tool for analyzing the memory and performance of your application is PerfView. This
tool can collect Event Tracing for Windows (ETW) logs and process them. The best way to acquire this
tool is for you to search the web for PerfView. Finally, you should look into using the SOS Debugging
Extension (SOS.dll), which can often offer great assistance when debugging memory problems and
other CLR problems. For memory-related actions, the SOS Debugging Extension allows you to see how
much memory is allocated within the process to the managed heap, displays all objects registered for
finalization in the finalization queue, displays the entries in the GCHandle table per AppDomain or for
the entire process, shows the roots that are keeping an object alive in the heap, and more.

Working with Types Requiring Special Cleanup

At this point, you should have a basic understanding of garbage collection and the managed heap,
including how the garbage collector reclaims an object’s memory. Fortunately for us, most types
need only memory to operate. However, some types require more than just memory to be useful;
some types require the use of a native resource in addition to memory.

The System.IO.FileStream type, for example, needs to open a file (a native resource) and store
the file’s handle. Then the type’s Read and Write methods use this handle to manipulate the file. Sim-
ilarly, the System.Threading.Mutex type opens a Windows mutex kernel object (a native resource)
and stores its handle, using it when the Mutex’s methods are called.

If a type wrapping a native resource gets GC’d, the GC will reclaim the memory used by the object
in the managed heap; but the native resource, which the GC doesn’t know anything about, will be
leaked. This is clearly not desirable, so the CLR offers a mechanism called finalization. Finalization al-
lows an object to execute some code after the object has been determined to be garbage but before
the object’s memory is reclaimed from the managed heap. All types that wrap a native resource—
such as a file, network connection, socket, or mutex—support finalization. When the CLR determines
that one of these objects is no longer reachable, the object gets to finalize itself, releasing the native
resource it wraps, and then, later, the GC will reclaim the object from the managed heap.

System.Object, the base class of everything, defines a protected and virtual method called
Finalize. When the garbage collector determines that an object is garbage, it calls the object’s Fi­
nalize method (if it is overridden). Microsoft’s C# team felt that Finalize methods were a special
kind of method requiring special syntax in the programming language (similar to how C# requires
special syntax to define a constructor). So, in C#, you must define a Finalize method by placing a
tilde symbol (~) in front of the class name, as shown in the following code sample.

internal sealed class SomeType {
 // This is the Finalize method
 ~SomeType() {
 // The code here is inside the Finalize method
 }
}

526	 PART IV  Core Facilities

If you were to compile this code and examine the resulting assembly with ILDasm.exe, you’d see
that the C# compiler did, in fact, emit a protected override method named Finalize into the
module’s metadata. If you examined the Finalize method’s IL code, you’d also see that the code
inside the method’s body is emitted into a try block, and that a call to base.Finalize is emitted
into a finally block.

Important  If you’re familiar with C++, you’ll notice that the special syntax C# requires for
defining a Finalize method looks just like the syntax you’d use to define a C++ destruc-
tor. In fact, the C# Programming Language Specification calls this method a destructor.
However, a Finalize method doesn’t work like a C++ destructor at all, and this has caused
a great deal of confusion for developers migrating from one language to another.

The problem is that developers mistakenly believe that using the C# destructor syntax
means that the type’s objects will be deterministically destructed when they go out of lexi-
cal scope, just as they would be in C++. However, the CLR doesn’t support deterministic
destruction, preventing C# from providing this mechanism.

Finalize methods are called at the completion of a garbage collection on objects that the GC
has determined to be garbage. This means that the memory for these objects cannot be reclaimed
right away because the Finalize method might execute code that accesses a field. Because a finaliz-
able object must survive the collection, it gets promoted to another generation, forcing the object
to live much longer than it should. This is not ideal in terms of memory consumption and is why you
should avoid finalization when possible. To make matters worse, when finalizable objects get pro-
moted, any object referred to by its fields also get promoted because they must continue to live too.
So, try to avoid defining finalizable objects with reference type fields.

Furthermore, be aware of the fact that you have no control over when the Finalize method will
execute. Finalize methods run when a garbage collection occurs, which may happen when your
application requests more memory. Also, the CLR doesn’t make any guarantees as to the order in
which Finalize methods are called. So, you should avoid writing a Finalize method that accesses
other objects whose type defines a Finalize method; those other objects could have been final-
ized already. However, it is perfectly OK to access value type instances or reference type objects that
do not define a Finalize method. You also need to be careful when calling static methods because
these methods can internally access objects that have been finalized, causing the behavior of the
static method to become unpredictable.

The CLR uses a special, high-priority dedicated thread to call Finalize methods to avoid some
deadlock scenarios that could occur otherwise.5 If a Finalize method blocks (for example, enters
an infinite loop or waits for an object that is never signaled), this special thread can’t call any more
Finalize methods. This is a very bad situation because the application will never be able to reclaim
the memory occupied by the finalizable objects—the application will leak memory as long as it runs.

5	 A future version of the CLR might use multiple finalizer threads to improve performance.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 527

If a Finalize method throws an unhandled exception, then the process terminates; there is no way
to catch this exception.

So, as you can see, there are a lot of caveats related to Finalize methods and they must be used
with caution. Specifically, they are designed for releasing native resources. To simplify working with
them, it is highly recommended that developers avoid overriding Object’s Finalize method; in-
stead, use helper classes that Microsoft now provides in the Framework Class Library (FCL). The helper
classes override Finalize and add some special CLR magic I’ll talk about as we go on. You will then
derive your own classes from the helper classes and inherit the CLR magic.

If you are creating a managed type that wraps a native resource, you should first derive a class
from a special base class called System.Runtime.InteropServices.SafeHandle, which looks like
the following (I’ve added comments in the methods to indicate what they do).

public abstract class SafeHandle : CriticalFinalizerObject, IDisposable {
 // This is the handle to the native resource
 protected IntPtr handle;

 protected SafeHandle(IntPtr invalidHandleValue, Boolean ownsHandle) {
 this.handle = invalidHandleValue;
 // If ownsHandle is true, then the native resource is closed when
 // this SafeHandle-derived object is collected
 }

 protected void SetHandle(IntPtr handle) {
 this.handle = handle;
 }

 // You can explicitly release the resource by calling Dispose
 // This is the IDisposable interface’s Dispose method
 public void Dispose() { Dispose(true); }

 // The default Dispose implementation (shown here) is exactly what you want.
 // Overriding this method is strongly discouraged.
 protected virtual void Dispose(Boolean disposing) {
 // The default implementation ignores the disposing argument.
 // If resource already released, return
 // If ownsHandle is false, return
 // Set flag indicating that this resource has been released
 // Call virtual ReleaseHandle method
 // Call GC.SuppressFinalize(this) to prevent Finalize from being called
 // If ReleaseHandle returned true, return
 // If we get here, fire ReleaseHandleFailed Managed Debugging Assistant (MDA)
 }

 // The default Finalize implementation (shown here) is exactly what you want.
 // Overriding this method is very strongly discouraged.
 ~SafeHandle() { Dispose(false); }

 // A derived class overrides this method to implement the code that releases the resource
 protected abstract Boolean ReleaseHandle();

 public void SetHandleAsInvalid() {

528	 PART IV  Core Facilities

 // Set flag indicating that this resource has been released
 // Call GC.SuppressFinalize(this) to prevent Finalize from being called
 }

 public Boolean IsClosed {
 get {
 // Returns flag indicating whether resource was released
 }
 }

 public abstract Boolean IsInvalid {
 // A derived class overrides this property.
 // The implementation should return true if the handle's value doesn't
 // represent a resource (this usually means that the handle is 0 or -1)
 get;
 }

 // These three methods have to do with security and reference counting;
 // I'll talk about them at the end of this section
 public void DangerousAddRef(ref Boolean success) {...}
 public IntPtr DangerousGetHandle() {...}
 public void DangerousRelease() {...}
}

The first thing to notice about the SafeHandle class is that it is derived from CriticalFinalizer­
Object, which is defined in the System.Runtime.ConstrainedExecution namespace. The CLR
treats this class and classes derived from it in a very special manner. In particular, the CLR endows this
class with three cool features:

■■ The first time an object of any CriticalFinalizerObject-derived type is constructed,
the CLR immediately JIT-compiles all of the Finalize methods in the inheritance hierarchy.
Compiling these methods upon object construction guarantees that the native resource will
be released when the object is determined to be garbage. Without this eager compiling of the
Finalize method, it would be possible to allocate the native resource and use it, but not to
get rid of it. Under low memory conditions, the CLR might not be able to find enough memory
to compile the Finalize method, which would prevent it from executing, causing the native
resource to leak. Or the resource might not be freed if the Finalize method contained code
that referred to a type in another assembly, and the CLR failed to locate this other assembly.

■■ The CLR calls the Finalize method of CriticalFinalizerObject-derived types after
calling the Finalize methods of non–CriticalFinalizerObject-derived types. This
ensures that managed resource classes that have a Finalize method can access Critical­
FinalizerObject-derived objects within their Finalize methods successfully. For example,
the FileStream class’s Finalize method can flush data from a memory buffer to an under-
lying disk with confidence that the disk file has not been closed yet.

■■ The CLR calls the Finalize method of CriticalFinalizerObject-derived types if an
AppDomain is rudely aborted by a host application (such as SQL Server or ASP.NET). This also
is part of ensuring that the native resource is released even in a case in which a host applica-
tion no longer trusts the managed code running inside of it.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 529

The second thing to notice about SafeHandle is that the class is abstract; it is expected that an-
other class will be derived from SafeHandle, and this class will provide a constructor that invokes the
protected constructor, the abstract method ReleaseHandle, and the abstract IsInvalid property
get accessor method.

Most native resources are manipulated with handles (32-bit values on a 32-bit system and 64-bit
values on a 64-bit system). So the SafeHandle class defines a protected IntPtr field called handle.
In Windows, most handles are invalid if they have a value of 0 or -1. The Microsoft.Win32.Safe­
Handles namespace contains another helper class called SafeHandleZeroOrMinusOneIsInvalid,
which looks like this.

public abstract class SafeHandleZeroOrMinusOneIsInvalid : SafeHandle {
 protected SafeHandleZeroOrMinusOneIsInvalid(Boolean ownsHandle)
 : base(IntPtr.Zero, ownsHandle) {
 }

 public override Boolean IsInvalid {
 get {
 if (base.handle == IntPtr.Zero) return true;
 if (base.handle == (IntPtr) (-1)) return true;
 return false;
 }
 }
}

Again, you’ll notice that the SafeHandleZeroOrMinusOneIsInvalid class is abstract, and
therefore, another class must be derived from this one to override the protected constructor and the
abstract method ReleaseHandle. The .NET Framework provides just a few public classes derived
from SafeHandleZeroOrMinusOneIsInvalid, including SafeFileHandle, SafeRegistryHandle,
SafeWaitHandle, and SafeMemoryMappedViewHandle. Here is what the SafeFileHandle class
looks like.

public sealed class SafeFileHandle : SafeHandleZeroOrMinusOneIsInvalid {
 public SafeFileHandle(IntPtr preexistingHandle, Boolean ownsHandle)
 : base(ownsHandle) {
 base.SetHandle(preexistingHandle);
 }

 protected override Boolean ReleaseHandle() {
 // Tell Windows that we want the native resource closed.
 return Win32Native.CloseHandle(base.handle);
 }
}

The SafeWaitHandle class is implemented similarly to the SafeFileHandle class just shown. The
only reason why there are different classes with similar implementations is to achieve type safety; the
compiler won’t let you use a file handle as an argument to a method that expects a wait handle, and
vice versa. The SafeRegistryHandle class’s ReleaseHandle method calls the Win32 RegCloseKey
function.

530	 PART IV  Core Facilities

It would be nice if the .NET Framework included additional classes that wrap various native
resources. For example, one could imagine classes such as SafeProcessHandle, SafeThread­
Handle, SafeTokenHandle, SafeLibraryHandle (its ReleaseHandle method would call the
Win32 FreeLibrary function), SafeLocalAllocHandle (its ReleaseHandle method would call
the Win32 LocalFree function), and so on.

All of the classes just listed (and more) actually do ship with the Framework Class Library (FCL).
However, these classes are not publicly exposed; they are all internal to the assemblies that define
them. Microsoft didn’t expose these classes publicly because they didn’t want to document them
and do full testing of them. However, if you need any of these classes for your own work, I’d recom-
mend that you use a tool such as ILDasm.exe or some IL decompiler tool to extract the code for these
classes and integrate that code into your own project’s source code. All of these classes are trivial to
implement, and writing them yourself from scratch would also be quite easy.

The SafeHandle-derived classes are extremely useful because they ensure that the native re-
source is freed when a GC occurs. In addition to what we’ve already discussed, SafeHandle offers
two more capabilities. First, the CLR gives SafeHandle-derived types special treatment when used
in scenarios in which you are interoperating with native code. For example, let’s examine the follow-
ing code.

using System;
using System.Runtime.InteropServices;
using Microsoft.Win32.SafeHandles;

internal static class SomeType {
 [DllImport("Kernel32", CharSet=CharSet.Unicode, EntryPoint="CreateEvent")]
 // This prototype is not robust
 private static extern IntPtr CreateEventBad(
 IntPtr pSecurityAttributes, Boolean manualReset, Boolean initialState, String name);

 // This prototype is robust
 [DllImport("Kernel32", CharSet=CharSet.Unicode, EntryPoint="CreateEvent")]
 private static extern SafeWaitHandle CreateEventGood(
 IntPtr pSecurityAttributes, Boolean manualReset, Boolean initialState, String name);

 public static void SomeMethod() {
 IntPtr handle = CreateEventBad(IntPtr.Zero, false, false, null);
 SafeWaitHandle swh = CreateEventGood(IntPtr.Zero, false, false, null);
 }
}

You’ll notice that the CreateEventBad method is prototyped as returning an IntPtr, which will
return the handle back to managed code; however, interoperating with native code this way is not ro-
bust. You see, after CreateEventBad is called (which creates the native event resource), it is possible
that a ThreadAbortException could be thrown prior to the handle being assigned to the handle
variable. In the rare cases when this would happen, the managed code would leak the native resource.
The only way to get the event closed is to terminate the whole process.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 531

The SafeHandle class fixes this potential resource leak. Notice that the CreateEventGood
method is prototyped as returning a SafeWaitHandle (instead of an IntPtr). When CreateEvent­
Good is called, the CLR calls the Win32 CreateEvent function. As the CreateEvent function returns
to managed code, the CLR knows that SafeWaitHandle is derived from SafeHandle, causing the
CLR to automatically construct an instance of the SafeWaitHandle class on the managed heap,
passing in the handle value returned from CreateEvent. The constructing of the SafeWaitHandle
object and the assignment of the handle happen in native code now, which cannot be interrupted
by a ThreadAbortException. Now, it is impossible for managed code to leak this native resource.
Eventually, the SafeWaitHandle object will be garbage collected and its Finalize method will be
called, ensuring that the resource is released.

