C0461587x.fm Page 61 Thursday, November 15, 2001 2:31 PM

t

Preparing Your Project
for the Upgrade to
Visual Basic .NET

Now that you have decided to upgrade to Microsoft Visual Basic .NET, it’s time
to make the modifications necessary to smooth out the upgrade process. In
doing so, you need to focus on issues that could get in the way of a straightfor-
ward upgrade. If you followed the guidelines in Chapter 3, you should already
have a good idea of the potential problem areas in your application. This chap-
ter will help you prepare for your upgrade project by identifying common cod-
ing practices that can cause upgrade issues, above and beyond the issues
highlighted by the Upgrade Wizard’s upgrade report.

Keep in mind that rather than addressing how to upgrade, this chapter
focuses on identifying changes that you can make to existing applications to
help the upgrade go more smoothly. There are two parts to this topic. First we’ll
discuss the use of up-to-date language and platform features. Then we’ll look at
good coding practices and common traps that Visual Basic developers fall into.
Where necessary, examples are provided for clarity.

Why Change Anything?
The quality of your upgrade depends greatly on the quality of the application
you start with. It is therefore crucial to take the time to make your application

more compatible with the upgrade process. You'll need to replace obsolete lan-
guage syntax and legacy (pre—Visual Basic 6) controls, modify your coding

61

ﬁ%

—®

.

C0461587x.fm Page 62 Thursday, November 15, 2001 2:31 PM

t

62

Part |

Introduction to Upgrading

style, and watch for common traps. These steps are the best way to ensure that
your code maintains its current functionality throughout the upgrade. The fol-
lowing sections demonstrate what you can do to improve your application and
make it more suitable to an upgrade.

Cleaning Up Legacy Code

Visual Basic 6 is almost a wonder of compatibility; it maintains code compati-
bility for many language features going all the way back to Visual Basic 1.
These features include elements like DefInt, VarPtr, and GoSub...Return that
still work, and work reasonably well. But just because they work does not
mean that you should use them. These features and others are deprecated in
Visual Basic 6, and they have been removed completely from Visual Basic .NET.
This section covers the obsolete and deprecated Visual Basic features that you
should remove from or replace in your Visual Basic 6 application before
upgrading.

VarPtr, Defint, and Other No-Shows

As we just mentioned, certain language elements are no longer supported in
Visual Basic .NET. Some were eliminated because they lead to confusing and
cryptic coding styles and are not appropriate for the kind of large-scale distrib-
uted application development that is becoming dominant in today’s business
environment. Others are just no longer meaningful in Visual Basic .NET. Take,
for example, VarPtr. Pointers no longer have any meaning in the .NET world. In
fact, pointers defeat the purpose of having a runtime environment like .NET in
the first place. The runtime frees the developer from various tasks, and any
Visual Basic language features that conflict with not only the runtime but also
the goal of a scalable language for the enterprise have been eliminated.

These changes are intended to move the language (and the platform as a
whole) forward in the most expeditious, and ultimately beneficial, way possi-
ble. The following Visual Basic language features are handled by the Upgrade
Wizard but are not recommended for use in your applications:

B Defint, DefStr, DefObj, DefDbl, DefLng, DefBool, DefCur, DefSng,
DefDec, DefByte, DefDate, DefVar
B GoTo [LineNum]

B mp, Equ

—®

.

C0461587x.fm Page 63 Thursday, November 15, 2001 2:31 PM

t

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 63

The following features are simply not handled, and eliminating them is left as a
task for the developer:

B GoSub... Return

B [Set (for user-defined types)
| VarPtr, ObjPtr, StrPtr
|

Null and Empty nonzero-lower-bound arrays

Given these changes, where should you start? First you must search out
areas in your application that use these language elements and either replace
them, or leave them as they are and resolve the issues after you use the
Upgrade Wizard. Both approaches are valid. It is often more efficient to fix a
problem area before upgrading than to try to sort out the mess afterwards.
There are times, however, when no alternatives exist in Visual Basic 6 and the
most effective approach is to wait and solve the problem using Visual Basic
NET. This decision is ultimately one that you, the developer, need to make on
a case-by-case basis. If you are unsure, it doesn’t hurt to run the Upgrade Wiz-
ard just to see what it does, but that is a subject covered in a later chapter. (See
Chapter 5)

