
403

Replacing ActiveX Controls
with Windows Forms
Controls

If you’ve been using Microsoft Visual Basic long enough—since before Visual
Basic 4, to be exact—you will have fond memories of upgrading your controls
from one control model to another: from VBX to OCX. When Visual Basic pole-
vaulted to 32 bits, VBX—short for Visual Basic extension—controls didn’t make
it over the bar and were left behind. Visual Basic 4 32-Bit Edition offered
OCX—short for OLE control extension—replacements for most of the VBX con-
trols delivered with Visual Basic 4 16-Bit Edition. In order to move your Visual
Basic application to 32 bits, you were forced to upgrade your VBX controls to
OCX controls. Visual Basic 4 provided a feature that would automatically
replace the VBX controls in your project with equivalent OCX controls—com-
monly referred to as ActiveX controls today.

Visual Basic .NET offers a new control model called Windows Forms con-
trols. Although there are many Windows Forms controls that are equivalent to
the ActiveX controls you find in Visual Basic 6, you are not forced to replace all
of your ActiveX controls with Windows Forms equivalents; Visual Basic .NET
supports ActiveX controls as is. In fact, as we discussed in Chapter 13, the
Upgrade Wizard—except in limited situations—does not replace your ActiveX
controls with equivalent Windows Forms controls, even when equivalent con-
trols exist.

This chapter discusses how you can manually replace your ActiveX con-
trols with equivalent Windows Forms controls. In addition, it discusses the ben-
efits of making this transition.

C1961587x.fm Page 403 Friday, November 16, 2001 9:02 AM

404 Part IV Techniques for Adding Value

Benefits of Upgrading Controls
Upgrading from ActiveX controls to Windows Forms controls has certain bene-
fits. As you’ll see in this section, these benefits include 100 percent Microsoft
.NET compatibility, improved versioning, and simpler deployment.

100 Percent .NET Compatibility
Windows Forms controls have an inherent advantage over ActiveX controls in
that they are native to the .NET environment, and thus they are more tightly
integrated into that environment. For example, a Windows Forms control can
support custom property editors—such as a TreeView nodes collection editor—
for use with the Property Browser.

Because ActiveX controls are based on COM and are not native to the
.NET environment, you may encounter some issues with them. For example,
custom property editors are not available for ActiveX controls. An ActiveX con-
trol may depend on functionality provided by the Visual Basic 6 environment,
which does not exist in Windows Forms. Thus, the capabilities of the ActiveX
control may degrade when placed on a Windows form. For example, the
ActiveX SSTab control depends on a specific host interface in order to support
child controls. Windows Forms does not support the host interface SSTab is
looking for, so the control cannot accept child controls when it exists on a Win-
dows form.

Improved Versioning
You can think of ActiveX controls and components as being global across all
applications. When an ActiveX control is registered on your machine, all appli-
cations in which the control is used will share the control from the same loca-
tion. If you download an update for the ActiveX control, all of your applications
automatically use the updated control. This global use of controls can be good
and bad. It’s good if the updated control fixes bugs that affect one or more of
your applications, but it’s bad if the updated control introduces new bugs or
incompatibilities that break your applications. Because accepting an update for
an ActiveX control is an all-or-nothing proposition, the potential for doing more
harm than good is high. The updated control might benefit some applications
while breaking others.

Applications that are built with Windows Forms controls do not risk being
broken when you download an update for a control. The reason for this is that
Windows Forms controls are local to each application, meaning that each appli-
cation is bound to a particular version of the control. If an updated control
becomes available on a system, the application does not automatically pick it

C1961587x.fm Page 404 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 405

up. Instead, it continues to use the version of the control that it was originally
built against. If you want the application to pick up the latest version of the
control automatically, you can change the policy for the application to cause it
to do so. You can do this on an application-by-application basis to ensure that
applications that will benefit from the updated control will use it, whereas ones
that won’t benefit or that risk being broken continue to use the version of the
control known to work with the application.

This change means that if you have an application based purely on Win-
dows Forms controls that you have built, tested, and deployed, you can count
on the application to run on a machine without disruption. No future control
updates installed on the machine can affect it. The application will continue to
run with the controls that it was tested against.

Simpler Deployment
When you deploy an application based entirely on Windows Forms controls
and .NET components, you will find that fewer files are needed. If your appli-
cation contains ActiveX controls, more files must be deployed, since an extra
DLL is generated for each ActiveX control. The extra DLL is the COM interop
assembly needed to facilitate the communication between Windows Forms and
the ActiveX control.

