
Part II

Upgrading
Applications
5 Your First Upgrade 79

6 Common Tasks in Visual Basic .NET 101

7 Upgrading Wizard Ins and Outs 117

8 Errors, Warnings, and Issues 149

9 Using Visual Basic 6 with Visual Basic .NET: COM Interop 175

C0561587x.fm Page 77 Thursday, November 15, 2001 2:37 PM

C0561587x.fm Page 78 Thursday, November 15, 2001 2:37 PM

79

Your First Upgrade
In Part I, we explored the differences between Microsoft Visual Basic 6 and
Visual Basic .NET, looked at the different upgrading options, and covered how
to prepare your Visual Basic 6 application for the upgrade to Visual Basic .NET.
Now it’s time to begin talking about the how-to of upgrading. This chapter
walks you through the process of using the Upgrade Wizard to upgrade a sim-
ple project and examining what your new Visual Basic .NET project looks like.
It also introduces you to techniques for fixing problems with the upgraded
project and discusses some advanced upgrading techniques such as upgrading
project groups and using the VB6 Snippet Upgrade add-in.

Upgrade Walkthrough
Let’s start by creating a simple project in Visual Basic 6. We will assume that you
have Visual Basic 6 and Visual Basic .NET installed on the same machine. Hav-
ing both versions installed is actually a recommended configuration. Visual
Basic .NET installs to a different directory than Visual Basic 6. If Visual Basic 6
is already installed, it is left intact. Visual Basic .NET does not overwrite any
Visual Basic 6 files—the two versions can be installed and run side by side. The
order of installation doesn’t matter either; you can set up Visual Basic 6 after
installing Visual Basic .NET or vice versa. The benefits of installing both prod-
ucts on the same machine are twofold:

� It allows you to ensure that your project actually runs. (If the project
doesn’t work in Visual Basic 6, it’s unlikely that it will work after
upgrading.)

C0561587x.fm Page 79 Thursday, November 15, 2001 2:37 PM

80 Part II Upgrading Applications

� Visual Basic 6 Setup installs common ActiveX controls and libraries.
These are not distributed with Visual Basic .NET. The easiest way to
get them on the machine is to install Visual Basic 6.

We are going to create a simple Visual Basic 6 project, prjFirstUpgrade,
and upgrade it to Visual Basic .NET. (You can find a completed version of this
project on the companion CD that accompanies this book.) The project we are
about to develop generates a new random number between 0 and 10 every sec-
ond and shows the number in a TextBox. It continues to do this until you click
a CommandButton to stop it. Let’s get started. Launch Visual Basic 6, and follow
these steps to create the project:

1. Create a new Standard EXE project.

2. After Visual Basic 6 creates the project, you’ll see that Form1 is dis-
played in the integrated development environment (IDE). Add a
TextBox, a CommandButton, and a Timer control to Form1.

3. Select the Timer control. In the Properties grid, set the interval to
1000.

4. Double-click the Command1 CommandButton, and add this code to
the Command1_Click procedure:

Private Sub Command1_Click()
 Me.Timer1.Interval = 0
End Sub

5. Now return to the Form window, and double-click the Timer control
to create the Timer1_Timer event. Add the following code to the
event:

Private Sub Timer1_Timer()
 Dim i As Integer
 i = Rnd * 10
 Me.Text1 = i
End Sub

6. Save the project, using the default name for the form: Form1. We’ll
name the project something meaningful: prjFirstUpgrade. Make sure
you save the project into a directory on your local computer, rather
than to a network share. This step ensures that Visual Basic .NET has
enough security permissions to upgrade and run the project. The
form and code should look similar to Figure 5-1.

C0561587x.fm Page 80 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 81

F05km01

Figure 5-1 Random number generator in Visual Basic 6.

When you run the project, you’ll see that the TextBox updates every sec-
ond with a new random number. It stops when you click Command1.