One last feature of SafeHandle-derived classes is that they prevent someone from trying to ex-
ploit a potential security hole. The problem is that one thread could be trying to use a native resource
while another thread tries to free the resource. This could manifest itself as a handle-recycling exploit.
The SafeHandle class prevents this security vulnerability by using reference counting. Internally, the
SafeHandle class defines a private field that maintains a count. When a SafeHandle-derived object
is set to a valid handle, the count is set to 1. Whenever a SafeHandle-derived object is passed as an
argument to a native method, the CLR knows to automatically increment the counter. Likewise, when
the native method returns to managed code, the CLR knows to decrement the counter. For example,
you would prototype the Win32 SetEvent function as follows.

[DllImport("Kernel32", ExactSpelling=true)]
private static extern Boolean SetEvent(SafeWaitHandle swh);

Now when you call this method passing in a reference to a SafeWaitHandle object, the CLR will
increment the counter just before the call and decrement the counter just after the call. Of course, the
manipulation of the counter is performed in a thread-safe fashion. How does this improve security?
Well, if another thread tries to release the native resource wrapped by the SafeHandle object, the
CLR knows that it cannot actually release it because the resource is being used by a native function.
When the native function returns, the counter is decremented to 0, and the resource will be released.

If you are writing or calling code to manipulate a handle as an IntPtr, you can access it out of a
SafeHandle object, but you should manipulate the reference counting explicitly. You accomplish this
via SafeHandle’s DangerousAddRef and DangerousRelease methods. You gain access to the raw
handle via the DangerousGetHandle method.

I would be remiss if I didn’t mention that the System.Runtime.InteropServices namespace
also defines a CriticalHandle class. This class works exactly as the SafeHandle class in all ways ex-
cept that it does not offer the reference-counting feature. The CriticalHandle class and the classes
derived from it sacrifice security for better performance when you use it (because counters don’t
get manipulated). As does SafeHandle, the CriticalHandle class has two types derived from it:
CriticalHandleMinusOneIsInvalid and CriticalHandleZeroOrMinusOneIsInvalid. Because
Microsoft favors a more secure system over a faster system, the class library includes no types derived
from either of these two classes. For your own work, I would recommend that you use Critical­
Handle-derived types only if performance is an issue. If you can justify reducing security, you can
switch to a CriticalHandle-derived type.

532	 PART IV  Core Facilities

Using a Type That Wraps a Native Resource
Now that you know how to define a SafeHandle-derived class that wraps a native resource, let’s take
a look at how a developer uses it. Let’s start by talking about the common System.IO.FileStream
class. The FileStream class offers the ability to open a file, read bytes from the file, write bytes
to the file, and close the file. When a FileStream object is constructed, the Win32 CreateFile
function is called, the returned handle is saved in a SafeFileHandle object, and a reference to this
object is maintained via a private field in the FileStream object. The FileStream class also of-
fers several additional properties (such as Length, Position, CanRead) and methods (such as Read,
Write, Flush).

Let’s say that you want to write some code that creates a temporary file, writes some bytes to the
file, and then deletes the file. You might start writing the code like this.

using System;
using System.IO;

public static class Program {
 public static void Main() {
 // Create the bytes to write to the temporary file.
 Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 };

 // Create the temporary file.
 FileStream fs = new FileStream("Temp.dat", FileMode.Create);

 // Write the bytes to the temporary file.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length);

 // Delete the temporary file.
 File.Delete("Temp.dat"); // Throws an IOException
 }
}

Unfortunately, if you build and run this code, it might work, but most likely it won’t. The problem is
that the call to File’s static Delete method requests that Windows delete a file while it is still open.
So Delete throws a System.IO.IOException exception with the following string message: The
process cannot access the file "Temp.dat" because it is being used by another

process.

Be aware that in some cases, the file might actually be deleted! If another thread somehow caused
a garbage collection to start after the call to Write and before the call to Delete, the FileStream’s
SafeFileHandle field would have its Finalize method called, which would close the file and allow
Delete to work. The likelihood of this situation is extremely rare, however, and therefore the previous
code will fail more than 99 percent of the time.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 533

Classes that allow the consumer to control the lifetime of native resources it wraps implement the
IDisposable interface, which looks like this.

public interface IDisposable {
 void Dispose();
}

Important  If a class defines a field in which the field’s type implements the dispose pat-
tern, the class itself should also implement the dispose pattern. The Dispose method
should dispose of the object referred to by the field. This allows someone using the class
to call Dispose on it, which in turn releases the resources used by the object itself.

Fortunately, the FileStream class implements the IDisposable interface and its implementation
internally calls Dispose on the FileStream object’s private SafeFileHandle field. Now, we can
modify our code to explicitly close the file when we want to as opposed to waiting for some GC to
happen in the future. Here’s the corrected source code.

using System;
using System.IO;

public static class Program {
 public static void Main() {
 // Create the bytes to write to the temporary file.
 Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 };

 // Create the temporary file.
 FileStream fs = new FileStream("Temp.dat", FileMode.Create);

 // Write the bytes to the temporary file.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length);

 // Explicitly close the file when finished writing to it.
 fs.Dispose();

 // Delete the temporary file.
 File.Delete("Temp.dat"); // This always works now.
 }
}

Now, when File’s Delete method is called, Windows sees that the file isn’t open and successfully
deletes it.

534	 PART IV  Core Facilities

Keep in mind that calling Dispose is not required to guarantee native resource cleanup. Native
resource cleanup will always happen eventually; calling Dispose lets you control when that cleanup
happens. Also, calling Dispose does not delete the managed object from the managed heap. The
only way to reclaim memory in the managed heap is for a garbage collection to kick in. This means
you can still call methods on the managed object even after you dispose of any native resources it
may have been using.

The following code calls the Write method after the file is closed, attempting to write more bytes
to the file. Obviously, the bytes can’t be written, and when the code executes, the second call to the
Write method throws a System.ObjectDisposedException exception with the following string
message: Cannot access a closed file.

using System;
using System.IO;

public static class Program {
 public static void Main() {
 // Create the bytes to write to the temporary file.
 Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 };

 // Create the temporary file.
 FileStream fs = new FileStream("Temp.dat", FileMode.Create);

 // Write the bytes to the temporary file.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length);

 // Explicitly close the file when finished writing to it.
 fs.Dispose();

 // Try to write to the file after closing it.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length); // Throws ObjectDisposedException

 // Delete the temporary file.
 File.Delete("Temp.dat");
 }
}

Note that no memory corruption occurs here because the memory for the FileStream object still
exists in the managed heap; it’s just that the object can’t successfully execute its methods after it is
explicitly disposed.

Important  When defining your own type that implements the IDisposable interface,
be sure to write code in all of your methods and properties to throw a System.Object­
DisposedException if the object has been explicitly cleaned up. A Dispose method
should never throw an exception; if it’s called multiple times, it should just return.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 535

Important  In general, I strongly discourage explicitly calling Dispose in your code. The
reason is that the CLR’s garbage collector is well written, and you should let it do its job.
The garbage collector knows when an object is no longer accessible from application code,
and only then will it collect the object.6 When application code calls Dispose, it is effec-
tively saying that it knows when the application no longer has a need for the object. For
many applications, it is impossible to know for sure when an object is no longer required.

For example, if you have code that constructs a new object, and you then pass a reference
to this object to another method, the other method could save a reference to the object
in some internal field variable (a root). There is no way for the calling method to know that
this has happened. Sure, the calling method can call Dispose, but later, some other code
might try to access the object, causing an ObjectDisposedException to be thrown. I
recommend that you call Dispose only at places in your code where you know you must
clean up the resource (as in the case of attempting to delete an open file).

Along the same lines, it is possible to have multiple threads call Dispose on a single object
simultaneously. However, the design guidelines state that Dispose does not have to be
thread-safe. The reason is because code should be calling Dispose only if the code knows
for a fact that no other thread is using the object.

The previous code examples show how to explicitly call a type’s Dispose method. If you decide to
call Dispose explicitly, I highly recommend that you place the call in an exception-handling finally
block. This way, the cleanup code is guaranteed to execute. So it would be better to write the previous
code example as follows.

using System;
using System.IO;

public static class Program {
 public static void Main() {
 // Create the bytes to write to the temporary file.
 Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 };

 // Create the temporary file.
 FileStream fs = new FileStream("Temp.dat", FileMode.Create);
 try {
 // Write the bytes to the temporary file.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length);
 }
 finally {
 // Explicitly close the file when finished writing to it.

6	 There are many nice features about a garbage collected system: no memory leaks, no memory corruption, no address
space fragmentation, and a reduced working set. And now, a new one: synchronization. That’s right, you can use the
GC as a thread synchronization mechanism. Question: How can you know when all threads are done using an object?
Answer: the GC finalizes the object. There is nothing wrong with taking advantage of all the GC features as you architect
your software.

536	 PART IV  Core Facilities

 if (fs != null) fs.Dispose();
 }

 // Delete the temporary file.
 File.Delete("Temp.dat");
 }
}

Adding the exception-handling code is the right thing to do, and you must have the diligence to
do it. Fortunately, the C# language provides a using statement, which offers a simplified syntax that
produces code identical to the code just shown. Here’s how the preceding code would be rewritten
using C#’s using statement.

using System;
using System.IO;

public static class Program {
 public static void Main() {
 // Create the bytes to write to the temporary file.
 Byte[] bytesToWrite = new Byte[] { 1, 2, 3, 4, 5 };

 // Create the temporary file.
 using (FileStream fs = new FileStream("Temp.dat", FileMode.Create)) {
 // Write the bytes to the temporary file.
 fs.Write(bytesToWrite, 0, bytesToWrite.Length);
 }

 // Delete the temporary file.
 File.Delete("Temp.dat");
 }
}

In the using statement, you initialize an object and save its reference in a variable. Then you ac-
cess the variable via code contained inside using’s braces. When you compile this code, the compiler
automatically emits the try and finally blocks. Inside the finally block, the compiler emits code
to cast the object to an IDisposable and calls the Dispose method. Obviously, the compiler allows
the using statement to be used only with types that implement the IDisposable interface.

Note  C#’s using statement supports the capability to initialize multiple variables as
long as the variables are all of the same type. It also supports the capability to use just
an already initialized variable. For more information about this topic, refer to the “Using
Statements” topic in the C# Programmer’s Reference.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 537

An Interesting Dependency Issue
The System.IO.FileStream type allows the user to open a file for reading and writing. To improve
performance, the type’s implementation makes use of a memory buffer. Only when the buffer fills
does the type flush the contents of the buffer to the file. A FileStream supports the writing of bytes
only. If you want to write characters and strings, you can use a System.IO.StreamWriter, as is
demonstrated in the following code.

FileStream fs = new FileStream("DataFile.dat", FileMode.Create);
StreamWriter sw = new StreamWriter(fs);
sw.Write("Hi there");

// The following call to Dispose is what you should do.
sw.Dispose();
// NOTE: StreamWriter.Dispose closes the FileStream;
// the FileStream doesn't have to be explicitly closed.

Notice that the StreamWriter’s constructor takes a reference to a Stream object as a parameter,
allowing a reference to a FileStream object to be passed as an argument. Internally, the Stream­
Writer object saves the Stream’s reference. When you write to a StreamWriter object, it internally
buffers the data in its own memory buffer. When the buffer is full, the StreamWriter object writes
the data to the Stream.

When you’re finished writing data via the StreamWriter object, you should call Dispose. (Be-
cause the StreamWriter type implements the IDisposable interface, you can also use it with C#’s
using statement.) This causes the StreamWriter object to flush its data to the Stream object and
close the Stream object.7

Note  You don’t have to explicitly call Dispose on the FileStream object because the
StreamWriter calls it for you. However, if you do call Dispose explicitly, the FileStream will
see that the object has already been cleaned up—the method does nothing and just returns.

What do you think would happen if there were no code to explicitly call Dispose? Well, at some
point, the garbage collector would correctly detect that the objects were garbage and finalize
them. But the garbage collector doesn’t guarantee the order in which objects are finalized. So if the
FileStream object were finalized first, it would close the file. Then when the StreamWriter object
was finalized, it would attempt to write data to the closed file, throwing an exception. If, on the other
hand, the StreamWriter object were finalized first, the data would be safely written to the file.

7	 You can override this behavior by calling StreamWriter’s constructor that accepts a Boolean leaveOpen parameter.

538	 PART IV  Core Facilities

How was Microsoft to solve this problem? Making the garbage collector finalize objects in a
specific order would have been impossible because objects could contain references to each other,
and there would be no way for the garbage collector to correctly guess the order in which to finalize
these objects. Here is Microsoft’s solution: the StreamWriter type does not support finalization, and
therefore it never flushes data in its buffer to the underlying FileStream object. This means that if
you forget to explicitly call Dispose on the StreamWriter object, data is guaranteed to be lost. Mi-
crosoft expects developers to see this consistent loss of data and fix the code by inserting an explicit
call to Dispose.

Note  The .NET Framework offers a feature called Managed Debugging Assistants (MDAs).
When an MDA is enabled, the .NET Framework looks for certain common programmer
errors and fires a corresponding MDA. In the debugger, it looks like an exception has
been thrown. There is an MDA available to detect when a StreamWriter object is gar-
bage collected without previously having been explicitly disposed. To enable this MDA in
Microsoft Visual Studio, open your project and select the Debug.Exceptions menu item.
In the Exceptions dialog box, expand the Managed Debugging Assistants node and scroll
to the bottom. There you will see the StreamWriterBufferredDataLost MDA. Select the
Thrown check box to have the Visual Studio debugger stop whenever a StreamWriter ob-
ject’s data is lost.

Other GC Features for Use with Native Resources
Sometimes, a native resource consumes a lot of memory, but the managed object wrapping that
resource occupies very little memory. The quintessential example of this is the bitmap. A bitmap can
occupy several megabytes of native memory, but the managed object is tiny because it contains only
an HBITMAP (a 4-byte or 8-byte value). From the CLR’s perspective, a process could allocate hundreds
of bitmaps (using little managed memory) before performing a collection. But if the process is ma-
nipulating many bitmaps, the process’s memory consumption will grow at a phenomenal rate. To fix
this situation, the GC class offers the following two static methods.

public static void AddMemoryPressure(Int64 bytesAllocated);
public static void RemoveMemoryPressure(Int64 bytesAllocated);

A class that wraps a potentially large native resource should use these methods to give the gar-
bage collector a hint as to how much memory is really being consumed. Internally, the garbage col-
lector monitors this pressure, and when it gets high, a garbage collection is forced.

