B Microsoft

Prism for the
Windows Runtimefor
Windows 8

Developing a Windows Store
business app using
C#, XAML, and Prism

David Britch

Colin Campbell
Francis Cheung
Diego Antonio Poza
RohitSharma
Mariano Vazquez
Blaine Wastell

May 2013

patterns & practices

¢CKA A& R2Odzy Sy oh avfammatibhiRgd vidnS éxpréssedin this document, including URL
and other Internetveb site references, may change without notice.

Sorre examples depicted herein are provided for ilhation only and are fictitiousNo real
association or connection istanded or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2013 Microsoft. All rights reserved.

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Winalevwsade marks of the Microsoft
group of companiesAll other trademarks are property of their respective owners.

Contents
Developing a business app for the Windows Store using C#: AdventureWorks Shoppet....... 1
DOWNIOAA.ceeiee e ettt 1
PrEIEQUISITES. ettt ee e e ettt e e et et e e e e e et e e e e eebe e eaeees 1
Table of contents at @ glanCa.........u i e 2
[TV g T To Yo LU o= 3
Getting started with AdventureWorks ShOPPEr.........cccuvviiiiiiiiiieee e B
D011V o] (o= To KO TP UPP PP SOPPPTR 4
Building and runnintne SamMIPIE.........cconiiiniiiii e 4
Projects and SOIULON TOIABISoouuiiiii e e e e 5
The AdventureWorks. SNOPPET PrOJECL.cvieuii et ee e e 6
The AdventureWOrkS.UILOQIC PrOJECL.uuuneiiiiii et mmm e e 7
The Adventure Works.WebServices ProjecCt...........uvviiiviuiieemneeeeiiiineeeeeiiiieeeeeeieeeiineeeeandd
The Microsoft.Practices.Prism.PubSubEvents project...........coooiiivieeeiiiiiiniieeiee 8
The Microsoft.Practices.PriSm.StOfEIS PrOJECL..........uuiiiiiiiiiieeiiiceeie e 8
Guidance summary for AdventureWorks SHOPREL.........vviiiiiii e ceee e eeen e 9
Y o] 01T (o PP SPPP 9
MaKING KEY AECISIONS......cceuiiiiiie et eee et e e et e e e e et e e e e ean s 9
Designirg the AdventureWorks Shopper USer eXPEriENCE........oovvvuurueeieiaeeeiiiaeeeeeiinaeeeenes 11
Using the ModeViewViewModel (MVVM) pattern in AdventureWorks Shopper................ 11
Creating and navigating between pages in AdventureWorks Shapper..........c.cocoovveeennens 12
Using touch in AdventureWOorks SNOPPEE.c.uuiiiiiiei e eeee e 13
Validating user inputin AdventureWOorks SNOPPEE........ooveuiiiiiiiiiicee e 13
Managing application data in AdventureWorks ShOpPPer........cccovviiiiiiiiceei e 14
Handling suspend, resume, and activation in AdventureWorks Shapper..............cccoocoeee. 14
Communicating between loosely coupled components in AdventureWorks Shapper........ 15
Working with tiles in AdventureWorks ShOPPeL.........oooviviiiiiiiii e 16
Implementing search in AdventureWorks ShOPPer...........oviiiiiii e 17
Improving performance in AdventureWorks SNOPPEL........coouuiiiiiiiiiieee e 18
Testing and deploying AdventureWorks ShOPPRET..........ocvvieiiiiiiiee e e, 18
Using Prism for the WINdOWS RUNITME..........c.uuuiiiiiiii o eeeee e 19
YOU WITIBAITL. ...t e e e et e e 19
Y o] 01T T T o PSP 19

LT T] = (= o 20

(@ == 111 o = TR T 22
Creating a VIEW MOUEI ClaSS........oiiiiiiiieiiiiieee e 22
Creating a model class with validation SUPPOI............uiiviiiiiiicee e 23
Creating a Flyout and showing it programmatiCally.............cccuuuuiiiaeiiiiiiiiieeciiin e eeeiies 23
Adding items t0 the SEeNGS PANE.........uiiii e rem e et e et e e ennaeees 24
Changing the convention for naming and locating VIBWS.............covveviiiieeenneeeeeiiiee e, 25

Changing the convention for naming, locating, and associating view models with.views...25

Registering a view model factory with views instead of using a dependency injection cangéner

Designing the Adventure Works Shopper USer @XPerEICE.cu.uuveereeeeianmaeeeieeeeineeaeinaees 27
YOU WITIBAITL. ... e e e e et ee e e e e e e e e e e eeeas 27
Y 0] 0] 1= (o PRSP 27
MaKING KEY GECISIONS.ttt ettt ee e e e e et s e e e e et e e e e eann s 27
AdventueWorks Shopper USEr @XPEMENCESuiiii it eeiaree e et e eei e eeie e e e mmeeaneeeen 28

Deciding the user eXpenencCe gOalS..........oociiiuiuii i emm e 28
DecCiding the apP flOW........u e e ean e 29
Deciding what Window8 fEatUIES 10 USE..........uuuiiiiiiiiiieiiiceeiiie ettt 31
FUNAMENTAIS ...t eee e 32
o To TR e (T o | o TSP 32
ST aF=T o] /1o J= UaTo I =Tox |1 N 32
TOUCK INTEIACTION. ... ee e ettt e ettt e e e e aen e e eeee 33
(@2 T o= 10| 11 PSSP 33
Tiles and NOTIEATONS.coieiei ettt er e e et e e e e e e e e e eeeans 33
D= = PP 34
Deciding how t0 MONEtize the @PP........iveenieeiie e e e e e e eaneees 34
Making a good firSt IMPrESSION.iiiiiii e cee e eem e e e e e e 34
Validating the deSIgN. .. .ccue e e e e e e e ann e aans 34

Usingthe ModelViewViewModel (MVVM) pattern in AdventureWorks Shopper................... 35
YOU WITIBAITL. ... ettt ettt e e e e e e e e e e eeees 35
Y o] 01T T T o PRSP 35
MaKING KEY AECISIONS. ... cieuiieiiii et eee et emm et e e et e e et e e e e e e e e eeenns 35
MVVM INAAVENTUIEWOTIKS SNOPPELun it eee e e e aeaas 39
LAY F= U Y YA 1 PP 40
Using a dependency iNJECLION CONTAIMEE.........ooiiiuuiieeeiiaeeii e et e et e e eaii e e eees 40

Bootstrapping an MVVM app using the MvwwmApPpPBASSS...........ccooeviiiiiiiiiee e, 41

Using the ViewModelLocator class to connect view models to VIEWS............c.covevvieeennnens 43
Using a conventichhiased approach...........c.uuiioiiiiiiiiee e eeee e 44
Other approachesa connect View mMOodelS 10 VIEWSccuuiiiiiiiiiiie e 44
Creating a view model declaratively............ooveiviiiiiie e 44
Creating a view model programmatiCally............coouieeiiirceei e 45
Creating a view defined as a data template................oiiiiiiieriiii e 45
Data binding with the BindableBase ClassS..........cc..oviiiiiiicceie e 46
Additional CONSIAETALIONS.ciiiiiii ittt rre e e e e e e ebe e e e esaes 47
Ul interaction using the DelegateCommand class and attached behaviors...................... 48
Implementing command ODJECES.........oooiiiiiiieiiiiicee e A8
Invoking commands from @ VIEW............veieuiiiiiiiii e eeein e ereee e e ennnneeeen . 49
Implementing behaviors to supplement the functionality of XAML elements................. 50
INVOKING DENAVIOIS frOM @ VIEW.......ceuiiiiii et ree e 51
Additional CONSIAETALIONS.u ittt eee et e e e e e e e e eea e nmm e 52
Centralize data conversions in the view model or a conversion.layer............ccc.occuueee... 52
Expose operational modes in the view model.............coooiiiiioiii 52
Keep views and view modelsindependent...........coovviiiiiceii e 52
Use asynchronous programming techniques to keep the Ul responsive....................... 53
Creating and navigating between pages in AdventureWorks Shopper.........cccccevevvieeennnnne. 54
YOU WITIBAITL. ... ettt e e et ee e e e e et e e e eeeas 54
Y o] o] 1= (o TS PP 54
MaKING KEY GECISIONS. ... eiiiiti ettt eoo ettt e e e e e et n e e e e et e e e e eenn s 54
Creating pages and navigating between them in AdventureWorks Shoppet.................... 58
(@ (== 11 0o [= To PP 58
Adding deSIgRIME AtaA...........couuuiiiii e e e e e e e e e e e et eeerean e eaaas 60
Supporting portrait, snap, and fill [aYOULS..............viiiiiiii e e e 61
Loading the hub page at FUNIME...........coouiiiie e e e e 61
0317/ 1 o I 1 (0] PP 63
Overnding DUIIN CONTIOIS.oiiieiii e r e e et e e e e e e e 63
Enabling page [0CaliZatioN.c.ui i 65
Separate resources for each l0Cale...........coouiiiiiiicce e 65

Ensure that each piece of text that appearsin the Ul is defined by a string resource.... 66
Add contextual comments to the app resource.file.............ccoouiiiiiccciiiii e, 66

Define the flow direction for all PAgES........ccuuiiiiiiiiiiii e 66

Vi

Ensure error messages are read from the resourcefile............coiiiiiieeiiiiineeennnn 66
Enabling page aCCeSSIDIlITYciiiiiiie it eee e 67
Navigating DEtWEEN PAGESu i en e 68

Handling Navigation FEQUESTESuiiiiiiiiie ettt e e e e e e eeee 70

INVOKING NAVIGALIONL. ieeieeeii e e e ern e e et e e e e e e e et e e e et s mm e eanaeeees 71

Using touch in AdventureWOrkS SNOPPEI.......uuu ittt mmm e e 74
YOU WITIBAITL. ...ttt e et e e e e e et e e e eneanns 74
Y o] 01T T T (o ST 74
MaKING KEY AECISIONS. ... ciiuiiiiiiiee it eee et rmm et e et e e e e e e et e eeennns 74
Touch INADVENtUEWOTIKS SROPPET......c.ueiieii e 76
Tap fOr PriMArY QCHOML.......oieei et e e e e e e e et e e e et e e e een s mm e eaneeees 76
] ([0 L3R (o I o - 1 1 PP OPPPPTRRPRY 4
Swipe to select, command, anNd MOVE........c..uiiiiiiiii e e 81
Pinch and StretCh 0 ZOOM.........cooiiii e e 84
Swipe from edge fOor apP COMMEANTUS.cuuuiiiieieie et arn e e e e e e e eeend 86
Swipe from edge for SyStem COMMANDAS........ccouuuiiiiiiiieee e e 89

Validating user inputin AdventureWorks ShOoppeL.........cooovviiiiiiiiiie e 90
YOU WITIBAITL. ... ettt e e et ee e e e e e e e e e eeees 90
Y o] 1S3 (TSP Q0
MaKING KEY GECISIONS. ... eiiiiii ettt ettt ee e e e e et e e e et e e e eaneane e 90
Validation in AdventureWOorks SHOPPELc.uuu i eee e 91
Spedcifying validation TUIES............. i eee e e eees 92
Triggering validation when properties Change..........ovvuviiieiiice e e 95
Triggering validation of all PrOPErtES........iiiuei e eee e e e 97
Triggerning serveside Validation..............couuiiiiiiii e a8
Highlighting validation errors with attached behaviors.............ccoooviiicceii i, Q9
Persisting user input and validation errors when the app suspends and resumes........... 101

Managing applideon data in Adventure Works Shopper....... ..o 104
YOU WITIBAITL. ..ot e et e et nnm e e e e e bt e e e e eaaans 104
Y 0] 0] L= (o PP 104
MaKING KEY AECISIONS........cuuiiiiiieiii et eee e e e e e e et e e e aee e eeanns 104
Managing application data in AdventureWorks ShOpPer.........coovvviiiiiiice e 107
Storing data in the app dat@ STOIBS.......ciieiii e e eer e 107

[WoTor=1 0= o o] [or=Vio] o 1o F- - VAPPSR 108

Vil

Roaming appliCation ata............coeuuiiiiiiiscee e rrm e e e e e et e e e e aas 108
Storing and roaming user CredentialS...........oovvvvieiiii e 109
Temporary appliCation dat@l..........coeuuiiiiiiiicee e 111
Exposing settings through the Settings charm..............oooiiiiicec e 111
Using model classes as data transfer ODJECLS............vviiiiiiiiiceene e 114
Accessing data through @ Web SEIVICE.uuiiiiiiiiiiee e 115
(70} 151 0] o1 Lo o 1 116
EXPOSING ALA....cceeeiiieeeee e et 116
DAta fOMMIALS. ... ettt ettt ettt e e e e e e ean 117
(@70] 0151010011 oo e F= L= VPSPPI 117
(=Tt o1 T [o F= 1 = TSP 121

F U 11 o1 ToF= 1 (o] o NPT 122
Handling sysend, resume, and activation in AdventureWorks Shopper.........cccooovvvievinnnnn. 127
YOU WITIBAITL. ...t ettt e et mm e e e e e at e e e eeaens 127
Y 0] o] (=S (o1 PP 127
MaKING KEY GECISIONS. eeiiiii ettt ettt re e et e et at e e e e e ann et 127
Suspend and resume in AdventureWorks SNOPPRET........coviiiii it 128
Understanding possible eXeCULiON STAES............ccuuuuuiiiiaeriii e mmm e 129
Implementation approaches for suspaNnd reSUME..........coceviiiiieiiiiicee e, 131
SUSPENAING BN GPP. .+ttt ettt oo e ettt e e ettt e e e et et ee e e e e e eat e e e e eeba e e e e aneeena e eeeee 132
[T U a1 a0 = U= o o PSPPSR 135
FN e AV] o =T g = T o o BTSN 136
Other wayg0 CloSe the @pP........ooiiiiii e e e eee 138
Communicating between loosely coupled components in AdventureWorks Shopper......... 140
YOU Wl TEAITL. .. et e e ettt e eee e e e e 140
Y 0] 0] L= (o 140
MaKING KEY AECIBNS.iiiiieii et e e e e e e e e e mee e e eaans 140
Event aggregation in AdventureWorks ShOPPer........ccoovvi i eeee e 141
oYY A= To o | (=10 = i o o SO PRSPPI 142
Defining and publishing pub/SUD @VENTS..........couuiiiii e 143
DefiNiNg @GN VENL..... ..ot 143
PUDIISNING @N BVENLL......iiie e e 143
SUDSCIDING t0 BVENESttt 144

Default SUDSCIIPTION.. ettt er e e e e e e e et e e et mm e eenes 144

viii

Subscribing onthe UL thread...........ooovuiiiiii e eee e e e 144
SUDSCHPLION fIREIING. .. .eu e e et e e eeees 145
Subscribing uSiNg SIrONQ rEfEIENCES.ccvi i 146
Unsubscribing from pub/Sub VENLS...........coouuiiiiiiiicee 147
Working with tiles in AdventureWOorks SHOPPET......couuiiiiie e eeee e 148
YOU WITIBAITL. ...ttt ettt nnm e e e e b e e e eeaans 148
Y 0] 0] L= (o TP 148
MaKING KEY GECISIONS.iieiiiii ettt ettt re e e et et e e et bt e e e e e aaneaa s 148
Tiles in AdventUreWOrKS SNOPPET. ... e e 149
Creating @pPP HIES......coeeee et 150
Using periodic notifications to update tile content.............c.ovvviiiiicceiiiieeiin e, 151
Creating SECONUAIY TlES........u et eee et ab e emm e 152
Launching the app from a secondary.tile............ooouiiiiiiic e 156
Implementing search in AdventureWorks ShOPREL.......coouuui it 157
YOU WITIBAITL. ..ttt me e e e et e e ennans 157
Y o] 01T T T o PSP 157
MaKING KEY ECISIONS.......uiiiiiii i ee e et e een e e e e e e e et e et e eenemm e eneeens 157
Search in AdventureWOorks SNOPPEL........coouuiuie e 158
Participating in the Search CONraCL.............oiiiiii e 159
Responding t0 SEArCh QUETIES.........uu ittt 160
Populating the search results page with data................cocoiiiceiiii i, 162
Navigating to the result's detail PAge.........c.ceuuii it 163
Enabling users to type into the search boX..........c.cooiiii e e, 164
Improving performance in AdventureWorks SNOPPET.........uvvviiiviiiiee e 166
YOU Wl TEAITL. .. et e e ettt e eee e e e e 166
Y 0] 0] L= (o 166
MaKING KEY ECISIONS.....c.uiiiieiii it e e ern e e e e e e e e et e eenemmean e eens 166
Performance CONSIAEIALIONS.iiiiiiiii ettt e e e e e eeeaees 168
Limit the STartUP tIMe.... .ot e e eee s 168
EMPhasize reSPONSIVENESS ... covuiiiii et ern e e e et e e e e een e 169
THM reSOUrCe diCtIONANIES.ceiiieiiiiie et e e e e e 169
Optimize the elemMeNT COUNL...........uuiiii e ere e e e e e eaneaees 169
Reuse identiCal DrUSNES.........coouuiii e 169

Use independent aniMatiONS..........vveeuieeiueeiare e eei e et e eei e e et mma e era e e eaa e eaa e eenns 169

Minimize the communication between the app and the web service.................cooooeees 170
Limit the amount of data downloaded from the web Service............ccccvvvviiiceeeiinnnnnnnn. 170
USE Ul VIUBHZALION ... eee et e e nmm e e eees 170
Avoid UNNecesSsary terMINALON.ciiiiiiie et ern et e et er e e e eaa e e aeee 171
Keep your app's memory usage low when it's suspended............cccooovviiieciiiiiniiinnnees 171
Reduce battery CONSUMPION.uiiiiiii e aee et e e e e e 172
Minimize the amount of resources that your app USES...........vvvvvririiimemieeiineeeeieeeennnns 172
Limit the time spent in transition between managed and native cade...................c.uuuee 172
Reduce garbage COolleCHON TS,uiiiiiiee it ere e 172
Additional CONSIAETALIONS. eiieitie et ere ettt eee et et e e e eea e mmm s 173
Testing and deploying AdventureWorks SNORPEL...........viiiiiiiiiiie e 174
YOU WITIBAITL. ...ttt ettt enm e e et e e e eaaens 174

Y 0] o] (=S (o1 PP 174
MaKING KEY GECISIONS.eiieiiie ettt ettt een e et e e e e et e e e e e aenaea s 174
Testing AdventureWOrks SNOPPEL.o e 175
Unit and integration t€SHNG.uu ittt eee et et e et e e e ena e nnes 176
Testing synchronous funCtionality..............oooiuiiiiicee e 177
Testing asynchronOUSINCLONANITY.............cooeuiiiiiiiiicee e 178
Suspend and reSUME tESHIG. i e e e e e e e e s 179
ST =T b] (VR (5] (] o P UPPPTTRUPPPPIN 179
(o Tor= 1T 4= Lo g TN (1] 11 0o R PPN 179
ACCESSIDIIITY TESHNG ... eeeeeei et ern et e e e e e e e ena e e eees 180
T 0T g b= g Tors (T 1] oo 180
[TV ot (=] 1] Vo 180
Testing your app with the Windows App Certification Kit...............oooiiiioeeiiiiiiie 181
Creating a Windows Store certification CRESt................oviiiiiiiicee e 182
Deploying and managing WindOWS STOM @PPS ... ccuueeiniiieieiiiceiie e eeeieeeieean e e e emeneens 182
Meet the AdventureWorks Shopper team...........ovviui i eeee e 183
oYy 1T (== o T UPPPTTSPPPPN 183
Quickstarts for AdventureWOorks SROPPEL.........u i 185
Validation Quickstart for Windows Store apps using the MVVM pattern..................ccoeeeeee. 186
YOU WITIBAITL. ..ttt e et enm e e e e e e e eenens 186
Y o] 01T o PRSP 186

Building and runing the QUICKSTALL............iiiiiieii e eere e eens 186

SOIULION STIUCTUIE. ...t oo ettt e et e et et e e et e et e e e e mmeeeae e eeeene 187
Key dasses in the QUICKSEAILooiiiiuiiiei et e e 188
Spedifying validation FUIBS.uiiiii e eer e e e e e e e e ann e 189
Triggenng validation eXpPliCitly............ooieeiuiiiii e 190
Triggering validation implicitly on property change............ccooviiiiiicceii e 191
Highlighting Validation EITOIS........c.uuiieeiis et er e e eeean 191
Event aggregation Quickstart for Windows StOre appS......covevuieieiiiiiemneeiiiieeeeieeeeineeaennns 194
YOU WITIBAITL. ...t e et e et anm e e e e e bt e e e e eeaans 194
Y 0] 0] L= (o T PP 194
Building and running the QUICKSIAIL...........coouuuniiiiii e 195
SOIULION STTUCTUIE. ...t ettt e e et e e e et e e e ene e e e e ene 196
Key dasses in the QUICKSEAILoooiiiii et e e 196
Defining the ShoppingCartChangedEvent Class...........coooviiiiceeiiiin e 197
Notifying subscribers of the ShoppingCartChangedEVent...............cooviiiaceiiiiiiieeeceiinen, 198
Registering to receive notifications of the ShoppingChangedEvent................ccooeeviiiianens 199
Bootstrapping an MVVM Windows Store app Quickstart using Prism for the Windows Runidde
YOU WITIBAITL. ...ttt rem e e e e e ennens 201
Y o] 01T E T o PSPPI 201
Building and runing the QUICKSTALL.............couiiiiii e 201
SOIULION STTUCTUIE. ...ttt ettt et e e m e e ettt e e e e ettt e e et e menana e aeeeees 202
Key dasses in the QUICKSIALL..........couuiiiii e e e eee e e e e e e e e 203
Bootstrapping an MVVM app using the MvvmAppBase class..........cccoevveeiiceeiiiiiieeeennnn. 203
Adding app spedific startup behaviorto the App Class........coooiiiiiiiiceei i, 204
Bootstrapping without a dependency injeCioOraiNer............cceuuveeeriieeeiaeeeeeeieeeeieeeeen 207
Prism for the Windows RUNtIMe referenCe.........ooovvviiiiiiiiii e 208
YOU WITIBAITL. ...ttt e et mmm e e e e e e e e eenens 208
Y o] 1153 (TS 208
Microsoft.Practces.Prism.Store Apps libBrary.........o..oo i 209

Microsoft.Practices.Prism.PUDSUDEVENtS [IDrary...........ccooiiiiiiceeiiiieeee e 211

Developing a business app for the Windows Store using C#:
AdventureWorks Shopper

This guide provides guidance to developers who want to create a Windows Store business app using
C#, Extensible Application Markup Language (XAML), the Windows Runtime, and modern
development practices. The guide comes with source coderism for the Windows Runtime

source code for the AdventureWorks Shopper product catalog and shopping cart reference
implementation, and documentation. The guide provides guidance on how to implement MVVM

with navigation anépp lifecycle management, validation, manage application data, implement
controls, accessible and localizable pages, touch, search, tiles, and tile notifications. It also provides
guidance ontesting your app and tuning its performance.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

Download Prism PubSubEvents library

After you download the code, seeetting started with AdventureWorks Shopger instructions on
how to compile and run the reference implementation, as well as understand the Microsoft Visual
Studio solution sucture.

