
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JUNE 2018 VOL 33 NO 6

C# Tuples...............................15

 0618msdn_CoverTip_8x10.75.indd 1 5/3/18 2:24 PM

http://www.devexpress.com/try

 0318msdn_CoverTip_8x10.75.indd 2 3/13/18 11:38 AM

http://www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JUNE 2018 VOL 33 NO 6

Tuple Trouble: Why C# Tuples Get
to Break the Guidelines
Mark Michaelis.. 15

Introducing Azure Blockchain Workbench
Stefano Tempesta.. 22

Monitoring Databricks Jobs
with Application Insights
Joseph Fultz.. 30

Effective Async with Coroutines
and C++/WinRT
Kenny Kerr.. 38

COLUMNS
DATA POINTS
Replacing a Bulky API
with Azure Functions
Julie Lerman, page 6

THE WORKING
PROGRAMMER
How To Be MEAN:
Reactive Programming
Ted Neward, page 12

TEST RUN
Neural Regression Using CNTK
James McCaffrey, page 48

DON’T GET ME STARTED
Ol’ Man River
David Platt, page 56

C# Tuples...............................15

0618msdn_C1_v1.indd 1 5/7/18 11:19 AM

Faster Paths to
Amazing Experiences

Get started today with a free trial:
Infragistics.com/Ultimate

Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts &
other UI controls, plus productivity tools for building web, desktop and mobile apps.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel & Spreadsheet Solution
for .NET & JavaScript

UI controls designed to meet the demands of the toughest
fi nacial & capital market apps

Infragistics Ultimate 18.1
New Release

Untitled-4 2 4/4/18 2:43 PM

http://www.Infragistics.com/Ultimate

Faster Paths to
Amazing Experiences

Get started today with a free trial:
Infragistics.com/Ultimate

Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts &
other UI controls, plus productivity tools for building web, desktop and mobile apps.

Angular | JavaScript / HTML5 | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel & Spreadsheet Solution
for .NET & JavaScript

UI controls designed to meet the demands of the toughest
fi nacial & capital market apps

Infragistics Ultimate 18.1
New Release

Untitled-4 3 4/4/18 2:43 PM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
Web: 1105Reprints.com

LIST RENTAL This publication’s subscriber list is not
available for rental. However, other lists from 1105
Media, Inc. can be rented.
For more information, please contact our list manager:
Jane Long, Merit Direct
Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Mallory Bastionell
Senior Manager, Events Danielle Potts
Senior Marketing Coordinator, Events Michelle Cheng

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

JUNE 2018 VOLUME 33 NUMBER 6

magazine

0618msdn_Masthead_v2_2.indd 2 5/7/18 11:29 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
mailto:jlong@meritdirect.com
http://www.1105Reprints.com
http://www.meritdirect.com/1105
https://www.1105media.com

Untitled-4 1 4/26/18 3:32 PM

http://www.leadtools.com

msdn magazine4

In my Editor’s Note column, “Groundhog Day,” in the February
issue (msdn.com/magazine/mt829266), I honored the contributions of
weather prognosticating rodents everywhere, with a collection of
industry predictions from MSDN Magazine columnists. Those
predictions ranged from the serious (Ted Neward expecting more
“side-channel” attacks along the lines of Spectre and Meltdown), to
the silly (David Platt waiting for a university to replace its science
department with StackOverflow).

A common theme did emerge, though, and that was around
artificial intelligence (AI) and its impact on software development.
Frank La Vigne, author of the Artificially Intelligent column, said
that within two years AI would become a “mandatory skill set”
for mainstream developers, much the way Web and later mobile
development have. “It sounds far-fetched,” La Vigne told me at
the time, “but then so did the idea of Web development being a
mainstream enterprise development platform during the height
of the client/server era.”

Test Run author James McCaffrey concurred, predicting that
sophisticated tooling would drive adoption and spur enterprise
developers to add prediction code to their responsibilities, much
the way they took on design, implementation and test.

The Microsoft Build 2018 Conference, held May 7-10 in Seattle,
has proven both authors right. At the show, Microsoft Chief
Executive Officer Satya Nadella and Executive Vice President Scott
Guthrie articulated the company’s expanding AI and machine

learning (ML) strategy, debuting powerful new tools and platform
capabilities that span the gamut from the cloud to Internet of
Things (IoT) devices at the edge. The new technologies, Microsoft
noted, are designed “to help every developer be an AI developer.”

If you’ve been too busy to pay it much attention, now might be a
good time to carve out some time to put a little AI into your life, and
to get familiar with tools like Visual Studio Tools for AI, Microsoft
Cognitive Services and Azure Machine Learning Workbench.

There’s good reason to make the investment. Microsoft is
working to converge and comingle its AI and cloud efforts, and
opening some amazing application scenarios in the process. For
instance, Microsoft is enabling the family of Cognitive Services
APIs (starting with Custom Vision) for the Azure IoT Edge runtime,
making it possible for an edge device, like a camera-equipped drone
and field truck, to execute intelligent decision making without
cloud connectivity. Efforts like Project Kinect for Azure, the Proj-
ect Brainwave neural net processing architecture, and improved
Cognitive Services like Custom Vision and unified Speech Service
all point to Microsoft’s strategic effort to improve, extend and
enrich the AI development landscape.

We’re also seeing Microsoft apply AI directly to the developer
experience. At Build, the company previewed Visual Studio
IntelliCode, which leverages AI to provide intelligent suggestions
that can boost code quality and productivity.

Frank La Vigne says Microsoft’s efforts in the AI space play
directly to what it does best: “Whether it was bringing the GUI
to the masses in the ’80s or developer tools to coders in the ’90s,
Microsoft has a long history of democratizing technology. In fact,
I’d argue that is the company’s core strength.”

La Vigne says this year’s Build event represents an important
moment for Microsoft, as it works to introduce rank-and-file
developers to a new frontier in development.

“I see the world changing. In fact, it already has—it’s just that not
everyone in the mainstream has realized it yet,” La Vigne, says. “What
I’m interested to see is the reaction of mainstream enterprise devel-
opers to the announcements
and general tone at Build.”

Our Intelligent Future

MICHAEL DESMONDEditor’s Note

© 2018 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Microsoft is working to
converge and comingle its AI

and cloud efforts, and opening
some amazing application
scenarios in the process.

0618msdn_DesmondEdNote_v1_4.indd 4 5/7/18 11:20 AM

mailto:mmeditor@microsoft.com
http://msdn.com/magazine/mt829266
http://msdn.microsoft.com/magazine

Amyuni DOCX Converter
for Windows

www.docxconverter.com

Convert any document, including PDF documents, into DOCX format.
Enable editing of documents using Microsoft Word or other Office products.

Powered by Amyuni Technologies:
Developers of the Amyuni PDF Converter and Amyuni PDF Creator products integrated into

hundreds of applications and installed on millions of desktops and servers worldwide.

Free Demo at DOCXConverter.com

Create naturally editable DOCX
documents with paragraph
formatting and reflow of text

Extract headers and footers from
source document and save them
as DOCX headers and footers

Open PDF documents with the
integrated PDF viewer and quickly
resave them to DOCX format

Configure the way the fonts are
embedded into the DOCX file
for optimal formatting

Convert images and graphics
of multiple formats into
DOCX shapes

Use OCR technology to convert
non-editable text into real text

Create

Extract

Convert

Open

OCR

Configure

A standalone desktop version, a server product
for automated processing or an SDK for
integration into third party applications.

A virtual printer driver available for Windows 7 to Windows 10
and Windows Server 2008 to 2016

All trademarks are property of their respective owners. © Amyuni Technologies Inc. All rights reserved.

MSDN Ad DOCX Converter 02.indd 1 04/11/2017 15:22
Untitled-1 1 11/6/17 12:24 PM

http://www.docxconverter.com

msdn magazine6

Back in 2015 and 2016, I wrote a few columns about a Node.js Web
API that interacted with Azure DocumentDB. There was a lot
involved. Even though I took advantage of the Node.js SDK
designed for DocumentDB, I still had to write a lot of logic. There
was logic for building up objects that represented the DocumentDB
account, the database and the collections. There was code to create
queries and to execute them—layers of asynchronous calls. But I
was able to write a nice little API that allowed my application to
create, query and update data in the database.

In more recent columns, I’ve worked with Azure Functions,
Microsoft’s serverless APIs that live in Azure and integrate seam-
lessly with other Azure technologies. One of those integrations
is with Azure Cosmos DB, the data storage into which Azure
DocumentDB evolved.

Having written a number of Azure Functions, integrating them
with Cosmos DB to read and write data, I looked back at my older
Node.js APIs and realized I could eliminate about 98 percent of the
code by converting them into Azure Functions. That’s because most
of the code I had written was to interact with the database, but now
Azure Functions take care of all of that work. With nothing more
than a configuration to identify the connection string—whether the
data is coming from the database or going into it—and the relevant
query, the built-in features of the function will take care of the rest.

Using Visual Studio Code and Extensions
In the earlier Azure Functions columns, I worked directly in the
Azure portal. But it’s also possible to use the Azure Functions Core
Tools to develop on your computer and then deploy to Azure. The
first version of the tools (version 1) runs only on Windows, with
.NET 4.7.1 or higher, and there’s a Visual Studio 2017 extension for
working with those tools.

In contrast, version 2 of the Azure Functions Core Tools runs
on .NET Core and is cross-platform, and a Visual Studio Code
extension lets you work with it handily (bit.ly/2H7VmxH). That’s the
version I’ll be working with in this article. Note that both the tools
and the extension are in preview.

Working with this extension has a few setup requirements, which
you’ll find in the Read Me for the Visual Studio Code extension. And

it assumes you’ve already installed Visual Studio Code and its prereq-
uisites on your system, which could be Windows, macOS or Linux.

The extension helps you easily create new Azure Function App
folders to contain Azure Functions, create the functions (with a
variety of templates to choose from), run and debug them locally,
and deploy them to Azure. I’ve been really impressed because it
takes away the hard work and all you have to do is focus on your
code—which is the promise of serverless computing.

In addition to the Azure Functions extension, I also installed the
Azure Cosmos DB extension for Visual Studio Code (bit.ly/2HkPfDE).
I’m using that to look at the collections and documents of my
existing databases, but you can also use the extension to create
new Cosmos DB accounts, databases and collections, as well as
retrieve and update documents and create new documents. I’ve put
in a suggestion to be able to import documents given pre-existing
JSON files and hope to see that in there someday.

Critical to using both of these extensions is the ability to sign
into your Azure account from Visual Studio Code, so I’ve also
installed the Azure Account extension (bit.ly/2k1phdp).

Each of these three extensions have handy walk-throughs on the
pages I’ve linked to, which will help you get started using them. I’ll
do a light walk-through here for the purpose of showing you how
much easier it is to create the Azure Function counterparts of my
Node.js Web API than it was to build all of the code and depen-
dencies I relied on for the Node.js solution. I will, however, still use
JavaScript as the language for my functions. JavaScript and Node.js
support is built into Visual Studio Code.

Creating the Azure Functions Project
After installing the three extensions and their dependencies, it was
time to recreate my API. I started by creating a new folder on my

Replacing a Bulky API with Azure Functions

Data Points JULIE LERMAN

This article relies on technologies that are in preview.
All information is subject to change.

Code download available at msdn.com/magazine/0618magcode.

I’ve been really impressed
because it takes away all the hard

work and all you have to do is
focus on your code—which is the
promise of serverless computing.

0618msdn_LermanDPts_v4_6-10.indd 6 5/7/18 11:28 AM

http://msdn.com/magazine/0618magcode
http://www.bit.ly/2H7VmxH
http://www.bit.ly/2HkPfDE
http://www.bit.ly/2k1phdp

7June 2018msdnmagazine.com

computer, named NinjaFunctions, then opening it in Visual Studio
Code. If you’re following along, begin by using the Azure Functions
extension to turn the folder into an Azure Functions folder. You can
do this by clicking the Create New Project icon (which looks like
a folder), on the toolbar of the Azure Functions pane. Then follow
the prompts to select the already opened NinjaFunctions folder
and the language. I’m choosing JavaScript. The extension will then
add some files needed for the functions into your folder, and ini-
tialize a Git repository. Figure 1 shows the IDE with the results of
this process in the Azure Functions output window, as well as the
files (.vscode, .gitignore, host.json and local.settings.json) it added.
You can also see the Azure Functions pane listing all of my cloud-
based Azure Function Apps and, below that, my Cosmos DB
databases, thanks to that extension.

Creating an Azure Function in the Project
With the project set up, it’s time to create the first function. This func-
tion will import JSON files into my Cosmos DB database. Note that
I’ve already created the new database account (lermandatapoints)
but I haven’t yet created a database or a collection. I’ll do that using
the Azure Cosmos DB extension. In the extension pane, right-click
on the Cosmos DB account where you want to create the database
and choose Create Database from the menu. Type in the new name
when prompted (mine, naturally, is Ninjas) and this database will
be created in your Azure account using default settings. Feel free
to tweak those settings in the portal if necessary. Finally, create
a collection in the database by right-clicking the new database,
choosing Create Collection and providing its name. I’ll be boring

and call my collection Ninjas, as well. You can
leave the partition key blank for this little demo.

The goal of the first function is to read an
existing document supplied in JSON format and
add it to the new collection. If you’ve read my
recent Azure Functions articles in this column,
you may recall that one is called “Creating Azure
Functions That Can Read from Cosmos DB with
Almost No Code” (msdn.com/magazine/mt829268).
In this case, I’ll be creating a function that can
write to Cosmos DB with almost no code.

I won’t be building a front end. Instead, I’ll
be using the Postman application to construct
calls to my APIs and pass the JSON document
in as a message body. You can do the same with
Fiddler, as well.

Back on the Azure Functions extension pane,
click the Create Function icon to create a new function in the proj-
ect folder. I want this function to respond to HTTP requests, so
select HTTP trigger and then provide a name. Mine is AddNinja
Document. Following the prompts, make the function anonymous
so it’s easier to test without having to provide credentials.

In response to this action, the extension creates a new folder
with three files:

• �function.json, which contains the default configuration for
the function

• �index.js file for the logic
• �a sample data file

Configuring the Function
Like the function created in my January 2018 column, “Creating
Azure Functions to Interact with Cosmos DB” (msdn.com/magazine/
mt814991), this function will output data to a Cosmos DB database.
In the earlier article, I used the portal to configure this integration
and the portal wrote my choices into a function.json file. This time,
I’ll define the configuration manually in function.json. Open the
file and you’ll see two integrations already defined, based on the
fact that the HTTP trigger template was used. After the second
integration, add a comma and then copy in this cosmosDB con-
figuration, which specifies the name of the document to send to
the database, the type of integration (cosmosDB), the database and
collection names, the connection setting, and the direction of the
integration (out to the database):

{
 "name": "outputDocument",
 "type": "cosmosDB",
 "databaseName": "Ninjas",
 "collectionName": "Ninjas",
 "createIfNotExists": true,
 "connectionStringSetting": "mydbconnection",
 "direction": "out"
}

I can define the connection string in the local.settings.json
file so I don’t have to hard code it into the function.json file.
Local.settings.json is the local representation of the app.settings.json
file that will live in the portal and contain your application secrets.

So, here, I’m just saying that the connection string can be found
in a setting called mydbconnection.

Figure 1 Visual Studio Code After Creating the New Azure Functions Project

The goal of the first function is
to read an existing document

supplied in JSON format and add
it to the new collection.

0618msdn_LermanDPts_v4_6-10.indd 7 5/7/18 11:28 AM

http://www.msdnmagazine.com
http://www.msdn.com/magazine/mt829268
http://www.msdn.com/magazine/mt814991
http://www.msdn.com/magazine/mt814991

msdn magazine8 Data Points

The setting goes in the Values section of local.
settings.json. You can copy the connection string
by right-clicking the Cosmos DB account in the
Cosmos DB extension pane and then pasting it
into the json file. The string will start with:

"mydbconnection":
 "AccountEndpoint=https://yourdb.documents.azure.com/

In an upcoming enhancement to the Azure
Function Core Tools, the presence of the
cosmosDB type in the function.json file will
trigger the extension to automatically install a
package with the logic needed to run and debug
your project locally. At this time, though, you’ll need to install this
package manually. Let’s do that now.

In the terminal window, be sure you’re pointed to the root folder,
NinjaFunctions, and enter the following Azure Functions CLI command:

func extensions install -p Microsoft.Azure.WebJobs.Extensions.CosmosDb -v 3.0.0-beta7

Note that I’m installing the beta version that’s current as I’m writ-
ing this article. You can check its NuGet page for the latest version if
you do have to install it manually (bit.ly/2EyLNCw). This will create a new
folder called functions-extensions in your project (see Figure 2). The
folder contains a .NET Standard 2.0 project, which is driven by the
project file, extensions.csproj. The csproj code listing is in Figure 3.

Adding the Tiny Bit of Code
Let’s get back to the AddNinjaDocuments function. The
function.json file is all set, so the next step is to complete the
index.js file, which is where the function’s logic lives. You can delete
all of the default sample code. All you really need for the function is
code to bind the incoming JSON to the function’s output; in other
words, what gets sent to the Cosmos DB collection:

module.exports = function (context, req) {
 context.bindings.outputDocument=req.body;
 context.done();
};

But it’s helpful to have a little bit of debugging info. So, rather
than the pure minimalist version, replace the entire contents of
the default sample code with the following:

module.exports = function (context, req) {
 context.log('HTTP request received.');
 try {
 context.bindings.outputDocument = req.body;
 }
 catch (error) {
 context.log(error);
 }
 context.bindings.res = { status: 201, body: "Insert succeeded." };
 context.done();
};

The JavaScript code is quite different from the
C# function code I wrote in the previous articles.
You can learn about the structure of JavaScript in
Azure Functions at bit.ly/2GQ9eJt.

The context being passed in to the function
is used by the runtime to pass data in and out
of the function. I named the Cosmos DB bind-
ing “outputDocument” in the function.json
configuration. Now I’m setting that binding to
whatever body is encapsulated in the incoming
HTTP request. The template created a binding
named res for the HTTP response, which I’m

using to relay the success of the function. The context.done
method signals to the runtime that the function is complete.

Running the Function in Visual Studio Code
So, that’s all there is to the function! Everything else is taken care of
by the application settings, the function configuration and Azure
Functions APIs. You can go ahead and run the function in Visual
Studio Code. While it’s absolutely possible to debug, set break-
points and explore variables, let’s just run the function app, which
you can do in the terminal with the command:

func start

This will display the brightly colored Azure Functions logo in
the terminal window and then output some processing info. At
the end of all this output, you’ll see the URL where the function is
running. If there are multiple functions in your project, the URLs
will be listed separately for each. In Postman or Fiddler, build a

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <WarningsAsErrors></WarningsAsErrors>
 <DefaultItemExcludes>**</DefaultItemExcludes>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.Azure.WebJobs.Extensions.CosmosDb"
 Version="3.0.0-beta7" />
 <PackageReference
 Include="Microsoft.Azure.WebJobs.Script.ExtensionsMetadataGenerator"
 Version="1.0.0-beta2" />
 </ItemGroup>
</Project>

Figure 3 The extensions.csproj Folder
with References to the Cosmos DB Extension

{
 "Name": "Kacy Catanzaro",
 "ServedInOniwaban": false,
 "Clan": "American Ninja Warriors",
 "Equipment": [
 {
 "EquipmentName": "Muscles",
 "EquipmentType": "Tool"
 },
 {
 "EquipmentName": "Spunk",
 "EquipmentType": "Tool"
 }
],
 "DateOfBirth": "1/14/1990"
 }

Figure 4 JSON Code for a Document
To Be Inserted into the Database

All you really need for the function
is code to bind the incoming

JSON to the function’s output; in
other words, what gets sent to the

Cosmos DB collection.

Figure 2 The New Functions-
Extensions Folder to House
the Cosmos DB Extension

0618msdn_LermanDPts_v4_6-10.indd 8 5/7/18 11:28 AM

http://www.bit.ly/2EyLNCw
http://www.bit.ly/2GQ9eJt

Untitled-1 1 3/12/18 1:45 PM

http://www.devexpress.com/spreadsheet

msdn magazine10 Data Points

POST request using this URL. In the body section you can paste
in the JSON listed in Figure 4 and then send the request. Figure 5
shows my Postman UI, with the request URL and body displayed,
along with the response.

Verifying the Insert
While the HTTP response in Figure 5 does say that all went well,
it’s nice to actually see the data that was sent to the database in the
cloud. And thanks to the Azure Cosmos DB extension, you can
verify that directly in Visual Studio Code. First, let’s be sure that
the function app stops running. In the terminal window, press
CTRL+C to shut down the host. You may need to press CTRL+C
a second time to get the prompt back in the terminal.

Now, in the Cosmos DB extension, expand the account, the
database and the collection. You may need to refresh the view with
the refresh icon on the extension’s pane. Within the collection,
you can see the document that was just added. Select that to open
it in the editor where you’ll see not just the data you added, but
the metadata added by Azure Cosmos DB, as shown in Figure 6.

Next Steps
The download that accompanies this article also includes two more
functions I created to replace the other methods from the original
Node.js API. One is to return data filtered by a name part and the
other to return data based on the id. With these, rather than having
output binding to Cosmos DB, there’s an input binding that defines
the database query using the SQL API. The HTTP response spits
out the JSON representation of the query results.

Once you’ve tested and debugged
your Azure Functions in Visual
Studio Code, you can also use the
extension to publish the functions
to your Azure account. You can
learn more about that from the
extension’s ReadMe.

I recommend taking a look at
the download from my original
article, which is also in a GitHub
repository at github.com/julielerman/
AureliaDocDB. The API is in the mod-
els folder and, as you’ll see, there’s a
lot more code involved with mak-
ing read and write calls into the
DocumentDB than for the Azure
Functions, thanks to its integ
ration with Cosmos DB. I think
in my coding future, I’ll always
consider Azure Functions as the
first line of defense when it’s time
to write another Web API!	 n

Julie Lerman is a Microsoft Regional Direc-
tor, Microsoft MVP, software team coach
and consultant who lives in the hills of Ver-
mont. You can find her presenting on data
access and other topics at user groups and
conferences around the world. She blogs at
the thedatafarm.com/blog and is the author
of “Programming Entity Framework,” as well
as a Code First and a DbContext edition, all
from O’Reilly Media. Follow her on Twitter:
@julielerman and see her Pluralsight courses
at juliel.me/PS-Videos.