There are some native resources that are fixed in number. For example, Windows formerly had
a restriction that it could create only five device contexts. There had also been a restriction on the
number of files that an application could open. Again, from the CLR’s perspective, a process could al-
locate hundreds of objects (that use little memory) before performing a collection. But if the number
of these native resources is limited, attempting to use more than are available will typically result in
exceptions being thrown.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 539

To fix this situation, the System.Runtime.InteropServices namespace offers the Handle­
Collector class.

public sealed class HandleCollector {
 public HandleCollector(String name, Int32 initialThreshold);
 public HandleCollector(String name, Int32 initialThreshold, Int32 maximumThreshold);
 public void Add();
 public void Remove();

 public Int32 Count { get; }
 public Int32 InitialThreshold { get; }
 public Int32 MaximumThreshold { get; }
 public String Name { get; }
}

A class that wraps a native resource that has a limited quantity available should use an instance
of this class to give the garbage collector a hint as to how many instances of the resource are really
being consumed. Internally, this class object monitors the count, and when it gets high, a garbage
collection is forced.

Note  Internally, the GC.AddMemoryPressure and HandleCollector.Add methods call
GC.Collect, forcing a garbage collection to start prior to generation 0 reaching its bud-
get. Normally, forcing a garbage collection to start is strongly discouraged, because it
usually has an adverse effect on your application’s performance. However, classes that call
these methods are doing so in an effort to keep limited native resources available for the
application. If the native resources run out, the application will fail. For most applications, it
is better to work with reduced performance than to not be working at all.

Here is some code that demonstrates the use and effect of the memory pressure methods and the
HandleCollector class.

using System;
using System.Runtime.InteropServices;

public static class Program {
 public static void Main() {
 MemoryPressureDemo(0); // 0 causes infrequent GCs
 MemoryPressureDemo(10 * 1024 * 1024); // 10MB causes frequent GCs

 HandleCollectorDemo();
}

 private static void MemoryPressureDemo(Int32 size) {
 Console.WriteLine();
 Console.WriteLine("MemoryPressureDemo, size={0}", size);
 // Create a bunch of objects specifying their logical size
 for (Int32 count = 0; count < 15; count++) {
 new BigNativeResource(size);
 }

540	 PART IV  Core Facilities

 // For demo purposes, force everything to be cleaned-up
 GC.Collect();
 }

 private sealed class BigNativeResource {
 private readonly Int32 m_size;

 public BigNativeResource(Int32 size) {
 m_size = size;
 // Make the GC think the object is physically bigger
 if (m_size > 0) GC.AddMemoryPressure(m_size);
 Console.WriteLine("BigNativeResource create.");
 }

 ~BigNativeResource() {
 // Make the GC think the object released more memory
 if (m_size > 0) GC.RemoveMemoryPressure(m_size);
 Console.WriteLine("BigNativeResource destroy.");
 }
 }

 private static void HandleCollectorDemo() {
 Console.WriteLine();
 Console.WriteLine("HandleCollectorDemo");
 for (Int32 count = 0; count < 10; count++) new LimitedResource();

 // For demo purposes, force everything to be cleaned-up
 GC.Collect();
 }

 private sealed class LimitedResource {
 // Create a HandleCollector telling it that collections should
 // occur when two or more of these objects exist in the heap
 private static readonly HandleCollector s_hc = new HandleCollector("LimitedResource", 2);

 public LimitedResource() {
 // Tell the HandleCollector a LimitedResource has been added to the heap
 s_hc.Add();
 Console.WriteLine("LimitedResource create. Count={0}", s_hc.Count);
 }
 ~LimitedResource() {
 // Tell the HandleCollector a LimitedResource has been removed from the heap
 s_hc.Remove();
 Console.WriteLine("LimitedResource destroy. Count={0}", s_hc.Count);
 }
 }
}

	 CHAPTER 21  The Managed Heap and Garbage Collection	 541

If you compile and run the preceding code, your output will be similar to the following output.

MemoryPressureDemo, size=0
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.

MemoryPressureDemo, size=10485760
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource destroy.

542	 PART IV  Core Facilities

BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource create.
BigNativeResource create.
BigNativeResource create.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.
BigNativeResource destroy.

HandleCollectorDemo
LimitedResource create. Count=1
LimitedResource create. Count=2
LimitedResource create. Count=3
LimitedResource destroy. Count=3
LimitedResource destroy. Count=2
LimitedResource destroy. Count=1
LimitedResource create. Count=1
LimitedResource create. Count=2
LimitedResource create. Count=3
LimitedResource destroy. Count=2
LimitedResource create. Count=3
LimitedResource destroy. Count=3
LimitedResource destroy. Count=2
LimitedResource destroy. Count=1
LimitedResource create. Count=1
LimitedResource create. Count=2
LimitedResource create. Count=3
LimitedResource destroy. Count=2
LimitedResource destroy. Count=1
LimitedResource destroy. Count=0

Finalization Internals
On the surface, finalization seems pretty straightforward: you create an object and its Finalize
method is called when it is collected. But after you dig in, finalization is more complicated than this.

When an application creates a new object, the new operator allocates the memory from the heap.
If the object’s type defines a Finalize method, a pointer to the object is placed on the finalization
list just before the type’s instance constructor is called. The finalization list is an internal data struc-
ture controlled by the garbage collector. Each entry in the list points to an object that should have its
Finalize method called before the object’s memory can be reclaimed.

Figure 21-13 shows a heap containing several objects. Some of these objects are reachable from
application roots, and some are not. When objects C, E, F, I, and J were created, the system detected

	 CHAPTER 21  The Managed Heap and Garbage Collection	 543

that these objects’ types defined a Finalize method and so added references to these objects to
the finalization list.

F

Finalization list

Managed heap

A B C D E H

G

C

Freachable queue

F I J

E I JF

Roots:
Fields & variables

FIGURE 21-13  The managed heap showing pointers in its finalization list.

Note  Even though System.Object defines a Finalize method, the CLR knows to ignore
it; that is, when constructing an instance of a type, if the type’s Finalize method is the
one inherited from System.Object, the object isn’t considered finalizable. One of the de-
rived types must override Object’s Finalize method.

When a garbage collection occurs, objects B, E, G, H, I, and J are determined to be garbage. The
garbage collector scans the finalization list looking for references to these objects. When a reference is
found, the reference is removed from the finalization list and appended to the freachable queue. The
freachable queue (pronounced “F-reachable”) is another of the garbage collector’s internal data struc-
tures. Each reference in the freachable queue identifies an object that is ready to have its Finalize
method called. After the collection, the managed heap looks like Figure 21-14.

Finalization list

Managed heap

A C D E F I J

E JIC F

Freachable queue

Roots:
Fields & variables

FIGURE 21-14  The managed heap showing pointers that moved from the finalization list to the freachable queue.

544	 PART IV  Core Facilities

In this figure, you see that the memory occupied by objects B, G, and H has been reclaimed be-
cause these objects didn’t have a Finalize method. However, the memory occupied by objects E, I,
and J couldn’t be reclaimed because their Finalize methods haven’t been called yet.

A special high-priority CLR thread is dedicated to calling Finalize methods. A dedicated thread
is used to avoid potential thread synchronization situations that could arise if one of the application’s
normal-priority threads were used instead. When the freachable queue is empty (the usual case), this
thread sleeps. But when entries appear, this thread wakes, removes each entry from the queue, and
then calls each object’s Finalize method. Because of the way this thread works, you shouldn’t ex-
ecute any code in a Finalize method that makes any assumptions about the thread that’s executing
the code. For example, avoid accessing thread-local storage in the Finalize method.

In the future, the CLR may use multiple finalizer threads. So you should avoid writing any code that
assumes that Finalize methods will be called serially. With just one finalizer thread, there could be
performance and scalability issues in the scenario in which you have multiple CPUs allocating finaliz-
able objects but only one thread executing Finalize methods—the one thread might not be able to
keep up with the allocations.

The interaction between the finalization list and the freachable queue is fascinating. First, I’ll tell
you how the freachable queue got its name. Well, the “f” is obvious and stands for finalization; every
entry in the freachable queue is a reference to an object in the managed heap that should have its
Finalize method called. But the reachable part of the name means that the objects are reachable.
To put it another way, the freachable queue is considered a root, just as static fields are roots. So a
reference in the freachable queue keeps the object it refers to reachable and is not garbage.

In short, when an object isn’t reachable, the garbage collector considers the object to be garbage.
Then when the garbage collector moves an object’s reference from the finalization list to the freach-
able queue, the object is no longer considered garbage and its memory can’t be reclaimed. When an
object is garbage and then not garbage, we say that the object has been resurrected.

As freachable objects are marked, objects referred to by their reference type fields are also marked
recursively; all these objects must get resurrected in order to survive the collection. At this point, the
garbage collector has finished identifying garbage. Some of the objects identified as garbage have
been resurrected. The garbage collector compacts the reclaimable memory, which promotes the
resurrected object to an older generation (not ideal). And now, the special finalization thread empties
the freachable queue, executing each object’s Finalize method.

The next time the garbage collector is invoked on the older generation, it will see that the finalized
objects are truly garbage because the application’s roots don’t point to it and the freachable queue
no longer points to it either. The memory for the object is simply reclaimed. The important point to
get from all of this is that two garbage collections are required to reclaim memory used by objects
that require finalization. In reality, more than two collections will be necessary because the objects
get promoted to another generation. Figure 21-15 shows what the managed heap looks like after the
second garbage collection.

	 CHAPTER 21  The Managed Heap and Garbage Collection	 545

Finalization list

Managed heap

A C D F

C F

Freachable queue

Roots:
Fields & variables

FIGURE 21-15  Status of the managed heap after second garbage collection.

Monitoring and Controlling the Lifetime of Objects Manually

The CLR provides each AppDomain with a GC handle table. This table allows an application to moni-
tor the lifetime of an object or manually control the lifetime of an object. When an AppDomain is
created, the table is empty. Each entry on the table consists of a reference to an object on the man-
aged heap and a flag indicating how you want to monitor or control the object. An application adds
and removes entries from the table via the System.Runtime.InteropServices.GCHandle type,
as follows.

// This type is defined in the System.Runtime.InteropServices namespace
public struct GCHandle {
 // Static methods that create an entry in the table
 public static GCHandle Alloc(object value);
 public static GCHandle Alloc(object value, GCHandleType type);

 // Static methods that convert a GCHandle to an IntPtr
 public static explicit operator IntPtr(GCHandle value);
 public static IntPtr ToIntPtr(GCHandle value);

 // Static methods that convert an IntPtr to a GCHandle
 public static explicit operator GCHandle(IntPtr value);
 public static GCHandle FromIntPtr(IntPtr value);

 // Static methods that compare two GCHandles
 public static Boolean operator ==(GCHandle a, GCHandle b);
 public static Boolean operator !=(GCHandle a, GCHandle b);

 // Instance method to free the entry in the table (index is set to 0)
 public void Free();

 // Instance property to get/set the entry's object reference
 public object Target { get; set; }

546	 PART IV  Core Facilities

 // Instance property that returns true if index is not 0
 public Boolean IsAllocated { get; }

 // For a pinned entry, this returns the address of the object
 public IntPtr AddrOfPinnedObject();

 public override Int32 GetHashCode();
 public override Boolean Equals(object o);
}

Basically, to control or monitor an object’s lifetime, you call GCHandle’s static Alloc method, pass-
ing a reference to the object that you want to monitor/control, and a GCHandleType, which is a flag
indicating how you want to monitor/control the object. The GCHandleType type is an enumerated
type defined as follows.

public enum GCHandleType {
 Weak = 0, // Used for monitoring an object’s existence
 WeakTrackResurrection = 1, // Used for monitoring an object’s existence
 Normal = 2, // Used for controlling an object’s lifetime
 Pinned = 3 // Used for controlling an object’s lifetime
}

Now, here’s what each flag means:

■■ Weak  This flag allows you to monitor the lifetime of an object. Specifically, you can detect
when the garbage collector has determined this object to be unreachable from application
code. Note that the object’s Finalize method may or may not have executed yet and there-
fore, the object may still be in memory.

■■ WeakTrackResurrection  This flag allows you to monitor the lifetime of an object. Specifi-
cally, you can detect when the garbage collector has determined that this object is unreach-
able from application code. Note that the object’s Finalize method (if it exists) has definitely
executed, and the object’s memory has been reclaimed.

■■ Normal  This flag allows you to control the lifetime of an object. Specifically, you are telling
the garbage collector that this object must remain in memory even though there may be no
roots in the application that refer to this object. When a garbage collection runs, the memory
for this object can be compacted (moved). The Alloc method that doesn’t take a GCHandle­
Type flag assumes that GCHandleType.Normal is specified.

■■ Pinned  This flag allows you to control the lifetime of an object. Specifically, you are telling
the garbage collector that this object must remain in memory even though there might be no
roots in the application that refer to this object. When a garbage collection runs, the memory
for this object cannot be compacted. This is typically useful when you want to hand the ad-
dress of the memory out to native code. The native code can write to this memory in the man-
aged heap knowing that a GC will not move the object.

When you call GCHandle’s static Alloc method, it scans the AppDomain’s GC handle table, look-
ing for an available entry where the reference of the object you passed to Alloc is stored, and a flag
is set to whatever you passed for the GCHandleType argument. Then, Alloc returns a GCHandle

	 CHAPTER 21  The Managed Heap and Garbage Collection	 547

instance back to you. A GCHandle is a lightweight value type that contains a single instance field, an
IntPtr, which refers to the index of the entry in the table. When you want to free this entry in the GC
handle table, you take the GCHandle instance and call the Free method (which also invalidates the
GCHandle instance by setting its IntPtr field to zero).

Here’s how the garbage collector uses the GC handle table. When a garbage collection occurs:

1.	 The garbage collector marks all of the reachable objects (as described at the beginning of this
chapter). Then, the garbage collector scans the GC handle table; all Normal or Pinned objects
are considered roots, and these objects are marked as well (including any objects that these
objects refer to via their fields).

2.	 The garbage collector scans the GC handle table looking for all of the Weak entries. If a Weak
entry refers to an object that isn’t marked, the reference identifies an unreachable object (gar-
bage), and the entry has its reference value changed to null.

3.	 The garbage collector scans the finalization list. If a reference in the list refers to an unmarked
object, the reference identifies an unreachable object, and the reference is moved from the
finalization list to the freachable queue. At this point, the object is marked because the object
is now considered reachable.

4.	 The garbage collector scans the GC handle table looking for all of the WeakTrackResurrec­
tion entries. If a WeakTrackResurrection entry refers to an object that isn’t marked (which
now is an object referenced by an entry in the freachable queue), the reference identifies an
unreachable object (garbage), and the entry has its reference value changed to null.

5.	 The garbage collector compacts the memory, squeezing out the holes left by the unreachable
objects. Pinned objects are not compacted (moved); the garbage collector will move other
objects around them.

