
MICROSOFT® VISUAL STUDIO 2010

Overview

Every year the industry develops new technologies and new trends. With Visual Studio 2010, Microsoft delivers tooling and
framework support for the latest innovations in application architecture, development and deployment. Two of the major advances
in development trends occurring soon are the extension of development to the cloud and the ability to easily construct applications
that use the latest multi-core hardware in parallel.

Cloud Development
On October 27th 2008 we announced Windows® Azure™
the comprehensive cloud environment from Microsoft. With
Windows® Azure™ Tools for Microsoft® Visual Studio®
you can build, debug and deploy services and applications
for Windows Azure.

Windows Azure offers a scalable hosting environment for
the Internet, built on geographically distributed data centers.
It handles load balancing and resource management, and
automatically manages the life cycle of a service based on
requirements that you establish. With the service, you include
code specifications for the service topology, the number of
instances to deploy, and any configuration settings. Windows®
Azure™ deploys the service and manages upgrades and failures
to maintain availability.

The Windows Azure environment is designed as a utility
computing model, so that you pay only for the resources
used by your service, while benefitting from the reliability and
performance provided by the hosting environment.

Windows Azure Tools provide the means to create services
and applications within the framework of Visual Studio. That
includes a project model specifically for Windows Azure, as
well as the debugging capabilities of Visual Studio. With Visual
Studio, you can build a package containing your service, and
use Windows Azure Tools to deploy the package to Windows
Azure through the Windows Live Developer Portal.

Parallel Development
As demands for application performance increased, customers
have traditionally solved the problem by simply increasing the
underlying power of the hardware that the application is running
on. Over the last several years developers have seen the CPUs
that their applications run on start to include 2, 4 or more cores.
While the power of the hardware has increased, the transition
to a multi-core environment has impacted the applications that
developers write. The majority of applications will not be able to
automatically take advantage of this multi-core hardware change.

Developers will need to modify the way they write applications
and the architectures they use for these applications.

Creating parallel capable code using current technologies is
unfortunately not trivial. Multi-thread programming introduces
not only application architecture challenges to complexity and
robustness but also exposes the tooling developers use as being
optimized for single-threaded development.

Microsoft is making a major commitment to make parallel
development accessible to a wide range of developers, whether
they are using native code or the .NET Framework. With Visual
Studio 2010 we are delivering:

•	 Visual Studio IDE support for Parallel development

•	 Native C++ libraries and compiler support
for Parallel applications

The .NET Framework 4.0 also provides the core framework
support to build parallel applications through technologies such
as P-LIINQ and parallel language semantics and framework
components. Visual Studio 2010 provides integrated parallel
development support. In Visual Studio 2010 the debugger is
aware of the parallel nature of code and can present the state of
the application execution during debugging across the different
parallel execution units. The debugger also has custom displays
for parallel code such as task & thread windows and a “multi” or
“cactus” stack view window that graphically shows the execution
path of the individual tasks.

Being able to develop and debug your application doesn’t
mean that it takes advantage of all the available power. To
help developers do this, Visual Studio 2010 also includes
a parallel capable performance analyzer that enables you
to extensively instrument you code to visually see the
concurrency issues that are in your applications. Combine
this with the features of the Visual Studio IDE, and developers
have a highly productive, visual environment for building the
best parallel capable applications available.

Enabling emerging trends

Visual studio 2010 delivers the following key advances:

Ever since the first release of Visual Studio, Microsoft has set the bar for developer productivity and flexibility. Visual Studio
2010 continues to deliver on the core developer experience by significantly improving upon it for roles involved with the
software development process.

Understanding existing, and writing new, code
As the complexity of applications grows so does the
challenge of understanding the code that you’re working
on. With Visual Studio 2010 the IDE provides integrated
support for understanding what is happening in the code
section that you’re viewing.

The editor in Visual Studio 2010 has been rebuilt using the
Windows Presentation Foundation (WPF) technology. WPF
enables the editor to richly present information about the
code in the context of presenting the actual source. This ability
enables features such as the “Document Map Margin” to render
a graphical view of the source file including information such as
layout, code coverage, symbol highlights and comments.

This editor ability also enables 3rd parties to create add-ins
that show custom views of the underlying source file such as
taking the XML Doc Comments and converting them to a rich
presentation formation with fonts, colors and highlighting. It
enables Visual Studio to display different layers on the editor
so an add-in could represent a code-based formula in its
traditional mathematical representation.