Here's what you'll learn:

=

How to implement pages, controls, touch, navigation, settings, suspend/resume, search,
tiles, and tile notifications.

How to implement the ModeViewViewModel (MVVM) pattern.

How to validate userinput for correctness.

How to manage application data.

How to testyour app and tune its performance.

=A =4 4 -4

Note If you're just getting started with Windows Store apps, r€adate your first Windows&e

app using C# or Visual Bawsitearn how to create a simple Windows Store app with C#and XAML.
Then download the AdventureWorks Shopper reference implementation to see a complete business
app that demonstrates recommended implementation patterns.

Prerequisites

1 Windows8
f Microsoft Visual Studia012
1 Aninterestin C#and XAML programming

http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/?LinkID=296753

Go toWindows Store app developmetat download the latest tools for Windows Store app
development.

The AdventureWorks Shopper Visual Studio solution has a number of nuget package dependencies,
which Visual Studio will attempt to download when the solutionis first loaded. The required nuge
packages are:

Unity v3.0

Microsoft.AspNet.WebApi.Client v4.1alpha120809
Newtonsoft.Json v4.5.11

Microsoft.AspNet.Mvc v4.0.20710.0
Microsoft.AspNet.Razor v2.0.20715.0
Microsoft.AspNet.WebApi v4.0.20710.0

Microsoft. AspNet.WebApi.Client v4.1alpha120809
Microsoft. AspNet.WebApi.Core v4.0.20710.0
Microsoft.AspNet.WebApi.WebHost v4.0.20710.0
Microsoft. AspNet.WebPages v2.0.20710.0
Microsoft.Net.Http v2.0.20710.0
Microsoft.Web.Infrastructure v1.0.0.0

=4 =4 =4 4 -4 -4 -4 -4 A A - -

Table of contents at a glance

Here are the major topids this guide. For the full table of contents, skdventureWorks Shopper
table of contents

Getting started with AdventureWorks Shopper

Guidance summary for AdventureWorks Shopper

Using Prism for the Windows Runtime

Designing the AdventureWorks Shopper user experience

Using the ModelViewViewModel (MVVM) pattern in AdventureWorks Shopper
Creating and navigating between pages in AdventureWorks Shopper

Using touch in AdventureWorks Shopper

Validating userinputin AdventureWorks Shopper

Managing application data in AdventureWorks Shopper

Handling suspend, resume, and activation in AdventureWorks Shopper
Communicating between loosely coupled components in AdventureWorks Shopper
Working with tiles in AdventureWorks Shopper

Implementing search in AdventureWorks Shopper

Improving performance in AdventureWorks Shopper

Testing and deploying Adventure Works Shopper

Meet the AdventureWorks Shopper team

Quickstarts for AdventureWorks Shopper

Prism for the Windows Runtime reference

=A =4 =4 -4 -4 -4 -4 A -4 -4 -4 -4 -4 -4 -4 -4 - -4

http://msdn.microsoft.com/en-us/library/windows/apps/br229519.aspx

Note This contentis available onthe web as well. For more infoDsa&loping a business app for
the WindowsStore using C#: AdventureWorks Shopper

Learning resources

If you're new to C# programming for Windows Store apps, R@abdmap for Windows Store app
using C# or Visual BasTo find out about debugging Windows Store appsBelugging Windows

Store apps

If you're familiar with using XAML you'll be able to continue using your skills whesteate
Windows Store apps. For more info about XAML as itrelates to Windows Store apgg\\dee
overview.

The Windows Runtime is a programming interface that you canaisesate Windows Store apps.

The Windows Runtime supports the distinctive visual style and tdnased interaction model of
Windows Store apps as well as access to network, disks, devices, and printing. For more info about
the Windows Runtime API, s&é¢indows API reference for Windows Store apps

The .NET framework provides a subset of managed types that you can use to create Windows Store
apps using C#. This subset of marchyges is called .NET for Windows Store apps and enables .NET
framework developers to create Windows Store apps within a familiar programming framework. You
use these managed types with types from the Windows Run#éifkto create Windows Store apps.
Youwon't notice any differences between using the managed types and the Windows Runtime types
exceptthat the managed types reside in namespaces that startSyistem and the Windows

Runtime types reside in namespaces that start Wilindows. The entire sedf assemblies for NET

for Windows Store apps is automatically referenced in your project when you create a Windows
Store app using C#. For more info SH&T for Windowst&re apps overview

To learn about the components and tools that determine what platform capabilities are available to
your app, and how to access these capabilitiesAgecapability declarations (Windows Store

apps)

The AdventureWorks Shopper reference implementation makes much use of thbaaskl
asynchronous pattern (TAP). To learn how to use TAP to implement and consume asynchronous
operations sed askbased Asynchronous Pattern

You might also want to redddex of UX guidelines for Windows Store agpdBlend for Visual
Studioto learn more about how to implement a great user experience.

http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/?LinkID=276827
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx

I

Getting started with AdventureWorks Shopper (Windows Store
business apps using C#, XAML, and Prism)

In this article we explain how to build and run the AdventureWorks Shopper reference
implementation, and how the source code is organized. The reference implementation
demonstrates how to create a Windows Store business app by Bsisia for the Windows Runtime
to accelerate development.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

Download Prism PubSubEvents library

Building and running the sample

Build the AdventureWorks Shopper Microsoft Visual Studio solution as you would build a standard
solution.

1. Onthe Visual Studioemu bar, choos8uild>Build Solution

2. Afteryou build the solution, you must deploy it. On the menu bar, ch@skl> Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. Afteryoudeploy the project, you shairun it. On the menu bar, choogebug> Start
DebuggingMake sure that AdventureWorks.Shopper is the startup project. When you run
the app, the hub page appears.

http://go.microsoft.com/fwlink/p/?LinkID=389062
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/?LinkID=296753

ADVENTURE
WORKS

.

$539.99

Road-750 Black, 52 HL Mountain Frame

Entry bevel adult biioe; offers a.. Each frame is hand-crafte
-
4h
-

|| Z J¢
$577.12 $229.49 $44.54

Mountain-400-W Red, 42 HL Fork LL Mountain Handle

Thiz bik: vers a high-level of performance on a budget. It i responsive and. High-performance carbon road fork.. Mll-purpase bar for onor

Projects and solution folders

The AdventureWorks Shopper Visual Studio soluirganizes the source code and other resources
into projects. All of the projects use Visual Studio solution folders to organize the source code and
otherresources into categories. The following table outlines the projects that make up the
AdventureWorks Bopper reference implementation.

Project Description

AdventureWorks.Shopper This projectcontains the views for the AdventureWorks
Shopper reference implementation, the package manifest,
and the App class thatdefines the startup behavior of the
app, along with supporting classes and resources. For
more info see The AdventureWorks.Shopper project.

AdventureWorks.UlLogic This projectcontains the businesslogic for the
AdventureWorks Shopperreference implementation, and
comprisesview models, models, repositories, and service
classes. Formore info see The AdventureWorks.UlLogic
project.

AdventureWorks.WebServices This projectcontains the web service for the
AdventureWorks Shopper reference implementation. For
more info see The AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents This projectcontains classes thatimplementthe event
aggregator. For more info see The
Microsoft.Practices.Prism.PubSubEvents project.

Microsoft.Practices.Prism.StoreApps This projectcontains interfaces and classes thatprovide
MWM supportwith lifecycle management, and core
services to the AdventureWorks Shopperreference
implementation. Formore info see The
Microsoft.Practices.Prism.Store Apps project.

AdventureWorks.Shopper.Tests This projectcontains unittests for the
AdventureWorks.Shopper project.

AdventureWorks.UlLogic.Tests This projectcontains unittests for the
AdventureWorks.UILogic project.

AdventureWorks.WebServices.Tests This projectcontains unittests for the
AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents.Tests This projectcontains unittests for the
Microsoft.Practices.Prism.PubSubEvents project.

Microsoft.Practices.Prism.StoreApps.Tests This projectcontains unittests for the
Microsoft.Practices.Prism.StoreApps project.

You can reuse some of the components in the AdventureWorks Shopper reference implementation
in any Windows Store app with little or no modificatidiar your own app, you can adaptthe
organization and ideas that these files provide.

The AdventureWorks.Shopper project

The AdventureWorks.Shopper project contains the following folders:

f TheAssetdolder contains images for the splash screen, tile, aheoWindows Store app
required images.

1 TheBehaviorsfolder contains attached behaviors that are exposed to view classes.

1 TheCommonfolder contains thédependencyPropertyChangedHelpeass which monitors
a dependency property for changes, and standaytes used by the app.

1 TheControlsfolder contains thd=ormFieldTextBoandMultiple SizedGridVieveontrols.

1 TheConverterdolder contains data converters such as BeoleanToVisibilityConverter
and theNullToVisibleConverter

1 TheDesignViewModel$older contains desigtime view model classes that are used to
display sample datain the visual designer.

1 TheServicedolder contains thAlertMessageServicandSecondaryTileServiadasses.

f TheStringsfolder contains resource strings used by thisjpct, with subfolders for each
supported locale.

1 TheThemedolder contains the application styles used by the app.

1 TheViewsfolder contains the pages and Flyouts for the app. The app uses a default
convention that attempts to locate pages in the "Viewmsimespace.

The AdventureWorks.UILogic project

The AdventureWorks.UILogic project contains the model, repository, service, and view model
classes. Placing the model and view model classes into a separate assembly provides a simple
mechanism for ensuring #t view models are independent from their corresponding views.

The AdventureWorks.UlLogic project contains the following folders:

1 TheModelsfolder contains the entities that are used by view model classes.

1 TheRepositoriedolder contains repository classes that access the web service.

1 TheServicedolder contains interfaces and classes thatimplement services that are
provided to the app, such as tiecountServiceand TemporaryFolderCacheServickasses.

1 TheStringsfolder contains resource strings used by this project, with subfolders for each
supported locale.

1 TheViewModelsfolder contains the application logic thatis exposed to XAML controls.
When a view class is associated with a view model class a default convientg®d which
will attempt to locate the view model class in the "ViewModels" namespace.

The AdventureWorks.WebServices project

The AdventureWorks.WebServices project is a sample web service that usemamiory database
to provide data to the AdventuMyorks Shopper reference implementation. When the reference
implementation is deployed through Visual Studio this web service is deployed locally on the
ASP.NET development server.

The AdventureWorks.WebServices project contains the following folders:

TheApp_Startfolder contains the configuration logic for the web service.

TheControllersfolder contains the controller classes used by the web service.

Thelmagesfolder contains productimages.

TheModelsfolder contains the entities that are used by the lwgervice. These entities

contain the same properties as the entities in the AdventureWorks.UlLogic project, with

some containing additional validation logic.

1 TheRepositoriedolder contains the repository classes thatimplement thememory
database used by the web service.

f TheStringsfolder contains aresource file containing strings used by the web service.

1 TheViewsfolder contains the Web.config settings and configuratiile for the web service.

It does not contain views because it uses the ASP.NET Web API, which returns data rather

than displays views.

= =4 4 -4

Note The AdventureWorks.WebServices project does not provide guidance for building aweb
service.

The Microsoft.Prac tices.Prism.PubSubEvents project

TheMicrosoft.Practices.Prism.PubSubEvegject is a Portable Class Library that contains classes
that implement event aggregation. You can use this library for camoating between loosely
coupled components in your own app. The project has no dependencies on any other priegects.
more info about this library, seferism for the Windows Runtime reference

The Microsoft. Practices.Prism.StoreApps project

This project contains the reusable infrastructure of the AdventureWorks Shopper reference
implementation, which you can use for building your own Windows Store app. It contains classes to
build Windows Store apps that suppt MVVM, navigation, state management, validation, Flyouts,
and commands.

TheMicrosoft.Practices.Prism.StoreAgm®ject uses Visual Studio solution folders to organize the
source code and other resowgs into these categories:

1 Thelnterfacesfolder contains the interfaces that are implemented by classes in this project.
1 TheStringsfolder contains resource strings used by this project, with subfolders for each
supported locale.

For more info about this library, sé&ism for the Windows Runtime reference

Guidance summary for AdventureWorks Shopper (Windows Store
business apps using C#, XAML, and Prism)

Business apps create a unigeet of challenges for developers. In this article read about the key
decisions you will have to make when developing a Windows Store business app. In addition, you
can consult the checklists that provide a consolidated view of the guidance includedheith t
documentation and illustrated in the AdventureWorks Shopper reference implementation.

Applies to

1 Windows Runtime for Window&
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

This guidance provides information to developers wiramt to create a Windows Store app using

C#, XAML, the Windows Runtime, and modern development practices. When you develop a new
Windows Store app, you need to determine some key factors that will define the architecture of
your app. The following are manythe key decisions that you will need to make:

1 Decide on the design of the end user experiendhen planning Windows Store apps, you
should think more about what experience you want to provide to your users and less about
what Windows8 features yowant to include. For more info sé@esigning the user
experience

1 Decide whetherto use a dependency injection contain®ependency injection containers
reduce the dependency coupling between objegggiboviding a facility to construct
instances of classes with their dependencies injected, and manage their lifetime based on
the configuration of the container. You will need to decide whether to use a dependency
injection container, which container to asand how to register the lifetime of components.

For more info se&sing the ModelViewViewModel pattern

1 Decide whetherto provide a clean separation of concerns between the user interface
controls and ther logic. One of the most important decisions when creating a Windows
Store app is whether to place business logic in ebdkind files, or whether to create a
clean separation of concerns between the user interface controls and their logic, in order to
make the app more maintainable and testable. If you decide to provide a clean separation of
concerns, there are then many decisions to be made about how to do this. For more info see
Using the ModeNiewViewModel pattern

1 Decide how to create pages and navigate between theFhere are many decisions to be
made about page design including the page layout, what content should be displayed in
different page views, whether to include design time data on your pageswhether to
make pages localizable and accessible. In addition, you must also make decisions about page
navigation including how to invoke navigation, and where navigation logic should reside. For
more info seeCreating and navigating between pages

10

Choose the touch interactions that the app will suppoithis includes selecting the

gestures from the Window&touch language that your app requires, and whether to design
and implement your own custoouch interactions. For more info séésing touch

Decide how to validate userinput for correctnesshe decision mustinclude how to

validate userinput across physical tiers, and how to notify the usertalaigdation errors.

For more info se® alidating user input

Decide how to manage application datdhis should include deciding upon which of the

app data stores to use, what data to roam, deciding how to manage k#ata sets, how to
perform authentication between your app and a web service, and how to reliably retrieve
data from a web service. For more info 9denaging application data

Decide how to manage the lifecleof the app The purpose and usage patterns of your app
must be carefully designed to ensure that users have the best possible experience when an
app suspends and resumes. This includes deciding whether your app needs to update the Ul
when resuming fronsuspension, and whether the app should start fresh if a long period of
time has elapsed since the userlastaccessed it. For more intdeseting suspend,

resume, and activation

Choose between platform providedventing and loosely coupled eventingvent

aggregation allows communication between loosely coupled components in an app,
removing the need for components to have areference to each other. If you decide to use
eventaggregation, you must decide how tdscribe to events and unsubscribe from them.
For more info se€ommunicating between loosely coupled components

Decide how to create tiles that are engaging for useAstile is an app's representation on

the Start screen and allows you to presentrich and engaging content to your users when the
app is not running. In order to create engaging tiles you must decide on their shape and size,
how to update tile content, att how often to update tile content. For more info séérking

with tiles.

Choose how to participate in searciio add search to your app you must participate in the
Search contract. When you add the Search contractrsusan search your app from

anywhere in their system by selecting the Search charm. However, there are still decisionsto
make that include whether to provide query and result suggestions, filtering, and what to
display on the search results page. For morf® seelmplementing search

Consider how to improve app performancé weltperforming app should respond to user
actions quickly, with no noticeable delay. In order to deliver aypetforming app you will

need b decide which tools to use to measure performance, and where to optimize code. For
more info sedmproving performance

Decide how to test and deploy the appVindows Store apps should undergo various modes
of testing in order to ensure that reliable, high quality apps are deployed. Therefore, you will
need to decide how to test your app, how to deploy it, and how to manage it after
deployment. For more info s€eesting and dpgloying Windows Store apps

11

Designing the AdventureWorks Shopper user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, sidskty, monetization,

and selling in the global market can reduce your development time and make it easierto create a
high quality app and getit certified.

Check Description
| Created a "great at" statementto guide user experience planning.
] Decided the user experiences to provide in the app.
] Followed the Index of UX guidelines for Windows Store apps forthe experiences the app provides.
| Storyboarded the different app flows to decide how the app behaves.
] Designed the app for different form factors.
[l Designed the app for all users regardless oftheir abilities, disabilities, or preferences.

For more info se®esigning the user experience

Using the Model-View-ViewModel (MVVM) pattern in AdventureWorks
Shopper

MVVM provides away for developers to cleanly separate the user interface controls from their logic.
This separation makes it easy to test the business logic of the app.

Check Description

] Used a dependencyinjection container to decouple concrete types from the code that depends on
those types, if appropriate.

Used view-firstcomposition because the app is conceptuallycomposed ofviews that connect to
the view models theydepend upon.

Limited view model instantiation to a single class byusing a view model locator object.

Used a convention-based approach for view model construction to remove the need for some
boilerplate code.

Used an attached property to automaticallyconnectviews to view models.

Promoted the testability of the app by exposing commands from the view models for ButtonBase-
derived controls on the views.

0O Ood O 0O

Promoted the testability of the app by exposing behaviors to views for non-ButtonBase-derived
controls.

] Supported a view model hierarchyin order to eliminate redundantcode in the view model classes.

For more info sedJsing the MVVM pattern

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

12

Creating and navigating between pages in AdventureWorks Shopper

The app page is the focal point for designingsUl. It holds all of your content and controls.
Whenever possible, you should integrate your Ul elements inline into the app page. Presenting your
Ul inline lets users fully immerse themselves in your app and stay in context.

Check Description

Ll

Used Visual Studio to work with the code-focused aspects ofthe app.

Used Blend for Microsoft Visual Studio 2012 for Windows 8 or the Visual Studio designer to work
on the visual appearance ofthe app.

Provided flexible page layouts that supportlandscape, portrait, snap, and fill views.

Followed a consistentlayout pattern for margins, page headers, gutter widths, and other page
elements.

Maintained state in snap view and possess feature parityacross states.

Used the Windows simulator to test the app on a variety of screen sizes, orientations, and pixel
densities.

Added sample data to each page to easilyview styling results and layoutsizes, and to support
the designer-developer workflow.

Incorporated accessible design principlesinto the pages, and planned for them to be localized.
Placed navigation logicin view model classes to promote testability.

Used commandsto implementa navigation action in a view model class, for ButtonBase-derived
controls.

Used attached behaviors to implementa navigation action in a view model class, fornon-
ButtonBase-derived controls.