Now that we’ve created a Visual Basic 6 project, let’s upgrade it to Visual
Basic .NET. You can leave Visual Basic 6 running, with the project still loaded—
doing so doesn’t interfere with the upgrade. Start Visual Basic .NET, and follow
these steps to upgrade your project:

1. In Visual Basic .NET, from the File menu, choose Open and then
Project to display the Open Project dialog box. Navigate to the loca-
tion where you saved your Visual Basic 6 project file, select prj-
FirstUpgrade.vbp, and click the Open button to upgrade
prjFirstUpgrade using the Upgrade Wizard.

2. The first page of the wizard contains welcome information, as shown
in Figure 5-2. After you’ve read the welcome information, click Next
to move to the second page.

C0561587x.fm Page 81 Thursday, November 15, 2001 2:37 PM

82 Part II Upgrading Applications

F05km02

Figure 5-2 Welcome screen of the Upgrade Wizard.

3. The second page, shown in Figure 5-3, is where you set options for
the upgrade. These options may be disabled depending on the
project type, and in most cases, you will leave them at their default
setting, but let’s examine them more closely to see when you would
use them. There are two options. The first determines what type of
Visual Basic .NET project to upgrade to. As you would expect, EXEs
upgrade to EXEs, and DLLs upgrade to DLLs; for standard EXE and
DLL projects, the upgrade type is determined automatically. With
EXE server projects, however, you have some flexibility. These
projects act like a combination of an EXE and a DLL. When upgrad-
ing these projects, you have the choice of converting them to a
Visual Basic .NET EXE or to a Visual Basic .NET DLL. Since our
project is a standard EXE, the first choice (EXE) is automatically
selected. The second choice, DLL/Custom Control Library, is dis-
abled, and for this reason the second option, Generate Default Inter-
faces For All Public Classes, is disabled also.

This option is available only for DLL and EXE server projects.
You should select this option only if other projects use the Imple-
ments keyword to implement classes from within your DLL or EXE
server. Selecting this option causes the wizard to create an interface
for every public class in your project.

Click Next to move to page 3.

C0561587x.fm Page 82 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 83

F05km03

Figure 5-3 Choosing a project type.

4. On the third page, shown in Figure 5-4, you specify the destination
directory for the upgraded project. The project is not moved to this
location. Instead, the Upgrade Wizard leaves your Visual Basic 6
project untouched and creates a brand new Visual Basic .NET project
in the directory you specify here. By default, the wizard suggests
placing the upgraded project in a new directory called <project-
name>.NET. You can use the text box and the Browse button to
change the location of this directory, but in most cases you should
simply accept the default name. You can always move the directory
later simply by copying it to a different location.

F05km04

Figure 5-4 Specifying a destination directory.

C0561587x.fm Page 83 Thursday, November 15, 2001 2:37 PM

84 Part II Upgrading Applications

If the destination directory already contains files, these will be
deleted to make room for the new project. With our soon-to-be-
upgraded Visual Basic 6 project, let’s accept the suggested name, prj-
FirstUpgrade.NET. Click Next to move to page 4.

5. Because the prjFirstUpgrade.NET folder doesn’t exist yet, a warning
message appears asking you if you want to create it. Click Yes.

6. On page 4, the wizard tells you that it is ready to perform the
upgrade. Click Next to generate the upgraded project.

Status text and a progress bar show you what the Upgrade Wizard is pro-
cessing and give you a visual indicator of the time left. The upgrade is not
instantaneous; it can take anywhere from a minute (for a small project such as
ours) to several hours (for a project with hundreds of forms and classes). After
the wizard has finished, your project opens in Visual Basic .NET. The result will
be similar to Figure 5-5, depending on what windows you already have open in
Visual Basic .NET.

F05km05

Figure 5-5 The upgraded project opens in Visual Basic .NET.

