

This document describes in detail what you need to know

when dealing with Encoding and Unicode in applications

built on top of Microsoft solutions. To ensure the highest

compatibility, use Unicode in international contexts and

apply the best practices discussed in this document.

Business Intelligence

Competency Center (BICC)

Core System Documentation:
Encoding & Unicode Considerations

This document is provided “as-is”. Information and views expressed

in this document, including URL and other Internet Web site

references, may change without notice.

Some examples depicted herein are provided for illustration only

and are fictitious. No real association or connection is intended or

should be inferred.

This document does not provide you with any legal rights to any

intellectual property in any Microsoft product. You may copy and

use this document for your internal, reference purposes. You may

modify this document for your internal, reference purposes.

© 2011 Microsoft. All rights reserved.

1

Main take-outs and Best Practices
The following statements provide guidance regarding Encodings and Unicode in your projects.

The best choice for a code page-specific server is to communicate only with the clients using the

same code page. If you must communicate with clients using different code pages, the supported

solution is to store your data in Unicode columns. If any one of these options is not feasible, the other

alternative is to store the data in binary columns using the binary, varbinary, or varbinary (max) data

types.

In international databases, character data must always use Unicode nchar and nvarchar data types in

place of their non-Unicode equivalents (char and varchar). Nchar/nvarchar type is the Unicode data

type used by Microsoft® SQL Server™, which can store any characters defined by Unicode.org.

Char/varchar/text type is always associated with a code page, so the number of supported characters

is limited. For example:

 Starting from Windows® 2000, Windows has full Unicode support implemented by using

UTF-16 Encoding. Windows APIs take WCHAR* as input which represent a Unicode String.

 Virtual C++ has WCHAR, which is Unicode char type.

 .Net String is Unicode String only encoded in UTF-16.

 Java String is Unicode String only encoded in UTF-16.

 Char type might have a data corruption issue if your client locale is different from the server

locale.

The only benefit of using char type is the space saving for single byte code page. You can use the

Data Compression feature in SQL Server 2008 if you care about disk space, which can save more

space than using char type.

Put N' for your string literal in T-SQL. String literal N'abc' is a Unicode nvarchar string literal. Literal

„ab©' is a varchar literal, it always associates with a code page (string literal always use current

database's collation). Suppose char © is not in the code page, you will get a question mark (?) when

inserting the literal into a table, even If the column is nvarchar type.

Use nvarchar instead of nchar. The difference between nvarchar and nchar is the storage. A column

with nchar(30) type always takes 60 bytes on the disk, even if the value is a single character. The data

size for an nvarchar(30) type column is not fixed; it varies row by row or value by value. A single

character value takes 2 bytes, and a value with 30 characters long takes 60 bytes to be stored. Another

difference between nvarchar and nchar types is performance. Nchar type is always stored in fixed

location in every row, which can be retrieved faster than nvarchar type which is stored in different

locations for different rows. However, the benefit of less stored space for nvarchar types usually

overcomes the cost of locating the value in a row.

If possible, avoid using a column collation which is different from the database's collation. You will

have less collation conflicts. If you want a query to use a special collation's sorting rule, use explicitly

the collate clause in that query.

Use Windows collations instead of SQL Server collations. The only exception here is the default

collation for en_US locale which is sql_latin1_general_cp1_ci_as.

Never store UTF-8 string in varchar types, you will get data corruption.

String comparison always ignores trailing spaces (Unicode U+0020), no matter what collation you are

using. LEN function always returns the number of characters excluding trailing spaces. DataLength

function returns the storage size in terms of bytes.

Use _BIN2 collation, instead of _BIN collation if you want binary, code page based string comparison

behavior.

Globalization standards

The code page issue
In a computer, characters are represented by different patterns of bits being either ON or OFF. There

are 8 bits in a byte, and the 8 bits can be turned ON and OFF in 256 different patterns. A program that

uses 1 byte to store each character can therefore represent up to 256 different characters by

assigning a character to each of the bit patterns.

There are 16 bits in 2 bytes, and 16 bits can be turned ON and OFF in 65,536 unique patterns. A

program that uses 2 bytes to represent each character can represent up to 65,536 characters.

Single-byte code pages are definitions of the characters mapped to each of the 256 bit patterns

possible in a byte.

Code pages define bit patterns for uppercase and lowercase characters, digits, symbols, and

special characters such as !, @, #, or %.

Each European language, such as German or Spanish, has its own single-byte code page. Although

the bit patterns used to represent the Latin alphabet characters A through Z are the same for all the

code pages, the bit patterns used to represent accented characters such as 'é' and 'á' vary from one

code page to the next.

If data is exchanged between computers running different code pages, all character data must be

converted from the code page of the sending computer to the code page of the receiving computer.

If the source data has extended characters that are not defined in the code page of the receiving

computer, data is lost.

When a database serves clients from many different countries, it is difficult to pick a code page for the

database that contains all the extended characters required by all the client computers. Also, there is a

lot of processing time spent doing the constant conversions from one code page to another.

Single-byte character sets are also inadequate to store all the characters used by many languages. For

example, some Asian languages have thousands of characters, so must use two bytes per character.

Double-byte character sets have been defined for these languages. Still, each of these languages have

their own code page, and there are difficulties in transferring data from a computer running one

double-byte code page to a computer running another.

Standard Organizations

ANSI

The American National Standards Institute (www.ansi.org) is an organization that standardizes

various areas, both public and private. It is an acronym for American National Standards Institute.

ANSI has standardized many areas of computing.

One of the standards in computers was the character set (letters, numbers, and symbols) that a

computer can use. This is a standardized encoding table (a code page) covering all uppercase and

lowercase English letters, digits, punctuation characters, as well as some special and control

characters.

At the very beginning computers could work with 128 different combinations (one bit was reserved

for other purposes).

The ASCII code page covered 128 characters, but newer computer systems were able to work with 256

codes and engineers soon noticed that 128 codes are not sufficient for all characters. Even the

diacritical marks of the Western European languages could not be covered.

So the standard committees (ANSI, ISO) and computer companies (IBM, Apple, Microsoft) started

extending the ASCII code page with various character sets.

The complementary 128 codes had been filled with graphical symbols, mathematical signs, Western

European diacritical marks etc. Each organization elaborated its own "standards".

ANSI and Microsoft invented the code page 1252 (ANSI Latin-1), the International Standards

Organization (ISO) established the ISO 8859-1 (ISO Latin-1), IBM developed the code page 850 (IBM

Latin-1), Apple created the Macintosh Roman character set, etc.

Each Windows system has a default ANSI code page according to system regional settings (932

commonly known as Shift JIS for Japan computers, 1252 commonly known as ANSI Latin-1 for

Western European computer.

Unicode Consortium

The Unicode Consortium is a non-profit organization founded to develop, extend and promote use of

the Unicode Standard, which specifies the representation of text in modern software products and

standards.

The membership of the consortium represents a broad spectrum of corporations and organizations in

the computer and information processing industry.

The consortium is supported financially solely through membership dues. Membership in the Unicode

Consortium is open to organizations and individuals anywhere in the world who support the Unicode

Standard and wish to assist in its extension and implementation.

The Unicode standard is a character coding system designed to support written texts of diverse

modern, classical and historical languages. It's based on double-byte character encoding, so it can

enumerate 65,536 characters. It's hopefully the "one and only" future standard, and it may solve the

"code page soup" problem.

Unicode is compatible with the ISO 10646 standard. The current version 5.2 includes 107,361 coded

characters used in written languages of the Americas, Europe, the Middle East, Africa, India, Asia, and

Pacifica.

The industry is converging on Unicode for all internationalization. For example: Microsoft Windows

Operating Systems have been built on a base of Unicode since Windows NT; AIX, Sun and HP/UX

offer Unicode support.

http://www.unicode.org/consortium/consort.html
http://www.unicode.org/consortium/join.html
http://www.unicode.org/consortium/join.html

All web standards: HTML, XML, WML etc. are supporting or requiring Unicode. Most versions of Web

Browser support Unicode. Sybase, Oracle, SQL, DB2 all offer or are developing Unicode support.

Unicode is the only way of globalization.

UTF-7 encoding: (UTF-7 stands for UCS Transformation Format, 7-bit form). This encoding supports

all Unicode character values, and can also be accessed as code page 65000.

UTF-8 encoding: (UTF-8 stands for UCS Transformation Format, 8-bit form). This encoding supports

all Unicode character values, and can also be accessed as code page 65001.

UCS-2 encoding: Some applications (especially those that are Web based) must deal with Unicode

data that is encoded with the UTF-8 encoding method. SQL Server uses a different Unicode encoding

(UCS-2) and does not recognize UTF-8 as valid character data.

UTF-16 encoding: This encoding stores the basic Unicode characters using single 16 bit units and

others characters using two 16 bit units. UTF-16 is the primary encoding mechanism used by

Microsoft Windows Client and Server OS.

Note: The UCS-2 encoding scheme is actually a subset of the UTF-16 scheme. Every UCS-2 encoded

code point is identical to the encoding of the same code point in UTF-16. Also, most new

implementations using the Unicode standard now employ UTF-16, UTF-8 or UTF-32 instead of UCS-2.