Used the top app bar for navigational elements thatmove the userto a different page and used
the bottom app bar for commands thatacton the current page.

0o O o ooo o oo oOoodg O

Implemented common page navigation functionalityas a user control that is easilyincluded on
each page.

U Used strings to specifynavigation targets.

For more info see&Creating and navigatg between pages

13

Using touch in AdventureWorks Shopper

Touch interactions in Window&use physical interactions to emulate the direct manipulation of Ul
elements and provide a more natural, reabrld experience when interacting with those elements
onthe screen.

Check Description

[] Used the Windows 8 touch language to provide a concise setof touch interactions that are used
consistentlythroughoutthe system.

Used data binding to connect standard Windows controls to the view models thatimplement the
touch interaction behavior.

Ensured thattouch targets are large enough to supportdirectmanipulation.
Provided immediate visual feedback to touch interactions.
Ensured thatthe app is safe to explore by making touch interactions reversible.

Avoided timed touch interactions.

godooog o

Used static gestures to handle single-finger touch interactions.

[l Used manipulation gesturesto handle dynamic multi-touch interactions.

For more info sedJsing touch

Validating user input in AdventureWorks Shopper

Any app that accepts input from users should ensure that the data is valid. Validation has many uses
including enforcing business rules, providing responses to user input, and preventing an attacker
frominjecting malicious data.

Check Description

|:| Performed client-side validation to provide immediate feedback to users, and server-side
validation to improve security and enforce business ruleson the server.

Performed synchronous validation to check the range, length, and structure of userinput.

Derived model classes from the ValidatableBindableBase classin order to participate in client-
side validation.

Specified validation rules for model properties byadding data annotation attributes to the
properties.

Used dependencyproperties and data binding to make validation errors visible to the userwhen
the properties ofthe model objects change.

Notified users aboutvalidation errors by highlighting the control that contains the invalid data,
and by displaying an errormessage thatinforms the userwhythe data is invalid.

0o o oo o O

Saved userinputand any validation error messages when the app suspends, so thatthe app
can resume as the user leftit following reactivation.

For more info se&/alidating user input

14

Managing application data in AdventureWorks Shopper

Application data is data that the app itself creates and manages. Itis specific to the internal
functions or configuration of an app, and indes runtime state, user preferences, reference
content, and other settings.

Check Description

[] Used the application data APIs to work with application data, to make the system responsible
for managing the physical storage of data.

O Stored passwords in the Credential Locker only if the user has successfullysigned into the app,
and has opted to save passwords.

] Used ASP.NET Web API to create a resource-oriented web service thatcan pass different
content types.

] Cached web service data locally when accessing data thatrarely changes.

For more info se®lanaging application data

Handling suspend, resume, and activation in AdventureWorks Shopper

Windows Store apps should be designed to suspend when thesugtshes away from them and
resume when the user switches back to them.

Check Description
L] Saved application data when the app is being suspended.
U Saved the page state to memorywhen navigating away from a page.
L] Allowed views and view models to save and restore state that's relevant to each.
] Updated the Ul when the app resumesifthe content has changed.
] Usedthe saved application data to restore the app state, when the app resumes after being

terminated.

For more info seélandling suspend, resume, and activation

15

Communicating between loosely coupled components in AdventureWorks
Shopper

Event aggregation allows communication between loosely coupled components in an app, removing
the need for components to have a reference to each other.

Check Description

U Used Microsoft.NET events for communication between components thathave object reference
relationships.

Used event aggregation forcommunication between looselycoupled components.

Used the Microsoft.Practices.Prism.PubSubEvents libraryto communicate between loosely
coupled components.

Defined a pub/sub eventby creating an empty class thatderives from the
PubSubEvent<TPayload> class.

Notified subscribers byretrieving the event from the event aggregator and called its Publish
method.

Registered to receive notifications by using one ofthe Subscribe method overloads available in
the PubSubEvent<TPayload> class.

Requestthatnotification of the pub/sub eventwill occur in the Ul thread when needing to update
the Ul in response to the event.

Filtered required pub/sub events by specifying a delegate to be executed once when the event
is published, to determine whether or not to invoke the subscriber callback.

0O o oo o 0o 0O 0O

Used stronglyreferenced delegates when subscribing to a pub/sub event, where performance
problems have been observed.

For more info se€ommuncating between loosely coupled components

16

Working with tiles in AdventureWorks Shopper

Tiles represent your app on the Start screen and are used to launch your app. They have the ability
to display a continuously changing set of content that can be ts&dep users aware of events
associated with your app when it's not running.

Check

Description

[

Ood oo O

[

Used live tiles to presentengaging new contentto users, which invites them to launch the app.

Made live tiles compelling byproviding fresh, frequently updated contentthat makes users feel
that the app is active even wheniit's not running.

Used awide tile to displaynew and interesting contentto the user, and periodic notifications to
update the tile content.

Used peektemplates to breaktile contentinto two frames.

Set an expiration on all periodic tile notifications to ensure thatthe tile's content does not persist
longerthanit's relevant.

Updated the live tile as information becomes available, for personalized content.
Updated the live tile no more than every 30 minutes, for non-personalized content.

Allowed the userto create secondarytiles for any contentthat they wish to monitor.

For more info se&Vorking with tiles

17

Implementing search in AdventureWorks Shopper

To add search to your app you must participate in the Search contract. When you add the Search
contract, users can search your app from anywhere in their system by selecting the Search charm.

Check Description

L]

Used the Search charm to let users search for contentin an app.

Responded to OnQuerySubmitted and OnSearchApplication notifications.

Added a searchicon to the app canvas for users to get started using the app.
Implemented type to search for the app's hub, browse, and search full screen pages.
Disabled type to search before showing Flyouts, and restored it when Flyouts close.
Showed placeholdertextin the search box, to describe whatusers can search for.

Used a ListView or GridView control to displaysearch results.

Showed the user's querytext onthe searchresults page.
Used hithighlighting to highlightthe user's queryon the search results page.

Enabled users to navigate back to the last-viewed page after they look at the details fora
searchresult.

Provided app bar navigation on the search results page.
Provided a suitable message ifthe search query returns no results.
Abstracted search classesthathave view dependencies, to keep the app testable.

Restored page state correctly upon reactivation.

[A I Y o O

Saved the searchresults page forthe lastqueryin case the appis activated to search for that
guery again.

For more info se&Jsing search

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

18

Improving performance in AdventureWorks Shopper

To deliver a wetperforming, responsive Windows Store app you must think of performance as a
feature, to be planned for and measured throughout the lifecycle of your project.

Check Description

[l Performed app profiling to determine where code optimizations will have the greatesteffect in
reducing performance problems.

Measured app performance once you have code that performs meaningful work.

Taken performance measurements on hardware thathas the lowestanticipated specification.
Optimized actual app performance and perceived app performance.

Limited the startup time of the app.

Emphasized responsivenessin the Ul.

Trimmed resource dictionaries to reduce the amountof XAML the framework parses when the
app starts.

Reduced the number of XAML elements on a page to make the app render faster.

Reused brushes in order to reduce memoryconsumption.

Used independentanimations to avoid blocking the Ul thread.

Minimized the communication between the app and the web service.

Limited the amountof data downloaded from the web service.

Used Ul virtualization to only load into memorythose Ul elements thatare near the viewport.
Avoided unnecessaryapp termination.

Keptthe app's memoryusage low whenit's suspended.

Reduced the battery consumption ofthe app.

Minimized the amountof resources thatthe app uses.

Limited the time spentin transition between managed and native code.

Dodogoooooooddg goooogd

Reduced garbage collectiontime.

For more info seémproving performance

Testing and deploying AdventureWorks Shopper

Testing helps to ensure thatan app is reliable, correct, and of high quality.

Check Description

] Performed unittesting, integration testing, user interface testing, suspend and resume testing,
security testing, localization testing, accessibilitytesting, performance testing, device testing,
and Windows certification testing.

L] Validated and testa release build ofthe app by using the Windows App Certification Kit.

Fa more info sed esting and deployinydventureWorks Shopper

19

Using Prism for the Windows Runtime (Windows Store business apps
using C#, XAML, and Prism)

Summary

1 Use Prismto implement the MedViewViewModel (MVVM) pattern in your Windows
Store app.

1 Use Prismto add validation support to your model classes.

1 Use Prismto implement Flyouts and add items to the Settings pane.

Prism for the WindowRuntimeprovides two libraries that help developers create managed
Windows Store apps. The libraries accelerate development by providing support for bootstrapping
MVVM apps, state management, validation of user input, navigation, event aggregation, data
binding, commands, Flyouts, settings, and search.

You will learn

1 How to accelerate the development of your Windows Store app by using Prism.

Applies to

1 Windows Runtime for Window&
T C#
1 Extensible Application Markup Language (XAML)

This article describes thgeneral steps a developer needs to perform to Bsismto accomplish
different tasks. Itis not meantto provide you with detailed steps required to complete atask. If you
require more info, each section has links to the relevant documentation.

Many of the topics in this article assume that you are usindthigydependency injection

container, and that you & using conventions defined by Prism. This guidance is provided to make it
easier foryou to understand how to get started with Prism. However, you are not required to use
Unity, or any other dependency injection container, and you do not have to usedfzaild

conventions to associate views and view models. To understand how to use Prism without a
dependency injection container, or change the default conventions@eeging the convention for
naming andocating viewsChanging the convention for naming, locating, and associating view
models with viewsRegistering a view model factory with viewnstead of using a dependency
injection container

For more info about the conventions defined by Prism, deig a conventiodased approach~or
more info about PrisnseePrism for the Windows Runtime reference

http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

20

Getting started

The following procedure shows how to update a Windows Store app to use the services provided by
Prism.

1. Add a reference to th&licrosoft.Practices.Prism.Store Apliisrary to your project to use the
services provided by the library.

2. Derive theAppclass from thelvvmAppBaseclass, provided by the
Microsoft.Practices.Prism.Store Aggsary, in order to gain support for MVVM and the core
services required by Windows Store apps.

3. Delete theOnLaunche@ndOnSuspendingnethods from theAppclass, as these methods
are provided by thélvwmAppBaselass.

4. Override theOnLaunchApplicatioabstract method of theMvvmAppBaselass, in thé\pp
class, and add code to navigate to the first page of the app.

C#

protected override void OnLaunchApplication(LaunchActivate dEventArgs args)

{

NavigationService.Navigate("PageName", null);

}

5. Note PageNameahould be without the "Page" suffix. For example, Heenefor

HomePage
6. Add a reference to th&nitylibrary to your project to use the Unity dependency injection
container.

Note The Microsoft.Practices.Prism.Store Agdzary is not dependent on thenitylibrary.
To avoid using a dependency injection containerRegistering a view model factory with
views instead of using a dependency injection container

7. Create an instance of tHgnityContainerclass in thé\ppclass, so that you can use the
Unity dependencynijection container to register and resolve types and instances.

C#

private readonly IUnityContainer _container = new UnityContainer();

8. Override theOnRegisterkKnownTypesForSerializatimethod in theAppclass to register
any nonprimitive types that need to be saved and restored to survive app termination.

C#

SessionStateService.RegisterKnownType (typeof(Address));

http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899

21

9. Override theOnlnitializemethod in theAppclass in order to register types for the Unit
container and perform any other initialization. Examples of app specific initialization
behaviorinclude:

o Registeringinfrastructure services.
o Registering types and instances that you use in constructors.
o Providing adelegate that returns a view motigie for a given view type.

C#
protected override void Onlnitialize(IActivatedEventArgs args)
{
_container.Registerinstance (NavigationService);
_container.RegisterType<IAccountService, AccountService>
(new ContainerControlledLifetimeManage r());
_container.RegisterType<IShippingAddressUserControlViewModel,
ShippingAddressUserControl ViewModel>();
ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
=>
{
return viewModelType;
D
}

10. Note For a detailed example of @ninitializemethod see theAppclass in the
AdventureWorks Shopper reference implementation.
11. Override theResolvemethod in theAppclass to return a constructed view model instance.

C#

protected override object Resolve(Type type)

{

return _container.Resolve(type);

}

For more info se&Jsing the MVVM patterrRegistering a view model factory with views instead of
using a dependency injection containBootstrapping an MVVM Windows Store app Quickstart
using Pism for the Windows Runtimé&reating and navigating between pagasdPrism for the
Windows Runtime reference

22

Creating a view

The following procedurehows how to create a view class that has support for layout changes,
navigation, and state management.

1
2.
3.

Complete theGetting startegorocedure.

Add a folder nameWiewsto the root folder of your project.

Create a new page theViewsfolder whose name ends with "Page," in order to use the
FrameNavigationServicetiefault convention to navigate to pages in tlieewsfolder.

Modify the page class to derive from tMésualState Aware Pagelass, which provides
support for layat changes, navigation, and state management.

Add theViewModelLocator.AutoWireViewModehttached property to your view XAML in
orderto use theViewModelLocatorclass to instantiate the view model class and associate it
with the view class.

XAML

prism:Vi ewModelLocator.AutoWireViewModel="true"

Override theOnNavigatedT@ndOnNavigatedFronmethods if your page class needs to
perform additional logic, such as subscribing to an event or unsubscribing from an event,
when page navigation occurs. Ensure thet©nNavigatedT@ndOnNavigatedFrom
overrides calbase.OnNavigatedTandbase.OnNavigatedFromespectively.

Override theSave StatendLoadStatemethods if you have view state, such as scroll
position, that needs to survive termination and be restored when the app is reactivated.

For more info se€reating and navigating between pagdsing the MVVM patterrandHandling
suspend, resume, and activation

Creating a view model class

The following procedure shows how to create a view model class thathmgsort for property
change notification, navigation, and state management.

1
2.
3.

Complete theGetting startegprocedure.

Add a folder name®iewModelsto the root folder of your project.

Create a new class in théewModelsfolder whose name corresponds with the name of a
view and ends with "ViewModel," in order to use thieewModelLocator'sdefault
convention to instantiate and associate view model classes with view classes.

Derive the view model class from tMewModelbase tass, provided by the
Microsoft.Practices.Prism.Store Apgzary, so that you can use the base class's
implementation of thelNotifyPropertyChangednterface and gain support for navigation
and state management.

Modify the view model constructor so that it accepts the services required by the view
model, such as alNavigationServicénstance.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

23

6. Annotate properties with th¢Restorable Statefustom attribute if you want their values to
survive termination.

For more info se&sing the MVVM pattern

Creating a model class with validation support

The following procedure shows how to create a model class that has support for validation. You
should complete thé&etting startedorocedure before starting this procedure.

1. Adda model class to your project and derive thedmlbclass from the
ValidatableBindableBaselass, which provides validation support.

2. Add a property to the model class and add the appropriate attributes that derive from the
ValidationAttribute attribute, in order to specify the client side validation.

C#

[Required(ErrorMessage = "First name is required.")]
public string FirstName

{

get { return _firstName; }
set { SetProperty(ref _firstName, value); }

3. Update the view XAML that binds to the property created in the previous step to show
validation error messages.
XAML

<TextBox Text="{Binding UserInfo.FirstName, Mode=TwoWay}"
behaviors:HighlightOnErrors. PropertyErrors=
"{Binding UserInfo.Errors[FirstName]}" />

Note TheHighlightOnErrorattached behavior can be found in the AdventureWorks
Shopper reference implementation.

For more infov/alidating user inpundValidation Quickstart

Creating a Flyout and showing it programmatically

The following procedure shows how to create a Flyout view that appears from the right st of t
screen.

1. Complete theGetting startedorocedure.
2. Create a new page in théewsfolder whose name ends with "Flyout," in order to use the
FlyoutService'slefault convention to show Flyouts in th@ewsfolder.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

24

3. Derive thepage from the~lyoutViewclass, provided by the
Microsoft.Practices.Prism.Store Agi@ary, in order to display the view as a Flyout.

4. Modify theFlyoutview constructor to specify the width of tHdyout The
StandardFlyoutSizelass provides the two standard sizes for Flyouts.

C#

public CustomSettingFlyout() : base(StandardFlyoutSize.Narrow)
{

this.Initialize Component();

}

5. PassthdFlyoutServicenstance as a constructor parameter to the view model class that
needs to show the Flyout. Then, use tHgoutService.ShowFlyoumethod to
programmatically display the Flyout from the view model class.

C#

FlyoutService.ShowFlyout("CustomSetting");

For more info se€reating and navigating between pagegiManaging application data

Adding items to the Settings pane

The following procedure shows howadd an item to the Settings pane that can invoke an action.

1. Complete theGetting startedorocedure.
2. Override theGetSettingsCharmActionltemaethod in theAppclass and add code to add
items to the Settings pane.

C#

prote cted override IList<SettingsCharmActionltem>
GetSettingsCharmActionltems()
{
var settingsCharmltems = new List<SettingsCharmActionltem>();
settingsCharmltems.Add(new SettingsCharmActionltem("Text to show in
Settings pane”, ActionToBePerfor med));
settingsCharmitems.Add(new SettingsCharmActionltem("Custom setting”,
() => FlyoutService.ShowFlyout("CustomSetting")));
return settingsCharmlitems;

For more info se®anaging applicatiodata

25

Changing the convention for naming and locating views

The following procedure shows how to configure fFframeNavigationServicglass to look for views
in a location other than th¥iewsfolder.

1. Complete theGettingstartedprocedure.
2. Override theGetPage Typenethod in theAppclass and add code to define the page

location and naming convention appropriate to your app.

C#
protected override Type GetPage Type(string pageToken)
{
var assemblyQualified AppType = this.GetType().GetTypelnfo()
AssemblyQualifiedName;
var pageNameWithParameter = assemblyQualified AppType.Replace
(this.GetType().FullName, this.GetType(). Namespace +
".Pages.{0}View");
var viewFullName = string.Format(Culturelnfo.InvariantCulture,
pageNameWithParameter, pageToken);
var viewType = Type.GetType(viewFullName);
return viewType;
}

For more info se&sing the MVVM attern.

Changing the convention for naming, locating, and associating view models
with views

The following procedure shows how to configure WiewModelLocatorclass to look for view
modelsin a location other than théiewModelsfolder in the same assenh

1. Complete theGetting startedprocedure.

2. Override theOnlnitializemethod in theAppclass and invoke the static
ViewModelLocator.SetDefaultViewTypeToViewModel TypeResoivethod, passing in a
delegate that specifies a view type and returns a corresponding view model type.

C#

protected override void Onlnitialize(IActivatedEventArgs args)

{

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
=>
{
var viewModelTypeName = string.Format(
Culturelnfo.InvariantCulture,
"MyProject.VMs.{0}ViewModel, MyProject, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=public_Key T oken",

26

viewType.Name);
var viewModel Type = Type.GetType(viewModelTypeName);
return viewModel Type;

hE

For more info se&Jsing the MVVM pattern

Registering a view model factory with views instead of using a dependency
injection container

The following procedure shows how to configure tiewModelLocatorclass to explicitly specify
how to construct a view model for a given view type, instead aigia container for dependency
resolution and construction.

1. Complete theGetting startedorocedure.

2. Override theOnlnitializemethod in theAppclass and register a factory with the
ViewModelLocatorclass that will creata view model instance that will be associated with a
view.

C#

protected override void Onlnitialize(IActivatedEventArgs args)

{

ViewModelLocator.Register(typeof(MyPage).ToString(), () =>
new MyPageViewModel(NavigationService));

For more info se&Jsing the MVVM patterand Bootstrapping an MVVM Windows Store app
Quickstart using Prism for the Windows Runtime

27

Designing the Adventure Works Shopper user experience (Windows
Store business apps using C#, XAML, and Prism)

Summary

1 Focuson the user experience and not on the features the app will have.

i Use storyboards to iterate quickly on the user experience.

I Use standard Windows features to provide a user experience thatis consistent with otl
apps. In addition, validate the user experience with liheéex of UX guidelines fg¥indows

Store apps

In this article we explain the design process for the AdventureWorks Shopper user experience and
the Windows3 features that were used as part of the reference implementation.

You will learn

1 How to plan a Windows Store app.

1 How you cariie your "great at" statement to the app flow.

1 How storyboards and prototypes drive user experience design.

1 Which Windows features to consider as you plan your app.
Applies to

f Windows Runtime for Window&
1 C#
1 Extensible Application Markup Langugdg& ML)

Making key decisions

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibility, monetization,
and selling in the global markean reduce your development time and make it easierto create a
high quality app and getit certified. The following list summarizes the decisions to make when
planning your app:

How should | plan a Windows Store app?

What guidelines should | follow ensure a good overall user experience?

What experience do you wantto provide to your users?

Should the app run on different form factors?

How do | make the app accessible to users regardless of their abilities, disabilities, or
preferences?

1 Should the appe available in the global market?

=A =4 =4 -4 -4

When planning a Windows Store app you should think more about what experience you want to
provide to your users and less about what Wind@#eatures you want to include. We recommend
that you follow these steps:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

28

Decick the user experience goals.

Decide the app flow.

Decide what Window8 features to include.
Decide how to monetize your app.

