
http://msdn.microsoft.com/magazine

Untitled-5 2 3/5/10 10:16 AM

http://Infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

http://Infragistics.com/

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President
Christopher M. Coates Vice President, Finance & Administration
Abraham M. Langer Vice President, Digital Media, Audience Marketing
Erik A. Lindgren Vice President, Information Technology & Web Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

APRIL 2010 VOLUME 25 NUMBER 4

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies
and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,951.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded Forms, OCR,
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing
staff three times over

• Control downtime—whether planned
or not

• Save more than 50% on the cost of
managing, powering and cooling servers

Make your time (and money) count for
more with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09401S05

$4,228.99

programmers.com/multiedit

Multi-Edit 2008
by Multi Edit Software
Multi-Edit 2008 delivers, a powerful IDE,
with its speed, depth, and support for
over 50 languages. Enhanced search
functions include Perl 5 Regular
Expressions and definable filters.
Supports large DOS/Windows, UNIX,
binary and Mac files. File Sync
Integration for: Delphi 6, 7, 2005, C++
Builder 6, BDS 2006 and Rad Studio
2007, VB 6, VC 6, VS 2003, 2005
and 2008. Includes file compare, code
beautifying, command maps, and
much more.

1-49 Users
Paradise #

A30 01201A01
$179.99

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

programmers.com/solarwinds

Orion Network
Performance Monitor
by Solarwinds
Orion Network Performance Monitor is a
comprehensive fault and network performance
management platform that scales with the
rapid growth of your network and expands
with your network management needs.
It offers out-of-the-box network-centric views
that are designed to deliver the critical
information network engineers need.
Orion NPM is the easiest product of its
kind to use and maintain, meaning you
will spend more time actually managing
networks, not supporting Orion NPM.

Paradise #
S4A 08201E02

$4,606.99

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

2010
DISCOVER MICROSOFT VISUAL STUDIO 2010...

TAKE YOUR DEVELOPMENT TEAM TO THE NEXT LEVEL!
Call your Programmer’s Paradise Representative Today!

DON’T BE LEFT BEHIND! STAY ON THE CUTTING EDGE OF TECHNOLOGY:
NEW! MICROSOFT® VISUAL STUDIO® 2010 MAKES IT EASY!

• Set your ideas free—Create what you can imagine,
build on the strengths of your team, and open up new
possibilities!

• Simplicity through integration—A single integrated
development environment that takes your skills further and
adjusts to the way you work.

• Quality tools help ensure quality results—
Powerful testing tools with proactive project management
features help you build the right app the right way.

programmers.com/grapecity

Untitled-2 1 3/4/10 9:57 AM

www.programmersparadise.com

msdn magazine4

Guthrie also notes that making sure Visual Studio 2010 was stable
and fast out the door led to the month delay in shipping; as you may
remember, it was originally scheduled to ship in March. User feed-
back on the beta resulted in the slippage, he says: “We got feedback
that performance and stability weren’t where they should be. We
moved the dates to make sure we had confi dence that we were
building the right product.”

Guthrie believes Microsoft succeeded. Visual Studio 2010, he
says, “makes developers much more productive and writing code
a lot more fun.”

Magazine Revisions
It’s not only Visual Studio 2010 and .NET that are getting upgraded
this month. MSDN Magazine has experienced a number of changes.
To begin with, we’ve incorporated the new Microsoft MSDN logo
as the nameplate on the cover. Th e cover had not been updated in
some time, and it’s always good to look at things in a new light. Plus,
the “network wave” is way cool, I think. Th e more “artsy” readers
may also notice that our color palette has been modifi ed to align
with the logo colors. It makes the magazine feel more cohesive.

A more subtle change on the cover is that we’ve increased the
font size of the text. MSDN sports a text-heavy cover, and mak-
ing it a little easier to read all that text is what we’re going for here.

Inside, the most immediate change you’ll notice is that we’ve
added illustrations for our regular columnists like Charles Petzold,
Dino Esposito, David Platt and others. Th ese folks are our core
contributors, and I hope that by seeing their images, you might feel
a little more connected to them. Aft er all, coders are people too!

If you’re using Visual Studio 2010, we’d love to hear from you on
what you like—and don’t like—about it. We also want your feedback
on the changes in the magazine—do they work for you? Should
we have left well-enough alone? What other changes would you
like to see? Send all comments to
mmeditor@microsoft .com.

Scott Guthrie on Visual Studio 2010

Th ese are whirlwind days for Microsoft ’s Scott Guthrie. A corporate
vice president for the .NET developer platform, he oversees devel-
opment of Visual Studio, the Microsoft .NET Framework, ASP.NET,
Silverlight, CLR and more. Many of those products are in the “mile-
stone” phase, with major new versions being released, or about to be
released. Th at includes, of course, Visual Studio 2010 and the .NET
Framework 4, which take fl ight in April. Silverlight 4 is on the way, too.

And you thought your job was busy.
Because this issue covers the launch of Visual Studio 2010, it

made sense to talk to the man most responsible for getting it out
the door. And Guthrie had much to say.

Visual Studio 2010, he says, “is a pretty big release. From a feature set
and capability set, it’s pretty ambitious.” Th e goal from the beginning,
Guthrie explains, was not just to create new features, but to answer the
question: “How do we make existing developers’ lives easier?” To that
end, he says, Visual Studio 2010 includes “so many new features that
don’t require you to learn a whole bunch of new things.”

Using multiple monitors is one example. It’s something that isn’t
a knock-’em-dead upgrade, but can defi nitely enhance productivity.
Guthrie explains why it excites him: “Most developers have a
multimonitor setup at work. Visual Studio in the past didn’t let you
leverage those monitors. In Visual Studio 2010, they can tear off
any code-editing window and drop it into the second monitor. It
makes navigating through large products a lot easier.”

Th ere’s even more stuff ed into Visual Studio 2010. Silverlight, for
instance, is fully supported for the fi rst time—and Guthrie says Sil-
verlight 4 will be as well, as soon as it ships. Visual Studio 2010 also
marks the debut of F#, a new .NET Framework-based language for
large-scale parallel programming, such as that done in scientifi c and
fi nancial settings.

It’s those kinds of enhancements that, when taken as a whole,
will make developers more productive. Guthrie puts it this way:
“[Th ere are] a lot of things that people go ‘Finally! Yes, great, I’ve
been asking for that!’”

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-1 1 3/10/10 2:49 PM

www.axosoft.com

msdn magazine6

the only viable approach is an AJAX operation. However, using
AJAX to perform a potentially slow operation diminishes the
impact on the end user but doesn’t bring any relief to the
ASP.NET runtime.

Async Pages and the ASP.NET Runtime
Th e longer the thread hangs onto the request, the longer one thread
is subtracted from the ASP.NET pool to serve new incoming
requests. When no threads are available to serve new requests, the
requests are queued. Th is may lead to delays and degradation of
overall performance.

In ASP.NET, HTTP handlers are synchronous by default.
Asynchronous HTTP handlers must be explicitly architected
and implemented by applying slightly diff erent interfaces. A
synchronous handler diff ers from an asynchronous handler in one
key aspect: instead of the synchronous ProcessRequest method, an
asynchronous handler uses the methods listed below, which are
part of the IHttpAsyncHandler interface:

IAsyncResult BeginProcessRequest(
 HttpContext context,
 AsyncCallback cb,
 object extraData);

void EndProcessRequest(
 IAsyncResult result);

BeginProcessRequest contains the operation to be executed to service
the request. Th is code should be designed to start the operation on
a secondary thread and return immediately. EndProcessRequest
contains the code to complete the request that was previously started.

 Revisiting Asynchronous ASP.NET Pages

ASP.NET has always supported synchronous and asynchronous
HTTP handlers. Now, ASP.NET 2.0 has new features to make it
easier and quicker for developers to create asynchronous pages.
Especially for server-based applications, asynchronous operations
are fundamental for enabling scalability. If you fi nd you need to
scale up your existing Web application, the fi rst aspect to consider
is how much asynchrony you can add to the pages.

In this regard, ASP.NET behaves like any other server application
that performs some background work on behalf of multiple clients.
Each incoming request is assigned to an ASP.NET-owned thread
that is picked up from the ASP.NET thread pool. Th e thread remains
blocked until the operation has terminated and some response has
been generated for the client. How long should the thread wait?
Th e ASP.NET runtime environment can be confi gured to defi ne a
custom timeout (90 seconds is the default), but it’s more important
to prevent the thread from being blocked.

When you deal with potentially lengthy operations, the timeout
at most only ensures that aft er a given number of seconds, the thread
will be freed and returned to the pool. Instead, what you want is
to keep the thread from being blocked for a long time. Ideally, you
want the thread to begin a request and then yield it to some other
non-ASP.NET thread. Th e same thread, or another one from the
ASP.NET pool, will be picked up again upon completion of the
operation to send the response to the client. Th is paradigm is known
as asynchronous ASP.NET pages.

When it comes to asynchronous operations, you should
distinguish between pages that are asynchronous with respect
to the user and pages that are asynchronous with respect to the
ASP.NET runtime. For pages asynchronous with respect to the user,

CUTTING EDGE DINO ESPOSITO

This column discusses a prerelease version of ASP.NET MVC 2.
All information is subject to change.

Action Method

Action Result

INITIAL THREAD

FINAL THREAD
Async point

Executed Result

Executing Action

Executed Action

Executing Result

Figure 1 Mechanics of an Async Action Method in ASP.NET MVC

You should distinguish
between pages that are

asynchronous with respect to
the user and pages that are

asynchronous with respect to
the ASP.NET runtime.

Untitled-1 1 2/11/10 8:33 AM

www.syncfusion.com

msdn magazine8 Cutting Edge

As you can see, an asynchronous HTTP request is split into
two parts—before and aft er the “async point”—the point in the
request lifecycle where the thread that owns the request changes.
When the async point is reached, the original ASP.NET thread
yields control to another thread. This potentially lengthy
operation takes place in between the two parts of the ASP.NET
request. Each part of the async request runs independent of the
other, with no affi nity as far as the thread is concerned. In other
words, there’s no guarantee that the same thread will take care of
the two parts of the request. Th e net eff ect is that no threads are
blocked for the duration of the operation.

At this point, the obvious question is: which thread really takes
care of the “lengthy” operation? ASP.NET uses I/O completion
ports internally to track the termination of a request. When the
async point is reached, ASP.NET binds the pending request to an
I/O completion port and registers a callback to get a notifi cation
when the request has terminated. Th e OS will use one of its own
dedicated threads to monitor the termination of the operation, thus
freeing the ASP.NET thread from having to wait in full idle. When

the operation terminates, the OS places a mes-
sage in the completion queue, which triggers
the ASP.NET callback that will then pick up
one of its own threads to resume the request.
As mentioned, I/O completion ports are a
feature of the OS.

The Real Nature of Async Pages
In ASP.NET, async pages are commonly
associated with the idea of improving the
performance of a given page in charge of
performing a potentially lengthy operation.
However, a few further points should be noted.
From the user’s perspective, synchronous and
asynchronous requests look nearly the same.
If the requested operation is expected to take,
say, 30 seconds to complete, the user will wait
at least 30 seconds to get the new page back.
Th is happens regardless of the synchronous
or asynchronous implementation of the page.
Also, don’t be too surprised if an async page
ends up taking a bit more time to complete a
single request. So what’s the benefi t of asyn-
chronous pages?

Scalability is not quite the same as performance. Or, at least, scal-
ability is about performance but on a diff erent level—the whole
application instead of a single request. Th e benefi t that async
pages bring to the table is much less work for the threads in the
ASP.NET pool. Th is doesn’t make long requests run faster, but it
helps the system serve non-lengthy requests as usual—that is, with
no special delays resulting from ongoing slow requests.

Async requests take advantage of asynchronous HTTP handlers,
which have always been a feature of the ASP.NET platform.
However, both ASP.NET Web Forms and ASP.NET MVC provide
their own facilities to make it simpler for developers to implement
async actions. In the remainder of the article, I’ll discuss asynchronous
operations in ASP.NET MVC 2.

Asynchronous Controller Actions
In ASP.NET MVC 1.0, any controller action can only run synchro-
nously. However, a new AsyncController class was added to the MVC
Futures library. Aft er an experimental period, the async API for
controllers was offi cially added to the ASP.NET MVC framework,
and it’s fully available and documented as of version 2 of the
ASP.NET MVC framework. (Th e syntax and features discussed in
this article refer to ASP.NET MVC 2 RC.) If you play a bit with the
AsyncController class in the MVC Futures library, you will notice
some changes, and the API is simpler and cleaner.

Th e purpose of the AsyncController is to ensure that any
exposed action methods execute asynchronously without changing
the overall approach to programming that characterizes the
ASP.NET MVC framework. Th e diagram in Figure 1 shows the
sequence of steps behind the processing of an async action.

 Th e async point is placed in between the executing and executed
events. When the action invoker notifi es that it’s about to execute

Figure 2 Thread Switching for an Async Action Method Call

Using AJAX to perform a
potentially slow operation

diminishes the impact on the
end user but doesn’t bring any
relief to the ASP.NET runtime.

msdnmagazine.com

the action, the thread engaged is still the original ASP.NET thread
that picked up the request from the Web server queue. At this point,
the action is executed. At the end, when the action invoker is ready
to notify the action-executed event, possibly another ASP.NET
thread is taking care of the request. Figure 2 illustrates this scenario.

Before I discuss the details of how you create and debug asynchro-
nous methods, another fundamental point of asynchronous
ASP.NET operations should be made clear: not all actions are good
candidates for becoming async operations.

The Real Target of Async Operations
Only I/O-bound operations are good candidates for becoming
async action methods on an asynchronous controller class. An
I/O-bound operation is an operation that doesn’t depend on the
local CPU for completion. When an I/O-bound operation is active,
the CPU just waits for data to be processed (that is, downloaded)
from external storage (a database or a remote service). I/O-bound
operations are in contrast to CPU-bound operations, where the
completion of a task depends on the activity of the CPU.

A typical example of an I/O-bound operation is the invocation
of a remote service. In this case, the action methods fi re the
request and then just wait for any response to be downloaded. Th e
real work is being done remotely by another machine and another
CPU. Th us, the ASP.NET thread is stuck waiting and being idle.
Releasing that idle thread from the duty of waiting to serve other
incoming requests is the performance gain you can achieve with
async implementation of actions or pages.

It turns out that not all lengthy operations will give you a
concrete benefit if implemented asynchronously. A lengthy
in-memory calculation doesn’t significantly benefit from
asynchronous implementation. It could even run slightly slower,
because the same CPU is serving both the ASP.NET request and
the calculation. In addition, you may still need an ASP.NET thread
to physically take care of the calculation. Th ere’s little benefi t, if any,
in using the async implementation for CPU-bound operations.
On the other hand, if remote resources are involved, even multiple
resources, using async methods can really boost the performance
of the application, if not the performance of the individual request.

I’ll return to this point shortly with an example. For now, let’s
focus on the syntax required to defi ne and execute async actions
in ASP.NET MVC.

Recognizing Async Routes
In which way is an async route diff erent from a synchronous route?
In MVC Futures, you were asked to use diff erent methods to register

The benefi t that async pages
bring to the table is much less

work for the threads in the
ASP.NET pool.

www.nwoods.com
www.steema.com
http://msdnmagazine.com

msdn magazine10 Cutting Edge

and it is not disambiguated using attributes, then an exception is
thrown as in Figure 3.