DAO and RDO Data Binding

Over the years, Microsoft has introduced several data access technologies. Start-
ing with Data Access Objects (DAO) and followed by Remote Data Objects
(RDO), Microsoft started to bring data access to the masses with an accessible
COM-based approach. The big breakthrough was the introduction of ActiveX
Data Objects (ADO), with its flexible provider scheme. ADO was designed to
provide a generic replacement for both DAO and RDO. It uses OLE DB to inter-
face to various data providers, from comma-delimited text files to Microsoft
Access databases to high-end database servers.

Visual Basic .NET introduces ADO.NET as the next generation of data
access. Why does Microsoft continue to introduce new data access technolo-
gies? It reflects the fact that data access itself is evolving. Writing scalable Web
sites is a different programming problem from querying a Microsoft Access
database on the local machine. For this reason, ADO.NET’s n-tier disconnected
data access is very different from DAO data binding to an Access database.

You'll be pleased to know that Visual Basic .NET supports DAO, RDO,
and ADO data access code. However, Visual Basic .NET does not support DAO
or RDO data binding. What this means is that if your application has DAO or
RDO data binding, you should either rewrite it as ADO data binding in Visual
Basic 6 or rewrite it as ADO.NET data binding after upgrading the project to
Visual Basic .NET.

rs

e -

C0461587x.fm Page 64 Thursday, November 15, 2001 2:31 PM

64 Part | Introduction to Upgrading

Good Visual Basic 6 Coding Practices

Now that we have covered the deprecated features in Visual Basic 6, let’s
move on to identify the areas where programming practices can interfere with
a smooth upgrade. You may need to adjust your code to make it more com-
patible with the Visual Basic Upgrade Wizard. Chapter 4 discusses how to use
the Upgrade Wizard as a tool to identify and fix issues in your application. For
now we will look at common problematic coding practices that you can cor-
rect prior to the actual upgrade. The Upgrade Wizard can identify most of
these issues.

Variants and Variables

Visual Basic is an interesting language in that it has a default data type—the
Variant type. What this means is that any variable, method parameter, or func-
tion return type that is not explicitly specified is considered a Variant. Although
this default frees you from having to worry about types when coding—the Variant
type can store all the intrinsic types as well as references to COM objects—using
it is not the greatest programming practice.

One of the most significant impacts of relying on the Variant type is that
you lose compile-time validation. Because Visual Basic cannot know what type
you really wanted, it has to generate code to try to coerce your variable to the
proper type at run time. It is not always successful, especially if the type you are
using cannot be coerced to the expected data or object type.

Good programming practice aside, not explicitly declaring your variable
types can generate a significant amount of upgrading work for the developer.
This is unfortunate because given explicit types, the Upgrade Wizard can often
upgrade variables and controls to their new Visual Basic .NET equivalents. If
the meaning of your code is unclear, the Upgrade Wizard will not try to guess
your intentions. It will simply leave the code as is and generate a warning. This
leaves the task of upgrading the code exclusively to the developer. Why waste
time, when the wizard will do the work for you?

rs

C0461587x.fm Page 65 Thursday, November 15, 2001 2:31 PM

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET

65

Implicit vs. Explicit Variable Declaration

Look at the following code. Do you understand what is going on here?