Make a good firstimpression.

Validate the design.

oo~ wdPE

For more info se@lanning Windows Store appsdAdventureWorks Shopper user experiences

There are many user experience guidelines that can help you create a good Windows Store app.
However, theexact guidelines that you will follow will be dependent on the experiences presentin
your app. For more info sdadex of UX guidelines for Windows Store apps

In order todecide what experience you want to provide to your users we recommend that create a
"great at” statement to guide your user experience planning. Following this, you should design your
app flow. An app flow is a set of related interactions that your usave with the app to achieve

their goals. To validate the design you should follow these steps:

1. Outline the flow of the app. What interaction comes first? What interaction follows the
previous interaction?

2. Storyboard the flow of the app. How should usemva through the Ul to complete the
flow?

3. Prototype the app. Try out the app flow with a quick prototype.

For more info se®eciding the user experience goatslDecidng the app flow

Apps should be designed for different form factors, letting users manipulate the content to fit their
needs and preferences. Think of landscape view first so that your app will run on all form factors, but
remember that some screens rotateo plan the layout of your content for different resolutions and
screen sizes. In addition, because Windows is used worldwide, you need to design your app so that
resources, such as strings and images, are separated from their code to help make looalizat

easier. Also, your app should be available to all users regardless of their abilities, disabilities, or
preferences. If you use the buiih Ul controls, you can get accessibility support with little extra

effort. For more info se®eciding what Windows 8 features to use

AdventureWorks Shopper user experiences

The AdventureWorks Shopper reference implementation is a shopping app, and so we wanted to
design experiences that would enable users to skagily and efficiently.

Deciding the user experience goals

Our first step was to create a "great at" statement to guide our user experience planning. Here's the
"great at” statement for the AdventureWorks Shopper reference implementation:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

29

AdventureWorkShopper is great at letting users easily and efficiently order products from
AdventureWorks.

The goal of the AdventureWorks Shopper reference implementation is not to provide a complete
shopping app, but to demonstrate how to architect a Windows Storertass app. We used our

"great at” statement to guide the design tradeoffs as we built the app, making the focus on what our
users wantto do, rather than what the app can do.

Deciding the app flow

We then brainstormed which aspects of a shopping app arertbst crucial for a good user
experience, to let these features guide us through the design process. The features that we came up
with are:

Display and navigate products.

Search for products.

Authenticate user credentials.

Validate userinput.

Order produts.

Pay fororders.

Enable roaming data for user credentials.
Pin products to the Start screen.

=2 =4 =4 -4 -4 -8 -8 -4

There is plenty of other functionality that we could provide in the AdventureWorks Shopper
reference implementation. But we felt that the ability to browse, s#g and order products best
demonstrate the functionality for creating a shopping app.

The app flow is connected to our "great at" statement. A flow defines how the user interacts with
the app to perform tasks. Windows Store apps should be intuitive @gdire as few interactions as
possible. We used two techniques to help meet these goals: creating storyboards andipsck

Astoryboarddefines the flow of an app. Storyboards focus on how we intend the app to behave,

and not the specific details of whetwill look like. Storyboards help bridge the gap between the

idea of the app and its implementation, but are typically faster and cheaper to produce than
prototyping the app. Forthe AdventureWorks Shopper reference implementation, storyboards were
critical to helping us to define the app flow. This technique is commonly used in the film industry and
is now becoming standard in user experience design. The following storyboard shows the main app
flow for the AdventureWorks Shopper reference implementation.

30

ANCsREe » @||o A »@

[|

S |y

I R “ SE

|® Bikes o @] [®ridict information o @]

||||I|||||L_1|:I
I I g ——

I N |

|@ Shopping Cavd @ Endey Infovmattion
o
l 'D e [[T | e T e —
| L 1 = S s | s |
| — J L — | l'ﬂ |
a a ’
© Checko Stmmany @® seach
: :: E

Amockupdemonstrates the flow of the user experience, but more closely resembles what the end
product will look like. We created moakps based on our storyboards and iterated over their design
as a team. These mockups also helped each team membaifget for what the app should look

like. The following mockup shows the hub page.

31

During the planning phase of the app, we also created small prototypes to validate feasibility. A
prototypeis a small app that demonstrates the flow of the Ul or someimahfunctionality. For
example, a prototype could be created that only contains page navigation and commands, but
doesn'timplement any other functionality. By making the experience real through software,
prototyping enables you to test and validate tHew of your design on devices such as tablets. You
can also create prototypes that demonstrate core aspects of the app. For example, we created a
prototype that performs validation of user input and notifies the user of any invalid input.
Prototypes enablgou to safely explore design approaches before deciding on the approach for the
app. Although you can prototype during the planning phase of your app, try not to focus too much
on writing code. Design the user experience that you want and then implerhattesign when it's
ready.

For more info sek&aying out your ULaying out an app pagand Guidelines for snapped and fill
views

Deciding whatWindows 8 features to use

When planning a new app it's important to provide an experience that's consistent with other
Windows Store apps. Doing so will make your app intuitive to use. We researched the features that
the Windows platform provides by looking at tiéindows Developer Centeand by prototyping

and team discussion. We brainstormed on which platform features would best support our app flow
and decided on the features outlined here.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://code.msdn.microsoft.com/

32

Fundamentals

Splash screenThe splash screen will be used to smooth the transition between when users
launch the app and when it's ready for use. The splash screen should reinforce the
AdventureWorks Shopper brand to users, rather than distract them or advertise to them.
For moreinfo seeGuidelines for splash screens

Controls The app's Ul will showcase its content. Distractions will be minimized by only
having relevant elements on the screen satthsers become immersed in the content. For
more info sedndex of UX guidelines for Windows Store apps

Suspend and resume app statesers will switch away from the appdback to it, and
Windows will terminate it in the background whenit's unused. The AdventureWorks
Shopper reference implementation will save and resume state when required, in order to
maintain context. This state includes the scroll position on the pobdatalog pages and
partially entered data on the checkout pages. For more infor$@edling suspend, resume,

and activationandGuidelines for app suspend and resume

Globalization, localization, and app resourceé®ecause the app could be used worldwide,

the app will be designed so that resources, such as strings and images, are separated from
their code to help make localizati@asier. For more info sg8uidelines and checklist for
globalizing your appand Guidelines for app resources

Accessibility The app will be available to all users regardless of their abilities, disabilities, or
preferences. For more info sédan for accessility.

Page design

Layout and navigationThe Ul will have alayout that users can intuitively and easily
navigate. For more info sd¢avigation design for Windows Store apps

Layout and commandingCommands will be placed consistently on the UlI, to instill user
confidence and to ease user interaction. For more infolssgng out your LAnd

Commanding design for Windows Store apps

Layout and page desigages in the app will use a grid layout so that they adhere to the
Windows8 silhouette. For more info sde&ying out an app page

Typography The app Ul will be clean and uncluttered, and so will use appropriate font sizes,
weights, and colors. For more info s€eidelines for fonts

Snapping and scaling

1 Flexible layoutsThe app will handle landscape and portrait orientations and let users

manipulate the contentto fit their needs and preferences. For more infdaadelines for
layouts

Snapped and fill viewsThe app will be designed for users' mai#tsking needs. Users will be
able to use the app while they perform tasks in another app, and so snapped views must be
useful and maintain context when switching between snapped and unsrthypipe/s. For

more info seeCreating and navigating between pageslGuidelines for snapped and fill

views

http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761499.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700394.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx

33

1 Scaling tescreens The app Ul must look good on different sized devices, from small tablet
screens to large desktop screens. For more infoGeiglelines for scaling to screens

1 Scalng to pixel densityImages in the app must look good when scaled. Windows scales
apps to ensure consistent physical sizing regardless of the pixel density of the device. For
more info seeGuidelines for scaling to pixel density

1 ResizingThe app mustlook good when Windows resizes it. Windows automatically resizes
apps when the user changes the view state. For more inf@seeéelines for resizing

Touch interaction

1 Touch interaction The app will provide a consistent and wedrforming set of user
interactions. For more info sddsing touclandGuidelines for common user interactians

f Touch targeting The app will provide appropriately sized and located touch targets. For
more info sedsuidelines for targeting

1 Visual feedbackThe app will provide clear visual feedback for user actions. For more info
seeGuidelines for visual feedback

1 Semantic ZoomThe app will help users to navigate large amounts of related data. For more
info seeUsing toucland Guidelines for Semantic Zoom

1 Swipe and crosslide. The app will use this standard interaction to selectitems from allist.
For more info se®sing toucland Guidelines for crosslide.

1 Panning The app will use this standard interaction to browse through content. For more
info seeUsing touctand Guidelines for panning

1 Selecting textand imagedhe app will use this standard interaction with content. For more
info seeUsing toucland Guidelines for selecting text and images

1 Mouse interaction The app will provide a good mouse experience fars without touch
screens. For more info séésing touclandResponding to mouse interactions

1 Keyboard interaction The apwill provide a complete interaction experience for users who
prefer using a keyboard. For more info $@esponding to keyboard interactians

Capabilities

1 Search The app wlllet users search the app's content quickly from anywhere in the system.
For more info se&uidelines and checklist for search

Tiles and notifications

1 App tiles and seconary tiles The app's tile will engage users, encouraging them to use the
app, and keeping the app feeling fresh and relevant. In addition, you can use secondary tiles
to promote interesting content from your app on the Start screen, and let users launch
directly into a specific experience within your app. For more infodeeking with tiles
Guidelines and checklist for tiles and badgasdGuidelines and checklist for secondary
tiles.

1 Notifications. The app's tile will be updated with new content through periodic notifications.
For more info se&uidelines and checklist for periodic notifications

http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465362.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465355.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465370.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465299.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465334.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868246.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx

34

Data

1 Roaming The app will roam the user credentials. For more infolderaging appcation
dataandGuidelines for roaming app data

f Settings The app's settings will be accessible from one Ul surface, so that users can
configure the app through a commaonechanism that they are familiar with. We decided
that billing, shipping, and payment data should be accessed from the Settings charm. Initially
we used Flyouts to display and enter this data, but after using the app we decided that it
would be more appropate to use a page. This removed the problem of alightdismisson a
Flyoutlosing any data that the user entered. For more infoldaeaging application data
andGuidelines for app settings

Deciding how to monetize the app

Although AdventureWorks Shopper is afree app, its purpose is to drive sales for AdventureWorks
through customers placing and paying for orders. In orderdaisicantly increase the number of

users who could use the app we decided to make it woelddy. Being worldeady not only means
supporting localized strings and images, it also means being aware of how users from different
cultures will use the app. Faorore info seeGuidelines and checklist for globalizing your apg
Guidelines for app i®ources

For more info about monetizing your app sekan for monetizatio@andAdvertisingsuidelines

Making a good firstimpression

Windows Store apps should convey their "great at" statement to users when they first launch the
app. After referring back to our "great at" statemetdventureWorks Shopper is great at letting
users easily andciently order products from AdventureWoykge realized that product

promotion was key to allowing users to easily and efficiently order products from AdventureWorks.
This could be enabled by:

1 Havingalive tile, that uses tile notifications to prompteducts. When a user leaves the
app, we wanted to maintain a good impression by regularly updating the live tile with
product offers.

1 Usingthe splash screen to express the app's personality. We chose a splash screenimage
that fits the AdventureWorks brading and that reinforces the whole user experience.

1 Having a home page that clearly shows the primary purpose of the app. Users will be more
likely to explore the rest of the app if their initial impression is favorable.

Validating the design

Before begiming development, we presented our mockups and prototypes to stakeholders in order
to gain feedback to validate and polish our design. We also-alossked the design against the

Index of UX guidelines for Windows Store afgpsnsure that we complied with the Windows Store
user experience guidelines. This prevented us from having to make core design changes later in the
development cycle.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

35

Using the Model -View-ViewModel (MV VM) patternin
AdventureWorks Shopper (Windows Store business apps using C#,
XAML, and Prism)

Summary

1 Use theMicrosoft.Practices.Prism.Store Agizrary to accelerate the development of
managed Windowst8re apps that use the MVVM pattern.

I Use commands to implement actions in view model classes for controls that derive frol
ButtonBase

1 Use attached behaviors to implement actions in view model classes for controls that dc
derive fromButtonBase

TheModel-ViewViewModel (MVVM) pattern lends itself naturally to Windows Store apps that use
XAML. The AdventureWorks Shopper reference implementationfisss for the Windows
Runtimeto provide support for MVVMThis article describes how to use Prism to implement MVVM
in your Windows Store app.

You will learn

1 How Windows Store apps can benefit from MVVM.

1 How to use dependency injection to decouple concrete types from the code that depends on
the types.

1 How to ootstrap a Windows Store app that uses the MVVM pattern, by using a dependency
injection container.

1 How to connectview models to views.

1 How aview is updated in response to changes in the underlying view model.

1 How to invoke commands and behaviors fraraws.

Applies to

1 Windows Runtime for Window&
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

When you choose to use the MVVM pattern to construct your app, you will have to make certain
design decisions that will be difficult to@hge later on. Generally, these decisions are-age and
their consistent use throughout the app will improve developer and designer productivity. The
following list summarizes the decisions to make when implementing the MVVM pattern:

f Should I use Pristo provide support for MVVM?
1 Should | use a dependency injection container?
o Which dependency injection container should | use?

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

36

o Whenis itappropriate to register and resolve components with a dependency
injection container?
o Should a component's lifetime beanaged by the container?
1 Should the app construct views or view models first?
1 How should I connect view models to views?
o Shouldluse XAML or codbehind to set the view'BataContexproperty?
o Should luse a view model locator object?
o Should Il use an attached property to automatically connect view modelstes?
o Should luse a conventidmsed approach?
Should | expose commands from my view models?
Should I use behaviors in my views?
Should linclude design time data supportin my views?
Do | needto supporta view model hierarchy?

=A =4 -4 =4

Prism includes componentts help accelerate the development of a managed Windows Store app
that uses the MVVM pattern. It helps to accelerate development by providing core services
commonly required by a Windows Store app, allowing you to focus on developing the user
experiencesdr your app. Alternatively, you could choose to develop the core services yo&iself.
more info sed’rism for the Windows Runtime reference

There are several advantages to using a dependency injection oent&irst, a container removes

the need fora componentto locate its dependencies and manage their lifetime. Second, a container
allows mapping of implemented dependencies without affecting the component. Third, a container
facilitates testability by atiwing dependencies to be mocked. Forth, a containerincreases
maintainability by allowing new components to be easily added to the system.

In the context of a Windows Store app that uses the MVVM pattern, there are specific advantages to
a dependency injeion container. A container can be used for registering and resolving view models
and views. In addition, a container can be used for registering services, and injecting them into view
models. Also, a container can create the view models and inject thesvie

There are several dependency injection containers available, with two common choices being Unity
and MEF. Both Unity and MEF provide the same basic functionality for dependency injection, even
though they work very differently. When considering whiohtiner to use, keep in mind the
capabilities shown in the following table and determine which fits your scenario better.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

37

Both containers Unity only MEF only

Registertypes andinstances Resolves concrete types Discovers assembliesin a

with the container. without registration. directory.

Imperatively create instances « Resolves open generics. Recomposes properties and

registered types. collections as new types are
discovered.

Injectinstances of registered Uses interceptionto capture Automatically exports derived
types into constructors and calls to objects and add types.
properties. additional functionality to the

target object.

Have declarative attributes for Is deployed with the .NET
marking types and Framework.
dependencies that need to be

managed.

Resolve dependenciesin an
object graph.

If you decide to use a dependency injection container, you should also consider whetheritis
appropriate to register and resolve components using the container. Registering and resolving
instances from @ontainer has a performance cost because of the container's use of reflection for
creating each type, especially if components are being reconstructed for each page navigation in the
app. If there are many or deep dependencies, the cost of creation camase significantly. In

addition, if the component does not have any dependencies or is not a dependency for other types,
it may not make sense to put itin the container. Also, if the component has a single set of
dependencies that are integral to the tg@nd will never change, it may not make sense to put itin

the container.

You should also consider whether acomponent's lifetime should be managed by the container.
When you register a type the default behavior for the Unity container is to create amsance of

the registered type each time the type is resolved or when the dependency mechanism injects
instances into other classes. When you register an instance the default behavior for the Unity
containeris to manage the lifetime of the object asragdeton. This means that the instance

remains in scope as long as the containerisin scope, and itis disposed when the container goes out
of scope and is garbagmllected or when code explicitly disposes the container. If you want this
singleton behaviofor an object that Unity creates when you register types, you must explicitly

specify theContainerControlledLifetimeManageaass when registering the type. For more info see
Bootstrapping an MVVM Windows$d®e app Quickstart using Prism for the Windows Runtime

If you decide notto use a dependency injection container you can uséiéveModelLocatorclass,
provided by theMicrosoft.Practices.Prism.Storegglibrary, to register view model factories for
views, or infer the view model using a conventioased approach. For more info sesing the
ViewModelLocatorclass to connect view models to viearsdBootstrapping an MVVM Windows
Store app Quickstart using Prism for the Windows Runtime

38

Deciding whether your app will construct views or the view models firstis an issue of preference and
complexity. With view fist composition the app is conceptually composed of views which connect to
the view models they depend upon. The primary benefit of this approach is that it makes it easy to
construct loosely coupled, unit testable apps because the view models have nodeEme on the

views themselves. It's also easy to understand the structure of an app by following its visual
structure, rather than having to track code execution in order to understand how classes are created
and connected together. Finally, view firsnatruction aligns better with the Windows Runtime
navigation system because it is responsible for constructing the pages when navigation occurs,
which makes a view model first composition complex and misaligned with the platform. View model
first compositon feels more natural to some developers, since the view creation can be abstracted
away allowing them to focus on the logical Rbihstructure of the app. However, this approach is

often complex, and it can become difficult to understand how the vari@utsf the app are

created and connected together. It can be difficult to understand the structure of an app

constructed this way, as it often involves time spent in the debugger examining what classes gets
created, when, and by whom.

The decision on howo connect view models to views is based on complexity, performance, and
resilience:

1 If codebehind is used to connectview models to views it can cause problems for visual
designers such as Blend for Microsoft Visual Sta@i@ for Windows8 and Visualt8dio.

1 Using a view model locator object has the advantage that the app has a single class thatis
responsible for the instantiation of view models. The view model locator can also be used as
a point of substitution for alternate implementations of depemabges, such as for unit
testing or design time data.

1 A conventiorbased connection approach removes the need for much boilerplate code.

1 An attached property can be used to perform the connection automatically. This offers the
advantage of simplicity, wittihe view having no explicit knowledge of the view model.

Note The view willmplicitlydepend on specific properties, commands, and methods on the view
model because of the data bindings it defines.

In Windows Store apps, you typically invoke some agtisasponse to a user action, such as a
button click that can be implemented by creating an event handler in the -dmend file. However,
MVVM discourages placing code in the cdukhind file as it's not easily testable because it doesn't
maintain a goodeparation of concerns. If you wish to promote the testability of your app, by
reducing the number of event handlers in your celdehind files, you should expose commands
from your view models faButtonBasederived controls, and use behaviors in your views for
controls that don't derive fronButtonBase in order to connect them to view model exposed
commands and actions.

If you will beusing a visual designer to design and maintain your Ul you'll need to include design
time data supportin your app so that you can view layouts accurately and see realistic results for
sizing and styling decisions.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

39

You should support a view model hierarchy will help to eliminate redundant code in your view
model classes. If you find identical functionality in multiple view model classes, such as code to
handle navigation, it should be refactored into a base view model class from which all view models
classes will derive.

MVVM in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses the Unity dependency injection
container. The Unity container reduces the dependency coupling between objects by providing a
facility to instantiate instances of classes and manage their lifetimén@an object's creation, the
container injects any dependencies that the object requires intoit. If those dependencies have not
yet been created, the container creates and resolves them first. For more inldseg a

dependency injection containgiBootstrapping an MVVM Windows Store app Quickstart using Prism
for the Windows RuntimandUnity Container

In the AdventureWorks Shopper reference implementation, views are constructed before view
models. There is one view class per page of the Ul (a page is an instance of the
Windows.UIl.Xaml.Controls.Pag#ass), with design time data being supported on each view in
order to promote the designedeveloper workflow. For more info s€geating and navigating

between pages

Each view model is declaratively connected to a corresponding view using an attached property on a
view model locator object to automatically perform the connection. View model dependencies are
registered with the Unitglependency injection container, and resolved when the view modelis
created. A base view model class implements common functionality such as navigation and
suspend/resume support for view model state. View model classes then derive from this base class
inorder to inheritthe common functionality. For more info sgsing theviewModelLocatorclass

to connect view models to views

In order for a view model to participate in twoay data binding with the viewts properties must
raise thePropertyChangee@vent. View models satisfy this requirement by implementing the
INotifyPropertyChangednhterface and raising theropertyChange@vent when a property is
changed. Listeners can respond appropriately to the propelanges when they occur. For more
info seeData binding with th&indableBas&lass

The AdventureWorks Shopper reference implementation uses two options for executing code on a

view model in response to interactions on aview, such as a button click or item selection. If the

O2y iNRt A& I O2YY CgmnadddapeNtipSdataboukdo abl@oyhinad f Q &
LINELISNIIe 2y GKS @ASg Y2RStd 2KSyYy (KS O2y GNRf Q&
will be executed. In addition to commands, behaviors can be attached to an objectin the view and

can listen for an eventto be raised. In response, the bedt@an then invoke aActionor an

ICommandon the view model. For more info sé interaction using th®elegate Cormandclass

and attached behaviors

http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

40

1ttt 2F GKS OAS86 Y2RSta Ay GKS ! ROSYy(GdNB2 2Nl a {K
domain model, which is often just called the model. The model consists of classes that the view
modelsuse toimplementtheagpa Fdzy Qi A2yl fAGe@d +ASgs Y2RSta | NB
through model properties on the view model. However, if you want a strong separation between the

model and the view models, you can package model classes in a separate library.