Th e word Async is considered a suffi x. Th e URL to invoke the
RunAsync method will contain only the prefi x Run. For example,
the following URL will invoke the method RunAsync, passing a
value of 5 as a route parameter:

http://myserver/demo/run/5

Whether this will be resolved as a synchronous or asynchronous
action depends on the methods you have in the AsyncController
class. Th e xxxAsync method, however, identifi es only the trigger
of the operation. Th e fi nalizer of the request is another method in
the controller class named xxxCompleted:

public ActionResult RunCompleted(DataContainer data)
{
 ...
}

Note the diff erent signature of the two methods defi ning the
async action. Th e trigger is expected to be a void method. If you
defi ne it to return any value, the return value simply will be ignored.
Th e input parameters of the xxxAsync method will be subject
to model binding as usual. Th e fi nalizer method returns an
ActionResult object as usual and it receives a custom object
that contains the data it’s expected to process and pass on to the

view object. A special protocol is necessary for
matching the values calculated by the trigger to
the parameters declared by the fi nalizer.

The AsyncController Class
Th e AsyncController controller class inherits
from Controller and implements a bunch of new
interfaces as shown here:
public abstract class AsyncController : Controller,
 IAsyncManagerContainer,
IAsyncController, IController

Th e most distinctive aspect of an async con-
troller is the special action invoker object that is
employed under the hood to perform operations.
Th e invoker needs a counter to track the number
of individual operations that compose the action
and that must be synchronized before the overall
action can be declared terminated. Figure 4 provides
a sample implementation for an async action.

Th e OutstandingOperations member on the
AsyncManager class provides a container that
maintains a count of pending asynchronous

ASP.NET Web Forms and
ASP.NET MVC offer higher-level
tools to code async operations,

each within their own
application model.

synchronous and asynchronous routes. Here’s the old way to
register an async route:

routes.MapAsyncRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

You had to use the MapAsyncRoute exten sion method instead of
the standard MapRoute you would have used for classic synchronous
methods. In ASP.NET MVC 2 RC, however, this distinction has been
removed. Now you have just one way to register your routes—the
MapRoute method—regardless of how the action will then be executed.

Th e URL of the request is therefore processed as usual and the
name of the controller class to use is fi gured out. It is required,
in fact, that an async method is defi ned on a controller class that
derives from the new AsyncController class, illustrated here:

public class TestController : AsyncController
{
 ...
}

If the controller class inherits from AsyncController, the con-
vention for mapping action names to methods is a bit diff erent. An
AsyncController class can serve both synchronous and asynchro-
nous requests. As a result, the convention used can recognize both
a method Run and a method RunAsync, as shown here:

public class TestController : AsyncController
{
 public ActionResult Run(int id)
 {
 ...
 }
 public void RunAsync(int id)
 {
 ...
 }
}

If you do this, however, an exception will be thrown (see Figure 3).
An async action is identifi ed by name, and the expected

pattern is xxxAsync, where xxx indicates the default name of the
action to execute. Clearly, if another method named xxx exists,

Figure 3 Ambiguous References in the Name of the Action

msdnmagazine.com

operations. It’s an instance of the OperationCounter helper class and
supplies an ad hoc API to increment and decrement. Th e Increment
method is not limited to unary increments, as shown here:

AsyncManager.OutstandingOperations.Increment(2);
service1.GetData(...);
AsyncManager.OutstandingOperations.Decrement();
service2.GetData(...);
AsyncManager.OutstandingOperations.Decrement();

Th e AsyncManager Parameters dictionary is used to group
values to be passed as arguments to the fi nalizer method of the async
call. Th e Parameters dictionary is expected to contain an entry for
each parameter to be passed to the fi nalizer—the xxxCompleted
method in the earlier example. If a match can’t be found between
entries in the dictionary and parameter names, a default value is
assumed for the parameter—null for reference types. No exception
is raised unless an attempt is made to access a null object. Th e
xxxCompleted method receives parameters of any supported type
and uses them to fi ll up the ViewData collection or any strong-
typed object recognized by the view. Th e xxxCompleted method
is responsible for returning an ActionResult object.

A Good Fit or Not?
Wrapping up, synchronous requests are a necessary feature in
ASP.NET and, in fact, asynchronous HTTP handlers have been
supported since ASP.NET 1.0.

ASP.NET Web Forms and ASP.NET MVC off er higher-level
tools to code async operations, each within their own application
model—in ASP.NET MVC, you have async controllers, and in Web
Forms you rely on async pages.

Th e key aspect of async actions, though, is deciding whether
a given task is a good fi t for an asynchronous implementation.
Async methods should only be built around I/O-bound operations.
And, fi nally, bear in mind that async methods won’t run faster
themselves, but will allow other requests to run faster.

DINO ESPOSITO is the author of the upcoming “Programming ASP.NET MVC” from
Microsoft Press and has coauthored “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker at
industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Stefan Schackow

public void RunAsync(int id)
{
 AsyncManager.OutstandingOperations.Increment();

 var d = new DataContainer();
 ...

 // Do some remote work (i.e., invoking a service)
 ...

 // Terminate operations
 AsyncManager.Parameters["data"] = d;
 AsyncManager.OutstandingOperations.Decrement();
}
public ActionResult RunCompleted(DataContainer data)
{
 ...
}

Figure 4 A Simple Asynchronous Action Method

www.scaleoutsoftware.com/eval
http://msdnmagazine.com
http://weblogs.asp.net/despos

msdn magazine12

B E T TE R CODING

Better Coding
with Visual Studio 2010

It’s been 13 years since Microsoft fi rst rolled out Visual
Studio, its long-running fl agship integrated development environ-
ment. Th e 1997 inaugural release began the alignment of versions
5 of Visual Basic and Visual C++ into a common IDE. It included
an Enterprise Edition with a once-famous cast of technologies
including Visual InterDev, Microsoft Transaction Server and
Visual SourceSafe 5.0. Th e core purpose of that release was to help
developers build distributed applications with components, both
as client/server and as Web applications.

We’ve come a long way as developers since then. While modifi ed
forms of client/server and Web architectures still dominate the

Doug Turnure

coding scene, the scope and demands of these applications have
exploded out of the realm of homogenous systems and strongly
typed object-to-object calls.

Representational State Transfer (REST) and related technologies
are now becoming mainstream foundational communication
mechanisms. Applications are beginning to find a home in
cloud-based architectures, putting scalability, reliability and
data security in the hands of third parties. And Web application
patterns are aligning to commoditized styles and standards. Even
hardware is changing, as processor speeds are nearing theoretical
peaks with current chip technology, and multicore systems are
providing the new way to squeeze ever more performance out
of a single computer.

It is into this world, and its unprecedented demands of soft ware
and soft ware developers, that Visual Studio 2010 arrives. And, loaded
with new capabilities, it stands poised to deliver on the growing
requirements of soft ware in a world that now stretches across
platforms, cores, styles and standards. Th is article will cover
some of the prominent ways Visual Studio 2010 addresses today’s
challenges, to help developers build solutions that thrive in the
complex industry where they now reside. Not every new capability
will be covered here; rather, the goal of this article is to highlight
some of the specifi c features that developers will be able to put to
use immediately in their daily work. Full feature lists are readily
available in the product documentation.

Visual Studio IDE Improvements
As soft ware development continues to address more and more
complex scenarios, developers oft en feel pressure to be more
productive. Visual Studio 2010 adds several new visual features
to the editor itself that help with productivity. I’ll discuss three of
them in this section.

This article discusses a prerelease version of Visual Studio 2010
and the Microsoft .NET Framework 4. All information is subject
to change.

This article discusses:
• Visual Studio IDE improvements

• Parallel programming

• Web development

• MVC integration

• SharePoint integration

• Windows 7 development

• Windows Azure integration

• Multi-targeting

Technologies discussed:
Visual Studio 2010, Microsoft .NET Framework 4, Multicore
Architecture, Parallel Programming, ASP.NET AJAX,
Model-View-Controller Architecture, SharePoint,
Windows 7, Windows Azure Platform

13April 2010msdnmagazine.com

One of the simpler improvements to try out in the Visual Studio
2010 IDE is the ability to drag a child window outside of the IDE parent
window. Monitors have become aff ordable enough to allow developers
to use two (or more) in their work, and this new feature lets you
spread out your coding and design windows across multiple screens.

How It Works Simply click on the tab for the window and drag it
outside the Visual Studio IDE window. Th e window will re-dock just
as easily by clicking the title bar and dragging it back into the IDE area,
aligning the title bar to the tabs of the other windows. When re-docking,
you’ll receive a visual cue when the window is properly aligned: the
window will become shaded to indicate it’s ready to re-dock when you
release it. Figure 1 shows a code window that has been pulled outside
of the IDE’s containing window.

Another nice new feature in the Visual Studio 2010 editor is the
ability to box select and edit a vertical block of text. Sometimes you
need to apply edits to an extended list of items, and you fi nd yourself
doing the familiar rapid-repeat keyboard sequence (for example,
“n+down arrow+back arrow” over and over). While this may not
be the most frequent problem you face, it does happen occasionally,
and many developers fi nd themselves wishing they could select
a whole vertical block and apply a common change to all lines
at once. Visual Studio 2010 introduces this block-edit capability.

How It Works Press and hold down the Alt key and make the
vertical selection you want to edit. Th e highlighted area will function
just like a single-line edit, but the edits will be duplicated simultaneously
on all selected lines, as shown in Figure 2.

Th ere is also a helpful highlighting feature for
references in your code. In the editor, when you
click on a variable, object, method, property, type
or other symbol, all references to that symbol in
your code will become highlighted to help you
quickly discover where the item is being used.

How It Works Pick a type/variable/method/
whatever and simply click on it, and the other

instances will become highlighted.
Figure 3 shows this for a variable
named jumpList; note the gray
shading of all uses in code aft er
selecting it with a mouse click.

Support for
Parallel Programming
Moving a bit deeper into the new
IDE capabilities, the next signifi -
cant new feature I’ll cover is support
for parallel programming. Visual
Studio 2010 ships with diagnostic
tools to help debug and analyze par-
allel applications. Before jumping
into the tooling, however, I’ll briefl y
discuss what parallel programming
is, and then we can see how the
runtime and libraries implement
these new capabilities.

Many of today’s standard devel-
oper machines are multicore, meaning they have two or more
individual processors, and the current trend is toward machines
with many more cores. Aside from pure innovation, factors such as
power conservation and realistic limitations of clock-speed, power
consumption and heat are infl uencing the trend toward multicore
systems. Some industry leaders predict that mainstream machines
will have 50 or more cores in the next few years.

Th is presents a unique problem. Prior to the multicore revolution,
faster machines meant faster-running applications. However, soft -
ware that is tied to a single core (as is most current soft ware) can’t
take advantage of this emerging architecture. It is therefore critical

to target multicore architectures going forward.
Before Visual Studio 2010 and the .NET Framework
4, writing code that could make use of more than one
core was diffi cult. To meet this challenge, this release
includes some updates to the runtime—and some
new types, libraries and tooling—to help developers
take advantage of multicore systems.

Th e .NET Framework 4 includes Parallel
Extensions, which has three components: a new

Figure 1 Untethering a Window from the IDE

Figure 2 Box Selecting

One of the simpler
improvements to try out in the
Visual Studio 2010 IDE is the

ability to drag a child
window outside of the
IDE parent window.

http://msdnmagazine.com

msdn magazine14 Better Coding 2010

Task Parallel Library (TPL), a new PLINQ Execution Engine and
a handful of new Coordination Data Structures (CDS). The
TPL contains two primary classes. One of these, System.Threa-
ding.Ta sks.Parallel, includes parallel constructs, such as parallel
versions of For and ForEach methods. As the name implies, the
PLINQ Execution Engine is a parallelized version of LINQ to
Objects, providing a ParallelEnumerable class in place of LINQ’s
Enumerable class. Using PLINQ is similar, but not identical, to
using LINQ to Objects. Finally, CDS includes a group of thread-
safe collections and synchronization primitives to simplify
parallel scenarios. CDS includes the familiar players you’d expect
in thread-safe collections (ConcurrentDictionary, Concurrent-
Queue and ConcurrentStack, for example) and synchronization
types (Semaphore Slim, SpinLock, SpinWait and more).

Visual Studio 2010 brings in support for parallel extensions via a
new Parallel Stacks Window, a Parallel Tasks Window and a Con-
currency Visualizer. Th ese windows are all designed to give you a
better idea of where various tasks are at a given moment in their ex-
ecution. Th e Parallel Stacks Window shows how multiple tasks are
working their way through their dedicated paths and displays call
stacks for the tasks. You have the option to view it in terms of task
abstraction or directly as threads. Figure 4 shows the Parallel Stacks
window at runtime displaying the task abstraction view option.

Th e Parallel Tasks Window has been added specifi cally to support
the new task-based programming model. When your application
is in break mode, you can use this window to see things such as the
list of tasks, the currently executing
method for each task, the affi liated
thread, application domain, task ID
and more. Th e window is more than
a mere static view; you can click a
specifi c task and the IDE will show
its status by bringing the currently
executing code to the front. Figure
5 shows this window for a sample
application. Using this window
side by side with the Parallel Stacks
Window is a nice way to get a quick
view into your executing code.

Finally, to get a deeper analysis
of a parallel application, there is a
new Concurrency Visualizer in
Visual Studio 2010. Th is window
is much more complex than the
other two windows and does not
currently support Web projects. Its
purpose is to give you some insight
as to how your application interacts
with its environment in multicore
and multithreaded scenarios. Th ere
are three views:
• CPU Utilization View shows
processor activity.
• Th reads View shows how the
threads in your application interact.

• Cores View provides specifi c insight on how your threads
migrate across cores.
Th e Concurrency Visualizer depends on Event Tracing for

Windows, which means it needs to run in Windows Vista or later.
Th e views—ranging from basic text through full graphical displays—
fi nd ineffi ciencies in your code caused by poorly distributed load
across CPUs, execution bottlenecks, contentions and other potential
performance inhibitors. Figure 6 shows the Concurrency Visualizer
displaying thread usage for a profi led application.

Web Updates
Along with the general updates I discussed, you’ll fi nd some notable
improvements for Web developers who move to Visual Studio 2010.
Of course, the new Model-View-Controller (MVC) programming
model tooling is now included, and I’ll cover it in the next section.
And there are improved Web development experiences for both

Figure 4 Parallel Stacks Window in Visual Studio 2010

Figure 3 Highlighted Symbols

With this release, the
Microsoft AJAX Library and the

AJAX Control Toolkit have
been combined.

15April 2010msdnmagazine.com

client- and server-side Web technologies, as well as a new one-click
Web deployment model. But I’ll begin with ASP.NET AJAX and
the IDE’s associated new capabilities.

ASP.NET AJAX tooling existed in Visual Studio as of Visual Studio
2008. However, the server-centric templates have led some developers
to believe that it did not add signifi cant value to client-side development.
While client-side capabilities have always been there, Visual Studio
2010 includes additional support that really surfaces both the
client and server-side capabilities of ASP.NET AJAX. Client-side
templates and controls are a signifi cant part of the new features list,
as they empower you to take advantage of the improved client data
access capabilities, but many other new items such as the jQuery
integration are also worth covering.

Prior to Visual Studio 2010 and the .NET Framework 4, if
you wanted to use the soft ware download and incorporate the
Micro soft AJAX Library with Visual Studio, you got the whole thing
injected into your page when you added the ScriptManager. With
this release, the Microsoft AJAX Library and the AJAX Control
Toolkit have been combined. Also, the Microsoft AJAX team
refactored the libraries so you can now ask for the individual pieces
you want, rather than be forced into an all-or-nothing choice. You
can specify a mode, requesting all, none or specifi c pieces of the
Microsoft AJAX Library.