C0561587x.fm Page 84 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 85

What Just Happened?
Let’s look at the upgraded project to see what the wizard did with our Visual
Basic 6 project. You should see the Solution Explorer window in the top right
corner of the IDE. (If the window is not visible, press Ctrl+Alt+L to see it.)
Double-click Form1.vb to open the upgraded form. As you can see in Figure
5-6, the project looks exactly as it did in Visual Basic 6, with the exception that
the Timer is now in the component tray beneath the form. Why has it moved?
Nonvisual controls such as Timers, ToolTips, and Menus are now displayed in
the component tray instead of on the form itself.

F05km06

Figure 5-6 Upgraded form.

Now let’s try running the project. Press F5, just as you would in Visual
Basic 6. The first time you run an upgraded project in Visual Basic .NET, you are
prompted to save the solution file. A solution file is similar to a group file in
Visual Basic 6. A solution contains one or more projects, just as a group can
contain one or more projects. In Visual Basic .NET, since every project must be
part of a solution, one is created for you. Press Enter to save it with the default
name. The project then runs, and Form1 begins showing a new random num-
ber every second, as shown in Figure 5-7.

C0561587x.fm Page 85 Thursday, November 15, 2001 2:37 PM

86 Part II Upgrading Applications

F05km07

Figure 5-7 Generating random numbers in the upgraded project.

Click Command1 to stop the Timer. The Timer indeed stops, but not in the
way we intended. Instead, the program breaks with an exception: “‘0’ is not a
valid value for Interval. Interval must be greater than 0,” as shown in Figure 5-8.

F05km08

Figure 5-8 Exception generated by the upgraded project.

Click Continue to stop the program and return to the IDE. The exception
occurs at this line in the Command1_Click event:

Me.Timer1.Interval = 0

What happened? Le t ’ s look a t the upgraded code fo r the
Command1_Click event:

Private Sub Command1_Click(ByVal eventSender As System.Object, _
ByVal eventArgs As System.EventArgs) Handles Command1.Click
 ‘UPGRADE_WARNING: Timer property Timer1.Interval cannot have a value

‘of 0. Click for more:
‘ms-help://MS.VSCC/commoner/redir/redirect.htm?key-
‘word="vbup2020.htm"
Me.Timer1.Interval = 0

End Sub

C0561587x.fm Page 86 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 87

The Upgrade Wizard has inserted a warning: “Timer Property
Timer1.Interval cannot have a value of 0.” Warnings alert you to run-time dif-
ferences between Visual Basic 6 and Visual Basic .NET. Click the underlined
part of the comment, and a Help topic opens in the IDE with the title “Timer
Interval Property Behavior Has Changed.” Figure 5-9 shows what the Help topic
looks like.

F05km09

Figure 5-9 Help topic for the Timer Interval property.

The Help topic says that Timer.Interval no longer disables the timer.
Instead you have to use the statement Timer1.Enabled = False. Let’s change our
code. Replace the line

Me.Timer1.Interval = 0

with

Me.Timer1.Enabled = False

Now press F5 to run the project. Notice that this time Command1 stops the
timer just as it did in Visual Basic 6.

C0561587x.fm Page 87 Thursday, November 15, 2001 2:37 PM

88 Part II Upgrading Applications

We’ve finished upgrading our project, but let’s not stop there. We’ll do
something with our upgraded project that you couldn’t do in Visual Basic 6—
make the form fade out. Add the following code to the Command1_Click event:

Dim i As Integer
For i = 99 To 0 Step -1
 Me.Opacity = i / 100
Next
End

After you add this code, the event should look like this:

Private Sub Command1_Click(ByVal eventSender As System.Object, _
ByVal eventArgs As System.EventArgs) Handles Command1.Click
 ‘UPGRADE_WARNING: Timer property Timer1.Interval cannot have a value
 ‘of 0. Click for more: ms-help://MS.MSDNVS/vbcon/html/vbup2020.htm
 Me.Timer1.Enabled = False
 Dim i As Integer
 For i = 99 To 0 Step -1
 Me.Opacity = i / 100
 Next
 End
End Sub

Press F5 to run the project. Now when you click Command1, the form
becomes transparent and fades from view. As you can see, you may have to
make some modifications to get your project working, but after you’ve done
so, you can take advantage of the many features in Visual Basic .NET that
weren’t available in Visual Basic 6. Upgrading enables you to add more value
to your projects.