If you are using Windows Forms controls that are equivalent to the
ActiveX controls provided by Visual Basic 6 in your application—such as Rich-
Text, ProgressBar, StatusBar, Toolbar, TreeView, and ListView—the controls are
provided as part of the Windows Forms assembly. No additional DLLs are
required when you use these controls. If you are using controls provided by an
outside vendor, you can deploy the control by copying the control assembly
(DLL) to your application directory—the directory where your EXE file lives. No
registration of the Windows Forms control is required.

Process of Replacing Controls
Because the Visual Basic .NET Upgrade Wizard does not automatically replace
your ActiveX controls with Windows Forms equivalents, the process of replac-
ing the ActiveX controls in your upgraded project with equivalent controls pro-
vided in the Windows Forms package is a manual one. This process involves
the following general steps:

1. Copy the design-time property settings for the ActiveX control.

2. Delete the ActiveX control from the form.

3. Place the equivalent Windows Forms control on the form.

C1961587x.fm Page 405 Friday, November 16, 2001 9:02 AM

406 Part IV Techniques for Adding Value

4. Rename the Windows Forms control to match the name of the
ActiveX control.

5. Paste the design-time settings for the control.

6. Fix up the design-time settings.

7. Resolve errors in the code.

8. Remove the ActiveX control library reference.

The example in this section demonstrates each of these steps in turn.

Manually Upgrading a Control
Let’s take a look at a simple example of replacing the ActiveX ProgressBar con-
trol with the Windows Forms ProgressBar control. First you need to start with a
Visual Basic 6 application that uses the ProgressBar control.

The companion CD includes a sample Visual Basic 6 application called
PBar that serves as the basis for demonstrating how to manually upgrade an
ActiveX control to its Windows Form equivalent control. Specifically, it demon-
strates how to manually upgrade the ActiveX ProgressBar control to the Win-
dows Forms ProgressBar control. The application consists of a form containing
a ProgressBar ActiveX control and a command button. The command button
click event (Command1_Click) contains the following code, which we’ll use to
demonstrate how to upgrade code associated with an ActiveX control:

 Dim i As Integer
 Dim StartTime As Single

 For i = ProgressBar1.Min To ProgressBar1.Max

 StartTime = Timer
 Do While Timer - StartTime < 0.01
 Loop

 ProgressBar1.Value = i
 ProgressBar1.Refresh

 Next

The sample application also includes the following ProgressBar Click
event for the purpose of demonstrating how to upgrade an event associated
with an ActiveX control:

 Private Sub ProgressBar1_Click()
 MsgBox “You clicked my progress bar!"
 End Sub

C1961587x.fm Page 406 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 407

First load the Visual Basic 6 sample PBar application and try it out. Then
choose Start from the Run menu, and click the Show Progress button. You
should see the progress automatically increment from minimum to maximum.
Figure 19-1 shows an example of the application running.

F19km01

Figure 19-1 Visual Basic 6 ProgressBar application.

Now you’ll upgrade the application to Visual Basic .NET. To do this, copy
the PBar project from the companion CD to your hard drive, run Visual Basic
.NET and open the project file for the Visual Basic 6 application—PBar.vbp. The
Upgrade Wizard appears. Step through each of the wizard’s pages, selecting the
default options. The upgraded application will be loaded in Visual Basic .NET.
Test it by choosing Start from the Debug menu and clicking the Show Progress
button. The application should run as it did in Visual Basic 6.

In the next section, we will replace the ProgressBar ActiveX control, fol-
lowing the steps outlined earlier.

Copy the Design-Time Property Settings for the ActiveX Control
Design-time settings are stored in two places: in the upgraded form file and in
the original Visual Basic 6 form file. The upgraded form file contains the
extended design-time settings for the control. These are the settings—common
to all controls on the form—that define attributes such as the control’s name, its
size and position on the form, and its tab order. The Visual Basic 6 form file
contains custom property settings for the form. In the case of the ProgressBar,
these settings include the Max and Min property settings.