How It Works In the ScriptManager tag, simply include the
Ajax FrameworkMode attribute. You can set it to Disabled, Enabled
or Explicit:

<asp:ScriptManager ... AjaxFrameworkMode="Disabled"/>

Disabled means you don’t want the Microsoft AJAX Frameworks
loaded. Enabled means you want the existing behavior from previous
versions (loading the full library). Explicit lets you specify which
Microsoft AJAX Library fi les you want loaded. You can verify this
at runtime using View Source with the page loaded.

Similarly, the new Content Delivery Network (CDN) attribute
lets you use the most up-to-date versions of script libraries.
Previously, you included script libraries such as jQuery or
Microsoft AJAX in your project, and the versions you included were
the versions you were stuck with for that release. Now, you can request
that the latest version be downloaded from Web, rather than stuffi ng
a fi xed version into your solutions.

How It Works In the asp:ScriptManager tag, you can include the
EnableCdn attribute, setting it to “true”:

<asp:ScriptManager ... EnableCdn="true"/>

ASP.NET AJAX 4.0 also lets you
defi ne purely client-side templates.
You set up a placeholder <Item-
Template> and let the client do
the rendering based on runtime
values, such as a JSON-bound
object. The runtime does the
instantiation on your behalf, and
you don’t have to do the DOM
coding to make it work.

One of the most useful additions
to ASP.NET AJAX 4.0 is the
improved client data access, which

uses a new DataView control and client templates to provide easy
access and two-way data binding in the client. It’s designed to
consume ASMX Web Services, WCF Services, WCF Data Services,
MVC Controllers or really anything that returns JSON, and it does
this completely from client-side code.

Th e DataView control is the primary control for supporting
client templates. It functions similarly to a ListView control, but
it’s implemented purely in client code. It lets you defi ne a template
in the client, pull in the data at runtime and then apply formatting
to the records as you display them.

How It Works You can set the stage with a very basic setup: create
an Entity Data Model over the Northwind SQL database and use a
vanilla WCF Data Service that pulls it straight through with no changes,
meaning the Employees table should be available for query. With that

Figure 6 The Concurrency Visualizer in Visual Studio 2010

Figure 5 Parallel Tasks Window in Visual Studio 2010

Visual Studio 2010 ships with
diagnostic tools to help debug

and analyze parallel applications.

http://msdnmagazine.com

msdn magazine16 Better Coding 2010

backdrop, you select the control you want to serve as the template and
give it an ID attribute and a class=“sys-template” attribute. When you
create the data view, the ID is used to signify the destination for the
data pulled through on the bind. You can bind manually, but there is
also a syntax using curly braces to directly embed the fi eld name in the
markup, which will be replaced when the data is fetched and bound to
it. Th ere are multiple syntaxes to accomplish this, but one of the more
readable ways to write the script and markup to execute this is using
the double curly braces, as shown in Figure 7.

One more ASP.NET AJAX item of note is that it has been set up
to integrate much more closely with jQuery. With a goal of letting
jQuery developers take advantage of the controls in ASP.NET AJAX,
all the AJAX Control Toolkit controls are now exposed as jQuery
plug-ins automatically. Th is means jQuery developers can use the
controls without having to change their style of development. You
can simply think of them as extensions to jQuery.

Beyond the realm of ASP.NET AJAX, there are several other nice
enhancements to the ASP.NET programming experience. URL
Routing with Web Forms gives URLs a clean, logical feel that is
much more search engine optimization (SEO)-friendly, as well as
more human-readable. You can defi ne routes in your global.asax
fi le, which maps the requests to the appropriate resources. Not only
does this help improve SEO, the pages can take on a predictable
path for the user, as shown in Figure 8.

Th ere are many more Web-related enhancements worth covering,
such as starter Web sites, cleaner HTML and smaller confi guration
fi les, but I can’t discuss them all here, so I’ll move ahead to the
MVC tooling additions.

MVC Integration
Th e MVC architectural pattern is a popular way to build highly
maintainable and testable Web applications with well-defi ned
boundaries and clear categorization of code by function. MVC is
a style of ASP.NET programming that takes full advantage of the
ASP.NET framework. It’s an alternative to Web Forms, but it is not a
replacement; both models work very well for certain scenarios and
skill sets. Developers now have a choice of programming models
for Web applications, both based on ASP.NET and fully supported
in Visual Studio 2010.

Version 2 of MVC and its affi liated tooling—built between
releases of Visual Studio—have been integrated into the Visual
Studio 2010 IDE with two project templates, as shown in Figure 9.

With the Visual Studio 2010 release, the MVC programming
model has focused on three primary areas of improvement. Th e fi rst
is a better separation of concerns. Th is means more maintainable
code through things such as a new RenderAction method for
composing business logic separation, and Areas, which let you
create “sub-applications” to divide up the functionality in your
application. Th e second area of improvement is a better valida-
tion story, made easier through Data Annotations and better
bubbling up of validation rules to the client. Finally, there are helper
improvements. Th ere are now strongly typed helpers, as well as tem-
plated helpers, which let you automatically generate UI for entities.

How It Works RenderAction makes it easy to share a piece of
logic across multiple Controllers. To call the RenderAction method
from within your View, use the following script (which calls the New-
Employee action within the HRController):

<% Html.RenderAction("NewEmployee" "HRController"); %>

SharePoint Integration
Another signifi cant integration of tooling into Visual Studio 2010
is the addition of templates for SharePoint Foundation (formerly
Windows SharePoint Services). Visual Studio 2010 ships with 12
new templates for SharePoint Foundation, plus the SharePoint
2007 Sequential and State Machine Workfl ow templates from the
Visual Studio Tools for Offi ce add-in to Visual Studio 2008. Th ese
templates elevate SharePoint development to fi rst-class status, with
a focus on productivity and fl exible deployment.

SharePoint Foundation itself is shift ing in core usage, moving
from being a simple portal you can extend, to a platform for building
applications from the ground up, using components such as user
management, the underlying list infrastructure and site model.
Th ere are signifi cant advances in data access, line-of-business
application integration and workfl ow. Also, there is a more fl exible
deployment model. Many companies now have massive SharePoint
installations and are necessarily more careful about ad-hoc deploy-
ment of new SharePoint applications. Th e new fl exible deployment

New URL Routing Format:
 /CurrentPosition/Bob/Tester

Old URL Style:
 /CurrentPositions.aspx?name="Bob"&role="Tester"

Figure 8 URL Routing Improvements in Visual Studio 2010

...
 <script type="text/javascript">
 Sys.require([Sys.components.dataView,
 Sys.components.adoNetServiceProxy], function () {

 var adoNetDataServiceProxy =
 new Sys.Data.AdoNetServiceProxy('NWDataService.svc');

 Sys.create.dataView("#employeetemplate", {
 dataProvider: adoNetDataServiceProxy,
 fetchOperation: "Employees",
 autoFetch: true
 });
 });
 </script>
</head>
<body>
 <div id="employeetemplate" class="sys-template">
 {{ FirstName }}

 </div>
</body>

Figure 7 Improved Data Access with the DataView Control

Beyond the realm of ASP.NET
AJAX, there are several other nice

enhancements to the ASP.NET
programming experience.

Untitled-1 1 3/10/10 2:11 PM

www.devexpress.com/xtrareports

msdn magazine18 Better Coding 2010

model means you can now sandbox your new installations to
specifi c groups, rather than requiring them to be deployed across
the full SharePoint ecosystem.

Visual Studio 2010 has vastly improved the tooling options
for building SharePoint applications. True, powerful capabilities
for this already existed, but the initial learning curve was fairly
tough. With this release, you’ll find excellent support for Share-
Point built right into the tools. This includes full, integrated
debugging, flexible deployment tooling and improved design
support for Business Connectivity Services (BCS), Workflow,
LINQ to SharePoint and Visual Web Parts. There is also a better
bridge for importing items from the SharePoint Designer tool into
Visual Studio 2010.

How It Works Building a visual Web part
is considerably easier in Visual Studio 2010
with the new design surface. Begin by choosing
to start a new project and selecting SharePoint
| Visual Web Part, as shown in Figure 10.

Note that you need to have SharePoint
installed on the developer machine for this,
but that is not as hard as it used to be. If you
are using Windows Vista SP1 (or later) or
Windows 7, you can now install SharePoint on
that machine directly and not have to worry
about installing Windows Server or setting
up a VM for it.

You will be prompted to tell Visual Studio
2010 where you want to install the solution for
debugging. Once you have the editor open, you
can click on the bottom-left Design tab and begin
visually constructing your Web part simply by
dragging and dropping controls onto the surface.
Note that you may need to open the toolbox (View
menu | Toolbox) if it is not already displayed.

Windows 7 Development
With the growing popularity of Windows
7, developers may want to begin adding
functionality to their applications to take
advantage of some of the rich experiences
available on the new platform. Th ere are
numerous ways developers can add Windows
7-specifi c functionality. One of the popular
new capabilities is the new Taskbar. Given
its early acceptance among users and ease of
programming, it’s well positioned for use in
applications that target Windows 7.

Th e Taskbar replaces the Quick Launch
taskbar in previous versions of Windows.
Th e Taskbar runs along the bottom (by de-
fault) of the Windows 7 screen and allows
applications to be “pinned” to it. Moreover,
it allows applications to incorporate ele-
ments such as jump lists, which are sets of
quick links you can get by right-clicking
the docked icons, and taskbar previews,

which are miniature displays of an application’s open windows.
Th e Taskbar is easily programmable, both from managed (via the
Windows 7 API Code Pack) and unmanaged code, and should be
squarely in the crosshairs of developers who want to take advantage
of building applications to run on Windows 7.

How It Works Users can pin and unpin applications to the Taskbar
simply by right-clicking icons, either in the Start Menu, Explorer or
the Taskbar itself. To pin an app, right-click the application (not a
document, but the application itself) icon and select “Pin to taskbar.”
To remove it from the Taskbar, do the same thing but select “Unpin
this program from Taskbar.”

Th e Taskbar off ers both cosmetic and functional improve-
ments for your applications. Any program can be pinned to the

Figure 9 MVC Project Templates in Visual Studio 2010

Figure 10 SharePoint Visual Web Part Template in Visual Studio 2010

Untitled-1 1 3/10/10 2:10 PM

www.devexpress.com/xtracharts

msdn magazine20 Better Coding 2010

Taskbar, whether running or not. Th e pinned icon can either launch
the application or serve to represent minimized windows. When
you place the cursor over an icon in the taskbar, it causes a nice
visual eff ect called hot-tracking when the application is running.
Hot-tracking takes the dominant icon color and uses it to
highlight the icon. Of course, you’ll also see a preview of your
running instances of the application just above the pinned icon.

Th e Taskbar also has a feature called aero-peek. To see this,
you can place the cursor over a window preview and the window
for the selected preview will snap to the front, with the other
windows dimmed. Th is is a great way for users to take a quick
peek at a hidden or minimized window without changing focus or
pressing a single key.

For tracking apps, instances of running applications are given an
application ID and aligned to their application icon in the Taskbar. As

a developer, you can use the Taskbar Manager
and JumpList classes to programmati-
cally interact with the Taskbar from your
applications. Note that to use these classes,
you will need to download and reference
the assemblies in the free Windows 7 API
Code Pack from code.msdn.microsoft.com/
WindowsAPICodePack

Th is code pack is built by the Windows
SDK team and lets you programmatically
work with the Taskbar. It also contains
several sample applications that have
Windows 7 enhancements. You actually set a
reference to the compiled assemblies (in this
example, browsing for the Taskbar project)
within your code.

You also have the fl exibility to give mul-
tiple instances of an application either the
same application ID or unique application
IDs, so you can either group or separate them
on the Taskbar. To give diff erent instances

of an application unique IDs, you need to set the application ID
prior to calling Application.Run. If you merely want to give child
windows their own icon in the Taskbar, you can change their
application ID at any time.

How It Works To give a child window its own icon in the
Taskbar, use the JumpList class and call the static method CreateJump-
List ForIndividualWindow, passing in a child window application ID
and the window’s handle. Th e code looks like this:

childWindowJumpList = JumpList.CreateJumpListForIndividualWindow(
childWindowApplicationId, this.Handle);

Windows Azure Integration
Cloud computing is rapidly emerging as a viable alternative to
traditional on-premise and Web hosting architectural solutions. In a
nutshell, it’s the idea of taking part (or all) of your soft ware solutions

and having a company host everything in a
massive datacenter, with on-demand scaling
and high reliability. Th e Windows Azure
Platform is Microsoft ’s cloud-computing and
services platform. It consists of three sets of
services: Windows Azure, SQL Azure and
the Windows Azure Platform AppFabric.

Windows Azure is the environment for
hosting applications; you can think of it as
the OS in the cloud. SQL Azure is essentially
the database in the cloud. And the Windows
Azure AppFabric is a set of common building
blocks used by applications that are hosted
in the cloud. Th e Windows Azure AppFabric
currently includes two services: Th e Access
Control Service (for federated authentication
and claims-based authorization) and the
Service Bus (for connectivity between solu-
tions in the cloud and on-premise solutions).Figure 12 Setting up a Cloud Service Project with Multiple Roles and Languages

Figure 11 Selecting a Cloud Project Type in Visual Studio 2010

http://code.msdn.microsoft.com/WindowsAPICodePack
http://code.msdn.microsoft.com/WindowsAPICodePack

Untitled-1 1 3/10/10 2:10 PM

www.devexpress.com/xtrapivotgrid

msdn magazine22 Better Coding 2010

Visual Studio 2010 includes multiple
project templates for building Windows
Azure Platform solutions. For both VB.NET
and C#, there are four diff erent templates for
Web roles and one for a worker role. Th ere
is also a worker role project template for F#.
Th e Web role templates for VB.NET and C#
include one each for ASP.NET, MVC with
ASP.NET, WCF Services and CGI.

One unique aspect of working with
Windows Azure Platform projects in
Visual Studio 2010 is that you can select mul-
tiple roles for your project when you create
it. For example, you can create a new proj-
ect with an ASP.NET MVC Web role in C#
and a worker role in VB.NET. Th is is why the
New | Project experience is slightly diff erent
for cloud applications; you actually select the
roles out of a dialog box rather than via the
single selection paradigm you see with most
other project templates.

How It Works To create a project that targets the Windows Azure
Platform in Visual Studio 2010, you select Cloud from the Installed
Templates list, as shown in Figure 11.

This will pop up a dialog box where you can select the
desired roles, with each role potentially being a diff erent type and/or
language. Figure 12 shows a new Windows Azure cloud service
project with an ASP.NET MVC Web Role, two VB.NET Worker Roles
and an F# Worker Role.

Multi-Targeting
Multi-targeting itself is not actually new to Visual Studio 2010.
However, it has a new extensibility feature that’s worth a look. It’s
somewhat surprising to see how many people don’t realize the
benefi ts of multi-targeting and how it enables them to use Visual
Studio 2010 to build solutions that will run on earlier versions of the
.NET Framework. Multi-targeting is there for development teams that
want to take advantage of the latest tooling—with its advanced de-
bugging and improved editor features—but are not prepared to move
their code (or perhaps customers) to the .NET Framework 4 just yet.

With multi-targeting, you have the option of building applications
to target the .NET Framework versions 2.0, 3.0, 3.5 or 4.

How It Works When starting a new project, simply select the targeted
framework in the dropdown list as shown in Figure 13.