Thanks to the following Microsoft
technical expert for reviewing this
article: Jeff HollanFigure 6 The New Document as Displayed by the Cosmos DB Extension

Figure 5 Creating a Request to Call the AddNinjaDocuments Function

The context being passed
in to the function is used by the

runtime to pass data in and
out of the function.

0618msdn_LermanDPts_v4_6-10.indd 10 5/7/18 11:28 AM

http://www.github.com/julielerman/AureliaDocDB
http://www.github.com/julielerman/AureliaDocDB
http://www.thedatafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos

Untitled-1 1 3/12/18 1:31 PM

https://downloads.aspose.com
mailto:sales@asposeptyltd.com

msdn magazine12

Welcome back again, MEANers.
In the previous two articles (msdn.com/magazine/mt829391 and

msdn.com/magazine/mt814413), I talked a great deal about what Angular
refers to as “template-driven forms,” which are forms described by
Angular templates and extended by the use of code to control val-
idation and other logic. That’s all well and good, but a new concept
about how to view the “flow” of information—and the resultant
control exhibited in code—within a Web application is starting
to seize developers’ imaginations.

I speak, of course, of “reactive” programming, and one of the
great shifts between AngularJS (that is, Angular 1.0) and Angular
(Angular 2.0 and beyond) is that Angular now has explicit sup-
port for a reactive style of programming, at least at the Angular
level. All of which is to say, Angular supports using reactive styles
of programming within Angular without having to commit to a
completely reactive style of architecture outside of Angular.

Before I dive in, though, it helps to make sure everybody’s on
board with what “reactive” means here.

Reactive Reactions
Fundamentally, reactive styles of programming are easy to under-
stand, so long as you’re willing to completely invert your perspective
on the traditional way of doing UI programming. (Yes, that’s a joke.
But only a small one.)

In the traditional MVC-based approach for building UIs, the
UI elements (buttons, text fields and the like) are created, and then
… you wait. The system processes messages from the hardware,
and when some combination of messages indicates that the user
did something—clicked a button, typed into a text box or what-
ever—the code bound to the controls fires. That code typically
modifies the model lying behind the UI, and the application goes
back into waiting.

This “event-driven” style of programming is intrinsically asyn-
chronous, in that the code that the programmer writes is always
driven by what the user does. In some ways, it would be better to
call it “indeterministic” programming, because you can’t ever know
what the user will do next. Angular sought to make this easier by
creating two-way binding between the UI and data model, but it
can still be tricky to keep the order of things straight.

The reactive style, however, takes a more one-way approach.
Controls are constructed in code (rather than in the template), and
you programmatically subscribe to events emitted by those con-
trols to respond to the user doing things. It’s not quite React-style

reactive programming, but it’s pretty close, and it still permits the
same kind of “immutable data model” style of programming that
has enamored a percentage of the industry.

Reactive Construction
To begin, let’s look at constructing the SpeakerUI component in a
reactive manner, rather than in a template-driven manner. (Here,
I’m going to go with the more traditional Angular convention and
call it SpeakerDetail, but the name is largely irrelevant to the dis-
cussion.) First, in order to help simplify what I’m working with,
I’ll use the abbreviated form of Speaker and SpeakerService, as
shown in Figure 1.

Notice that the SpeakerService is using the Promise.resolve
method to return a Promise that is instantly resolved. This is an

How To Be MEAN: Reactive Programming

The Working Programmer TED NEWARD

import { Injectable } from '@angular/core';

export class Speaker {
 id = 0
 firstName = ""
 lastName = ""
 age = 0
}

@Injectable()
export class SpeakerService {
 private speakers : Speaker[] = [
 {
 id: 1,
 firstName: 'Brian',
 lastName: 'Randell',
 age: 47,
 },
 {
 id: 2,
 firstName: 'Ted',
 lastName: 'Neward',
 age: 46,
 },
 {
 id: 3,
 firstName: 'Rachel',
 lastName: 'Appel',
 age: 39,
 }
]

 getSpeakers() : Promise<Array<Speaker>> {
 return Promise.resolve(this.speakers);
 }

 getSpeaker(id: number) : Promise<Speaker> {
 return Promise.resolve(this.speakers[id - 1]);
 }
}

Figure 1 Speaker and SpeakerService

0618msdn_NewardWProg_v3_12-14.indd 12 5/7/18 11:23 AM

http://www.msdn.com/magazine/mt829391
http://www.msdn.com/magazine/mt814413

1993 - 2018

August 13 – 17, 2018
Redmond, WA

Microsoft
Headquarters#VSLIVE25

Join Us at Microsoft HQ for
Intense Developer Training

$400 Super Early Bird
Savings Ends June 8!
Use Promo Code MSDN

vslive.com/redmond

Help Us Celebrate 25 Years of Coding Innovation!
Visual Studio Live! (VSLive!™) is celebrating 25 years as one of the most respected, longest-

standing, independent developer conferences, and we want you to be a part of it. Join us

from August 13 – 17 as developers, software architects, engineers, designers and more come

together at Microsoft Headquarters for 5 days of unbiased education on the Microsoft Platform.

Hone your skills in Visual Studio, ASP.NET Core, AngularJS, SQL Server, and so much more.

DEVELOPMENT TOPICS INCLUDE:

Database & Analytics

Xamarin

ASP.NET / Web Server

UWP (Windows)

Angular / JavaScript

Azure / Cloud

ALM / DevOps

Visual Studio / .NET

Software Practices

CONNECT WITH US linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive
– @VSLive

0618msdn_VSLive_Insert.indd 1 4/23/18 3:25 PM

MSDN_Insert_placement_7.625x5.indd 1 5/9/18 1:53 PM

https://www.vslive.com/redmond
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

$400 Super Early Bird
Savings Ends June 8!
Use Promo Code MSDN

vslive.com/redmond

JOIN US INSIDE THE TECH MECCA:
MICROSOFT HQ!
Visual Studio Live! Redmond is back at Microsoft Headquarters this August, where you can

experience the high-tech features of this state-of-the-art facility while you network with peers,

code with experts and enjoy some additional unique perks with us in Redmond, including:

• More sessions from Microsoft insiders who are “in the trenches.”

• Visiting the Microsoft Company Store and Visitor Center.

SUPPORTED BY

magazine

EVENT SPONSOR PRODUCED BYSILVER SPONSORPLATINUM SPONSOR

1993 - 2018

August 13 – 17, 2018
Redmond, WA

Microsoft
Headquarters#VSLIVE25

“I return to Visual Studio Live! year

after year (this is my third!) to see not

only what bleeding edge technologies

are being introduced, but to also see

which technologies are fading; this

helps me steer my organization in the right direction for

our development needs. So many ideas gleaned from

VSLive!, from Web APIs talking to SPA clients, to .NET

Core, have helped me greatly!” – Dilshan Jesook, KPMG

0618msdn_VSLive_Insert.indd 2 4/23/18 3:25 PM

MSDN_Insert_placement_7.625x5.indd 2 5/9/18 1:53 PM

https://www.vslive.com/redmond

13June 2018msdnmagazine.com

easy way to mock out the service without having to build a Promise
object in the longer fashion using the Promise constructor.

Next, the SpeakerDetail component is just a standard Angular
component (“ng new component speaker-detail”), and the construc-
tor should inject a SpeakerService instance as a private constructor
parameter. (This was detailed in my August 2017 column, “How
To Be MEAN: Angular Plays Fetch” [msdn.com/magazine/mt826349].)
While you’re at it, use the constructor to call the SpeakerService’s
getSpeakers method to get back the array, and store that locally
into the component as a property called “speakers.” So far, this
sounds a lot like the template-based component described earlier.
The HTML template for this component will display a dropdown
of all the speakers in the system (as obtained by getSpeakers), and
then as each is selected, display the details in another set of controls
underneath that dropdown. Thus, the template looks like Figure 2.

It may seem strange that the alternative to “template-based” forms
uses HTML templates. That’s largely because the reactive-forms

approach doesn’t do away with the template, but instead removes
most of the logic away from the template and into the component.
This is where things start to take a left turn from the techniques
examined in the previous pair of columns. The component code
will actually construct a tree of control objects, and most (if not
all) interaction with the controls in these two forms will happen
entirely inside the code base. I won’t put event-handlers in the
template. Instead, I’ll hook them up inside the component code.

But first, I need to construct the controls themselves. These
will all be FormControl instances, imported from the @angular/
forms module, but it can get a little tedious to construct them each
(along with any required validations) by hand in code. Fortunately,
Angular provides a FormBuilder class that’s designed to make things
a bit more succinct and compact to construct a whole form’s worth
of controls, particularly for longer (or nested) forms.

In the case of my speaker form—where I want to have a drop-
down serve as a selection mechanism to choose which speaker in
the list to work on—I need to do something a little different. I want
to have two forms: one around the dropdown speaker-selection
control, and the other containing the detail for the individual
speaker. (Normally this would be two separate components in a
master-detail kind of arrangement, but I haven’t covered routing
yet.) Thus, I need two forms, and in Figure 3 I show how to con-
struct them, both with the FormBuilder and without.

This is, of course, only an excerpt of the class—there’s a few more
things I need to add before it’s ready to ship, but this code neatly
demonstrates two of the ways to construct a form. The “selectGroup”
is the FormGroup that contains the one FormControl for the HTML
<select> control, and I use the SpeakerService to populate a local
array of Speaker instances so the <select> can populate itself. (This
is actually on the template, not in the component code. If there’s
a way to populate the dropdown from the component code, I’ve
not found it yet in Angular 5.)

The second form, called speakerForm, is populated using the Form-
Builder, which is a tiny little DSL-like language for constructing controls.
Notice how I call “group” to indicate that I’m constructing a group of
controls, which are effectively name-value pairs. The name is the name
of the control (which must match the formControlName property in
the template for each control) and the value is either an initial value, or
an initial value followed by an array of validation functions (two arrays,
if you want to include validation functions that run asynchronously)
to run to validate the value users type in to the control.

This constructs the two forms, but selecting something in the
dropdown doesn’t do anything. I need to respond to the event the
dropdown will broadcast, and I can do that by hooking a func-
tion on to the “valueChanges” method of FormControl, like so:

export class SpeakerDetailComponent implements OnInit {
 // ...
 ngOnInit() {
 const speakerSelect = this.selectGroup.get('selectSpeaker');
 speakerSelect.valueChanges.forEach(
 (value:string) => {
 const speaker = this.speakers.find((s) => s.lastName === value);
 this.populate(speaker);
 }
);
 }
 // ...
}

<h2>Select Speaker</h2>
<form [formGroup]="selectGroup">
<label>Speaker:
 <select formControlName="selectSpeaker">
 <option *ngFor="let speaker of speakers"
 [value]="speaker.lastName">{{speaker.lastName}}</option>
 </select>
</label>
</form>

<h2>Speaker Detail</h2>
<form [formGroup]="speakerForm" novalidate>
 <div>
 <label>First Name:
 <input formControlName="firstName">
 </label>
 <label>Last Name:
 <input formControlName="lastName">
 </label>
 <label>Age:
 <input formControlName="age">
 </label>
 </div>
</form>

Figure 2 HTML Template

export class SpeakerDetailComponent implements OnInit {
 selectGroup : FormGroup
 speakerForm : FormGroup
 speakers : Speaker[]

 constructor(private formBuilder : FormBuilder,
 private speakerService : SpeakerService) {
 speakerService.getSpeakers().then((res) => { this.speakers = res; });
 this.createForm();
 }

 createForm() {
 this.selectGroup = new FormGroup({
 selectSpeaker : new FormControl()
 });

 this.speakerForm = this.formBuilder.group({
 firstName: ['', Validators.required],
 lastName: ['', Validators.required],
 age: [0]
 });
 }

 // ...
}

Figure 3 Constructing Forms

0618msdn_NewardWProg_v3_12-14.indd 13 5/7/18 11:23 AM

http://www.msdnmagazine.com
http://www.msdn.com/magazine/mt826349

The Working Programmer
dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Developers:
• APIs for .NET, C++ and Java; ask about

new cross-platform .NET Standard SDK
with Xamarin and .NET Core

• SDKs for Windows, UWP, Linux, Mac,
iOS in beta, Android in beta

• FAQs on faceted search, granular data
classification, Azure and more

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Instantly Search
Terabytes

®

Notice that the valueChanges property is actually a stream of
events. Thus, I use forEach to indicate that for each event that comes
through, I want to take the value to which the control has changed
(the parameter to the lambda) and use that to find the speaker by last
name in the array returned by the SpeakerService. I then take that
Speaker instance and pass it to the populate method, shown here:

export class SpeakerDetailComponent implements OnInit {
 // ...
 populate(speaker) {
 const firstName = this.speakerForm.get('firstName');
 const lastName = this.speakerForm.get('lastName');
 const age = this.speakerForm.get('age');

 firstName.setValue(speaker.firstName);
 lastName.setValue(speaker.lastName);
 age.setValue(speaker.age);
 }
 // ...
}

The populate method simply grabs the reference to the Form-
Controls from the speakerForm group, and uses the setValue
method to populate the appropriate value from the Speaker to
the appropriate control.

Reactive Analysis
A fair question to ask at this point is how this is any better than
the template-based forms shown earlier. Frankly, it’s not a question
of better—it’s a question of different. (The Angular docs even say
this outright in the official documentation page on Reactive Forms
at angular.io/guide/reactive-forms.) Capturing most of the logic in the
component code (rather than in the template) may strike some
developers as being more logical or cohesive, but reactive forms
also have the advantage that they’re essentially a reactive “loop”:
Because the controls don’t directly map to the underlying model
object. The developer retains full control over what happens when,
which can simplify a number of scenarios immensely.

The Angular team doesn’t believe that one approach to forms is
inherently any better than the other, in fact specifically stating that
both styles can be used within the same application. (I wouldn’t try
to use both within the same component, however, unless you under-
stand Angular really deeply.) The key here is that Angular supports
two different styles of gathering input from users, and both are valid
and viable for a good number of scenarios. But what happens if you
have a large number of different forms that need to be displayed, or
the form that needs to be displayed depends on the underlying model
object, which can change? Angular offers yet another option, which
you’ll see in the next column. Happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor,
currently working as the director of Engineering and Developer Relations at
Smartsheet.com. He has written a ton of articles, authored or co-authored a dozen
books, and speaks all over the world. Reach him at ted@tedneward.com or read
his blog at blogs.tedneward.com.

Thanks to the following Microsoft technical expert: Garvice Eakins

The developer retains full control
over what happens when.

0618msdn_NewardWProg_v3_12-14.indd 14 5/7/18 11:23 AM

mailto:ted@tedneward.com
http://www.dtSearch.com
http://www.angular.io/guide/reactive-forms
http://blogs.tedneward.com

15June 2018

Back in the August 2017 issue of MSDN Magazine I wrote
an in-depth article on C# 7.0 and its support for tuples (msdn.com/
magazine/mt493248). At the time I glossed over the fact that the tuple
type introduced with C# 7.0 (internally of type ValueTuple<…>)
breaks several guidelines of a well-structured value type, namely:

• �Do Not declare fields that are public or protected (instead
encapsulate with a property).

• �Do Not define mutable value types.
• �Do Not create value types larger than 16 bytes in size.

These guidelines have been in place since C# 1.0, and yet here in
C# 7.0, they’ve been thrown to the wind to define the System.Value
Tuple<…> data type. Technically, System.ValueTuple<…> is a
family of data types of the same name, but of varying arity (specifi-
cally, the number of type parameters). What’s so special about this
particular data type that these long-respected guidelines no longer
apply? And how can our understanding of the circumstances in
which these guidelines apply—or don’t apply—help us refine their
application to defining value types?

Let’s start the discussion with a focus on encapsulation and the
benefits of properties versus fields. Consider, for example, an Arc
value type representing a portion of the circumference of a circle.
It’s defined by the radius of the circle, the start angle (in degrees)
of the first point in the arc, and the sweep angle (in degrees) of the
last point in the arc, as shown in Figure 1.

Do Not Declare Fields That Are Public or Protected
In this declaration, Arc is a value type (defined using the keyword
struct) with three public fields that define the characteristics of the
Arc. Yes, I could’ve used properties, but I chose to use public fields
in this example specifically because it violates the first guideline—
Do Not declare fields that are public or protected.

By leveraging public fields rather than properties, the Arc definition
lacks the most basic of object-oriented design principles—
encapsulation. For example, what if I decided to change the
internal data structure to use the radius, start angle and arc length,
for example, rather than the sweep angle? Doing so would obvi-
ously break the interface for Arc and all clients would be forced
to make a code change.

Similarly, with the definitions of Radius, StartAngle and Sweep
Angle, I have no validation. Radius, for example, could be assigned
a negative value. And while negative values for StartAngle and
SweepAngle might be allowable, a value greater than 360 degrees
wouldn’t. Unfortunately, because Arc is defined using public fields,
there’s no way to add validation to protect against these values. Yes,
I could add validation in version 2 by changing the fields to prop-
erties, but doing so would break the version compatibility of the

. N E T FRAME WOR K

Tuple Trouble:
Why C# Tuples Get to
Break the Guidelines
Mark Michaelis

This article discusses:
•	Guidelines for programming value types (structs)

•	How to use C# 7.0 tuples to override Equals and GetHashCode

•	Understanding Guidelines are just tha—they still allow for
coloring outside the lines given sufficient justification

Technologies discussed:
C# 7.0, Microsoft .NET Core/Framework, Tuples

0618msdn_MichaelisTuple_v3_15-19.indd 15 5/7/18 11:22 AM

http://www.msdn.com/magazine/mt493248
http://www.msdn.com/magazine/mt493248

msdn magazine16 .NET Framework

Arc structure. Any existing compiled code that invoked the fields
would break at runtime, as would any code (even if recompiled)
that passes the field as a by ref parameter.

Given the guideline that fields should not be public or protected,
it’s worth noting that properties, especially with default values,
became easier to define than explicit fields encapsulated by prop-
erties, thanks to support in C# 6.0 for property initializers. For
example, this code:

public double SweepAngle { get; set; } = 180;

is simpler than this:
private double _SweepAngle = 180;
public double SweepAngle {
 get { return _SweepAngle; }
 set { _SweepAngle = value; }
}

The property initializer support is important because, without
it, an automatically implemented property that needs initialization
would need an accompanying constructor. As a result, the guide-
line: “Consider automatically implemented properties over fields”
(even private fields) makes sense, both because the code is more
concise and because you can no longer modify fields from outside

their containing property. All this favors yet another guideline,
“Avoid accessing fields from outside their containing properties,”
which emphasizes the earlier-described data encapsulation prin-
ciple even from other class members.

At this point lets return to the C# 7.0 tuple type ValueTuple<…>.
Despite the guideline about exposed fields, ValueTuple<T1, T2>,
for example, is defined as follows:

public struct ValueTuple<T1, T2>
 : IComparable<ValueTuple<T1, T2>>, ...
{
 public T1 Item1;
 public T2 Item2;

 // ...
}

What makes ValueTuple<…> special? Unlike most data struc-
tures, the C# 7.0 tuple, henceforth referred to as tuple, was not about
the whole object (such as a Person or CardDeck object). Rather, it
was about the individual parts grouped arbitrarily for transporta-
tion purposes, so they could be returned from a method without
the bother of using out or ref parameters. Mads Torgersen uses the
analogy of a bunch of people who happen to be on the same bus—
where the bus is like a tuple and the people are like the items in the
tuple. The Items are grouped together in a return tuple parameter
because they are all destined to return to the caller, not because
they necessarily have any other association to each other. In fact,
it’s likely that the caller will then retrieve the values from the tuple
and work with them individually rather than as a unit.

The importance of the individual items rather than the whole
makes the concept of encapsulation less compelling. Given that
items in a tuple can be wholly unrelated to each other, there’s
often no need to encapsulate them in such a manner that changing
Item1, for example, might affect Item2. (By contrast, changing the
Arc length would require a change in one or both of the angles so
encapsulation is a must.) Furthermore, there are no invalid values
for the items stored within a tuple. Any validation would be
enforced in the data type of the item itself, not in the assignment
of one of the Item properties on the tuple.

For this reason, properties on the tuple don’t provide any value,
and there’s no conceivable future value they could provide. In short,
if you’re going to define a type whose data is mutable with no need
for validation, you may as well use fields. Another reason you
might want to leverage properties is to have varying accessibility
between the getter and the setter. However, assuming mutability
is acceptable, you aren’t going to take advantage of properties with

public struct Arc
{
 public Arc (double radius, double startAngle, double sweepAngle)
 {
 Radius = radius;
 StartAngle = startAngle;
 SweepAngle = sweepAngle;
 }
 public double Radius;
 public double StartAngle;
 public double SweepAngle;

 public double Length
 {
 get
 {
 return Math.Abs(StartAngle - SweepAngle)
 / 360 * 2 * Math.PI * Radius;
 }
 }

 public void Rotate(double degrees)
 {
 StartAngle += degrees;
 SweepAngle += degrees;
 }

 // Override object.Equals
 public override bool Equals(object obj)
 {
 return (obj is Arc)
 && Equals((Arc)obj);
 }
 // Implemented IEquitable<T>
 public bool Equals(Arc arc)
 {
 return (Radius, StartAngle, SweepAngle).Equals(
 (arc.Radius, arc.StartAngle, arc.SweepAngle));
 }

 // Override object.GetHashCode
 public override int GetHashCode() =>
 return (Radius, StartAngle, SweepAngle).GetHashCode();

 public static bool operator ==(Arc lhs, Arc rhs) =>
 lhs.Equals(rhs);
 public static bool operator !=(Arc lhs, Arc rhs) =>
 !lhs.Equals(rhs);
}

Figure 1 Defining an Arc

By leveraging public fields
rather than properties, the

Arc definition lacks the most
basic of object-oriented design

principles—encapsulation.

0618msdn_MichaelisTuple_v3_15-19.indd 16 5/7/18 11:22 AM

/update/2018/06

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

www.componentsource.com

DevExpress DXperience 17.2 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

© 1996-2018 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

USA
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

We accept purchase orders.
Contact us to apply for a credit account.