While the representation of the underlying source code is
important so is the ability to understand what the code is
actually doing. In Visual Studio 2010, features such as “Inline
Call Hierarchy” - a feature which enables a developer to select
an entity or method and see how the code calls inwards or
outwards or passes the entity in and out of the code section
- provide developers with the ability to understand the
interaction of the code without needing to juggle multiple
files. Other features such as “Highlight References”, which
provide a visual representation of the references to a selected
entity in the code without needing to use the “Find In Files”
feature, or “Quick Searching”, which delivers a ‘word wheel’
based search tool integrated with “Highlight References”,
enable developers to maintain the context of where they are
but gain the understanding of other locations in the code.

Additionally the editor integrates with the project system to
simplify the pattern of Test Driver Development (TDD). With
TDD, developers build the tests that will exercise their application
code before they actually write that code. In Visual Studio
2010 developers can create tests and the editor will provide
functionality to automatically implement the tested classes and
code in the file the developer chooses. This enables developers to
quickly create the class they are consuming without needing to
break out of the test development flow to declare the tested class.

iNSPIRING DEVELOPER DELIGHT

Quick Search Editor highlights references

TEST DRIVEN DEVELOPMENT– CONSUME FIRST, DECLARE SECOND

Web Development
With ASP.NET, Microsoft delivered a ground breaking
productive development model that made web applications
accessible to the traditional application developer. Over the last
few releases, not only has the tooling in Visual Studio improved
to provide developers with a more web standard set of tools,
but leading features like CSS property grids and split view
design surfaces have been provided.

However the industry evolves, and so do the tool requirements
and patterns that developers use. Web developers are leading
the push to split content from data and to use a Test Driven
Development (TDD) methodology. In Visual Studio 2010, we
deliver the next generation of ASP.NET web tools that make it
easy for developers to use TDD to build Model-View-Controller
(MVC) based web sites.

Many ASP.NET Developers have already experienced the
preview release of ASP.NET MVC. All the features in that release
are included in Visual Studio 2010. Ranging from Project
Templates and Solutions that natively describe an ASP.NET MVC
website, to automatic generation of test projects in the web
solutions, to wizard support for common tasks like creating
views from controllers and snippet support for HTML Markup,
the Visual Studio IDE delivers all the support required.

In Visual Studio 2008, we invested heavily in supporting
JavaScript in the Visual Studio IDE and debugger. In Visual
Studio 2010, we’re continuing that investment with a higher
performance, and standards - compliant JavaScript IntelliSense
engine. These investments enabled Microsoft to announce their
involvement with the JQuery group, and Visual Studio 2010 will
be the first version of Visual Studio to ship JQuery as a native
part of the ASP.NET solution set.

Deployment of websites has been a challenge for developers for
many years. Visual Studio 2010 has full IDE support for a simplified
deployment process for ASP.NET websites. Called “One Click
Deployment”, this process and IDE support provides a wizard,
dialogs and design surfaces that make it simple for developers to
identify the components of a website that need to be deployed,
and handle the process of moving them from the development
machine to the web server, whether that is an internal server for
the organization or a server hosted by a 3rd party site.

“One Click Deployment” also solves the problem of changing
the settings of a website from the development machines to the
final deployed site. Many times developers have sent websites
to deployment with debug tracing turned on or the database

connections set to the development servers. With web.config
transformations, “One Click Deployment” enables a developer
to create a custom set of transforms that will be applied to
the website every time it is deployed and ensures that the
appropriate settings are in the configuration files.

Additionally, Microsoft has just released the Silverlight 2
runtime and tooling for Visual Studio 2008. In Visual Studio
2010, Silverlight is fully supported for developers wishing to
build Silverlight content. Having design surfaces for Silverlight
enables developers to either author original content or to
modify content as part of the designer-developer workflow
that Visual Studio enabled in the last release. Visual Studio
2010 also provides full debugging support for Silverlight and
provides project system integration for developers consuming
this content in various applications types. For example, web
developers building ASP.NET websites will be able to include
existing Silverlight content, and Visual Studio will create the
appropriate test pages and content includes to enable them to
focus debugging on the Silverlight content in the context of the
overall website solution.

C++ Development
Visual Studio 2010 marks a major renovation of our C++ IDE
so that it not only supports emerging trends like parallel
computing, cloud and web services, but also provides a
first-class C++ development experience through an IDE that
scales to the large size of code bases that are typical of C++
sources. We’re also adding a significant focus on building great
experiences for navigating and understanding complex C++
source bases to enable developers to figure out the best places
to make source changes in their complex systems.