A new option entitled <More Frameworks…> (note the
final entry in the circled drop-down box in Figure 13),
allows extensibility in the supported target frameworks. This
allows the potential addition of future versions of the framework,
and perhaps even other .NET Framework profi les further down
the road. Such additions would most likely be installed via MSI, but
ultimately could be manually added with an XML description fi le
and copying the framework assemblies directly onto the machine.

And More
Th ere are many other new features in Visual Studio 2010, far more
than I have been able to cover in this article. It’s hard to overlook
the customizable start page, which gives great opportunities for
companies to tie in company-specifi c resources. And then there
are the C++/ANSI updates, the constantly updated Help, the new
F# programming language, Entity Framework enhancements, code
visualizations and many other new features worth learning. Th ese
capabilities serve to further position Visual Studio 2010 as a compel-
ling development tool, one that is capable of delivering the kind of
soft ware our industry now expects. Hopefully, you now have a bet-
ter idea of what is available in Visual Studio 2010. If you would like
to try it out, download an evaluation copy at microsoft.com/vstudio.

DOUG TURNURE is a program manager with the Visual Studio team at Microsoft ,
primarily focusing on customer feedback and adoption. At diff erent times in his
career he has been a developer, author, trainer, tweeter, marketer and occasional
conference speaker. Turnure now enjoys living in Seattle, aft er vowing for many
years he would never move there.

THANKS to the following technical experts for reviewing this article:
Miguel Castro, Mark Dunn and Jim Wooley

Figure 13 Selecting a Target Framework Version Via Multi-Targeting

It’s somewhat surprising to see
how many people don’t realize
the benefi ts of multi-targeting
and how it can allow them to

use Visual Studio 2010 to build
solutions that will run on earlier
versions of the .NET Framework.

http://microsoft.com/vstudio

Image Formats & Compression: Supports 150+ image formats and
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64

bit development.
Forms Recognition and Processing: Automatically identify forms and

extract user lled data.
Barcode: Detect, read and rite 1D and 2D barcodes for multithreaded 32 and

64 bit development.
Document Cleanup/Preprocessing: Des e , despec le, hole punch, line

and border removal, inverted text correction and more.
PDF and PDF/A: ead and rite searchable PDF ith text, images and

annotations.
Annotations: Interactive UI for document mark-up, redaction and image

measurement (including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly

build high- uality, full-featured, eb-based medical image delivery and vie er
applications.
Medical Image Viewer: igh level display control ith built-in tools for image

mark-up, indo level, measurement, zoom pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the 200

DICOM standard (including Encapsulated PDF CDA and a Data).
PACS Communications: Full support for DICOM messaging and secure

communication enabling uick implementation of any DICOM SCU and SCP
services.
JPIP: Client and Server components for interactive streaming of large images

and associated image data using the minimum possible band idth.
Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver

settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, re ind and fast-for ard live capture and UDP or TCP IP streams.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3,

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to

create scalable, robust enterprise applications.

Mark-up

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

Document

ig evel Design ow evel Control

Develop your application ith the same robust imaging technologies used by
Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and
Veterans Affairs Hospitals.

EADTOO S provides developers easy access to decades of
expertise in color, grayscale, document, medical, vector and multmedia
imaging development. Install EADTOO S to eliminate months of research
and programming time hile maintaining high levels of uality, performance
and functionality.

.NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Free 60 Day Evaluation! www.leadtools.com/msdn 800 637-1840

Visit LEAD:

Booth #521

at the Microsoft
Visual Studio Launch

Expo In Las Vegas

Untitled-3 1 3/5/10 3:47 PM

http://www.leadtools.com/msdn

msdn magazine24

From its inception in 1991, the Visual Basic language
has always been a phenomenal productivity tool for building
applications. Almost 20 years later, it continues to provide easy
access to the Microsoft .NET Framework, allowing developers to write
applications that span desktops, phones, browsers and even
the cloud.

Microsoft this month will ship Visual Studio 2010, which
incorporates version 10 of Visual Basic (sometimes referred to as
VB 2010 or VB10). Th is release, the most powerful yet, contains

numerous time-saving features that help developers get more done
with fewer lines of code. Here’s everything you need to know to
hit the ground running with Visual Basic in Visual Studio 2010.

Coevolution
In the past, Visual Basic and C# were developed by separate teams, which
oft en resulted in features appearing in one language before the
other. For example, C# had auto-implemented properties and
collection initializers, which weren’t in Visual Basic, and Visual
Basic had features such as late binding and optional parameters
that weren’t in C#. But whenever a feature appeared in one of the
languages, many customers would ask to have the capability added
to the other as well.

To address this feedback, Microsoft merged the Visual Basic
and C# teams, embracing a strategy of coevolution. Th e intent is
to make the languages advance together. When major functionality
is introduced in one language, it should appear in the other as well.
Th is doesn’t mean that every feature will be in both languages and
work exactly the same way; indeed, each language has its own
history, spirit and feel—traits that are important to maintain.
Coevolution does mean that any task you can do in one language
should be as simple in the other.

In the .NET Framework 4, both Visual Basic and C# have
taken giant strides toward this goal, each adding a number of
capabilities the other already had. Coevolution isn’t just about the
past, though; it’s also the strategy for future innovation in the

V IS UA L BAS IC 20 1 0

What’s New in
Visual Basic 2010
Jonathan Aneja

This article discusses prerelease versions of Visual Basic 2010 and
Visual Studio 2010. All information is subject to change.

This article discusses:
• Coevolution in Visual Basic and C#

• Implicit line continuation

• Statement lambdas

• Auto-implemented properties

• Collection initializers

• Array literals

• Dynamic Language Runtime

• Generic variance

Technologies discussed:
Visual Basic 2010, Visual Studio 2010, Microsoft .NET Framework 4

25April 2010msdnmagazine.com

languages. In that spirit, the .NET Framework 4 introduces
powerful new features, such as the Dynamic Language Runtime,
Embed Interop Types and generic variance, in both languages
simultaneously, allowing Visual Basic and C# developers to take
full advantage of the .NET Framework.

New Features in Visual Basic 2010
Th e new features in Visual Basic 2010 are designed to help you
get more done in fewer lines of code. We (the Visual Basic design
team) looked at places where developers oft en have to write a lot
of tedious boilerplate code and investigated ways to get the com-
piler to do the work instead. Th at’s the big picture; now let’s delve
into some features one by one.

Implicit Line Continuation
Visual Basic is a line-oriented language that uses clear, English-like
syntax to enhance readability. But that oft en results in code that
runs up against the 80-character-per-line limit, forcing develop-
ers to scroll a lot. You can use the underscore character to tell the
compiler that it should keep processing the next line as part of the
current one (that is, treat multiple physical lines as a single, logical
line). But having to type underscores repeatedly has always been
annoying, and in fact, for years the No. 1 feature request has been
for the compiler to “just fi gure it out.”

Well, in Visual Basic 2010, the compiler can. It now knows which
tokens (such as commas, parentheses and operators) tend to occur
right before the line-continuation character, and it inserts the
character so developers no longer need to. For example, ending a
Visual Basic statement with a comma is never legal; the compiler
knows this, so when it sees a token stream that looks like {comma,
enter}, it infers the presence of the line continuation character, as
the example in Figure 1 shows.

In Visual Basic 2008, the code in Figure 1 would have needed
nine underscores. In each of these cases, though, the compiler
inferred when the underscore was necessary and allowed it to
be omitted:

• Aft er the <Extension()> attribute
• Aft er the ((open paren) in the method declaration
• Aft er the , (comma) for the fi rst parameter
• Before the) (close paren) in the method declaration
• Aft er the = (equal sign)
• Aft er the <%= (opening tag for an embedded expression)

• Aft er each & (ampersand) in the XML literal
• Before the %> (closing tag for an embedded expression)

Th is new compiler capability is especially handy for the method
signature, which would go well beyond 80 characters in the example
shown if each part were on the same line. In Figure 2 you’ll see
all the combinations of tokens and placements in which the
line-continuation character is implicit.

As you can see, there are more than 60 places where the language
doesn’t require underscores. (In fact, none of the code samples in
this article required the line-continuation character.) Of course,
you can still use the underscore, so code from previous versions
of Visual Basic will still compile as expected.

Statement Lambdas
Th e term lambda can sound intimidating at fi rst, but a lambda is
simply a function defi ned inside another function. Visual Basic
2008 introduced lambda expressions with the Function keyword:

 Dim customers As Customer() = ...

 Array.FindAll(customers, Function(c) c.Country = "Canada")

Lambda expressions give you a nice compact way of expressing
logic locally without having to split it across multiple methods. For
example, here’s how the previous code would have looked in Visual
Basic 2005 (which didn’t support lambda expressions):

Dim query = Array.FindAll(customers, AddressOf Filter)

 ...

Function Filter(ByVal c As customer) As Boolean
 Return c.Country = "Canada"
End Function

Unfortunately, Visual Basic 2008’s lambda expressions required
that the expressions return a value, so this:

 Array.ForEach(customers, Function(c) Console.WriteLine(c.Country))

would have caused this:
 'Compile error: "Expression does not produce a value."

Console.WriteLine is a Sub procedure (void, in C#), so it doesn’t
return a value, which is why the compiler gives an error. To deal
with this, Visual Basic 2010 introduces support for statement lamb-
das, which are lambdas that can contain one or more statements:

Array.ForEach(customers, Sub(c) Console.WriteLine(c.Country))

Because Console.WriteLine doesn’t return a value, we can just
create a Sub lambda rather than a Function lambda. Here’s another
example that uses multiple statements:

Array.ForEach(customers, Sub(c)
 Console.WriteLine("Country Name:")
 Console.WriteLine(c.Country)
 End Sub)

When this code runs, it’ll print two lines for each customer. Also
notice that if you hover over c when you’re coding, you’ll see that the
compiler has inferred the type as Customer (it’s also legal to type c As
Customer to state the type explicitly). Dynamically wiring up event
handlers is another great use for statement lambdas:

AddHandler b.Click, Sub(sender As Object, e As EventArgs)
 MsgBox("Button Clicked")
 'insert more complex logic here
 End Sub

And, in fact, you can combine statement lambdas with a feature
introduced in Visual Basic 2008: relaxed delegates. (You can use
delegates—type-safe pointers to functions—to execute multiple

<Extension()>
Function FilterByCountry(
 ByVal customers As IEnumerable(Of Customer),
 ByVal country As String) As IEnumerable(Of Customer)
 Dim query =
 From c In customers
 Where c.Country = country
 Select <Customer>
 <%=
 c.Name &
 "," &
 c.Country
 %>
 </Customer>
 Return query
 End Function

Figure 1 Inferring Line Continuation

http://msdnmagazine.com

msdn magazine26 Visual Basic 2010

functions at once.) Th is combination produces an even simpler
signature:

AddHandler b.Click, Sub()
 MsgBox("Button Clicked")
 'insert more complex logic here
 End Sub

Delegate relaxation lets you completely omit the parameters from
an event handler—a nice benefi t, given that frequently they’re not
used at all, so they just add visual noise.

In addition to the single-line Sub lambdas and multi-line Sub
lambdas we’ve seen so far, Visual Basic 2010 also supports multi-
line Function lambdas:

Dim query = customers.Where(Function(c)
 'Return only customers that have not been saved
 'insert more complex logic here
 Return c.ID = -1
 End Function)

Another interesting aspect of statement lambdas is the way they in-
tersect with the anonymous delegates Visual Basic 2008 introduced.
People oft en confuse these with C#’s anonymous methods, though
technically they’re not the same. Anonymous delegates occur when
the Visual Basic compiler infers a delegate type based on the method
signature of a lambda:

Dim method = Function(product As String)
 If product = "Paper" Then
 Return 4.5 'units in stock
 Else
 Return 10 '10 of everything else
 End If
 End Function

MsgBox(method("Paper"))

If you run this code, you’ll see the value 4.5 displayed in the
message box. Also, if you hover over method, you’ll see the text
Dim method As <Function(String) As Double>. Because we
provided no actual delegate type, the compiler will generate one
automatically, like this:

 Delegate Function $compilerGeneratedName$(product As String) As Double

Th is is called an anonymous delegate, because it appears only
in the compiler-produced code, not in the written code. Notice
that the compiler inferred the return type as Double, when in fact

there was no As clause given to specify the lambda’s return type.
Th e compiler looks at all the return statements inside the lambda
and sees the types Double (4.5) and Integer (10):

'Notice the "As Single"
Dim method = Function(product As String) As Single
 If product = "Paper" Then
 Return 4.5 'units in stock
 Else
 Return 10 '10 of everything else
 End If
 End Function

It then runs its dominant-type algorithm and determines that
it can safely convert 10 to Double but can’t safely convert 4.5 to
Integer; thus Double is the better pick.

You also can take control of the return type explicitly, in which
case the compiler won’t attempt to infer the type. Rather than relying
on the compiler to infer the delegate type, it’s very common to
assign a lambda to a variable that has an explicit delegate type:

Dim method As Func(Of String, Single) =
 Function(product)
 If product = "Paper" Then
 Return 4.5 'units in stock
 Else
 Return 10 '10 of everything else
 End If
 End Function

Because an explicit target type was provided, there’s no need to
say As String or As Single; the compiler can infer their presence
based on the delegate type from the left -hand side of the statement.
Th us, if you hover over product you’ll fi nd that the inferred type
is String. Specifying As Single is no longer necessary, because the
delegate type already provides that information. In the previous
example, the signature of the Func delegate (which the .NET
Framework includes) looks like this:

Delegate Function Func(Of T, R)(ByVal param As T) As R

with one minor exception, as we’ll see later in the Generic
Variance section.

Auto-Implemented Properties
In Visual Basic, properties are class members you use to expose an
object’s state to the outside world. A typical property declaration
looks something like this:

Private _Country As String

Property Country As String
 Get
 Return _Country
 End Get
 Set(ByVal value As String)
 _Country = value
 End Set
End Property

Th at’s 10 lines of code for what’s actually a very simple concept.
Given that typical objects oft en have dozens of properties, you end
up including a lot of boilerplate code in class defi nitions. To make

Token Before After
, (comma), . (dot), > (attributes), ({ (open
brackets), <%= (begin embedded expression
(XML literals))

X

), }, ,] (close brackets), %> (close embedded
expression) X

All LINQ keywords:

Aggregate, Distinct, From, Group By, Group Join, Join,
Let, Order By, Select, Skip, Skip While, Take, Take While,
Where, In, Into, On, Ascending, Descending

X X

Operators:

+ , - , * , / , \ , ^ , >> , << , Mod, & , +=
, -= , *= , /= , \= , ^= , >>= , <<= , &= , <
, <= , > , >= , <> , Is, IsNot, Like, And, Or, Xor,
AndAlso, OrElse

X

With (in an object initializer) X

Figure 2 Where Continuation Characters Are Implicit

For years, the No. 1 feature
request has been for the

compiler to “just fi gure it out.”

27April 2010msdnmagazine.com

such tasks easier, Visual Basic 2010 introduces auto-implemented
properties, which allow you to defi ne a simple property using only
one line of code:

Property Country As String

In this case, the compiler will go ahead and generate the Getter,
Setter and backing fields automatically. The name of the back-
ing field will always be an underscore followed by the name of
the property: _Country in this case. This naming convention
ensures binary serialization compatibility should an auto-im-
plemented property be changed to a regular one. As long as the
name of the backing field is the same, binary serialization will
continue to work.