In the AdventueWorks Shopper Visual Studio solution there are two projects that contain the view,
view model, and model classes:

1 Theview classes are located in the AdventureWorks.Shopper project.
1 The view model and model classes are located in the AdventureWorksidibkojg ct.

Solution Explorer * 3 x
@Rl erad 2R R

Search Solution Explorer (Ctrl+ 2 -

afa]Solution ‘adventureWorksShopper’ (10 projects)

b nuget

b gl Tests

b AdventureWorks.Shopper
b B{&E] AdventureWorks.UlLogic
[:ﬁ AdventureWorks WebServices

b &lcs] Microsoft.Practices.Prism.PubSubEvents
[@lce] Microsoft.Practices. Prism.StoreApps

What is MVVM?

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be
used on many different platforms and its intentis to provide a clean separation of concerns between
the user interface contrs and their logic. For more info about MVVM 34¥VM Quickstart
Implementing the MVVM Reern, Advanced MVVM Scenari@ndDeveloping a Windows Phone
Application using the MVV Mattern

Using a dependency injection container

Dependency injection enables decoupling of concrete types from the code that depends on these
types. ltuses a container that holds a list of registrations and mappings between interfaces and
abstract types ad the concrete types thatimplement or extend these types. The AdventureWorks
Shopper reference implementation uses the Unity dependency injection container to manage the
instantiation of the view model and service classes in the app.

Before you can injgcependencies into an object, the types of the dependencies need to be
registered with the container. After atype is registered, it can be resolved orinjected as a
dependency. For more info sémity.

http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

41

In the AdventureWorks Shopper reference implementation, Appclass instantiates the
UnityContainerobject and is the only class in the app that holds a referencéiatyContainer
object. Types are registered in t@nInitializemethod in theAppclass.

Bootstrapping an MVVM app using the MvwvmAppBase class

When you create a Windows Store app from a Visual Studio templat&gpelass derives from the
Applicationclass. In the AdventureWorks Shopper reference implementationAgpelass derives
from the MvwmAppBaselass. ThdlvwmAppBaselass provides support for suspension,
navigation, Flyouts, settings, search, and resgjview types from view names. TAppclass
derives from theMvvmAppBaseclass and provides app specific startup behavior.

TheMvvmAppBaseclass, provided by thilicrosoft. Practices.Prism.StoreAdgsrary, is responsible
for providing core startup behavior foran MVVM app, and derives from\y@icationclass. The
MvvmAppBaselass constructor is the entry point for the app. The following diagram shows a
conceptual view of how app startup occurs.

MvvmAappBase App MvvmAppBase App
Constructor Constructor OnwWindowCreated ™ Onlnitialize
l App MvwmAppBase App
InitializeComponeant OnLaunched OnLaunchApplication
MvwmAppBase

InitializeFramefsync

MvvmAppBase

CreateNavigationService —

Whenderiving from theMivvmAppBaselass, a required override is ti@nLaunchApplication
method from where you will typically perform your initial navigation to a launch page, or to the
appropriate page based on a secondary tile launch of the app. The foj@ede example shows
the OnLaunchApplicatiomethod in theAppclass.

C# AdventureWorks.ShoppaApp.xaml.cs

protected override void OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{

/I The app was launched from a Secondary Tile

/I Navigate to the item's page

NavigationService.Navigate ("ItemDetail", args.Arguments);
}
else

{

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

42

/I Navigate to the initial page
NavigationService.Navigate ("Hub", null);

This method navigates to tHeubPagedn the app, when the app launches normally, or the
ltemDetailPagef the app is launched from a secondary tile. "Hub" and "ItemDetail" are specified as
the logi@l names of the views that will be navigated to. The default convention specified in the
MvvmAppBaselass is to append "Page" to the name and look for that page in a .Views child
namespace in the project. Alternatively, another convention can be spedfiederriding the
GetPageTypenethod in theMvvmAppBaselass. For more info sé¢andling navigation requests

The app uses the Unity dependency injection container to reduce the dependency coupling between
objects by providing a facility to instantiate instances of classes and manage their lifetime based on
the configuration of the container. An instance of the containeris created as a singletorApphe

class, as shown in the following code example.

C# AdventureWorks.ShopperApp.xaml.cs

private readonly IUnityContainer _container = new UnityContainer();

TheOnlInitializemethod in theMvvmAppBaselass is overridden in thppclass with app specific
initialization behavior. Forinstance, this method should be overridden if you need to initialize
services, or set a default factory or default view model resolver fovieevModelLocatoobject.
The following code example showase of theOnlinitializemethod in theAppclass.

C# AdventureWorks.Shoppa’pp.xaml.cs

_container.Registerinstance<INavigationService>(NavigationService);

_container.RegisterInstance<ISessionStateService>(SessionStateService);

_container.Registerinstance <IFlyoutService>(FlyoutService);

_container.Registerinstance<IEventAggregator>(_eventAggregator);

_container.Registerinstance<IResourcelLoader>(new ResourcelLoaderAdapter(
new ResourcelLoader()));

This code registers service instances with the contaeeaingletons, based on their respective
interfaces, so that the view model classes can take dependencies on them. This means that the
container will cache the instances on behalf of the app, with the lifetime of the instances then being
tied to the lifetime of the container.

A view model locator objectis responsible for managing the instantiation of view models and their
association to views. For more info sgsing theViewModelLocatorclass to connect view models

to views When the view model classes are instantiated the container will inject the dependencies
that are required. If the dependencies have not yet been created, the container creates and resolves
them first. This approaclemoves the need for an object to locate its dependencies or manage their

43

lifetimes, allows swapping of implemented dependencies without affecting the object, and
facilitating testability by allowing dependencies to be mocked.

Using the ViewModelLocator cla ss to connect view models to views

The AdventureWorks Shopper reference implementation uses a view model locator object to
manage the instantiation of view models and their association to views. This has the advantage that
the app has a single class thatésponsible for the instantiation.

TheViewModelLocatorclass, in théMicrosoft. Practices.Prism.StoreAdgsrary, has an attached
property,AutoWireViewModelthat is used to associate view models wriBws. In the view's XAML
this attached property is set tivue to indicate that the view model should be automatically
connected to the view, as shown in the following code example.

XAML AdventureWorks.ShoppaNiews HubPage.xaml

Infrastructure:ViewMode ILocator.AutoWire ViewModel="true"

TheAutoWireViewModelproperty is a dependency property that is initializedatse, and when its
value changes thautoWireViewModelChangedvent handler is called. This method resolves the
view model for the view. Thi®llowing code example shows how this is achieved.

C# Microsoft.Practices.Prism.Store App¥giewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{

FrameworkElement view = d as FrameworkElement;
if (view == null) return; // Incorrect hookup, do no harm

/I Try mappings first
object viewModel = GetViewModelForView(view);
/I Fallback to convention based
if (viewModel == null)
{
var viewModelType = defaultViewTypeToViewModelTypeResolver(
view.GetType());
if (viewModelType == null) return;

/I Really need Container or Factories here to deal with injecting
/I dependencies on construction
viewModel = defaultViewModelFactory (viewModelType);

}

view.DataContext = viewModel;

TheAutoWireViewModelChangedhethod first attempts to resolve the view model from any
mappings that may have been registered by Registemethod of theViewModelLocatorclass. If
the view model cannot be resolved using this approach, forinstance if the mapping wasn't created,

44

the method falls back to using a conventibased approach to resolve the correct view model type.
This conventiomssumes that view models are in a.ViewModels child namespace, and that view
model names correspond with view names and end with "ViewModel". For more infdseg a
conventionbased approachFinally, thenethod sets theéDataContexproperty of the view type to

the registered view model type.

Using a convention -based approach

Aconventionbased approach to connecting view models to views removes the need for much
boilerplate code. The AdventureWorks Shopper reference implementation redefines the convention
for resolving view model types from view types. The convention assumes tha

1. View modeltypes are located in a separate assembly from the viewtypes.
2. View model types are located in the AdventureWorks.UILogic assembly.
3. View model type names append "ViewModel" to the view type names.

Using this convention, a view nameldbPagevill have a view model nameadubPageViewModel
The following code example shows how thgpclass overrides the
SetDefaultViewTypeToViewModel TypeResohdmlegate in the/iewModelLocatorclass, to define
how to resolve view model type names from view ty@ames.

C# AdventureWorks.Shoppaipp.xaml.cs

ViewModelL ocator.SetDefaultView TypeToViewModel TypeResolver((viewType) =>
{

var viewModelTypeName = string.Format(Culturelnfo.InvariantCulture,
"AdventureWorks.UILogic.ViewModels .{0}View Model,
AdventureWorks.UlLogic, Version=1.0.0.0, Culture=neutral,
PublicKkeyToken=634ac3171ee5190a", viewType.Name);

var viewModelType = Type.GetType(viewModelTypeName);

return viewModelType;

)

Other approaches to connect view models to views

There are many approaches that can be used to connect view and view model classes at run time.
The following sections describe three of these approaches.

Creating a view model declaratively

The simplest approack for the view to declaratively instantiate its corresponding view model in
XAML. When the view is constructed, the corresponding view model object will also be constructed.
This approach can be demonstrated in the following code.

XAML

<Page.DataContext>
<HubPageViewModel />
</Page.DataContext>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

45

When thePageis created, an instance of thdubPageViewModeilks automatically constructed and
set as the view's data context. This approach requires your view model to have a default (parameter
less) constructor.

This declarative construction and assignment of the view model by the view has the advantage that
it issimple and works well in desigime tools such as Blend and Visual Studio.

Creating a view model programmatically

A view can have code in the cotbehind file that results in the view model being assigned to its
DataContexiproperty. This is often accomplished in the view's constructor, as shown in the
following code example.

C#

public HubPage()
{

Initialize Component();
this.DataCo ntext = new HubPageViewModel();

Connecting aview model to a view in a cdaehind file is discouraged as it can cause problems for
designersin both Blend and Visual Studio.

Creating a view defined as a data template

A view can be defined as a datamplate and associated with aview model type. Datatemplates can
be defined as resources, or they can be defined inline within the control that will display the view
model. The content of the control is the view model instance, and the data templase cto

visually representit. This technique is an example of a situation in which the view modelis
instantiated first, followed by the creation of the view.

Data templates are flexible and lightweight. The Ul designer can use them to easily defiretle vi
representation of a view model without requiring any complex code. Data templates are restricted
to views that do not require any Ul logic (ceehind). Blend can be used to visually design and edit
data templates.

The following example showszzidViewthat is bound to a collection of
ShoppingCartltemViewModel€Each object in th8hoppingCartltemViewModelsollection is a
view model instancelhe view for eacBhoppingCartltemViewModek defined by the
ItemTemplateproperty. TheShoppingCartlitemTemplatspecifies that tle view for each
ShoppingCartltemViewModatonsists of &rid containing multiple child elements, including an
Imageand severalextBlocls.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx

46

XAML AdventureWorks.ShoppéerViews ShoppingCartPage .xaml

<GridView x:Name="ShoppingCartitemsGridView"
x:Uid="ShoppingCartltemsGridView"
AutomationProperties. Automationld="ShoppingCartltemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="3"
VerticalAlignment="Top"
IltemsSource="{Binding ShoppingCartltemViewModels}"
Selecteditem="{Binding Selectedltem, Mode=TwoWay}"
ltemTemplate="{StaticResource ShoppingCartitemTemplate}"
Margin="0,0,0,0" />

As well as defining a data template as a resource, they can also be defined inline, or you could place
the detailed code from the template into a user contamld declare an instance of the user control
inside the template.

Data binding with the BindableBase class

The Windows Runtime provides powerful data binding capabilities. Your view model and model
classes should be designed to support data binding sakiegt can take advantage of these
capabilities. For more info about data binding in the Windows RuntimeDsg¢aebinding overview

All view model and model classes that aoeessible to the view should implement the
INotifyPropertyChangedhterface. Implementing théNotifyPropertyChangethterface in your

view model or model classes allows them to provide change notifications to arypdatad controls
inthe view when the underlying property value changes. However, this can be repetitive and error
prone. Therefore, thdlicrosoft.Practices.Prism.Store Adiimaryprovides theBindableBaselass

that implements thdNotifyPropertyChangedhterface. The following code example shows this
class.

C# Microsoft.Practices.Prism.Store AppBindabkeBase.cs

public abstract class BindableBase : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;

protected virtual bool SetProperty<T>(ref T storage, T value,
[CallerMemberName] string propertyName = null)

{

if (object.Equals(storage, value)) return false;

storage = value;
this.OnPropertyChanged(propertyName);

return true;

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

47

protected void OnPropertyChanged(string propertyName)

{
var eventHandler = this.PropertyChanged,;
if (eventHandler = null)
{
eventHandler(this, new PropertyChangedEventArgs(propertyName));
}
}

Note TheBindableBaselass, provided by thilicrosoft.Practices.Prism.StoreAdgwrary, is
identical to theBindableBaselass provided by the Visual Studio project templates.

Each view model class in the AdventureWorks Shopper reference implenoendatrives from the
ViewModelbase class that in turn derives from tBendableBasdase class. Therefore, each view
model class uses tHgetPropertymethod in theBindableBase&lass to provide property change
notification. The following code example shows how property change notification is implemented in
a view model class in the AdventureWorks Shopper reference implementation.

C# AdventureWorks.UILogl/iewModels HubPageViewlodel.cs

public IReadOnlyCollection<CategoryViewModel> RootCategories
{

get { return _rootCategories; }
private set { SetProperty(ref _rootCategories, value); }

Additional considerations

You should design your app for the correct use of propeliange notification. Here are some
points to remember:

1 Neverraise th&ropertyChange@vent during your object's constctor if you are
initializing a property. Dathound controls in the view cannot have subscribed to receive
change notifications at this point.

1 Always implement théNotifyPropertyChangedhterface on any view model or model
classes that are accessible to the view.

1 Always raise RropertyChangee@ventif a public property's value changes. Do not assume
that you can ignore raising tieropertyChangeavent because of knowledge of how XAML
binding occurs. Such assumptions lead to brittle code.

1 Neveruse a public property's get method to modify fields or raiséPtiope rtyChanged
event.

1 Always raise th@ropertyChange@ventfor any calculated properties whose values are
used by other properties in the view model or model.

1 Neverraise BropertyChange@vent if the property does not change. This means that you
must compare the old and new values before raisingRhgpeatyChangedevent.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

48

1 Neverraise more than orferopertyChange@vent with the same property name argument
within a single synchronous invocation of a public method of your class. For example,
suppose you have@ountproperty whose backing store is theountfield. If a method
increments_counta hundred times during the execution of aloop, it should only raise
property change notification on th€ountproperty once after all the work is complete. For
asynchronous methods you can raise frepertyChange@vent for a given property name
in each synchronous segment of an asynchronous continuation chain.

1 Alwaysraise th€ropertyChangee@vent at the end of the method that makes a property
change, or when your objectis known to be in a safe state. Raisingére mterrupts your
operation by invoking the event's handlers synchronously. If this happens in the middle of
your operation, you may expose your object to callback functions whenitisin an unsafe,
partially updated state. Itis also possible for cang changes to be triggered by
PropertyChangeevents. Cascading changes generally require updates to be complete
before the cascading change is safe to execute.

Ul interaction using the DelegateCommand class and attached behaviors

In Windows Store appgou typically invoke some action in response to a user action (such as a
button click) that can be implemented by creating an event handler in the-dumdend file.
However, in the MVVM pattern, the responsibility for implementing the action lies withide
model, and you should try to avoid placing code in the cbééaind file.

Implementing command objects

Commands provide a convenient way to represent actions that can be easily bound to controls in the
Ul. They encapsulate the actual code that impletsehe action or operation and help to keep it
decoupled from its actual visual representation in the view. Mih@osoft.Practices.Prism.StoreApps
libraryprovides theDelegate Commandlass to implemertommands.

View models typically expose command properties, for binding from the view, that are object
instances that implement thECommandnterface XAML inherently supports commands and
ButtonBasederived controls provide@ommandproperty that can be data bound to d@ommand
object provided by the view model. Th@ommandnterface defines aixecutemethod, which
encapsulates the operation itself, andCanExecutenethod, which indcates whether the command
can be invoked at a particular time. Alternatively, acommand behavior can be used to associate a
control with a command method provided by the view model.

Note Behaviors are a powerful and flexible extensibility mechanismdiiatbe used to encapsulate
interaction logic and behavior that can be declaratively associated with controlsin the view.
Command behaviors can be used to associate methods with controls that were not specifically
designed to interact with commands. For reonfo sedmplementing behaviors to supplement the
functionality of XAML elements

The AdventureWorks Shopper reference implementation use®tegate Commandlass that
encapsulates two delegatéisat each reference a method implemented within your view model

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

49

class. It inherits from thBelegateCommandBas#ass that implements thilCommand y i SNF I OS Q a
Executeand CanExecutenethods by invoking these delegates. You specify the delegates to your
view model methods in th®elegateCommandlass constructor, which is defined as follows.

C# Microsoft.Practices.Prism.Store AppBelegate Command.cs

public DelegateCommand(Action<T> executeMethod, Func<T, bool> canExecuteMethod)
: base((0) => executeMethod((T)o), (0) => canExecuteMethod((T)o))

{

if (executeMethod == null || canExecuteMethod == null)
throw new ArgumentNullException("executeMethod");

For example, the following code shows holdelegate Commanthstance, which represents a sign
in command, is constructed by specifying delegates tdSigmInAsynand CanSigniniew model
methods. The command is then exposed to the view through a-aedy property that returns a
reference to anCommand

C# AdventureWorks.UILogl/iewModels SigninFlyoutViewModel.cs

public DelegateCommand SigninCommand { get; private set; }
SigniInCommand = DelegateCommand.FromAsyncHandler(SigninAsync, CanSignlin);
TheDelegateCommandlass is a generictype. The type argument specifies the type of the

command parameter passed to tlixecuteandCanExecutenethods. A norgeneric version of the
DelegateCommandlass is also provided for use when a comchparameter is not required.

When theExecutemethod is called on th®elegate Commandbject, it simply forwards the call to

the method in the view model class via the delegate that you specified in the constructor. Similarly,
when theCanExecutenethod is called, the corresponding method in the view model class is called.
The delegate to th€anExecutenethod in the constructor is optional. If a delegate is not specified,
the DelegateCommandill always return true foCanExecute

CKS @ASs Y2RSt OF y Ay RAGhE&utstatuOlylcafliigdhe Ay (G KS 02Y
RaiseCanExecuteChangaethod on theDelegate Commandbject. This causes the

CanExecuteChangevent to be raised. Any controls in the Ul that are bound to the command will

update their enabled status to reflect the availability of the bound command.

Invoking commands from a view

Any controls that derive frorButtonBase such ag8utton or HyperlinkButton can be easily data
bound to a command through th€ommandproperty. The following code example shows how the
SubmitButtonin the SigninFlyoubinds to theSigninCommanth the SigninFlyoutViewModetlass.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx

50

XAML AdventureWorks.ShoppevViews SigninFlyout.xaml

<Button x:Uid="SubmitButton"
x:Name="SubmitButton"
Background="{StaticResource AWShopperAccentBrush}"
Content="Submit"
Width="280"
Foreground="{StaticResource AWShopperButtonFor egroundBrush}"
Margin="0,25,0,0"
Command="{Binding SigninCommand}"
AutomationProperties.Automationld="SignIin SubmitButton"
Style="{StaticResource LightButtonStyle}" />

A command parameter can also be optionally defined ugie€ommandParameteproperty. The

type of the expected argument is specified in tbeecuteandCanExecutéarget methods. The

control will autonatically invoke the target command when the user interacts with that control, and
G§KS O2YYFYR LI NIYSGSNE AF LINPOARSRI Esecudief 0S
method.

Implementing behaviors to supplement the functionality of XAML elements

Abehavior allows you to add functionality to a XAML element by writing that functionality in a
behavior class and attaching it to the element as if it was part of the element itself. A behavior can
be attached to a XAML element through attached properfiége behavior can then use the exposed
API of the elementto which itis attached to add functionality to that element or other elementsin
the visual tree of the view. For more info sBependency properties overviewttached properties
overview, andCustomattached properties

Behaviors enable you to implement code that you would normally have to write aslvekiad

because itdirectly interacts with the APl of XAML elements, in such away that it can be concisely
attached to a XAML element and packagedémse across more than one view or app. In the

context of MVVM, behaviors are a good approach to connecting items that are occurring in the view
due to userinteraction, with the execution in a view model.