Language Changes
Now that we’ve got our project working, let’s take a few moments to review
where the Upgrade Wizard changed the code, stepping through the original
code line by line. Here is the original Visual Basic 6 code:

Option Explicit

Private Sub Command1_Click()
 Me.Timer1.Interval = 0
End Sub

C0561587x.fm Page 88 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 89

Private Sub Timer1_Timer()
 Dim i As Integer
 i = Rnd * 10
 Me.Text1 = i
End Sub

The first line, Option Explicit, is upgraded to

Option Strict Off

Option Explicit On

Notice that On was added to Option Explicit. This statement has the same
effect as the plain Option Explicit in Visual Basic 6—it means that all variables
must be explicitly declared using the Dim, Public, or Private statement. As you
might guess, you can also write Option Explicit Off, which lets you use variables
without explicitly declaring them. Option Strict is a new option. When it is set
to On, you will get compile errors if your code does either of the following:

� Uses late binding

� Performs a narrowing conversion—that is, converts a variable of one
type to another, where an overflow or type mismatch might occur
(like assigning a Date to a String or an Integer to a Long)

When your project is upgraded, Option Strict Off is put at the top of each
file to turn off strict type checking, since setting it to On would cause compile
errors in most Visual Basic 6 code.

The Different Option Statements
Visual Basic .NET has three types of Option statements. Along with Option
Strict and Option Explicit, there is Option Compare. As it did in Visual
Basic 6, Option Compare sets the string comparison mode. By default,
Strict is set to Off, Explicit is set to On, and Compare is set to Binary. You
can change the defaults for each option in the Build section of the
project’s properties. If you change the default for, say, Option Compare to
Text, all forms, modules, and classes will use Option Compare Text, unless
they have their own Option Compare statements that override the default
setting.

C0561587x.fm Page 89 Thursday, November 15, 2001 2:37 PM

90 Part II Upgrading Applications

The wizard also inserts a Class statement. In Visual Basic .NET, all source
files have a .vb file extension. Whether a file is a module, a class, or a form
depends on the code inside the file. Why does the wizard insert a Class state-
ment instead of a Form statement? Because all forms are actually classes that
inherit from the base class System.Windows.Forms.Form. Here is what the Class
statement looks like. (Event Code) indicates where your events are placed.

Friend Class Form1

Inherits System.Windows.Forms.Form

(Event Code)

End Class

If you want to, you can put several forms or classes into a single file, pro-
vided each has its own Class statement.

Just beneath the Class statement, you’ll see two collapsed regions: Win-
dows Form Designer Generated Code and Upgrade Support, as shown in
Figure 5-10.

F05km10

Figure 5-10 Collapsed code.

This is “system-generated code,” or code used by Windows Forms to store
the design layout of the form and by the Upgrade Wizard to store instancing
information. We’ll discuss these sections in Chapter 6 and in Chapter 12For
now, le t ’ s move on and look at your upgraded event code. The
Command1_Click event code is upgraded from

Private Sub Command1_Click()
 Me.Timer1.Interval = 0
End Sub

to

Private Sub Command1_Click(ByVal eventSender As System.Object, _
ByVal eventArgs As System.EventArgs) Handles Command1.Click
 ‘UPGRADE_WARNING: Timer property Timer1.Interval cannot have a value
 ‘of 0. Click for more: ms-help://MS.VSCC/commoner/redir/
 ‘redirect.htm?keyword="vbup2020.htm"
 Me.Timer1.Interval = 0
End Sub

The signature of the Click procedure has changed from Visual Basic 6. In
Visual Basic .NET, most events are passed two parameters: eventSender, an
object that is set to the control (in this case CommandButton1); and eventArgs,