Copy the extended property settings Let’s start by copying the upgraded
extended property settings found in the upgraded form file. To see these prop-
erty settings, view the code for the Visual Basic .NET form file and expand the
“Windows Form Designer generated code” region. The property settings for the
ProgessBar control are located in the InitializeComponent subroutine as follows:

Me.ProgressBar1.Location = New System.Drawing.Point(8, 64)
Me.ProgressBar1.Name = “ProgressBar1”

(continued)

C1961587x.fm Page 407 Friday, November 16, 2001 9:02 AM

408 Part IV Techniques for Adding Value

Me.ProgressBar1.OcxState = _
 CType(resources.GetObject(“ProgressBar1.OcxState”), _
 System.Windows.Forms.AxHost.State)
Me.ProgressBar1.TabIndex = 0
Me.ProgressBar1.Size = New System.Drawing.Size(297, 57)

Select all property settings and copy the code to the Clipboard. Run Note-
pad and paste the code into it. Notepad will serve as a temporary holding place
for this code. Delete the line containing the OcxState setting. OcxState repre-
sents the internal, saved state of the ActiveX control and cannot be applied to
the ProgressBar Windows Forms control. It is easier to get the OcxState infor-
mation from the original Visual Basic 6 form file, as we will demonstrate in the
next section.

Copy the control-specific property settings Now let’s copy the property settings
found in the original Visual Basic 6 form file. Run another instance of Notepad,
and open PBar.frm (copied previously from the companion CD). Look for the
following section in the FRM file:

 Begin MSComctlLib.ProgressBar ProgressBar1
 Height = 855
 Left = 120
 TabIndex = 0
 Top = 960
 Width = 4455
 _ExtentX = 7858
 _ExtentY = 1508
 _Version = 393216
 Appearance = 1
 Min = 1
 Max = 200
 End

Let’s copy the ActiveX control-specific property settings. In this case, the
control-specific property settings are Appearance, Min, and Max. Custom prop-
erty settings appear in the FRM file’s property settings block for a control, after
the extended property settings. Extended property settings relate to properties
that Visual Basic 6 maintains on behalf of the ActiveX control. The following list
contains the extended properties supported by Visual Basic 6. You do not need
to copy these settings when replacing the ActiveX control with a Windows
Forms control. The reason is that the equivalent Visual Basic .NET property set-
tings can be found in the InitializeComponent subroutine of the upgraded form
file. It is easier to copy the upgraded extended property settings found in the

C1961587x.fm Page 408 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 409

Visual Basic .NET form file than it is to copy the ones found in the original
Visual Basic 6 FRM file, as we demonstrated in the previous section.

Copy the following settings to the original instance of Notepad containing
the extended property settings. Paste them after the extended property settings.

 Appearance = 1
 Min = 1
 Max = 200

After you’ve copied the settings, Notepad should contain the following:

 Me.ProgressBar1.Location = New System.Drawing.Point(8, 64)
 Me.ProgressBar1.Name = “ProgressBar1”
 Me.ProgressBar1.TabIndex = 0
 Me.ProgressBar1.Size = New System.Drawing.Size(297, 57)
 Appearance = 1
 Min = 1
 Max = 200

Modify the settings in Notepad by converting each of the settings you’ve
just copied to Visual Basic code in the form Me.<controlname>.<property-
name> = <value>. Your code should appear as follows after modification:

 Me.ProgressBar1.Location = New System.Drawing.Point(8, 64)
 Me.ProgressBar1.Name = “ProgressBar1”
 Me.ProgressBar1.TabIndex = 0
 Me.ProgressBar1.Size = New System.Drawing.Size(297, 57)

_ExtentY DataFormat Left

_ExtentX DataMember Name

_Version DataSource TabIndex

Extender properties Default TabStop

Align DragIcon Tag

Cancel DragMode TooltipText

CausesValidation Enabled Top

Container Height Visible

DataBindings HelpContextID WhatsThisHelpID

DataChanged Index Width

DataField

(continued)

C1961587x.fm Page 409 Friday, November 16, 2001 9:02 AM

410 Part IV Techniques for Adding Value

 Me.ProgressBar1.Appearance = 1
 Me.ProgressBar1.Min = 1
 Me.ProgressBar1.Max = 200

Delete the ActiveX Control from the Form
The next step is an easy one. Switch to Design view for the form, and delete the
ProgressBar ActiveX control from the upgraded Visual Basic .NET form, Form1.

Place the Equivalent Windows Forms Control on the Form
Select the Windows Forms ProgressBar control on the Windows Forms tab of
the Toolbox. Place the control on Form1. You don’t need to worry about plac-
ing the control in exactly the same position as the previous control. The posi-
tion and size will be restored later when you copy the code from Notepad.

Rename the Windows Forms Control to Match the Name of the
ActiveX Control
Change the Name property of the control to ProgressBar1 to match the name of
the original ActiveX control.