Europe (Ireland)
ComponentSource
Unit 1E & 1F
Core B, Block 71
The Plaza, Park West
Dublin 12
Ireland

Europe (UK)
ComponentSource
The White Building
33 King’s Road
Reading, Berkshire
RG1 3AR
United Kingdom

Asia Pacific
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan

www.componentsource.com

(888) 850-9911
Sales Hotline - US & Canada:

PBRS (Power BI Reports Scheduler) from $8,132.21
Data Driven Distribution for Power BI Reports & Dashboards.

• A comprehensive set of job (schedule) types gives you the power to automate delivery in
Power BI

• Automate report delivery & send reports to printer, fax, folder, FTP, DropBox, SharePoint & email

• Contains powerful system event triggered, data-driven and business process work� ow functions

• Respond instantly by � ring o� reports and automation scripts when an event occurs

NEW RELEASE

LEADTOOLS Medical Imaging SDKs V19 from $4,995.00 SRP

Powerful DICOM, PACS, and HL7 functionality.

• Load, save, edit, annotate & display DICOM Data Sets with support for the latest speci� cations

• High-level PACS Client and Server components and frameworks

• OEM-ready HTML5 Zero-footprint Viewer and DICOM Storage Server apps with source code

• Medical-speci� c image processing functions for enhancing 16-bit grayscale images

• Native libraries for .NET, C/C++, HTML5, JavaScript, WinRT, iOS, OS X, Android, Linux, & more

BEST SELLER

Untitled-1 1 5/4/18 10:46 AM

http://www.componentsource.com

msdn magazine18 .NET Framework

differing getter/setter accessibility, either. This all raises another
question—should the tuple type be mutable?

Do Not Define Mutable Value Types
The next guideline to consider is that of the mutable value type.
Once again, the Arc example (shown in the code in Figure 2)
violates the guideline. It’s obvious if you think about it—a value type
passes a copy, so changing the copy will not be observable from the
caller. However, while the code in Figure 2 demonstrates the con-
cept of only modifying the copy, the readability of the code does
not. From a readability perspective, it would seem the arc changes.

What’s confusing is that in order for a developer to expect value
copy behavior, they would have to know that Arc was a value type.
However, there’s nothing obvious from the source code that indi-
cates the value type behavior (though to be fair, the Visual Studio
IDE will show a value type as a struct if you hover over the data
type). You could perhaps argue that C# programmers should know
value type versus reference type semantics, such that the behavior
in Figure 2 is expected. However, consider the scenario in Figure
3 when the copy behavior is not so obvious.

Notice that, in spite of invocation Arc’s Rotate function, the
Arc, in fact, never rotates. Why? This confusing behavior is due
to the combination of two factors. First, Arc is a value type that
causes it to be passed by value rather than by reference. As a result,
invoking pie.Arc returns a copy of Arc, rather than returning the
same instance of Arc that was instantiated in the constructor. This
wouldn’t be a problem, if it wasn’t for the second factor. The invo-

cation of Rotate is intended to modify the instance of Arc stored
within pie, but in actuality, it modifies the copy returned from
the Arc property. And that’s why we have the guideline, “Do Not
define mutable value types.”

As before, tuples in C# 7.0 ignore this guideline and exposes
public fields that, by definition, make ValueTuple<…> mutable.
Despite this violation, ValueTuple<…> doesn’t suffer the same
drawbacks as Arc. The reason is that the only way to modify the
tuple is via the Item field. However, the C# compiler doesn’t allow
the modification of a field (or property) returned from a containing
type (whether the containing type is a reference type, value type
or even an array or other type of collection). For example, the fol-
lowing code will not compile:

pie.Arc.Radius = 0;

Nor will this code:
pie.Arc.Radius++;

These statements fail with the message, “Error CS1612: Cannot
modify the return value of ‘PieShape.Arc’ because it is not a vari-
able.” In other words, the guideline is not necessarily accurate.
Rather than avoiding all mutable value types, the key is to avoid
mutating functions (read/write properties are allowable). That
wisdom, of course, assumes that the value semantics shown in
Figure 2 are obvious enough such that the intrinsic value type
behavior is expected.

Do Not Create Value Types Larger Than 16 Bytes
This guideline is needed because of how often the value type is
copied. In fact, with the exception of a ref or out parameter, value
types are copied virtually every time they’re accessed. This is true
whether assigning one value type instance to another (such as Arc
= arc in Figure 3) or a method invocation (such as Modify(arc)
shown in Figure 2). For performance reasons, the guideline is to
keep value type size small.

The reality is that the size of a ValueTuple<…> can often be larger
than 128 bits (16 bytes) because a ValueTuple<…> may contain
seven individual items (and even more if you specify another
tuple for the eighth type parameter). Why, then, is the C# 7.0 tuple
defined as a value type?

As mentioned earlier, the tuple was introduced as a language
feature to enable multiple return values without the complex syn-
tax required by out or ref parameters. The general pattern, then,
was to construct and return a tuple and then deconstruct it back
at the caller. In fact, passing a tuple down the stack via a return

[TestMethod]
public void PassByValue_Modify_ChangeIsLost()
{
 void Modify(Arc paramameter) { paramameter.Radius++; }
 Arc arc = new Arc(42, 0, 90);
 Modify(arc);
 Assert.AreEqual<double>(42, arc.Radius);
}

Figure 2 Value Types Are Copied So The Caller Doesn’t
Observe the Change

public class PieShape
{
 public Point Center { get; }
 public Arc Arc { get; }

 public PieShape(Arc arc, Point center = default)
 {
 Arc = arc;
 Center = center;
 }
}

public class PieShapeTests
{
 [TestMethod]
 public void Rotate_GivenArcOnPie_Fails()
 {
 PieShape pie = new PieShape(new Arc(42, 0, 90));
 Assert.AreEqual<double>(90, pie.Arc.SweepAngle);
 pie.Arc.Rotate(42);
 Assert.AreEqual<double>(90, pie.Arc.SweepAngle);
 }
}

Figure 3 Mutable Value Types Behave Unexpectedly

The tuple was introduced as
a language feature to enable
multiple return values without
the complex syntaxrequired by

out or ref parameters.

0618msdn_MichaelisTuple_v3_15-19.indd 18 5/7/18 11:22 AM

19June 2018msdnmagazine.com

parameter is similar to passing a group of arguments up the stack
for a method call. In other words, return tuples are symmetric with
individual parameter lists as far as memory copies are concerned.

If you declared the tuple as a reference type, then it would be
necessary to construct the type on the heap and initialize it with
the Item values—potentially copying either a value or reference to
the heap. Either way, a memory copy operation is required, similar
to that of a value type’s memory copy. Furthermore, at some later
point in time when the reference tuple is no longer accessible,
the garbage collector will need to recover the memory. In other
words, a reference tuple still involves memory copying, as well
as additional pressure on the garbage collector, making a value
type tuple the more efficient option. (In the rare cases that a value
tuple isn’t more efficient, you could still resort to the reference type
version, Tuple<…>.)

While completely orthogonal to the main topic of the arti-
cle, notice the implementation of Equals and GetHashCode in
Figure 1. You can see how tuples provide a shortcut for imple-
menting Equals and GetHashCode. For more information, see
“Using Tuples to Override Equality and GetHashCode.”

Wrapping Up
At first glance it can seem surprising for tuples to be defined as
immutable value types. After all, the number of immutable value
types found in .NET Core and the .NET Framework is minimal,
and there are long-standing programming guidelines that call for
value types to be immutable and encapsulated with properties.
There’s also the influence of the immutable-by-default approach
characteristic to F#, which pressured C# language designers to pro-
vide a shorthand to either declare immutable variables or define
immutable types. (While no such shorthand is currently under
consideration for C# 8.0, read-only structs were added to C#7.2
as a means to verify that a struct was immutable.)

However, when you delve into the details, you see a number of
important factors. These include:

• �Reference types impose an additional performance impact
with garbage collection.

• �Tuples are generally ephemeral.
• �Tuple items have no foreseeable need for encapsulation

with properties.
• �Even tuples that are large (by value type guidelines) don’t

have significant memory copy operations beyond that of a
reference tuple implementation.

In summary, there are plenty of factors that favor a value type
tuple with public fields in spite of the standard guidelines. In the
end, guidelines are just that, guidelines. Don’t ignore them, but
given sufficient—and I would suggest, explicitly documented—
cause, it’s OK to color outside the lines on occasion.

For more information on the guidelines for both defining value
types and overriding Equals and GetHashCode, check out
chapters 9 and 10 in my Essential C# book: “Essential C# 7.0”
(IntelliTect.com/EssentialCSharp), which is expected to be out in May.	n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP, and
has been a Microsoft Regional Director since 2007. Michaelis serves on sev-
eral Microsoft software design review teams, including C#, Microsoft Azure,
SharePoint and Visual Studio ALM. He speaks at developer conferences and
has written numerous books including his most recent, “Essential C# 6.0 (5th
Edition)” (itl.tc/EssentialCSharp). Contact him on Facebook at facebook.com/
Mark.Michaelis, on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis
or via e-mail at mark@IntelliTect.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Kevin Bost, Eric Lippert, Mads Torgersen

In the past, the implementation of Equals and GetHashCode
were fairly complex, yet the actual code is generally boilerplate.
For Equals, it’s necessary to compare all the contained identifying
data structures, while avoiding infinite recursion or null reference
exceptions. For GetHashCode, it’s necessary to combine the
unique hash code of each of the non-null contained identifying
data structures in an exclusive OR operation. With C# 7.0 tuples,
this turns out to be quite simple, as is demonstrated in Figure 1.

For Equals, one member can check that the type is the same,
while a second member groups each of the identifying members
into a tuple and compares them to the target parameter of the
same type, like this:

public override bool Equals(object obj) =>
 return (obj is Arc)
 && Equals((Arc)obj);

public bool Equals(Arc arc) =>
 return (Radius, StartAngle, SweepAngle).Equals(
 (arc.Radius, arc.StartAngle, arc.SweepAngle));

You might argue that the second function could be more
readable if each identifying member were explicitly compared
instead, but I leave that for the reader to arbitrate. That said,
note that internally the tuple (System.ValueTuple<…>) uses
EqualityComparer<T>, which relies on the type parameters
implementation of IEquatable<T>, which only contains a single
Equals<T>(T other) member. Therefore, to correctly override
Equals, you need to follow the guideline: “Do implement
IEquatable<T> when overriding Equals.” That way your own
custom data types will leverage your custom implementation
of Equals rather than Object.Equals.

Perhaps the more compelling of the two overloads is
GetHashCode and its use of the tuple. Rather than engage in
the complex gymnastics of an exclusive OR operation of the
non-null identifying members, you can simply instantiate a tuple
of all identifying members and return the GetHashCode value
for the said tuple, like so:

public override int GetHashCode() =>
 return (Radius, StartAngle, SweepAngle).GetHashCode();

Nice!!!

Using Tuples to Override Equality and
GetHashCode

In the end, guidelines are just
that, guidelines.

0618msdn_MichaelisTuple_v3_15-19.indd 19 5/7/18 11:22 AM

mailto:mark@IntelliTect.com
http://www.msdnmagazine.com
http://www.IntelliTect.com/EssentialCSharp
http://www.itl.tc/EssentialCSharp
www.facebook.com/Mark.Michaelis
www.facebook.com/Mark.Michaelis
http://www.IntelliTect.com/Mark
www.twitter.com/markmichaelis

VSLive! 2017VSLive! 2001

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR

Developing Perspective
Visual Studio Live! (VSLive!™) returns to Boston, June 10 – 14, 2018, with
5 days of practical, unbiased, Developer training, including NEW intense
hands-on labs. Join us as we dig into the latest features of Visual Studio
2017, ASP.NET Core, Angular, Xamarin, UWP and more. Code with industry
experts AND Microsoft insiders while developing perspective on the
Microsoft platform.

June 10-14, 2018
Hyatt Regency Cambridge

Boston

Register to Code
With Us Today!
Use Promo Code MSDN

vslive.com/
boston

1993 - 2018

BACK BY POPULAR
DEMAND: Pre-Con,
Hands-On Labs!
Sunday, June 10
Choose from:
> ASP.NET Core 2 and EF Core 2
> Xamarin and Xamarin.Forms

Untitled-4 2 4/18/18 11:43 AM

https://www.vslive.com/boston

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework

Web
Client

Web
Server

START TIME END TIME Pre-Conference Full Day Hands-On Labs: Sunday, June 10, 2018 (Separate entry fee required)

7:00 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM HOL01 Full Day Hands-On Lab: Develop an ASP.NET Core 2
and EF Core 2 App in a Day - Philip Japikse

HOL02 Full Day Hands-On Lab: From 0-60 in a Day with Xa marin
and Xamarin.Forms - Roy Cornelissen & Marcel de Vries

START TIME END TIME Pre-Conference Workshops: Monday, June 11, 2018 (Separate entry fee required)

8:00 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM M01 Workshop: DevOps, You Keep Saying
That Word - Brian Randell

M02 Workshop: SQL Server for Developers
- Andrew Brust and Leonard Lobel

M03 Workshop: Distributed Cross-Platform
Application Architecture - Rockford Lhotka

and Jason Bock

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Day 1: Tuesday, June 12, 2018
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Angular 101 - Deborah Kurata
T02 A Developer’s Introduction to XR:

Virtual, Augmented & Mixed Reality
- Nick Landry

T03 SQL Server 2017 - Intelligence
Built-in - Scott Klein

T04 Getting to the Core of the
.NET Standard - Adam Tuliper

9:30 AM 10:45 AM T05 ASP.NET Core 2 For Mere Mortals
- Philip Japikse

T06 Lessons Learned from Real-World
HoloLens & Mixed Reality Projects

- Nick Landry
T07 Bots and AI with Azure

- Scott Klein
T08 Get Started with Git

- Robert Green

11:00 AM 12:00 PM KEYNOTE: To Be Announced
12:00 PM 1:00 PM Lunch
1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Migrating to ASP.NET Core -
A True Story - Adam Tuliper

T10 Re-imagining an App’s User
Experience: A Real-world Case Study

- Billy Hollis
T11 Introduction to Azure Cosmos DB

- Leonard Lobel T12 What’s New in C#7 - Jason Bock

3:00 PM 4:15 PM T13 Angular Component
Communication - Deborah Kurata

T14 There is No App
- Roy Cornelissen

T15 SQL Server Security Features for
Developers - Leonard Lobel

T16 Concurrent Programming
in .NET - Jason Bock

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Day 2: Wednesday, June 13, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 An Introduction to TypeScript
- Jason Bock

W02 Strategies and Decisions
for Developing Desktop Business

Applications - Billy Hollis
W03 Applying ML to Software

Development - Vishwas Lele
W04 Architecting Systems for

Continuous Delivery - Marcel de Vries

9:30 AM 10:45 AM
W05 Building Mixed Reality

Experiences for HoloLens & VR Headsets
in Unity - Nick Landry

W06 Cross-Platform App Dev
with Xamarin and CSLA .NET

- Rockford Lhotka
W07 Predicting the Future Using Azure

Machine Learning - Eric D. Boyd
W08 DevOps for the SQL Server

Database - Brian Randell

11:00 AM 12:00 PM GENERAL SESSION: .NET Everywhere and for Everyone
- James Montemagno, Principal Program Manager - Mobile Developer Tools, Microsoft

12:00 PM 1:00 PM Birds-of-a-Feather Lunch
1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffl e @ 1:15pm (Must be present to win)

1:30 PM 2:45 PM W09 User Authentication for ASP.NET
Core MVC Applications - Brock Allen

W10 Xamarin: The Future of App
Development - James Montemagno

W11 Analytics and AI with Azure
Databricks - Andrew Brust

W12 Using Feature Toggles to Help Us
Seperate Releases from Deployments

- Marcel de Vries

3:00 PM 4:15 PM W13 Securing Web APIs in
ASP.NET Core - Brock Allen

W14 Programming with the
Model-View-ViewModel Pattern

- Miguel Castro
W15 Power BI: What Have You Done

for Me Lately? - Andrew Brust
W16 Azure DevOps with VSTS, Docker,

and K8 - Brian Randell

4:30 PM 5:45 PM W17 Multi-targeting the World
- Oren Novotny

W18 Cognitive Services in Xamarin
Applications - Veronika Kolesnikova

& Willy Ci
W19 Containers Demystifi ed

- Robert Green
W20 Visualizing the Backlog with User

Story Mapping - Philip Japikse

6:15 PM 8:30 PM VSLive!’s Boston By Land and Sea Tour

START TIME END TIME Day 3: Thursday, June 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 Tools for Modern Web
Development - Ben Hoelting

TH02 Writing Testable Code and
Resolving Dependencies - DI Kills Two
Birds with One Stone - Miguel Castro

TH03 Azure in the Enterprise
- Mike Benkovich

TH04 Busy .NET Developer’s Guide
to Python - Ted Neward

9:30 AM 10:45 AM TH05 JavaScript Patterns for the C#
Developer - Ben Hoelting

TH06 Netstandard: Reuse Your Code
on Windows, Linux, Mac, and Mobile

- Rockford Lhotka
TH07 Microservices with ACS

(Managed Kubernetes) - Vishwas Lele
TH08 Signing Your Code the Easy Way

- Oren Novotny

11:00 AM 12:15 PM
TH09 Exposing an Extensibility API for

your Applications and Services
- Miguel Castro

TH10 The Role of an Architect
- Ted Neward

TH11 Go Serverless with Azure
Functions - Eric D. Boyd TH12 To Be Announced

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Enhancing Web Pages with

VueJS: When You Don’t Need a
Full SPA - Shawn Wildermuth

TH14 Unit Testing & Test-Driven
Development (TDD) for Mere Mortals

- Benjamin Day
TH15 Computer, Make It So!

- Veronika Kolesnikova & Willy Ci
TH16 C# 7, Roslyn and You

- Jim Wooley

2:45 PM 4:00 PM TH17 Versioning APIs with ASP.NET
Core - Shawn Wildermuth

TH18 Coaching Skills for Scrum
Masters & The Self-Organizing Team

- Benjamin Day
TH19 Compute Options in Azure

- Mike Benkovich
TH20 Improving Code Quality with
Roslyn Code Analyzers - Jim Wooley

Speakers and sessions subject to change

AGENDA AT-A-GLANCE Boston

vslive.com/boston

Untitled-4 3 4/18/18 11:43 AM

https://www.vslive.com/boston
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com
https://www.vslive.com/boston

msdn magazine22

Azure Blockchain Workbench (aka.ms/abcworkbench) is the
latest step in Microsoft’s journey to enable customers to adopt block-
chain technologies and get started with Azure Blockchain. To provide
context, Azure Blockchain is a collection of Azure services and capa-
bilities designed to help enterprises create and deploy a new class of
applications for sharing business processes and data with multiple,
semi-trusted organizations. Currently customers can deploy these
services into their Azure subscriptions and integrate them with
blockchains available on the Azure Marketplace. Now, with Azure
Blockchain Workbench, the heavy lifting is done for them, so they
can focus less on scaffolding and more on logic and smart contracts.

Azure Blockchain Workbench orchestrates several Azure services
around popular blockchain digital ledgers and into a reference archi
tecture that can be used to build blockchain-based applications.
It’s a free, easy-to-use tool with a simplified interface that enables
users to create end-to-end decentralized applications leveraging
all of Azure Blockchain’s capabilities. It comes equipped with sam-
ple cross-organizational workflows and smart contracts, as well as
an out-of-the-box UI that customers can use to drastically reduce
development costs and accelerate proofs of concept.

If you’re new to blockchain, I recommend you read Jonathan
Waldman’s outstanding article, “Blockchain Fundamentals” (msdn.com/
magazine/mt845650), in the March 2018 issue of MSDN Magazine. Also,
make a point to watch the Microsoft Mechanics video, “Intro to
Blockchain and Azure Blockchain Workbench,” at aka.ms/workbenchintro.

Introducing Azure Blockchain Workbench
In much the same way that applications today interact with databases,
decentralized applications running on a blockchain communicate
and execute logic against a specific digital ledger, such as Ethereum
or Hyperledger. A digital ledger network consists of a peer-to-peer
decentralized network of nodes. These nodes maintain a copy of
the data store and run a virtual machine to support arbitrary com-
putation against the ledger, while maintaining consensus. Smart
contracts are the mechanism that allows for this complicated
computation on the network, similar to stored procedures on a
traditional relational database.

Despite the potential to leverage blockchain in a growing vari-
ety of business processes, there are obstacles to overcome before
enterprises can adopt blockchain technologies. Lack of governance,
network performance and scalability are often cited as challenges
that impact the adoption of blockchain in the enterprise space.

Building a complete solution running on blockchain typically
requires provisioning infrastructure and developing a client appli-
cation, writing and deploying a gateway API, implementing support
for off-chain storage, writing logs and reports, and integrating
identity and key vault services into the solution. There's a common
set of challenges related to blockchain app development that are
addressed by Azure Blockchain Workbench, which dramatically
reduces the amount of time needed to build a blockchain solution.

BLOCKC HAIN

Introducing Azure
Blockchain Workbench
Stefano Tempesta

This article discusses:
•	Deploying and configuring Azure Blockchain Workbench

•	Creating and deploying business logic in the form of smart
contracts to drive scenario flows

•	Using Azure Service Bus to extend Azure Blockchain Workbench

Technologies discussed:
Azure Blockchain, Azure Service Bus

0618msdn_TempestaChain_v4_22-27.indd 22 5/7/18 11:33 AM

http://www.aka.ms/abcworkbench
http://www.msdn.com/magazine/mt84565
http://www.msdn.com/magazine/mt84565
http://www.aka.ms/workbenchintro

23June 2018msdnmagazine.com

Azure Blockchain Workbench provides code assets and ARM
template-driven deployment for all the scaffolding needed for block-
chain POCs, including the blockchain network, a gateway API, a
responsive Web application, Azure Active Directory integration,
Azure Key Vault integration, a SQL DB configured for collecting
on-chain data, and a set of supporting services for data hashing
and signing. The tool also makes it possible to create a Web front
end without writing any code. It uses metadata provided for smart
contracts to dynamically deliver a contextual UX for participants.
Because the framework populates SQL DB as an off-chain store,
it enables an organization to leverage existing skills and tools to
light up additional capabilities.