Encodings in SQL Server

Collation
The physical storage of character strings in Microsoft SQL Server 2008 is controlled by collations.

A collation specifies the bit patterns that represent each character and the rules by which characters

are sorted and compared.

Each SQL Server collation specifies three properties:

 The sort order to use for Unicode data types (nchar and nvarchar). A sort order defines the

sequence in which characters are sorted, and the way characters are evaluated in comparison

operations.

 The sort order to use for non-Unicode character data types (char, varchar, and text).

 The code page used to store non-Unicode character data.

SQL Server 2008 supports objects that have different collations being stored in a single database.

Separate SQL Server 2008 collations can be specified down to the level of columns. Each column in a

table can be assigned different collations. Versions of SQL Server before SQL Server 2000 support only

one collation for each instance of SQL Server. All databases and database objects created in an

instance of SQL Server 7.0 or earlier have the same collation.

SQL Server 2008 supports the following code pages.

Code page Description

437
MS-DOS U.S. English

850 Multilingual (MS-DOS Latin1)

874 Thai

932 Japanese

936 Chinese (Simplified)

949 Korean

950 Chinese (Traditional)

1250 Central European

1251 Cyrillic

1252 Latin1 (ANSI)

1253 Greek

1254 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic

1258 Vietnamese

Microsoft SQL Server collations can be categorized in two groups: Windows collations and SQL

Server collations.

Windows Collations

Windows collations are collations defined for SQL Server to support the Windows system locales

available for the operating system on which SQL Server instances are installed. For information on

new Windows collations support (collations based on Windows system locales) added in SQL

Server 2008 and all other Windows collations, see Windows Collation Name (Transact-SQL).

By specifying a Windows collation for SQL Server, the instance of SQL Server uses the same code

pages and sorting and comparison rules as an application that is running on a computer for which

you have specified the associated Windows locale. For example, the French Windows collation for

SQL Server matches the collation attributes of the French locale for Windows.

There are more Windows locales than there are SQL Server Windows collations. The names of

Windows locales are based on language and territory; for example, French (Canada). However,

several languages share common alphabets and rules for sorting and comparing characters. For

example, several Windows locales, including all the Portuguese and English Windows locales, use

the Latin1 code page (1252) and follow a common set of rules for sorting and comparing

characters. Latin1_General, the SQL Server-supported Windows collation based on the 1252 code

page and sorting rules, supports all of these Windows locales.

Also, Windows locales specify attributes that are not covered by SQL Server supported Windows

collations such as currency, date, and time formats. Because countries and regions such as Great

Britain and the United States have different currency, date, and time formats, they require

different Windows locales. They do not require different SQL Server collations, because they have

the same alphabet and rules for sorting and comparing characters. In SQL Server, Windows

collations are combined with suffixes that define sorting and comparison rules based on case,

accent, kana, and width sensitivity. For more information about these suffixes, see Windows

Collation Sorting Styles.

These are some examples of Windows collation names:

 Latin1_General_CI_AS

http://msdn.microsoft.com/en-us/library/ms188046.aspx
http://msdn.microsoft.com/en-us/library/ms143515.aspx
http://msdn.microsoft.com/en-us/library/ms143515.aspx

Collation uses the Latin1 General dictionary sorting rules, code page 1252, is case-

insensitive and accent-sensitive.

 Estonian_CS_AS

Collation uses the Estonian dictionary sorting rules, code page 1257, is case-sensitive and

accent-sensitive.

Please see the appendix for a list of Microsoft SQL Server 2008 Windows collations.

SQL Server collations

SQL Server collations are a compatibility option to match the attributes of common combinations of

code-page number and sort orders that have been specified in earlier versions of SQL Server. Many of

these collations support suffixes for case, accent, kana, and width sensitivity, but not always. For more

information, see Using SQL Server Collations.

SQL Server collations apply non-Unicode sorting rules to non-Unicode data, and Unicode sorting

rules to Unicode data, by using a corresponding Windows collation for the Unicode data. This

difference can cause inconsistent results for comparisons of the same characters. Therefore, if you

have a mix of Unicode and non-Unicode columns in your database, they should all be defined by

using Windows collations so that the same sorting rules are used across Unicode and non-Unicode

data.

To maintain compatibility with earlier versions of SQL Server, or applications that were developed with

SQL Server collations in earlier versions of SQL Server, SQL Server offers the

SQL_Latin1_General_CP1_CI_AS collation as the default collation for server installations on computers

that use the English (United States) Windows system locale.

There can be differences in performance between Windows collations and SQL Server collations. For

more information, see Storage and Performance Effects of Unicode.

http://msdn.microsoft.com/en-us/library/ms144260.aspx
http://msdn.microsoft.com/en-us/library/ms189617.aspx

Character data types

SQL Server 2008 supports two categories of character data types:

 The Unicode data types nchar and nvarchar. These data types use the Unicode character

representation. Code pages do not apply to these data types.

 The non-Unicode character data types char, varchar, and text. These data types use the

character representation scheme defined in a single or double-byte code page.

Collations do not control the code page used for Unicode columns, only attributes such as

comparison rules and case sensitivity.

International Data and Unicode
The easiest way to manage character data in international databases is to always use the Unicode

nchar and nvarchar data types in place of their non-Unicode equivalents (char, varchar, and text).

If all the applications that work with international databases also use Unicode variables instead of

non-Unicode variables, character translations do not have to be performed anywhere in the system.

All clients will see exactly the same characters in data as all other clients.

For systems that could use single-byte code pages, the fact that Unicode data needs twice as much

storage space as non-Unicode character data is at least partially offset by eliminating the need to

convert extended characters between code pages. Systems using double-byte code pages do not

have this issue.

For instance, SQL Server stores all textual system catalog data in columns having Unicode data

types. The names of database objects such as tables, views, and stored procedures are stored in

Unicode columns. This allows applications to be developed using only Unicode, which avoids all issues

with code page conversions.

Sort order
A sort order specifies the rules used by SQL Server to interpret, collate, compare, and present

character data. For example, a sort order defines whether 'a' is less than, equal to, or greater than 'b'.

A sort order defines whether the collation is case-sensitive, for example whether 'm' is equal or not

equal to 'M'. It also defines if the collation is accent-sensitive, for example whether 'á' is equal or not

equal to 'ä'.

SQL Server uses two sort orders with each collation, one for Unicode data and another one for the

character code page.

Many SQL Server collations use the same code page, but have a different sort order for the code

page.

This allows applications to choose:

 Whether characters will simply be sorted based on the numeric value represented by their bit

patterns. Binary sorting is fastest because SQL Server does not have to make any adjustments

and can use fast, simple sorting algorithms. Binary sort orders are always case-sensitive.

Because the bit patterns in a code page may not be arranged in the same sequence as

defined by the dictionary rules for a specific language, binary sorting sometimes does not sort

characters in a sequence users who speak that language might expect.

 Between case-sensitive or case-insensitive behavior.

 Between accent-sensitive or accent-insensitive behavior.

Encodings in the .Net Framework
The .NET Framework is a platform for building, deploying, and running Web services and applications

that provide a highly productive, standards-based, multi-language environment for integrating

existing or legacy investments with next-generation applications and services.

The .NET Framework uses Unicode UTF-16 to represent characters, although in some cases it uses

UTF-8 internally.

The System.Text namespace provides classes that allow you to encode and decode characters, with

support that includes the following encodings:

 Unicode UTF-16 encoding. Use the UnicodeEncoding class to convert characters to and from

UTF-16 encoding.

 Unicode UTF-8 encoding. Use the UTF8Encoding class to convert characters to and from UTF-

8 encoding.

 ASCII encoding. ASCII encodes the Latin alphabet as single 7-bit characters. Because this

encoding only supports character values from U+0000 through U+007F, in most cases it is

inadequate for internationalized applications. You can use the ASCIIEncoding class to convert

characters to and from ASCII encoding whenever you need to interoperate with legacy

encodings and systems.

 Windows/ISO Encodings. The System.Text.Encoding class provides support for a wide range

of Windows/ISO encodings.

The .NET Framework provides support for data encoded using code pages. You can use the

Encoding.GetEncoding Method (Int32) to create a target encoding object for a specified code page.

Specify a code page number as the Int32 parameter.

http://msdn.microsoft.com/fr-fr/library/system.text.encoding.aspx
http://www.microsoft.com/globaldev/wrg_redirect.asp?URL=Encoding.GetEncoding(Int32)

The one additional type of support introduced to ASP.NET is the ability to clearly distinguish between

file, request, and response encodings. To set the encoding in ASP for code, page directives, and

configuration files, you'll need to do the following.

In code:

Response.ContentEncoding=<value>

Request.ContentEncoding=<value>

File.ContentEncoding=<value>

In Page directive:

Several new directives have been added to ASP.NET. The Language attribute must now be placed

within a Page directive, as shown in the following example:

 <%@Page Language="VB" Codepage="932"%>

 <%@OutputCache Duration="10 VaryByParam="location"%>

But for migration purposes, the shorter ASP-style syntax is also supported for the Page directive only.