Now that you have an understanding of the mechanism, let’s take a look at when you’d use them.
The easiest flags to understand are the Normal and Pinned flags, so let’s start with these two. Both of
these flags are typically used when interoperating with native code.

The Normal flag is used when you need to hand a pointer to a managed object to native code
because, at some point in the future, the native code is going to call back into managed code, passing
it the pointer. You can’t actually pass a pointer to a managed object out to native code, because if
a garbage collection occurs, the object could move in memory, invalidating the pointer. So to work
around this, you would call GCHandle’s Alloc method, passing in a reference to the object and the
Normal flag. Then you’d cast the returned GCHandle instance to an IntPtr and pass the IntPtr into
the native code. When the native code calls back into managed code, the managed code would cast
the passed IntPtr back to a GCHandle and then query the Target property to get the reference (or
current address) of the managed object. When the native code no longer needs the reference, you’d
call GCHandle’s Free method, which allows a future garbage collection to free the object (assuming
no other root exists to this object).

Notice that in this scenario, the native code is not actually using the managed object itself; the na-
tive code wants a way just to reference the object. In some scenarios, the native code needs to actually

548	 PART IV  Core Facilities

use the managed object. In these scenarios, the managed object must be pinned. Pinning prevents
the garbage collector from moving/compacting the object. A common example is when you want to
pass a managed String object to a Win32 function. In this case, the String object must be pinned
because you can’t pass the reference of a managed object to native code and then have the garbage
collector move the object in memory. If the String object were moved, the native code would either
be reading or writing to memory that no longer contained the String object’s characters—this will
surely cause the application to run unpredictably.

When you use the CLR’s P/Invoke mechanism to call a method, the CLR pins the arguments for
you automatically and unpins them when the native method returns. So, in most cases, you never
have to use the GCHandle type to explicitly pin any managed objects yourself. You do have to use
the GCHandle type explicitly when you need to pass the pointer to a managed object to native code;
then the native function returns, but native code might still need to use the object later. The most
common example of this is when performing asynchronous I/O operations.

Let’s say that you allocate a byte array that should be filled as data comes in from a socket. Then,
you would call GCHandle’s Alloc method, passing in a reference to the array object and the Pinned
flag. Then, using the returned GCHandle instance, you call the AddrOfPinnedObject method. This
returns an IntPtr that is the actual address of the pinned object in the managed heap; you’d then
pass this address into the native function, which will return back to managed code immediately. While
the data is coming from the socket, this byte array buffer should not move in memory; preventing this
buffer from moving is accomplished by using the Pinned flag. When the asynchronous I/O operation
has completed, you’d call GCHandle’s Free method, which will allow a future garbage collection to
move the buffer. Your managed code should still have a reference to the buffer so that you can access
the data, and this reference will prevent a garbage collection from freeing the buffer from memory
completely.

It is also worth mentioning that C# offers a fixed statement that effectively pins an object over a
block of code. Here is some code that demonstrates its use.

unsafe public static void Go() {
 // Allocate a bunch of objects that immediately become garbage
 for (Int32 x = 0; x < 10000; x++) new Object();

 IntPtr originalMemoryAddress;
 Byte[] bytes = new Byte[1000]; // Allocate this array after the garbage objects

 // Get the address in memory of the Byte[]
 fixed (Byte* pbytes = bytes) { originalMemoryAddress = (IntPtr) pbytes; }

 // Force a collection; the garbage objects will go away & the Byte[] might be compacted
 GC.Collect();

 // Get the address in memory of the Byte[] now & compare it to the first address
 fixed (Byte* pbytes = bytes) {
 Console.WriteLine("The Byte[] did{0} move during the GC",
 (originalMemoryAddress == (IntPtr) pbytes) ? " not" : null);
 }
}

	 CHAPTER 21  The Managed Heap and Garbage Collection	 549

Using C#’s fixed statement is more efficient that allocating a pinned GC handle. What happens
is that the C# compiler emits a special “pinned” flag on the pbytes local variable. During a garbage
collection, the GC examines the contents of this root, and if the root is not null, it knows not to
move the object referred to by the variable during the compaction phase. The C# compiler emits IL to
initialize the pbytes local variable to the address of the object at the start of a fixed block, and the
compiler emits an IL instruction to set the pbytes local variable back to null at the end of the fixed
block so that the variable doesn’t refer to any object, allowing the object to move when the next
garbage collection occurs.

Now, let’s talk about the next two flags, Weak and WeakTrackResurrection. These two flags can
be used in scenarios when interoperating with native code, but they can also be used in scenarios that
use only managed code. The Weak flag lets you know when an object has been determined to be gar-
bage but the object’s memory is not guaranteed to be reclaimed yet. The WeakTrackResurrection
flag lets you know when an object’s memory has been reclaimed. Of the two flags, the Weak flag is
much more commonly used than the WeakTrackResurrection flag. In fact, I’ve never seen anyone
use the WeakTrackResurrection flag in a real application.

Let’s say that Object-A periodically calls a method on Object-B. However, the fact that Object-A
has a reference to Object-B forbids Object-B from being garbage collected, and in some rare scenar-
ios, this may not be desired; instead, we might want Object-A to call Object-B’s method if Object-B
is still alive in the managed heap. To accomplish this scenario, Object-A would call GCHandle’s Alloc
method, passing in the reference to Object-B and the Weak flag. Object-A would now just save the
returned GCHandle instance instead of the reference to Object-B.

At this point, Object-B can be garbage collected if no other roots are keeping it alive. When
Object-A wants to call Object-B’s method, it would query GCHandle’s read-only Target property.
If this property returns a non-null value, then Object-B is still alive. Object-A’s code would then
cast the returned reference to Object-B’s type and call the method. If the Target property returns
null, then Object-B has been collected (but not necessarily finalized) and Object-A would not
attempt to call the method. At this point, Object-A’s code would probably also call GCHandle’s Free
method to relinquish the GCHandle instance.

Because working with the GCHandle type can be a bit cumbersome and because it re-
quires elevated security to keep or pin an object in memory, the System namespace includes a
WeakReference<T> class to help you.

public sealed class WeakReference<T> : ISerializable where T : class {
 public WeakReference(T target);
 public WeakReference(T target, Boolean trackResurrection);
 public void SetTarget(T target);
 public Boolean TryGetTarget(out T target);
}

This class is really just an object-oriented wrapper around a GCHandle instance: logically, its con-
structor calls GCHandle’s Alloc, its TryGetTarget method queries GCHandle’s Target property, its
SetTarget method sets GCHandle’s Target property, and its Finalize method (not shown in the
preceding code, because it’s protected) calls GCHandle’s Free method. In addition, no special permis-
sions are required for code to use the WeakReference<T> class because the class supports only weak

550	 PART IV  Core Facilities

references; it doesn’t support the behavior provided by GCHandle instances allocated with a GCHan­
dleType of Normal or Pinned. The downside of the WeakReference<T> class is that an instance of
it must be allocated on the heap. So the WeakReference<T> class is a heavier-weight object than a
GCHandle instance.

Important  When developers start learning about weak references, they immediately start
thinking that they are useful in caching scenarios. For example, they think it would be cool
to construct a bunch of objects that contain a lot of data and then to create weak refer-
ences to these objects. When the program needs the data, the program checks the weak
reference to see if the object that contains the data is still around, and if it is, the program
just uses it; the program experiences high performance. However, if a garbage collection
occurred, the objects that contained the data would be destroyed, and when the program
has to re-create the data, the program experiences lower performance.

The problem with this technique is the following: garbage collections do not only occur
when memory is full or close to full. Instead, garbage collections occur whenever genera-
tion 0 is full. So objects are being tossed out of memory much more frequently than de-
sired, and your application’s performance suffers greatly.

Weak references can be used quite effectively in caching scenarios, but building a good
cache algorithm that finds the right balance between memory consumption and speed
is very complex. Basically, you want your cache to keep strong references to all of your
objects and then, when you see that memory is getting tight, you start turning strong
references into weak references. Currently, the CLR offers no mechanism to notify an ap-
plication that memory is getting tight. But some people have had much success by peri-
odically calling the Win32 GlobalMemoryStatusEx function and checking the returned
MEMORYSTATUSEX structure’s dwMemoryLoad member. If this member reports a value above
80, memory is getting tight, and you can start converting strong references to weak refer-
ences based on whether you want a least-recently used algorithm, a most-frequently used
algorithm, a time-base algorithm, or whatever.

Developers frequently want to associate a piece of data with another entity. For example, you
can associate data with a thread or with an AppDomain. It is also possible to associate data with an
individual object by using the System.Runtime.CompilerServices.ConditionalWeakTable
<TKey,TValue> class, which looks like this.

public sealed class ConditionalWeakTable<TKey, TValue>
 where TKey : class where TValue : class {
 public ConditionalWeakTable();
 public void Add(TKey key, TValue value);
 public TValue GetValue(TKey key, CreateValueCallback<TKey, TValue> createValueCallback);
 public Boolean TryGetValue(TKey key, out TValue value);
 public TValue GetOrCreateValue(TKey key);
 public Boolean Remove(TKey key);

 public delegate TValue CreateValueCallback(TKey key); // Nested delegate definition
}

	 CHAPTER 21  The Managed Heap and Garbage Collection	 551

If you want to associate some arbitrary data with one or more objects, you would first create an
instance of this class. Then, call the Add method, passing in a reference to some object for the key pa-
rameter and the data you want to associate with the object in the value parameter. If you attempt to
add a reference to the same object more than once, the Add method throws an ArgumentException;
to change the value associated with an object, you must remove the key and then add it back in with
the new value. Note that this class is thread-safe so multiple threads can use it concurrently, although
this means that the performance of the class is not stellar; you should test the performance of this class
to see how well it works for your scenario.

Of course, a table object internally stores a WeakReference to the object passed in as the key;
this ensures that the table doesn’t forcibly keep the object alive. But what makes the Conditional­
WeakTable class so special is that it guarantees that the value remains in memory as long as the
object identified by the key is in memory. So this is more than a normal WeakReference because
if it were, the value could be garbage collected even though the key object continued to live. The
ConditionalWeakTable class could be used to implement the dependency property mechanism
used by XAML. It can also be used internally by dynamic languages to dynamically associate data
with objects.

Here is some code that demonstrates the use of the ConditionalWeakTable class. It allows you
to call the GCWatch extension method on any object passing in some String tag. Then it notifies you
via the console window whenever that particular object gets garbage collected.

internal static class ConditionalWeakTableDemo {
 public static void Main() {
 Object o = new Object().GCWatch("My Object created at " + DateTime.Now);
 GC.Collect(); // We will not see the GC notification here
 GC.KeepAlive(o); // Make sure the object o refers to lives up to here
 o = null; // The object that o refers to can die now

 GC.Collect(); // We'll see the GC notification sometime after this line
 Console.ReadLine();
 }
}

internal static class GCWatcher {
 // NOTE: Be careful with Strings due to interning and MarshalByRefObject proxy objects
 private readonly static ConditionalWeakTable<Object, NotifyWhenGCd<String>> s_cwt =
 new ConditionalWeakTable<Object, NotifyWhenGCd<String>>();

 private sealed class NotifyWhenGCd<T> {
 private readonly T m_value;

 internal NotifyWhenGCd(T value) { m_value = value; }
 public override string ToString() { return m_value.ToString(); }
 ~NotifyWhenGCd() { Console.WriteLine("GC'd: " + m_value); }
 }

 public static T GCWatch<T>(this T @object, String tag) where T : class {
 s_cwt.Add(@object, new NotifyWhenGCd<String>(tag));
 return @object;
 }
}

		 583

C H A P T E R 2 3

Assembly Loading and Reflection

In this chapter:
Assembly Loading . 584
Using Reflection to Build a Dynamically Extensible
Application . 588
Reflection Performance . 589
Designing an Application That Supports Add-Ins 596
Using Reflection to Discover a Type’s Members 599

This chapter is all about discovering information about types, creating instances of them, and ac-
cessing their members when you didn’t know anything about them at compile time. The informa-
tion in this chapter is typically used to create a dynamically extensible application. This is the kind of
application for which one company builds a host application and other companies create add-ins to
extend the host application. The host can’t be built or tested against the add-ins because the add-ins
are created by different companies and are likely to be created after the host application has already
shipped. This is why the host needs to discover the add-ins at run time.

A dynamically extensible application could take advantage of common language runtime (CLR)
hosting and AppDomains as discussed in Chapter 22, “CLR Hosting and AppDomains.” The host could
run the add-in code in an AppDomain with its own security and configuration settings. The host could
also unload the add-in code by unloading the AppDomain. At the end of this chapter, I’ll talk a little
about how to put all of this stuff together—CLR hosting, AppDomains, assembly loading, type dis-
covery, type instance construction, and reflection—in order to build a robust, secure, and dynamically
extensible application.

Important  For version 4.5 of the .NET Framework, Microsoft has introduced a new re-
flection API. The old API had many shortcomings. For example, it did not support LINQ
well, it had policies embedded in it that were not correct for some languages, it would
sometimes force the loading of assemblies unnecessarily, and it was an overly complex
API that offered solutions for problems rarely encountered. The new API fixes all of
these issues. However, as of .NET 4.5, the new reflection API is not as complete as the
old API. With the new API and some extension methods (in the System.Reflection.
RuntimeReflectionExtensions class), you can accomplish all you need. Expect addi-
tional methods to be added to the new API in future versions of the .NET Framework.

584	 PART IV  Core Facilities

Of course, for desktop applications, the old API still exists so that it doesn’t break existing
code when re-compiling it. However, the new API is the recommended API going forward,
and that is why I explain the new API exclusively in this chapter. For Windows Store Apps
(where backward compatibility is not an issue), using the new API is mandatory.

Assembly Loading

As you know, when the just-in-time (JIT) compiler compiles the Intermediate Language (IL) for a
method, it sees what types are referenced in the IL code. Then at run time, the JIT compiler uses the
assembly’s TypeRef and AssemblyRef metadata tables to determine what assembly defines the type
being referenced. The AssemblyRef metadata table entry contains all of the parts that make up the
strong name of the assembly. The JIT compiler grabs all of these parts—name (without extension or
path), version, culture, and public key token—concatenates them into a string, and then attempts to
load an assembly matching this identity into the AppDomain (assuming that it’s not already loaded). If
the assembly being loaded is weakly named, the identity is just the name of the assembly (no version,
culture, or public key token information).