The result: Azure Blockchain Workbench reduces time and cost
for proof-of-concept (POC) projects. It enables customers to focus
on creating innovative applications that demonstrate the potential
of blockchain, by spending less time and resources on integration
tasks that are required to stand up a basic POC.

Azure Blockchain Workbench is available on the Azure Market
place (aka.ms/tryworkbench), and a video of Workbench in action is
available by the Microsoft Mechanics team at aka.ms/workbenchdemo.

Deploy Azure Blockchain Workbench
The deployment of Azure Blockchain Workbench requires the
following prerequisite steps:

1. �An Azure Active Directory (Azure AD) tenant to host
the necessary Azure AD and Key Vault apps.

2. �Registration of an Azure AD app and a Key Vault val-
ue to be referenced during the deployment of Azure
Blockchain Workbench.

You may want to create a new Azure AD tenant for setting
up test users or registering applications in a different Azure AD
tenant than your corporate Azure AD tenant. Detailed instruc-
tions on these configuration steps are reported in the official Azure
Blockchain Workbench documentation at aka.ms/workbenchdocs.

Once the prerequisite steps have been completed, the Work-
bench can be deployed. Sign in to the Azure portal and add a
new resource from the Azure Marketplace, shown in Figure 1.
Search for and select Azure Blockchain Workbench to start the
provisioning process.

This solution template is designed to ease deployment and
integration of the services needed to build an application on a
blockchain network. With a handful of user inputs and a single-
click deployment through the Azure portal, you can deploy a
blockchain ledger along with the relevant Azure services needed

to build an end-to-end blockchain
application, packaged with a sample
Web UI. The generated application
includes a Web application, REST
API, off-chain storage and the like.
Rather than spending hours build-
ing out and configuring the services
needed to integrate with a block-
chain network, the Azure team has
automated these time-consuming
pieces so you can focus on building

out your scenarios. Through the Azure Blockchain Workbench Web
application, you can generate an end-to-end UX for your business
workflows based on smart contracts.

Provisioning Azure Blockchain Workbench requires six steps,
with the first two establishing configuration parameters, and the
next two addressing network capacity and monitoring. Step 1
requires some basic settings, depicted in Figure 2, which include:

• �A unique identifier as a prefix for naming all Azure resources
provisioned as part of this template.

• �The admin username for all provisioned virtual machines (VMs).
• �An SSH public key used for connecting to the VMs. Copy

and paste an RSA public key in the single-line format
(starting with “ssh-rsa”) or the multi-line PEM format. You
can generate SSH keys using ssh-keygen on Linux and
macOS, or PuTTYGen on Windows.

• �A password to protect access to the database included as
part of the Workbench deployment.

• �The Azure subscription you wish to use for your deployment.
Remember, use of Azure Blockchain Workbench is free of
any license cost, but you pay for the provisioned Azure com-
puting, storage and network resources.

Figure 2 Getting Started Provisioning Azure Blockchain Workbench

Figure 1 The Azure Blockchain Workbench in the Azure Marketplace

0618msdn_TempestaChain_v4_22-27.indd 23 5/7/18 11:33 AM

http://www.msdnmagazine.com
http://www.aka.ms/tryworkbench
http://www.aka.ms/workbenchdemo
http://www.aka.ms/workbenchdocs

msdn magazine24 Blockchain

• �The Resource group to use to group all these resources
together. I recommend creating a new resource group for
your Blockchain Workbench solution.

• �The region to which you wish to deploy the resources.
Step 2 requires you to have completed the prerequisite steps of

registration of the blockchain client app in Azure AD, as you’ll need
the Registration Application ID and key to enter when requested.
You also need to specify the Tenant domain name obtained as part
of the registration of the client app in Azure AD.

In Step 3 you can specify the number of nodes in the provisioned
blockchain ledger and the size of the allocated VMs. Step 4 is for
optionally opting in to the Operations Management Suite (OMS)
for monitoring the deployed solution.

Steps 5 and 6 are simply a summary of the resources being pro-
visioned and your acknowledgment that you understand that there
is a cost implication. Once the deployment of the Workbench has
completed, you’ll see a new Resource Group with the specified
name. Some resources deployed here, such as Application Insights,
will allow you to get more information about the state of the Work-
bench, including details about the deployed VMs and networks.

As I noted earlier, Azure Blockchain Workbench leverages Azure
AD for authentication, access control and workflow persona iden-
tification. Only users specified in the referenced Azure AD will be
able to authenticate and use the deployed resources. In addition,
users must be associated with a specific user group in order to
interact and perform actions. It’s therefore necessary to manage
user accounts interacting with Azure Blockchain Workbench and
assign them the required permissions.

Deploying a Smart Contract
Once deployed, you can access Azure Blockchain Workbench
by navigating to its URL. You’ll see an Azure AD-backed login
experience where you can enter your work or personal Microsoft
account credentials to access the application.

You can now start leveraging smart contracts, which contain
business logic that drives different scenario flows. This approach
provides the immutability, deterministic execution and trans-
parency required in untrusted environments. Smart contracts
are written in blockchain stack-specific languages. For example,
Solidity is used for Ethereum, while Go is used for Hyperledger
Fabric. A smart contract is deployed to all nodes on the blockchain.
During execution, the information it conveys is also replicated to
all the nodes on the network.

The main goal of Azure Blockchain Workbench is to stand up
the scaffolding around the blockchain application, so users can
focus on creating the smart contract-based business logic. Once
a smart contract is instantiated in the Workbench, it’s written to
the blockchain, and subsequent updates to the smart contract
are recorded on the blockchain. After the Azure Blockchain
Workbench administrator has deployed smart contracts and com-
pleted user assignments for the smart contracts, other users can
interact with the blockchain application and engage in the smart
contract workflows.

Let’s start by deploying any of the existing demo smart contracts.
After signing in successfully, you should see an Admin link on the
top right. Click on the Admin link to access the Administrator
Dashboard. There are currently three actions available to the
Administrator in the Workbench. From here you can assign users,
deploy demo contracts, and deploy custom contracts.

Clicking on Deploy Demo Contract in the Administrator
Dashboard brings you to a list of all the demo contracts that can be
provided. The current release of Blockchain Workbench contains a
set of demo smart contracts and configuration files to get you started.

contract LexingtonBase {
 event LexingtonContractCreated(string contractType, address originatingAddress);
 event LexingtonContractUpdated(string contractType, string action,
 address originatingAddress);

 string internal ContractType;

 function LexingtonBase(string contractType) internal {
 ContractType = contractType;
 }

 function ContractCreated() internal {
 LexingtonContractCreated(ContractType, msg.sender);
 }

 function ContractUpdated(string action) internal {
 LexingtonContractUpdated(ContractType, action, msg.sender);
 }
}

Figure 3 LexingtonBase Contract

contract AssetTransfer is LexingtonBase('AssetTransfer')
{
 enum AssetState { Created, Active, OfferPlaced, PendingInspection,
 Inspected, Appraised,
 NotionalAcceptance, BuyerAccepted, SellerAccepted, Accepted,
 Complete, Terminated }
 address public Owner;
 string public Description;
 uint public AskingPrice;
 AssetState public State;

 address public Buyer;
 uint public OfferPrice;
 address public Inspector;
 address public Appraiser;

 function AssetTransfer(string description, uint256 price)
 {
 Owner = msg.sender;
 AskingPrice = price;
 Description = description;
 State = AssetState.Active;
 ContractCreated();
 }
}

Figure 4 Asset Transfer Smart Contract

Smart contracts are written
in blockchain stack-specific

languages. For example, Solidity
is used for Ethereum, while Go is

used for Hyperledger Fabric.

0618msdn_TempestaChain_v4_22-27.indd 24 5/7/18 11:33 AM

Untitled-4 1Untitled-4 1 5/2/18 12:15 PM5/2/18 12:15 PM

www.gdpicture.com

msdn magazine26 Blockchain

The Workbench documentation provides more information about the
specific scenarios and a step-by-step walk-through of the UI. There
are also detailed instructions on how the demo smart contracts and
associated configuration files were created, and how to set up the
right user accounts in Azure AD to enable this scenario.

Uploading a Custom Contract
You can also create custom contracts in any of the programming
languages supported by the blockchain platform of reference, and
deploy them in Azure Blockchain Workbench. All Azure Blockchain
Workbench requires is three files that define business logic, interac-
tions and visualizations of the implemented workflows. These are:

Smart Contract: To begin, you must create a smart contract
that contains the business logic for the scenario. In the following
example, the smart contract is targeting the Ethereum blockchain,
so the contracts are written in the Solidity programming language.

Configuration: In the configuration file, users map properties,
actions and blockchain protocol information for the smart con-
tract. You also define what parameters
are required from the participants for
the instantiation and actions on the
smart contract.

UI Configuration: In the config-
uration UI files, you define the UI for
role-based access control at each state
of the smart contract, such as restrict-
ing which personas can take specific
actions. In this file, the user maps states
and personas, and specifies state defini-
tions, percentage complete at each state
of the contract, and eligible actions at
each state.

Smart Contract Creation
The contract definition contains a few
components that must be specified to
work with Azure Blockchain Workbench.
Before defining the contract details
specific to the scenario such as states,
participants and the functions that
describe the logic behind each action,
you have to implement a LexingtonBase
contract. The actual contract with the
business logic for the business scenario
will inherit from the LexingtonBase
contract (which is equivalent to a class
in C#), as shown in Figure 3.

Each contract should have a state that
represents the current state of the con-
tract, addresses for participants involved
in the smart contract, data that’s stored
in the contract, functions defining
the business logic for different actions
and a constructor for when the smart
contract is instantiated. Figure 4

provides an example of the constructor and properties of the
Asset Transfer smart contract.

Be sure that your class name and constructor name match. You
can find the sample source code in Solidity language for this smart
contract, along with the JSON configuration files, on my GitHub
repository at bit.ly/2HJPcET.

Configuration File Creation
The configuration file defines the main properties and parameters
for the smart contract. This includes listing out all properties and
types, as well as defining a constructor indicating what parameters
the user needs to input to instantiate the smart contract. Figure 5
shows an example of the Asset Transfer properties and constructor
from the configuration file.

In addition, the user must enumerate and provide detail for all
possible actions, including specifying input parameters for each
action. Figure 6 shows an example of the MakeOffer action speci-
fication from the Asset Transfer configuration file, which requires

the user to input an inspector, appraiser
and an offer price.

Last, include the blockchain config-
uration information, as follows:

"Chains": {
 "Ethereum": {
 "Type": "Ethereum",
 "Version": "1.0",
 "Location": "AssetTransfer.sol",
 "TypeName": "AssetTransfer",
 "ActionOverrides": {},
 "PropertyOverrides": {}
 }
 }

UI Configuration File Creation
Users define the UI details for each
action in the UI configuration file. This
includes details on the users, such as the
initiator or participant role and persona
mapping, state mappings, as well as a
constructor indicating text to be dis-
played when a user wants to instantiate
the smart contract. Figure 7 shows an
example of the Asset Transfer prop-
erties and constructor from the UI
configuration file.

In addition, the user should enu-
merate all possible states and include
details for each state specifying actions
that can be taken at each step per per-
sona, as well as a percentage-complete
value to give users a visualization of
progress through the smart contract.
For example, the Asset Transfer con-
tract UI configuration file shows that
once the state shows an offer has been
placed, only owners and buyers can
take specified actions, as shown in the
code in Figure 8.

"MakeOffer": {
 "Parameters": {
 "inspector": {
 "Type": "user"
 },
 "appraiser": {
 "Type": "user"
 },
 "offerPrice": {
 "Type": "money"
 }
 }
 },

Figure 6 MakeOffer Action Specification

"Properties": {
 "State": {
 "Type": "state"
 },
 "Owner": {
 "Type": "user"
 },
 "Description": {
 "Type": "string"
 },
 "AskingPrice": {
 "Type": "money"
 },
 "Buyer": {
 "Type": "user"
 },
 "OfferPrice": {
 "Type": "money"
 },
 "Inspector": {
 "Type": "user"
 },
 "Appraiser": {
 "Type": "user"
 }
 },
"Constructor": {
 "description": {
 "Type": "string"
 },
 "price": {
 "Type": "money"
 }
 },

Figure 5 Asset Transfer Properties and Constructor

0618msdn_TempestaChain_v4_22-27.indd 26 5/7/18 11:33 AM

http://www.bit.ly/2HJPcET

msdnmagazine.com

Once you’ve created your custom smart contract and associated
configuration files, the next task is to deploy the smart contract. After
selecting Upload Custom Contract in the Administrator Dashboard
of Azure Blockchain Workbench, you’ll see a page to upload your
custom contract and configuration files. There are three files that
you need to provide. Select the smart contract file and the two con-
fig files created earlier, as indicated in the Upload Contract screen.

User Assignment
Once a smart contract (demo or custom) is deployed, users with
initiator personas can create new contract instances. To create an
instance of a particular contract, the user must have a persona as-
sociated with that contract. Depending
on the specification of the smart con-
tract, not every persona may have rights
to create a contract. As an administra-
tor, you can assign a user to a contract
and specify their role (the persona) in
the business process. Note that before
an administrator can perform any user
assignment actions, there must be at
least one contract (demo or custom)
deployed. Once a contract is uploaded,
the next step is to complete the user
assignment for the contract. Administra-
tors can assign users to smart contracts
from the User Assignment screen in
the Azure Blockchain Workbench
Administrator Dashboard.

Once assigned to contracts, users can
participate in the smart contract work-
flows by signing in to Azure Blockchain
Workbench to create contracts. Say that
the user wants to generate a new asset
transfer. He or she must create a new con-
tract by clicking Create New Contract
on the upper right of the view and enter
the details for the contract (this view will
vary based on your smart contract) and
submit. The screen is automatically gen-
erated, based on the metadata provided
as part of the Smart Contract definition.

After a contract instance is created,
a user can drill down into the details to
view available actions, given the current
state of the contract.

Extending Azure
Blockchain Workbench
At the core of Azure Blockchain Work-
bench is Azure Service Bus, enabling
an extensible and pluggable model that
allows multiple distributed ledger tech-
nologies, storage and database offerings
to be used as part of the blockchain

solution. There are also opportunities to integrate other services with
the Workbench to extend functionality, such as with Azure Logic Apps,
Web APIs, Notification Hubs and the like. Off-chain storage of data
will allow for post-processing storage and analytics scenarios, with
options such as with Power BI, Azure Machine Learning, HD Insight,
Azure Data Lake and other services where contract data is shared.

Blockchain has the potential to extend digital transformation
beyond a company’s walls and into the processes it shares with
suppliers, customers and partners. As I’ve shown, at its core a
blockchain is both a computing and data structure that can be used
to create a digital transaction ledger that, instead of resting with
a single provider, is shared among a distributed network of com-

puters. The result is a more transparent
and verifiable system that will change
the way you think about exchanging
value and assets, enforcing contracts,
and sharing data.

Microsoft is committed to bringing
blockchain to the enterprise and bring-
ing the full benefits of Azure to bear for
developers and organizations looking
to build distributed applications. The
goal is to help companies thrive in this
new era of secure, multi-party compu-
tation by delivering scalable platforms
and services that any company—from
ledger startups and retailers to health
providers and global banks—can use
to improve shared business processes.
Azure Blockchain Workbench is part of
an ecosystem of services in Azure, along
with the announced Azure Confidential
Computing and the Confidential Con-
sortium Blockchain Framework, that
helps bridge the gap between the block-
chain world and enterprise requirements
for governance, security and scalability.
Watch this space for additional devel-
opment in the near future!	 n

Stefano Tempesta is a Microsoft Regional Director
and MVP, as well as chapter leader for CRMUG in
Switzerland, the largest community of Dynamics
365/CRM experts in the world. Tempesta is
an instructor of courses about Dynamics 365,
blockchain and machine learning, and a reg-
ular speaker at international IT conferences,
including Microsoft Ignite and Tech Summit. He
founded Blogchain Space (blogchain.space), a blog
about blockchain technologies, writes for MSDN
Magazine and MS Dynamics World, and pub-
lishes machine learning experiments on the Azure
AI Gallery (gallery.azure.ai).

Thanks to the following Microsoft technical
experts for reviewing this article:
Marc Mercuri, JT Rose

"OfferPlaced": {
 "PercentComplete": 30,
 "Style": "Success",
 "Actions": {
 "Owner": {
 "AcceptOffer": {},
 "Reject": {},
 "Terminate": {}
 },
 "Buyer": {
 "RescindOffer": {}
 }
 }
 }

Figure 8 OfferPlaced Code

"InitiatingRoles": [
 "Admin",
 "User"
],
 "Personas": {
 "Owner": {
 "Role": "Initiator",
 "IsInitiator": true,
 "PropertyMapping": "Owner"
 },
 "Buyer": {
 "Role": "Participant",
 "PropertyMapping": "Buyer"
 },
 "Appraiser": {
 "Role": "Participant",
 "PropertyMapping": "Appraiser"
 },
 "Inspector": {
 "Role": "Participant",
 "PropertyMapping": "Inspector"
 }
 },
 "StateProperty": "State",
 "StateMapping": {
 "Created": 0,
 "Active": 1,
 "OfferPlaced": 2,
 "PendingInspection": 3,
 "Inspected": 4,
 "Appraised": 5,
 "NotionalAcceptance": 6,
 "BuyerAccepted": 7,
 "SellerAccepted": 8,
 "Accepted": 9,
 "Complete": 10,
 "Terminated": 11
 },
"Constructor": {
 "DisplayName": "Create Asset Transfer",
 "Description": "Description of asset transfer"
 },

Figure 7 InitiatingRoles

0618msdn_TempestaChain_v4_22-27.indd 27 5/7/18 11:33 AM

http://www.msdnmagazine.com
http://www.blogchain.space
http://gallery.azure.ai

TX Text Control
Automate your reports and create beautiful documents in
Windows Forms, WPF, ASP.NET and Cloud applications.
Text Control Reporting combines powerful reporting features with an easy-to-use,
MS Word compatible word processor. Users create documents and templates
using ordinary Microsoft Word skills.

Download a free trial at
www.textcontrol.comwww.textcontrol.com

© 2018 Text Control GmbH. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective owners.

TX Text Control .NET Server for ASP.NET
Complete reporting and word processing for ASP.NET Web Forms and MVC

Give your users a WYSIWYG, MS Word compatible, HTML5-based,
cross-browser editor to create powerful reporting templates and
documents anywhere.

Text Control Reporting combines the power of a reporting tool and an
easy-to-use WYSIWYG word processor - fully programmable and
embeddable in your application.

Replacing MS Office Automation is one of the most typical use cases.
Automate, edit and create documents with Text Control UI and non-UI
components.

Untitled-6 2 1/3/18 1:21 PM

http://www.textcontrol.com

TX Text Control
Automate your reports and create beautiful documents in
Windows Forms, WPF, ASP.NET and Cloud applications.
Text Control Reporting combines powerful reporting features with an easy-to-use,
MS Word compatible word processor. Users create documents and templates
using ordinary Microsoft Word skills.

Download a free trial at
www.textcontrol.comwww.textcontrol.com

© 2018 Text Control GmbH. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective owners.

TX Text Control .NET Server for ASP.NET
Complete reporting and word processing for ASP.NET Web Forms and MVC

Give your users a WYSIWYG, MS Word compatible, HTML5-based,
cross-browser editor to create powerful reporting templates and
documents anywhere.

Text Control Reporting combines the power of a reporting tool and an
easy-to-use WYSIWYG word processor - fully programmable and
embeddable in your application.

Replacing MS Office Automation is one of the most typical use cases.
Automate, edit and create documents with Text Control UI and non-UI
components.

Untitled-6 3 1/3/18 1:21 PM

http://www.textcontrol.com

msdn magazine30

We work on a team that focuses on data and analytics for
large companies that want to implement or migrate their solu-
tions to the cloud. These efforts come with the obvious work of
optimizing and reengineering applications to various degrees to
ensure they take advantage of what the cloud offers. As great as
those efforts can be for the application itself, there are additional
challenges for organizations just starting their cloud journey, as
they must also do all of the work that goes along with extending
their operational capabilities to the cloud. And, as new technol-
ogies emerge and evolve, these must be folded into the existing
operational infrastructure, as well. This is one of the challenges
that exists with Spark- and Apache Hadoop-based solutions. Yes,
Apache Ambari is there to provide a nice dashboard and has an
API to expose metrics, but many organizations already have an
investment in and a good understanding of other monitoring
and dashboarding solutions, such as Azure Application Insights.

Imagine a WebJob that pulls messages from Azure Event Hubs,
does some initial validation, and then drops them into Azure Stor-
age, at which point that data is processed through several Spark
jobs, as shown in Figure 1. The goal is to have a single runtime
dashboard that can provide information that shows not only what’s
happening, but also process- and business-specific information
while it’s in flight. Additionally, it would be great to be able to track
the flow of that information as a holistic process and see details on
its constituent processes.

Sure, you can see default metrics for WebJobs in Application
Insights and some information from the Spark jobs in Ambari—
and roll them all up with Azure Log Analytics for post hoc insights.
However, we don’t want to see two separate processes with four
steps each. We want to see the process as a whole and we want run-
time insights and runtime alerts.

In this article, we’ll walk through considerations and planning
for bringing the full project together using Application Insights.
Additionally, we’ll be using the Azure Databricks flavor of Spark
as it has a nice set of features that help us more easily develop and
operationalize our workflow.

Planning for Application Insights Telemetry
We won’t be covering core concepts, but for a primer on these con-
cepts take a look through the online documentation at bit.ly/2FYOCyp.
Also, Victor Mushkatin and Sergey Kanzhelev wrote a good article
about optimizing telemetry data collection, “Optimize Telemetry

A ZURE DATABR IC KS

Monitoring
Databricks Jobs with
Application Insights
Joseph Fultz and Ryan Murphy

This article discusses:
•	Planning for Application Insight telemetry

•	Adding Applications Insight to Azure Databricks Clusters

•	Instrumenting Databricks job code

•	Configuring analytics and alerts

Technologies discussed:
Application Insights, Azure Databricks

0618msdn_FultzBricks_v3_30-37.indd 30 5/7/18 11:21 AM

http://www.bit.ly/2FYOCyp

31June 2018msdnmagazine.com

with Application Insights” (msdn.com/magazine/mt808502). Here, we’ll
focus on organizing our notebooks and jobs to facilitate proper
tracking in the form of the operation, event and data we send from
our Databricks jobs.