Function MyFunction(varl, var2)
MyFunction = varl + var?2
End Function

Is this method doing string concatenation? Addition? If you can’t be sure,
the Upgrade Wizard certainly won’t be. Testing the function shows that it
is possible to use a variety of different inputs:

Debug.Print MyFunction("This and", " that.")
Debug.Print MyFunction(Now(), 1)
Debug.Print MyFunction(4, 5)

The following results show in the Immediate window:

This and that.
7/23/2001 8:04:59 PM
9
An alternative, and more proper, way to define the function would
look like this:

Function MyFunction(varl As String, var2 As String) As String
MyFunction = varl & var?
End Function

or this:

Function MyFunction(varl As Integer, var2 As Integer) As Integer
MyFunction = varl + var?2
End Function

With this explicit definition style, we can see exactly what the pro-
grammer intends to happen. We also get the benefits of compile-time valida-
tion: The compiler will generate an error if you pass an invalid type to the
function (unless it is a Variant). In addition, the Upgrade Wizard will be able
to generate the proper equivalent Visual Basic .NET code without a problem.

rs

C0461587x.fm Page 66 Thursday, November 15, 2001 2:31 PM

66

Part |

Introduction to Upgrading

Abstraction

Abstraction is a fairly simple concept. The idea is to produce an implementation
that separates the usage of an object, type, or constant from its underlying
implementation. This concept is at the heart of every object-oriented program-
ming environment. Abstraction insulates the developer from changes in the
underlying implementation. When you violate this principle, you risk making
your application more fragile and prone to errors. There are two common areas
where Visual Basic developers get themselves into trouble: constants and
underlying data types.

Constants and Underlying Values

Visual Basic 6 defines a whole host of constants. COM libraries make even more
constants and enumerated types available through IntelliSense. The standard
Visual Basic constants are really just pretty names that hide underlying integer
values. Table 4-1 shows an excerpt from the Microsoft Developer Network
(MSDN) documentation on mouse pointer constants.

Table 4-1 Mouse Pointer Constants

Constant Underlying Value Mouse Pointer
vbDefault 0 Default
vbArrow 1 Arrow
vbCrosshair 2 Cross

vblbeam 3 I beam
vblconPointer 4 Icon
vbSizePointer 5 Size
vbSizeNESW 6 Size NE, SW
vbSizeNS 7 Size N, S
vbSizeNWSE 8 Size NW, SE

You use these constants to change the mouse pointer, as in the following
two examples:

Screen.MousePointer vbIbeam
Screen.MousePointer = 3

These two examples achieve the same result. They are equivalent in that they
both change the cursor to the I beam. Although they achieve the same result,
the second line is hard to read. Unless you are intimately familiar with the
MousePointer constants, it is hard to tell at a glance what result that line of code
will actually produce. Using a named constant makes your code more readable
and keeps the intent clear.

ﬁ%

—®

rs

C0461587x.fm Page 67 Thursday, November 15, 2001 2:31 PM

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 67

The Upgrade Wizard is unable to guess what you intended if you use an
underlying value in place of a constant. When it encounters such a value, it
leaves the code in place and inserts a special comment known as an upgrade
warning (see Chapter 8 which you then have to resolve on your own. When con-
stants are used properly, the Upgrade Wizard can upgrade code to the Visual
Basic .NET equivalent (if it exists) with no warnings.

Use the Proper Constants A side issue to the notion of underlying values is that
constant values can conflict. Remember that the Visual Basic standard constants
are actually implemented with integers, and thus constants with unrelated func-
tion may have the same value. The problem is that you can often use constants
interchangeably. While Visual Basic 6 doesn’t really care—it has no notion of
strict constant or enumerated type enforcement, and one integer is as good as
another—the Upgrade Wizard will either change the constant definition to a
possibly incompatible type in Visual Basic .NET or will not upgrade the offend-
ing line of code at all (leaving it in place with a warning).

The main lesson here is that when you use constants, make sure you are
using them in the correct context. The following example illustrates this point:

Sub DefaultExample()
Screen.MousePointer = vbIconPointer
Screen.MousePointer adCmdStoredProc
End Sub

Here vblconPointer is defined as a MousePointer constant, and adCmdStored-
Proc is defined as an ADO Command object constant used for specifying stored
procedures (totally unrelated to the MousePointer and not meaningful in this
context). Both of these constants have a value of 4, and it is possible to use
them interchangeably in Visual Basic 6. The Upgrade Wizard, however, will
attempt to upgrade the constants to their .NET equivalent. Visual Basic .NET
performs strict type checking for enumerated constants, and the upgraded code
will not compile. Getting this right to start with will avoid this whole class of
problems.