 <%@ Language="VB" Codepage="932"%>

 <%@OutputCache Duration="10 VaryByParam="location"%>

Directives can be located anywhere in an .aspx file, but standard practice is to place them at the

beginning of the file. Case is not important in ASP.NET directive statements, and quotes are not

required around the attribute values.

In a configuration file:

You can set the globalization settings in the application web.config file. If not present, the settings are

the ones settled in the machine.config file, and if none, the system‟s default ANSI code page.

Here is the syntax in the configuration file:

<configuration>

 <globalization

 enableClientBasedCulture="true|false"

 requestEncoding="any valid encoding string"

 responseEncoding="any valid encoding string"

 fileEncoding="any valid encoding string"

 responseHeaderEncoding = "any valid encoding string"

 resourceProviderFactoryType = string

 enableBestFitResponseEncoding = "true|false"

 culture="any valid culture string"

 uiCulture="any valid culture string"/>

</configuration>

For more information about setting globalization in configuration files, please go to

http://msdn.microsoft.com/en-us/library/hy4kkhe0.aspx.

http://msdn.microsoft.com/en-us/library/hy4kkhe0.aspx

Encodings in Web Pages
However, Web pages currently consist of content that can be in Windows or other character-encoding

schemes besides Unicode. Therefore, when form or query-string values come in from the browser in

an HTTP request, they must be converted from the character set used by the browser into Unicode for

processing by the .Net Framework. Similarly, when output is sent back to the browser, any strings

returned by scripts must be converted from Unicode back to the code page used by the client.

Generally speaking, there are four different ways of setting the character set or the encoding of a Web

page:

 Windows code pages or ISO character encodings: With this approach, you can select from

the list of supported code pages to create your Web content. The downside of this approach

is that you are limited to languages that are included in the selected character set, making

true multilingual Web content impossible. This limits you to a single-script Web page.

 Number entities: Number entities can be used to represent a few symbols out of the

currently selected code page or encoding. Let's say, for example, you have decided to create

a Web page using the previous approach with the Latin ISO charset 8859-1. Now you also

want to display some Greek characters in a mathematical equation; Greek characters,

however, are not part of the Latin code page. Unfortunately, this approach makes it

impossible to compose large amounts of text and makes editing your Web content very hard.

 UTF-16: Unlike Win32 applications where UTF-16 is by far the best approach, for Web

content UTF-16 can be used safely only on Windows NT networks that have full Unicode

support. Therefore, this is not a suggested encoding for Internet sites where the capabilities

of the client Web browser as well the network Unicode support are not known.

 UTF-8: This Unicode encoding is the best and safest approach for multilingual Web

pages. It allows you to encode the whole repertoire of Unicode characters. Also, all versions

of Internet Explorer 4 and later support this encoding, which is not restricted to network or

wire capabilities. The UTF-8 encoding allows you to create multilingual Web content without

having to change the encoding based on the target language.

Setting and encoding Web Pages
Since Web content is currently based on Windows or other encoding schemes, you'll need to know

how to set and manipulate encodings. The following describes how to do this for HTML pages, Active

Server Pages (ASP), ASP.Net, and XML pages.

Internet Explorer uses the character set specified for a document to determine how to translate the

bytes in the document into characters on the screen or on paper.

By default, Internet Explorer uses the character set specified in the HTTP content type returned by the

server to determine this translation. If this parameter is not given, Internet Explorer uses the character

set specified by the meta-element in the document, taking into account the user's preferences if no

meta-element is specified.

To apply a character set to an entire document, you must insert the meta-element before the body

element. For clarity, it should appear as the first element after the head, so that all browsers can

translate the meta-element before the document is parsed. The meta-element applies to the

document containing it. This means, for example, that a compound document (a document consisting

of two or more documents in a set of frames) can use different character sets in different frames. Here

is how it works:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=<value>">

You substitute with any supported character-set-friendly name (for example, UTF-8) or any code-page

name (for example, windows 1251). See the appendix for more code page name.

Working with Unicode Data in

Microsoft Platform

Unicode Basics
Storing data in multiple languages within one database is difficult to manage when you use only

character data and code pages. It is also difficult to find one code page for the database that can

store all the required language-specific characters. Additionally, it is difficult to guarantee the correct

translation of special characters when being read or updated by different clients running various code

pages. Databases that support international clients should always use Unicode data types

instead of non-Unicode data types.

For example, consider a database of customers in North America that must handle three major

languages:

 Spanish names and addresses for Mexico

 French names and addresses for Quebec

 English names and addresses for the rest of Canada and the United States

When you use only character columns and code pages, you must take care to make sure the database

is installed with a code page that will handle the characters of all three languages. You must also take

care to guarantee the correct translation of characters from one of the languages when read by

clients running a code page for another language.

With the growth of the Internet, it is even more important to support many client computers that are

running different locales. Selecting a code page for character data types that will support all the

characters required by a worldwide audience would be difficult.

The easiest way to manage character data in international databases is to always use the Unicode

nchar, nvarchar, and nvarchar(max) data types, instead of their non-Unicode equivalents, char, varchar,

and text.

Unicode is a standard for mapping code points to characters. Because it is designed to cover all the

characters of all the languages of the world, there is no need for different code pages to handle

different sets of characters. SQL Server supports the Unicode Standard, Version 3.2.

If all the applications that work with international databases also use Unicode variables instead of

non-Unicode variables, character translations do not have to be performed anywhere in the system.

Clients will see the same characters in the data as all other clients.

SQL Server stores all textual system catalog data in columns having Unicode data types. The names of

database objects, such as tables, views, and stored procedures, are stored in Unicode columns. This

enables applications to be developed by using only Unicode, and helps avoid all issues with code

page conversions.

Storage and Performance Effects of Unicode
SQL Server stores Unicode data by using the UCS-2 encoding scheme. Under this mechanism, all

Unicode characters are stored by using 2 bytes.

The difference in storing character data between Unicode and non-Unicode depends on whether

non-Unicode data is stored by using double-byte character sets. All non-East Asian languages and the

Thai language store non-Unicode characters in single bytes. Therefore, storing these languages as

Unicode uses two times the space that is used specifying a non-Unicode code page. On the other

hand, the non-Unicode code pages of many other Asian languages specify character storage in

double-byte character sets (DBCS). Therefore, for these languages, there is almost no difference in

storage between non-Unicode and Unicode.

The following table shows the non-Unicode code pages that specify character data storage in double-

byte character sets.

Language Code page

Simplified Chinese
936

Traditional Chinese 950

Japanese 932

Korean 949

The effect of Unicode data on performance is complicated by a variety of factors that include the

following:

 The difference between Unicode sorting rules and non-Unicode sorting rules

 The difference between sorting double-byte and single-byte characters

 Code page conversion between client and server

SQL Server performs string comparisons of non-Unicode data defined with a Windows collation by

using Unicode sorting rules. Because these rules are much more complex than non-Unicode sorting

rules, they are more resource-intensive. So, although Unicode sorting rules are frequently more

expensive, there is generally little difference in performance between Unicode data and non-Unicode

data defined with a Windows collation.

The only case when SQL Server uses non-Unicode sorting rules is on non-Unicode data that is defined

by using SQL Server collation. Sorts and scans in this instance are generally faster than when Unicode

sorting rules apply. Unicode sorting rules apply to all Unicode data, defined by using either a

Windows collation or SQL Server collation.

Of secondary importance, sorting lots of Unicode data can be slower than non-Unicode data, because

the data is stored in double bytes. On the other hand, sorting Asian characters in Unicode is faster

than sorting Asian DBCS data in a specific code page, because DBCS data is actually a mixture of

single-byte and double-byte widths, while Unicode characters are fixed-width.

Other performance issues are primarily determined by the issue of converting the encoding

mechanism between an instance of SQL Server and the client. Generally, the effects on performance

of client/server code-page conversion are negligible. Nevertheless, you should understand what is

occurring at this layer.

The ODBC API, version 3.6 or earlier, and the DB-Library API do not recognize Unicode. For

clients that use data access methods defined by these APIs, resources are used to implicitly convert

Unicode data to the client code page. Also, there is a risk of data corruption on the client side

when the client code page does not recognize certain Unicode characters.

Later versions of ODBC, starting with Microsoft Data Access Components version 2.7 that was

included with SQL Server version 7.0, and OLE DB and ADO are Unicode aware and assume a UCS-2

encoding mechanism. Therefore, if the application is Unicode enabled, there are no conversion issues

when you work strictly with Unicode data from an instance of SQL Server. If a client is using a

Unicode-enabled API but the data storage mechanism in the instance of SQL Server is not Unicode,

there are no conversion issues. However, there is a risk that any data insert or update operations will

be corrupted if the code points for any character cannot be mapped to the SQL Server code page.

Unicode Best Practices
Deciding whether to store non-DBCS data as Unicode is generally determined by an awareness of the

effects on storage, and about how much sorting, conversion, and possible data corruption might

happen during client interactions with the data. Sorting and conversion may affect performance,

depending on where it occurs. However, for most applications the effect is negligible. Databases with

well-designed indexes are especially unlikely to be affected. However, data corruption will affect not

only the integrity of an application and database, but also the business as a whole.