In Databricks, you can define a job as the execution of a note-
book with certain parameters. Figure 2 illustrates a couple of basic
approaches to organizing work in a Databricks Notebook.

Figure 2 shows two simple possibilities in which one job is defined
as a single notebook with a number of code blocks or functions that
get called while the other job displays a control notebook that orches
trates the execution of child notebooks, either in sequence or in
parallel. This is not, by any means, the only organization that can be
used, but it’s enough to help illustrate how to think about correlation.
How you go about organizing the notebooks and code is certainly a
worthwhile topic and is highly variable depending on the size and
nature of the job. For a little more depth on Databricks Notebook
Workflow, take a look at the blog post, “Notebook Workflows: The
Easiest Way to Implement Apache Spark Pipelines” (bit.ly/2HOqvTj).

Notice that notebook organization has been aligned with discrete
operations that can be used to group event reporting in Application
Insights. In Application Insights, correlation is accomplished via
two properties: Operation Id and Parent Operation Id. As seen in
Figure 2, we wish to capture all of the discrete events and metrics
within a code block or separate notebook under the context of a

single operation, which is done by using a distinct operation Id
for each section. Additionally, we’d like to see those separate large
operation blocks as part of a whole, which we can do by setting
the context’s parent operation Id to the same value for all metrics
reporting in each operation. The parent operation Id can also be
passed in from an outside trigger for the job, which would then
provide a mechanism to link all of the discrete operations from
the previous process and the Azure Databricks job as part of a
single gestalt operation identified by the parent operation Id in
Application Insights.

We’ve depicted a couple scenarios here. The key point is that you
should consider how you want to organize your operations, events
and metrics as part of the overall job organization.

Adding Application Insights to the Environment
In order to get the environment ready, you need to install the Python
Application Insights library on the cluster, grab some configuration
settings and add a bit of helper code. You can find Application
Insights on pypi (pypi.python.org/pypi/applicationinsights/0.1.0).
To add it to Databricks, simply choose a location in your workspace
(we created one named Lib) and right-click and choose Create,
then Library. Once there, you can enter the pypi application name
and Databricks will download and install the package. The last
thing you’ll have to decide is whether or not you want to attach the
library to all clusters automatically.

In the attempt to reduce the amount of code to add to each note-
book, we’ve added an include file that has a couple of helper functions:

def NewTelemetryClient (applicationId, operationId="",
 parentOperationId=""):
 tc = TelemetryClient(instrumentationKey)
 tc.context.application.id = applicationId
 tc.context.application.ver = '0.0.1'
 tc.context.device.id = 'Databricks notebook'
 tc.context.operation.id = operationId
 tc.context.operation.parentId = parentOperationId
 return tc

This code contains a factory function named NewTelemetry
Client to create a telemetry client object, set some of the properties
and return the object to the caller. As you can see, it takes a parent
operation Id and an operation Id. This initializes the object, but
note that if you need to change the operation Id, you’ll have to
do it in the job notebook directly. Also worth noting is that the
TelemetryClient constructor takes an instrumentation key, which
can be found in the properties blade of the Application Insights
instance you wish to use. We’ve statically assigned a few values
that are needed for the example, but the TelemetryClient context
object has many child objects and properties that are available. If

Figure 1 Single Solution, Separate Processes, Separate Steps

Event Hubs WebJobs HDInsight Spark

St
ep

 0

St
ep

 1

St
ep

 2

St
ep

 3

St
ep

 0

St
ep

 1

St
ep

 2

St
ep

 3

Figure 2 Basic Organization Options for a Databricks
Notebook Job

Control Notebook
Parent Operation Id

Operation Id A

Operation Id B

Operation Id C

Nested Notebooks Job

Job Scheduler

Pa
re

nt
 O

pe
ra

tio
n

Id

Operation Id A
Cell/Block 1 ~

Operation Id B
Cell/Block 2 ~

Operation Id C
Cell/Block 3 ~

Single Notebook Job

Job Scheduler

Notice that notebook
organization has been aligned
with discrete operations that
can be used to group event

reporting in Application Insights.

0618msdn_FultzBricks_v3_30-37.indd 31 5/7/18 11:21 AM

http://www.msdnmagazine.com
http://www.msdn.com/magazine/mt808502
http://www.bit.ly/2HOqvTj

msdn magazine32 Azure Databricks

you needed to initialize other values, this would be the place to do
it. Separating out the factory function keeps the clutter down and
also eases implementation for the developer converting the note-
book from a sandbox prototype kind of code to an enterprise job
kind of implementation.

With the library added to the cluster and the setup notebook
defined, we simply need to add a line at the top of the job notebook
to run the setup and then create a starter telemetry object. We’ll
issue a %run command at the top of the notebook:

%run ./AppInsightsSetup

In the subsequent cell we’ll simply instantiate a new instance of
the TelemetryClient object.

Figure 3 shows the code from the prediction example we
created. There are several things to take note
of here. First, we’re passing in a number of
variables to the notebook that are sent as
part of the job initialization, which is done
via the dbutils.widgets object provided as
part of the Databricks environment. Because
we need a couple of IDs for the parent oper
ation and the discrete operation, we’ll go
ahead and check those and, if they’re empty,
create and assign new UUIDs. Assigning the
arbitrary IDs in this case is mostly to make
it easier to run interactively. However, other
approaches could be taken, such as encapsu-
lating the job notebook’s code into a series of

functions and running tests by calling the parent function with a
specific ID. Both work sufficiently well for our purposes here. The
last thing we assign is an operation name, which eventually shows
up in Application Insights as something you can use to view and
group by, as seen in Figure 4.

Looking at Figure 3, you can see that the operation name was
assigned the value of Train Model. Figure 4 depicts it in a grid of
data after it was chosen as the grouping mechanism for the data. As
we run more jobs through and assign differing operation names,
we’ll be able to see those show up in the view, as well. With those
things in place, we’re in good shape to work on instrumenting our
job code to capture events and metrics.

Instrumenting Databricks Job Code
Let's walk through an example that uses Application Insights to mon-
itor a typical data-engineering job in Databricks. In this scenario,
we’re using publicly available data from Fannie Mae (bit.ly/2AhL5sS)
and will take raw source data on single-family loan performance
and prepare it for reporting and analytics. Several steps are
required to properly prepare the data. With each step, we’ll capture
information like record count and elapsed time and record these
in Application Insights. Figure 5 illustrates the high-level steps in
the job. We’ve settled on using the titles across the top of Figure 5
to identify our separate operations.

Additionally, we’ve established a set of measurements with sim-
ilar names (for example, Write Duration, Read Duration, Record

baseRatingsFile = dbutils.widgets.get("baseRatingsFile")
newRatingsFile = dbutils.widgets.get("newRatingsFile")
trainOperationId = dbutils.widgets.get("trainOperationId")
parentOperationId = dbutils.widgets.get("parentOperationId")
maxIterations = int(dbutils.widgets.get("maxIterations"))
numFolds = int(dbutils.widgets.get("numFolds"))
numUserRecommendations = int(
 dbutils.widgets.get("numUserRecommendations"))
predictionFilePath = dbutils.widgets.get("predictionFilePath")

if trainOperationId == "":
 trainOperationId = NewCorrelationId()

if parentOperationId == "":
 parentOperationId = NewCorrelationId()

#setup other needed variables
telemetryClient = NewTelemetryClient("PredictionExample",
 trainOperationId, parentOperationId)

telemetryClient.context.operation.name = "Train Model"

Figure 3 Notebook Initialization Code

Figure 5 Data Engineering Job Flow

Source Data

Acquire and
Consolidate

Schematize
and Clean

Acquisition Transformation

Filter and
Aggregate

Persist to
RDBMS

Persist to Long-term Store

Persistence

Figure 4 Operation Name in Application Insights

The fully prepared data set is
persisted to long-term Blob
Storage and an aggregated
subset is sent to our RDBMS,

Azure SQL Database.

0618msdn_FultzBricks_v3_30-37.indd 32 5/7/18 11:21 AM

http://www.bit.ly/2AhL5sS

33June 2018msdnmagazine.com

Count) that will be reported in differently named events. This will
be important in the analytics as we look at specific metrics and then
view them by operation or event. As shown in Figure 5, first we
ingest multiple data files, then consolidate and transform them,
and finally write to two target locations. The fully prepared data set
is persisted to long-term Blob Storage and an aggregated subset is
sent to our RDBMS, Azure SQL Database. Of course, within each
high-level step there are several sub-steps. Specifically, we import
four distinct files, merge them into a single Spark DataFrame, and
write the raw, consolidated dataset to Blob Storage. The consolidated
data is then read back out of Blob storage into a new DataFrame
for cleansing and transformation. To complete the transformation,
we subset the DataFrame (that is, narrow it to relevant columns
only), rename the columns to meaningful names, and replace null
values in the Servicer Name column. The final form of the data is
persisted in the Parquet file format. The last step in this example
persists the data to an Azure SQL Database.

For this Azure Databricks job example, we've taken the single
notebook approach with the steps programmed in separate code
cells. One parent operation Id is set for each run of the job. A
(child) operation Id applies to each operation within the job, and
we’ve defined Acquisition, Transformation and Persistence as these
operations. We track the events occurring for each operation,
recording timestamp, record count, duration and other parame-
ters in Application Insights at job runtime.

As in the earlier predictions example, we add the Python pack-
age “applicationinsights” to the cluster, run the setup notebook,
and instantiate a new instance of the TelemetryClient object. This
time we'll name the instance DataEngineeringExample and then

set the initial operation name to Acquisition, in order to prepare
for our first series of steps to acquire source data:

telemetryClient = NewTelemetryClient(
 "DataEngineeringExample", operationId, parentOperationId)
telemetryClient.context.operation.name = "Acquisition"

Next, we capture the current time and track our first event in
Application Insights, recording that the job has started:

import datetime

jobStartTime = datetime.datetime.now()
jobStartTimeStr = str(jobStartTime)

telemetryClient.track_event('Start Job', { 'Start Time': jobStartTimeStr,
 'perfDataFilePath':perfDataFilePath, 'perfDataFileNamePrefix' :
 perfDataFileNamePrefix, 'consolidatedDataPath':consolidatedDataPath,
 'transformedFilePath' : transformedFilePath, 'perfDBConnectionString':
 perfDBConnectionString, 'perfDBTableName': perfDBTableName})
telemetryClient.flush()

This is the code to set the current timestamp as the start time
for the job, and record it in our first Application Insights event.
First, we import the Python library datetime for convenient date
and time functions, and then set variable jobStartTime to the
current timestamp. It’s worth noting that the signature for the
track_event([eventName], [{props}], [{measurements}]) method
takes parameters for the event name, dictionary of properties, and
a dictionary of measurements. To that end, the timestamp variable
needs to be JSON-serializable to include it in the properties of the
telemetry event. So, we cast the jobStartTime object as a string and
put the value in a new variable jobStartTimeStr. In the next step,
we send our initial telemetry event with the track_event method,
passing it our custom event name Start Time along with several
parameters we selected to capture with this event. We've included
parameters for various file paths and connection strings that are
referenced in the job. For example, perfDataFilePath contains the
location of the source data files, and perfDBConnectionString con-
tains the connection string for the Azure SQL Database, where we'll
persist some of the data. This is helpful information in such cases
where we see a 0 record connect or have an alert set; we can take
a quick look at the telemetry of the related operation and quickly
check the files and/or databases that are being accessed.

Now we can proceed through the command cells in the note-
book, adding similar event-tracking code into each step, with
a few changes relevant to the inner steps of the job. Because it's
often helpful to use record counts throughout a data-engineering
job to consider data volume when monitoring performance and
resource utilization, we've added a record count measurement to
each tracked event.

Figure 6 shows a few basic data transformations, followed by
event-tracking for Application Insights. Inside the exception-
handling Try block, we perform three types of transformations at
once on the perfTransformDF DataFrame. We subset the DataFrame,
keeping only a select group of relevant columns and discarding the rest.
We replace nulls in the Servicer Name column with “UNKNOWN.”
And, because the original column names were meaningless (for
example, “_C0,” “_C1”), we rename the relevant subset of columns
to meaningful names like “loan_id” and “loan_age.”

Once the transformations are complete, we capture the current
timestamp in variable “end” as the time this step completed; count
the rows in the DataFrame; and calculate the step duration based

if notebookError == "":
 try:
 perfTransformedDF = perfTransformedDF['_c0','_c1','_C2','_C3','_C4', \
 '_C5','_C6','_C7','_C8','_C9', \
 '_C10','_C11','_C12','_C13'] \
 .fillna({'_C2':'UNKNOWN'}) \
 .withColumnRenamed("_C0", "loan_id") \
 .withColumnRenamed("_C1", "period") \
 .withColumnRenamed("_C2", "servicer_name") \
 .withColumnRenamed("_C3", "new_int_rt") \
 .withColumnRenamed("_C4", "act_endg_upb") \
 .withColumnRenamed("_C5", "loan_age") \
 .withColumnRenamed("_C6", "mths_remng") \
 .withColumnRenamed("_C7", "aj_mths_remng") \
 .withColumnRenamed("_C8", "dt_matr") \
 .withColumnRenamed("_C9", "cd_msa") \
 .withColumnRenamed("_C10", "delq_sts") \
 .withColumnRenamed("_C11", "flag_mod") \
 .withColumnRenamed("_C12", "cd_zero_bal") \
 .withColumnRenamed("_C13", "dt_zero_bal")

 print("nulls replaced")
 end = datetime.datetime.now()

 rowCount = perfTransformedDF.count()
 duration = round((end - start).total_seconds(), 1)
 telemetryClient.track_event('Transformation Complete', {}, \
 { 'Records Transformed': rowCount, \
 'Transformation Duration':duration })
 telemetryClient.flush()
 except Exception as e:
 notebookError = str(e)
 telemetryClient.track_exception(e,{"action":"column transform"},{})
else:
 print("command skipped due to previous error")

Figure 6 Data Transformation Event-Tracking Code

0618msdn_FultzBricks_v3_30-37.indd 33 5/7/18 11:21 AM

http://www.msdnmagazine.com

Yesterday’s Knowledge;
Tomorrow’s Code!
Visual Studio Live! (VSLive!™) is celebrating 25 years of coding innovation

in 2018! From August 13 – 17, developers, software architects, engineers,

designers and more will come together at Microsoft Headquarters for 5 days

of unbiased education on the Microsoft Platform. Hone your skills in Visual
Studio, ASP.NET Core, AngularJS, SQL Server, and so much more. Plus, you

can eat lunch with the Blue Badges, rub elbows with Microsoft insiders,

explore the campus, all while expanding your ability to create better apps!

August 13 – 17, 2018
Redmond, WA

Microsoft
Headquarters

DEVELOPMENT TOPICS INCLUDE:

ASP.NET / Web Server Azure / Cloud Software Practices

ALM / DevOps UWP (Windows)Database & Analytics

Xamarin Angular / JavaScriptVisual Studio / .NET

SUPPORTED BY

magazine

EVENT SPONSOR PRODUCED BYSILVER SPONSORPLATINUM SPONSOR

1993 - 2018

$400 Super Early Bird
Savings Ends June 8!
Use promo code MSDN

vslive.com/redmond

Untitled-4 2 4/18/18 11:48 AM

https://www.vslive.com/redmond

vslive.com/redmondCONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

AGENDA AT-A-GLANCE Redmond

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework

Web
Client

Web
Server

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, August 13, 2018 (Separate entry fee required)

7:00 AM 8:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 12:00 PM
M01 Workshop: Build a Modern ASP.NET App in

the Cloud with a full CI/CD Pipeline in VSTS
- Brian Randell

M02 Workshop: Developer Dive into SQL Server 2016
- Leonard Lobel

M03 Workshop: Distributed Cross-Platform
Application Architecture

- Rockford Lhotka and Jason Bock
12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center
2:00 PM 5:30 PM M01 Workshop Continues M02 Workshop Continues M03 Workshop Continues
7:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, August 14, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Angular 101
- Deborah Kurata

T02 Xamarin: The Future of
App Development

- James Montemagno
T03 Cloud Oriented

Programming - Vishwas Lele
T04 Busting .NET Myths

- Jason Bock
T05 A DevOps Journey

- Abel Wang

9:30 AM 10:45 AM
T06 Write Object-Oriented
JavaScript with TypeScript

- Rachel Appel

T07 Netstandard: Reuse C#
Code Across Windows, Mac,

Linux, iOS, Android
- Rockford Lhotka

T08 Microservices with ACS
(Managed Kubernetes)

- Vishwas Lele
T09 Get Started with Git

- Robert Green
T10 DevOps for the SQL Server

Database - Brian Randell

10:45 AM 11:15 AM Sponsored Break - Visit Exhibitors - Foyer

11:15 AM 12:15 PM KEYNOTE: To Be Announced

12:15 PM 1:30 PM Lunch - McKinley / Visit Exhibitors - Foyer

1:30 PM 2:45 PM
T11 Angular Component

Communication
- Deborah Kurata

T12 Tips & Tricks for Xamarin
Development

- James Montemagno

T13 New SQL Server
2016 Security Features for
Developers - Leonard Lobel

T14 To Be Announced T15 Microsoft Session
To Be Announced

3:00 PM 4:15 PM
T16 Build Data Driven Web
Apps Using ASP.NET Core

- Rachel Appel
T17 [Flutter] - Tim Sneath T18 Introduction to Azure

Cosmos DB - Leonard Lobel
T19 Building A Development

Culture of Collaboration
- Justin Collier

T20 Microsoft Session
To Be Announced

4:15 PM 5:45 PM Microsoft Ask the Experts & Exhibitor Reception – Attend Exhibitor Demos

START TIME END TIME Visual Studio Live! Day 2: Wednesday, August 15, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 Assembling the Web -

A Tour of WebAssembly
- Jason Bock

W02 Mobile App Development
for the Web Developer

- Ben Hoelting

W03 - SQL Server 2017 -
Intelligence Built-in

- Scott Klein

W04 Azure DevOps with
VSTS, Docker, and K8

- Brian Randell
W05 Microsoft Session

To Be Announced

9:30 AM 10:45 AM
W06 Getting Pushy with

SignalR and Reactive Extensions
- Jim Wooley

W07 Cross-Platform App
Development Using Xamarin

and CSLA .NET
- Rockford Lhotka

W08 An Architect’s Guide to
Data Science - Becky Isserman

W09 Use Visual Studio to Scale
Agile in Your Enterprise
- Richard Hundhausen

W10 Microsoft Session
To Be Announced

11:00 AM 12:00 PM GENERAL SESSION: To Be Announced

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W11 Building Reactive Client

Experiences with RxJs
- Jim Wooley

W12 Radically Advanced
XAML: Dashboards, Timelines,

Animation, and More
- Billy Hollis

W13 Knockout: R vs Python for
Data Science - Becky Isserman

W14 Develop on Cadence,
Release on Demand

- Richard Hundhausen
W15 Microsoft Session

To Be Announced

2:45 PM 3:15 PM Sponsored Break - Exhibitor Raffle @ 2:55 pm (Must be present to win)

3:15 PM 4:30 PM
W16 Building Data-Centric

Single Page Apps with Angular
(2,4,5…) and Breeze

- Brian Noyes

W17 Programming with
the Model-View-ViewModel

Pattern - Miguel Castro
W18 Busy Developer’s Guide

to NoSQL - Ted Neward
W19 Visualizing the Backlog

with User Story Mapping
- Philip Japikse

W20 Data Science for
Developers - Aashish Bhateja

6:15 PM 9:00 PM Set Sail! VSLive’s Seattle Sunset Cruise - Advanced Reservation & $20 Fee Required

START TIME END TIME Visual Studio Live! Day 3: Thursday, August 16, 2018
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
TH01 The Whirlwind Tour

of Authentication and
Authorization with ASP.NET

Core - Chris Klug

TH02 Getting Started
Debugging C# Application

- Paul Sheriff
TH03 Leaders Are Made,
Not Born - Philip Japikse

TH04 Using The Microsoft
Cognitive Custom Vision

Service - Michael Washington

TH05 Lessons Learned from
Making Resilient Apps with
Azure Mobile App Services

- Matthew Soucoup

9:30 AM 10:45 AM TH06 Securing Angular Apps
- Brian Noyes

TH07 C# 7.x Like a Boss!
- Adam Tuliper

TH08 The Role of an Architect
- Ted Neward

TH09 Google Home Meets
.NET Containers on Google

Cloud - Mete Atamel
TH10 Microsoft Session

To Be Announced

11:00 AM 12:15 PM
TH11 JavaScript Patterns for

the C# Developer
- Ben Hoelting

TH12 I’ll Get Back to You:
Task, Await, and Asynchronous

Methods - Jeremy Clark

TH13 Demystifying
Microservice Architecture

- Miguel Castro

TH14 Building Business
Applications Using Bots
- Michael Washington

TH15 Microsoft Session
To Be Announced

12:15 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 3:15 PM
TH16 Utilizing the MVVM

Design Pattern in WPF
- Paul Sheriff

TH17 Getting to the Core of
the .NET Standard

- Adam Tuliper

TH18 Unit Testing Makes Me
Faster: Convincing Your Boss,

Your Co-Workers, and Yourself
- Jeremy Clark

TH19 Wash, Rinse, Repeat:
Writing Skills for Both Alexa
and Cortana - Christine Flora

TH20 Microsoft Session
To Be Announced

3:30 PM 4:45 PM
TH21 WPF Styles, Resources

and Templates, Oh My!
- Paul Sheriff

TH22 Building Apps with
Microsoft Graph and Visual

Studio - Robert Green
TH23 How to Interview a

Developer - Billy Hollis

TH24 The Complete Package:
Creating a Deployable Solution

for Microsoft Teams
- Christine Flora

TH25 Microsoft Session
To Be Announced

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, August 17, 2018 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: UX Design for Developers
- Billy Hollis

F02 Workshop: Web Developerment in 2018
- Chris Klug

Speakers and sessions subject to change

Untitled-4 3 4/18/18 11:48 AM

https://www.vslive.com/redmond
https://www.vslive.com/redmond
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine36 Azure Databricks

on start and end times. We send that telemetry to Application
Insights with the telemetryClient.track_event method using the
event name “Transformation Complete,” and we include measure
ments for records transformed and transformation duration.