C0561587x.fm Page 90 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 91

an object that contains extra arguments (such as mouse coordinates). The con-
tents of eventArgs change depending on the type of event. For Click events, it
contains nothing of interest. At the end of the Sub statement, you’ll see the
Handles keyword. This keyword associates the event procedure with the con-
trol event. Each event procedure can be associated with multiple controls and
multiple events. For example, the following Handles clause would connect a
procedure to the Command1.Click, Command2.Click, and Command1.Text-
Changed events:

Handles Command1.Click, Command2.Click, Command1.TextChanged

 The line after the Sub statement contains the following upgrade warning:

‘UPGRADE_WARNING: Timer property Timer1.Interval cannot have a value
‘of 0. Click for more: ms-help://MS.VSCC/commoner/redir/
‘redirect.htm?keyword="vbup2020.htm”

The Upgrade Wizard inserts warnings whenever it encounters a statement that
may not work the same in Visual Basic .NET. It inserts the warning on one line
before the statement with the problem. You can filter the Task List to show the
upgrade warnings. For information on using the Task List, see Chapter 6.

The final statement in the Command1_Click event is

Me.Timer1.Interval = 0

This statement is exactly the same as it was in Visual Basic 6.
Timer1_Tick has also undergone some changes during the upgrade. The

Visual Basic 6 code

Private Sub Timer1_Timer()
 Dim i As Integer
 i = Rnd * 10
 Me.Text1 = i
End Sub

is upgraded to

Private Sub Timer1_Tick(ByVal eventSender As System.Object, _
ByVal eventArgs As System.EventArgs) Handles Timer1.Tick
 Dim i As Short
 i = Rnd() * 10
 Me.Text1.Text = CStr(i)
End Sub

Just as we saw with Command1_Click, the Timer1_Tick procedure now
has a new signature. The line after the Sub statement has also changed. In
Visual Basic .NET, the Integer data type has grown in size from 16 bits to 32 bits,

C0561587x.fm Page 91 Thursday, November 15, 2001 2:37 PM

92 Part II Upgrading Applications

and a new data type, Short, has been added to the language for 16-bit numbers.
For this reason, the line

Dim i As Integer

is upgraded to

Dim i As Short

This ensures that the variable i is the same size as it was in Visual Basic 6.
Let’s move on to the next line:

i = Rnd * 10

is upgraded to

i = Rnd() * 10

In Visual Basic .NET, all calls to functions must have parentheses, so the
Upgrade Wizard has added them to the Rnd function. Now let’s look at the final
line of code in this event procedure.

Me.Text1 = i

is upgraded to

Me.Text1.Text = CStr(i)

This line has undergone two changes. Because Visual Basic .NET does not
support default properties, the Upgrade Wizard resolves the default property of
Me.Text1 and expands the statement to Me.Text1.Text. Because the Text prop-
erty is being assigned to a number, the wizard also explicitly converts i to a
string, using the CStr function.

Whew! The upgrade resulted in quite a number of changes, but looking
over the upgraded code you’ll see that it still looks familiar. The overarching
impression is that upgraded code is more explicit than the Visual Basic 6 ver-
sion. That, in a nutshell, is the real difference between Visual Basic 6 and Visual
Basic .NET. Visual Basic 6 concealed a lot of details, like forms being classes,
the design layout, and default properties. In Visual Basic .NET, these are all
exposed for you to see.

Other Files in Your Project
Now close the Code Editor and Windows Form Designer windows. Let’s turn
our attention to the Solution Explorer for a second. The Solution Explorer
shows all the files in your upgraded project. Notice that the Upgrade Wizard has
added two extra files to your project: _UpgradeReport.htm and Assembly-

C0561587x.fm Page 92 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 93

Info.vb. Go ahead and double-click AssemblyInfo.vb to open it in the Code Edi-
tor. This file contains attributes. Attributes don’t perform any action; they are
used to store additional information about a method, form, class, or project.
The attributes in this file allow you to change information about your project
such as the assembly title and assembly description. Generally, unless you have
a specific need, you can leave these values at their default settings. Close the
AssemblyInfo.vb Code Editor and we’ll look at the upgrade report.