Considering this trade-off, storing character data in a specific code page may make sense if both of

the following are true:

 Conserving storage space is an issue, because of hardware limitations. Or, you are

performing frequent sorts of lots of data, and testing indicates that a Unicode storage

mechanism severely affects performance.

 You are sure the code pages of all clients accessing this data match yours, and that this

situation will not unexpectedly change.

Most of the time, the decision to store character data, even non-DBCS data, in Unicode should be

based more on business needs instead of performance. In a global economy that is encouraged by

rapid growth in Internet traffic, it is becoming more important than ever to support client computers

that are running different locales. Additionally, it is becoming increasingly difficult to pick a single

code page that supports all the characters required by a worldwide audience.

Server-side Programming with Unicode
To make a database Unicode-aware involves defining Unicode-aware client interactions in addition to

using the nchar, nvarchar, and nvarchar(max) data types to define Unicode storage. You can define

Unicode-aware client interactions by performing the following on the database server side:

 Switch from non-Unicode data types to Unicode data types in table columns and in

CONVERT() and CAST() operations.

 Substitute using ASCII() and CHAR() functions with their Unicode equivalents, UNICODE()

and NCHAR().

 Define variables and parameters of stored procedures and triggers in Unicode.

 Prefix Unicode character string constants with the letter N.

Using UNICODE(), NCHAR(), and other Functions

The ASCII() function returns the non-Unicode character code of the character passed in. Therefore,

use the counterpart UNICODE() function for Unicode strings where you would use the ASCII function

on non-Unicode strings. The same is true of the CHAR function; NCHAR is its Unicode counterpart.

Because the SOUNDEX() function is defined based on English phonetic rules, it is not meaningful on

Unicode strings unless the string contains only the Latin characters A through Z and a through z.

ASCII, CHAR, and SOUNDEX can be passed Unicode parameters, but these arguments are implicitly

converted to non-Unicode strings. This could cause the possible loss of Unicode characters before

processing, because these functions operate on non-Unicode strings by definition.

Besides the UNICODE() and NCHAR() functions, the following string manipulation functions

support Unicode wherever possible:

 CHARINDEX()

 LEFT()

 LEN()

 UPPER()

 LOWER()

 LTRIM()

 RTRIM()

 PATINDEX()

 REPLACE()

 QUOTENAME()

 REPLICATE()

 REVERSE()

 STUFF()

 SUBSTRING()

 UNICODE()

These functions accept Unicode arguments, respect the 2-byte character boundaries of Unicode

strings, and use Unicode sorting rules for string comparisons when the input parameters are Unicode.

Defining Parameters in stored Procedures

Defining parameters with a Unicode data type guarantees that client requests or input are

implicitly converted to Unicode on the server and not corrupted in the process. If the parameter

is specified as an OUTPUT parameter, a Unicode type also minimizes the chance of corruption on its

way back to the client.

In the following stored procedure, the variable is declared as a Unicode data type.

CREATE PROCEDURE Product_Info

 @name nvarchar(40)

AS

SELECT p.ListPrice, v.Name

 FROM Production.Product p

 INNER JOIN Purchasing.ProductVendor pv

 ON p.ProductID = pv.ProductID

 INNER JOIN Purchasing.Vendor v

 ON pv.VendorID = v.VendorID

WHERE p.Name = @name;

Using the N Prefix

Unicode string constants that appear in code executed on the server, such as in stored

procedures and triggers, must be preceded by the capital letter N. This is true even if the column

being referenced is already defined as Unicode. Without the N prefix, the string is converted to the

default code page of the database. This may not recognize certain characters.

For example, the stored procedure created in the previous example can be executed on the server in

the following way:

EXECUTE Product_Info @name = N'Chain'

The requirement to use the N prefix applies to both string constants that originate on the server and

those sent from the client.

Client-side Programming with Unicode
The topics in this section explain how to preserve the integrity of character data when you program

client-side database applications.

Managing Data Conversion between Client/Server Code Pages

This topic describes how to preserve the integrity of character data when the database does not store

the character data by using Unicode data types and when your client-side applications that interact

with the data are also not Unicode-aware. In this situation, the code page of your data storage and

the code page of the client-side application should be the same. If these code pages differ, the

conversion that occurs between the client and the server might cause the loss of some characters.

Disabling the AutoTranslate feature of the SQL Server ODBC driver to insert data defined by a

different code page from the server is not supported. Also, even if AutoTranslate is disabled, it does

not prevent code page translation for SQL language events. The result is that if the client and

database code pages do not match, code page translation will generally be applied to any non-

Unicode character string that is sent to or from the server.

If you can, you should avoid this situation. The best choice for a code page-specific server is to

communicate only with the clients using the same code page. The second-best choice is to use

another code page that has almost the same character set. For example, code page 1252 (Latin1) and

code page 850 (Multilingual Latin1) can store almost the same set of characters, so that most

characters in these two code pages can be converted from one code page to another without data

loss.

If you must communicate with clients using different code pages, the supported solution is to store

your data in Unicode columns. If any one of these options is not feasible, the other alternative is to

store the data in binary columns using the binary, varbinary, or varbinary(max) data types. However,

binary data can only be sorted and compared in binary order. This makes it less flexible than character

data.

Managing Data Conversion between a Unicode Server and a Non-Unicode Client

This topic describes how to preserve the integrity of character data when the server-side data storage

is in Unicode, but the client-side application that interacts with the data uses a specific code page.

Data Input

When non-Unicode data is sent from the client to be stored on the server in Unicode, data from any

client with any code page can be stored correctly if one of the following conditions is true:

 Character strings are sent to the server as parameters of a remote procedure call (RPC).

 String constants are preceded with the capital letter N. This is required regardless of

whether your client-side application is Unicode-aware. Without the N prefix, SQL Server

will convert the string to the code page that corresponds to the default collation of the

database. Any characters not found in this code page will be lost.

Data Retrieval

If the client application is not Unicode-enabled and retrieves the data into non-Unicode buffers, a

client will only be able to retrieve or modify data that can be represented by the client machine's code

page. This means that ASCII characters can always be retrieved, because the representation of ASCII

characters is the same in all code pages, while any non-ASCII data depends on code-page-to-code-

page conversion.

For example, suppose you have an application that is currently running only in the United States

(U.S.), but is deployed to Japan. Because the SQL Server database is Unicode-aware, both the English

and Japanese text can be stored in the same tables, even though the application has not yet been

modified to deal with text as Unicode. As long as the application complies with one of the two

previous options, Japanese users can use the non-Unicode application to input and retrieve Japanese

data, and U.S. users can input and retrieve English data. All data from both sets of users is stored

intact in the same column of the database and represented as Unicode. In this situation, a Unicode-

enabled reporting application that generates reports that span the complete data set can be

deployed. However, English users cannot view the Japanese rows, because the application cannot

display any characters that do not exist in their code page (1252).

This situation might be acceptable if the two groups of users do not have to view each other's

records. If an application user must be able to view or modify records with text that cannot be

represented by a single code page, there is no alternative but to modify the application so that it can

use Unicode.

Web-based Applications

If the client-side program is Web-based or connects to an Active Server Pages (ASP) page, there are

metadata specifications on both the client-side HTML page and the server-side ASP page. These

specifications must be made to specify how character strings should be converted between the server,

the ASP engine, and the client browser.

On the client side HTML page, the META attribute must specify that the character set data should be

converted to the encoding scheme of the client by specifying a CHARSET code. For example, the

following HTML page instructs the client to convert character data to the 950 (Chinese Traditional)

code page by specifying big5 as the CHARSET code.

<HTML>

<HEAD>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=big5">

<!--

-->

</HEAD>

<BODY>

<!--

 body

-->

</BODY>

</HTML>

On the server-side ASP page, you must instruct the ASP Web application what code page the client

browser is using. You can specify the Session.CodePage property, or the @CodePage directive. These

methods will handle the conversion of data from server to client and also both GET and POST client

requests. In the following examples, both methods are used to specify conversion to and from the

code page of the client, which is 950 (Chinese Traditional).

<%@ Language=VBScript codepage=950 %>

<% Session.CodePage=950 %>

And finally, you must remember to prefix any string literals with the letter N.

Managing Data Conversion between Unicode Encoding Schemes

This topic describes how to preserve the integrity of character data when both server-side data

storage and the client application that interacts with the data are Unicode-enabled, but use different

Unicode encoding schemes. SQL Server stores Unicode in the UCS-2 encoding scheme. However,

many clients process Unicode in another encoding scheme, generally UTF-8. This scenario frequently

occurs for Web-based applications.

Because you are essentially still converting from one encoding scheme to another; many of the same

solutions discussed in the previous topics also apply. Unicode character string constants sent to the

server must be preceded with a capital N. For Web-based applications, you specify the CHARSET code

under the META attribute of the client-side HTML page. For example, specify CHARSET = utf-8 if the

Unicode encoding scheme is UTF-8. On the server side, specify the encoding scheme of the client by

using the Session.CodePage property or the @Codepage directive. For example, codepage=65001

specifies a UTF-8 encoding scheme. If you follow these directions, Internet Information Services (IIS)

5.0 or later versions will seamlessly handle the conversion from UTF-8 to UCS-2 and back without

additional effort on your part.