Internally, the CLR attempts to load this assembly by using the System.Reflection.Assembly
class’s static Load method. This method is publicly documented, and you can call it to explicitly load
an assembly into your AppDomain. This method is the CLR equivalent of Win32’s LoadLibrary
function. There are actually several overloaded versions of Assembly’s Load method. Here are the
prototypes of the more commonly used overloads.

public class Assembly {
 public static Assembly Load(AssemblyName assemblyRef);
 public static Assembly Load(String assemblyString);
 // Less commonly used overloads of Load are not shown
}

Internally, Load causes the CLR to apply a version-binding redirection policy to the assembly and
looks for the assembly in the global assembly cache (GAC), followed by the application’s base direc-
tory, private path subdirectories, and codebase locations. If you call Load by passing a weakly named
assembly, Load doesn’t apply a version-binding redirection policy to the assembly, and the CLR won’t
look in the GAC for the assembly. If Load finds the specified assembly, it returns a reference to an
Assembly object that represents the loaded assembly. If Load fails to find the specified assembly, it
throws a System.IO.FileNotFoundException.

	 CHAPTER 23  Assembly Loading and Reflection	 585

Note  In some extremely rare situations, you may want to load an assembly that was built
for a specific CPU architecture. In this case, when specifying an assembly’s identity, you can
also include a process architecture part. For example, if my GAC happened to have an IL-
neutral and an x86-specific version of an assembly, the CLR would favor the CPU-specific
version of the assembly (as discussed in Chapter 3, “Shared Assemblies and Strongly Named
Assemblies”). However, I can force the CLR to load the IL-neutral version by passing the fol-
lowing string to Assembly’s Load method.

"SomeAssembly, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=01234567890abcde, ProcessorArchitecture=MSIL"

Today, the CLR supports five possible values for ProcessorArchitecture: MSIL (Microsoft IL),
x86, IA64, AMD64, and Arm.

Important  Some developers notice that System.AppDomain offers a Load method. Unlike
Assembly’s static Load method, AppDomain’s Load method is an instance method that al-
lows you to load an assembly into the specified AppDomain. This method was designed
to be called by unmanaged code, and it allows a host to inject an assembly into a specific
AppDomain. Managed code developers generally shouldn’t call this method because
when AppDomain’s Load method is called, you pass it a string that identifies an assembly.
The method then applies policy and searches the normal places looking for the assembly.
Recall that an AppDomain has settings associated with it that tell the CLR how to look for
assemblies. To load this assembly, the CLR will use the settings associated with the specified
AppDomain, not the calling AppDomain.

However, AppDomain’s Load method returns a reference to an assembly. Because the
System.Assembly class isn’t derived from System.MarshalByRefObject, the assem-
bly object must be marshaled by value back to the calling AppDomain. But the CLR will
now use the calling AppDomain’s settings to locate the assembly and load it. If the as-
sembly can’t be found by using the calling AppDomain’s policy and search locations, a
FileNotFoundException is thrown. This behavior is usually undesirable and is the reason
that you should avoid AppDomain’s Load method.

In most dynamically extensible applications, Assembly’s Load method is the preferred way of
loading an assembly into an AppDomain. However, it does require that you have all of the pieces that
make up an assembly’s identity. Frequently, developers write tools or utilities (such as ILDasm.exe, PE-
Verify.exe, CorFlags.exe, GACUtil.exe, SGen.exe, SN.exe, XSD.exe) that perform some kind of process-
ing on an assembly. All of these tools take a command-line argument that refers to the path name of
an assembly file (including file extension).

586	 PART IV  Core Facilities

To load an assembly specifying a path name, you call Assembly’s LoadFrom method.

public class Assembly {
 public static Assembly LoadFrom(String path);
 // Less commonly used overloads of LoadFrom are not shown
}

Internally, LoadFrom first calls System.Reflection.AssemblyName’s static GetAssemblyName
method, which opens the specified file, finds the AssemblyDef metadata table’s entry, and extracts
the assembly identity information and returns it in a System.Reflection.AssemblyName object
(the file is also closed). Then, LoadFrom internally calls Assembly’s Load method, passing it the
AssemblyName object. At this point, the CLR applies a version-binding redirection policy and searches
the various locations looking for a matching assembly. If Load finds the assembly, it will load it, and
an Assembly object that represents the loaded assembly will be returned; LoadFrom returns this
value. If Load fails to find an assembly, LoadFrom loads the assembly at the path name specified in
LoadFrom’s argument. Of course, if an assembly with the same identity is already loaded, LoadFrom
simply returns an Assembly object that represents the already loaded assembly.

By the way, the LoadFrom method allows you to pass a URL as the argument. Here is an example.

Assembly a = Assembly.LoadFrom(@"http://Wintellect.com/SomeAssembly.dll");

When you pass an Internet location, the CLR downloads the file, installs it into the user’s download
cache, and loads the file from there. Note that you must be online or an exception will be thrown.
However, if the file has been downloaded previously, and if Windows Internet Explorer has been set
to work offline (see Internet Explorer’s Work Offline menu item in its File menu), the previously down-
loaded file will be used, and no exception will be thrown. You can also call UnsafeLoadFrom, which
can load a web-downloaded assembly, bypassing some security checks.

Important  It is possible to have different assemblies on a single machine all with the same
identity. Because LoadFrom calls Load internally, it is possible that the CLR will not load
the specified file and instead will load a different file, giving you unexpected behavior. It
is highly recommended that each build of your assembly change the version number; this
ensures that each version has its own identity, and because of this, LoadFrom will now work
as expected.

Microsoft Visual Studio’s UI designers and other tools typically use Assembly’s LoadFile method.
This method can load an assembly from any path and can be used to load an assembly with the same
identity multiple times into a single AppDomain. This can happen as changes to an application’s UI
are made in the designer/tool and the user rebuilds the assembly. When loading an assembly via
LoadFile, the CLR will not resolve any dependencies automatically; your code must register with
AppDomain’s AssemblyResolve event and have your event callback method explicitly load any
dependent assemblies.

If you are building a tool that simply analyzes an assembly’s metadata via reflection (as discussed
later in this chapter), and you want to ensure that none of the code contained inside the assembly

	 CHAPTER 23  Assembly Loading and Reflection	 587

executes, the best way for you to load an assembly is to use Assembly’s ReflectionOnlyLoadFrom
method, or in some rarer cases, Assembly’s ReflectionOnlyLoad method. Here are the prototypes
of both methods.

public class Assembly {
 public static Assembly ReflectionOnlyLoadFrom(String assemblyFile);
 public static Assembly ReflectionOnlyLoad(String assemblyString);
 // Less commonly used overload of ReflectionOnlyLoad is not shown
}

The ReflectionOnlyLoadFrom method will load the file specified by the path; the strong-
name identity of the file is not obtained, and the file is not searched for in the GAC or elsewhere.
The ReflectionOnlyLoad method will search for the specified assembly looking in the GAC,
application base directory, private paths, and codebases. However, unlike the Load method, the
ReflectionOnlyLoad method does not apply versioning policies, so you will get the exact version
that you specify. If you want to apply versioning policy yourself to an assembly identity, you can pass
the string into AppDomain’s ApplyPolicy method.

When an assembly is loaded with ReflectionOnlyLoadFrom or ReflectionOnlyLoad, the CLR
forbids any code in the assembly from executing; any attempt to execute code in an assembly loaded
with either of these methods causes the CLR to throw an InvalidOperationException. These
methods allow a tool to load an assembly that was delay-signed, would normally require security
permissions that prevent it from loading, or was created for a different CPU architecture.

Frequently, when using reflection to analyze an assembly loaded with one of these two methods,
the code will have to register a callback method with AppDomain’s ReflectionOnlyAssembly­
Resolve event to manually load any referenced assemblies (calling AppDomain’s ApplyPolicy
method, if desired); the CLR doesn’t do it automatically for you. When the callback method is invoked,
it must call Assembly’s ReflectionOnlyLoadFrom or ReflectionOnlyLoad method to explicitly
load a referenced assembly and return a reference to this assembly.

Note  People often ask about assembly unloading. Unfortunately, the CLR doesn’t support
the ability to unload individual assemblies. If the CLR allowed it, your application would
crash if a thread returned back from a method to code in the unloaded assembly. The CLR
is all about robustness, security, and allowing an application to crash in this way would be
counterproductive to its goals. If you want to unload an assembly, you must unload the
entire AppDomain that contains it. This was discussed in great detail in Chapter 22.

It would seem that assemblies loaded with either the ReflectionOnlyLoadFrom or the
ReflectionOnlyLoad method could be unloaded. After all, code in these assemblies is not
allowed to execute. However, the CLR also doesn’t allow assemblies loaded via either of
these two methods to be unloaded. The reason is that after an assembly is loaded this way,
you can still use reflection to create objects that refer to the metadata defined inside these
assemblies. Unloading the assembly would require the objects to be invalidated somehow.
Keeping track of this would be too expensive in terms of implementation and execution
speed.

588	 PART IV  Core Facilities

Many applications consist of an EXE file that depends on many DLL files. When deploying this ap-
plication, all the files must be deployed. However, there is a technique that you can use to deploy just
a single EXE file. First, identify all the DLL files that your EXE file depends on that do not ship as part of
the Microsoft .NET Framework itself. Then add these DLLs to your Visual Studio project. For each DLL
file you add, display its properties and change its Build Action to Embedded Resource. This causes the
C# compiler to embed the DLL file(s) into your EXE file, and you can deploy this one EXE file.

At run time, the CLR won’t be able to find the dependent DLL assemblies, which is a problem. To
fix this, when your application initializes, register a callback method with the AppDomain’s Resolve­
Assembly event. The callback method’s code should look something like the following.

private static Assembly ResolveEventHandler(Object sender, ResolveEventArgs args) {
 String dllName = new AssemblyName(args.Name).Name + ".dll";

 var assem = Assembly.GetExecutingAssembly();
 String resourceName = assem.GetManifestResourceNames().FirstOrDefault(rn =>
rn.EndsWith(dllName));
 if (resourceName == null) return null; // Not found, maybe another handler will find it
 using (var stream = assem.GetManifestResourceStream(resourceName)) {
 Byte[] assemblyData = new Byte[stream.Length];
 stream.Read(assemblyData, 0, assemblyData.Length);
 return Assembly.Load(assemblyData);
 }
}

Now, the first time a thread calls a method that references a type in a dependent DLL file, the
AssemblyResolve event will be raised and the preceding callback code will find the embedded DLL
resource desired and load it by calling an overload of Assembly’s Load method that takes a Byte[]
as an argument. Although I love the technique of embedding dependent DLLs inside another assem-
bly, you should be aware that this does increase the memory used by your application at run time.

Using Reflection to Build a Dynamically Extensible Application

As you know, metadata is stored in a bunch of tables. When you build an assembly or a module, the
compiler that you’re using creates a type definition table, a field definition table, a method definition
table, and so on. The System.Reflection namespace contains several types that allow you to write
code that reflects over (or parses) these metadata tables. In effect, the types in this namespace offer
an object model over the metadata contained in an assembly or a module.

Using these object model types, you can easily enumerate all of the types in a type definition
metadata table. Then for each type, you can obtain its base type, the interfaces it implements, and
the flags that are associated with the type. Additional types in the System.Reflection namespace
allow you to query the type’s fields, methods, properties, and events by parsing the corresponding
metadata tables. You can also discover any custom attributes (covered in Chapter 18, “Custom At-
tributes”) that have been applied to any of the metadata entities. There are even classes that let you
determine referenced assemblies and methods that return the IL byte stream for a method. With all
of this information, you could easily build a tool very similar to Microsoft’s ILDasm.exe.

	 CHAPTER 23  Assembly Loading and Reflection	 589

Note  You should be aware that some of the reflection types and some of the members
defined by these types are designed specifically for use by developers who are producing
compilers for the CLR. Application developers don’t typically use these types and mem-
bers. The Framework Class Library (FCL) documentation doesn’t explicitly point out which
of these types and members are for compiler developers rather than application develop-
ers, but if you realize that not all reflection types and their members are for everyone, the
documentation can be less confusing.

In reality, very few applications will have the need to use the reflection types. Reflection is typi-
cally used by class libraries that need to understand a type’s definition in order to provide some rich
functionality. For example, the FCL’s serialization mechanism (discussed in Chapter 24, “Runtime Seri-
alization”) uses reflection to determine what fields a type defines. The serialization formatter can then
obtain the values of these fields and write them into a byte stream that is used for sending across the
Internet, saving to a file, or copying to the clipboard. Similarly, Visual Studio’s designers use reflection
to determine which properties should be shown to developers when laying out controls on their Web
Forms or Windows Forms at design time.

Reflection is also used when an application needs to load a specific type from a specific assembly
at run time to accomplish some task. For example, an application might ask the user to provide the
name of an assembly and a type. The application could then explicitly load the assembly, construct an
instance of the type, and call methods defined in the type. This usage is conceptually similar to calling
Win32’s LoadLibrary and GetProcAddress functions. Binding to types and calling methods in this
way is frequently referred to as late binding. (Early binding is when the types and methods used by an
application are determined at compile time.)

Reflection Performance

Reflection is an extremely powerful mechanism because it allows you to discover and use types and
members at run time that you did not know about at compile time. This power does come with two
main drawbacks:

■■ Reflection prevents type safety at compile time. Because reflection uses strings heavily, you
lose type safety at compile time. For example, if you call Type.GetType("int"); to ask
reflection to find a type called “int”, the code compiles but returns null at run time because
the CLR knows the “int” type as “System.Int32”.

■■ Reflection is slow. When using reflection, the names of types and their members are not
known at compile time; you discover them at run time by using a string name to identify each
type and member. This means that reflection is constantly performing string searches as the
types in the System.Reflection namespace scan through an assembly’s metadata. Often,
the string searches are case-insensitive comparisons, which can slow this down even more.

590	 PART IV  Core Facilities

Invoking a member by using reflection will also hurt performance. When using reflection to invoke
a method, you must first package the arguments into an array; internally, reflection must unpack
these on to the thread’s stack. Also, the CLR must check that the arguments are of the correct data
type before invoking a method. Finally, the CLR ensures that the caller has the proper security permis-
sion to access the member being invoked.

For all of these reasons, it’s best to avoid using reflection to access a field or invoke a method/
property. If you’re writing an application that will dynamically discover and construct type instances,
you should take one of the following approaches:

■■ Have the types derive from a base type that is known at compile time. At run time, construct
an instance of the derived type, place the reference in a variable that is of the base type (by
way of a cast), and call virtual methods defined by the base type.

■■ Have the type implement an interface that is known at compile time. At run time, construct an
instance of the type, place the reference in a variable that is of the interface type (by way of a
cast), and call the methods defined by the interface.

I tend to prefer using the interface technique over the base type technique because the base
type technique doesn’t allow the developer to choose the base type that works best in a particular
situation. Although the base type technique works better in versioning scenarios, because you could
always add a member to the base type and the derived types just inherit it; you can’t add a mem-
ber to an interface without forcing all types that implement the interface to modify their code and
recompile it.