More Info A discussion of the assembly attributes in Assembly-
Info.vb is beyond the scope of this book. These attributes can be used
to specify the identity of your Visual Basic .NET application. To learn
more about attributes, search the Visual Basic .NET Help for
“Attributes” and “Setting Assembly Attributes.”

The upgrade report is added to your project with the filename
_UpgradeReport.htm. It is an HTML file. Double-click the file in the Solution
Explorer to open it. Click the + sign next to Form1 to display all of the issues
with Form1, and you’ll see that the difference with Timer.Interval has been
recorded. The report should look similar to Figure 5-11.

F05km11

Figure 5-11 An upgrade report.

C0561587x.fm Page 93 Thursday, November 15, 2001 2:37 PM

94 Part II Upgrading Applications

The upgrade report captures in one place the issues found while upgrad-
ing the project to Visual Basic .NET. Like the comments in code, each issue is
also a hyperlink that navigates to a Help topic describing how to fix the prob-
lem. For more on upgrade issues, see Chapter 7

You now have your Visual Basic .NET project. The Upgrade Wizard keeps
the form layout the same, makes necessary syntax changes, and warns you
about any issues found during the upgrade. After you get your project working,
you can enhance it using some of the exciting new features of Visual Basic
.NET. We’ll put off a discussion of these features until later, because we still
need to look at how to upgrade project groups and snippets of code.

Upgrading Project Groups
The Upgrade Wizard upgrades only projects. But what about project groups? In
Visual Basic 6, you could create a project group that contained several projects.
When you pressed F5, all of the projects in the group were compiled together,
and the debugger could step from code in one project into code in another.
Project groups are useful when one project references another.

The Visual Basic .NET equivalent of a project group is a solution. Each
solution contains one or more projects. As in Visual Basic 6, they are all com-
piled together when you press F5, projects can reference other projects in the
same group, and the debugger can step from code in one project into code in
another. Not all projects in a solution have to be Visual Basic .NET projects. A
solution can contain projects written in different languages, such as Visual Basic
.NET, C#, and Visual C++.

To upgrade a project group to Visual Basic .NET, you need to upgrade one
project at a time, starting with the most “downstream” project and working your
way up the dependency hierarchy. For example, if your project group contains
an EXE project that references a DLL project, you should upgrade the EXE first,
followed by the DLL. Let’s walk through an example to see how this is done.
First we will create a project group in Visual Basic 6, and then we will upgrade
it one project at a time to Visual Basic .NET. Our project group will be simple:
it will show “Hello World” in a message box when you click a CommandButton
on a form.

1. Open the project you created earlier in Visual Basic 6 (prjFirst-
Upgrade.vbp). Add a new DLL project by choosing Add Project from
the File menu and selecting ActiveX DLL from the Add Project dialog
box. A DLL project called Project1 is added to the Project Explorer.
The two projects are now part of a project group.

C0561587x.fm Page 94 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 95

2. Visual Basic 6 automatically adds a new class in Project1, Class1. Add
the following code to the class:

Sub sayHelloWorld()
 MsgBox “Hello World"
End Sub

3. Close the Class1 Code Editor, and save all the files by choosing Save
Project Group from the File menu. Make sure you save all the files in
the same directory as the first project. Accept the default filenames;
the project group will be called Group1.vbp, and the new project
will be called Project1.vbp.

4. Now we will make prjFirstUpgrade reference Project1. Select prj-
FirstUpgrade in the Project Explorer, and choose References from the
Project menu. In the References dialog box, select Project1, and click
OK. Figure 5-12 shows the References dialog box.

F05km12

Figure 5-12 References dialog box.

5. Let’s use the Project1 Class1 from prjFirstUpgrade. Open prjFirst-
Upgrade.Form1 in the Form window, and double-click the
Command1 CommandButton to edit the Click event code. Change
the Click event code to the following:

Private Sub Command1_Click()
 Dim c As New Class1
 c.sayHelloWorld
End Sub

C0561587x.fm Page 95 Thursday, November 15, 2001 2:37 PM

96 Part II Upgrading Applications

After you’ve added this code, the project group will look like
Figure 5-13.