Anattached behaviors a behavior thatis defirteas a static class with one or more attached

properties contained within it. An attached property can define a change callback handler when the
dependency property is seton a target element. The callback handler gets passed a reference to the
element onwhich itis being attached and an argument that defines what the old and new values for
the property are. The change callback handleris then used to connect new functionality to the XAML
elementthe property is attached to by manipulating the referencd that gets passedin. The

typical pattern is that the change callback handler will cast the element reference to a known
element type that the behavior is designed to enhance. Then it will connect to events exposed by
that element type, modify propertie of the element, or call methods on the element to manifest

the desired behavior. For example, the AdventureWorks Shopper reference implementation
provides thelistViewltemClickedToActiobehavior that casts the element reference to the
ListViewBaseype, which is the base class for tGeidViewandListViewcontrols, then subscribes

to the ltemClickevent and in the handler for the event invokesAsetion.

LJI

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

51

C# AdventureWorks.ShoppaBehaviorsListViewltemClickedToAction.cs

public sta tic class ListViewltemClickedToAction

{
public static DependencyProperty ActionProperty =
DependencyProperty.RegisterAttached("Action", typeof(Action<object>),
typeof(ListViewltemClickedToAction),
new PropertyMetadata(null, OnAc tionChanged));
private static void OnActionChanged(DependencyObjectd,
DependencyPropertyChangedEventArgs args)
{
ListViewBase listView = (ListViewBase)d;
if (listView !=null)
{
listView.ltemClick += listView_IltemClick;
listView.Unloaded += listView_Unloaded,;
}
}
static void listView_Unloaded(object sender, RoutedEventArgs e)
{
ListViewBase listView = (ListViewBase)sender;
listView.ltemClick - = listView_ItemClick;
listView.Unloaded - = listView_Unloaded;
}
static void listView_ItemClick(object sender, ltemClickEventArgs e)
{
var listView = (ListViewBase)sender;
Action<object> action = (Action<object>)listView.GetValue(ActionProperty);
action(e.Clickedltem);
}
}

Unlike controls that can be bound directly to a command,ltfsViewltemClickedToAction
behavior does not automatically enable or disable the control based on a velurned by a
CanExecutedelegate. To implement this behavior, you have to data bind #imablegroperty of
the control directly to a sitiable property on the view model.

In addition, when writing attached behaviors it is important that you unsubscribe from subscribed
events at the appropriate time, so that you do not cause memory leaks.

Invoking behaviors from a view
Behaviors are particularly useful if you want to attach a command method to a control that does not

derive fromButtonBase For examplethe AdventureWorks Shopper reference implementation uses
the ListViewltemClickedToActioattached behavior to enable théemClickevent of the

http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

52

Multiple SizedGridViewcontrol to be handled in aview model, rather than in the page's eode
behind.

XAML AdventureWorks.ShoppeNiews HubPage.xaml

<controls:MultipleSizedGridView x:Name="itemsGridView"
AutomationProperties. Automationld="HubPageltemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0, -3,0,0"
Padding="116,0,40,46"
ltemsSource="{Binding Source={StaticResource groupeditemsViewSource}}"
ltemTemplate="{StaticResour ce AWShopperltemTemplate}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
IsltemClickEnabled="True"
behaviors:ListViewltemClickedToAction.Action=

"{Binding ProductNavigationAction}">

This behavior binds thkemClickevent of theMultiple SizedGridViewo the
ProductNavigationActiomproperty in theHubPageViewModedlass. So when@ridViewltemis
selected theProductNavigationActions executed which navigates from thieibPageo the
ItemDetailPage

Additio nal considerations

Here are some additional considerations when applying the MVVM pattern to Windows Store apps
in C#.

Centralize data conversions in the view model or a conversion layer

The view model provides data from the model in a form that the viaweasily use. To do this the

view model sometimes has to perform data conversion. Placing this data conversion in the view

model is a good idea because it provides properties in a form that the Ul can bind to. Itis also

possible to have a separate datanwersion layer that sits between the view model and the view.

CKA&E YAIKG 200dz2NE F2NJ SEIFYLX ST 6KSy RIGE (GeLisa
provide.

Expose operational modes in the view model

The view model may also be responsibledefining logical state changes that affect some aspect of
the display in the view, such as an indication that some operation is pending or whether a particular
command is available. You don't need ceuakeshind to enable and disable Ul elementgou can

achieve this by binding to a view model property, or with visual states.

Keep views and view models independent

The binding of views to a particular property in its data source should be a view's principal
dependency on its corresponding view model. In patacudo not reference view types or the

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

53

Windows.Currenbbject from view models. If you follow the principles we outlined here, you will
have the abiliy to test view models in isolation, and reduce the likelihood of software defects by
limiting scope.

Use asynchronous programming techniques to keep the Ul responsive

Windows Store apps are about a fast and fluid user experience. For that reason thetdrdVeéorks
Shopper reference implementation keeps the Ul thread unblocked. AdventureWorks Shopper uses
asynchronous library methods for I/O operations and raises events to asynchronously notify the
view of a property change.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx

54

Creating and navigating between pages in AdventureWorks Shopper
(Windows Store business apps using C#, XAML, and Prism)

Summary

1 Create pages using the MVVM pattern if appropriate to your requirements. When usin
MVVM, use XAML data binding to link eaelge to a view model object.

91 Designyour pages for landscape, portrait, snap, and fill layout. In addition, use the
VisualState AwarePagelass, provided by thilicrosoft. Practices.Prism.StoreAdpsrary, to
provide view management.

1 ImplementthelNavigationAwarenterface, provided by the
Microsoft.Practices.Prism.Store Apfizrary, to enable a class to participate in a navigatiot
operation. Use thé&rameNavigationServicelass, provided by the
Microsoft.Practices.Prism.Store Apps library, to provide navigation support to a class.

In the AdventureWorks Shopper reference implementation there is one page for each screen thata
user can navigate to. The appeates the first page on startup and then creates subsequent pages in
response to navigation requests. View management and navigation supportis provided to pages by
Prism for the Windows Runtimé&dventureWoks Shopper's pages support landscape and portrait
orientations as well as snap and fill layouts. In addition, pages are localizable and accessible.

You will learn

How pages were designed in AdventureWorks Shopper.

How AdventureWorks Shopper creates paged their data sources at run time.

How to create design time data to support designers.

How AdventureWorks Shopper pages support app view states such as the snapped view.
How AdventureWorks Shopper pages support localization and accessibility.

How AdventueWorks Shopper performs navigation between pages.

=A =4 =4 4 -4 -4

Applies to

1 Windows Runtime for Window&
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

The app page is the focal point for designing your Ul. It holds all of your content and controls for a
single point of interaction with the user within your app. Whenever possible, you should integrate
your Ul elements inline into the app page. Presengiagr Ul inline lets users fully immerse
themselves in your app and stay in context, as opposed to usingipspdialogs, or overlapping
windows that were common in previous Windows desktop application platforms. You can create as
many app pages as you né# support your user scenarios.

55

The following list summarizes the decisions to make when creating pages in your app:

What tool should | use to create page content?

What minimum resolution should | design my pages for?

Should my page content fill thereen, regardless of resolution?

Should my pages adapt to different orientations and layouts?

How should I lay out Ul elements on each page?

What should I display in snap and fill view?

How should | test my page layout on different screen sizes?

Should | ad design time datato my pages?

Should I make my pages easily localizable?

Should | make my pages accessible?

Should | cache pagesinmy app?

Where should navigation logic reside?

How should I invoke navigation from aview?

What commands belong on the t@pp bar and the bottom app bar?

Should common page navigation functionality be implemented on each page, or can it be

encapsulated into a single control for reuse on each page?

1 Should the page being navigated to reside in the same assembly that the namigajuest
originates from?

1 How should | specify a navigation target?

=2 =4 =4 4 -4 -4 -4 A A4 -4 -4 -4 -4 -4 A

We recommend that you use Visual Studio to work with the ctat®ised aspects of your app.

Visual Studio is best suited for writing code, running, and debugging your app. We reconimagnd t

you use Blend for Microsoft Visual Stu@f@i 2 for Windows to work on the visual appearance of

your app. You can use Blend to create pages and custom controls, change templates and styles, and
create animations. Blend comes with minimal celolshind sipport. For more info about XAML

editing tools, se@lend for Visual Studio 204Ad Creatng a Ul by using the XAML Designer

There are two primary screen resolutions that your app should support. The minimum resolution at
which Windows Store apps will runis 1024x768. However, the minimum resolution required to
support all of the features aiVindows8, including multitasking with snap, is 1366x768. When
designing pages for a minimum resolution of 1024x768 you should ensure that all of your Ul fits on
the screen without clipping. When designing pages for an optimal resolution of 1366x768oxdd sh
ensure that all of your Ul fits on the screen without blank regions. Page content should fill the screen
to the best of its ability and should appear to be thoughtfully designed for varying screen sizes. Users
who buy larger monitors expect that theapps will continue to look good on these large screens and

fill the screen with more content, where possible. For more infoGaglelines for scaling to

screens

Users can rotate and flip their tablets, slates, and monitors, so you should ensure that you app can
handle bothandscapeandportrait orientations. In addition, because users can work with up to two
apps at once, you should provide layouts that are fand flexible enough to suppdiitl, andsnap

layouts. A snapped app occupies a narrow region of the screen, while an app in the fill view fills the
screen area not occupied by the snapped app. Snapped and fill views are only available on displays

http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

56

with ahorizontal resolution of 1366 pixels or greater. This is because the snapped view is 320 pixels
wide, and can be placed on either side of the screen. The remaining 1046 pixels are allocated to the
splitter and the fill view, which must always have a honi@bresolution of 1024 pixels or greater.

For more info se&uidelines for layoutandGudelines for snapped and fill views

The user interface in Windovsstrives to maintain a consistent silhouette across its apps. The
signature characteristic of the silhouette is a wide margin on the top, bottom, and left edges. This
wide margin helps ugs understand the horizontal panning direction of the content. You should
follow a consistent layout pattern for margins, page headers, gutter widths, and other such elements
on your pages. For more info seaying out an app page

When you plan for full screen, snap, and fill views, your app's Ul should reflow smoothly and
gracefully to accommodate screen size, orientation, and user interactions. You should maintain state
insnap view, even if it means showing less content or radyitinctionality. In addition, you should

have feature parity across states. The user still expects to be able to interact with your app whenitis
snapped. If you can't keep parity for a specific feature, we recommend that you include an entry
pointto the feature and programmatically unsnap the app when the user triggers that entry point.
However, you should never add Ul controls to programmatically unsnap your app. The splitter
between the apps is always present and lets the user unsnap whenever theyfeamore info see
Guidelines for snapped and fill views

Most people don't have many devices at their disposal for testing page layout on different screen
sizes. Howevey,ou can use the Windows Simulator to run your app on a variety of screen sizes,
orientations, and pixel densities. In addition, Blend offers a platform menu that enables you to
design your app on different screen sizes and pixel densities on the flgl&he canvas then
updates dynamically based upon the chosen screen option.

Sample data should be added to each page if you want to easily view styling results and layout sizes
at design time. This has the additional advantage of supporting the designeloper workflow.

Preparing your pages for localization can help your app reach more users in international markets.
It's important to consider localization early on in the development process, as there are some issues
that will affect Ul elements acrossmwaus locales. As you design your pages, keep in mind that users
have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design
principles into your pages you will help to ensure that your app is accessible to thet wods#le
audience, thus attracting more customers to your app. For more inf@elealizing your apand

Design for accessibility

Deciding whether to cache pages will be dependent upon howperfbrming and responsive the

app is. Page caching results in memory consumption for views that are not currently displayed,
which would increase thichance of termination when the app is suspended. However, without page
caching it does mean that XAML parsing and construction of the page and its view model will occur
every time you navigate to a new page, which could have a performance impact fioupédi cate d

page. For a weltlesigned page that does not use too many controls, the performance should be

http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx

57

sufficient. However, if you encounter slow page load times you should test to see if enabling page
caching alleviates the problem. For more info §aeckstart: Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the Ul or from the
app itself as a result of internaldgac-driven state changes. Page navigation requests are usually
triggered from a view, with the navigation logic either being in the view's daelgénd, or in the data
bound view model. While placing navigation logic in the view may be the simplest appitdaciot

easily testable through automated tests. Placing navigation logic in the view model classes means
that the navigation logic can be exercised through automated tests. In addition, the view model can
then implement logic to control navigation émsure that certain business rules are enforced. For
instance, an app may not allow the user to navigate away from a page without first ensuring that the
entered datais correct.

Users will trigger navigation from a view by selecting a Ul control, withalregation logic residing

in the appropriate view model class. For controls derived fButionBase such a8utton, you

should use commands to implement a navigation action in the view model class. For controls that do
not derive fromButtonBase you should use an attached behaviermplement a navigation action

in the view model class. For more info ¢€ng the ModeNiewViewModel (MVVM) pattern

In general, you should use the top app bar for navigational elements that move tihéouse

different page and use the bottom app bar for commands that act on the current page. If every page
of your app is going to include atop app bar that allows the userto move to different pages, it does
not make sense to implement this functionalitydividually on each page. Rather, the functionality
should be implemented as a user control that can be easily be included on each page. In addition,
you should follow placement conventions for commands on the bottom app bar. You should place
New/ Add/ Crede buttons on the far right, with view switching buttons being placed on the far left.
Also, you should plackccept Yes andOKbuttons to the left ofReject No, andCancebuttons. For

more info seeGuidelines for app bars

The view classes that define your pages and the view model classes that implement the business
logic for those pages can reside in the same assembly or different assemblies. Thatis a design
decision b be made when architecting your app. A page type resolution strategy should be used to
navigate to a page in any assembly, regardless of the assembly from which the navigation request
originates.

One approach for specifying a navigation target is to usaa@gation service, which would require

the type of the view to navigate to. Because a navigation service is usually invoked from view models
in order to promote testability, this approach would require view models to reference views (and
particularly vievs that the view model isn't associated with), which is not recommended. The
recommended approach is to use a string to specify the navigation target that can be easily passed
to a navigation service, and which is easily testable.

http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx

58

Creating pages and navigating between them in AdventureWorks Shopper

We used Blend and the Visual StudidML Designer to work with XAML because these tools make it
straightforward to quickly add and modify page layout. Blend was usefulto initially define pages and
controls; we used Visual Studio to optimize their appeaesm These tools also enabled us to iterate
quickly through design choices because they give immediate visual feedback. In many cases, our user
experience designer was able to work in parallel with the developers because changing the visual
appearance of page does not affect its behavior. For more info §geating pages

Pages were designed for a minimum resolution of 1024x768, and an optimal minimum resolution of
1366x768, in orderto support all of the features of Womes8, particularly multitasking with snap.

In addition, pages were designed to fill the screen for varying screen sizes. Each page is able to adapt
to landscapandportrait orientations, andillandsnaplayouts. A consistent silhouette is

maintained awoss all pages, with some pages including design time data. Page layout was tested on

a variety of devices, and in the Windows simulator. Pages maintain state when switching to and from
shap view, and possess feature parity across states. For more infadsiteg design time data

Supporting portrait, snap, and fill layowiadLaying otian app page

Page caching is not used in the app. This prevents views that are not currently displayed from
consuming memory, which would increase the chance of termination when the app is suspended. All
pages are accessible, and support easy localizafior more info seEnabling page localizatiamd
Enabling page accessibility

In the app, the view classes that define pages are in a different assembly to thenoi@sV classes

that implement the business logic for those pages. Therefore, a page type resolution strategy
implemented as a delegate is used to navigate to the pages in the AdventureWorks.Shopper
assembly when the navigation request originates from vievdel classes in the
AdventureWorks.UlLogic assembly. In addition, common page navigation functionality is
implemented as a user control that is embedded in the top app bar for each page. Both commands
and attached behaviors are used to implement naviga#otions in view model classes, depending
on the control type. Navigation targets are specified by strings that represent the page to navigate
to. For more info sedlavigating between paggldandling navigation requestandinvoking

navigation

Creating pages

Pages in Windows Store apps are user controls that support navigation and contain other controls.
All page classes are supgs of thewindows.Ul.Xaml.Pagelass, and represent content that can be
navigated to by the user.

When you add a new page to a project created from@ra App (XAML) template, each page is
derived from the Visual StudidsiyoutAwarePagelass (except when you add a Blank Page, which
derives from thePageclass) that provides navigation, state management, and view management.
However, MVVM apps such as the AdventureWorks Shopper reference implementation should
derive each page from theéisual State Aware Pagelass in thévlicrosoft.Practices.Prism.StoreApps

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

59

library. TheVisualState AwarePageass provides view management and navigation support. The
following code example shows how thieibPagalerives from theVisualState Awae Pageclass.

XAML AdventureWorks.Shoppaniews HubPage.xaml

<Infrastructure:Visual StateAwarePage x:Name="pageRoot"
x:Class="AdventureWorks.Shopper.Views.HubPage"
IsTabStop="false"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas. microsoft.com/winfx/2006/xaml"
xmins:d="http://schemas. microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup - compati bility/2006"
xmlns:behaviors="using:AdventureWorks.Shopper.Behaviors"
xmins:views="using:AdventureWorks.Shopper.Views"
xmins:controls="using:AdventureWorks.Shopper.Controls"

xmins:designViewModels="using: Adventure Works.Shopper.DesignViewMod els"
xmins:Infrastructure="using:Microsoft.Practices. Prism.StoreApps"
x:Uid="Page"

mc:lgnorable="d"

Infrastructure: ViewModelLocator. AutoWireViewModel="true"

d:DataContext="{d:Designinstance designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True}">

Note TheMicrosoft.Practices.Prism.Store Adfsraryalso provides th&lyoutViewclass, from
which all Flyout classes should derive inan MVVM app.

There are twelv@ages in the AdventureWorks Shopper reference implementation, with the pages
being the views of the MVVM pattern.

Page

View model

BillingAddressPage
CategoryPage
CheckoutHubPage
CheckoutSummaryPage
GroupDetailPage
HubPage
ltemDetailPage
OrderConfirmationPage
PaymentMethodPage
SearchResultsPage
ShippingAddressPage
ShoppingCartPage

BillingAddressPageViewModel
CategoryPageViewModel
CheckoutHubPageViewModel
CheckoutSummaryPageViewModel
GroupDetailPageViewModel
HubPageViewModel
ItemDetailPageViewModel
OrderConfirmationPageViewModel
PaymentMethodPageViewModel
SearchResultsPageViewModel
ShippingAddressPageViewModel
ShoppingCartPageViewModel

60

Data binding links each page to its view model class in the AdventureWorks Shoppencefer
implementation. The view model class gives the page access to the underlying app logic by using the
conventions of the MVVM pattern. For more info dd&€ing the MVVM pattern

Tip AdventureWorks Shoppeses the MVVM pattern that abstracts the user interface for the app.
With MVVM you rarely need to customize the cedehind files. Instead, the controls of the user
interface are bound to properties of a view model object. If pagkated code is requiredt should

be limited to conveying data to and from the page's view model object.

If you are interested in AdventureWorks Shopper's interaction model and how we designed the user
experience, seBPesignig the Adventure Works Shopper user experience

Adding design time data

When you create a data bound user interface, you can display sample data in the visual designer to
view styling results and layout sizes. To display data in the designer you must digolXi@ML. This

is necessary because the designer parses the XAML for a page but does not run-telode In

the AdventureWorks Shopper reference implementation, we wanted to display design time datain
order to support the designedeveloper workibw.

Sample data can be displayed at design time by declaring itin XAML by using the various data
attributes from the designer namespace. This namespace is typically declareddvpireéix, as
shown in the following code example.

XAML AdventureWorks.SbppenViews HubPage.xaml

xmins:d="http://schemas.microsoft.com/expression/blend/2008"

Attributes withd: prefixes are then interpreted only at design time and are ignored at run time. For
example, in £ollectionViewSourcéhe d:DesignSourcattribute is used for design time sample
data, and theSourceattribute is used for run time data.

XAML AdventureWorks.ShoppaViews HubPage.xaml

<CollectionViewSource x:Name="groupedItems ViewSource"

Source="{Binding Path=RootCategories}"

d:DesignSource="{Binding RootCategories,
Source={d:Designinstance
designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True}}"

IsSourceGrouped="true"

ltemsPath="Products" />

Thed:Designinstancattribute indicates that the design time source is a designer created instance
based orthe HubPageDesignViewModgfpe. ThdsDesignTimeCreateabseetting indicates that

the designer will instantiate that type directly, which is necessary to display the sample data
generated by the type constructor.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.source.aspx

61

For more info se®ata binding overview

Supporting portrait, snap, and fill layouts

The AdventureWorks Shopper reference implementation was designed to be viewsdradh in
landscape orientation. Windows Stoapps must adapt to different application view states,

including both landscape and portrait orientations. AdventureWorks Shopper supports
FullScreenLandscagaullScreenPortraiFilled andSnappedayouts. AdventureWorks Shopper uses
the VisualStateclass to specify changes to the visual display to support each layout. The
VisualStateManageclass, used by theéisualState Aware Pagelass, manages state and the logic for
transitioning between states for controls. For example, here is the XAML specification of the layout
changes for th&ullScreenParit layout on the hub page.