One of the cool things you can do with auto-implemented prop-
erties is specify initializers that set the property’s default value when
the constructor runs. A common scenario with entity classes, for
example, sets the primary key to something like -1 to indicate that
it’s in an unsaved state. Here’s what that code would look like:

Property ID As Integer = -1

When the constructor runs, the backing fi eld (_ID) will be set
to the value -1 automatically. Th e initializer syntax also works for
reference types:

Property OrderList As List(Of Order) = New List(Of Order)

Th e previous line of code may not feel very “Visual Basic-ish,” given
that entering the name of the type twice is redundant. Th e good news
is there’s an even shorter syntax that’s consistent with what Visual Basic
allows in regular variable declarations:

Property OrderList As New List(Of Order)

You can even combine this with Object Initializers to allow
setting additional properties:

Property OrderList As New List(Of Order) With {.Capacity = 100}

Obviously, for more complex properties, the expanded syntax
is still necessary. You can still type Property{Tab} to activate the
old property snippet. Alternatively, aft er typing the fi rst line of the

property, you can just enter Get{Enter}, and the IDE will generate
the old-style property:

Property Name As String
 Get

 End Get
 Set(ByVal value As String)

 End Set
End Property

People oft en remark that the new property syntax is almost
identical to the syntax for a public fi eld, so why not use a public
fi eld instead? Well, for a few reasons:

• Much of the .NET data-binding infrastructure works against
properties but not fi elds.

• An interface can’t enforce the existence of a fi eld; it can enforce
that of a property.

• Properties provide more long-term fl exibility for changing
business rules. For example, suppose someone introduces the
rule that a phone number must be 10 digits. Th ere’s no way
to perform this validation when assigning to a public fi eld.
Changing a public fi eld to a property is a breaking change for
scenarios such as binary serialization and refl ection.

Collection Initializers
A common .NET practice is to instantiate a collection and then
populate it by calling the Add method once for each element:

Dim digits As New List(Of Integer)
digits.Add(0)
digits.Add(1)
digits.Add(2)
digits.Add(3)
digits.Add(4)
digits.Add(5)
digits.Add(6)
digits.Add(7)
digits.Add(8)
digits.Add(9)

But the result is a lot of syntactic overhead for what’s funda-
mentally a very simple concept. Visual Basic 2010 introduces
collection initializers to let you more easily instantiate collections.
With this code:

Dim digits = New List(Of Integer) From {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}

the compiler will generate all the calls to the Add method
automatically. You can also use the feature with Visual Basic’s As
New syntax:

Dim digits As New List(Of Integer) From {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}

Note that on the Visual Basic Team, we always recommend
using the second syntax (As New) over the former, because it makes
code resilient against changes to the Option Infer setting.

 Imports System.Dynamic
 Module Module1
 Sub Main()
 Dim p As Object = New PropertyBag
 p.One = 1
 p.Two = 2
 p.Three = 3
 Console.WriteLine(p.One)
 Console.WriteLine(p.Two)
 Console.WriteLine(p.Three)
 End Sub
 Class PropertyBag : Inherits DynamicObject
 Private values As New Dictionary(Of String, Integer)
 Public Overrides Function TrySetMember(
 ByVal binder As SetMemberBinder,
 ByVal value As Object) As Boolean
 values(binder.Name) = value
 Return True
 End Function
 Public Overrides Function TryGetMember(
 ByVal binder As GetMemberBinder,
 ByRef result As Object) As Boolean
 Return values.TryGetValue(binder.Name, result)
 End Function
 End Class
 End Module

Figure 3 Creating a Custom Dynamic Object
and Calling It with Visual Basic Late Binding

Delegate relaxation lets you
completely omit the
parameters from an

event-handler—a nice benefi t.

http://msdnmagazine.com

msdn magazine28 Visual Basic 2010

You can use collection initializers against any type that meets
the following requirements:

• You can iterate over it using a For Each statement—that is, it im-
plements IEnumerable. (For a more precise/detailed defi nition of
a collection type, see section 10.9.3 of the Visual Basic Language
Specifi cation at msdn.microsoft.com/library/aa711986(VS.71).aspx).

• It has an accessible (not necessarily public) parameter-less
constructor.

• lt has an accessible (not necessarily public) instance or extension
method named Add.
Th at means you can also use collection initializers with more

complex types, such as dictionaries:
Dim lookupTable As New Dictionary(Of Integer, String) From
 {{1, "One"},
 {2, "Two"},
 {3, "Three"},
 {4, "Four"}}

(Note that even though this statement spans fi ve lines, there are
no underscores.) In this case, the compiler will generate code that’s
equivalent to the old way of initializing the dictionary:

Dim lookupTable As New Dictionary(Of Integer, String)
lookupTable.Add(1, "One")
lookupTable.Add(2, "Two")
lookupTable.Add(3, "Three")
lookupTable.Add(4, "Four")

Th e compiler is calling an Add method that has two parameters in-
stead of one. It knows to do this because the values passed into the col-
lection initializer were in nested braces, like this: {{1, "One"}, {2, "Two"},
…}. For each set of nested braces, the compiler attempts to pass those
parameters to a compatible Add method.

You can also provide your own custom Add implementation by
using an extension method:

<Extension()>
 Sub Add(ByVal source As IList(Of Customer),
 ByVal id As Integer,
 ByVal name As String,
 ByVal city As String)

 source.Add(New Customer With
 {
 .ID = id,
 .Name = name,
 .City = city
 })
 End Sub

(Look at all those missing underscores!) Th is method extends
any type that implements IList(Of Customer) and then allows you
to use the new collection initializer syntax like this:

Dim list = New List(Of Customer) From
 {
 {1, "Jon", "Redmond"},
 {2, "Bob", "Seattle"},
 {3, "Sally", "Toronto"}
 }

(adding three customers to list). You can also use collection
initializers in conjunction with auto-implemented properties:

Property States As New List(Of String) From {"AL", "AK", "AR", "AZ", ...}

Array Literals
In addition to more powerful ways of working with collection types,
Visual Basic 2010 also provides some great enhancements for work-
ing with arrays. Consider the following code (which works fi ne in
older versions):

Dim numbers As Integer() = New Integer() {1, 2, 3, 4, 5}

It’s obvious from looking at the elements in the array that each
is an Integer, so having to actually type out Integer twice in this
line doesn’t really add any value. Array literals allow creation of an
array by putting all of its elements inside braces, and then having
the compiler infer the type automatically:

Dim numbers = {1, 2, 3, 4, 5}

Th e type of numbers isn’t Object, but rather Integer() (as long
as Option Infer is on), because the array literal can now stand by
itself and has its own type. Consider a more complicated example:

Dim numbers = {1, 2, 3, 4, 5.555}

In this case, the type of numbers will be inferred as Double().
Th e compiler determines the type by examining each element in
the array and calculating the dominant type (using the same algorithm
discussed earlier for inferring the return type of a statement lambda).
What happens if there’s no dominant type, such as in the follow-
ing code:

Dim numbers = {1, 2, 3, 4, "5"}

In this case, converting an Integer to a String would be a
narrowing conversion (that is, there would be potential for data loss
at runtime), and likewise, converting a String to an Integer would
also be a narrowing conversion. Th e only safe type to pick is Object()
(and the compiler will give an error when Option Strict is on).

Array literals can be nested to form either multi-dimensional
arrays or jagged arrays:

'2-dimensional array
Dim matrix = {{1, 0}, {0, 1}}

'jagged array - the parentheses force evaluation of the inner array first
Dim jagged = { ({1, 0}), ({0, 1}) }

Dynamic Language Runtime
While technically a static language at heart, Visual Basic has always had
extremely powerful dynamic capabilities, such as late binding.
Visual Studio 2010 ships with a new platform called the Dynamic
Language Runtime (DLR), which makes it easier to build—and com-
municate among—dynamic languages. Visual Basic 2010 has been

Option Strict On
Public Class Form1
 Sub Form1_Load() Handles MyBase.Load
 Dim buttons As New List(Of Button) From
 {
 New Button With
 {
 .Name = "btnOk",
 .Enabled = True
 },
 New Button With
 {
 .Name = "btnCancel",
 .Enabled = False
 }
 }

 Dim enabledOnly = FilterEnabledOnly(buttons)
 End Sub
 Function FilterEnabledOnly(
 ByVal controls As IEnumerable(Of Control)
) As IEnumerable(Of Control)
 Return From c In controls
 Where c.Enabled = True
 End Function
End Class

Figure 4 An Example of Generic Variance

http://msdn.microsoft.com/library/aa711986(VS.71).aspx

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine30 Visual Basic 2010

updated to fully support the DLR in its latebinder, letting
developers use libraries and frameworks developed in other lan-
guages such as Iron Python/IronRuby.

The cool thing about this feature is that nothing’s changed
syntactically (in fact, not a single line of code was modifi ed in the com-
piler to support this feature). Developers can still make operations
late-bound the same way they did in previous versions of Visual Basic.
What has changed is code in the Visual Basic Runtime (Microsoft .Visual-
Basic.dll), which now recognizes the IDynamic MetaObjectProvider
interface that the DLR provides. If an object implements this
interface, the Visual Basic Runtime will construct a DLR CallSite and
allow the object and its providing language to inject their own semantics
into the operation.

For example, the Python Standard Libraries contain a fi le called
random.py with a method called shuffl e that can be used to randomly
rearrange the elements in an array. Calling it is simple:

Dim python As ScriptRuntime = Python.CreateRuntime()
Dim random As Object = python.UseFile("random.py")

Dim items = {1, 2, 3, 4, 5, 6, 7}
random.shuffle(items)

At runtime, Visual Basic sees that the object implements
IDynamicMeta ObjectProvider and thus passes control to the DLR,
which then communicates with Python and executes the meth-
od (passing along the array that was defi ned in Visual Basic as an
argument to the method).

Th at’s an example of invoking a DLR-enabled API, but it’s also
possible for developers to create their own APIs that use this fea-
ture. Th e key is to implement the IDynamicMetaObjectProvider
interface, in which case the Visual Basic and C# compilers will
recognize that the object has special dynamic semantics. Rather
than implementing the interface manually, it’s easier to inherit
from the System. Dynamic.DynamicObject class (which already
implements this interface) and just override a couple of methods.
Figure 3 shows a full example of creating a custom dynamic
object (a “property bag” that appears to create properties on the fl y)
and calling it using normal Visual Basic late binding. (For more
information on working with DynamicObject, check out Doug
Rothaus’ excellent article at blogs.msdn.com/vbteam/archive/2010/01/20/
fun-with-dynamic-objects-doug-rothaus.aspx.)

Generic Variance
Th is is a feature that can sound really complicated (with terms like
covariance and contravariance) at fi rst, but it’s actually pretty simple.
If you have an object of type IEnumerable(Of Apple) and want to
assign it to an IEnumerable(Of Fruit), that should be legal, because
every Apple is a Fruit (enforced by an inheritance relationship).
Unfortunately, before Visual Basic 2010, generic variance was not
supported in the compiler, even though it actually was supported
in the Common Language Runtime (CLR).

Let’s consider the example in Figure 4.In Visual Basic 2008,
the code in Figure 4 would generate a compile error (or if Option
Strict is off , a runtime exception) on the Dim enabledOnly line. Th e
workaround was to call the .Cast extension method, as shown here:

 'Old way, the call to Cast(Of Control) is no longer necessary in VB 2010
 Dim enabledOnly = FilterEnabledOnly(buttons.Cast(Of Control))

Th is is no longer necessary, because in Visual Basic 2010, the
IEnumerable interface has been marked as covariant by using the
Out modifi er:

Interface IEnumerable(Of Out T)
 ...
End Interface

Th is means the generic parameter T is now variant (that is, it
works for inheritance relationships) and the compiler will ensure
it’s only used in positions where the type is coming out of the
interface. Generic parameters can also be contravariant, which
means they’re only used in input positions. A type can actually have
both. For example, the Func delegate discussed earlier has both con-
travariant parameters (things that get passed in) and a covariant
parameter (for the return type):

Delegate Function Func(Of In T, Out R)(ByVal param As T) As R

You can use the In and Out modifi ers on your custom interfaces
and delegates. Many commonly used interfaces and delegates in the
.NET Framework 4 have already been marked as variant; common
examples include all the Action/Func delegates, IEnumerable(Of
T), IComparer(Of T) and IQueryable(Of T), among others.

Th e cool thing about generic variance is that it’s a feature you don’t
really need to worry about—if it’s doing its job, you’ll never notice
it. Situations that used to cause compile errors or require a call to
.Cast(Of T) should work just fi ne in Visual Basic 2010.

Improved Optional Parameters
Optional parameters provide a handy productivity feature that
lets developers make more fl exible methods and avoid polluting
a class with numerous overloads of a method. One limitation in
the past was that optional parameters could not be nullable (or
indeed any non-intrinsic structure type). Visual Basic 2010 now
lets you defi ne optional parameters of any value type:

Sub DisplayOrder(ByVal customer As Customer,
 ByVal orderID As Integer,
 Optional ByVal units As Integer? = 0,
 Optional ByVal backgroundColor As Color = Nothing)
End Sub

In this case, units is of type Nullable(Of Integer) and background-
Color is a non-intrinsic structure type, but they can still be used as
optional parameters. Visual Basic 2010 also provides better support
for optional parameters that are generic.

The coolest thing about all the
features in Visual Basic 2010 is
that you can even use them in
projects that target the .NET
Framework 2.0 through the

.NET Framework 3.5.

http://blogs.msdn.com/vbteam/archive/2010/01/20/fun-with-dynamic-objects-doug-rothaus.aspx
http://blogs.msdn.com/vbteam/archive/2010/01/20/fun-with-dynamic-objects-doug-rothaus.aspx

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-1 1 1/11/10 11:15 AM

www.infragistics.com/sldv

msdn magazine32 Visual Basic 2010

Embed Interop Types
For applications that perform COM
Interop, a common pain point is
having to work with Primary In-
terop Assemblies (PIAs). A PIA is
a .NET assembly that serves as a
Runtime Callable Wrapper (RCW)
over a COM component and has a
unique GUID to identify it. .NET
assemblies communicate with a PIA,
which then performs any necessary
marshalling to move data between
COM and .NET.

Unfortunately, PIAs can complicate
deployment because they’re additional
DLLs that need to be deployed to the
end users’ machines. Th ey also cause
problems for versioning—for example,
if you want an application to be able
to work against both Excel 2003 and
Excel 2007, you’d need to deploy both
PIAs with the application.

Th e Embed Interop Types feature
embeds directly into the application,
but only the types and members from
the PIA that are absolutely necessary,
thus removing the need for PIAs to be
deployed to the end users’ machines.

To turn on this feature for an existing project (it’s already on
by default for new references), select the reference in Solution
Explorer and change the Embed Interop Types option in the
properties window (see Figure 5). Or, if compiling using the
command-line compiler, use the /l (or /link) switch instead of
the /r and /reference.

Once you’ve turned this feature on, the application no longer
has a dependency on the PIA. In fact, if you open the assembly
in Refl ector or ildasm, you’ll notice that there actually isn’t any
reference to the PIA at all.

Multi-Targeting
The coolest thing about all the features in Visual Basic 2010
is that you can even use them in projects that target the .NET
Framework 2.0 through the .NET Framework 3.5. This means
that implicit line continuation, array literals, collection initial-
izers, statement lambdas, auto- implemented properties and so
on will all work in existing projects without having to retarget
to the .NET Framework 4.