Underlying Data Types

Another problematic coding style involves the use of underlying (or implemen-
tation) data types instead of proper types. A case in point is the Date data type
in Visual Basic 6. The Date data type is implemented as a Double. What this
means is that you can coerce a Date to a Double and/or store the contents of a
Date in a Double. Some developers may have used a Double directly instead of
the Date data type. While this will work just fine in Visual Basic 6, it will cause
problems for the Upgrade Wizard (and therefore for you) and will categorically
not work in Visual Basic .NET. In the Microsoft .NET Framework resides a new

ﬁ%

rs

C0461587x.fm Page 68 Thursday, November 15, 2001 2:31 PM

t

68

Part |

Introduction to Upgrading

Date object, and the implementation is significantly different (and hidden from
the developer). The new Date object supports much larger date ranges and
higher-precision time storage than the Visual Basic 6 Date type. The only way
to ensure that your code upgrades properly is to always use the Date data
type and the date/time manipulation functions. Resist using the underlying

Double value.

How to Get a Double Date

Date variables are stored as IEEE 64-bit (8-byte) floating-point numbers
(which is the definition of a Double). The Double is capable of represent-
ing dates ranging from January 1, 100, to December 31, 9999, and times
from 0:00:00 to 23:59:59. The following diagram shows how a Date is

stored within said Double.

1
Date 7/22/2001 | 6:38:29 PM

Double 37094 | 776724537

1
Decimal point—T

Try out the following example in Visual Basic 6:

Dim dt As Date
Dim db1 As Double

db1 = 37094.776724537
dt = dbl

Debug.Print dt
Debug.Print dbl

The Immediate window displays the following:

7/22/2001 6:38:29 PM
37094 .776724537

You can adjust the date by adding or subtracting any Integer value to
the double, and you can alter the time by adding or subtracting any Dec-

imal value less than 1.

—®

rs

C0461587x.fm Page 69 Thursday, November 15, 2001 2:31 PM

t

—®

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 69

Taking advantage of implementation details rather than using the
abstracted types defeats the purpose of abstraction in the first place. Abstraction
is of significant use to any application because it allows you to change imple-
mentation details over time without requiring interface or coding changes.
When you violate this rule of abstraction and take advantage of the underlying
implementation, you risk having your application crumble to pieces when the
implementation changes (as it is likely to do over time).

Early Binding vs. Late Binding vs. Soft Binding

Binding refers to the way that objects and methods are “bound” by the com-
piler. You can think of the different binding types in the context of variable dec-
laration and usage. Early binding is the most explicit form of variable
declaration and usage. Late binding is the least explicit form of variable decla-
ration. Soft binding is somewhere in the middle. Confused yet? Read on.

Early Binding

Early binding refers to the use of strongly typed variables. Strongly typed
means that each variable type is defined explicitly and that the Variant type is
never used. Specifying the type of variables explicitly relieves Visual Basic of
the task of second-guessing your work when you compile your application. It
can distinguish the variable types and thus generate more optimized code
(code that is faster and less resource intensive). It also enables the programmer
to catch programming problems at compile time because the compiler will gen-
erate errors when nonexistent object methods are called or when parameter
and return types aren’t compatible.

Example of Early Binding The following code shows an example of the use of
early binding. Notice that all of the function’s parameters, the return type, and
the local variables are explicitly typed. Nothing is explicitly or implicitly
declared as Variant.

Function GetADORs(connStr As String, statement As String) _
As ADODB.Recordset

Dim conn As New ADODB.Connection
conn.0Open connStr
Set GetADORs = conn.Execute(statement)
conn.Close

End Function

rs

C0461587x.fm Page 70 Thursday, November 15, 2001 2:31 PM

70

Part |

Introduction to Upgrading

Late Binding

Late binding occurs when the Variant type is used (either implicitly or explic-
itly). When you declare a variable as Variant, the compiler cannot know your
exact intentions. The compiler then inserts additional logic to bind the method
or property to the object during program execution. It becomes the responsi-
bility of the runtime environment to catch any binding errors. Execution is less
efficient because the runtime environment must resolve the variable types before
it can perform an operation or method call. Take, for example, the following
Visual Basic 6 method, which sets the Caption property value of a given label:

Sub SetlLabel(1b1, value)
1b1 = value
End Sub

The compiler must insert code to evaluate whether /bl is an object and, if so,
determine its default property. Furthermore, the runtime must check that the
contents of value are valid for the default property of /bl. This step adds pro-
cessing overhead to a single line of code. While the performance consequences
are not obvious in a small application, large-scale enterprise or Web applica-
tions will notice the difference.