Paste the Design-Time Settings for the Control
All that monkeying around you did in Notepad will now pay off. Copy the
property settings you created in Notepad to the InitializeComponent subroutine
in Form1, and replace the existing property settings for ProgressBar that you
find. The InitializeComponent subroutine is located within the hidden block
labeled “Windows Form Designer generated code.”

Fix Up the Design-Time Settings
Compiler errors will display for any property settings that the compiler doesn’t
recognize. For example, a compiler error will occur on the following three lines
of code. It occurs because the property cannot be found in the Windows Forms
ProgressBar control. You will need to either eliminate property settings for
properties that are no longer supported or change the property name to the
equivalent property found in the Windows Forms control.

 Me.ProgressBar1.Appearance = 1
 Me.ProgressBar1.Min = 1
 Me.ProgressBar1.Max = 200

Using IntelliSense, you can quickly get a feel for what properties the Win-
dows Forms ProgressBar control does and doesn’t support. To see a list of all
properties associated with the ProgressBar control, type the name of the control

C1961587x.fm Page 410 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 411

in the code window, followed by a period. A drop-down list of the available
properties and methods displays. You will find that the Appearance property is
no longer supported, Min maps to Minimize, and Max maps to Maximize.
Making the appropriate changes causes the compiler errors related to design-
time settings to disappear. The resulting InitializeComponent code is as follows:

 Me.ProgressBar1.Minimize = 1
 Me.ProgressBar1.Maximize = 200

Resolve Errors in the Code
Compiler errors are displayed for any code in which a property cannot be
resolved. In the Command1_Click event, you will see three compiler errors
related to the use of the properties and methods Min, Max, and CtlRefresh. In
line with the changes you made to the design-time properties, change Min to
Minimum and Max to Maximum. The CtlRefresh method for the ActiveX Pro-
gressBar control corresponds to the Refresh method for the Windows Forms
ProgressBar control. The ActiveX control property is renamed CtlRefresh in
Windows Forms to avoid conflicts with the extended Refresh property applied
to all controls. The Windows Forms ProgressBar control contains a single
method called Refresh. Rename CtlRefresh to Refresh.

In addition to fixing up properties and methods, you need to update your
event code. Specifically, when you delete the ActiveX control, the events for the
control become disassociated and are converted to ordinary subroutines. You
need to reassociate the events with the Windows Forms control. In our exam-
ple, code is written in response to the ProgressBar Click event. When the Pro-
gressBar ActiveX control is deleted, the following subroutine exists but is not
associated with the Windows Forms ProgressBar control:

Private Sub ProgressBar1_ClickEvent(_
 ByVal eventSender As System.Object, _
 ByVal eventArgs As System.EventArgs)
 MsgBox(“You clicked my progress bar!”)
End Sub

The easiest way to reassociate the Click event with the ProgressBar control
is to act as though you were writing new code for the Click event. Select the
Click event for the ProgressBar from the Event drop-down list to create the
ProgressBar1_Click event handler subroutine, as follows:

Private Sub ProgressBar1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ProgressBar1.Click
End Sub

C1961587x.fm Page 411 Friday, November 16, 2001 9:02 AM

412 Part IV Techniques for Adding Value

Cut and paste the body of the ProgressBar1_ClickEvent subroutine to the
ProgressBar1_Click event subroutine, and then delete the original
ProgressBar1_Click event subroutine, leaving the following code:

Private Sub ProgressBar1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ProgressBar1.Click
 MsgBox(“You clicked my progress bar!”)
End Sub

Re-creating the event subroutines in this manner causes the correct event
parameters to be created in turn. You then need to resolve any compiler errors
that result. For example, you may have code that references a method of an
ActiveX control’s event argument object, but the method may not exist or may
have a different name in the event argument object of the corresponding Win-
dows Forms control.

Remove the ActiveX Control Library Reference
The final step is optional and should be performed only if you have replaced all
ActiveX controls for a given library with Windows Forms equivalents. In the
case of the example demonstrated here, all controls contained in the Windows
common controls library—the ProgressBar control—have been replaced with
Windows Forms equivalents. Therefore, you can safely remove the reference to
the ActiveX control library. To remove the reference, expand the References list
for the project in the Solution Explorer. You will need to remove two references
for each ActiveX control. Right-click AxMSComctlLib, and choose Remove from
the shortcut menu. Then right-click MSComctlLib and choose Remove. Remov-
ing an ActiveX control library reference in this manner means that fewer files
need to be deployed with the application.