In Visual Studio 2010, the C++ project system has been converted
to MSBuild based system that enables developers to take
their existing C++ solutions that are currently sectioned to be
manageable and bring them into a single solution that provides
full IDE support for all the assets in the solution. With a full
compiler backing IntelliSense, and a true database-based symbol
system, this enables developers to work with large solutions,
thousands of files, and up to 4GB of symbol information.

Visual Studio 2010 provides a C++ IDE experience that includes
the return of the MFC Class Wizard, the ability to view large
source files through Source Outline, integrated quick searching
to find information without the confusion of the current “Find
In Files” method and an easily extensible IDE model through
the new Managed Extensibility Framework (MEF).

Microsoft continues to invest in the market-leading operating system, productivity application and server platforms to deliver
increased customer value in these offerings. With Visual Studio 2010, customers will have the tooling support needed to create
amazing solutions around these technologies.

Windows 7 Development
In Visual Studio 2010, we’ve invested heavily in C++ to make
developing native Windows applications easier and more
productive. We are adding tools to assist developers in
building new Windows 7 applications and in making existing
native applications take advantage of new Windows features.
We’re including full library and header support for Windows 7,
significant updates to MFC to support Windows 7 UI elements
like the ribbon, live icons, search access and even support for
multi-touch enabled interfaces.

For developers building WPF based applications, Visual Studio
2010 delivers improvements to the WPF design surfaces
with richer graphical editing features, better alignment to
underlying WPF functionality and integrated data binding
from the properties grid and data sources windows.

Office Business Application Development
Visual Studio 2005 delivered the first release of Visual Studio
Tools for Office. Since then, Microsoft Office development
has become an integrated component of Visual Studio, and
as Office moves to deliver a client and server experience, so
too Visual Studio.

In Visual Studio 2010, developers will be able to build Office
client applications that span multiple versions of Office, either
32- or 64-bit, and deliver these as a single deployment package.
The creation of the deployment packages is assisted through the
provision of a deployment design surface that developers can use
to graphically assemble the package that the end-user will install.
Not only is the creation of the package easier by the ability to
leverage “ClickOnce”, CD or Web installs enable developers and
IT Professionals to use the appropriate technology to get these
applications onto the end-user machines.

The task of building the applications themselves has also gotten
easier with the introduction of designer support for building
flexible UI in either WPF or Fluent. With these designers,
developers will be able to customize the Office File Menu, Task
Panes, Outlook Form Regions and the Fluent UI itself (such
as the ribbon view). Additionally, the task of consuming data
in Office applications is made easier through improved data
binding, integration of various Office data sources with LINQ
and the ability to data bind to the Business Data Catalog. Finally
applications will be able to interoperate with the many Office
objects such as lists and action panes, and also participate with
the Office Live Viewer.

riding the next generation platform wave

Learn more
http://www.microsoft.com/visualstudio/2010

Visual Studio Team System 2010 will deliver new capabilities that embrace the needs of the users in the lifecycle –
from architects to developers, from project managers to testers.

Among the great new functionality in Visual
Studio Team System 2010:
• Discover and identify existing code assets and

 architecture with the new Architecture Explorer.

• Design and share multiple diagram types, including use case,

 activity and sequence diagrams.

• Improve testing efforts with tooling for better documentation

 of test scenarios and more thorough collection of test data.

• Identify and run only the tests impacted by a code change

 easily with the new Test Impact View.

• Enhanced version control capabilities including gated

 check-in, branch visualization and build workflow.

Key to a shared understanding of the application is the use

of modeling tools. Modeling has traditionally been done by

professional architects and system designers. Our approach

is to enable both technical and non-technical users to create

and use models to collaborate, and to define business and

system functionality graphically.

Product Overview
The marketplace has begun to mature and accept Application

Lifecycle Management (ALM) as a proven discipline for

creating high-quality applications. However, existing solutions

in the marketplace have not kept pace with the changing

needs of technical users and the expanding inclusion of non-

technical users as part of the lifecycle.

Every customer today faces a similar set of business problems:

• How do we build high quality applications that deliver

 real business value?

• How do we embrace the Application Lifecycle

 Management model effectively?

• How can we ensure that all members of the team – both

 technical and non-technical – are part of the process?

• How can we get the most value from our existing code assets?

• How do we make powerful modeling tools available to

 everyone in the application lifecycle?

The third generation of Visual Studio Team System – Visual

Studio Team System 2010 – will be a robust and streamlined

solution that addresses these needs and concerns.