Late Binding and Upgrading In preparation for using the Upgrade Wizard, you
should strongly type anything that you can. Review your code and explicitly
specify function parameters and return types. Inspect every instance that uses a
Variant, and ask yourself whether it is possible to use a strict data type instead.
For example, consider the following function:

Public Function Test(frm) As Integer
Dim 1b1
Set 1b1 = frm.Labell
1b1.Caption = "This is a test"
frm.Label2 = "Another Test"
Test = True

End Function

This function implicitly takes a Variant parameter (intended to be a form) and
explicitly returns an Integer. From the standpoint of good programming prac-
tice alone, it is important to ensure that your code clearly identifies the
expected variable types. It becomes even more important with an application
like the Visual Basic Upgrade Wizard. Look at what the Upgrade Wizard does
with the code:

Public Function Test(ByRef frm As Object) As Short

Dim 1b1 As Object
1b1 = frm.Labell

ﬁ%

rs

C0461587x.fm Page 71 Thursday, November 15, 2001 2:31 PM

t

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 71

1b1.Caption Label2 = "Another Test"

'UPGRADE = "This is a test"

frm. _WARNING: Boolean True is being converted into a numeric.
Test = True

End Function

The following errors and warnings resulted:

B /bl.Caption should be [bl.Text.
Sfrm.Label2 should be frmLabel2. Text.

An upgrade warning occurred, indicating that the wizard was con-
verting Boolean to numeric.

Part of the problem would have been avoided if /b/ were explicitly
declared as an instance of a Label control. Doing so would have ensured that
the Caption property upgraded to Text in Visual Basic .NET.

Simple modifications to the code make the result of the Upgrade Wizard
more predictable:

B Change Test to return Boolean.
B Change the definition of /b/ to a variable of type Label.

B Explicitly type the frm parameter to be Form1.

The function looks like this after all of these changes:

Public Function Test(frm As Forml) As Boolean
Dim 1b1 As Label
Set 1b1 = frm.Labell
1b1.Caption = "This is a test"
frm.Label2 = "Another Test"
Test = True
End Function

The upgraded function now looks like this:

Public Function Test(ByRef frm As Forml) As Boolean
Dim 1b1 As System.Windows.Forms.Label
1b1 = frm.Labell
1b1.Text = "This is a test"”
frm.Label2.Text = "Another Test"
Test = True

End Function

The Test function has now upgraded cleanly with no errors.

ﬁ%

—®

>

rs

C0461587x.fm Page 72 Thursday, November 15, 2001 2:31 PM

t

72

Part |

Introduction to Upgrading

The modifications to the original Visual Basic 6 code took very little work
and also added a level of clarity to the original application. Granted, it is not
always possible to make these modifications, but it is the ideal case.

Soft Binding

Soft binding is the last of the binding types and is often the most insidious. Imag-
ine a situation involving a form (MyForm) with a label (Label1). Consider the fol-
lowing example, in which you pass the form and new text for your control:

Sub Form_Load()
SetLabelText Me, "This is soft binding!"
End Sub

Sub SetlLabelText(frm As Form, text As String)
frm.Labell.Caption = text
End Sub

Notice that everything is strongly typed. There is certainly no obvious late bind-
ing going on, but something more subtle is happening. The parameter frm is
declared as an object of type Form, while the form being passed to it is of type
MyForm. The type Form does not have a property or a control called Labell.
Visual Basic is implementing a form of late binding on a strongly typed variable.
This is what we call soft binding. You have a couple of options for working
around issues with soft binding:

Sub SetlLabelTextl(frm As MyForm, text As String)
frm.Labell.Caption = text
End Sub

or this:

Sub SetlabelText2(frm As Form, text As String)
Dim f as MyForm

Set £ = frm
frm.Labell.Caption = text
End Sub

SetLabelText1 is the preferred option because it will always prevent the wrong
type of form from being passed to the function. SetLabelText2, while better than
the original (and while it will upgrade properly), is not as robust because the
assignment of frm to f could fail if the types are not compatible.