With these changes in place, all compiler errors should be resolved. Run
the application and test it out. It should behave exactly like the original Visual
Basic 6 application.

Mappings for Visual Basic 6 ActiveX Controls
Visual Basic 6 provides a number of ActiveX controls, such as the RichText,
Masked Edit, and Common Dialog controls, as well as the Windows common
controls—ProgressBar, Slider, StatusBar, Toolbar, TreeView, and so on. Table
19-1 lists the Windows Forms controls that make suitable replacements for
Visual Basic 6 ActiveX controls.

C1961587x.fm Page 412 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 413

ActiveX Controls vs. Windows Forms Controls
For the most part, the Windows Forms controls listed in Table 19-1 offer the
same functionality as their ActiveX control counterparts. One of the main differ-
ences—as demonstrated by the ProgressBar upgrade example given earlier—is
that features of a Windows Forms control are not exposed in the same way. For
example, the same type of properties may exist but have different names. In the
case of the ProgressBar control, the Windows Forms control’s Maximum and
Minimum properties equate to the Max and Min properties of the ActiveX con-
trol. For properties such as these, a simple one-to-one mapping exists, and it is

Table 19-1 Mapping of Visual Basic 6 ActiveX Controls to
Visual Basic .NET Windows Forms Controls

Visual Basic 6
ActiveX Control

ActiveX
Control Library

Visual Basic .NET
Windows Forms Control

ADO Data control* MSAdodc.ocx ADODC control provided by the
Visual Basic compatibility library

Common Dialog ComDlg32.ocx OpenFileDialog, SaveFileDialog, Font-
Dialog, ColorDialog, and PrintDialog

DataGrid MSDatGrd.ocx No equivalent control; Windows
Forms DataGrid does not bind to
ADO data, just to ADO.NET data

Rich TextBox RichTx32.ocx RichTextBox

SSTab*

* Denotes an ActiveX control that is automatically upgraded to the equivalent Windows Forms control.

TabCtl32.ocx TabControl

ListView MSComCtl.ocx ListView

TreeView MSComCtl.ocx TreeView

ImageList MSComCtl.ocx ImageList

TabStrip MSComCtl.ocx TabControl

Toolbar MSComCtl.ocx ToolBar

StatusBar MSComCtl.ocx StatusBar

ProgressBar MSComCtl.ocx ProgressBar

Slider MSComCtl.ocx TrackBar

UpDown MSComCt2.ocx NumericUpDown

MonthView MSComCt2.ocx MonthCalendar

DTPicker MSComCt2.ocx DateTimePicker

C1961587x.fm Page 413 Friday, November 16, 2001 9:02 AM

414 Part IV Techniques for Adding Value

easy to find the equivalent property, method, or event when replacing an
ActiveX control with a Windows Forms control.

We refer to controls that do not contain any subobjects, such as a collec-
tion of items or nodes, as having a flat object model. This means that all the
properties and methods for the control exist directly on the control. You need
to use only one dot (or period) to access any one of the properties or methods
when writing code. Replacing a flat-model ActiveX control—such as a Progress-
Bar or Slider—with its Windows Forms equivalent is a relatively straightforward
task. With both controls—the ActiveX version and the Windows Forms ver-
sion—on a form side by side, you can use IntelliSense or the Object Browser to
take a quick inventory of each control and compare how you map the proper-
ties, methods, and events from one control to the other.

We refer to controls that have properties that return objects such as collec-
tions or other complex structures as having a deep or rich object model. Con-
trols such as TreeView and ListView fall into this category. The TreeView
control, for example, has a Nodes property representing a collection of Node
objects. The Nodes collection is itself an object having its own set of properties
and methods. One of these methods—the Item method—returns a Node object
that in turn has its own set of properties and methods. You can navigate from
the control to a child object by using a dot (or period) to separate each succes-
sive object in the object hierarchy.

Replacing a rich-model ActiveX control with the equivalent Windows
Forms control presents a unique challenge. The challenge stems from differ-
ences in how the object models allow you to interact with subobjects of ActiveX
and Windows Forms controls. ActiveX controls take a more property-centered
approach to adding or navigating a control’s subobjects. Windows Forms con-
trols take a more object-oriented approach. This difference affects the way you
write code to add or find a subobject for a control. The challenge is to figure
out the code that you need to write to achieve the same results in a Windows
Forms control as are achieved in its ActiveX counterpart.

Let’s take a look at adding child nodes to a TreeView control as an exam-
ple. This example highlights the general differences between ActiveX and Win-
dows Forms controls having rich object hierarchies, such as the ListView,
ToolBar, StatusBar, and tabbed dialog controls.