We are evolving Application Lifecycle Management by:
Building quality into the lifecycle

• Ensuring architectural consistency through the lifecycle

• Eliminating “No-Repro” bugs

• Ensuring smooth build handoffs and high quality builds

• Incorporating performance in the lifecycle

Driving efficiency into the test effort

• QA Team aligned with Business Analysts,

 Architects, and Developers

• Eliminating tedious tasks

• Improving setup and deployment of tests

• Choosing the right tests

Ensuring Complete Testing
• Focused test planning and progress tracking

• Transparently see the quality of requirements and level of testing

• Finding the gaps in testing and fill them

• Ensuring changes are properly tested

Democratizing Application lifecycle management

Microsoft® Visual Studio® Team system 2010

Modeling that Works with Code
For most businesses only 20% of the code being written today
is for new applications; the majority of work is being done on
existing code bases.

When working on existing code, architects and developers have not
necessarily had good enough tools to understand the system, know
what needs to be done to make required updates, or been able to
anticipate the impact of changes made. Often it isn’t until much
later that an unexpected bug is discovered as a result of a change.

Our modeling tools have tight integration into the actual code
of the application. This means that a developer or architect
can use models to explore existing code assets. The new
Architecture Explorer in Visual Studio Team System gives
developers and architects the capability of creating a full

architectural picture of existing code; understanding how they
fit together; understanding how they “work.” This leads to better
information about using, re-using, or discarding existing code.
The Architecture Explorer provides architects and developers
a mechanism for visualizing code assets in a number of ways
including graphs, stacked diagrams and dependency matrices.

The introduction of the Architecture Layer Diagram means that a
developer or architect can use models to enforce constraints on
code as well. The Architecture Layer Diagram can be coupled to
code making it an active diagram that can be used for validation.
For example, when an architect designs a system where the
presentation layer should not talk to the data layer, you want to be
able to enforce that model at check-in. Visual Studio Team System
2010 can do that. These capabilities delivered in VSTS 2010 are
part of the Microsoft’s overall modeling story.

Visual Studio Team System 2010 Feature Highlights

The new Architecture Explorer enables individuals to create a visual representation of existing code assets.

Eliminating “No-Repro” Bugs
For From designing an application through developing code,
finding bugs that can’t be reproduced is a common problem
– the “no-repro” bug. Many factors drive these types of bugs,
and we’ve worked to create tools to help isolate the issue and
enable faster fixes.

One way this is solved in Visual Studio Team System 2010 is with
the use of a tool that can specify the exact state of the build
used by a tester and allow a comparison to the state of the build
used by the developer when trying to reproduce the bug. It is
often the subtle differences between these two that create the
no-repro state, and a new tool within Visual Studio Team System
2010 has been designed to specifically address this.

This tool – the Microsoft Test Runner – is a standalone tool that
a tester uses to guide him through a series of steps to complete
a test case. When the test case is started, the Microsoft Test
Runner takes a snapshot of the system data, including OS version
and Service Pack and other pertinent system data. As the test is
being run, the tester can use the tool to capture images of the
application under test, or even partial or full screen video of the
test being run. If an issue is discovered, the tester can create a
new bug in Team Foundation Server and attach these artifacts.
When attached, the screen capture video is fully indexed with the
test steps as bookmarks, making it easier for the developer to see
what went wrong on the tester’s machine. All of these artifacts
help to eliminate the no-repro scenario, and help build a better
bridge between development and test.

Visual Studio Team System 2010 Feature Highlights

The Microsoft Test Runner gives testers a set of defined validation steps to easily create an actionable bug, including
system information, screen images, and a fully indexed screen capture video.

Identify the Test Impact
As developers make changes to code, it’s critical for them
to effectively test their changes – not only to prove the new
code works, but to ensure there’s no unexpected downstream
effect. Test impact analysis and test prioritization identify
the tests that must be run to validate the code changes. This
helps developers quickly check-in code with confidence by
running only the necessary tests and reduces churn created
by unexpected failures.

The new Test Impact View window enables a developer to view
a list of tests that need to be run as the result of a code change.
The developer can toggle between an Impacted Tests view and a
Code Changes view.

• The Impacted Tests view provides a list of tests that need to be
 run and which code changes are covered by each of the tests.

• The Code Changes view provides a list of code changes and
 which tests must be run in order to validate each of them.

These two views provide an easy way to discover what tests
must be run in order to validate the changes to the code base
without having to run all of the tests. This ensures that all
changes are tested effectively.

The Test Impact View identifies all the tests that should be run to
validate a code change.

Visual Studio Team System 2010 Feature Highlights