XAML AdventureWorks.ShoppeNiews HubPage.xaml

<VisualState x:Name="FullScreenPortrait">
<Storyboard>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="itemsGridView"
Storyboard.TargetProperty="Padding">
<DiscreteObjectkeyFrame KeyTime="0"
Value="96,0,10,56" />
</ObjectAnimationUsingKeyFrames>
</Storyboard>
</VisualState>

We directly update individual properties for XAML elements, in order to specify changes to the visual
display. Forinstance, here ti&toryboardspecifies that thé?addingproperty of theGridView

control namedtemGridViewwill change to a value of "96,0,10,56" when the view state changes to
portrait. However, you could update tHgtyleproperty when you need to update multiple

properties orwhen there is adefined style that does what you want. Although styles enable you to
control multiple properties and also provide a consistent appearance throughout your app,

providing too many can make your app difficult to maintain. Therefore, only use styles when it
makes sense to do so. For more info about styling controlsQegekstart: $/ling controls

Tip When you develop an app in Visual Studio, you can use the Windows Simulator debugger to test
layouts. To do this, press F5 and use the debugger tool bar to debug with the Windows Simulator.
You can also use Blend to define and tegblas.

For more info seéddapting to different layouts

Loading the hub page at runtime

The XAML Ul framework provides a biihavigatbn model that usesrameandPageelements
andworks much like the navigation in a web browser. Fh@mecontrol hostPagesand has a
navigation history that you can use to go back and forward through pages you've visited. You can
also pass primitive type data between pages as you navigate. InshalN5tudio project templates,
aFramenamedrootFrameis set as the content of the app window.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx#ADAPTING_TO_DIFFERENT_LAYOUTS
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx

62

When the AdventureWorks Shopper reference implementation starts up, and after the
bootstrapping process has completed, tBaLaunchApplicatiomethod of theAppclass navigates
to the app's hub page, provided that the app hasn't been launched from a secondary tile.

ADVENTURE

WORKS

$539.99

Road-750 Black, 52 HL Mountain Frame

Entry level adult bile; offers a.. Each frame i hand-crafte
-
4t

$577.12 $22é.49 $44.54

Maountain-400-W Red, 42 HL Fork LL Mountain Hamdle

Thiz bike delivers a high-level of performance on a budget. it i responsive and. High-performance carbon road fork.. All-purpase bar for on ar

TheAppclass derives from thelvwvmAppBaselass in théMlicrosoft.Practices.Prism.StoreApps
librarythat in turn derives from th&Vindows.Ul.Xaml.Applicatioclass and overrides the
OnLaunchednethod. TheOnLaunchednethod override calls th®nLaunchApplicatiomethod in
the Appclass, which is shown in the following code example.

C# AdventureWorks.Shoppaipp.xaml.cs

protected overr ide void OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
/I The app was launched from a Secondary Tile
/I Navigate to the item's page
NavigationService.Naviga te("ItemDetail", args.Arguments);
}
else
{
/I Navigate to the initial page
NavigationService.Navigate ("Hub", null);
}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx

63

This code example shows how AdventureWorks Shopper calidahigatemethod of the
NavigationServic®bject to load content that is specified by the page type. Dmeaunched

method override in theMvvmAppBaselass only calls th@nLaunchApptationif the Frame
instance'Contentproperty is null, as a way of determining whether the app is resuming from a
previous state or starting in its default navigation state. For more info about resuming from previous
states seddanding suspend, resume and activatidgror more info about navigation between pages
seeNavigating between pages

Styling controls

AdventureWorks Shopper's appearance was customized by styling and templating tre€ased

inthe app. Styles enable you to set control properties and reuse those settings for a consistent
appearance across multiple controls. Styles are defined in XAML either inline for a control, or as a
reusable resource. Resources can be defingdeapage level, app level, orin a separate resource
dictionary. A resource dictionary can be shared across apps, and an app can use multiple resource
dictionaries. For more info s€@uickstart: styling controls

The structure and appearance of a control can be customized by defining @ovol Templatefor
the control. Templating a control can be used to avoid having to write a custom control. For more
information, segQuickstart: control templateAn example of this in Advent€Works Shopperis

the FormFieldTextBogontrol that derives from th@extBoxcontrol and adds &Vatermark

property to it.

Overriding built -in control s

On the hub page we wanted the first product to be displayed at twice the dimensions of the other
products.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.contentproperty.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

64

ADVENTURE

WORKS

$539.99

Road-750 Black, 52 HL Mountain Frame

Entry kewve| adult bace; offers a.. Exch frame & hand-crafte
g
’ ')

$577.12 $22§.49 $44.54

Mountain-400-W Red, 42 HL Fark LL Mountain Handle

gh-level of performance an a budget. it & responsive and. High-performance carbon road fork.. Mll-purpase bar for onar

To do this we defined a new class nanidtipleSizedGridVievihat derives from theGridView
control. We then overrode thErepareContainerForltemOverridmethod to enable the first
product to span multiple rows and columns of thielltiple SizedGridViewas shown in the following
code example.

C# AdventureWorks.ShoppaiControls MultipleSizedGrdView.cs

protected override void Prepare ContainerForltemOverride (DependencyObject element,
object item)

{

base.PrepareContainerForltemOverride (element, item);
var dataltem = item as ProductViewModel;

if (dataltem != null && dataltem.ltem Position == 0)

{

_colVal = (int)LayoutSizes.Primaryltem.Width;
_rowVal = (int)LayoutSizes.Primaryltem.Height;

}

else

{
_colVal = (int)LayoutSizes.Secondaryltem.Width;

_rowVal = (int)LayoutSizes.Secondaryltem.Height;

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx

65

}

var uiElement = element as UIElement;
VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);
VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVal);

ThePrepareContainerForltemOverridmethod gets the firstitem in th#ultipleSizedGridVievand
setsit to span two rows and two columnsitfivsubsequent items occupying one row and one
column. The staticayoutSizeslass simply defines twdizeobjects that specify the number of rows
and columrs to span forthe firstitem, and subsequent items in iheltipleSizedGridView
respectively.

C# AdventureWorks.ShoppaiControld MultipleSizedGridView.c

public static class LayoutSizes

{
public static Size Primaryltem
{
get{ return new Size(2, 2); }
}
public static Size Secondaryltem
{
get{return new Size(1, 1); }
}
}

Enabling page localization

Preparing for international markets can help you reach more usdhalizing your approvides
guidelines, checklists, and tasks to help you create a user experience that reaches more users by
helping you to globalize and localize each page of your app. It's iamtdd consider localization

early on inthe development process, as there are some issues that will effect user interface
elements across various locales. Here's the tasks that we carried out to support page localization in
the AdventureWorks Shopper refEnce implementation.

Separate resources for each locale

Ensure that each piece of textthat appears in the Ul is defined by a string resource
Add contextual comments to the app resource file

Define the flow direction for all pages

Ensure erromessages are read from the resource file

=A =4 4 -4 -4

Separate resources for each locale

We maintain separate solution folders for each locale. For exar@iliegs->en-US->
Resources.reswefines the strings for the elS locale. For more info s@eiickstart: Using string
resourcesandHow to name resources using qualifiers

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx

66

Ensure that each piece of text that appears in the Ul is defined by a string resource

We used thec:Uiddirective to provide a unique name for the localization process to associate
localized stringwvith text that appears on screen. The following example shows the XAML that
defines the app title that appears on the hub page.

XAML AdventureWorks.ShoppaNiews ShoppingCartPage.xaml

<TextBlock x:Uid="ShoppingCartTitle"
x:Name="pageTitle"
Text="Shopping Cart"
Grid.Column="1"
TextTrimming="WordEllipsis"
Style="{StaticResource PageHeaderTextStyle}" />

For the enrUS locale, we defirfgéhoppingCartTitle. Texh the resource file as "Shopping Cart." We
specify the Textpart so that the XAML runtime will override tiextproperty of theTextBlock
control with the value from the resource file. We also use this technique tBsidn content
(ContentControl.Contenx

Add contextual comments to the app resource file

Comnents in the resource file provide contextual information that helps localizers more accurately
translate strings. For more info sé®w to prepare forlocalizatian

Define the flow direction for all pages

We define thePage.FlowDirectioproperty in the string resources file to set the flow direction for
all pages. For languages that use &ftright reading order, such as English or German, we define
"LeftToRight" as its value. For languages that read+igHeft, such as Arabic and Hebrew, you
define this value as "RightToLeft". We also defined the fimaction for all app bars by defining
AppBar.FlowDirectionn the resource files.

Ensure error messages are read from the resource file

It's important to localize error messages strings, including exception message strings, because these
strings will appar to the user. The AdventureWorks Shopper reference implementation uses an
instance of theResourcelL.oaderAdaptetass to retrieve error messages from the resource file for

your locale. This class uses an instance oRxagourceLoadenlass to load strings from the resource

file. When we provide an error message when an exception is thrown, we use the
ResourceLoaderAdapténstanceto read the message text. The following code example shows how
the SubmitOrderTransactionAsymaethod in theCheckoutSummaryPageViewModelkss uses the
ResourceLoaderAdaptenstance to retrieve error message strings from the resource file.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

67

C# AdventureWorks.UILogh/iewModels CheckoutSummaryPage ViewModel

catch (ModelValidationException mvex)

{
errorMessage = string.Format(Culturelnfo.CurrentCulture,
_resourceLoader.GetString("GeneralServiceErrorMessage"),
Environment.NewLine, mvex.Message);
}
if (!string.IsNullOrWhite Space(errorMessage))
{
await _alertMessageService.ShowAsync(errorMessage,
_resourceLoader.GetString("ErrorProcessingOrder"));
}

This code displays an exception error messagbdasser, if dModelValidationExceptioroccurs

when submitting an order. For the edS locale, the "GeneralServiceErrorMessage" string is defined
as "The following error messages were received from the service: {0} {1}," and the
"ErrorProcessingOrder" striris defined as "There was an error processing your order." Other
locales would have messages that convey the same error message.

Note When creating an instance of tiikesourceLoadenlass that uses strings that are defined in a
class library and not ik executable project, thResourcelLoadeatlass has to be passed a path to

the resources in the library. The path must be specified as /project name/Resources/ (for example,
IMicrosoft.Practices.Prism.StoreApps/Strings/).

You can test your app's localizatiby configuring the list of preferred languages in Control Panel.
For more info about localizing your app and making it accessiblé]®&¢o prepare for localization
Guidelines and checklist for application resour@slQuickstart: Translating Ul resources

Enabling page accessibility

Accessibility is about making your app usable by people who have limitations that impede or prevent
the use of conventional user interfaces. This typically means providing support for screen readers,
implementing keyboard acesibility, and supporting higbontrast themes.

Accessibility support for Windows Store apps written in C# comes from the integrated support for
the Microsoft Ul Automation framework that is present in the base classes and theibbighavior

of theclass implementation for XAML control types. Each control class uses automation peers and
automation patterns that report the control's role and content to Ul automation clients. If you use
non-standard controls you will be responsible for making the colstaccessible.

http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx

68

Here are the tasks that we carried out to support page accessibility in the AdventureWorks Shopper
reference implementation:

1 Setthe accessible name for each Ul element. An accessible name is a short, descriptive text
string that a screereader uses to announce a Ul element. For example, in AdventureWorks
Shopper XAML controls specytomationPropertiesAutomationldand
AutomationProperties.Nameattached properties to make the control accessible to screen
readers.

XAML AdventureWorks.ShoppaNiews ItemDetailPage.xaml

<FlipView x:Name="flipView"
AutomationProperties. Automationld="ItemsFlipView"
AutomationProperties.Name="Item Details"
TabIndex="1"
Grid.Row="1"
ItemsSource ="{Binding Items}"
SelectedIindex="{Binding SelectedIndex, Mode=TwoWay}"
Selectedltem="{Binding SelectedProduct, Mode=TwoWay}">

For more info se&xposig basic information about Ul elements

1 Overridden theToStringmethod of theShippingMethod ProductViewMode)
CheckoutDataViewModelandShoppingCartltemViewModatlasses in order to support
Windows NarratorWhen instances of these classes are bound to the view they are styled
using data templates, but Windows Narrator uses the result offib®tringoverrides.

1 Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to
the visual order of controls, and that Ul elements that can be clicked can also be invoked by
using the keyboard. For more info seeplementing keyboard accessibility

1 Visually verified the Ul to ensure that the text contrast is appropriate, and that elements
render correctly in higktontrast themes. For more info s@éeeting requirements for
accessible texandSupporting high contrast themes

1 Ran accessibility tools to veyithe screen reading experience. For more info esting
your app for accessibility

1 Ensured that the app manifest follows accessibility guidelines. For more infdalgrg tiles
accessible

For more info se®laking your app accessible

Navigating between pa ges

Navigation within a Windows Store app can result from the user's interaction with the Ul or from the
app itself as a result of internal logiltiven state changes. Navigation usually involves moving from
one page to another page in the app. In someesashe app may implement complex logic to
programmatically control navigation to ensure that certain business requirements are enforced. For

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj155763.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj155763.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452678.aspx

69

example, the app may not allow the user to navigate away from a page without first ensuring that
the entered datas correct.

The AdventureWorks Shopper reference implementation typically triggers navigation requests from
user interaction in the views. These requests could be to navigate to a particular view or navigate
back to the previous view. In some scenariosgfoample if the app needs to navigate to a new view
when a command completes, the view model will need to send a message to the view. In other
scenarios, you might want to trigger the navigation request directly from the view without involving
the view malel directly. When you're using the MVVM pattern, you want to be able to navigate
without using any coddehind in the view, and without introducing any dependency on the view
implementation in the view model classes.

ThelNavigationAwarenterface, proviegd by theMicrosoft.Practices.Prism.StoreAdgsrary, allows
an implementing class to participate in a navigation operation, and is implemented by view models
classes. The interface defines two methaasshown in the following code example.

C# Microsoft.Practices.Prism.Store AppkNavigationAware.cs

public interface INavigationAware

{
void OnNavigatedTo(object navigationParameter, NavigationMode navigationMode,
Dictionary<string, object> v iewModelState);
void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending);
}

TheOnNavigatedFronand OnNavigatedTanethods are called during a navigation operation. If the
view model class for the page being navigated from implements this interfa@nNsvigatedFrom
method is called before navigation takes place. Omd&avigatedFronmethod allows the page to
save ay state before itis disposed of. If the view model class for the page being navigated to
implements this interface, it®nNavigatedTenethod is called after navigation is complete. The
OnNavigatedTanethod allows the newly displayed page to initializeltby loading any page state,
and by using any navigation parameters passed to it. For exampl@riNavigatedTanethod in

the ltemDetailPageViewModetlass accepts a product number as a parameter that is used to load
the product information for displagn theltemDetailPage

TheViewModelbase class implements thidavigationAwaranterface, providing virtual
OnNavigatedFronand OnNavigatedTanethods that save and load view model state, respectively.
This avoids each view model class having to implement this functionality to support the suspend and
resume process. The view model classes for each page derive frofieth®lodelclass. The
OnNavgatedFromand OnNavigatedTonethods can then be overridden in the view model class for
the page if any additional navigation logic is required, such as processing a navigation parameter
that has been passedto the page.

70

Note TheOnNavigatedFronand OnNavgatedTomethods in theViewModelbase class control
loading and saving page state during navigation operations. For more inféesgking suspend,
resume, and activation

Handling navigation requests

Navigation iperformed using thé&rameNavigationServicelass. This class, which implements the
INavigationServicénterface, uses th&rameinstance created in thilnitialize FrameAsynmethod

in the MvwmAppBaselass to perform the navigation request for the app. MhermAppBaselass
creates an instance of tHerameNavigationServicelass by calling th€reate NavigationService
method, which is shown in the follong code example.

Note Usingthe-rameinstance ensures that the correct navigation stack is maintained for the app,
so that navigating backwards wortke way users expect.
C# Microsoft.Practices.Prism.Store AppslvvmAppBase.cs

private INavigationService CreateNavigationService(lFrameFacade rootFrame,
ISessionStateService sessionStateService)

{
var navigationService = new FrameNavigationService(rootFrame, GetPageType,
sessionStateService);
return navigationService;
}

TheCreateNavigationServicmethod creates an instance of tiigameNavigationServiceass,

which takes th&setPageTypédelegate to implement a page type resolution strategy. This strategy
assumes that the views that define pages are in the AdventureWorks.Shopper assembly and that the
view names end with "Page".

After creating the instance of tHerameNavigatioserviceclass thavivvmAppBaselass calls the
Onlnitializeoverride in theAppclass to register service instances with the Unity dependency
injection container. When view model classes are instantiated, the container will inject the
dependencies that areequired including thé-rameNavigationServiaastance. View models can
then invoke theNavigatemethod on theFrameNavigationServidastance to cause the app to
navigate to a particular view in the app or tB®Backnethod to return to the previous viewhe
following code example shows tiNavigatemethod in theFrameNavigationServiceass.

C# Microsoft.Practices.Prism.Store AppSrameNavigationService.cs

public bool Navigate(string pageToken, object parameter)

{

Type pageType = _navigationResolver(pageToken);

if (pageType == null)
{
var resourcelLoader =
new Resourceloader(Constants.Store AppsinfrastructureResourceMapld);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

71

var error = string.Format(Culturelnfo.CurrentCulture,
resourceLoader.GetString(
"FrameNavigationServiceUnableResolveMessage"), pageToken);
throw new ArgumentException(error, "pageToken");

}

/I Get the page type and parameter of the last navigation to check if we

/[are trying to navigate to the exact same page that we are currently on

var lastNavigationParameter =
_sessionStateService.SessionState.ContainsKey(LastNavigationParameterKey)
? _sessionStateService.SessionState[LastNavigationParam eterKey] : null;

var lastPageTypeFullName =
_sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) ?
_sessionStateService.SessionState[LastNavigationPageKey] as string :
string.Empty;

if (lastPageTypeFullName != pageType.FullName ||
IAreEquals(lastNavigationParameter, parameter))

{

return _frame.Navigate(pageType, parameter);

}

return false;

TheNavigatemethod accepts a string parameter that repeggs the page to be navigated to, and a
navigation parameter that represents the data to pass to the page being navigated to. Any data
being passed to the page being navigated to will be received b@tidavigatedTonethod of the

view model class for thpage type. Aull value is used as the navigation parameter if no data needs
to be passed to the page being navigated to.

Placing the navigation logicin view model classes means that the navigation logic can be exercised
through automated tests. In adddn, the view model can then implement logic to control navigation

to ensure that certain business rules are enforced. For instance, an app may not allow the user to
navigate away from a page without first ensuring that the entered datais correct.

Invoking navigation

Navigation is usually triggered from a view by a user action. For instance, each page inthe app has a
top app bar which contairButtonBasederived controls that allow the user to navigate to the hub

page and the shopping cart page. Rather than implement this functionality separately on each page,
itisimplemented as a user control nam&dpAppBarUserContrahat is added teeach page. The
following code example shows tiitton controls from theTopAppBarUserContrahat allow the

userto navigate to the hub page and tsleopping cart page.

XAML AdventureWorks.ShoppanNiews TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

72

Margin="0,15,0,0">

<Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"
AutomationProperties.Automationld="HomeAppBarButton"
Command="{Binding HomeNavigationCommand}"
Margin="5,0"
Style="{StaticResource House Style}"
Content="Home"
Height="125"/>

<Button x:Uid="ShoppingCartAppBarButton" x:Name="Shopping CartAppBarButton"
AutomationProperties.Automationld="ShoppingCartAppBarButton"
Command="{Binding ShoppingCartNavigationCommand}"
Margin="0,0,5,0"
Height="125"
Style="{StaticResource CartStyle}"
Content="Shopping Cart" />

</StackPanel>

In this scenario, navigation is triggered from one of ButtonBasederived controls by invoking a
command in theTopAppBarUserControlViewModelass. For instance, executing the
ShoppingCartNagationCommandauses the app to navigate to ttghoppingCartPageand so the
navigation is initiated from the view model. The following code example shows how the
TopAppBarUserControlViewModebnstructor defines th&hoppingCartNavigationCommand
propertyto be an instance of thBelegate Commandlass that will invoke the navigation.