Th e one exception is Embed Interop Types, which has a depen-
dency on types that are only in the .NET Framework 4; as a result
you can’t use it when targeting .NET Framework versions 2.0 through
3.5. Also, the types that are marked as variant are only marked that way
in the .NET Framework 4, so in the earlier example, you’d still have
to call .Cast(Of T) when targeting versions 2.0 through 3.5. You can,
however, make your own variant types (using the In/Out modifi ers)
when targeting those earlier versions.

To change the current target frame-
work for an application, double- click
My Project, click the Compile tab,
click Advanced Compile Options
and then select from the combo box
at the bottom.

When compiling from the command
line, there’s actually no command-
line switch to enable this fea-
ture. Instead, the compiler looks
at which assembly provided
the definition of System.Object
(typically mscorlib) and which frame-
work that assembly is targeting,
then stamps that value in your output
assembly. (Th is is the same mecha-
nism the compiler uses when building
Silverlight assemblies.) When using
the IDE, all this happens transpar-
ently, so in general it’s not something
you need to worry about.

Try It Out
As you can see, Visual Basic 2010 has
many powerful features that let you be
more productive while writing fewer
lines of code, offl oading more work to
the compiler. In this article, I’ve only

looked at language features, but the Visual Basic 2010 IDE also has
a ton of great enhancements. Here’s a partial list:

• Navigate To
• Highlight References
• Generate From Usage
• Better IntelliSense (substring matching, camel-case lookup,

suggestion mode—useful for “test fi rst” styles of development)
• Multi-Monitor Support
• Zooming

Th e Visual Basic team would love to hear your feedback on what we
can do to make Visual Basic even better, so send us your comments and
questions on Microsoft Connect. To learn more about the language
and IDE features, check out the content on msdn.com/vbasic, including the
articles, samples and How-Do-I videos. Of course, the best way to
learn is by diving in and using the product, so it’s time to install it
and try it out.

Want more Visual Basic? You got it. MSDN Magazine is resuming
monthly publication of the Basic Instincts column, which focuses on
the Visual Basic developer and related topics and is written by the
Visual Basic team at Microsoft .

JONATHAN ANEJA is a program manager on the Entity Framework team at
Microsoft . Previously he was the program manager for the Visual Basic compiler
during the releases of Visual Basic 2008 and Visual Basic 2010. He has been at
Microsoft for four years.

THANKS to the following technical expert for reviewing this article:
Dustin Campbell, Jason Malinowski and Lucian Wischik

Figure 5 Enabling the Embed Interop Types Feature
in Solution Explorer

http://msdn.com/vbasic

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more from your data.
Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2009 ESRI. All rights reserved. The ESRI globe logo, ESRI, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Project2 12/3/09 10:01 AM Page 1

http://www.esri.com/edn
http://www.esri.com

Untitled-4 2 3/1/10 3:55 PM

www.telerik.com

Untitled-4 3 3/1/10 3:55 PM

www.telerik.com

msdn magazine36

How does anyone fi x a bug in their code? You set
a few breakpoints, run the program under the debugger, do a little
single-stepping—and pray the problem falls into your lap so you
can get on to other things.

We’ve been doing the same style of debugging almost since the
ENIAC was invented. Th is tedious and time-intensive debugging
approach has served us well, but it’s time debugging got easier. With
the release of Visual Studio 2010 Ultimate, the new IntelliTrace
feature brings debugging into the 21st century by giving developers
better insight into their applications’ execution.

Much like other monitoring and tracing tools such as Process
Monitor from Windows Sysinternals, Visual Studio 2010 collects data
about an application while it’s executing to help developers diagnose
errors. Th e collected data is referred to as IntelliTrace events. Th ese
events are collected as part of the default debugging experience, and
among other things, they let developers step back in time to see what
happened in an application without having to restart the debugger.

In this article, I’ll introduce you to IntelliTrace and show how it
provides value to developers as part of their day-to-day development
activities. I’ll show how IntelliTrace provides a time line of events
that occurred during the execution of an application, and how
developers can use these events to aid debugging. Next, I’ll discuss
the settings developers can change to collect a deeper set of infor-
mation about the application to get a complete execution history.
Finally, I’ll show how to use a previously recorded IntelliTrace fi le
that was created by someone else—a tester—to debug an application,
without having to run the application to reproduce the error.

When the Visual Studio diagnostics team started planning for
Visual Studio 2010, we spent a lot of time talking to customers about
how they diagnose problems in their applications. Th ough everyone
has a diff erent pattern and favorite set of tools, one point was over-
whelmingly clear: the traditional methods of diagnosing applica-
tion issues are diffi cult, time-consuming and costly. Th e bug reports
that developers receive almost never have any steps to reproduce
the problem, and mostly consist of statements like “I was using the
program and it crashed.” In the rare case when decent repro steps

IN TE LL I T R AC E

Debugging Applications
with IntelliTrace

This article is based on a prerelease version of Visual Studio 2010
Ultimate. All information is subject to change.

This article discusses:
• Using IntelliTrace to track debugging events

• Adjusting the amount of data collected by IntelliTrace

• Investigating a user code error

• Collecting deep call information for application diagnostics

• Eliminating the “no repro” scenario

Technologies discussed:
Visual Studio 2010 Ultimate, IntelliTrace

Code download available at:
code.msdn.microsoft.com/mag201004Debug

Justin Marks

http://code.msdn.microsoft.com/mag201004Debug

37April 2010msdnmagazine.com

are available, you may be faced with bugs
occurring in specifi c environments, and
this leads to a whole new set of problems to
solve. Moreover, bugs oft en are caused by
a misunderstanding of how a framework
or other code operates.

With these pain points in mind, we
set about to create a new debugger
feature where the right information was
collected at the time the problem occurred.
Our goal was to hand developers the
exact repro steps and system environment
settings, as well as expose the behavior of
frameworks and code they use, to drasti-
cally improve their diagnosability. With the
release of Visual Studio 2010 Ultimate, In-
telliTrace brings a greatly improved debug-
ging experience by giving developers better
insight into the application and framework
behavior, as well as the ability to open an
IntelliTrace fi le collected by a tester to resolve “no repro” scenarios.

Introducing IntelliTrace
When a developer needs a deeper understanding of code execution,
IntelliTrace off ers a way to “turn up the dial” to collect the complete
execution history of an application.

To illustrate this, I will use the Tailspin Toys demo application to
show you the type of information IntelliTrace can collect. To be-
gin, I’ll open up the solution in Visual Studio and start debugging.
When the Web site launches, I’ll navigate to the “About us” page and
receive an error from the server. How might you diagnose the prob-
lem? If you’re anything like me, your fi rst instinct is to confi gure the
web.confi g fi le to not show custom errors and then restart the
debugger. But what if this issue is intermittent? Wouldn’t it be nice
if you could just break into the process at this point, aft er the error
occurred, and get a history of what happened in the application
from Visual Studio?

While you’re debugging, IntelliTrace collects data about a managed
application in the background, including information from
many framework components such as ADO.NET, ASP.NET and
System.XML. Th ese IntelliTrace events allow the developer to see
what has previously occurred during execution, and most impor-
tantly, to “step back in time” to see prior states of the application
without having to restart the debugger. When I break into the
debugger, I’m immediately presented with a sequential list of the
IntelliTrace events that were collected (see Figure 1).

As you can see from Figure 1, the list of IntelliTrace events goes
far beyond fi le and registry accesses as you’d see in Process Monitor.
We have defi ned almost 150 IntelliTrace events for Visual Studio
2010, and we plan on augmenting this list with additional events
over time. Figure 2 highlights some of the categories of events that
are collected by IntelliTrace.

Th e IntelliTrace window lets me fi lter the list of collected events
by category—the categories shown in Figure 2—or by thread. In
addition, I can do text-based searches to fi nd key events I can

quickly jump to. Because IntelliTrace also
collects exceptions, I can do a search for
the term “exception” and the list will fi lter
to show me the exception that caused
the ASP.NET error page, both where it
was thrown and where it was caught.
In this case, the error was caused by an
XMLException while parsing an entity on
line 10, position 53 (see Figure 3). When
I click on the thrown exception event,
other debugger windows, such as the Call
Stack and Watch windows, show data
relative to the event itself, so it’s like you
were debugging the instant that exception
was thrown. In addition, just like walking
up a call stack, the editor will open the
appropriate source fi le and highlight the
line of code corresponding to the event in
orange to represent IntelliTrace.

IntelliTrace has given me a very helpful
piece of information for diagnosing the issue: an XML fi le was loaded
and a specifi c character in the XML was unexpected or incorrect. But
I still don’t know which fi le was accessed. Once again, IntelliTrace
has collected the information I need—namely the fi le access.

Category Description and Collected Data
ADO.NET Events around executing queries against

SQL, the executed command as well as the
connection string.

ASP.NET Events around the ASP.NET pipeline as well as
request processing and redirection.

Console Console output.
Data Binding Windows Forms data binding.
Environment Variables Evaluation and retrieval of environment variables

from the process.
File Creation, deletion and access of fi les.
Gestures User actions performed against common

controls from Web forms, Windows Forms and
WPF. In addition to collecting data about the
interaction with the control, clicking on one of
these events automatically redirects you to the
appropriate event handler.

Lazy Initialization Initialization of lazily loaded variables.
Registry Creation, deletion and querying of registry

information.
Service Model Web service calls from WCF.
Threading Queuing of user work items and parallel

computing tasks.
Tracing Debugger trace output and assertions.
User Prompt Display of Windows Forms and WPF message

boxes as well as the result of the dialog.
Workfl ow Activity instantiation and completion.
XML XML fi le loading.

Figure 2 IntelliTrace Events Are Available
Across the Microsoft .NET Framework

Figure 1 Diagnostic Information Collected
by IntelliTrace

http://msdnmagazine.com

msdn magazine38 IntelliTrace

Looking again at the IntelliTrace window
in Figure 3, I can see that the event just prior
to the exception is an XML fi le load event
for “Content\Xml\Ads.xml.” Th is must be
the fi le causing the error. I can easily open
this fi le in Visual Studio. Looking at line
10, position 53, I see that there is indeed
an error in this fi le, namely that “&b=1” is
invalid for the NavigateUrl XML element.
By removing these invalid characters, the
Web site should now load correctly.

Now I want you to think about the last
unhandled exception you debugged with
traditional debugging techniques. If it
was an exception like this one, you would
have seen where the exception occurred,
but defi nitely not the exact reason or
the invalid character. Th is is the key to
Intelli Trace—it gives you better infor-
mation to diagnose issues quicker and
easier. You have more important things to
do than waste your time hunting around for information.

Using IntelliTrace to Track Debugger Events
I’ve just shown you how IntelliTrace collects exceptions, both handled
and unhandled, that occur during an application’s execution, and
how IntelliTrace events across the framework can provide insight
into what an application did under the hood. But that’s not all.
IntelliTrace also collects events caused by the debugger, namely
breakpoints, tracepoints and stepping events.

One of the most common debugging techniques is to set a breakpoint
near the point where you think a problem exists and then step through

the code watching variables change. Th is is
especially useful when debugging through
loops, watching for a variable to change to a
specifi c value. Unfortunately, most develop-
ers are impatient and pound the F10 key to
step quickly through the code, only to fi nd
that they stepped too far. Th en they need to
restart their debugging session and try again.
With IntelliTrace, all breakpoints and step-
ping events are recorded, along with their
contextual data, so you can quickly navigate
to points where you stopped before.

If I click on one of these debugger events,
the Watch window will show me all the
data I previously looked at, including
values I evaluated in the Locals, Watch and
Autos windows, as well as QuickWatch
and DataTips.

Often, previously developed and
deploy ed code doesn’t have the needed
tracing built in to help debug issues that

may arise. Breakpoints off er the ability to see more of what’s going on
under the hood of the application. But most of the time, the developer
doesn’t need to stop at the breakpoint; rather he wants to collect
some data and continue execution. Th is is especially the case
inside loops where you want a record of the iterator value without
having to stop at each iteration. In these scenarios, tracepoints are a
great alternative. Tracepoints let the developer make the debugger
perform a custom action; that is, execute a macro or print out a
trace message, instead of breaking execution. With IntelliTrace,
the tracepoints output is collected and can be viewed in the same
interface as the other IntelliTrace events (see Figure 4).

Figure 4 Tracepoints Can Dynamically Add Trace Outputs to Code

Figure 3 An XMLException Was Thrown While
Parsing an Entity on Line 10, Position 53

39April 2010msdnmagazine.com

Turning up the Dial
By default, IntelliTrace is confi gured to collect only IntelliTrace
events. Th is is a low-overhead solution but doesn’t provide a full
execution history of your application. When you need a deeper level
of information, IntelliTrace can be confi gured to collect more data.
Like other debugger settings, IntelliTrace can be confi gured from
the Options dialog, accessible from the Tools menu (see Figure 5).

Choosing “IntelliTrace events and call information” config-
ures IntelliTrace to collect not only the IntelliTrace events, but also
call information at every method enter, exit and callsite, such as
parameters and return values at those locations. Unfortunately,
enabling this mode causes Edit-and-continue to be disabled
during the debugging session. Obviously, your choice to collect
more information means there’s more overhead to your applica-
tion. We worked very hard to fi nd the balance between useful
information and performance, but we do
give you full control.

Every debugging session creates an
IntelliTrace fi le stored on disk that is
automatically cleaned up when Visual
Studio closes. Th e IntelliTrace Advanced
pane reached through the Options dia-
log lets you confi gure where you want
the fi les created during debugging to
be stored and how large they can be.
If the maximum fi le size is reached, a
circular buff er is used to help compress
and truncate the information stored in
the IntelliTrace log, thereby reducing

the footprint on disk of the log fi le. Th e two other settings on the
Advanced pane let you hide the navigation gutter and disable Team
Foundation Server (TFS) lookup of available symbols.

Because of performance concerns, only a subset of the defi ned
IntelliTrace events has been enabled for collection by default.
Some of the events you may want to consider enabling are
console output, fi le accesses, lazy initialization, registry accesses
and threading events. You can enable or disable an entire category
of events or individual events from the IntelliTrace Events pane in
the Options dialog.

Th e fi nal IntelliTrace Options pane allows you to control which
modules IntelliTrace collects data from. All modules except those
shipped by Microsoft as part of the Microsoft .NET Framework and
Visual Studio are collected by default. A lot of data can be collected
in this manner, so you may consider changing this list to an inclu-

sion list and specifying only the modules
you care about. Conversely, if you use some
common third-party libraries, you may
wish to exclude these, because they’re out
of your control.

Investigating a User Code Error
Now that I’ve verifi ed that the “About us”
page is operational in the demo applica-
tion, let’s make sure our shopping cart
is working as well. When I add a paper
airplane to the cart for purchase, I see that
indeed it has been correctly added to the
cart. However, when I repeat this action to

Figure 5 IntelliTrace Settings Can Be Changed from the Options Dialog

Figure 6 The IntelliTrace Events View Can
Help You Start Your Investigation

http://msdnmagazine.com

msdn magazine40 IntelliTrace

add a second instance of the item to the
cart, the quantity still shows as 1, though
I expected it to show 2. I want to use the
debugger to solve the problem without
having to restart, but the list of Intelli Trace
events probably won’t help me in this
scenario (all the work was done in my
code, not the .NET Framework). Th is is
where the “IntelliTrace events and call
information” mode of IntelliTrace can
help show me an execution history of
my application. Let’s break into the de-
bugger and see what additional features
of Intelli Trace I can use to solve this problem.