—®

rs

C0461587x.fm Page 73 Thursday, November 15, 2001 2:31 PM

t

—®

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 73

Watch Qut for Null and Empty

Two keywords in Visual Basic 6, Empty and Null, could cause problems when
you upgrade your application. Empty is typically used to indicate that a variable
(including a Variant) has not been initialized. Null is specifically used to detect
whether a Variant contains no valid data. If you ever test for either Null or
Empty in your application, be sure to use the IsNull and IsEmpty functions,
rather than the = operator. This is a minor change that should be easy to imple-
ment and will minimize upgrade headaches.

Another issue regarding Null involves the way in which various Visual
Basic functions handle Nu/l propagation. Take the following example:

Dim str As Variant
str = Null
str Left(str, 4)

As you can see, a value of Null is passed to the Left function. The standard Left
function in Visual Basic 6 is designed to propagate Null values. So the value of
str after Left is called is Null. The problem is that in Visual Basic .NET, functions
such as Left will not propagate Null. This disparity might introduce errors into
your application without your realizing it. The Left$ function provides a way
around this problem:

Dim str As Variant
str = Null
str Left$(str, 4)

Running this code will cause a run-time error, however (just as its Visual Basic
.NET equivalent would). You can resolve the conflict (without actually testing
for Null) by using the string concatenation operator:

Dim str As Variant
str = Null
str = Left$(str & "", 4)

Concatenation with an empty string will cause Null to be coerced to an empty
string (but not a string that is Empty), and Left$ will not cause a run-time error.
Thus, you should use Zefi$ (and all of the associated functions—Right§, Mid$,
and so on) and ensure that your application behaves correctly before upgrad-
ing. If you do so, you should not have to worry about a difference in function-
ality because the behavior of functions such as Left$ is equivalent to their Visual
Basic .NET counterparts.

rs

C0461587x.fm Page 74 Thursday, November 15, 2001 2:31 PM

74

Part |

Introduction to Upgrading

Implicit Object Instantiation

Many of you are probably familiar with the Visual Basic 6 As New syntax. It can
be used to reduce coding by allowing the developer to write more compact
code. Take, for instance, the following two examples:

Example 1
Dim c As ADODB.Connection
Set ¢ = New ADODB.Connection
c.Open connStr
Set ¢ = Nothing
c.Open connStr

Runtime error

Example 2

Dim ¢ As New ADODB.Connection
c.0pen connStr

Set ¢ = Nothing

c.Open connStr ' No error

Example 2 shows how As New simplifies your code by taking care of the
type declaration and object instantiation simultaneously. But the examples also
demonstrate a behavioral difference between the two forms of variable decla-
ration. The first example will produce an error; the second will not. What’s
going on here? Although declaring variables in this fashion can be considered
equivalent, these examples are by no means equal. We were surprised to find
out how As New had worked in the past. Looking at Example 2, you would
think that the first line performs two tasks: creating the variable and instantiat-
ing the object. In fact, it does only the former. It turns out that Visual Basic 6
tries to be smart about creating the object. The code in Example 2 will not actu-
ally instantiate the object until the object is accessed, while Example 1 explicitly
instantiates the object. Also in Example 1, when the connection object is
destroyed by setting ¢ to Nothing, the object is gone, and no object will be cre-
ated in its place unless the application does so explicitly. In the second exam-
ple, the connection object is created only when the Open method is called. The
connection object is destroyed when c is set to Nothing but is created again (by
the Visual Basic runtime) when Open is called the second time.