When you use either of these two techniques, I strongly suggest that the interface or base type be
defined in its own assembly. This will reduce versioning issues. For more information about how to do
this, see the section titled “Designing an Application That Supports Add-Ins” later in this chapter.

Discovering Types Defined in an Assembly
Reflection is frequently used to determine what types an assembly defines. The FCL offers many APIs
to get this information. By far, the most commonly used API is Assembly’s ExportedTypes. prop-
erty. Here is an example of code that loads an assembly and shows the names of all of the publicly
exported types defined in it.

using System;
using System.Reflection;

public static class Program {
 public static void Main() {
 String dataAssembly = "System.Data, version=4.0.0.0, " +
 "culture=neutral, PublicKeyToken=b77a5c561934e089";
 LoadAssemAndShowPublicTypes(dataAssembly);
 }

 private static void LoadAssemAndShowPublicTypes(String assemId) {
 // Explicitly load an assembly in to this AppDomain
 Assembly a = Assembly.Load(assemId);

	 CHAPTER 23  Assembly Loading and Reflection	 591

 // Execute this loop once for each Type
 // publicly-exported from the loaded assembly
 foreach (Type t in a.ExportedTypes) {
 // Display the full name of the type
 Console.WriteLine(t.FullName);
 }
 }
}

What Exactly Is a Type Object?
Notice that the previous code iterates over a sequence of System.Type objects. The System.Type
type is your starting point for doing type and object manipulations. A System.Type object repre-
sents a type reference (as opposed to a type definition).

Recall that System.Object defines a public, nonvirtual instance method named GetType. When
you call this method, the CLR determines the specified object’s type and returns a reference to its
Type object. Because there is only one Type object per type in an AppDomain, you can use equality
and inequality operators to see whether two objects are of the same type.

private static Boolean AreObjectsTheSameType(Object o1, Object o2) {
 return o1.GetType() == o2.GetType();
}

In addition to calling Object’s GetType method, the FCL offers several more ways to obtain a
Type object:

■■ The System.Type type offers several overloaded versions of the static GetType method. All
versions of this method take a String. The string must specify the full name of the type (in-
cluding its namespace). Note that the primitive type names supported by the compiler (such as
C#’s int, string, bool, and so on) aren’t allowed because these names mean nothing to the
CLR. If the string is simply the name of a type, the method checks the calling assembly to see
whether it defines a type of the specified name. If it does, a reference to the appropriate Type
object is returned.

If the calling assembly doesn’t define the specified type, the types defined by MSCorLib.dll are
checked. If a type with a matching name still can’t be found, null is returned or a System.
TypeLoadException is thrown, depending on which overload of the GetType method you
called and what parameters you passed to it. The FCL documentation fully explains this method.

You can pass an assembly-qualified type string, such as “System.Int32, mscorlib, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089”, to GetType. In this case, GetType will
look for the type in the specified assembly (loading the assembly if necessary).

■■ The System.Type type offers a static ReflectionOnlyGetType method. This method be-
haves similarly to the GetType method mentioned in the previous bullet, except that the type
is loaded so that it can be reflected over but cannot be executed.

592	 PART IV  Core Facilities

■■ The System.TypeInfo type offers the following instance members: DeclaredNestedTypes
and GetDeclaredNestedType.

■■ The System.Reflection.Assembly type offers the following instance members: GetType,
DefinedTypes, and ExportedTypes.

Note  Microsoft has defined a Backus-Naur Form grammar for type names and assembly-
qualified type names that is used for constructing strings that will be passed to reflection
methods. Knowledge of the grammar can come in quite handy when you are using reflec-
tion, specifically if you are working with nested types, generic types, generic methods,
reference parameters, or arrays. For the complete grammar, see the FCL documenta-
tion or do a web search for “Backus-Naur Form Grammar for Type Names.” You can also
look at Type’s and TypeInfo’s MakeArrayType, MakeByRefType, MakeGenericType, and
MakePointerType methods.

Many programming languages also offer an operator that allows you to obtain a Type object from
a type name that is known at compile time. When possible, you should use this operator to obtain
a reference to a Type instead of using any of the methods in the preceding list, because the opera-
tor generally produces faster code. In C#, the operator is called typeof, and you use this operator
typically to compare late-bound type information with early-bound (known at compile time) type
information. The following code demonstrates an example of its use.

private static void SomeMethod(Object o) {
 // GetType returns the type of the object at runtime (late-bound)
 // typeof returns the type of the specified class (early-bound)
 if (o.GetType() == typeof(FileInfo)) { ... }
 if (o.GetType() == typeof(DirectoryInfo)) { ... }
}

Note  The first if statement in the code checks whether the variable o refers to an object
of the FileInfo type; it does not check whether o refers to an object that is derived from
the FileInfo type. In other words, the preceding code tests for an exact match, not a
compatible match, which is what you would get if you use a cast or C#’s is or as operators.

As mentioned earlier, a Type object represents a type reference that is a lightweight object.
If you want to learn more about the type itself, then you must acquire a TypeInfo object, which
represents a type definition. You can convert a Type object to a TypeInfo object by calling
System.Reflection.IntrospectionExtensions’ GetTypeInfo extension method.

Type typeReference = ...; // For example: o.GetType() or typeof(Object)
TypeInfo typeDefinition = typeReference.GetTypeInfo();

	 CHAPTER 23  Assembly Loading and Reflection	 593

And, although less useful, you can convert a TypeInfo object to a Type object by calling Type­
Info’s AsType method.

TypeInfo typeDefinition = ...;
Type typeReference = typeDefinition.AsType();

Obtaining a TypeInfo object forces the CLR to resolve the type by ensuring that the assembly
that defines the type is loaded. This can be an expensive operation that can be avoided if all you need
are type references (Type objects). However, after you have a TypeInfo object, you can query many
of the type’s properties to learn more about it. Most of the properties, such as IsPublic, IsSealed,
IsAbstract, IsClass, IsValueType, and so on, indicate flags associated with the type. Other
properties, such as Assembly, AssemblyQualifiedName, FullName, Module, and so on, return the
name of the type’s defining assembly or module and the full name of the type. You can also query
the BaseType property to obtain a reference to the type’s base type, and a slew of members will give
you even more information about the type. The FCL documentation describes all of the methods and
properties that TypeInfo exposes.

Building a Hierarchy of Exception-Derived Types
The following code uses many of the concepts discussed already in this chapter to load a bunch of as-
semblies into the AppDomain and display all of the classes that are ultimately derived from System.
Exception. By the way, this is the program I wrote to build the exception hierarchy displayed in the
“FCL-Defined Exception Classes” section in Chapter 20, “Exceptions and State Management.”

public static void Go() {
 // Explicitly load the assemblies that we want to reflect over
 LoadAssemblies();

 // Filter & sort all the types
 var allTypes =
 (from a in AppDomain.CurrentDomain.GetAssemblies()
 from t in a.ExportedTypes
 where typeof(Exception).GetTypeInfo().IsAssignableFrom(t.GetTypeInfo())
 orderby t.Name
 select t).ToArray();

 // Build the inheritance hierarchy tree and show it
 Console.WriteLine(WalkInheritanceHierarchy(new StringBuilder(), 0, typeof(Exception),
allTypes));
}

private static StringBuilder WalkInheritanceHierarchy(
 StringBuilder sb, Int32 indent, Type baseType, IEnumerable<Type> allTypes) {
 String spaces = new String(' ', indent * 3);
 sb.AppendLine(spaces + baseType.FullName);
 foreach (var t in allTypes) {
 if (t.GetTypeInfo().BaseType != baseType) continue;
 WalkInheritanceHierarchy(sb, indent + 1, t, allTypes);

594	 PART IV  Core Facilities

 }
 return sb;
}

private static void LoadAssemblies() {
 String[] assemblies = {
 "System, PublicKeyToken={0}",
 "System.Core, PublicKeyToken={0}",
 "System.Data, PublicKeyToken={0}",
 "System.Design, PublicKeyToken={1}",
 "System.DirectoryServices, PublicKeyToken={1}",
 "System.Drawing, PublicKeyToken={1}",
 "System.Drawing.Design, PublicKeyToken={1}",
 "System.Management, PublicKeyToken={1}",
 "System.Messaging, PublicKeyToken={1}",
 "System.Runtime.Remoting, PublicKeyToken={0}",
 "System.Security, PublicKeyToken={1}",
 "System.ServiceProcess, PublicKeyToken={1}",
 "System.Web, PublicKeyToken={1}",
 "System.Web.RegularExpressions, PublicKeyToken={1}",
 "System.Web.Services, PublicKeyToken={1}",
 "System.Xml, PublicKeyToken={0}",
 };

 String EcmaPublicKeyToken = "b77a5c561934e089";
 String MSPublicKeyToken = "b03f5f7f11d50a3a";

 // Get the version of the assembly containing System.Object
 // We'll assume the same version for all the other assemblies
 Version version = typeof(System.Object).Assembly.GetName().Version;

 // Explicitly load the assemblies that we want to reflect over
 foreach (String a in assemblies) {
 String AssemblyIdentity =
 String.Format(a, EcmaPublicKeyToken, MSPublicKeyToken) +
 ", Culture=neutral, Version=" + version;
 Assembly.Load(AssemblyIdentity);
 }
}

Constructing an Instance of a Type
After you have a reference to a Type-derived object, you might want to construct an instance of this
type. The FCL offers several mechanisms to accomplish this:

■■ System.Activator’s CreateInstance methods  The Activator class offers several
overloads of its static CreateInstance method. When you call this method, you can pass
either a reference to a Type object or a String that identifies the type of object you want to
create. The versions that take a type are simpler. You get to pass a set of arguments for the
type’s constructor, and the method returns a reference to the new object.

The versions of this method in which you specify the desired type by using a string are a bit
more complex. First, you must also specify a string identifying the assembly that defines the

	 CHAPTER 23  Assembly Loading and Reflection	 595

type. Second, these methods allow you to construct a remote object if you have remoting
options configured properly. Third, these versions don’t return a reference to the new object.
Instead, they return a System.Runtime.Remoting.ObjectHandle (which is derived from
System.MarshalByRefObject).

An ObjectHandle is a type that allows an object created in one AppDomain to be passed
around to other AppDomains without forcing the object to materialize. When you’re ready
to materialize the object, you call ObjectHandle’s Unwrap method. This method loads the
assembly that defines the type being materialized in the AppDomain where Unwrap is called.
If the object is being marshaled by reference, the proxy type and object are created. If the
object is being marshaled by value, the copy is deserialized.

■■ System.Activator’s CreateInstanceFrom methods  The Activator class also offers
a set of static CreateInstanceFrom methods. These methods behave just as the Create­
Instance method, except that you must always specify the type and its assembly via string
parameters. The assembly is loaded into the calling AppDomain by using Assembly’s Load­
From method (instead of Load). Because none of these methods takes a Type parameter, all
of the CreateInstanceFrom methods return a reference to an ObjectHandle, which must
be unwrapped.

■■ System.AppDomain’s methods  The AppDomain type offers four instance methods (each
with several overloads) that construct an instance of a type: CreateInstance, Create­
InstanceAndUnwrap, CreateInstanceFrom, and CreateInstanceFromAndUnwrap.
These methods work just as Activator’s methods except that these methods are instance
methods, allowing you to specify which AppDomain the object should be constructed in.
The methods that end with Unwrap exist for convenience so that you don’t have to make
an additional method call.

■■ System.Reflection.ConstructorInfo’s Invoke instance method  Using a reference
to a TypeInfo object, you can bind to a particular constructor and obtain a reference to the
constructor’s ConstructorInfo object. Then you can use the reference to the Constructor­
Info object to call its Invoke method. The type is always created in the calling AppDomain,
and a reference to the new object is returned. I’ll also discuss this method in more detail later in
this chapter.

Note  The CLR doesn’t require that value types define any constructors. However, this
is a problem because all of the mechanisms in the preceding list construct an object by
calling its constructor. However, Activator’s CreateInstance methods will allow you
to create an instance of a value type without calling a constructor. If you want to create
an instance of a value type without calling a constructor, you must call the version of the
CreateInstance method that takes a single Type parameter or the version that takes
Type and Boolean parameters.

596	 PART IV  Core Facilities

The mechanisms just listed allow you to create an object for all types except for arrays (System.
Array-derived types) and delegates (System.MulticastDelegate-derived types). To create an ar-
ray, you should call Array’s static CreateInstance method (several overloaded versions exist). The
first parameter to all versions of CreateInstance is a reference to the Type of elements you want in
the array. CreateInstance’s other parameters allow you to specify various combinations of dimen-
sions and bounds. To create a delegate, you should call MethodInfo’s CreateDelegate method. The
first parameter to all versions of CreateDelegate is a reference to the Type of delegate you want to
create. CreateDelegate’s other parameter allows you to specify which object should be passed as
the this parameter when calling an instance method.

To construct an instance of a generic type, first get a reference to the open type, and then call
Type’s MakeGenericType method, passing in an array of types that you want to use as the type ar-
guments. Then, take the returned Type object and pass it into one of the various methods previously
listed. Here is an example.

using System;
using System.Reflection;

internal sealed class Dictionary<TKey, TValue> { }

public static class Program {
 public static void Main() {
 // Get a reference to the generic type's type object
 Type openType = typeof(Dictionary<,>);

 // Close the generic type by using TKey=String, TValue=Int32
 Type closedType = openType.MakeGenericType(typeof(String), typeof(Int32));

 // Construct an instance of the closed type
 Object o = Activator.CreateInstance(closedType);

 // Prove it worked
 Console.WriteLine(o.GetType());
 }
}

If you compile the preceding code and run it, you get the following output.

Dictionary`2[System.String,System.Int32]

Designing an Application That Supports Add-Ins

When you’re building extensible applications, interfaces should be the centerpiece. You could use a
base class instead of an interface, but in general, an interface is preferred because it allows add-in de-
velopers to choose their own base class. Suppose, for example, that you’re writing an application and
you want others to be able to create types that your application can load and use seamlessly.

	 CHAPTER 23  Assembly Loading and Reflection	 597

Here’s the way to design this application:

■■ Create a Host SDK assembly that defines an interface whose methods are used as the commu-
nication mechanism between the host application and the add-in components. When defining
the parameters and return types for the interface methods, try to use other interfaces or types
defined in MSCorLib.dll. If you want to pass and return your own data types, define them in
this Host SDK assembly, too. After you settle on your interface definitions, give this assembly a
strong name (discussed in Chapter 3), and then package and deploy it to your partners and us-
ers. Once published, you should really avoid making any kind of breaking changes to the types
in this assembly. For example, do not change the interface in any way. However, if you define
any data types, it is OK to add new members. If you make any modifications to the assembly,
you’ll probably want to deploy it with a publisher policy file (also discussed in Chapter 3).