F05km13

Figure 5-13 Project group in Visual Basic 6.

6. Let’s test it out. Press F5 to run the project group. When you click the
CommandButton Command1, a message box pops up with the text
“Hello World.”

7. We’ll do two more things before we upgrade the group. First, save
the group by choosing Save Project Group from the File menu. Next,
compile the group by choosing Make Project Group from the File
menu. Compiling is necessary because the Upgrade Wizard checks
the timestamp of the Project1 project against the timestamp of the
Project1 DLL. If the project file is newer than the DLL, the wizard
assumes that the DLL is out of date and asks you to recompile it.

Now that we’ve created a project group in Visual Basic 6, let’s upgrade it
to Visual Basic .NET. First we’ll upgrade the EXE prjFirstUpgrade. Then we’ll
upgrade the DLL Project1. Finally, we’ll change prjFirstUpgrade so that it refer-
ences the upgraded Project1.

1. Start Visual Basic .NET, and upgrade prjFirstUpgrade. (If you need a
recap on how to upgrade a project, see the section “Upgrade Walk-
through” earlier in this chapter.) You won’t need to make any modi-
fications to the upgraded code, since we replaced Timer.Interval = 0
with code that shows a message box.

C0561587x.fm Page 96 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 97

2. Now let’s upgrade Project1 to be part of this solution. In Visual Basic
.NET, from the File menu choose Add Project and then Existing
Project. This opens the Add Existing Project dialog box. Select
Project1.vbp and click the Open button to upgrade Project1. Accept
the default upgrade options, as you did with prjFirstUpgrade.

3. Is that all there is to do? Not quite. The project prjFirstUpgrade still
references the Visual Basic 6 version of Project1. We need to delete
the reference to the Visual Basic 6 Project1 DLL and add a reference
to the upgraded Visual Basic .NET Project1. First let’s remove the ref-
erence. Expand the prjFirstUpgrade references node and remove the
reference Interop.Project1_1_1 by right-clicking it and selecting
Remove. Note that in your project, this reference might be called
something slightly different. Look for the reference with “Project1” in
the name. For information on adding and removing references, see
Chapter 6

4. Add a reference to the upgraded Project1 by right-clicking Refer-
ences, selecting Add Reference, and then selecting Project1 in the
Add Reference dialog box.

5. That’s it! Press F5 to run the solution. When you click the Command1
button, you will see a message box, as shown in Figure 5-14.

F05km07

Figure 5-14 Upgraded project group.

You now know the basic procedure for upgrading project groups. If your
Visual Basic 6 project group contains many projects, you simply repeat these

C0561587x.fm Page 97 Thursday, November 15, 2001 2:37 PM

98 Part II Upgrading Applications

steps for every project in the group. Start with the most downstream project,
and work your way up the dependency hierarchy.

Using the VB Snippet Upgrade Add-In
What is a snippet? A snippet is a fragment of code, such as a procedure or even
just two or three lines of code. A Visual Basic 6 snippet is a fragment of Visual
Basic 6 code. It may be sample code that you received by e-mail, or it might be
a function you use all the time. The VB Snippet Upgrade add-in is designed for
upgrading snippets. It is useful when you want to upgrade only a few lines of
code, not an entire project. To use it, you must have a Code Editor window
open in Visual Basic .NET. Choose VB Snippet Upgrade from the Tools menu.
The VB Snippet Upgrade window opens, as shown in Figure 5-15.

F05km15

Figure 5-15 The VB Snippet Upgrade add-in.