In Visual Basic applications, character strings are processed in the UCS-2 encoding scheme. Therefore,

you do not have to specify encoding scheme conversion explicitly between these applications and an

instance of SQL Server.

Using Unicode with bcp and OPENROWSET
To prevent character loss when you use the bcp utility to copy data between servers that have

different code pages, you can specify that the data be copied in Unicode format. For more

information, see Copying Data Between Different Collations.

Unicode format can also be specified when you use OPENROWSET to access external data. For more

information, see OPENROWSET (Transact-SQL).

Using Unicode with XML Data
SQL Server stores XML data using the UTF-16 encoding scheme. Because UTF-16 data is variable-

width, it is processed according to a byte-oriented protocol. This means that UTF-16 data can be

treated in a way that is independent of the byte ordering on different computers (little endian versus

big endian). Therefore, UTF-16 is well-suited for traversing different computers that use different

encodings and byte-ordering systems. Because XML data is typically shared widely across networks, it

makes sense to maintain the default UTF-16 storage of XML data in your database, and when you

export XML data to clients.

If you must specify a different encoding, you can use FOR XML requests and specify the following:

 The Output Encoding property of an XML-formatted data stream Response object in

Active Server Pages (ASP).

 For example, the following ASP code tells the browser to display an incoming XML data

stream in UCS-2:

http://msdn.microsoft.com/en-us/library/ms190657.aspx
http://msdn.microsoft.com/en-us/library/ms190312.aspx

<% cmdXML.Properties("Output Encoding") = "UCS-2" %>

 An output encoding in a URL when you make an HTTP request.

 The following example specifies UCS-2 as the output encoding of the XML document

returned by this request:

http://IISServer/nwind?sql=SELECT+*+FROM+Customers+FOR+XML+AUTO&outputencoding=UCS-2

 An output encoding in an XML template or style sheet.

 The following example specifies UCS-2 as the output encoding in the header of this XML

template document:

<?xml version ='1.0' encoding='UCS-2'?>

 <root xmlns:sql='urn:schemas-microsoft-com:xml-sql'

 sql:xsl='MyXSL.xsl'>

 <sql:query>

 SELECT FirstName, LastName FROM Employees FOR XML AUTO

 </sql:query>

</root>

SQL Server Globalization Development Recommendations

Use nchar/nvarchar instead of char/varchartype

Nchar/nvarchar type is the Unicode data type used by SQL Server, which can store any characters

defined by Unicode.org. Char/varchar type is always associated with a code page, so the number of

supported characters is limited. For example:

 Starting from Windows 2000, Windows has full Unicode support implemented by using UTF-

16 Encoding. Windows APIs take WCHAR* as input which represent a Unicode String.

 Virtual C++ has WCHAR, which is Unicode char type.

 .Net String is Unicode String only encoded in UTF-16.

 Java String is Unicode String only encoded in UTF-16.

 Char type might have a data corruption issue if your client locale is different from the server

locale.

Deprecate old code page technique

Use Unicode in your application and in your SQL Server database. The only benefit of using char type

is the space saving for single byte code page. You can always use the Data Compression feature in

SQL Server 2008 if you care about disk space, which can save more space than using char type.

Use N for your string literal in T-SQL

Remember to put N' for your string literal in T-SQL. String literal N'abc' is a Unicode nvarcharstring

literal. Literal „ab©' is a varchar literal, it always associates with a code page (string literal always use

current database's collation).Suppose char © is not in the code page, you will get a question mark (?)

when inserting the literal into a table, even the column is nvarchar type.

Use nvarchar instead of nchar

Use nvarchar instead of nchar. The difference between nvarchar and nchar is the storage. A column

with nchar(30) type always take 60 bytes to store on the disk, even the value is a single character. The

data size for an nvarchar(30) type column is not fixed; it varies row by row or value by value. A single

character value takes 2 bytes to store, and a value with 30 characters long takes 60bytes to be stored.

Another different between nvarchar and nchar type is the performance. Nchar types always stored in

fixed location in every row, which can be retrieved faster than nvarchar type which is stored in

different location for different row. However, I believe the benefit of less stored space for nvarchar

types usually overcomes the cost of locating the value in a row.

Avoid column collation that is different from the dataset collation

If possible, avoid using a column collation which is different with the database's collation. You will

have less collation conflict. If you want a query use a special collation's sorting rule, use explicit collate

clause in that query.

Use Windows Collation instead of SQL Server Collation

Use Windows collation instead of SQL Server collation. The only exception here is the default collation

for en_US locale which issql_latin1_general_cp1_ci_as.

Never store UTF-8 string in varchar types

Never store UTF-8 string in varchar types, you will get data corruption.

String comparison and trailing spaces

String comparison always ignores trailing spaces (Unicode U+0020), no matter what collation you are

using.

http://msdn.microsoft.com/en-us/library/ms175194.aspx
http://msdn.microsoft.com/en-us/library/ms175194.aspx

LEN Function reminder

LEN function always returns the number of characters excluding the trailing spaces. DataLength

function returns the storage size in term of bytes.

_BIN2 Collation

Use _BIN2 collation, instead of _BIN collation if you want binary, code page base string comparison

behavior.

Working with other data sources

in Microsoft Platform
The following section deals with inserting data from source systems into Microsoft environment. Each

part describes the possibilities and constraints of the specified method.

Working with UTF-16 source data in SQL Server (Unicode)

SQL Server offers the following possibilities when working with UTF-16 data sets:

 SQL Server can store any Unicode characters in UTF-16 encoding. The reason is that the

storage format for UCS-2 and UTF-16 are the same.

 SQL Server can display any Unicode characters in UTF-16 encoding. The reason is that we

internally call Windows functions to display characters, the Windows functions and fonts can

take care of the supplementary character (a character take 4 bytes in UTF-16) correctly.

 SQL Server can input any Unicode characters in UTF-16 encoding. The reason is that we

internally call Windows IMEs (Input Method Editors) to input, the Windows IMEs can take care

of the supplementary character (a character take 4 bytes in UTF-16) correctly.

 SQL Server can sort/compare any defined Unicode characters in UTF-16 encoding. Note, not

all code points are mapped to valid Unicode characters. For example, The Unicode Standard,

Version 5.1 defines code points for around 10,000 characters. All these characters can be

compared/sorted in SQL Server latest version: SQL Server 2008.

SQL Server has the following constraints when working with UTF-16 data sets:

SQL Server cannot detect invalid UTF-16 sequences. Unpaired surrogate character is not valid in

UTF-16 encoding, but SQL Server accept it as valid. Note, in reality, it is unlikely end-user will input

invalid UTF-16 sequence since they are not supported in any language or by any IMEs.

 SQL Server treats a UTF-16 supplementary character as two characters. The Len function

return 2 instead of 1 for such input.

 SQL Server has a potential risk of breaking a UTF-16 supplementary character into an

un-paired surrogate character, as in calling the substring function. Note, in the real

scenario, the chance of this to happen is much lower, because supplementary characters are

rare and string function will only break when it happens at the boundary. For example, calling

substring(s,5,1) will break if and only if the character at index 5 is a supplementary character.

Working with UTF-8 source data in SQL Server (Unicode)
SQL Server doesn't support UTF-8 encoding for Unicode data, it supports the UTF-16 encoding.

Conversion from UTF-8 to UTF-16 must be addressed through ETL.

With SQL Server Integration Services 2008, a simple Data Conversion component inserted in a

package can convert data from UTF-8 to UTF-16.

Working with Non-Unicode source data in SQL Server

(Unicode)

Expected inputs

Code page of the source must be compatible with the code pages supported by ETL tools.

Illustration: Informatica mechanism

Code page compatibility matrix

With the “Codepage Relaxation” feature, Src - Informatica Server - Tgt do not need to be in

compatible codepages.

However there are some limitations:

 Informatica Server should run in UNICODE mode.

 User has to make sure the code page of Src should be compatible with that of Tgt.

 Both client and server have to set code page relaxation on.

Illustration: SQL Server Integration Services mechanism

With SQL Server 2008 Integration Services, a simple Data Conversion component inserted in a

package can convert data from a source code page to Unicode. A prerequisite to this step is to make

sure that SQL Server 2008 Integration Services is compatible with the source code page.

For a list of compatible code pages, please refer to Appendix 3.

Working with source date in SQL Server (Non-Unicode)

Code page of the source must be compatible with the code page of SQL Server if you want to store

data in Non-Unicode data types.

SQL Server 2008 supports the following code pages.