Note  You can use types defined in MSCorLib.dll because the CLR always loads
the version of MSCorLib.dll that matches the version of the CLR itself. Also, only
a single version of MSCorLib.dll is ever loaded into a CLR instance. In other
words, different versions of MSCorLib.dll never load side by side (as described
in Chapter 3). As a result, you won’t have any type version mismatches, and
your application will require less memory.

■■ The add-in developers will, of course, define their own types in their own Add-In assembly.
Their Add-In assembly will reference the types in your Host SDK assembly. The add-in devel-
opers are able to put out a new version of their assembly as often as they’d like, and the host
application will be able to consume the add-in types without any problem whatsoever.

■■ Create a separate Host Application assembly containing your application’s types. This assem-
bly will obviously reference the Host SDK assembly and use the types defined in it. Feel free to
modify the code in the Host Application assembly to your heart’s desire. Because the add-in
developers don’t reference the Host Application assembly, you can put out a new version of it
every hour if you want to and not affect any of the add-in developers.

This section contains some very important information. When using types across assemblies, you
need to be concerned with assembly-versioning issues. Take your time to architect this cleanly by iso-
lating the types that you use for communication across assembly boundaries into their own assembly.
Avoid mutating or changing these type definitions. However, if you really need to modify the type
definitions, make sure that you change the assembly’s version number and create a publisher policy
file for the new version.

I’ll now walk through a very simple scenario that puts all of this together. First, here is the code for
the HostSDK.dll assembly.

using System;

namespace Wintellect.HostSDK {
 public interface IAddIn {
 String DoSomething(Int32 x);

598	 PART IV  Core Facilities

 }
}

Second, here is the code for an AddInTypes.dll assembly defining two public types that implement
the HostSDK’s interface. To build this assembly, the HostSDK.dll assembly must be referenced.

using System;
using Wintellect.HostSDK;

public sealed class AddIn_A : IAddIn {
 public AddIn_A() {
 }
 public String DoSomething(Int32 x) {
 return "AddIn_A: " + x.ToString();
 }
}

public sealed class AddIn_B : IAddIn {
 public AddIn_B() {
 }
 public String DoSomething(Int32 x) {
 return "AddIn_B: " + (x * 2).ToString();
 }
}

Third, here is the code for a simple Host.exe assembly (a console application). To build this as-
sembly, the HostSDK.dll assembly must be referenced. To discover usable add-in types, this host code
assumes that the types are defined in assemblies ending with a .dll file extension and that these as-
semblies are deployed into the same directory as the host’s EXE file. Microsoft’s Managed Extensibility
Framework (MEF) is built on top of the various mechanisms that I show here, and it also offers add-in
registration and discovery mechanisms. I urge you to check MEF out if you are building a dynamically
extensible application, because it can simplify some of the material in this chapter.

using System;
using System.IO;
using System.Reflection;
using System.Collections.Generic;
using Wintellect.HostSDK;

public static class Program {
 public static void Main() {
 // Find the directory that contains the Host exe
 String AddInDir = Path.GetDirectoryName(Assembly.GetEntryAssembly().Location);

 // Assume AddIn assemblies are in same directory as host's EXE file
 var AddInAssemblies = Directory.EnumerateFiles(AddInDir, "*.dll");

 // Create a collection of Add-In Types usable by the host
 var AddInTypes =
 from file in AddInAssemblies
 let assembly = Assembly.Load(file)
 from t in assembly.ExportedTypes // Publicly-exported types
 // Type is usable if it is a class that implements IAddIn
 where t.IsClass && typeof(IAddIn).GetTypeInfo().IsAssignableFrom(t.GetTypeInfo())

	 CHAPTER 23  Assembly Loading and Reflection	 599

 select t;
 // Initialization complete: the host has discovered the usable Add-Ins

 // Here's how the host can construct Add-In objects and use them
 foreach (Type t in AddInTypes) {
 IAddIn ai = (IAddIn) Activator.CreateInstance(t);
 Console.WriteLine(ai.DoSomething(5));
 }
 }
}

The simple host/add-in scenario just shown doesn’t use AppDomains. However, in a real-life sce-
nario, you will likely create each add-in in its own AppDomain with its own security and configuration
settings. And of course, each AppDomain could be unloaded if you wanted to remove an add-in from
memory. To communicate across the AppDomain boundary, you’d either tell the add-in developers to
derive their add-in types from MarshalByRefObject or, more likely, have the host application define
its own internal type that is derived from MarshalByRefObject. As each AppDomain is created, the
host would create an instance of its own MarshalByRefObject-derived type in the new AppDomain.
The host’s code (in the default AppDomain) would communicate with its own type (in the other App
Domains) to have it load add-in assemblies and create and use instances of the add-in types.

Using Reflection to Discover a Type’s Members

So far, this chapter has focused on the parts of reflection—assembly loading, type discovery, and
object construction—necessary to build a dynamically extensible application. In order to have good
performance and compile-time type safety, you want to avoid using reflection as much as possible. In
the dynamically extensible application scenario, after an object is constructed, the host code typi-
cally casts the object to an interface type or a base class that is known at compile time; this allows the
object’s members to be accessed in a high-performance and compile-time type-safe way.

In the remainder of this chapter, I’m going to focus on some other aspects of reflection that you
can use to discover and then invoke a type’s members. The ability to discover and invoke a type’s
members is typically used to create developer tools and utilities that analyze an assembly by looking
for certain programming patterns or uses of certain members. Examples of tools/utilities that do this
are ILDasm.exe, FxCopCmd.exe, and Visual Studio’s Windows Forms, Windows Presentation Founda-
tion, and Web Forms designers. In addition, some class libraries use the ability to discover and invoke
a type’s members in order to offer rich functionality as a convenience to developers. Examples of class
libraries that do so are serialization/deserialization and simple data binding.

Discovering a Type’s Members
Fields, constructors, methods, properties, events, and nested types can all be defined as members
within a type. The FCL contains a type called System.Reflection.MemberInfo. This class is an
abstract base class that encapsulates a bunch of properties common to all type members. Derived
from MemberInfo are a bunch of classes; each class encapsulates some more properties related to a
specific type member. Figure 23-1 shows the hierarchy of these types.

600	 PART IV  Core Facilities

System.Object

System.Reflection.MemberInfo

System.TypeInfo

System.Reflection.FieldInfo

System.Reflection.MethodBaseSystem.Reflection.MethodBase

System.Reflection.ContructorInfo

System.Reflection.MethodInfo

System.Reflection.PropertyInfo

System.Reflection.EventInfo

A nested type is a member

FIGURE 23-1  Hierarchy of the reflection types that encapsulate information about a type’s member.

The following program demonstrates how to query a type’s members and display some informa-
tion about them. This code processes all of the public types defined in all assemblies loaded in the
calling AppDomain. For each type, the DeclaredMembers property is called and returns a collection
of MemberInfo-derived objects; each object refers to a single member defined within the type. Then,
for each member, its kind (field, constructor, method, property, etc.) and its string value (obtained by
calling ToString) is shown.

using System;
using System.Reflection;

public static class Program {
 public static void Main() {
 // Loop through all assemblies loaded in this AppDomain
 Assembly[] assemblies = AppDomain.CurrentDomain.GetAssemblies();
 foreach (Assembly a in assemblies) {
 Show(0, "Assembly: {0}", a);

 // Find Types in the assembly
 foreach (Type t in a.ExportedTypes) {
 Show(1, "Type: {0}", t);

 // Discover the type's members
 foreach (MemberInfo mi in t.GetTypeInfo().DeclaredMembers) {
 String typeName = String.Empty;
 if (mi is Type) typeName = "(Nested) Type";
 if (mi is FieldInfo) typeName = "FieldInfo";
 if (mi is MethodInfo) typeName = "MethodInfo";
 if (mi is ConstructorInfo) typeName = "ConstructoInfo";

	 CHAPTER 23  Assembly Loading and Reflection	 601

 if (mi is PropertyInfo) typeName = "PropertyInfo";
 if (mi is EventInfo) typeName = "EventInfo";
 Show(2, "{0}: {1}", typeName, mi);
 }
 } }
 }
 private static void Show(Int32 indent, String format, params Object[] args) {
 Console.WriteLine(new String(' ', 3 * indent) + format, args);
 }
}

When you compile and run this code, a ton of output is produced. Here is a small sampling of what
it looks like.

Assembly: mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 Type: System.Object
 MethodInfo: System.String ToString()
 MethodInfo: Boolean Equals(System.Object)
 MethodInfo: Boolean Equals(System.Object, System.Object)
 MethodInfo: Boolean ReferenceEquals(System.Object, System.Object)
 MethodInfo: Int32 GetHashCode()
 MethodInfo: System.Type GetType()
 MethodInfo: Void Finalize()
 MethodInfo: System.Object MemberwiseClone()
 MethodInfo: Void FieldSetter(System.String, System.String, System.Object)
 MethodInfo: Void FieldGetter(System.String, System.String, System.Object ByRef)
 MethodInfo: System.Reflection.FieldInfo GetFieldInfo(System.String, System.String)
 ConstructoInfo: Void .ctor()
 Type: System.Collections.Generic.IComparer`1[T]
 MethodInfo: Int32 Compare(T, T)
 Type: System.Collections.IEnumerator
 MethodInfo: Boolean MoveNext()
 MethodInfo: System.Object get_Current()
 MethodInfo: Void Reset()
 PropertyInfo: System.Object Current
 Type: System.IDisposable
 MethodInfo: Void Dispose()
 Type: System.Collections.Generic.IEnumerator`1[T]
 MethodInfo: T get_Current()
 PropertyInfo: T Current
 Type: System.ArraySegment`1[T]
 MethodInfo: T[] get_Array()
 MethodInfo: Int32 get_Offset()
 MethodInfo: Int32 get_Count()
 MethodInfo: Int32 GetHashCode()
 MethodInfo: Boolean Equals(System.Object)
 MethodInfo: Boolean Equals(System.ArraySegment`1[T])
 MethodInfo: Boolean op_Equality(System.ArraySegment`1[T], System.ArraySegment`1[T])
 MethodInfo: Boolean op_Inequality(System.ArraySegment`1[T], System.ArraySegment`1[T])
 ConstructoInfo: Void .ctor(T[])
 ConstructoInfo: Void .ctor(T[], Int32, Int32)
 PropertyInfo: T[] Array
 PropertyInfo: Int32 Offset
 PropertyInfo: Int32 Count
 FieldInfo: T[] _array
 FieldInfo: Int32 _offset

602	 PART IV  Core Facilities

Because MemberInfo is the root of the member hierarchy, it makes sense for us to discuss it a bit
more. Table 23-1 shows several read-only properties and methods offered by the MemberInfo class.
These properties and methods are common to all members of a type. Don’t forget that System.
TypeInfo is derived from MemberInfo, and therefore, TypeInfo also offers all of the properties
shown in Table 23-1.

TABLE 23-1  Properties and Methods Common to All MemberInfo-Derived Types

Member Name Member Type Description

Name String property Returns the name of the member.

DeclaringType Type property Returns the Type that declares the member.

Module Module property Returns the Module that declares the member.

CustomAttributes Property returning
IEnumerable<Custom­
AttributeData>

Returns a collection in which each element identi-
fies an instance of a custom attribute applied to this
member. Custom attributes can be applied to any
member. Even though Assembly does not derive from
MemberInfo, it provides the same property that can
be used with assemblies.

Each element of the collection returned by querying DeclaredMembers is a reference to one of
the concrete types in the hierarchy. Although TypeInfo’s DeclaredMembers property returns all of
the type’s members, TypeInfo also offers methods that return specific member types for a speci-
fied string name. For example, TypeInfo offers GetDeclaredNestedType, GetDeclaredField,
GetDeclaredMethod, GetDeclaredProperty, and GetDeclaredEvent. These methods all return
a reference to a TypeInfo object, FieldInfo object, MethodInfo object, PropertyInfo object, or
EventInfo object, respectively. There is also a GetDeclaredMethods method that returns a collec-
tion of MethodInfo objects describing the methods matching the specified string name.

Figure 23-2 summarizes the types used by an application to walk reflection’s object model. From
an AppDomain, you can discover the assemblies loaded into it. From an assembly, you can discover
the modules that make it up. From an assembly or a module, you can discover the types that it de-
fines. From a type, you can discover its nested types, fields, constructors, methods, properties, and
events. Namespaces are not part of this hierarchy because they are simply syntactical gatherings of
types. If you want to list all of the namespaces defined in an assembly, you need to enumerate all of
the types in this assembly and take a look at their Namespace property.

From a type, it is also possible to discover the interfaces it implements. And from a constructor,
method, property accessor method, or event add/remove method, you can call the GetParameters
method to obtain an array of ParameterInfo objects, which tells you the types of the member’s
parameters. You can also query the read-only ReturnParameter property to get a ParameterInfo
object for detailed information about a member’s return type. For a generic type or method, you can
call the GetGenericArguments method to get the set of type parameters. Finally, for any of these
items, you can query the CustomAttributes property to obtain the set of custom attributes applied
to them.

	 CHAPTER 23  Assembly Loading and Reflection	 603

AppDomain

Assembly #2

Assembly #1

Module #2

Module #1

TypeInfo #2

TypeInfo #1

FieldInfo #2

FieldInfo #1

ConstructorInfo #2

ConstructorInfo #1

MethodInfo #2

MethodInfo #1

PropertyInfo #2

PropertyInfo #1

EventInfo #2

EventInfo #1

FIGURE 23-2  Types an application uses to walk reflection’s object model.

Invoking a Type’s Members
Now that you know how to discover the members defined by a type, you may want to invoke one
of these members. What invoke means depends on the kind of member being invoked. Table 23-2
shows which method to call for each kind of member to invoke that member.

TABLE 23-2  How to Invoke a Member

Type of Member Method to Invoke Member

FieldInfo Call GetValue to get a field’s value.
Call SetValue to set a field’s value.

ConstructorInfo Call Invoke to construct an instance of the type and call a constructor.

MethodInfo Call Invoke to call a method of the type.

PropertyInfo Call GetValue to call a property’s get accessor method.
Call SetValue to call a property’s set accessor method.

EventInfo Call AddEventHandler to call an event’s add accessor method.
Call RemoveEventHandler to call an event’s remove accessor method.

The PropertyInfo type represents metadata information about a property (as discussed in
Chapter 10, “Properties”); that is, PropertyInfo offers CanRead, CanWrite, and PropertyType
read-only properties. These properties indicate whether a property is readable or writeable and what
data type the property is. PropertyInfo also has read-only GetMethod and SetMethod proper-
ties, which return MethodInfo objects representing the methods that get and set a property’s value.

604	 PART IV  Core Facilities

PropertyInfo’s GetValue and SetValue methods exist for convenience; internally, they invoke the
appropriate MethodInfo object. To support parameterful properties (C# indexers), the GetValue
and SetValue methods offer an index parameter of Object[] type.