Simply type or paste Visual Basic 6 snippet code into this window, and
click the Upgrade button. Let’s try upgrading a simple example. Type the fol-
lowing into the window:

Dim x As Integer
Debug.Print x

Now click the Upgrade button. The snippet is upgraded and inserted into the
Code Editor at the current insertion point:

C0561587x.fm Page 98 Thursday, November 15, 2001 2:37 PM

Chapter 5 Your First Upgrade 99

Dim x As Short

System.Diagnostics.Debug.WriteLine(x)

The VB Snippet Upgrade add-in is a great way to familiarize yourself with
how code upgrades from Visual Basic 6 to Visual Basic .NET. The add-in can
upgrade several lines of code, a function, or even a whole module. The only
limitation is that the snippet can’t refer to functions or objects that are not
included as part of the snippet—the VB Snippet Upgrade add-in needs to exam-
ine all of the objects and functions you use in that snippet. If they are defined
elsewhere, the add-in won’t know how to interpret them. You can add refer-
ences to the snippet, however. A list box on the References tab allows you to
add or remove COM libraries that your snippet references. Any libraries you
add here are also added to your Visual Basic .NET project.

Getting Updates
As this book went to press, the VB Snippet Upgrade add-in was still in
development, and Microsoft had not yet decided whether it would be
ready to ship with Visual Basic .NET or be made available later as a
download. If it is not installed with Visual Basic .NET, you will be able to
get it from the Visual Basic Web site, http://msdn.microsoft.com/vbasic/.
From time to time this Web site is updated with new versions of the
Upgrade Wizard, the VB Snippet Upgrade add-in, and other resources for
upgrading. These updates may contain bug fixes, whitepapers, or new
upgrade capabilities.

Upgrading Using the Command Line
Those of you who prefer using command-line tools over graphical wizards will
be pleased to know that Visual Basic .NET ships with a command-line upgrade
tool: VBUpgrade.exe. If you accept the default file locations during installation,
you will find it installed to the following directory:

<drive>:\Program Files\Microsoft Visual Studio .NET\Vb7\VBUpgrade\
The command-line upgrade tool produces exactly the same result as the

Upgrade Wizard—in fact, they share the same underlying upgrade engine.
Let’s see it in action. Assuming that the tool resides on drive C, open a
Command Prompt window and change the current directory to the location
of the tool, using the CD command, as follows:

CD “C:\Program Files\Microsoft Visual Studio .NET\Vb7\VBUpgrade”

C0561587x.fm Page 99 Thursday, November 15, 2001 2:37 PM

100 Part II Upgrading Applications

Now type the following to see the command-line options:

vbupgrade /?

The upgrade tool shows you its available options:

Microsoft (R) Visual Basic.NET Upgrade Tool Version 7.00.9238.0
Copyright (C) Microsoft Corp 2000-2001.
Portions copyright ArtinSoft S.A.
All rights reserved.
Usage: VBUpgrade <filename> [/Out <directory>] [/NoLog | /LogFile
<filename>] [/Verbose] [/GenerateInterfaces]
/? Display this message
/Out Target directory (default is “.\OutDir”)
/Verbose Outputs status and results
/NoLog Don’t write a log file
/LogFile Log file name (default is
 “<ProjectFileName>.log”)
/GenerateInterfaces Generates interfaces for public classes

To upgrade a project, you need to specify the project filename and the
destination directory for the upgraded project. If the destination directory
doesn’t exist already, the upgrade tool will create it for you. For example, the
following statement upgrades C:\Project1.vbp to the C:\Project1.NET directory:

vbupgrade c:\Project1.vbp /Out c:\Project1.NET

Because it is a command-line tool, the upgrade tool doesn’t show any wiz-
ard pages while upgrading. The one difference between the command-line tool
and the Upgrade Wizard is that the command-line tool does not delete any files
in the destination directory. If the destination directory already contains files,
the command-line tool stops with an error.

Conclusion

This chapter has covered the basic mechanics of upgrading projects, project
groups, and code snippets. Doing each is easy, once you know how. The next
chapter takes a more detailed look at how to work with your upgraded project
in Visual Basic .NET.

C0561587x.fm Page 100 Thursday, November 15, 2001 2:37 PM