I start with the hypothesis that something went wrong with my
“Add Item to Cart” logic. Because this is a Model-View-Controller
(MVC) application, there is no event handler for the button click,
but rather a POST message has been sent and handled by the MVC.
Th is POST message has been recorded as an IntelliTrace event and,
although it isn’t useful in itself, I use the event as a starting point for my
investigation. By clicking this IntelliTrace event, I can jump to the
point of the debugging session where the “Add Item” logic began.
I can quickly fi nd these POST messages by searching for the word
“POST” in the IntelliTrace window. Th is action was taken twice by
the user so, as I expected, two results are returned from the search.
Aft er selecting the second event, clearing the search fi eld shows it
in context with all of the collected events (see Figure 6).

Now that I have context on where I am in the application’s
timeline, I want to dig deeper and gain an understanding of the
method calls that were made. From the Events view, I can switch
views to see the execution history. By clicking on the “Switch
to IntelliTrace Calls View” link at the top of the window, I can
transition to the Calls view to see a complete execution history of
the application (see Figure 7). At any time, I can go back to the
Events view by clicking the “Switch to IntelliTrace Events View” link.

One mechanism for navigating the execution history is to use
the Calls view to drill into the calls you’re interested in investigat-
ing. Each time you double-click on a call in the bottom half of the
Calls view, the call is popped to the bottom of the top half of the
view, and the Instruction Pointer syncs in the code editor to the
method entry point of the call, just like in live debugging when
you walk up the call stack. You can continue to navigate and walk
backward and forward through the data collected by IntelliTrace
history in this way. Navigating through the Calls view is a quick
mechanism for gaining an overview of the execution history and
making large jumps around the code base.

Using the Calls view is only one method of navigation. I can

also navigate by stepping through the
code. In the gutter of the source code
window, there’s a new set of DVR-
style controls that allow you to step
through the code, just as in a tradition-
al debugging session (see Figure 8).
Because I’m in IntelliTrace debugging
mode, stepping is by recorded events
that occur at every callsite, function
enter and function exit. Of course,
F10/F11 work as expected if you prefer
keyboard controls.

Th ese two navigation methods are
great for investigation, but sometimes you know exactly where
you would have set the breakpoint. In the case of this application, I
know the name of the function where the item is added to the cart:
Kona.Model.ShoppingCart::AddItem. What I really want to do is
jump to the second time this function was called and inspect the
values passed into and returned from the function. More specifi cally,
I want to seek to the line of code where the “AdjustQuantity”
function call was made. Of course, IntelliTrace also supports
this navigation technique.

In the editor, I can right-click on the line I wish to seek to and
choose “Search For Th is Line In IntelliTrace” from the context
menu (see Figure 9). Th e search begins and the results are pre-
sented in a search bar at the top of the editor window, allowing
me to navigate between the search results. Aft er synchronizing to
the second search result, my instruction pointer is right where I
want it to be and I can investigate the call using the other debugger
windows (see Figure 10).

Looking in the Locals window at this point, you can see that the
cart is being adjusted so that the product’s new quantity in the cart
is 1. Th is is the bug; I was expecting the adjusted quantity to be 2.
Looking at the line of code, the new Quantity parameter should

Figure 9 The Search Functionality Lets You Jump Right to a
Specifi c Function Call

Figure 8 The Navigation Bar Offers DVR-Style Controls to Let
You Step Through Your Application

Figure 7 The IntelliTrace Calls View Shows the
Execution History of the Application

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.amyuni.com

msdn magazine42 IntelliTrace

take into account not only “item.Quantity” but the “quantity”
variable passed into the function call as well. Th e fi x is to change
the function call to:

AdjustQuantity(product, item.Quantity + quantity);

Eliminating the Dreaded
‘No Repro’ Scenario
All too oft en, testers and developers
participate in the “no repro” dance
in which the tester fi les a bug stat-
ing something is broken, only to
have it resolved back with a com-
ment “it didn’t repro on my machine.”
Neither the developer nor the tester
wants to participate in the dance, but
they don’t have the right set of tools
to help them communicate what
happened at the point that the
failure occurred. This is why we
designed the system so that the same
diagnostic information IntelliTrace
provides to the developer during a
debugging session can be collect-
ed during the execution of manual
tests through the Microsoft Test
Manager (MTM).

Let’s revisit the fi rst scenario I debugged, where the “About us”
page failed to render correctly. If a tester fi led this bug, it would
probably have a title like “Application error when viewing the about
page,” and perhaps, if the developer was lucky, a screenshot of the

Figure 10 Search Results Are Displayed in a Search Results Bar at the Top of the Editor Window

Figure 11 Collected IntelliTrace Files Are Accessible Through the “All Links” Tab

T here are several possible strategies

 for fi nding memory leaks, but here is

one of the most common ones:

1. Take a fi rst snapshot of your
application's memory usage to
use as a baseline
Once you start your profi ling session,

and before you delve deeper into

your application, it's good practice

to take a fi rst snapshot of the heap

memory, so you can have a baseline

snapshot to compare others to.

2. Take a second snapshot and
compare snapshot data
Now use your application as normal,

performing the tasks which are

causing the memory leak. You can

then take your second snapshot and

proceed to analyzing the differences

between snapshots 1 and 2. 3. Create an Object
Retention Graph
Find out which objects have grown

most in size, pick one, and create an

Object Retention Graph which will

show you what is still holding your

object in memory. In the example

above, QueryBee.QueryForm (the

black object) has been closed, but is

still referenced by an event handler.

The Object Retention Graph is the

key to fi nding where your memory

leak lies.

4. Fix your code!
Once you fi gure out what is holding

your object in memory, you need

to go into your code and break

the chain of references that is

preventing your object from being

garbage collected. For example,

in this scenario above, we need to

unregister the event handler.

Download your 14-day, fully functional

free trial from www.red-gate.com.

Laila Lotfi is a Brand Manager in the .NET Tools

division at Red Gate Software. She works with the

ANTS Profi ler and .NET Refl ector teams.

Tracking down memory leaks with

ANTS Memory Profi ler™

The Object Retention Graph shows you what is still referencing your object.

The Object Filters panel allows you to

focus on those objects which are common

causes of memory leaks.

Untitled-5 1 2/26/10 12:01 PM

http://www.red-gate.com

msdn magazine44 IntelliTrace

error would be attached. If you received a bug like this today, how
might you go about debugging it? Most likely, you would load
the application’s solution from source control and reproduce the
problem on your developer machine. In this case, you would be
able to debug the issue and solve the problem, but think of how
much time this would take. Or what if the problem was caused
by a difference in configuration between your machine and the
tester’s machine? Developers are much more productive when
debugging issues rather than setting up repro environments.

With Visual Studio 2010, the MTM has given testers the ability
to conveniently author, manage and execute both manual and
automated tests. But that’s not all the tool does. MTM off ers testers
the ability to have diagnostic data adapters collect information
in the background while a test is executing. For example, you can
automatically collect a video recording of the test being executed so
the developer can see exactly what the tester saw. Other collectors
include the ability to collect system information and Event Logs
from the box being tested on.

We’ve added an IntelliTrace diagnostic data adapter to automati-
cally collect IntelliTrace fi les in the background. When the tester
fails a test step and chooses to fi le a bug, the collected IntelliTrace
fi le is automatically uploaded to TFS and linked to the bug. Th is
gives the developer a much richer set of information to debug with
than simply a set of repro steps. When the developer opens the

IntelliTrace fi le linked to the bug, he’s given an experience similar
to debugging a mini-dump, but over the entire timeline of the
application, not just a point in time when the application crashed.
IntelliTrace data can be collected for any managed application
on local or remote test agents, including ASP.NET applications
running under IIS.

When I open a TFS bug, the MTM has automatically added
repro steps based on the manual test steps described by the tester.
What’s even cooler is that if I look at the “All Links” tab of the bug
(see Figure 11), I can see that an IntelliTrace fi le was also collected.
By double-clicking on this fi le, I’m brought to a summary page
view of the IntelliTrace fi le (see Figure 12).

Th e summary page gives me a lot of information about what the
IntelliTrace fi le contains. At the top of the page, I’m given a timeline
view of the threads in the application. If I expand the “Th reads List”
section of the summary page, I can see the same data in a tabular
format. Double-clicking on a thread will start a debugging session
from the IntelliTrace fi le and set my instruction pointer to the
beginning of the thread.

I’m also given a list of all the exceptions collected in the Intelli-
Trace fi le. If I select an exception, a vertical orange line appears on
the thread timeline showing where the exception occurs in time.
Double-clicking an exception starts an IntelliTrace debugging
session and the exception event will be selected in the Intelli-

Figure 12 The IntelliTrace Summary Provides an Overview of What Data Was Collected

Untitled-1 1 3/12/10 9:01 AM

www.microfocus.com/vs2010

msdn magazine46 IntelliTrace

Trace Events view. Further down on the summary page, I can see
a list of all the test events matching up to the manual repro steps.
Th e outcome of each step is also displayed. Clicking on one of
these events also puts a vertical line on the thread timeline, and
double-clicking an event starts an IntelliTrace debugging session
selecting the closest event possible. Th e bottom of the summary
page shows a list of system information collected about the
computer upon which the tested application was running, and
below that is a list of all the modules that were loaded into the
process along with their fi le path.

You may be asking yourself, does this work on release builds?
Of course! In addition, you don’t need access to symbols when
collecting or viewing the IntelliTrace data. Symbols are necessary
only to link the collected data to source fi les, so they’re helpful
when you open the debug session.

Visual Studio 2010 and TFS have added support for symbol and
source server, so if your application was built as part of the TFS build sys-
tem, the right version of symbols and source code will automatically be
downloaded from TFS as needed by IntelliTrace. You don’t have
to even know the symbol server path.

Once you start a debugging session from the summary
page, the debugger works just as it would for a live debugging
session (see Figure 13). Most debugger windows are avail-

able to you, and you can navigate to any of the data IntelliTrace
has collected.

Wrapping Up
In this article, you’ve seen how IntelliTrace can greatly improve
both your day-to-day development activities and your ability to
quickly and easily diagnose problems without having to restart
your application and debug with the traditional break-step-inspect
technique. I’ve also shown you how an organization can reduce the
number of “no repro” bugs by collecting IntelliTrace data during
testing, enabling developers to debug issues offl ine without access
to a live repro. Th is is just a brief introduction to the feature, and
as you become more familiar with the power of IntelliTrace, it will
start to change the way you debug.

JUSTIN MARKS started at Microsoft in 2002 aft er receiving his BS in Computer
Science and Engineering from MIT. He has worked on MSN.com as a systems
engineer, Windows as a soft ware design engineer in Test, and now Visual Studio
as a program manager. As a PM on the Diagnostics team, Marks has been
working on the IntelliTrace feature for the next release of Visual Studio 2010.

THANKS to the following technical experts for reviewing this article:
Bill Boris, David Gray, Habib Heydarian and John Robbins

Figure 13 When Debugging Starts from the Summary Page, Visual Studio Operates Just Like a Live Debugging Session

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for .NET
controls make every part of your User Interface the very
best it can be. That’s why we’ve tested and re-tested to
make sure our Data Grids are the very fastest grids on
the market and our data charts outperforms any you’ve
ever experienced. Use our controls and not only will you
get the fastest load times, but your apps will always look
good too. Fast and good-looking…that’s a killer app. Try
them for yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Untitled-2 1 3/16/10 11:04 AM

www.infragistics.com

Untitled-5 2 3/2/10 12:36 PM

www.componentone.com/here

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343
© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are
trademarks and/or registered trademarks of their respective holders.

Experience all the rich, new features of
Visual Studio 2010 along with the ability to:

• Improve your entire Web Form apps in minutes with
AJAX 4.0 controls.

• Style your Silverlight applications using visual brush
creation and ComponentOne ClearStyle technology.

• Add more data visualization such as charts and gauges
in WinForms and ASP.NET AJAX.

• Add docking and floating capabilities to WPF windows.

With a sighting this big, you have to download
it to believe.

Untitled-5 3 3/2/10 12:36 PM

www.componentone.com/here

msdn magazine50

F# BA S IC S

An Introduction to
Functional Programming
for .NET Developers

By now, there’s a good chance you’ve heard about F#,
the latest addition to the Microsoft Visual Studio language family.
Th ere are many exciting reasons to learn F#—its clean syntax, its
powerful multi-threading capabilities and its fl uid interoperability
with other Microsoft .NET Framework languages. However, F#
includes some important new concepts you’ll need to understand
before you can take advantage of these features.

A whirlwind tour is a good way to start learning another
object-oriented language, or even a dynamic language like Ruby or
Python. Th at’s because you already know most of the vocabulary
and you just need to learn new syntax. F# is diff erent, though. F# is

Chris Marinos

a functional programming language, and with that comes more new
vocabulary than you may expect. Moreover, functional languages
have traditionally been used in academia, so the defi nitions for
these new terms can be diffi cult to understand.

Fortunately, F# is not designed to be an academic language.
Its syntax allows you to use functional techniques to solve
problems in new and better ways while still supporting the
object-oriented and imperative styles that you’re accustomed to as a
.NET developer. Unlike other .NET languages, F#’s multi-paradigm
structure means that you are free to choose the best style of
programming for the problem that you’re trying to solve.
Functional programming in F# is about writing concise, powerful
code to solve practical software problems. It’s about using tech-
niques like higher order functions and function composition to
create powerful and easy to understand behaviors. It’s also about
making your code easier to understand, test and parallelize by
removing hidden complexities.

But in order for you to take advantage of all of these fantastic
features of F#, you need to understand the basics. In this article,
I’ll explain these concepts using vocabulary that you are already
familiar with as a .NET developer. I will also show you some
functional programming techniques that you can apply to your
existing code and some ways in which you are already programming
functionally. By the end of the article, you’ll know enough about
functional programming so that you can hit the ground running
with F# in Visual Studio 2010.

This article discusses a prerelease version of Visual Studio 2010. All
information is subject to change.

This article discusses:
• Functional and imperative programming

• Type inference and side effects

• Composing functions

• Currying and partial application

Technologies discussed:
F#, Visual Studio 2010

Code download available at:
code.msdn.microsoft.com/mag201004FSharp

http://code.msdn.microsoft.com/mag201004FSharp

51April 2010msdnmagazine.com

Functional Programming Basics
For most .NET developers, it’s easier to understand what
functional programming is by understanding what it isn’t. Imperative
programming is a style of programming that is considered to
be the opposite of functional programming. It’s also the style of
programming you are probably most familiar with because most
mainstream programming languages are imperative.

Functional programming and imperative programming diff er on a
very fundamental level, and you can see this in even the simplest code:

int number = 0;
number++;

Th is obviously increments a variable by one. Th at’s not very exciting,
but consider a diff erent way that you could solve the problem:

const int number = 0;
const int result = number + 1;

Th e number is still incremented by one, but it’s not modifi ed in
place. Instead, the result is stored as another constant because the
compiler does not allow you to modify the value of a constant. You
would say that constants are immutable because you can’t change
their values once they are defi ned. Conversely, the number variable
from my fi rst example was mutable because you can modify its value.
Th ese two approaches show one of the fundamental diff erences
between imperative programming and functional programming.
Imperative programming emphasizes the use of mutable variables
whereas functional programming uses immutable values.

Most .NET developers would say that number and result in the
previous example are variables, but as a functional programmer
you need to be more careful. Aft er all, the idea of a constant
variable is confusing at best. Instead, functional programmers say
that number and result are values. Make sure you reserve the term
variable for objects that are mutable. Note that these terms are
not exclusive to functional programming, but they are a lot more
important when programming in a functional style.