We add some very basic exception handling into our notebooks
purely to illustrate tracking exceptions with Application Insights,
as well. Note within the except block in Figure 6 that if we catch an
exception, we’re going to call the track_exception method. We pass

the exception as the first parameter and the subsequent parame-
ters are the same types as in track_event, allowing you to record
as much information around the event as possible. One important
note to make here is that there’s currently no exception-handling
semantics for inline sql. So, it might be best to skip magics like %sql
for production jobs until support for exception handling is added.

The other steps in our data-engineering job, including opera-
tions for Acquisition and Persistence, follow the pattern seen in the

Transformation code for sending
telemetry events with custom mea-
surements to Application Insights.

Configuring Analytics
and Alerts
With the code in place to send the
telemetry, we turn to configuring
Application Insights to create live
dashboards, look through event and
correlated event details, and set up
alerts to inform and possibly take
action based on the event trigger.

Figure 7 depicts a few charts
that we’ve configured via the
Metrics Explorer blade and the
Metrics (preview) blade in Appli-
cation Insights and then pinned
to our Azure Portal Dashboard.

Take note of the right two quar-
tiles. The top right shows a grid of
durations grouped by the opera-
tion name that we reported the
telemetry under when we added
the tracking calls. The bottom right
shows a record count measure-
ment grouped by the event name
we used. Sure enough, “Persist to
SQL DB” is much lower than the
others, as this was the event that
wrote only a small, filtered subset
of our data to Azure SQL Data-
base. Choosing your operation
groupings, operation names, and
event names is an important part
of planning that pays off at this
point as you get to visualize and
report on the data in a way that
makes sense for how you think
about your operations.

The left two quartiles in Figure 7
show charts that were created with
the Metrics (preview), which has
a nice configuration UI, as well as
some additional functionality for
splitting the measurements based
on another property. In the top left

Figure 7 Application Insights Charts on Azure Dashboard

Figure 8 Event Search and Details

0618msdn_FultzBricks_v3_30-37.indd 36 5/7/18 11:21 AM

37June 2018msdnmagazine.com

you can see the record count, but we’ve split it so that this is reported
by Event Name, giving us a graph and data for the record count for
different events. Here we’re comparing record counts taken when the
source data was read to record counts taken later when consolidated
data was loaded into a DataFrame. This is an important feature since
Record Count might be a pretty common measurement across our
parent operation, but we’d like to see it at each operation or event.

If you see something in one of the operational graphs that
calls for some research, you can search through all the telemetry.
Figure 8 depicts the results of a search and a graph showing an
occurrence count over time in the left pane. In the right pane you
can look at all of the information recorded in the event. Recall the
track_event([name], [properties], [measurements]) signature. We’ve
pulled up the detail of a Persist to SQL DB event in which you can
see the custom properties at the top. In the middle, labeled Custom
Data, is where you can find the custom measurements that were
sent with the telemetry. At the bottom right are all of the Related
Items where you can easily navigate to all of the events that belong
to the operation or parent operation. In addition, there’s a line at
the bottom to see all available telemetry at the time of the event.
If you’ve standardized on Application Insights for your runtime

monitoring, this is a great tool for understanding the overall system
state and the operational context of an event. Having insight into
what’s going on broadly might help explain when record counts
are off or duration is askew.

The last thing we want to cover for Application Insights is the
ability to set up an alert. In Figure 9 you can see part of the alert
configuration. Like the other elements we looked at, the custom
information we sent in the events shows up here for us to choose
as criteria for alerting.

As you might expect, the alert can send an e-mail. However, it
can also call a WebHook, which makes for a nice and easy way to
take any other action you might desire. Azure Functions is a per-
fect fit for this setup and will allow you to create whatever custom
action you like. More interestingly, Application Insights is directly
integrated with Logic Apps. This enables native capability to inte-
grate and orchestrate actions across a wide variety of integrations
and Microsoft Azure. Thus, an Application Insights alert could
notify people while starting to take compensating and/or correc-
tive actions via Logic Apps orchestration, including actions and
integrations with downstream and upstream systems.

In Closing
We want to make sure we highlight the key bits of information.
Application Insights is not a Log Analytics solution. It integrates
with Azure Log Analytics, which provides post hoc analysis and
long-term log retention. Application Insights is for monitoring
and analytics of your runtime operations, giving you information,
insights and alerts about what’s happening now. Direct integration
with other Azure services and broad availability of platform SDKs
makes it a nice fit to help operationalize your Azure Databricks
jobs. As a result, monitoring for those jobs isn’t done in a silo, but
rather within the context of the full solution architecture. 	 n

Joseph Fultz is a cloud solution architect at Microsoft. He works with Microsoft
customers developing architectures for solving business problems leveraging
Microsoft Azure. Formerly, Fultz was responsible for the development and
architecture of GM’s car-sharing program (mavendrive.com). Contact him on
Twitter: @JosephRFultz or via e-mail at jofultz@microsoft.com.

Ryan Murphy is a solution architect living in Saint Louis, Mo. He’s been building
and innovating with data for nearly 20 years, including extensive work in the gam-
ing and agriculture industries. Currently, Murphy is helping some of the world’s
largest organizations modernize their business with data solutions powered by
Microsoft Azure Cloud. Follow him on Twitter: @murphrp.

Thanks to the following Microsoft technical expert for reviewing this article:
Darren BrustFigure 9 Setting Up an Alert on Metric

Having insight into what’s going
on broadly might help explain
when record counts are off or

duration is askew.

0618msdn_FultzBricks_v3_30-37.indd 37 5/7/18 11:21 AM

mailto:jofultz@microsoft.com
http://www.msdnmagazine.com
http://www.mavendrive.com
www.twitter.com/JosephRFultz
www.twitter.com/murphrp

msdn magazine38

The Windows Runtime has a relatively simple async model
in the sense that, like everything else in the Windows Runtime, it’s
focused on allowing components to expose async methods and
making it simple for apps to call those async methods. It doesn’t in
itself provide a concurrency runtime or even anything in the way
of building blocks for producing or consuming async methods.
Instead, all of that is left to the individual language projections.
This is as it should be and isn’t meant to trivialize the Windows
Runtime async pattern. It’s no small feat to implement this pattern
correctly. Of course, it also means that a developer’s perception of
async in the Windows Runtime is very heavily influenced by the
developer’s language of choice. A developer who has only ever used
C++/CX might, for example, wrongly but understandably assume
that async is a hot mess.

The ideal concurrency framework for the C# developer will be
different from the ideal concurrency library for the C++ developer.
The role of the language, and libraries in the case of C++, is to take

care of the mechanics of the async pattern and provide a natural
bridge to a language-specific implementation.

Coroutines are the preferred abstraction for both implementing
and calling async methods in C++, but let’s first make sure we
understand how the async model works. Consider a class with a
single static method that looks something like this:

struct Sample
{
 Sample() = delete;

 static Windows::Foundation::IAsyncAction CopyAsync();
};

Async methods end with “Async” by convention, so you might
think of this as the Copy async method. There might be a blocking
or synchronous alternative that’s simply called Copy. It’s conceiv-
able that a caller might want a blocking Copy method for use
by a background thread and a non-blocking, or asynchronous,
method for use by a UI thread that can’t afford to block for fear of
appearing unresponsive.

At first, the CopyAsync method might seem quite simple to call.
I could write the following C++ code:

IAsyncAction async = Sample::CopyAsync();

As you might imagine, the resulting IAsyncAction isn’t actually
the ultimate result of the async method, even though it’s the result
of calling the CopyAsync method in a traditional procedural
manner. The IAsyncAction is the object that a caller might use to
wait upon the result synchronously or asynchronously, depending
on the situation. Along with IAsyncAction, there are three other

C++

Effective Async with
Coroutines and
C++/WinRT
Kenny Kerr

This article discusses:
•	Concurrency

•	Coroutines

•	The thread pool

Technologies discussed:
Windows Runtime, ISO C++17, C++ Coroutines, C++/WinRT

0618msdn_KerrAsync_v5_38-45.indd 38 5/7/18 11:26 AM

39June 2018msdnmagazine.com

well-known interfaces that follow a similar pattern and offer dif-
ferent features for the callee to communicate information back
to the caller. The table in Figure 1 provides a comparison of the
four async interfaces.

In C++ terms, the interfaces can be expressed as shown in Figure 2.
IAsyncAction and IAsyncActionWithProgress can be waited

upon to determine when the async method completes, but these
interfaces don’t offer any observable result or return value directly.
IAsyncOperation and IAsyncOperationWithProgress, on the other
hand, expect the Result type parameter to indicate the type of result
that can be expected when the async method completes successfully.
Finally, IAsyncActionWithProgress and IAsyncOperationWith-
Progress expect the Progress type parameter to indicate the type
of progress information that can be expected periodically for
long-running operations up until the async method completes.

There are a few ways to wait upon the result of an async method.
I won’t describe them all here as that would turn this into a very
long article. While there are a variety of ways to handle async
completion, there are only two that I recommend: the async.get
method, which performs a blocking wait, and the co_await async
expression, which performs a cooperative wait in the context of

a coroutine. Neither is better than the other as they simply serve
different purposes. Let’s look now at how to do a blocking wait.

As I mentioned, a blocking wait can be achieved using the get
method as follows:

IAsyncAction async = Sample::CopyAsync();
async.get();

There’s seldom any value in holding on to the async object and
the following form is thus preferred:

Sample::CopyAsync().get();

It’s important to keep in mind that the get method will block
the calling thread until the async method completes. As such, it’s
not appropriate to use the get method on a UI thread because it
may cause the app to become unresponsive. An assertion will fire
in unoptimized builds if you attempt to do so. The get method is
ideal for console apps or background threads where, for whatever
reason, you may not want to use a coroutine.

Once the async method completes, the get method will return
any result directly to the caller. In the case of IAsyncAction and
IAsyncActionWithProgress, the return type is void. That might be
useful for an async method that initiates a file-copy operation, but
less so for something like an async method that reads the contents
of a file. Let’s add another async method to the example:

struct Sample
{
 Sample() = delete;

 static Windows::Foundation::IAsyncAction CopyAsync();
 static Windows::Foundation::IAsyncOperation<hstring> ReadAsync();
};

In the case of ReadAsync, the get method will properly forward
the hstring result to the caller once the operation completes:

Sample::CopyAsync().get();

hstring result = Sample::ReadAsync().get();

Assuming execution returns from the get method, the resulting
string will hold whatever value was returned by the async method
upon its successful completion. Execution may not return, for
example, if an error occurred.

The get method is limited in the sense that it can’t be used from
a UI thread, nor does it exploit the full potential of the machine’s
concurrency, since it holds the calling thread hostage until the async
method completes. Using a coroutine allows the async method
to complete without holding such a precious resource captive for
some indeterminate amount of time.

Handling Async Completion
Now that you have a handle on async interfaces in general, let’s
begin to drill down into how they work in a bit more detail.
Assuming you’re not satisfied with the blocking wait provided by
the get method, what other options are there? We’ll soon switch
gears and focus entirely on coroutines but, for the moment, let’s
take a closer look at those async interfaces to see what they offer.
Both the coroutine support, as well as the get method I looked at
previously, rely on the contract and state machine implied by those
interfaces. I won’t go into too much detail because you really don’t
need to know all that much about these, but let’s explore the basics
so they’ll at least be familiar if you do ever have to dive in and use
them directly for something more out of the ordinary.

Figure 1 A Comparison of Async Interfaces

Name Result Progress
IAsyncAction No No
IAsyncActionWithProgress No Yes
IAsyncOperation Yes No
IAsyncOperationWithProgress Yes Yes

namespace Windows::Foundation
{
 struct IAsyncAction;

 template <typename Progress>
 struct IAsyncActionWithProgress;

 template <typename Result>
 struct IAsyncOperation;

 template <typename Result, typename Progress>
 struct IAsyncOperationWithProgress;
}

Figure 2 The Async Interfaces Expressed in C++ Terms

The role of the language, and
libraries in the case of C++, is to
take care of the mechanics of
the async pattern and provide
a natural bridge to a language-

specific implementation.

0618msdn_KerrAsync_v5_38-45.indd 39 5/7/18 11:26 AM

http://www.msdnmagazine.com

msdn magazine40 C++

All four of the async interfaces logically derive from the IAsyncInfo
interface. There’s very little you can do with IAsyncInfo and it’s
regrettable that it even exists because it adds a bit of overhead. The
only IAsyncInfo members you should really consider are Status,
which can tell you whether the async method has completed, and
Cancel, which can be used to request cancellation of a long-running
operation whose result is no longer needed. I nitpick this design
because I really like the async pattern in general and just wish it
were perfect because it’s so very close.

The Status member can be useful if you need to determine
whether an async method has completed without actually waiting
for it. Here’s an example:

auto async = ReadAsync();

if (async.Status() == AsyncStatus::Completed)
{
 auto result = async.GetResults();
 printf("%ls\n", result.c_str());
}

Each of the four async interfaces, not IAsyncInfo itself, provides
individual versions of the GetResults method that should be called
only after you’ve determined that the async method has completed.

Don’t confuse this with the get method provided by C++/WinRT.
While GetResults is implemented by the async method itself, get is
implemented by C++/WinRT. GetResults won’t block if the async
method is still running and will likely throw an hresult_illegal_
method_call exception if called prematurely. You can, no doubt,
begin to imagine how the blocking get method is implemented.
Conceptually, it looks something like this:

auto get() const
{
 if (Status() != AsyncStatus::Completed)
 {
 // Wait for completion somehow ...
 }

 return GetResults();
}

The actual implementation is a bit more complicated, but this
captures the gist of it. The point here is that GetResults is called
regardless of whether it’s an IAsyncOperation, which returns a
value, or IAsyncAction, which doesn’t. The reason for this is that
GetResults is responsible for propagating any error that may have
occurred within the implementation of the async method and will
rethrow an exception as needed.

The question that remains is how the caller can wait for com-
pletion. I’m going to write a non-member get function to show
you what’s involved. I’ll start with this basic outline, inspired by
the previous conceptual get method:

template <typename T>
auto get(T const& async)
{
 if (async.Status() != AsyncStatus::Completed)
 {
 // Wait for completion somehow ...
 }

 return async.GetResults();
}

I want this function template to work with all four of the async
interfaces, so I’ll use the return statement unilaterally. Special pro-
vision is made in the C++ language for genericity and you can be
thankful for that.

Each of the four async interfaces provides a unique Completed
member that can be used to register a callback—called a delegate—
that will be called when the async method completes. In most cases,
C++/WinRT will automatically create the delegate for you. All you
need to do is provide some function-like handler, and a lambda is
usually the simplest:

async.Completed([](auto&& async, AsyncStatus status)
{
 // It's done!
});

The type of the delegate’s first parameter will be that of the async
interface that just completed, but keep in mind that completion should
be regarded as a simple signal. In other words, don’t stuff a bunch of
code inside the Completed handler. Essentially, you should regard it as
a noexcept handler because the async method won’t itself know what to
do with any failure occurring inside this handler. So what can you do?

Well, you could simply notify a waiting thread using an event.
Figure 3 shows what the get function might look like.

C++/WinRT’s get methods use a condition variable with a slim
reader/writer lock because it’s slightly more efficient. Such a variant
might look something like what’s shown in Figure 4.

template <typename T>
auto get(T const& async)
{
 if (async.Status() != AsyncStatus::Completed)
 {
 handle signal = CreateEvent(nullptr, true, false, nullptr);

 async.Completed([&](auto&&, auto&&)
 {
 SetEvent(signal.get());
 });

 WaitForSingleObject(signal.get(), INFINITE);
 }

 return async.GetResults();
}

Figure 3 Notifying a Waiting Thread Using an Event

template <typename T>
auto get(T const& async)
{
 if (async.Status() != AsyncStatus::Completed)
 {
 slim_mutex m;
 slim_condition_variable cv;
 bool completed = false;

 async.Completed([&](auto&&, auto&&)
 {
 {
 slim_lock_guard const guard(m);
 completed = true;
 }

 cv.notify_one();
 });

 slim_lock_guard guard(m);
 cv.wait(m, [&] { return completed; });
 }

 return async.GetResults();
}

Figure 4 Using a Condition Variable with a Slim Reader/Writer
Lock

0618msdn_KerrAsync_v5_38-45.indd 40 5/7/18 11:27 AM

msdnmagazine.com

VintaSoft Imaging .NET SDK
Load, view, convert, manage,
print, capture from camera,

save raster images and
PDF documents.

Free evaluation version

100+ Image Processing and
Document Cleanup commands

PDF Reader, Writer, Visual Editor

Image Annotations

JBIG2 and JPEG2000 codecs

OCR and Document Recognition

Forms Processing and OMR

DICOM decoder

Barcode Reader and Generator

TWAIN scanning

www.vintasoft.com

Royalty free licensing

Seeking for professional
and easy-to-use

Imaging .NET SDK?

VintaSoft is the registered trademark

 of VintaSoft Ltd.

Image Viewer for .NET, WPF
and WEB

You can, of course, use the C++ standard library’s mutex and
condition variable if you prefer. The point here is simply that the
Completed handler is your hook to wiring up async completion
and it can be done quite generically.

Naturally, there’s no reason for you to write your own get function,
and more than likely coroutines will be much simpler and more
versatile in general. Still, I hope this helps you appreciate some of
the power and flexibility in the Windows Runtime.

Producing Async Objects
Now that we’ve explored the async interfaces and some completion
mechanics in general, let’s turn our attention to creating or pro-
ducing implementations of those four async interfaces. As you’ve
already learned, implementing WinRT interfaces with C++/WinRT
is very simple. I might, for example, implement IAsyncAction, as
shown in Figure 5.

The difficulty comes when you consider how you might implement
those methods. While it’s not hard to imagine some implemen-
tation, it’s almost impossible to do this correctly without first
reverse-engineering how the existing language projections actually
implement them. You see, the WinRT async pattern only works
if everyone implements these interfaces using a very specific state
machine and in exactly the same way. Each language projection
makes the same assumptions about how this state machine is
implemented and if you happen to implement it in a slightly dif-
ferent way, bad things will happen.

Thankfully, you don’t have to worry about this because each
language projection, with the exception of C++/CX, already
implements this correctly for you. Here’s a complete implementa-
tion of IAsyncAction thanks to C++/WinRT’s coroutine support:

IAsyncAction CopyAsync()
{
 co_return;
}

Now this isn’t a particularly interesting implementation, but it
is very educational and a good example of just how much C++/
WinRT is doing for you. Because this is a complete implementa-
tion, we can use it to exercise some of what we’ve learned thus far.
The earlier CopyAsync function is a coroutine. The coroutine’s
return type is used to stitch together an implementation of both
IAsyncAction and IAsyncInfo, and the C++ compiler brings it to
life at just the right moment. We’ll explore some of those details
later, but for now let’s observe how this coroutine works. Consider
the following console app:

IAsyncAction CopyAsync()
{
 co_return;
}

int main()
{
 IAsyncAction async = CopyAsync();

 async.get();
}

The main function calls the CopyAsync function, which returns
an IasyncAction. If you forget for a moment what the CopyAsync
function’s body or definition looks like, it should be evident that it’s
just a function that returns an IAsyncAction object. You can there-
fore use it in all the ways that you’ve already learned.

0618msdn_KerrAsync_v5_38-45.indd 41 5/7/18 11:27 AM

http://www.vintasoft.com/?msdn
http://www.msdnmagazine.com

Look Back to Code Forward
Visual Studio Live! (VSLive!™) is thrilled to be returning to Chicago
where developers, software architects, engineers and designers will
“look back to code forward” during four days of unbiased and cutting-
edge education on the Microsoft Platform.

Tackle training on the hottest topics (like .NET Core, Angular, VS2017),
debate with industry and Microsoft insiders (people like Rockford
Lhotka, Deborah Kurata and Brock Allen) and network with your peers—
plus, help us celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Come experience the
education, knowledge-share and networking at #VSLive25.

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR

September 17-20, 2018
Renaissance

Chicago

1993 - 2018

VSLive! 2016VSLive! 1998

Untitled-7 2 4/26/18 4:17 PM

https://www.vslive.com/chicago

Look Back to Code Forward
Visual Studio Live! (VSLive!™) is thrilled to be returning to Chicago
where developers, software architects, engineers and designers will
“look back to code forward” during four days of unbiased and cutting-
edge education on the Microsoft Platform.

Tackle training on the hottest topics (like .NET Core, Angular, VS2017),
debate with industry and Microsoft insiders (people like Rockford
Lhotka, Deborah Kurata and Brock Allen) and network with your peers—
plus, help us celebrate 25 years of coding innovation as we take a fun
look back at technology and training since 1993. Come experience the
education, knowledge-share and networking at #VSLive25.

SUPPORTED BY

magazine

PRODUCED BYSILVER SPONSOR

September 17-20, 2018
Renaissance

Chicago

1993 - 2018

VSLive! 2016VSLive! 1998

CONNECT WITH US

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

DEVELOPMENT TOPICS INCLUDE:

WHAT #VSLIVE25 CAN DO FOR YOU!

Register Now to Save $400!
Use Promo Code MSDN

“ I am going to look into using ASP.NET Core as the platform for new projects

as a result of attending my first VSLive! event. I also think it would be easy

to move some existing projects to it. I look forward to trying the new tools

and creating just what I need!”

 – Abby Quick, Epiq

“ I originally came to Visual Studio Live! to improve my technical skills, but

I came back in order to network and meet other developers. The biggest

change I’ve made at work, by far, is the quality of unit tests, which has

resulted in a significant drop in reported bugs.”