C# AdventureWorks.UILogl/iewModels TopAppBarUserControlViewModel.cs

public TopAppBarUserControlViewModel(INavigationService navigationService)

{

HomeNavigationCommand = new Delegate Command(() =>
navigationService.Navigate ("Hub", null));

ShoppingCartNavigationCommand = new DelegateCommand(() =>
navigationService .Navigate ("ShoppingCart", null));

}

public DelegateCommand HomeNavigationCommand { get; private set; }
public DelegateCommand ShoppingCartNavigationCommand { get; private set; }

For controls that do not derive froButtonBase, you can use an attached behavior to implement a
navigation action in the view model class. Forinstance, when the user selects a product on the
HubPagethey are taken to thétemDetailPage This functionality is provided by the
ListViewltemClickedTo&ion attached behavior, which enables themClickevent of theGridView
control to be handled in a view model, rather than in the page's ebekind.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

73

XAML AdventureWorks.ShoppeNiews HubPage.xaml

<controls:Mu ltipleSizedGridView x:Name="itemsGridView"
AutomationProperties. Automationld="HubPageltemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0, -3,0,0"
Padding="116,0,40,46"
ltemsSource="{Binding Source={StaticResource groupeditemsViewSource}}"
ltemTemplate="{StaticResource AWShopperltemTemplate}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
IsltemClickEnabled="True"
behaviors:ListViewltemClickedToAction.Action=

"{Binding ProductNavigationAction}">

TheListViewltemClickedToActiobehavior binds thétemClickevent of theGridViewto the
ProductNavigationActiomproperty in theHubPageViewModetlass. So when@ridViewltemis
selected theProductNavigationActions executed that in turn calls tidavigate Toltenmethod to
navigate from theHubPageo the ItemDetailPage

C# AdventureWorks.UlLogitViewModels HubPageViewModel.cs

private void NavigateToltem(object parameter)

{
var product = parameter as ProductViewModel;
if (product != null)
{
_havigationService.Navigate("ltemDetail", product. ProductNumber);
}
}

For more info sed&ll interaction using th®elegateCommandlass and attached behaviors

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

74

Using touch in AdventureWorks Shopper (Windows Store business
apps using C#, XAML, and Prism)

Summary

1 Whenpossible, use the standard touch gestures and controls that Win@gwsvides.

91 Provide visual feedback when atouch interaction occurs.

I Use data binding to connect standard Windows controls to the view models that implet
the touch interaction behavior.

Part of providing a great user experience is ensuring that an app is accessible and intuitive to use on
a traditional desktop computer and on a small tablet. For the AdventureWorks Shopper reference
implementation we put touch at the forefront of our usexperience planning because itadds an
important experience by providing a more engaging interaction between the user and the app.
AdventureWorks Shopper provides tap, slide, pinch, and swipe gestures. Data binding is used to
connect standard Windows ctnols that use touch gestures to the view models that implement

those gestures.

You will learn

1 How the Windows touch language was used in AdventureWorks Shopper.
1 How the Windows Runtime supports néouch devices.

Applies to

1 Windows Runtime for Window&
1 C#
1 Extensible Application Markup Language (XAML)

Making key decisions

Touch interactions in Window&use physical interactions to emulate the direct manipulation of Ul
elements and provide a more natural, reabrld experience when interacting with thosée ments

on the screen. The following list summarizes the decisions to make when implementing touch
interactions in your app:

1 Does the Window8 touch language provide the experience your app requires?

1 What size should your touch targets be?

Whendisplaying a list of items, do the touch targets for each item need to be identically
sized?

Should you provide feedback to touch interactions?

Should touch interactions be reversible?

How long should atouch interaction last?

When should you use static gieires versus manipulation gestures?

Do you need to design and implement a custom interaction?

=

=A =4 =4 -4 =4

75

o Doesthe custom interaction require specific hardware support such as a minimum
number of touch points?
o How will the custom interaction be provided on a rtsuch device?

Windows8 provides a concise set of touch interactions that are used throughout the system.
Applying this language consistently makes your app feel familiar to what users already know,
increasing user confidence by making your app easier to lraiuse. Most apps will not require
touch interactions that are not part of the Windowgouch language. For more info s€éeuch
interaction design

There are no definiterrecommendations for how large a touch target should be or where it should
be placed within your app. However, there are some guidelines that should be followed. The size
and target area of an object depend on various factors, including the user expeseacarios and
interaction context. They should be large enough to support direct manipulation and provide rich
touch interaction data. It is acceptable in some user experience scenarios fortouch targetsin a
collection of items to be different sizes.fnstance, when displaying a collection of products you
could choose to display some products at a larger size than the majority of the collection, in order to
draw attention to specific products. Touch targets should react by changing color, changira siz

by moving. Normoving elements should return to their default state when the user slides or lifts
their finger off the element. In addition, touch interactions should be reversible. You can make your
app safe to explore using touch by providing viseadback to indicate what will happen when the
user lifts their finger. For more info s€aiidelines for targetingndGuidelines for visual feedback

Touch interactions that require compound or custom gestures need to be performed within a
certain amount of time. Try to avoid timed interactions like these because they can often be
triggeredaccidentally and can be difficult to time correctly. For more infoResponding to user
interaction.

Static gestures events are triggered after an interaction is compledeare used to handle single
fingerinteractions such as tapping. Manipulation gesture events indicate an ongoing interaction and
are used for dynamic muhiouch interactions such as pinching and stretching, and interactions that
use inertia and velocitgata such as panning. This data is then used to determine the manipulation
and perform the interaction. Manipulation gesture events start firing when the user touches the
element and continue until the user lifts their finger or the manipulation is cdedefFor more info
seeGestures, manipulations, and interactions

Only create a custom interaction and if there is a clear, wlefined requirement and no interaction
fromthe Windows8 touch language can support your scenario. If an existing interaction provides
the experience your app requires, adapt your app to support that interaction. If you do need to
design and implement a custom interaction you will need to consydar interaction experience. If

the interaction depends onitems such as the number of touch points, velocity, and inertia, ensure
that these constraints and dependencies are consistent and discoverable. For example, how users
interpret speed can directlgffect the functionality of your app and the users satisfaction with the
experience. In addition, you will also have to design and implement an equivalent version of the
interaction for nortouch devices. For more info s&esponding to user interaction

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx

76

Important To avoid confusing users, do not create custom interactions that duplicate or redefine
existing, standard interactions.

Touch in AdventureWorks Shopper

As previouly described imDesigning the UXouch is more than simply an alternative to using a

mouse. We wanted to make touch an integrated part of the app because touch can add a personal
connection between theiser and the app. Touch is also a natural way to enable users to browse and
select products. In addition, we use Semantic Zoom to highlight how levels of related complexity can
easily be navigated. With Semantic Zoom users can easily visualize higiotgget such as

categories, and then zoom into those categories to view category items.

The AdventureWorks Shopper reference implementation uses the Win8doatsch language. We
use the standard touch interactions that Windows provides for these reasons:

1 The Windows Runtime provides an easy way to work with them.

1 We don'twant to confuse users by creating custom interactions.

1 We wantusers to use the interactions that they already know to explore the app, and not
need to learn new interactions.

We also wanted AdventureWorks Shopper to be intuitive for users who use a mouse or similar
pointing device. The buHn controls work as well with a mouse or other pointing device as they do
with touch. So when you design for touch, you also get mouseandunctionality. For example,

you can use the left mouse button to invoke commands. In addition, mouse and keyboard
equivalents are provided for many commands. For example, you can use the right mouse button to
activate the app bar, and holding the Gty down while scrolling the mouse wheel controls
Semantic Zoom interaction. For more info $2@idelines for common user interactians

The documentouch interaction desigexplains the Window8 touch language. The following
sections describe how we applied the Windd@tsuch language in AdventureWorks Shopper.

Tap for primary action

Tapping an elementinvokes its primary action. For example, o6thapDetailPageyou tap on a
product to navigate to thétemDetailPage The following diagram shows an example of the tap for
primary action gesture in the AdventureWorks Shopper referemgge mentation.

http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

Mountain Bikes

~

Mountain-500 Red, 40

$564.99

Mountain-500 Red, 42

$564.99

Mountain-500 Red, 44

$564.99

Mountain-500 Red, 48

$564.99

Mountain-500 Red, 52

$564.99

Product Details

N7,

Mountain-500 Red, 40

$564 99

Mountain-500 Black,

40
$539.99

Mountain-500 Black,

42
$539.99

Mountain-500 Black

AA

$539.99

Mountain-500 Black,

$539.99

l Aountain-500 Black,

5539.99

77

Products are displayed on tli&roupDetailPagén aGridViewcontrol. AGridViewdisplays a
collection of items in a horizontaligk TheGridViewcontrol is aritemsControlclass, so it can
contain a collection of items of any type. A benefit of using@mnelViewcontrolis that it has touch

capabilities builtin, removing the need for additional code.

To populate &ridViewyou can add objects directly to itemscollection or bind itstemsSource
property to a collection of dataitems. When you add items GradViewthey are autonatically
placed in &ridViewltemcontainer that can be styled to change how an itemis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

78

XAML AdventureWorks.Shoppaniews GroupDetilPage.xaml

<GridView Grid.Row="1"
x:Name="itemsGridView"
AutomationProperties. Automationld="ltemsGridView"
AutomationProperties.Name="Items In Category"
TabIndex="1"
Margin="0, -14,0,0"
Padding="120,0,120,50"
ltemsSource="{Binding Iltems}"
ltemTemplate="{StaticResource ProductTemplate}"
SelectionMode="None"
IsitemClickEnabled="True"
behaviors:ListViewltemClickedT oAction.Action=
"{Binding ProductNavigationAction}">
<GridView.ltemsPanel>
<ltemsPanelTemplate>
<WrapGrid Loaded="wrapGrid_Loaded" />
</ltemsPanelTemplate>
</GridView.ltemsPanel>
</GridView>

TheltemsSourceroperty specifes that theGridViewwill bind to theltemsproperty of the
GroupDetailPageViewModallass. Théemsproperty is initialized to a collection of type
ProductViewModelwhen theGroupDetailPagés navigated to.

The appearance of individual items in tBeidViewis defined by thétemTemplateproperty. A
DataTemplateis assigned to thekemTemplateproperty that specifies that each itemin the
GridViewwill display the product subtitle, image, and description.

When a user clicks an itemin tlidViewthe app navigates to theemDetailPage This behavior is
enabled by setting th&electionModeproperty toNone, setting thelsitemClickEnabledroperty to
true, and handling thétemClickevent. TheGridViewuses an attached behavior named
ListViewltemClickedToActiothat enables thdtemClickevent to be handled in a view model,
rather than in the page's codbehind. The behavior binds theemClickevent to the
ProductNavigationActiomproperty in theGroupDetailPageViewModallass.

In theGroupDetailPageViewModalonstructor, theProductNavigationActiomproperty is initialized
to the Navigate ToProductethod. This method navigates to tiiemDetailPage and passesin a
specific product nmber to the page for loading.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

79

C# AdventureWorks.UILogl/iewModels GroupDetailPage ViewModel.cs

private void NavigateToProduct(object parameter)

{
var product = parameter as ProductViewModel;
if (product != null)
{
_havigationService.Navigate("ltemDetail", product. ProductNumber);
}
}

The overall effectis that whenG@ridViewltemis clicked othe ProductNavigationActions
executed and navigates to theemDetailPagdo display detailed product information. For more
info about behaviors sekenplementing behaviors to supplement the functadity of XAML
elements

For more info se@&dding ListView and GridView controls

Slide to pan

The slide gesture is primarily used for panning interactions. Panning is a technique for navigating
short distances over small sets of content within a single view. Panning is only necessary when the

amount of contentin the view causes the content areat@rflow the viewable area. For more info
seeGuidelines for panningdne of the uses of the slide gesture in the Adventure Works Shopper

reference implementation is to paamong products in a category. For example, when you browse to

a product, you can use the slide gesture to navigate to the previous or next productin the
subcategory. The following diagram shows an example of the slide to pan gesture in
AdventureWorks Shqger.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx

80

®© Product Details

Mountain-500 Red, 52

$564.99

Tokkok ok

®© Product Details

Mountain-500 Black, 40
et
$539.99

12 Reviews:

Ullamcorper

In AdventureWorks Shopper this gesture is implemented byH@/iewcontrol. TheFlipView
control displays a collection of items, and lets you flip through them one at a timé=lihéew
control is derived from thééemsControlclass, like thesridViewcontrol, and so it shares many of
the same features. A benefit of using tRBpViewcontrol is that it has touch capabilitiesiiltin,
removing the need for additional code.

To populate &lipViewyou can add objects directly to itemscollection or bind itdtemsSource
property to a collection of dataitems. When you add items tdigViewthey are automatically
placed in &lipViewltemcontainer that can be styled to change how an item s displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx

81

XAML AdventureWorks.ShoppaNiews ItemDetailPage.xaml

<FlipView x:Name="fl ipView"
AutomationProperties. Automationld="lItemsFlipView"
AutomationProperties.Name="Item Details"
TabIndex="1"
Grid.Row="1"
ItemsSource="{Binding ltems}"
Selectedindex="{Binding Selectedindex, Mode=TwoWay}"
Selecteditem="{Binding SelectedProduct, Mode=TwoWay}">

TheltemsSourceoroperty specifies that th&lipViewbinds to theltemsproperty of the
ItemDetailPageViewModetlass, which ia collection of typd’roductViewModel

For more info se@®uickstart: Adding FlipView controldow to add a flip viewGuidelines and
checklistfor FlipView controls

Swipe to select, command, and move

With the swipe gesture, you slide your finger perpendicular to the panning direction to select
objects. The ability to use the swipe gesture depends upon the value &dleztionModeproperty
on theListViewor GridViewcontrol. A value oNoneindicates that item selection is disabled, while
a value éSingleindicates that single items can be selected using this gesture.

In the AdventureWorks Shopper reference implementation, the swipe gesture can be used to select
items on theChangeDefaultsFlyouthe CheckoutSummaryPageand theShoppingCartPagé\hen

an itemis selected on th&hoppingCartPagihe bottom app bar appears with the app bar

commands applying to the selected item. The following diagram shows an example of the swipe to
select, command, and move gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh781233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150601.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx

82

(@)

Shopping Cart

$564.99 e

$120.00 3000 ; \

) | =

© Shopping Cart

$120.00 1m0

ThelsSwipeEnablegroperty of theGridViewcontrol indicates whether a swipe gesture is enabled
for the control. SettingsSwipeEnabldto falsedisables some default touch interactions, so it
should be set tdrue when these interactions are required. For example, wisSwipe Enablets
false:

1 Ifitemselectionis enabled, auser can deselectitems by-gltking with the mouse, but
cannot deselect an item with touch by using the swipe gesture.

1 IfCanDragltemsstrue, a user can drag items with the mouse, bat with touch.

1 If CanReorderltemistrue, a user can reorder items with the mouse, but not with touch.

The AdventureWorks Shoppreference implementation does not explicitly set tik&wipeEnabled
property, as its default value isie. The following codexample shows how an item on the
ShoppingCartPagean be selected with the swipe gesture.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.candragitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.canreorderitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx

83

XAML AdventureWorks.ShoppaNiews ShoppingCartPage.xaml

<GridView x:Name="ShoppingCartitemsGridView"
x:Uid="ShoppingCartltemsGridView"
Automati onProperties. Automationld="ShoppingCartltemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="3"
VerticalAlignment="Top"
IltemsSource="{Binding ShoppingCartltemViewModels}"
Selecteditem="{Binding Selectedltem, Mode=TwoWay}"
ltemTemplate="{StaticResource ShoppingCartitemTemplate}"
Margin="0,0,0,0" />

TheSelectedltenproperty of theGridViewcontrol can be used to retrieve the item selected by the
swipe gesture. Here thBelectedltenproperty performs a tweway binding to theSelectedltem
property of theShoppingCartPageViewModelass, which is shown in the following code example.

C# AdventureWorks.UILogl/iewModels ShoppingCartPage ViewModel

public ShoppingCartltemViewModel Selectedltem

{
get { return _selectedltem; }
set
{
if (SetProperty(ref _selectedltem, value))
{
if (_selectedltem !=null)
{
/I Display the AppBar
IsBottomAppBarOpened =tru e;
IncrementCountCommand.Raise CanExe cuteChanged();
DecrementCountCommand.Raise CanExecuteChanged();
}
else
{
IsBottomAppBarOpened = false;
}
}
}
}

When theSelectedltenproperty is set thésBottomAppBarOpeneg@roperty will be set to control
whether or not to display the bottom app bar.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.selector.selecteditem.aspx

84

Pinch and stretch to zoom

Pinch and stretch gestures are not just for magnification, or performpigalzoom. The
AdventureWorks Shopper reference implementation uses Semantic Zoom to help users navigate
between large sets of data. Semantic Zoom enables you to switch between two different views of
the same content. You typically have a main view of youtanatrand a second view that allows

users to quickly navigate through it. Users can pan or scroll through categories of content, and then
zoom into those categories to view detailed information. The following diagram shows an example
of the pinch and streteto zoom gesture in AdventureWorks Shopper.

ANWORKS

$539.99 $1364.50

$577.12 $229.49

Mowstann 390 W Red &2 HL Fork LL Mosntain Handle

p |

A /\ JADVENTURE
i‘"\/\z WORKS

IR

A/

Today's Deals Bikes Components

96 Products 130 Products

Accessories Clothing
29 Products 33 Products

To provide this zooming functionality, ti&e manticZooncontrol uses two other controtsone to
provide the zoomeedn view and one to provide the zoomealit view. These controls can be any two
controls that implement théSemantiZoomInformationinterface. XAML provides thastViewand
GridViewcontrols that meet this criteria.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.isemanticzoominformation.aspx

85

Tip When you use &ridViewin aSemantichomcontrol, always setthe

ScrollViewer.IsHorizontal ScrollChainingEnabgthched property to false on th8crollViewer
that's in theGridViewQaontrol template.

For the zoomedn view, we display @ridViewthat binds to products that are grouped lsyb-
category. Th&ridViewalso shows a title (the category) for each group.

XAML AdventureWorks.ShoppeNiews HubPage.xaml

<SemanticZoom.ZoomedInView>

<!-- Horizontal scrolling grid used in most view states -- >

<controls:Multiple SizedGridView x:Name="itemsGridView"
AutomationProperties.Automationld="HubPageltemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0, - 3,0,0"
Padding="116,0,40,46"
| temsSource="{Binding Source={StaticResource groupedltemsViewSource}}"
ItemTemplate="{StaticResource AW ShopperltemTemplate}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollIChainingEnabled="False"
IsltemClickEnabled="True"
behaviors:L istViewltemClickedToAction.Action=

"{Binding ProductNavigationAction}">

TheltemsSourceroperty specifies the items to be displayed by tBedView The
groupedltemsViewSourcstatic resource is@ollectionViewSourcéhat provides the source data
for the control.

XAML AdventureWorks.ShoppaViews HubPage.xaml

<CollectionViewSource x:Name="groupedltemsViewSource"

Source="{Binding Path=RootCategories}"

d:DesignSource="{Binding RootCategories,
Source={d:Designlnstance
designViewModels:HubPageDesignViewModel,
IsDesignTimeCreatable=True}}"

IsSourceGrouped="true"

ItemsPath="Products" />

TheRootCategorieproperty on theHubPageViewModespecifies the data thatis bound to the
GridViewfor the zoomedinview.RootCategoriess a collection o€ategoryViewModebbjects.
TheltemsPathproperty refers to theProductsproperty of theCategoryViewModelclass. Therefore,
the GridViewwill show each product grouped by the category it belongs to.

For the zoomeebut view, we display &ridViewthat binds to filled rectangles for each category.
Within each category the category title and number of products is displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.ishorizontalscrollchainingenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.itemspath.aspx

86

XAML AdventureWorks.ShoppeNiews HubPage.xaml

<SemanticZoom.ZoomedOutView>
<GridView Padding="120,0,0,0"
Foreground="White"
AutomationProperties.Automationld="HubPageGridView"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
ItemTemplate="{StaticResource AW ShopperltemTemplateSemanticZoom}">

For mae info about Semantic Zoom, s@eding SemanticZoom controndGuidelines for
SemantiZzoom

Swipe from edge for app commands

When there are relevant commands to display, the Adventure Works Shopper reference
implementation displays the app bar when the user swipes from the bottom or top edge of the
screen. Every page can define atop app la bottom app bar, or both. For instance,
AdventureWorks Shopper displays both when you activate the app bars @hitygpingCartPage
The following diagram shows an example of the swipe from edge for app commands gesture in
AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh780622.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

87

The AppBarcontrol is a toolbar for displaying apgpecific commands. AdventureWorks Shopper
displays app bars on each page. Page.TopAppBarroperty can be used to define the top app
bar, with thePage.BottomAppBaproperty being used to define the bottom app bar. Each of these
properties will contain appBarcontrol that holds the app bar's Ul components. In general, you
should use the bottom app bar for contextual commartdat act on the currently selected item on
the page. Use the top app bar for navigational elements that move the userto a different page.

AdventureWorks Shopper implements the top app bar for each page as a user control named
TopAppBarUserControlThisuser control simply defines thigutton controls that will appear in the
top app bar. EacButton binds to a command in th€opAppBarUserControlViewModelass.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.topappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.bottomappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