Code page Description

1258
Vietnamese

1257 Baltic

1256 Arabic

1255 Hebrew

1254 Turkish

1253 Greek

1252 Latin1 (ANSI)

1251 Cyrillic

1250 Central European

950 Chinese (Traditional)

949 Korean

936 Chinese (Simplified)

932 Japanese

874 Thai

850 Multilingual (MS-DOS Latin1)

437 MS-DOS U.S. English

Appendix

Common code page list
Here is the list of the most popular code pages:

Code Page Name DisplayName

37
IBM037 IBM EBCDIC (US-Canada)

437 IBM437 OEM United States

500 IBM500 IBM EBCDIC (International)

708 ASMO-708 Arabic (ASMO 708)

720 DOS-720 Arabic (DOS)

737 ibm737 Greek (DOS)

775 ibm775 Baltic (DOS)

850 ibm850 Western European (DOS)

852 ibm852 Central European (DOS)

855 IBM855 OEM Cyrillic

857 ibm857 Turkish (DOS)

858 IBM00858 OEM Multilingual Latin I

860 IBM860 Portuguese (DOS)

861 ibm861 Icelandic (DOS)

862 DOS-862 Hebrew (DOS)

863 IBM863 French Canadian (DOS)

864 IBM864 Arabic (864)

865 IBM865 Nordic (DOS)

866 cp866 Cyrillic (DOS)

869 ibm869 Greek, Modern (DOS)

870 IBM870 IBM EBCDIC (Multilingual Latin-2)

874 windows-874 Thai (Windows)

875 cp875 IBM EBCDIC (Greek Modern)

932 shift_jis Japanese (Shift-JIS)

936 gb2312 Chinese Simplified (GB2312)

949 ks_c_5601-1987 Korean

950 big5 Chinese Traditional (Big5)

1026 IBM1026 IBM EBCDIC (Turkish Latin-5)

1047 IBM01047 IBM Latin-1

1140 IBM01140 IBM EBCDIC (US-Canada-Euro)

1141 IBM01141 IBM EBCDIC (Germany-Euro)

1142 IBM01142 IBM EBCDIC (Denmark-Norway-Euro)

1143 IBM01143 IBM EBCDIC (Finland-Sweden-Euro)

1144 IBM01144 IBM EBCDIC (Italy-Euro)

1145 IBM01145 IBM EBCDIC (Spain-Euro)

1146 IBM01146 IBM EBCDIC (UK-Euro)

1147 IBM01147 IBM EBCDIC (France-Euro)

1148 IBM01148 IBM EBCDIC (International-Euro)

1149 IBM01149 IBM EBCDIC (Icelandic-Euro)

1200 utf-16 Unicode

1201 unicodeFFFE Unicode (Big-Endian)

1250 windows-1250 Central European (Windows)

1251 windows-1251 Cyrillic (Windows)

1252 Windows-1252 Western European (Windows)

1253 windows-1253 Greek (Windows)

1254 windows-1254 Turkish (Windows)

1255 windows-1255 Hebrew (Windows)

1256 windows-1256 Arabic (Windows)

1257 windows-1257 Baltic (Windows)

1258 windows-1258 Vietnamese (Windows)

1361 Johab Korean (Johab)

10000 macintosh Western European (Mac)

10001 x-mac-japanese Japanese (Mac)

10002 x-mac-chinesetrad Chinese Traditional (Mac)

10003 x-mac-korean Korean (Mac)

10004 x-mac-arabic Arabic (Mac)

10005 x-mac-hebrew Hebrew (Mac)

10006 x-mac-greek Greek (Mac)

10007 x-mac-cyrillic Cyrillic (Mac)

10008 x-mac-chinesesimp Chinese Simplified (Mac)

10010 x-mac-romanian Romanian (Mac)

10017 x-mac-ukrainian Ukrainian (Mac)

10021 x-mac-thai Thai (Mac)

10029 x-mac-ce Central European (Mac)

10079 x-mac-icelandic Icelandic (Mac)

10081 x-mac-turkish Turkish (Mac)

10082 x-mac-croatian Croatian (Mac)

20000 x-Chinese-CNS Chinese Traditional (CNS)

20001 x-cp20001 TCA Taiwan

20002 x-Chinese-Eten Chinese Traditional (Eten)

20003 x-cp20003 IBM5550 Taiwan

20004 x-cp20004 TeleText Taiwan

20005 x-cp20005 Wang Taiwan

20105 x-IA5 Western European (IA5)

20106 x-IA5-German German (IA5)

20107 x-IA5-Swedish Swedish (IA5)

20108 x-IA5-Norwegian Norwegian (IA5)

20127 us-ascii US-ASCII

20261 x-cp20261 T.61

20269 x-cp20269 ISO-6937

20273 IBM273 IBM EBCDIC (Germany)

20277 IBM277 IBM EBCDIC (Denmark-Norway)

20278 IBM278 IBM EBCDIC (Finland-Sweden)

20280 IBM280 IBM EBCDIC (Italy)

20284 IBM284 IBM EBCDIC (Spain)

20285 IBM285 IBM EBCDIC (UK)

20290 IBM290 IBM EBCDIC (Japanese katakana)

20297 IBM297 IBM EBCDIC (France)

20420 IBM420 IBM EBCDIC (Arabic)

20423 IBM423 IBM EBCDIC (Greek)

20424 IBM424 IBM EBCDIC (Hebrew)

20833 x-EBCDIC-

KoreanExtended

IBM EBCDIC (Korean Extended)

20838 IBM-Thai IBM EBCDIC (Thai)

20866 koi8-r Cyrillic (KOI8-R)

20871 IBM871 IBM EBCDIC (Icelandic)

20880 IBM880 IBM EBCDIC (Cyrillic Russian)

20905 IBM905 IBM EBCDIC (Turkish)

20924 IBM00924 IBM Latin-1

20932 EUC-JP Japanese (JIS 0208-1990 and 0212-1990)

20936 x-cp20936 Chinese Simplified (GB2312-80)

20949 x-cp20949 Korean Wansung

21025 cp1025 IBM EBCDIC (Cyrillic Serbian-Bulgarian)

21866 koi8-u Cyrillic (KOI8-U)

28591 iso-8859-1 Western European (ISO)

28592 iso-8859-2 Central European (ISO)

28593 iso-8859-3 Latin 3 (ISO)

28594 iso-8859-4 Baltic (ISO)

28595 iso-8859-5 Cyrillic (ISO)

28596 iso-8859-6 Arabic (ISO)

28597 iso-8859-7 Greek (ISO)

28598 iso-8859-8 Hebrew (ISO-Visual)

28599 iso-8859-9 Turkish (ISO)

28603 iso-8859-13 Estonian (ISO)

28605 iso-8859-15 Latin 9 (ISO)

29001 x-Europa Europa

38598 iso-8859-8-i Hebrew (ISO-Logical)

50220 iso-2022-jp Japanese (JIS)

50221 csISO2022JP Japanese (JIS-Allow 1 byte Kana)

50222 iso-2022-jp Japanese (JIS-Allow 1 byte Kana - SO/SI)

50225 iso-2022-kr Korean (ISO)

50227 x-cp50227 Chinese Simplified (ISO-2022)

51932 euc-jp Japanese (EUC)

51936 EUC-CN Chinese Simplified (EUC)

51949 euc-kr Korean (EUC)

52936 hz-gb-2312 Chinese Simplified (HZ)

54936 GB18030 Chinese Simplified (GB18030)

57002 x-iscii-de ISCII Devanagari

57003 x-iscii-be ISCII Bengali

57004 x-iscii-ta ISCII Tamil

57005 x-iscii-te ISCII Telugu

57006 x-iscii-as ISCII Assamese

57007 x-iscii-or ISCII Oriya

57008 x-iscii-ka ISCII Kannada

57009 x-iscii-ma ISCII Malayalam

57010 x-iscii-gu ISCII Gujarati

57011 x-iscii-pa ISCII Punjabi

65000 utf-7 Unicode (UTF-7)

65001 utf-8 Unicode (UTF-8)

65005 utf-32 Unicode (UTF-32)

65006 utf-32BE Unicode (UTF-32 Big-Endian)

Windows Collations
The following is the list of supported Windows collations in SQL Server 2008.