 – Justin C Kritzer, Lehigh County Government Center

DevOps in the
Spotlight

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

Developing New
Experiences

.NET Core
and More

Full Stack
Web Development

Delivery and
Deployment

vslive.com/chicago

Untitled-7 3 4/26/18 4:20 PM

https://www.vslive.com/chicago
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com

msdn magazine44 C++

The beauty of coroutines is that there’s a single abstraction
both for producing async objects and for consuming those same
async objects. An API or component author might implement an
async method as described earlier, but an API consumer or app
developer could also use coroutines to call and wait for its com-
pletion. Let’s now rewrite the main function from Figure 6 to use
a coroutine to do the waiting:

IAsyncAction MainAsync()
{
 hstring result = co_await ReadAsync();
 printf("%ls\n", result.c_str());
}

int main()
{
 MainAsync().get();
}

I have essentially taken the body of the old main function and
moved it into the MainAsync coroutine. The main function uses the
get method to prevent the app from terminating while the coroutine
completes asynchronously. The MainAsync function has something
new and that’s the co_await statement. Rather than using the get
method to block the calling thread until ReadAsync completes, the
co_await statement is used to wait for the ReadAsync function to
complete in a cooperative or non-blocking manner. This is what I
meant by a suspension point. The co_await statement represents
a suspension point. This app only calls ReadAsync once, but you
can imagine it being called multiple times in a more interesting
app. The first time it gets called, the MainAsync coroutine will ac-
tually suspend and return control to its caller. The second time it’s
called, it won’t suspend at all but rather return the value directly.

Coroutines are very new to many C++ developers, so don’t feel
bad if this still seems rather magical. These concepts will become
quite clear as you start writing and debugging coroutines yourself.
The good news is that you already know enough to begin to make
effective use of coroutines to consume async APIs provided by
Windows. For example, you should be able to reason about how
the console app in Figure 7 works.

#include "winrt/Windows.Web.Syndication.h"

using namespace winrt;
using namespace Windows::Foundation;
using namespace Windows::Web::Syndication;

IAsyncAction MainAsync()
{
 Uri uri(L"https://kennykerr.ca/feed");
 SyndicationClient client;
 SyndicationFeed feed = co_await client.RetrieveFeedAsync(uri);

 for (auto&& item : feed.Items())
 {
 hstring title = item.Title().Text();

 printf("%ls\n", title.c_str());
 }
}

int main()
{
 init_apartment();
 MainAsync().get();
}

Figure 7 An Example Console App with Coroutines

A coroutine (of this sort) must have a co_return statement or
a co_await statement. It may, of course, have multiple such state-
ments, but must have at least one of these in order to actually be
a coroutine. As you might expect, a co_return statement doesn’t
introduce any kind of suspension or asynchrony. Therefore, this
CopyAsync function produces an IAsyncAction that completes
immediately or synchronously. I can illustrate this as follows:

IAsyncAction Async()
{
 co_return;
}

int main()
{
 IAsyncAction async = Async();
 assert(async.Status() == AsyncStatus::Completed);
}

The assertion is guaranteed to be true. There’s no race here. Because
CopyAsync is just a function, the caller is blocked until it returns
and the first opportunity for it to return happens to be the co_return
statement. What this means is that if you have some async contract
that you need to implement, but the implementation doesn’t
actually need to introduce any asynchrony, it can simply return
the value directly, and without blocking or introducing a context
switch. Consider a function that downloads and then returns a
cached value, as shown in Figure 6.

The first time ReadAsync is called, the cache is likely empty
and the result is downloaded. Presumably this will suspend the
coroutine itself while this takes place. Suspension implies that
execution returns to the caller. The caller is handed an async
object that has not, in fact, completed, hence the need to some-
how wait for completion.

hstring m_cache;

IAsyncOperation<hstring> ReadAsync()
{
 if (m_cache.empty())
 {
 // Download and cache value ...
 }

 co_return m_cache;
}

int main()
{
 hstring message = ReadAsync().get();
 printf("%ls\n", message.c_str());
}

Figure 6 A Function That Downloads and Returns a Cached Value

struct MyAsync : implements<MyAsync, IAsyncAction, IAsyncInfo>
{
 // IAsyncInfo members ...
 uint32_t Id() const;
 AsyncStatus Status() const;
 HRESULT ErrorCode() const;
 void Cancel() const;
 void Close() const;

 // IAsyncAction members ...
 void Completed(AsyncActionCompletedHandler const& handler) const;
 AsyncActionCompletedHandler Completed() const;
 void GetResults() const;
};

Figure 5 Implementing IAsyncAction

0618msdn_KerrAsync_v5_38-45.indd 44 5/7/18 11:27 AM

45June 2018msdnmagazine.com

causing a few of them to resume on the thread pool, but eventually
the atomic variable will be primed and the coroutine will begin to
complete synchronously. That is, of course, the worst case.

Let’s imagine the value may only be read from storage once a
signal is raised, indicating that the value is ready. We can use the
two coroutines in Figure 8 to pull this off.

The first coroutine artificially waits for five seconds, sets the value,
and then signals the Win32 event. The second coroutine waits for
the event to become signaled, and then simply returns the value.
Once again, the thread pool is used to wait for the event, leading
to an efficient and scalable implementation. Coordinating the two
coroutines is straightforward:

int main()
{
 prepare_result();

 int result = return_on_signal().get();
 assert(result == 123);
}

The main function kicks off the first coroutine but doesn’t block
waiting for its completion. The second coroutine immediately
begins waiting for the value, blocking as it does so.

Wrapping Up
Well, I’ve gone pretty deep on async and coroutines in C++.
In this article I’ve focused mostly on the thread pool, or what
might be called background threads, but you can dive deeper by
visiting the online version of this article at aka.ms/M1h2v0. The
Web article includes an additional section that explores ways
to take precise control over execution context. Coroutines can
be used to introduce concurrency or deal with latency in other
APIs, so it helps to address confusion that can arise around the
execution context of a given coroutine at any particular point
in time. Check out the online-exclusive content in the article at
aka.ms/M1h2v0 to learn more. There’s always more to say about
concurrency. It’s such a fascinating topic, and I hope this introduc-
tion will get you excited about how simple it is to deal with async
in your C++ apps and components and the sheer power at your
fingertips when you begin to use C++/WinRT.	 n

Kenny Kerr is an author, systems programmer and the creator of C++/WinRT.
He’s also an engineer on the Windows team at Microsoft where he’s designing the
future of C++ for Windows, enabling developers to write beautiful highperformance
apps and components with incredible ease.

Give it a try right now and see just how much fun it is to use
modern C++ on Windows.

Coroutines and the Thread Pool
Creating a basic coroutine is trivial. You can very easily co_await
some other async action or operation, simply co_return a value,
or craft some combination of the two. Here’s a coroutine that’s not
asynchronous at all:

IAsyncOperation<int> return_123()
{
 co_return 123;
}

Even though it executes synchronously, it still produces a com-
pletely valid implementation of the IAsyncOperation interface:

int main()
{
 int result = return_123().get();
 assert(result == 123);
}

Here’s one that will wait for five seconds before returning the value:
using namespace std::chrono;

IAsyncOperation<int> return_123_after_5s()
{
 co_await 5s;
 co_return 123;
}

The next one is ostensibly going to execute asynchronously and
yet the main function remains largely unchanged, thanks to the
get function’s blocking behavior:

int main()
{
 int result = return_123_after_5s().get();
 assert(result == 123);
}

The co_return statement in the last coroutine will execute on the
Windows thread pool, because the co_await expression is a chrono
duration that uses a thread pool timer. The co_await statement rep-
resents a suspension point and it should be apparent that a coroutine
may resume on a completely different thread following suspension.
You can also make this explicit using resume_background:

IAsyncOperation<int> background_123()
{
 co_await resume_background();
 co_return 123;
}

There’s no apparent delay this time, but the coroutine is guar-
anteed to resume on the thread pool. What if you’re not sure? You
might have a cached value and only want to introduce a context
switch if the value must be retrieved from latent storage. This is
where it’s good to remember that a coroutine is also a function, so
all the normal rules apply:

IAsyncOperation<int> background_123()
{
 static std::atomic<int> result{0};

 if (result == 0)
 {
 co_await resume_background();
 result = 123;
 }

 co_return result;
}

This is only conditionally going to introduce concurrency.
Multiple threads could conceivably race in and call background_123,

handle m_signal{ CreateEvent(nullptr, true, false, nullptr) };
std::atomic<int> m_value{ 0 };

IAsyncAction prepare_result()
{
 co_await 5s;
 m_value = 123;
 SetEvent(m_signal.get());
}

IAsyncOperation<int> return_on_signal()
{
 co_await resume_on_signal(m_signal.get());
 co_return m_value;
}

Figure 8 Reading a Value from Storage After a Signal Is Raised

0618msdn_KerrAsync_v5_38-45.indd 45 5/7/18 11:27 AM

http://www.msdnmagazine.com
http://www.aka.ms/M1h2v0
http://www.aka.ms/M1h2v0

Join us for TechMentor, August 6 – 8, 2018, as we return to
Microsoft Headquarters in Redmond, WA. In today’s IT world,
more things change than stay the same. As we celebrate the
20th year of TechMentor, we are more committed than ever to
providing immediately usable IT education, with the tools you
need today, while preparing you for tomorrow –
keep up, stay ahead and avoid Winter, ahem, Change.

Plus you’ll be at the source, Microsoft HQ, where you can have
lunch with Blue Badges, visit the company store, and experience
life on campus for a week!

AUGUST 6 – 10, 2018 • Microsoft Headquarters, Redmond, WA

Change is Coming.
Are You Ready?

You owe it to yourself, your company and your
career to be at TechMentor Redmond 2018!

REGISTER BY 6/1
TO SAVE $400!
Use Promo Code MSDN

EVENT PARTNER PRODUCED BYSUPPORTED BY

Untitled-6 2 5/3/18 2:17 PM

https://www.techmentorevents.com/redmond

CONNECT WITH TECHMENTOR

Twitter
@TechMentorEvent

Facebook
Search “TechMentor”

LinkedIn
Search “TechMentor”

REGISTER BY 6/1
TO SAVE $400!
Use Promo Code MSDN

In-Depth Training for IT Pros @ Microsoft Headquarters

Client and Endpoint
Management

PowerShell
and DevOps Infrastructure Soft Skills

for ITPros Security Cloud (Public/
Hybrid/Private)

START TIME END TIME TechMentor Pre-Conference Workshops: Monday, August 6, 2018 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Light Breakfast

9:00 AM 12:00 PM M01 Workshop: How to Prevent all
Ransomware / Malware in 2018 - Sami Laiho

M02 Workshop: Building Office 365 Federated Identity
from Scratch Using AD FS - Nestori Syynimaa

M03 Workshop: Managing Windows Server
with Project Honolulu - Dave Kawula

12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 5:00 PM M01 Workshop: How to Prevent all Ransomware /
Malware in 2018 (Continues) - Sami Laiho

M04 Workshop: Master PowerShell Tricks for Windows
Server 2016 and Windows 10 - Will Anderson &

Thomas Rayner

M05 Workshop: Dave Kawula’s Notes from the
Field on Microsoft Storage Spaces Direct

- Dave Kawula
6:30 PM 8:30 PM Dine-A-Round Dinner - Suite in Hyatt Regency Lobby

START TIME END TIME TechMentor Day 1: Tuesday, August 7, 2018
7:00 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM T01 Enterprise Client Management
in a Modern World - Kent Agerlund

T02 How to Write (PowerShell) Code
that Doesn’t Suck - Thomas Rayner

T03 The Easy Peasy of
Troubleshooting Azure

- Mike Nelson

T04 Nine O365 Security Issues
Microsoft Probably Hasn’t Told You

(and You Probably Don’t Want to Know)
- Nestori Syynimaa

9:30 AM 10:45 AM
T05 Managing Client Health—

Getting Close to the Famous 100%
- Kent Agerlund

T06 The Network is Slow! Or is it?
Network Troubleshooting for Windows

Administrators - Richard Hicks
T07 Getting Started with PowerShell

6.0 for IT Pro’s - Sven van Rijen
T08 The Weakest Link of Office 365

Security - Nestori Syynimaa

11:00 AM 12:00 PM KEYNOTE: To Be Announced - Stephen L. Rose, Sr. PMM, One Drive For Business, Microsoft
12:00 PM 1:00 PM Lunch - McKinley / Visit Exhibitors - Foyer

1:00 PM 2:15 PM T09 How to Get Started with Microsoft
EMS Right Now - Peter Daalmans

T10 Back to the Future! Access
Anywhere with Windows 10 Always

on VPN - Richard Hicks
T11 Using Desired State Configuration

in Azure - Will Anderson T12 To Be Announced

2:15 PM 2:45 PM Sponsored Break - Visit Exhibitors - Foyer

2:45 PM 4:00 PM T13 Conceptualizing Azure Resource
Manager Templates - Will Anderson

T14 How to Use PowerShell to Become
a Windows Management SuperHero

- Petri Paavola
T15 Making the Most Out of the Azure

Dev/Test Labs - Mike Nelson T16 To Be Announced

4:00 PM 5:30 PM Exhibitor Reception – Attend Exhibitor Demo - Foyer

START TIME END TIME TechMentor Day 2: Wednesday, August 8, 2018
7:30 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM
W01 Automated Troubleshooting
Techniques in Enterprise Domains

(Part 1) - Petri Paavola
W02 Troubleshooting Sysinternals

Tools 2018 Edition - Sami Laiho
W03 In-Depth Introduction to Docker

- Neil Peterson
W04 How Microsoft Cloud

Can Support Your GDPR Journey
- Milad Aslaner

9:30 AM 10:45 AM
W05 Automated Troubleshooting
Techniques in Enterprise Domains

(Part 2) - Petri Paavola
W06 What’s New in Windows

Server 1803 - Dave Kawula
W07 Simplify and Streamline Office

365 Deployments the Easy Way
- John O’Neill, Sr.

W08 How to Administer Microsoft
Teams Like a Boss - Ståle Hansen

11:00 AM 12:00 PM TECHMENTOR PANEL: The Future of Windows - Peter De Tender, Dave Kawula, Sami Laiho, & Petri Paavola
12:00 PM 1:00 PM Birds-of-a-Feather Lunch - McKinley / Visit Exhibitors - Foyer
1:00 PM 1:30 PM Networking Break - Exhibitor Raffle @ 1:10 pm (Must be present to win) - Foyer in front of Business Center

1:30 PM 2:45 PM
W09 Putting the Windows Assessment

and Deployment Kit to Work
- John O’Neill, Sr.

W10 Deploying Application
Whitelisting on Windows Pro or

Enterprise - Sami Laiho
W11 Azure is 100% High-Available...

Or Is It? - Peter De Tender
W12 What the NinjaCat Learned from

Fighting Cybercrime - Milad Aslaner

3:00 PM 4:15 PM
W13 The Evolution of a Geek—

Becoming an IT Architect
- Mike Nelson

W14 Advanced DNS, DHCP and IPAM
Administration on Windows Server 2016

- Orin Thomas
W15 Managing Tesla Vehicles
from the Cloud - Marcel Zehner

W16 Nano Server—Containers
in the Cloud - David O’Brien

6:15 PM 9:00 PM Set Sail! TechMentor’s Seattle Sunset Cruise - Buses depart the Hyatt Regency at 6:15pm to travel to Kirkland City Dock

START TIME END TIME TechMentor Day 3: Thursday, August 9, 2018
7:30 AM 8:00 AM Registration - Coffee and Light Breakfast

8:00 AM 9:15 AM TH01 Manage Your Apple Investments
with Microsoft EMS - Peter Daalmans

TH02 Tips and Tricks for Managing
and Running Ubuntu/Bash/Windows
Subsystem for Linux - Orin Thomas

TH03 The OMS Solutions Bakery
- Marcel Zehner

TH04 Getting Started with PowerShell
for Office 365 - Vlad Catrinescu

9:30 AM 10:45 AM TH05 HoloLens, Augmented Reality,
and IT - John O’Neill, Sr.

TH06 A Real-world Social Engineering
Attack and Response - Milad Aslaner

TH07 30 Terrible Habits of Server and
Cloud Administrators - Orin Thomas

TH08 Advanced PowerShell
for Office 365 - Vlad Catrinescu

11:00 AM 12:15 PM
TH09 10 Tips to Control Access to

Corporate Resources with Enterprise
Mobility + Security - Peter Daalmans

TH10 What’s New and Trending
with Microsoft Enterprise Client
Management - Kent Agerlund

TH11 OneNote LifeHack: 5 Steps for
Succeeding with Personal Productivity

- Ståle Hansen

TH12 Managing Virtual Machines
on AWS—Like in Real Life!

- David O’Brien
12:15 PM 2:15 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:15 PM 3:30 PM
TH13 Security Implications of

Virtualizing Active Directory Domain
Controllers - Sander Berkouwer

 TH14 Building a New Career in
5 Hours a Week - Michael Bender

TH15 Azure CLI 2.0 Deep Dive
- Neil Peterson

TH16 OpenSSH for Windows Pros
- Anthony Nocentino

3:45 PM 5:00 PM
TH17 Running Hyper-V in Production

for 10 years - Notes from the Field
- Dave Kawula

TH18 Network Sustainability and
Cyber Security Measures

- Omar Valerio
TH19 Azure AD Connect Inside

and Out - Sander Berkouwer
TH20 I Needed to Install 80 SQL
Servers…Fast. Here’s How I Did It!

- Anthony Nocentino

START TIME END TIME TechMentor Post-Conference Workshops: Friday, August 10, 2018 (Separate entry fee required)

8:30 AM 9:00 AM Post-Conference Workshop Registration - Coffee and Light Breakfast

9:00 AM 12:00 PM F01 Workshop: Hardening Your Windows Server Environment
- Orin Thomas

F02 Workshop: Learn the Latest and Greatest Updates to the
Azure Platform IaaS and PaaS Services v2.0 - Peter De Tender

12:00 PM 1:00 PM Lunch - McKinley

1:00 PM 4:00 PM F01 Workshop: Hardening Your Windows
Server Environment (Continues) - Orin Thomas

F02 Workshop: Learn the Latest and Greatest Updates to the Azure
Platform IaaS and PaaS Services v2.0 (Continues) - Peter De Tender

Speakers and sessions subject to change

AGENDA AT-A-GLANCE

techmentorevents.com/redmond

Untitled-6 3 5/3/18 2:17 PM

https://www.techmentorevents.com/redmond
https://www.techmentorevents.com/redmond
https://twitter.com/TechMentorEvent
https://www.facebook.com/techmentorevents
https://www.linkedin.com/

msdn magazine48

The goal of a regression problem is to make a prediction where the
value to predict is a single numeric value. For example, you might
want to predict the height of a person based on their weight, age
and sex. There are many techniques that can be used to tackle a
regression problem. In this article I’ll explain how to use the CNTK
library to create a neural network regression model.

A good way to see where this article is headed is to take a look
at the demo program in Figure 1. The demo program creates a
regression model for the well-known Yacht Hydrodynamics Data
Set benchmark. The goal is to predict a measure of resistance for a
yacht hull, based on six predictor variables: center of buoyancy of
the hull, prismatic coefficient, length-displacement ratio, beam-
draught ratio, length-beam ratio and Froude number.

The demo program creates a neural network with two
hidden layers, each of which has five processing nodes.
After training, the model is used to make predictions for two
of the data items. The first item has predictor values (0.52,
0.79, 0.55, 0.41, 0.65, 0.00). The predicted hull resistance is
0.0078 and the actual resistance is 0.0030. The second item
has predictor values (1.00, 1.00, 0.55, 0.56, 0.46, 1.00). The
predicted hull resistance is 0.8125 and the actual resistance
is 0.8250. The model appears to be quite accurate.

This article assumes you have intermediate or better pro-
gramming skills but doesn’t assume you know much about
CNTK or neural networks. The demo is coded using Python,
the default language for machine learning, but even if you
don’t know Python you should be able to follow along with-
out too much difficulty. The code for the demo program is
presented in its entirety in this article. The yacht hull data file
used by the demo program can be found at bit.ly/2Ibsm5D, and
is also available in the download that accompanies this article.

Understanding the Data
When creating a machine learning model, data prepara-
tion is almost always the most time-consuming part of
the project. The raw data set has 308 items and looks like:

-2.3 0.568 4.78 3.99 3.17 0.125 0.11
-2.3 0.568 4.78 3.99 3.17 0.150 0.27
...
-5.0 0.530 4.78 3.75 3.15 0.125 0.09
...
-2.3 0.600 4.34 4.23 2.73 0.450 46.66

The file is space-delimited. The first six values are the predictor
values (often called features in machine learning terminology).
The last value on each line is the "residuary resistance per unit
weight of displacement."

Because there’s more than one predictor variable, it’s not pos-
sible to show the complete data set in a graph. But you can get a
rough idea of the structure of the data by examining the graph in
Figure 2. The graph plots just the prismatic coefficient predictor
values and the hull resistance. You can see that the prismatic coef
ficient values, by themselves, don’t give you enough information
to make an accurate prediction of hull resistance.

When working with neural networks, it’s usually necessary to nor-
malize the data in order to create a good prediction model. I used

Neural Regression Using CNTK

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0518magcode.
Figure 1 Regression Using a CNTK Neural Network

0618msdn_McCaffreyTRun_v2_48-53.indd 48 5/7/18 11:21 AM

http://www.msdn.com/magazine/0518magcode
http://www.bit.ly/2Ibsm5D

Untitled-1 1 3/12/18 1:30 PM

https://downloads.groupdocs.com
mailto:sales@asposeptyltd.com

msdn magazine50 Test Run

min-max normalization on the six predictor values and on the hull
resistance values. I dropped the raw data into an Excel spreadsheet
and, for each column, I computed the max and min values. Then, for
each column, I replaced every value v with (v - min) / (max - min).
For example, the minimum prismatic coefficient value is 0.53 and the
maximum value is 0.60. The first value in the column is 0.568 and it’s
normalized to (0.568 - 0.53) / (0.60 - 0.53) = 0.038 / 0.07 = 0.5429.

After normalizing, I inserted tags |predictors and |resistance into
the Excel spreadsheet so the data can be easily read by a CNTK
data reader object. Then I exported the data as a tab-delimited file.
The resulting data looks like:

|predictors 0.540000 0.542857 . . |resistance 0.001602
|predictors 0.540000 0.542857 . . |resistance 0.004166
...

Alternatives to min-max normalization include z-score normal
ization and order-magnitude normalization.