The following is an example of code written to add a single parent and
child node to a TreeView control. The code is associated with a Visual Basic 6
form containing a TreeView control and an ImageList control named TreeView1
and ImageList1, respectively. Assume that the ImageList control contains at least
one image added at design time.

Set TreeView1.ImageList = ImageList1
TreeView1.Nodes.Add , , “Parent", “Parent node", 1
TreeView1.Nodes.Add 1, tvwChild, “Child", “Child node", 1

C1961587x.fm Page 414 Friday, November 16, 2001 9:02 AM

Chapter 19 Replacing ActiveX Controls with Windows Forms Controls 415

The ActiveX controls provided with Visual Basic 6 do not allow you to cre-
ate a subobject directly. For example, you cannot dimension a variable of type
Node using the New qualifier. Instead, you create a node indirectly by calling
the Add method on the Nodes collection and passing in a number of arguments
representing property settings for the newly created node. Because this type of
object model directs you to specify the properties of the Node object rather than
the Node object itself, it is a property-centered model for creating nodes.

To achieve the same result using the Windows Forms TreeView control,
you must think in a more object-oriented fashion. In the object model used in
Windows Forms, it is preferable to create Node objects and then add them to
the Nodes collection. We should note that the Windows Forms TreeView con-
trol, and other Windows Forms controls for that matter, do allow you to create
collection member objects in a property-centered way. For example, you can
create a Node object by calling the Add method on the Nodes collection and
passing the Text value for the node. However, the Add method on collections
generally does not support a large number of arguments—unlike collections
related to ActiveX controls, where the arguments represent properties for the
new item. You must get back into the object-oriented mindset and set the prop-
erty values on the object after it is created.

The following code is the equivalent of the previous example; it adds a
single parent and child node to a Windows Forms TreeView control:

Dim nodeChild As TreeNode = New TreeNode(“Child node", 0, 0)
Dim childNodes() As TreeNode = {nodeChild}
Dim nodeParent As TreeNode = New TreeNode(“Parent node", _
 0, 0, childNodes)

TreeView1.ImageList = ImageList1
TreeView1.Nodes.Add(nodeParent)

Compared to the ActiveX TreeView control, the Windows Forms TreeView
control requires you to take a more structured, bottom-up approach to creating
the nodes within the TreeView. In the Windows Forms version of TreeView,
you cannot add individual nodes relative to other nodes in an ad hoc fashion.
Instead, you must add the child nodes for a parent node at the time you add the
parent node. You do this by passing in an array of TreeNode child objects as an
argument to the TreeNode constructor for the parent node. As this code demon-
strates, you add nodes in a bottom-up manner by first allocating the child nodes
and then creating the parent node and passing it an array of its children. The
code has a more object-oriented feel to it, as you construct the Node objects and
then pass the objects as arguments to other methods—such as Add—to be
added to the Nodes collection.

C1961587x.fm Page 415 Friday, November 16, 2001 9:02 AM

416 Part IV Techniques for Adding Value

We intentionally used the ImageList control in this example to point out
another difference between ActiveX controls and Windows Forms controls that
use the rich object model. The ActiveX controls provided in Visual Basic 6
assume the value of 1 as the index for the first item in a collection. Windows
Forms controls, on the other hand, always assume an index value of 0 for all
collections. That is why the code for the ActiveX TreeView control passes a
value of 1 as the index for the first image in the ImageList ListImages collection,
whereas the Windows Forms code example uses 0.

Conclusion

Although the Upgrade Wizard makes life easier by having your upgraded Visual
Basic 6 applications use the same ActiveX controls, keeping the ActiveX con-
trols means that you do not reap any of the benefits of an application that is
based 100 percent on .NET controls and components. Unfortunately, the
Upgrade Wizard does not give you the choice of upgrading the ActiveX controls
in your project to the equivalent Windows Forms controls.

This chapter has demonstrated how you can manually replace ActiveX
controls with equivalent Windows Forms controls after your project has been
upgraded. If the ActiveX control you need to replace has a flat object model, it
is a relatively straightforward process to map its properties, methods, and
events to those of the equivalent Windows Forms control. If, on the other hand,
you want to replace an ActiveX control that has a rich object model with the
equivalent Windows Forms control, you will need to restructure your code so
that it fits the object model defined by the Windows Forms control.

C1961587x.fm Page 416 Friday, November 16, 2001 9:02 AM