The EventInfo type represents metadata information about an event (as discussed in Chapter 11,
“Events”). The EventInfo type offers a read-only EventHandlerType property that returns the
Type of the event’s underlying delegate. The EventInfo type also has read-only AddMethod and
RemoveMethod properties, which return the MethodInfo objects corresponding to the methods
that add or remove a delegate to/from the event. To add or remove a delegate, you can invoke these
MethodInfo objects, or you can call EventInfo’s more convenient AddEventHandler and Remove­
EventHandler methods.

The following sample application demonstrates the various ways to use reflection to access a type’s
members. The SomeType class represents a type that has various members: a private field (m_some­
Field), a public constructor (SomeType) that takes an Int32 argument passed by reference, a public
method (ToString), a public property (SomeProp), and a public event (SomeEvent). Having defined
the SomeType type, I offer three different methods that use reflection to access SomeType’s mem-
bers. Each method uses reflection in a different way to accomplish the same thing.

■■ The BindToMemberThenInvokeTheMember method demonstrates how to bind to a member
and invoke it later.

■■ The BindToMemberCreateDelegateToMemberThenInvokeTheMember method demon-
strates how to bind to an object or member, and then it creates a delegate that refers to that
object or member. Calling through the delegate is very fast, and this technique yields faster
performance if you intend to invoke the same member on the same object multiple times.

■■ The UseDynamicToBindAndInvokeTheMember method demonstrates how to use C# dynamic
primitive type (discussed at the end of Chapter 5, “Primitive, Reference, and Value Types”) to
simplify the syntax for accessing members. In addition, this technique can give reasonably
good performance if you intend to invoke the same member on different objects that are all
of the same type because the binding will happen once per type and be cached so that it can
be invoked multiple times quickly. You can also use this technique to invoke a member on
objects of different types.

using System;
using System.Reflection;
using Microsoft.CSharp.RuntimeBinder;
using System.Linq;

// This class is used to demonstrate reflection
// It has a field, constructor, method, property, and an event
internal sealed class SomeType {
 private Int32 m_someField;
 public SomeType(ref Int32 x) { x *= 2; }
 public override String ToString() { return m_someField.ToString(); }
 public Int32 SomeProp {

	 CHAPTER 23  Assembly Loading and Reflection	 605

 get { return m_someField; }
 set {
 if (value < 1)
 throw new ArgumentOutOfRangeException("value");
 m_someField = value;
 }
 public event EventHandler SomeEvent;
 private void NoCompilerWarnings() { SomeEvent.ToString();}
}

public static class Program {
 public static void Main() {
 Type t = typeof(SomeType);
 BindToMemberThenInvokeTheMember(t);
 Console.WriteLine();

 BindToMemberCreateDelegateToMemberThenInvokeTheMember(t);
 Console.WriteLine();

 UseDynamicToBindAndInvokeTheMember(t);
 Console.WriteLine();
 }

 private static void BindToMemberThenInvokeTheMember(Type t) {
 Console.WriteLine("BindToMemberThenInvokeTheMember");

 // Construct an instance
 Type ctorArgument = Type.GetType("System.Int32&"); // or typeof(Int32).MakeByRefType();
 ConstructorInfo ctor = t.GetTypeInfo().DeclaredConstructors.First(
 c => c.GetParameters()[0].ParameterType == ctorArgument);
 Object[] args = new Object[] { 12 }; // Constructor arguments
 Console.WriteLine("x before constructor called: " + args[0]);
 Object obj = ctor.Invoke(args);
 Console.WriteLine("Type: " + obj.GetType());
 Console.WriteLine("x after constructor returns: " + args[0]);

 // Read and write to a field
 FieldInfo fi = obj.GetType().GetTypeInfo().GetDeclaredField("m_someField");
 fi.SetValue(obj, 33);
 Console.WriteLine("someField: " + fi.GetValue(obj));

 // Call a method
 MethodInfo mi = obj.GetType().GetTypeInfo().GetDeclaredMethod("ToString");
 String s = (String)mi.Invoke(obj, null);
 Console.WriteLine("ToString: " + s);

 // Read and write a property
 PropertyInfo pi = obj.GetType().GetTypeInfo().GetDeclaredProperty("SomeProp");
 try {
 pi.SetValue(obj, 0, null);
 }
 catch (TargetInvocationException e) {
 if (e.InnerException.GetType() != typeof(ArgumentOutOfRangeException)) throw;

606	 PART IV  Core Facilities

 Console.WriteLine("Property set catch.");
 }
 pi.SetValue(obj, 2, null);
 Console.WriteLine("SomeProp: " + pi.GetValue(obj, null));

 // Add and remove a delegate from the event
 EventInfo ei = obj.GetType().GetTypeInfo().GetDeclaredEvent("SomeEvent");
 EventHandler eh = new EventHandler(EventCallback); // See ei.EventHandlerType
 ei.AddEventHandler(obj, eh);
 ei.RemoveEventHandler(obj, eh);
 }

 // Callback method added to the event
 private static void EventCallback(Object sender, EventArgs e) { }

 private static void BindToMemberCreateDelegateToMemberThenInvokeTheMember(Type t) {
 Console.WriteLine("BindToMemberCreateDelegateToMemberThenInvokeTheMember");

 // Construct an instance (You can't create a delegate to a constructor)
 Object[] args = new Object[] { 12 }; // Constructor arguments
 Console.WriteLine("x before constructor called: " + args[0]);
 Object obj = Activator.CreateInstance(t, args);
 Console.WriteLine("Type: " + obj.GetType().ToString());
 Console.WriteLine("x after constructor returns: " + args[0]);

 // NOTE: You can't create a delegate to a field

 // Call a method
 MethodInfo mi = obj.GetType().GetTypeInfo().GetDeclaredMethod("ToString");
 var toString = mi.CreateDelegate<Func<String>>(obj);
 String s = toString();
 Console.WriteLine("ToString: " + s);

 // Read and write a property
 PropertyInfo pi = obj.GetType().GetTypeInfo().GetDeclaredProperty("SomeProp");
 var setSomeProp = pi.SetMethod.CreateDelegate<Action<Int32>>(obj);
 try {
 setSomeProp(0);
 }
 catch (ArgumentOutOfRangeException) {
 Console.WriteLine("Property set catch.");
 }
 setSomeProp(2);
 var getSomeProp = pi.GetMethod.CreateDelegate<Func<Int32>>(obj);
 Console.WriteLine("SomeProp: " + getSomeProp());

 // Add and remove a delegate from the event
 EventInfo ei = obj.GetType().GetTypeInfo().GetDeclaredEvent("SomeEvent");
 var addSomeEvent = ei.AddMethod.CreateDelegate<Action<EventHandler>>(obj);
 addSomeEvent(EventCallback);
 var removeSomeEvent = ei.RemoveMethod.CreateDelegate<Action<EventHandler>>(obj);
 removeSomeEvent(EventCallback);
 }

	 CHAPTER 23  Assembly Loading and Reflection	 607

 private static void UseDynamicToBindAndInvokeTheMember(Type t) {
 Console.WriteLine("UseDynamicToBindAndInvokeTheMember");

 // Construct an instance (You can't use dynamic to call a constructor)
 Object[] args = new Object[] { 12 }; // Constructor arguments
 Console.WriteLine("x before constructor called: " + args[0]);
 dynamic obj = Activator.CreateInstance(t, args);
 Console.WriteLine("Type: " + obj.GetType().ToString());
 Console.WriteLine("x after constructor returns: " + args[0]);

 // Read and write to a field
 try {
 obj.m_someField = 5;
 Int32 v = (Int32)obj.m_someField;
 Console.WriteLine("someField: " + v);
 }
 catch (RuntimeBinderException e) {
 // We get here because the field is private
 Console.WriteLine("Failed to access field: " + e.Message);
 }

 // Call a method
 String s = (String)obj.ToString();
 Console.WriteLine("ToString: " + s);

 // Read and write a property
 try {
 obj.SomeProp = 0;
 }
 catch (ArgumentOutOfRangeException) {
 Console.WriteLine("Property set catch.");
 }
 obj.SomeProp = 2;
 Int32 val = (Int32)obj.SomeProp;
 Console.WriteLine("SomeProp: " + val);

 // Add and remove a delegate from the event
 obj.SomeEvent += new EventHandler(EventCallback);
 obj.SomeEvent -= new EventHandler(EventCallback);
 }
}

internal static class ReflectionExtensions {
 // Helper extension method to simplify syntax to create a delegate
 public static TDelegate CreateDelegate<TDelegate>(this MethodInfo mi, Object target = null) {
 return (TDelegate)(Object)mi.CreateDelegate(typeof(TDelegate), target);
 }
}

If you build and run this code, you’ll see the following output.

BindToMemberThenInvokeTheMember
x before constructor called: 12
Type: SomeType
x after constructor returns: 24

608	 PART IV  Core Facilities

someField: 33
ToString: 33
Property set catch.
SomeProp: 2

BindToMemberCreateDelegateToMemberThenInvokeTheMember
x before constructor called: 12
Type: SomeType
x after constructor returns: 24
ToString: 0
Property set catch.
SomeProp: 2

UseDynamicToBindAndInvokeTheMember
x before constructor called: 12
Type: SomeType
x after constructor returns: 24
Failed to access field: 'SomeType.m_someField' is inaccessible due to its protection level
ToString: 0
Property set catch.
SomeProp: 2

Notice that SomeType’s constructor takes an Int32 by reference as its only parameter. The previ-
ous code shows how to call this constructor and how to examine the modified Int32 value after the
constructor returns. Near the top of the BindToMemberThenInvokeTheMember method, I show how
to accomplish this by calling Type’s GetType method passing in a string of "System.Int32&". The
ampersand (&) in the string allows me to identify a parameter passed by reference. This ampersand is
part of the Backus-Naur Form grammar for type names, which you can look up in the FCL documen-
tation. The code also shows how to accomplish the same thing using Type’s MakeByRefType method.

Using Binding Handles to Reduce Your Process’s Memory
Consumption
Many applications bind to a bunch of types (Type objects) or type members (MemberInfo-derived
objects) and save these objects in a collection of some sort. Then later, the application searches the
collection for a particular object and then invokes this object. This is a fine way of doing things except
for one small issue: Type and MemberInfo-derived objects require a lot of memory. So if an applica-
tion holds on to too many of these objects and invokes them occasionally, the application’s memory
consumption increases dramatically, having an adverse effect on the application’s performance.

Internally, the CLR has a more compact way of representing this information. The CLR creates these
objects for our applications only to make things easier for developers. The CLR doesn’t need these
big objects itself in order to run. Developers who are saving/caching a lot of Type and MemberInfo-
derived objects can reduce their working set by using run-time handles instead of objects. The FCL
defines three runtime handle types (all defined in the System namespace): RuntimeTypeHandle,
RuntimeFieldHandle, and RuntimeMethodHandle. All of these types are value types that contain
just one field, an IntPtr; this makes instances of these types cheap (memory-wise). The IntPtr field
is a handle that refers to a type, field, or method in an AppDomain’s loader heap. So what you need
now is an easy and efficient way to convert a heavyweight Type/MemberInfo object to a lightweight

	 CHAPTER 23  Assembly Loading and Reflection	 609

run-time handle instance and vice versa. Fortunately, this is easy using the following conversion meth-
ods and properties:

■■ To convert a Type object to a RuntimeTypeHandle, call Type’s static GetTypeHandle
method passing in the reference to the Type object.

■■ To convert a RuntimeTypeHandle to a Type object, call Type’s static GetTypeFromHandle
method passing in the RuntimeTypeHandle.

■■ To convert a FieldInfo object to a RuntimeFieldHandle, query FieldInfo’s instance
read-only FieldHandle property.

■■ To convert a RuntimeFieldHandle to a FieldInfo object, call FieldInfo’s static Get­
FieldFromHandle method.

■■ To convert a MethodInfo object to a RuntimeMethodHandle, query MethodInfo’s instance
read-only MethodHandle property.

■■ To convert a RuntimeMethodHandle to a MethodInfo object, call MethodInfo’s static Get­
MethodFromHandle method.

The following program sample acquires a lot of MethodInfo objects, converts them to Runtime­
MethodHandle instances, and shows the working set difference.

using System;
using System.Reflection;
using System.Collections.Generic;

public sealed class Program {
 private const BindingFlags c_bf = BindingFlags.FlattenHierarchy | BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic;

 public static void Main() {
 // Show size of heap before doing any reflection stuff
 Show("Before doing anything");

 // Build cache of MethodInfo objects for all methods in MSCorlib.dll
 List<MethodBase> methodInfos = new List<MethodBase>();
 foreach (Type t in typeof(Object).Assembly.GetExportedTypes()) {
 // Skip over any generic types
 if (t.IsGenericTypeDefinition) continue;

 MethodBase[] mb = t.GetMethods(c_bf);
 methodInfos.AddRange(mb);
 }

 // Show number of methods and size of heap after binding to all methods
 Console.WriteLine("# of methods={0:N0}", methodInfos.Count);
 Show("After building cache of MethodInfo objects");

610	 PART IV  Core Facilities

 // Build cache of RuntimeMethodHandles for all MethodInfo objects
 List<RuntimeMethodHandle> methodHandles =
 methodInfos.ConvertAll<RuntimeMethodHandle>(mb => mb.MethodHandle);

 Show("Holding MethodInfo and RuntimeMethodHandle cache");
 GC.KeepAlive(methodInfos); // Prevent cache from being GC'd early

 methodInfos = null; // Allow cache to be GC'd now
 Show("After freeing MethodInfo objects");

 methodInfos = methodHandles.ConvertAll<MethodBase>(
 rmh=> MethodBase.GetMethodFromHandle(rmh));
 Show("Size of heap after re-creating MethodInfo objects");
 GC.KeepAlive(methodHandles); // Prevent cache from being GC'd early
 GC.KeepAlive(methodInfos); // Prevent cache from being GC'd early

 methodHandles = null; // Allow cache to be GC'd now
 methodInfos = null; // Allow cache to be GC'd now
 Show("After freeing MethodInfos and RuntimeMethodHandles");
 }
}

When I compiled and executed this program, I got the following output.

Heap size= 85,000 - Before doing anything
of methods=48,467
Heap size= 7,065,632 - After building cache of MethodInfo objects
Heap size= 7,453,496 - Holding MethodInfo and RuntimeMethodHandle cache
Heap size= 6,732,704 - After freeing MethodInfo objects
Heap size= 7,372,704 - Size of heap after re-creating MethodInfo objects
Heap size= 192,232 - After freeing MethodInfos and RuntimeMethodHandles

	Cover
	Copyright

	Contents
	Chapter 21: The Managed Heap and Garbage Collection
	Chapter 23: Assembly Loading and Reflection