This issue is not a problem in Visual Basic 6. After all, even if you didn’t
know how it handles this situation, it would be safe to assume (as we did)
that Visual Basic creates the object when told to. But it is important to note
that Visual Basic .NET changes the behavior of As New to instantiate the object
at the same time that the variable is defined. It also will not create new objects
implicitly. If you set a reference to Nothing, you must create a new instance.
Visual Basic .NET will not do it for you. This approach would seem to be the
more logical (because it involves less uncertainty regarding object instantiation

ﬁ%

rs

C0461587x.fm Page 75 Thursday, November 15, 2001 2:31 PM

Chapter 4 Preparing Your Project for the Upgrade to Visual Basic .NET 75

and lifetimes), but it could have consequences for your code. Example 3 dem-
onstrates the behavior of As New in Visual Basic .NET.

' Example 3
Dim ¢ As New ADODB.Connection()
c.0Open(connStr)
¢ = Nothing
c.0Open(connStr) ' Runtime Exception

If you are using this syntax and relying on behavior specific to Visual
Basic 6, you need to change your approach. Everyone else can forget about this
scenario and move on—move on, that is, to a discussion of another form of the
As New syntax:

Dim forms(@) As New Form
forms(0).Title = "Form 1"
ReDim Preserve forms(2)

forms(1l).Title = "Form 2"
forms(2).Title = "Form 3"

This is where matters get tricky. Notice that we need to create this array of con-
trols only once. If we resize the array, each additional element acts like the first.
Visual Basic 6 will create a new instance of Form when we access the Title
property for any index of this array (provided, of course, that it falls within the
bounds of the array). While this ability can be convenient, it can also cause
problems. Imagine a situation in which a bug accidentally causes you to access
another element (which might otherwise be empty). Visual Basic 6 will mer-
rily create the object for you and at the same time hide a bug in your appli-
cation. Depending on how your application is written, the bug may not be
easily discovered.

To make a long story short, it is best not to define arrays in this way (espe-
cially in large-scale applications). Instead, you can use the following syntax to
define the array in a way that is compatible with Visual Basic .NET:

Dim forms(@) As Form
Set forms(@) = New Form
forms(0).Title = "Form 1"
ReDim Preserve forms(2)
For i =1 To 2
Set forms(i) = New Form
forms(i).Title = "Form " & i
Next

Let’s look at the upgrade issue associated with this technique. Visual Basic .NET
does support As New, but only for a single object declaration, in part because of
one of the new features in Visual Basic .NET: construction. Every object in

ﬁ%

—®

rs

C0461587x.fm Page 76 Thursday, November 15, 2001 2:31 PM

76

Part |

Introduction to Upgrading

Visual Basic .NET has a constructor of some sort. When you create an object,
that constructor is called. (Standard object-oriented programming concepts
work here.) COM objects in Visual Basic 6 did not support construction, and as
a result the runtime could create objects without any real worry; you still
needed to do the work of initializing the object (by opening a connection, cre-
ating a file, or whatever). In Visual Basic .NET, those kinds of assumptions can-
not be made. Some objects require parameterized constructors, which further
impedes the use of As New in the array case.

What all this means is that in Visual Basic .NET, you must explicitly declare
your objects. As New thus becomes an explicit form of variable declaration and
loses any implicit behaviors. If you want to create an array of objects, you must
first create the array and then manually populate it with the objects you need.
Although this does remove a shortcut from the toolbox of the Visual Basic pro-
grammer, it increases the clarity of your code. No object will exist until you cre-
ate it, which makes for greater predictability all round.

Conclusion

As you have seen in this chapter, there are very definite and predictable steps
that you can take to improve the chances that your application will upgrade
smoothly. While some of these steps require work up front on your part, they
will save you time and effort over the course of a complete upgrade. Abandon-
ing deprecated features and improving code quality not only will ensure a
smooth upgrade but will reduce the barrier between your application and other
managed framework classes.

For additional information, you can consult the MSDN white paper “Pre-
paring a Visual Basic 6.0 Application for Upgrading.” You can find it by search-
ing the Help files included with Visual Studio .NET.

rs