Windows locale SQL Server 2008 (100) SQL Server 2005 (90) or SQL Server

2000

Afrikaans (South Africa)
Latin1_General_100_ Latin1_General_

Albanian (Albania) Albanian_100_ Albanian_

Alsatian (France) Latin1_General_100_ New to SQL Server 2008

Amharic (Ethiopia) Latin1_General_100_ New to SQL Server 2008

Arabic (Algeria) Arabic_100_ Arabic_

Arabic (Bahrain) Arabic_100_ Arabic_

Arabic (Egypt) Arabic_100_ Arabic_

Arabic (Iraq) Arabic_100_ Arabic_

Arabic (Jordan) Arabic_100_ Arabic_

Arabic (Kuwait) Arabic_100_ Arabic_

Arabic (Lebanon) Arabic_100_ Arabic_

Arabic (Libya) Arabic_100_ Arabic_

Arabic (Morocco) Arabic_100_ Arabic_

Arabic (Oman) Arabic_100_ Arabic_

Arabic (Qatar) Arabic_100_ Arabic_

Arabic (Saudi Arabia) Arabic_100_ Arabic_

Arabic (Syria) Arabic_100_ Arabic_

Arabic (Tunisia) Arabic_100_ Arabic_

Arabic (U.A.E.) Arabic_100_ Arabic_

Arabic (Yemen) Arabic_100_ Arabic_

Armenian (Armenia) Cyrillic_General_100_ New to SQL Server 2008

Assamese (India) Assamese_100_
1
 New to SQL Server 2008

Azeri (Azerbaijan,

Cyrillic)

Azeri_Cyrillic_100_ Azeri_Cyrillic_90_

Azeri (Azerbaijan, Latin) Azeri_Latin_100_ Azeri_Latin_90_

Bashkir (Russia) Bashkir_100_ New to SQL Server 2008

Basque (Basque) Latin1_General_100_ New to SQL Server 2008

Belarusian (Belarus) Cyrillic_General_100_ Cyrillic_General_

Bengali (Bangladesh) Bengali_100_
1
 New to SQL Server 2008

Bengali (India) Bengali_100_
1
 New to SQL Server 2008

Bosnian (Bosnia and

Herzegovina, Cyrillic)

Bosnian_Cyrillic_100_ New to SQL Server 2008

Bosnian (Bosnia and

Herzegovina, Latin)

Bosnian_Latin_100_ New to SQL Server 2008

Breton (France) Breton_100_ New to SQL Server 2008

Bulgarian (Bulgaria) Cyrillic_General_100_ Cyrillic_General_

Catalan (Catalan) Latin1_General_100_ Latin1_General_

Chinese (Hong Kong

SAR, PRC)

Chinese_Traditional_Stroke_

Count_100_

Chinese_Hong_Kong_Stroke_90_

Chinese (Macao SAR) Chinese_Traditional_Pinyin_

100_

New to SQL Server 2008

Chinese (Macau) Chinese_Traditional_Stroke_

Order_100_

New to SQL Server 2008

Chinese (PRC) Chinese_Simplified_Pinyin_1

00_

Chinese_PRC_90_, Chinese_PRC_

Chinese (PRC) Chinese_Simplified_Stroke_

Order_100_

Chinese_PRC_Stroke_90_,

Chinese_PRC_Stroke_

Chinese (Singapore) Chinese_Simplified_Pinyin_1

00_

Chinese_PRC_90_, Chinese_PRC_

Chinese (Singapore) Chinese_Simplified_Stroke_

Order_100_

New to SQL Server 2008

Chinese (Taiwan) Chinese_Traditional_Bopom

ofo_100_

Chinese_Taiwan_Bopomofo_90_,

Chinese_Taiwan_Bopomofo_

Chinese (Taiwan) Chinese_Traditional_Stroke_

Count_100_

Chinese_Taiwan_Stroke_90_,

Chinese_Taiwan_Stroke_

Corsican (France) Corsican_100_ New to SQL Server 2008

Croatian (Bosnia and

Herzegovina, Latin)

Croatian_100_ New to SQL Server 2008

Croatian (Croatia) Croatian_100_ Croatian_

Czech (Czech Republic) Czech_100_ Czech_

Danish (Denmark) Danish_Greenlandic_100_ Danish_Norwegian_

Dari (Afghanistan) Dari_100_ New to SQL Server 2008

Divehi (Maldives) Divehi_100_
1
 Divehi_90_

Dutch (Belgium) Latin1_General_100_ Latin1_General_

Dutch (Netherlands) Latin1_General_100_ Latin1_General_

English (Australia) Latin1_General_100_ Latin1_General_

English (Belize) Latin1_General_100_ Latin1_General_

English (Canada) Latin1_General_100_ Latin1_General_

English (Caribbean) Latin1_General_100_ Latin1_General_

English (India) Latin1_General_100_ New to SQL Server 2008

English (Ireland) Latin1_General_100_ Latin1_General_

English (Jamaica) Latin1_General_100_ Latin1_General_

English (Malaysia) Latin1_General_100_ New to SQL Server 2008

English (New Zealand) Latin1_General_100_ Latin1_General_

English (Philippines) Latin1_General_100_ Latin1_General_

English (Singapore) Latin1_General_100_ New to SQL Server 2008

English (South Africa) Latin1_General_100_ Latin1_General_

English (Trinidad and

Tobago)

Latin1_General_100_ Latin1_General_

English (United

Kingdom)

Latin1_General_100_ Latin1_General_

English (United States) SQL_Latin1_General_CP1_ SQL_Latin1_General_CP1_

English (Zimbabwe) Latin1_General_100_ Latin1_General_

Estonian (Estonia) Estonian_100_ Estonian_

Faroese (Faroe Islands) Latin1_General_100_ Latin1_General_

Filipino (Philippines) Latin1_General_100_ New to SQL Server 2008

Finnish (Finland) Finnish_Swedish_100_ Finnish_Swedish_

French (Belgium) French_100_ French_

French (Canada) French_100_ French_

French (France) French_100_ French_

French (Luxembourg) French_100_ French_

French (Monaco) French_100_ French_

French (Switzerland) French_100_ French_

Frisian (Netherlands) Frisian_100_ New to SQL Server 2008

Galician (Spain) Latin1_General_100_ Latin1_General_

Georgian (Georgia) Georgian_Modern_Sort_100

_

Georgian_Modern_Sort_

Georgian (Georgia) Cyrillic_General_100_ New to SQL Server 2008

German - Phone Book

Sort (DIN)

German_PhoneBook_100_ German_PhoneBook_

German (Austria) Latin1_General_100_ Latin1_General_

German (Germany) Latin1_General_100_ Latin1_General_

German (Liechtenstein) Latin1_General_100_ Latin1_General_

German (Luxembourg) Latin1_General_100_ Latin1_General_

German (Switzerland) Latin1_General_100_ Latin1_General_

Greek (Greece) Greek_100_ Greek_

Greenlandic (Greenland) Danish_Greenlandic_100_ New to SQL Server 2008

Gujarati (India) Indic_General_100_
1
 Indic_General_90_

Hausa (Nigeria, Latin) Latin1_General_100_ New to SQL Server 2008

Hebrew (Israel) Hebrew_100_ Hebrew_

Hindi (India) Indic_General_100_
1
 Indic_General_90_

Hungarian (Hungary) Hungarian_100_ Hungarian_

Hungarian Technical

Sort

Hungarian_Technical_100_ Hungarian_Technical_

Icelandic (Iceland) Icelandic_100_ Icelandic_

Igbo (Nigeria) Latin1_General_100_ New to SQL Server 2008

Indonesian (Indonesia) Latin1_General_100_ Latin1_General_

Inuktitut (Canada, Latin) Latin1_General_100_ New to SQL Server 2008

Inuktitut (Syllabics)

Canada

Latin1_General_100_ New to SQL Server 2008

Irish (Ireland) Latin1_General_100_ New to SQL Server 2008

Italian (Italy) Latin1_General_100_ Latin1_General_

Italian (Switzerland) Latin1_General_100_ Latin1_General_

Japanese (Japan XJIS) Japanese_XJIS_100_ Japanese_90_, Japanese_

Japanese (Japan) Japanese_Bushu_Kakusu_10

0_

New to SQL Server 2008

Kannada (India) Indic_General_100_
1
 Indic_General_90_

Kazakh (Kazakhstan) Kazakh_100_ Kazakh_90_

Khmer (Cambodia) Khmer_100_
1
 New to SQL Server 2008

K'iche (Guatemala) Modern_Spanish_100_ New to SQL Server 2008

Kinyarwanda (Rwanda) Latin1_General_100_ New to SQL Server 2008

Konkani (India) Indic_General_100_
1
 Indic_General_90_

Korean (Korea

Dictionary Sort)

Korean_100_ Korean_90_, Korean_Wansung_

Kyrgyz (Kyrgyzstan) Cyrillic_General_100_ Cyrillic_General_

Lao (Lao PDR) Lao_100_
1
 New to SQL Server 2008

Latvian (Latvia) Latvian_100_ Latvian_

Lithuanian (Lithuania) Lithuanian_100_ Lithuanian_

Lower Sorbian

(Germany)

Latin1_General_100_ New to SQL Server 2008

Luxembourgish

(Luxembourg)

Latin1_General_100_ New to SQL Server 2008

Macedonian

(Macedonia, FYROM)

Macedonian_FYROM_100_ Macedonian_FYROM_90_

Malay (Brunei

Darussalam)

Latin1_General_100_ Latin1_General_

Malay (Malaysia) Latin1_General_100_ Latin1_General_

Malayalam (India) Indic_General_100_
1
 New to SQL Server 2008

Maltese (Malta) Maltese_100_ New to SQL Server 2008

Maori (New Zealand) Maori_100_ New to SQL Server 2008

Mapudungun (Chile) Mapudungan_100_ New to SQL Server 2008

Marathi (India) Indic_General_100_
1
 Indic_General_90_

Mohawk (Canada) Mohawk_100_ New to SQL Server 2008

Mongolian (Mongolia) Cyrillic_General_100_ Cyrillic_General_

Mongolian (PRC) Cyrillic_General_100_ New to SQL Server 2008

Nepali (Nepal) Nepali_100_
1
 New to SQL Server 2008

Norwegian (Bokmål,

Norway)