The Demo Program
The complete demo program, with a few minor edits to save space,
is presented in Figure 3. All normal error checking has been
removed. I indent with two space characters instead of the usual
four as a matter of personal preference and to save space. Note that
the ‘\’ character is used by Python for line continuation.

Installing CNTK can be a bit tricky. First you install the Anacon-
da distribution of Python, which contains the necessary Python
interpreter, required packages such as NumPy and SciPy, plus useful
utilities such as pip. I used Anaconda3 4.1.1 64-bit, which has Python
3.5. After installing Anaconda, you install CNTK as a
Python package, not a standalone system, using the pip
utility. From an ordinary shell, the command I used was:

>pip install https://cntk.ai/PythonWheel/CPU-Only/cntk-
2.4-cp35-cp35m-win_amd64.whl

The hydro_reg.py demo has one helper function,
create_reader. You can consider create_reader as
boilerplate for a CNTK regression problem. The
only thing you’ll need to change in most scenarios
is the tag names in the data file.

All control logic is in a single main function. The
code begins:

def main():
 print("Begin yacht hull regression \n")
 print("Using CNTK version = " + \
 str(C.__version__) + "\n")
 input_dim = 6 # center of buoyancy, etc.
 hidden_dim = 5
 output_dim = 1 # residuary resistance
 train_file = ".\\Data\\hydro_data_cntk.txt"
...

Because CNTK is young and under continuous development,
it’s a good idea to display the version that’s being used (2.4 in this
case). The number of input nodes is determined by the structure of
the data set. For a regression problem, the number of output nodes
is always set to 1. The number of hidden layers and the number of
processing nodes in each hidden layer are free parameters—they
must be determined by trial and error.

The demo program uses all 308 items for training. An alterna-
tive approach is to split the data set into a training set (typically
80 percent of the data) and a test set (the remaining 20 percent).
After training, you can compute loss and accuracy metrics of the
model on the test data set to verify that the metrics are similar to
those on the training data.

Creating the Neural Network Model
The demo sets up CNTK objects to hold the predictor and true
hull resistance values:

X = C.ops.input_variable(input_dim, np.float32)
Y = C.ops.input_variable(output_dim)

CNTK uses 32-bit values by default because 64-bit precision is
rarely needed. The name of the input_variable function can be a bit
confusing if you’re new to CNTK. Here, the “input_” refers to the
fact that the return objects hold values that come from the input data
(that correspond to both input and output of the neural network).

The neural network is created with these statements:
print("Creating a 6-(5-5)-1 NN")
with C.layers.default_options():
 hLayer1 = C.layers.Dense(hidden_dim,
 activation=C.ops.tanh, name='hidLayer1')(X)
 hLayer2 = C.layers.Dense(hidden_dim,
 activation=C.ops.tanh, name='hidLayer2')(hLayer1)
 oLayer = C.layers.Dense(output_dim,
 activation=None, name='outLayer')(hLayer2)
model = C.ops.alias(oLayer) # alias

There’s quite a bit going on here. The Python “with” statement
can be used to pass a set of common parameter values to multiple
functions. In this case, the neural network weights and biases
values are initialized using CNTK default values. Neural networks
are highly sensitive to initial weights and biases values, so supplying
non-default values is one of the first things to try when your neural
network fails to learn—a painfully common situation.

Figure 2 Partial Yacht Hull Data

0.540 0.550 0.560 0.570 0.580 0.590 0.6000.520 0.530
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Re
sid

ua
ry

 R
es

ist
an

ce

Prismatic Coefficient

Yacht Hull HydroDynamics

0.610

After installing Anaconda,
you install CNTK as a Python
package, not a standalone
system, using the pip utility.

0618msdn_McCaffreyTRun_v2_48-53.indd 50 5/7/18 11:21 AM

Untitled-1 1 1/5/18 1:11 PM

http://www.spreadsheetgear.com

msdn magazine52 Test Run

The neural network has two hidden layers. The X object as acts
the input to the first hidden layer; the first hidden layer acts as
input to the second hidden layer; and the second hidden layer acts
as input to the output layer.

The two hidden layers use tanh (hyperbolic tangent) activation.
The two main alternatives are logistic sigmoid and rectified linear
units (ReLU) activation. The output layer uses the “None” activation,
which means the values of the output nodes aren’t modified. This is

the design pattern to use for a regression problem. Using no activation
is sometimes called using the identify activation function because
the mathematical identity function is f(x) = x, which has no effect.

The demo program creates an alias named “model” for the out-
put layer. This technique is optional and is a bit subtle. The idea
here is that a neural network is essentially a complex math func-
tion. The output nodes conceptually represent both a layer of the
network and the network/model as a whole.

Training the Model
The heart of CNTK functionality is the ability to train a neural
network model. Training is prepared with these statements:

tr_loss = C.squared_error(model, Y)
max_iter = 50000
batch_size = 11
learn_rate = 0.005
learner = C.adam(model.parameters, learn_rate, 0.99)
trainer = C.Trainer(model, (tr_loss), [learner])

Figure 3 Regression Demo Program

hydro_reg.py
CNTK 2.4 with Anaconda 4.1.1 (Python 3.5, NumPy 1.11.1)
Predict yacht hull resistance based on six predictors

import numpy as np
import cntk as C

def create_reader(path, input_dim, output_dim, rnd_order,
 sweeps):
 x_strm = C.io.StreamDef(field='predictors',
 shape=input_dim, is_sparse=False)
 y_strm = C.io.StreamDef(field='resistance',
 shape=output_dim, is_sparse=False)
 streams = C.io.StreamDefs(x_src=x_strm, y_src=y_strm)
 deserial = C.io.CTFDeserializer(path, streams)
 mb_src = C.io.MinibatchSource(deserial,
 randomize=rnd_order, max_sweeps=sweeps)
 return mb_src

==

def main():
 print("\nBegin yacht hull regression \n")
 print("Using CNTK version = " + \
 str(C.__version__) + "\n")

 input_dim = 6 # center of buoyancy, etc.
 hidden_dim = 5
 output_dim = 1 # residuary resistance

 train_file = ".\\Data\\hydro_data_cntk.txt"

 # data resembles:
 # |predictors 0.540 0.542 . . |resistance 0.001
 # |predictors 0.540 0.542 . . |resistance 0.004

 # 1. create neural network model
 X = C.ops.input_variable(input_dim, np.float32)
 Y = C.ops.input_variable(output_dim)

 print("Creating a 6-(5-5)-1 tanh regression NN for \
yacht hull dataset ")
 with C.layers.default_options():
 hLayer1 = C.layers.Dense(hidden_dim,
 activation=C.ops.tanh, name='hidLayer1')(X)
 hLayer2 = C.layers.Dense(hidden_dim,
 activation=C.ops.tanh, name='hidLayer2')(hLayer1)
 oLayer = C.layers.Dense(output_dim,
 activation=None, name='outLayer')(hLayer2)
 model = C.ops.alias(oLayer) # alias

 # 2. create learner and trainer
 print("Creating a squared error batch=11 Adam \
fixed LR=0.005 Trainer \n")
 tr_loss = C.squared_error(model, Y)

 max_iter = 50000
 batch_size = 11
 learn_rate = 0.005

 learner = C.adam(model.parameters, learn_rate, 0.99)
 trainer = C.Trainer(model, (tr_loss), [learner])

 # 3. create reader for train data
 rdr = create_reader(train_file, input_dim, output_dim,
 rnd_order=True, sweeps=C.io.INFINITELY_REPEAT)
 hydro_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
 }

 # 4. train
 print("Starting training \n")
 for i in range(0, max_iter):
 curr_batch = rdr.next_minibatch(batch_size,
 input_map=hydro_input_map)
 trainer.train_minibatch(curr_batch)
 if i % int(max_iter/10) == 0:
 mcee = trainer.previous_minibatch_loss_average
 print("batch %6d: mean squared error = %8.4f" % \
 (i, mcee))
 print("\nTraining complete")

 # (could save model to disk here)

 # 5. use trained model to make some predictions
 np.set_printoptions(precision=2, suppress=True)

 inpts = np.array(
 [[0.520000, 0.785714, 0.550000, 0.405512, \
 0.648352, 0.000000],
 [1.000000, 1.000000, 0.550000, 0.562992, \
 0.461538, 1.000000]],
 dtype=np.float32)

 actuals = np.array([0.003044, 0.825028],
 dtype=np.float32)

 for i in range(len(inpts)):
 print("\nInput: ", inpts[i])
 pred = model.eval(inpts[i])
 print("predicted resistance: %0.4f" % pred[0][0])
 print("actual resistance: %0.4f" % actuals[i])

 print("\nEnd yacht hull regression ")

==

if __name__ == "__main__":
 main()

The heart of CNTK functionality
is the ability to train a neural

network model.

0618msdn_McCaffreyTRun_v2_48-53.indd 52 5/7/18 11:21 AM

53June 2018msdnmagazine.com

A loss (error) function is required so the training object knows
how to adjust weights and biases to reduce error. CNTK 2.4
has nine loss functions, but the simple squared_error is almost
always suitable for a regression problem. The number of iterations
corresponds to the number of update operations and must be
determined by trial and error.

The Trainer object requires a Learner object. You can think of
a Learner as an algorithm. CNTK supports eight learning algo-
rithms. For regression problems, I typically get good results using
either basic stochastic gradient descent or the more sophisticated
Adam (“adaptive momentum estimation”).

The batch size is used by CNTK to determine how often to per-
form weight and bias updates. The demo sets the batch size to 11.
Therefore, the 308 items will be grouped into 308 / 11 = 28 ran-
domly selected batches. Each batch is analyzed and then updates
are performed. The learning rate controls the magnitude of the
weight and bias adjustments. Determining good values for the
batch size, the maximum number of iterations, and the learning
rate are often the biggest challenges when creating a neural net-
work prediction model.

The demo calls the program-defined create_reader function to,
well, create a reader object. And an input_map is created that tells the
reader where the feature values are and where the value-to-predict is:

rdr = create_reader(train_file, input_dim, output_dim,
 rnd_order=True, sweeps=C.io.INFINITELY_REPEAT)
hydro_input_map = {
 X : rdr.streams.x_src,
 Y : rdr.streams.y_src
}

The rnd_order parameter ensures that the data items will be
processed differently on each pass, which is important to prevent
training from stalling out. The INFINITELY_REPEAT argument
allows training over multiple passes through the 308-item data set.

After preparation, the model is trained like so:
for i in range(0, max_iter):
 curr_batch = rdr.next_minibatch(batch_size,
 input_map=hydro_input_map)
 trainer.train_minibatch(curr_batch)
 if i % int(max_iter/10) == 0:
 mcee = trainer.previous_minibatch_loss_average
 print("batch %6d: mean squared error = %8.4f" % \
 (i, mcee))

The next_minibatch function pulls 11 items from the data. The
train function uses the Adam algorithm to update weights and
biases based on squared error between computed hull resistance
values and actual resistance values. The squared error on the cur-
rent 11-item batch is displayed every 50,000 / 10 = 5,000 batches so
you can visually monitor training progress: You want to see loss/
error values that generally decrease.

Using the Model
After the model has been trained, the demo program makes some
predictions. First, the predictor values for two arbitrary items from
the normalized data set are selected (items 99 and 238) and placed
into an array-of-arrays style matrix:

inpts = np.array(
 [[0.520000, 0.785714, 0.550000, 0.405512,
 0.648352, 0.000000],
 [1.000000, 1.000000, 0.550000, 0.562992,
 0.461538, 1.000000]],
 dtype=np.float32)

Next, the corresponding normalized actual hull resistance
values are placed into an array:

actuals = np.array([0.003044, 0.825028], dtype=np.float32)

Then, the predictor values are used to compute the predicted
values using the model.eval function, and predicted and actual
values are displayed:

for i in range(len(inpts)):
 print("\nInput: ", inpts[i])
 pred = model.eval(inpts[i])
 print("predicted resistance: %0.4f" % pred[0][0])
 print("actual resistance: %0.4f" % actuals[i])

print("End yacht hull regression ")

Notice that the predicted hull resistance value is returned as an
array-of-arrays matrix with a single value. Therefore, the value itself
is at [0][0] (row 0, column 0). Dealing with shapes of CNTK vec-
tors and matrices is a significant syntax challenge. When working
with CNTK I spend a lot of time printing objects and displaying
their shape, along the lines of print(something.shape).

Wrapping Up
When creating a neural network regression model, there’s no
predefined accuracy metric. If you want to compute prediction
accuracy you must define what it means for a predicted value to
be close enough to the corresponding actual value in order to be
considered correct. Typically, you’d specify a percentage/propor-
tion, such as 0.10, and evaluate a predicted value as correct if it’s
within that percentage of the actual value.

Because the demo model works with normalized data, if you
use the model to make a prediction for new, previously unseen
predictor values, you have to normalize them using the same
min-max values that were used on the training data. Similarly, a
predicted hull resistance value, pv, is normalized, so you’d have to
de-normalize by computing pv * (max - min) + min.

The term “regression” can have several different meanings. In
this article the term refers to a problem scenario where the goal
is to predict a single numeric value (hull resistance). The classical
statistics linear regression technique is much simpler than neural
network regression, but usually much less accurate. The machine
learning logistic regression technique predicts a single numeric
value between 0.0 and 1.0, which is interpreted as a probability and
then used to predict a categorical value such as “male” (p < 0.5) or
“female” (p > 0.5).	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Chris Lee, Ricky Loynd and Ken Tran

When creating a neural network
regression model, there’s no
predefined accuracy metric.

0618msdn_McCaffreyTRun_v2_48-53.indd 53 5/7/18 11:21 AM

mailto:jamccaff@microsoft.com
http://www.msdnmagazine.com

Live! 360: A Unique Conference
for the IT and Developer Community

	 •	6	FULL	Days	of	Training	Including	Hands-On	Labs	&	Workshops

	•	6	Co-Located	Conferences	for	1	Low	Price

	•	Customize	Your	Own	Agenda	from	Hundreds	of	Sessions

	•	Expert	Education	and	Training

	•	Knowledge	Share	and	Networking

EVENT PARTNERS SILVER SPONSOR SUPPORTED BY

JOIN US AT

The Ultimate Education Destination

ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

DECEMBER 2-7, 2018

magazine

CONNECT WITH LIVE! 360

twitter.com/live360	
@live360

facebook.com
Search	"Live	360"

linkedin.com
Join	the	"Live!	360"	group!

instagram.com
@live360_events

Untitled-7 2 4/26/18 4:34 PM

https://www.live360events.com
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/
https://instagram.com/live360_events

Visual Studio Live! features unbiased and

practical development training on the Microsoft

Platform. Come join us and code in paradise!

SQL Server Live! will leave you with the skills

needed to drive your data to succeed, whether

you are a DBA,developer, IT Pro, or Analyst.

TechMentor is where IT training meets

sunshine, with zero marketing speak on

topics you need training on now, and solid

coverage on what's around the corner.

Office & SharePoint Live! provides leading-edge

knowledge and training to work through

your most pressing projects and enable people

to work from anywhere at any time.

Modern Apps Live!, presented in partnership with

Magenic, focuses on how to architect, design and build

a complete Modern App from start to finish.

Artificial Intelligence Live! is an innovative,

new conference for current and aspiring

developers, data scientists, and data engineers

covering artificial intelligence (AI), machine

learning, data science, Big Data analytics,

IoT & streaming analytics, bots, and more.

PRODUCED BY

 6 C0-LOCATED
CONFERENCES,

 1 GREAT PRICE!

LIVE360EVENTS.COM

SUMMER SAVINGS =
BEST SAVINGS!

REGISTER BY 8/31
AND SAVE $500!
Use promo code: MSDN

See website for details.

REGISTER
NOW

NEW!
IN 2018

HANDS-ON LABS
Join	us	for	a	full-day		
of	pre-conference		
Hand-On	Labs	on		
Sunday,	December	2.

Untitled-7 3 4/26/18 4:34 PM

https://www.live360events.com

msdn magazine56

I just paid my income taxes, so I’m feeling cranky. To cheer myself
up, I’m going to kick over my all-time favorite hornets’ nest: Visual
Basic 6. My three previous columns on it (msdn.com/magazine/jj133828,
msdn.com/magazine/dn745870 and msdn.com/magazine/mt632280) have
generated far more mail, pro and con, than anything else I’ve ever
written. Once again, I’ll goad the developers who continue to love
VB6, and those who love to hate it and them, into spectacular com-
bat, for my amusement and yours. Damn, this is fun.

VB6 just got an important boost from Microsoft blogger Scott
Hanselman. In his post (bit.ly/2rcPD0f), Hanselman shows how to
configure a VB6 app to be hosted in the Windows 10 Store, using
the Microsoft Desktop Bridge infrastructure and tools (bit.ly/2HFVzcc).
That’s huge, as hosting an app in the store means that Microsoft
is at least somewhat vouching for its compatibility and content.
Potential purchasers perceive it as sort of a Good Computing
Seal™—perhaps not as strong as Apple’s, but definitely much stronger
than Google’s. You may have to modify your app somewhat to
meet the store’s policies (bit.ly/2HHUXiq), such as removing “excessive
or gratuitous profanity.” (Well, %*&#$ that, I say. Oops.) But this
should be relatively easy.

These bridging tools instruct Windows 10 to enforce good
behavior on regular, not-otherwise-compliant, Win32 apps. For
example, Windows 10 (when properly instructed) will use a separate
registry file to handle changes the app might make to the system
registry, so it can’t clobber any other apps or resources. For another
example, any changes the app might make to the file system are
automatically redirected to the ApplicationData.LocalFolder,
where Windows 10 standards require them to reside. You can see
this strategy at bit.ly/2I3n0fG.

But wait! There’s more! Microsoft has exposed many of the Windows
10 salient features to native Win32 apps (see bit.ly/2JFPgSI). VB6
apps are, by definition, native Win32 apps. It’s only a matter of
time until someone writes a COM bridge to Universal Windows

Platform, so VB6 can use it easily. I can imagine VB6 apps doing
things like updating live tiles. These life-extenders should drive
VB6 detractors barking mad.

Maybe this is why Microsoft won’t release VB6 as open source, as
it has for most of its tools. It might be worried that the community
would change it to the point that Microsoft couldn’t provide this “It
Just More-or-Less Works” (IJM-o-LW) compatibility in the future.

I rarely use VB6 for commercial software development, as its
tradeoffs are not usually the right set for my clients today. But I do
have it installed on my experimental network for testing. I have a
big problem (not an issue, see my old column on “Weasel Words,”
msdn.com/magazine/ff955613) with people who have a big problem with
other developers’ choices. Why do you care what someone else
uses? Are you a Puritan as H.L. Mencken describes them: some-
one who lies awake at night with the haunting fear that someone,
somewhere, may be happy?

VB6 programmers chose a different set of tradeoffs than you did.
Yes, you get frustrated, virtuously slogging through infrastructure,
while they ignore scalability and robustness and plunge merrily ahead.
No, they probably don’t understand the underlying COM very well—
almost nobody does these days. When they inevitably get in trouble,
I’ll bail them out (for a fee, of course, see graybeardsoftware.com). That’s
their call. Mind your own damn business.

With these latest improvements to compatibility, I foresee at
least another ten years of life for VB6. And I’ll bet you anything
that this support gets renewed in Windows 11 and 12, or whatever
they’re called by then. Another decade of driving the puritans
crazy. I can dig it.

I’ve likened VB6 to a cockroach, a bus and a knuckleball. Today
VB6 continues to cut a path to working apps, eroding its way
through new obstacles, as the Mississippi River cuts new pathways
through its delta to the sea, even as the silt it carries clogs the old
ones. Like Ol’ Man River, VB6 just keeps rollin’ along.

Note: a beautiful clip of this song, sung by Paul Robeson in
James Whale’s classic 1936 film version of “Show Boat,” is online at
bit.ly/2JJFv66. It’s worth a listen.	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact him
at rollthunder.com.

Ol’ Man River

Don’t Get Me Started DAVID S. PLATT

I can imagine VB6 apps doing
things like updating live tiles.

These life-extenders should drive
VB6 detractors barking mad.

0618msdn_PlattDGMS_v2_56.indd 56 5/7/18 1:22 PM

http://www.msdn.com/magazine/jj133828
http://www.msdn.com/magazine/dn745870
http://www.msdn.com/magazine/mt632280
http://www.bit.ly/2rcPD0f
http://www.bit.ly/2HFVzcc
http://www.bit.ly/2HHUXiq
http://www.bit.ly/2I3n0fG
http://www.bit.ly/2JFPgSI
http://www.msdn.com/magazine/ff955613
http://www.graybeardsoftware.com
http://www.bit.ly/2JJFv66
http://www.rollthunder.com

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-3 1Untitled-3 1 4/9/18 12:24 PM4/9/18 12:24 PM

http://MSDN.microsoft.com

Learn, Explore, Use
Your Destination for Data Cleansing & Enrichment APIs

Global IP Locator

Property Data

Global Email

Business Coder
Global Name

Global Phone

Global Address

D E V E L O P E R

ID Veri�cation

Convenient access to Melissa
APIs to solve problems with
ease and scalability.

Ideal for web forms and call
center applications, plus batch
processing for database cleanup.

Turn Data into Success – Start Developing Today!

Melissa.com/developer

Your centralized portal to discover our tools, code snippets and examples.

FLEXIBLE
CLOUD APIS

Easy payment options to free
funds for core business
operations.

Supports REST, JSON, XML
and SOAP for easy integration
into your application.

RAPID APPLICATION
DEVELOPMENT

REAL-TIME &
BATCH PROCESSING

TRY OR
BUY

1-800-MELISSA

Untitled-1 1 2/2/18 10:47 AM

http://www.melissa.com/developer

	Back
	Print
	MSDN Magazine, June 2018
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Tuple Trouble: Why C# Tuples Get to Break the Guidelines
	Introducing Azure Blockchain Workbench
	Monitoring Databricks Jobs with Application Insights
	Effective Async with Coroutines and C++/WinRT

	COLUMNS
	DATA POINTS: Replacing a Bulky API with Azure Functions
	THE WORKING PROGRAMMER: How To Be MEAN: Reactive Programming
	TEST RUN: Neural Regression Using CNTK
	DON’T GET ME STARTED: Ol’ Man River

	Visual Studio Live!, Redmond - Insert