Norwegian_100_ New to SQL Server 2008

Norwegian (Nynorsk,

Norway)

Norwegian_100_ New to SQL Server 2008

Occitan (France) French_100_ New to SQL Server 2008

Oriya (India) Indic_General_100_
1
 New to SQL Server 2008

Pashto (Afghanistan) Pashto_100_
1
 New to SQL Server 2008

Persian (Iran) Persian_100_ New to SQL Server 2008

Polish (Poland) Polish_100_ Polish_

Portuguese (Brazil) Latin1_General_100_ Latin1_General_

Portuguese (Portugal) Latin1_General_100_ Latin1_General_

Punjabi (India) Indic_General_100_
1
 Indic_General_90_

Quechua (Bolivia) Latin1_General_100_ New to SQL Server 2008

Quechua (Ecuador) Latin1_General_100_ New to SQL Server 2008

Quechua (Peru) Latin1_General_100_ New to SQL Server 2008

Romanian (Romania) Romanian_100_ Romanian_

Romansh (Switzerland) Romansh_100_ New to SQL Server 2008

Russian (Russia) Cyrillic_General_100_ Cyrillic_General_

Sami (Inari, Finland) Sami_Sweden_Finland_100_ New to SQL Server 2008

Sami (Lule,Norway) Sami_Norway_100_ New to SQL Server 2008

Sami (Lule, Sweden) Sami_Sweden_Finland_100_ New to SQL Server 2008

Sami (Northern, Finland) Sami_Sweden_Finland_100_ New to SQL Server 2008

Sami (Northern,Norway) Sami_Norway_100_ New to SQL Server 2008

Sami (Northern,

Sweden)

Sami_Sweden_Finland_100_ New to SQL Server 2008

Sami (Skolt, Finland) Sami_Sweden_Finland_100_ New to SQL Server 2008

Sami (Southern, Norway) Sami_Norway_100_ New to SQL Server 2008

Sami (Southern, Sweden) Sami_Sweden_Finland_100_ New to SQL Server 2008

Sanskrit (India) Indic_General_100_
1
 Indic_General_90_

Serbian (Bosnia and Serbian_Cyrillic_100_ New to SQL Server 2008

Herzegovina, Cyrillic)

Serbian (Bosnia and

Herzegovina, Latin)

Serbian_Latin_100_ New to SQL Server 2008

Serbian (Serbia, Cyrillic) Serbian_Cyrillic_100_ New to SQL Server 2008

Serbian (Serbia, Latin) Serbian_Latin_100_ New to SQL Server 2008

Sesotho sa

Leboa/Northern Sotho

(South Africa)

Latin1_General_100_ New to SQL Server 2008

Setswana/Tswana (South

Africa)

Latin1_General_100_ New to SQL Server 2008

Sinhala (Sri Lanka) Indic_General_100_
1
 New to SQL Server 2008

Slovak (Slovakia) Slovak_100_ Slovak_

Slovenian (Slovenia) Slovenian_100_ Slovenian_

Spanish (Argentina) Modern_Spanish_100_ Modern_Spanish_

Spanish (Bolivia) Modern_Spanish_100_ Modern_Spanish_

Spanish (Chile) Modern_Spanish_100_ Modern_Spanish_

Spanish (Colombia) Modern_Spanish_100_ Modern_Spanish_

Spanish (Costa Rica) Modern_Spanish_100_ Modern_Spanish_

Spanish (Dominican

Republic)

Modern_Spanish_100_ Modern_Spanish_

Spanish (Ecuador) Modern_Spanish_100_ Modern_Spanish_

Spanish (El Salvador) Modern_Spanish_100_ Modern_Spanish_

Spanish (Guatemala) Modern_Spanish_100_ Modern_Spanish_

Spanish (Honduras) Modern_Spanish_100_ Modern_Spanish_

Spanish (Mexico) Modern_Spanish_100_ Modern_Spanish_

Spanish (Nicaragua) Modern_Spanish_100_ Modern_Spanish_

Spanish (Panama) Modern_Spanish_100_ Modern_Spanish_

Spanish (Paraguay) Modern_Spanish_100_ Modern_Spanish_

Spanish (Peru) Modern_Spanish_100_ Modern_Spanish_

Spanish (Puerto Rico) Modern_Spanish_100_ Modern_Spanish_

Spanish (Spain) Modern_Spanish_100_ Modern_Spanish_

Spanish (Spain,

Traditional Sort)

Traditional_Spanish_100_ Traditional_Spanish_

Spanish (United States) Latin1_General_100_ New to SQL Server 2008

Spanish (Uruguay) Modern_Spanish_100_ Modern_Spanish_

Spanish (Venezuela) Modern_Spanish_100_ Modern_Spanish_

Swahili (Kenya) Latin1_General_100_ New to SQL Server 2008

Swedish (Finland) Finnish_Swedish_100_ Finnish_Swedish_

Swedish (Sweden) Finnish_Swedish_100_ Finnish_Swedish_

Syriac (Syria) Syriac_100_
1
 Syriac_90_

Tajik (Tajikistan) Cyrillic_General_100_ New to SQL Server 2008

Tamazight (Algeria,

Latin)

Tamazight_100_ New to SQL Server 2008

Tamil (India) Indic_General_100_
1
 Indic_General_90_

Tatar (Russia) Tatar_100_ Tatar_90_, Cyrillic_General_

Telugu (India) Indic_General_100_
1
 Indic_General_90_

Thai (Thailand) Thai_100_ Thai_

Tibetan (PRC) Tibetan_100_
1
 New to SQL Server 2008

Turkish (Turkey) Turkish_100_ Turkish_

Turkmen (Turkmenistan) Turkmen_100_ New to SQL Server 2008

Uighur (PRC) Uighur_100_ New to SQL Server 2008

Ukrainian (Ukraine) Ukrainian_100_ Ukrainian_

Upper Sorbian

(Germany)

Upper_Sorbian_100_ New to SQL Server 2008

Urdu (Pakistan) Urdu_100_ New to SQL Server 2008

Uzbek (Uzbekistan,

Cyrillic)

Cyrillic_General_100_ Cyrillic_General_

Uzbek (Uzbekistan,

Latin)

Uzbek_Latin_100_ Uzbek_Latin_90_

Vietnamese (Vietnam) Vietnamese_100_ Vietnamese_

Welsh (United Kingdom) Welsh_100_ New to SQL Server 2008

Wolof (Senegal) French_100_ New to SQL Server 2008

Xhosa/isiXhosa (South

Africa)

Latin1_General_100_ New to SQL Server 2008

Yakut (Russia) Yakut_100_ New to SQL Server 2008

Yi (PRC) Latin1_General_100_ New to SQL Server 2008

Yoruba (Nigeria) Latin1_General_100_ New to SQL Server 2008

Zulu/isiZulu (South

Africa)

Latin1_General_100_ New to SQL Server 2008

Deprecated, not

available at server level

in SQL Server 2008

Hindi Hindi

Deprecated, not

available at server level

in SQL Server 2008

Korean_Wansung_Unicode Korean_Wansung_Unicode

Deprecated, not

available at server level

in SQL Server 2008

Lithuanian_Classic Lithuanian_Classic

Deprecated, not

available at server level

in SQL Server 2008

Macedonian Macedonian

SQL Server 2008 Integration Services locales and code pages

Supported locales for flat files

Supported code pages for flat files

Windows/SAP code pages mappings

2-char Lang

ID

1-char Lang

ID

Language Win32

code page

SAP

code

page

ISO character

set

ar a Arabic 1256 1100 Windows-1256

he b Hebrew 1255 1800 Windows-1255

cs c Czech 1250 1404 Windows-1250

de d German 1252 1100 us-ascii

en e English 1252 1100 us-ascii

fr f French 1252 1100 us-ascii

el g Greek 1253 1700 Windows-1253

hu h Hungarian 1250 1401 Windows-1250

it i Italian 1252 1100 us-ascii

ja j Japanese 932 8000 x-sjis

da k Danish 1252 1100 Windows-1250

pl l Polish 1250 1401 Windows-1250

zf m Traditional Chinese 950 8300 big5

nl n Dutch 1252 1100 us-ascii

no o Norwegian 1252 1100 us-ascii

pt p Portuguese 1252 1100 us-ascii

sk q Slovakian 1250 1404 Windows-1250

ru r Russian 1251 1500 Windows-1251

es s Spanish 1252 1100 us-ascii

tr t Turkish 1254 1610 Windows-1254

fi u Finnish 1252 1100 us-ascii

sv v Swedish 1252 1100 us-ascii

bg w Bulgarian 1251 1500 Windows-1251

zh 1 Simplified Chinese 936 8400 GB_2312_80

th 2 Thai 874 8600 x-TIS-620

ko 3 Korean 949 8500 ks_c_5601-1987

ro 4 Romanian 1250 1401 Windows-1250

sl 5 Slovenian 1250 1401 Windows-1250

hr 6 Croatian 1250 1401 Windows-1250

zz z Language-

independent

1252 1100 Z