Th is distinction may seem small, but it’s the foundation for a lot
of the concepts that make functional programming so powerful.
Mutable variables are the root cause of a lot of nasty bugs. As you
will see below, they lead to implicit dependencies between diff erent
parts of your code, which makes for many problems, especially
related to concurrency. In contrast, immutable variables introduce

signifi cantly less complexity. Th ey lead to functional techniques like
using functions as values and compositional programming which
I’ll also explore in more detail later.

If you’re skeptical of functional programming at this point, don’t
worry. Th at’s natural. Most imperative programmers are trained to
believe that you can’t do anything useful with immutable values.
However, consider this example:

string stringValue = "world!";
string result = stringValue.Insert(0, "hello ");

Th e Insert function built the “hello world!” string, but you know
that Insert doesn’t modify the source string’s value. Th at’s because
strings are immutable in .NET. Th e designers of the .NET Frame-
work used a functional approach because it made it easier to write
better code with strings. Because strings are among the most widely
used data types in the .NET Framework (along with other base
types, like integers, DateTimes and so on), there’s a good chance
you’ve done more useful functional programming than you realize.

Putting F# to Work
F# comes with Visual Studio 2010, and you can fi nd the latest version
at msdn.microsoft.com/vstudio. If you use Visual Studio 2008, you can down-
load an F# add-in from the F# Developer Center at msdn.microsoft.com/
fsharp, where you’ll also fi nd installation instructions for Mono.

F# adds a new window to Visual Studio called F# Interactive
that, unsurprisingly, allows you to interactively execute F# code.
You can think of it as a more powerful version of the Immediate
Window that you can access even when you’re not in debug mode.
If you’re familiar with Ruby or Python, you’ll recognize that F#
Interactive is a Read-Evaluate-Print Loop (REPL), which is a helpful
tool to have for learning F# and quickly experimenting with code.

I’ll use F# Interactive in this article to show you what happens when
example code is compiled and run. If you highlight code in Visual
Studio and press Alt+Enter, you send the code to F# Interactive.
To see this, here is the simple addition example in F#:

let number = 0
let result = number + 1

When you run this code in F# Interactive, you get the following:
val number : int = 0
val result : int = 1

You can probably guess by the term val that number and result
are both immutable values, not mutable variables. You can see this
by using <-, the F# assignment operator:

> number <- 15;;

 number <- 15;;
 ^^^^^^^^^^^^

stdin(3,1): error FS0027: This value is not mutable
>

Because you know that functional programming is based on
immutability, this error should make sense. Th e let keyword is used to
create immutable bindings between names and values. In C# terms,

public MemoryStream GetStream() {
 var stream = new MemoryStream();
 var writer = new StreamWriter(stream);
 writer.WriteLine("line one");
 writer.WriteLine("line two");
 writer.WriteLine("line three");
 writer.Flush();
 stream.Position = 0;
 return stream;
}

[TestMethod]
public void CausingASideEffect() {
 using (var reader = new StreamReader(GetStream())) {
 var line1 = reader.ReadLine();
 var line2 = reader.ReadLine();

 Assert.AreNotEqual(line1, line2);
 }
}

Figure 1 Side Effects of Mutable Variables

F# adds a new window to Visual
Studio called F# Interactive.

http://msdnmagazine.com

msdn magazine52 F# Basics

everything is const by default in F#. You can make a mutable variable
if you want, but you have to explicitly say so. Th e defaults are just
the opposite of what you’re familiar with in imperative languages:

let mutable myVariable = 0
myVariable <- 15

Type Inference and Whitespace Sensitivity
F# lets you declare variables and values without specifying their
type, so you might assume that F# is a dynamic language, but that’s
not true. It is important to understand that F# is a static language
just like C# or C++. However, F# has a powerful type inference
system that allows you to avoid specifying the types of objects in
many places. Th is allows for a simple and succinct syntax, while
still providing the type safety of static languages.

Although type inference systems like this aren’t really found
in imperative languages, type inference isn’t directly related to
functional programming. However, type inference is a critical
notion to understand if you want to learn F#. Fortunately, if you’re
a C# developer, chances are you’re already familiar with basic type
inference because of the var keyword:

// Here, the type is explictily given
Dictionary<string, string> dictionary =
 new Dictionary<string, string>();

// but here, the type is inferred
var dictionary = new Dictionary<string, string>();

Both lines of C# code create new variables that are statically
typed as Dictionary<string, string>, but the var keyword tells the
complier to infer the type of the variable for you. F# takes this concept
to the next level. For example, here is an add function in F#:

let add x y =
 x + y

let four = add 2 2

Th ere isn’t a single type annotation in the above code, but F#
Interactive reveals the static typing:

val add : int -> int -> int
val four : int = 4

I’ll explain the arrows in more detail later, but for now you can
interpret this to mean that add is defi ned to take two int arguments,
and that four is an int value. Th e F# compiler was able to infer this
based on the way add and four were defi ned. Th e rules the complier
uses to do this are beyond the scope of this article, but you can learn

more about them at the F# Developer Center if you’re interested.
Type inference is one way that F# reduces noise in your code, but

notice that there are no curly braces or keywords to denote the body
or return value of the add function. Th at’s because F# is a whitespace-
sensitive language by default. In F#, you indicate the body of a
function by indentation, and you return a value by making sure
that it is the last line in the function. Like type inference, whitespace
sensitivity has no direct relationship to functional programming,
but you need to be familiar with the concept in order to use F#.

Side Effects
Now you know that functional programming is diff erent from
imperative programming because it relies on immutable values
instead of mutable variables, but that fact isn’t very useful by itself.
Th e next step is to understand side eff ects.

In imperative programming, a function’s output depends on its
input argument and the current state of the program. In functional
programming, functions only depend on their input arguments.
In other words, when you call a function more than once with the
same input value, you always get the same output value. Th e reason
this isn’t true in imperative programming is because of side eff ects,
as demonstrated in Figure 1.

On the fi rst call to ReadLine, the stream gets read until a new
line is encountered. Th en, ReadLine returns all of the text up to the
new line. In between those steps, a mutable variable representing
the stream’s position gets updated. Th at’s the side eff ect. On the
second call to ReadLine, the value of the mutable position variable
has changed, so ReadLine returns a diff erent value.

Now let’s look at one of the most signifi cant consequences of
using side eff ects. First, consider a simple PiggyBank class and some
methods to work with it (see Figure 2).

If you have a piggy bank with 5 coins in it, you can call Deposit-
Coins before BuyCandy, but reversing the order raises an exception:

// this works fine
var piggyBank = new PiggyBank(5);

DepositCoins(piggyBank);
BuyCandy(piggyBank);

// but this raises an ArgumentException
var piggyBank = new PiggyBank(5);

BuyCandy(piggyBank);
DepositCoins(piggyBank);

Th e BuyCandy function and the DepositCoins function both
update the state of the piggy bank through the use of a side eff ect.
Consequently, the behavior of each function depends on the state of
the piggy bank. Because the number of coins is mutable, the order
in which these functions execute is signifi cant. In other words,
there is an implicit timing dependency between these two methods.

public class PiggyBank{
 public PiggyBank(int coins){
 Coins = coins;
 }

 public int Coins { get; set; }
}

private void DepositCoins(PiggyBank piggyBank){
 piggyBank.Coins += 10;
}

private void BuyCandy(PiggyBank piggyBank){
 if (piggyBank.Coins < 7)
 throw new ArgumentException(
 "Not enough money for candy!", "piggyBank");

 piggyBank.Coins -= 7;
}

Figure 2 Mutable PiggyBanks

In F#, you focus on evaluating
functions for their result values

instead of their side effects.

Now let’s make the number of coins read only to simulate an
immutable data structure. Figure 3 shows that BuyCandy and
DepositCoins now return new PiggyBank objects instead of
updating an existing PiggyBank.

As before, if you try to call BuyCandy before DepositCoins, you
will get an argument exception:

// still raises an ArgumentException
var piggyBank = new PiggyBank(5);

BuyCandy(piggyBank);
DepositCoins(piggyBank);

But now, even if you revert the order, you’ll get the same result:
// now this raises an ArgumentException, too!
var piggyBank = new PiggyBank(5);

DepositCoins(piggyBank);
BuyCandy(piggyBank);

Here, BuyCandy and DepositCoins only depend on their input ar-
gument because the number of coins is immutable. You can execute
the functions in any order and the result is the same. Th e implicit time
dependency is gone. However, since you probably want BuyCandy
to succeed, you need to make the result of BuyCandy depend on the
output of DepositCoins. You need to make the dependency explicit:

var piggyBank = new PiggyBank(5);
BuyCandy(DepositCoins(piggyBank));

Th is is a subtle diff erence with far-reaching consequences. Shared
mutable state and implicit dependencies are the source of some of
the most diabolical bugs in imperative code, and they’re the reason

that multi-threading is so diffi cult in imperative languages. When
you have to worry about the order in which functions execute, you
need to rely on cumbersome locking mechanisms to keep things
straight. Pure functional programs are free of side eff ects and
implicit time dependencies, so the order in which functions execute
doesn’t matter. Th is means you don’t have to worry about locking
mechanisms and other error-prone multi-threading techniques.

Easier multi-threading is a major reason that functional program-
ming is getting attention lately, but there are many other benefi ts
of programming in a functional style. Side eff ect-free functions
are easier to test because each function relies only on its input
arguments. Th ey are easier to maintain because they don’t implicitly
rely on logic from other setup functions. Side eff ect-free functions
also tend to be smaller and easier to combine. I’ll cover this last
point in more detail shortly.

In F#, you focus on evaluating functions for their result values in-
stead of their side eff ects. In imperative languages, it is common to call a
function to do something; in functional languages, functions are called
to yield a result. You can see this in F# by looking at the if statement:

let isEven x =
 if x % 2 = 0 then
 "yes"
 else
 "no"

You know that in F#, the last line of a function is its return value,
but in this example, the last line of the function is the if statement.

www.msdev.com/windows7

msdn magazine54 F# Basics

Th is isn’t a compiler trick. In F#, even if statements are designed
to return values:

let isEven2 x =
 let result =
 if x % 2 = 0 then
 "yes"
 else
 "no"
 result

Th e result value is of type string, and it is assigned directly to the if
statement. It’s similar to the way the conditional operator works in C#:

string result = x % 2 == 0 ? "yes" : "no";

Th e conditional operator emphasizes returning a value over
causing a side eff ect. It’s a more functional approach. In contrast,
the C# if statement is more imperative because it does not return
a result. All it can do is cause side eff ects.

Composing Functions
Now that you’ve seen some of the benefi ts of side-eff ect-free functions,
you’re ready to use functions to their full potential in F#. First, let’s start
with some C# code to take the square of the numbers zero through 10:

IList<int> values = 0.Through(10).ToList();

IList<int> squaredValues = new List<int>();

for (int i = 0; i < values.Count; i++) {
 squaredValues.Add(Square(values[i]));
}

Aside from the Th rough and Square helper methods, this code
is fairly standard C#. Good C# developers would probably take
umbrage with my use of a for loop instead of a foreach loop, and
rightly so. Modern languages like C# off er foreach loops as an
abstraction to make walking through enumerations easier by
removing the need for explicit indexers. Th ey succeed in this goal,
but consider the code in Figure 4.

Th e foreach loops in this example are similar, but each loop body
performs a slightly diff erent operation. Imperative programmers
have traditionally been okay with this code duplication because
it’s considered to be idiomatic code.

Functional programmers take a diff erent approach. Instead of
creating abstractions like foreach loops to help walk lists, they use
side eff ect-free functions:

let numbers = {0..10}
let squaredValues = Seq.map Square numbers

Th is F# code also squares a sequence of numbers, but it does so
using a higher-order function. Higher-order functions are simply
functions that accept another function as an input argument. In
this case, the function Seq.map accepts the Square function as an
argument. It applies this function to each number in the numbers
sequence and returns the sequence of squared numbers. Higher-
order functions are why many people say functional programming
uses functions as data. Th is just means that functions can be used
as parameters or assigned to a value or variable just like an int or
a string. In C# terms, it’s very similar to the concepts of delegates
and lambda expressions.

Higher order functions are one of the techniques that makes
functional programming so powerful. You can use higher-order
functions to isolate the duplicated code inside of foreach loops
and encapsulate it into standalone, side eff ect-free functions.
Th ese functions each perform one small operation that the code
inside a foreach loop would have handled. Because they are side
eff ect-free, you can combine these functions to create more read-
able, easier-to-maintain code that accomplishes the same thing
as foreach loops:

let squareOfEvens =
 numbers
 |> Seq.filter IsEven
 |> Seq.map Square

Th e only confusing part about this code may be the |> operator.
Th is operator is used to make code more readable by allowing you
to reorder the arguments to a function so that the last argument is
the fi rst thing that you read. Its defi nition is very simple:

let (|>) x f = f x

Without the |> operator, the squareOfEvens code would look
like this:

let squareOfEvens2 =
 Seq.map Square (Seq.filter IsEven numbers)

If you use LINQ, employing higher-order functions in this way
should seem very familiar. Th at’s because LINQ is deeply rooted in
functional programming. In fact, you can easily translate the square
of evens problem into C# using methods from LINQ:

var squareOfEvens =
 numbers
 .Where(IsEven)
 .Select(Square);

Th is translates to the following LINQ query syntax:
var squareOfEvens = from number in numbers
 where IsEven(number)
 select Square(number);

Using LINQ in C# or Visual Basic code allows you to exploit
some of the power of functional programming on an everyday
basis. It’s a great way to learn functional programming techniques.

When you start to use higher-order functions on a regular basis,
you will eventually come across a situation in which you want to
create a small, very specifi c function to pass into a higher-order
function. Functional programmers use lambda functions to solve
this problem. Lambda functions are simply functions you defi ne
without giving them a name. Th ey are normally small and have a
very specifi c use. For example, here is another way that you could
square even numbers using a lambda:

let withLambdas =
 numbers
 |> Seq.filter (fun x -> x % 2 = 0)
 |> Seq.map (fun x -> x * x)

public class PiggyBank{
 public PiggyBank(int coins){
 Coins = coins;
 }

 public int Coins { get; private set; }
}

private PiggyBank DepositCoins(PiggyBank piggyBank){
 return new PiggyBank(piggyBank.Coins + 10);
}

private PiggyBank BuyCandy(PiggyBank piggyBank){
 if (piggyBank.Coins < 7)
 throw new ArgumentException(
 "Not enough money for candy!", "piggyBank");

 return new PiggyBank(piggyBank.Coins - 7);
}

Figure 3 Immutable PiggyBanks

55April 2010msdnmagazine.com

Th e only diff erence between this and the previous code to square
even numbers is that the Square and IsEven are defi ned as lambdas.
In F#, you declare a lambda function using the fun keyword. You
should only use lambdas to declare single-use functions because
they can’t easily be used outside the scope in which they are defi ned.
For this reason, Square and IsEven are poor choices for lambda
functions because they are useful in many situations.

Currying and Partial Application
You now know almost all of the basics you need to start working
with F#, but there is one more concept you should be familiar
with. In previous examples, the |> operator and the arrows in type
signatures from F# Interactive are both tied to a concept known
as currying.

Currying means breaking a function with many arguments
into a series of functions that each take one argument and
ultimately produce the same result as the original function.
Currying is probably the most challenging topic in this article for
a .NET developer, particularly because it is oft en confused with
partial application. You can see both at work in this example:

let multiply x y =
 x * y

let double = multiply 2
let ten = double 5

Right away, you should see behavior that is diff erent from most
imperative languages. Th e second statement creates a new function
called double by passing one argument to a function that takes two.
Th e result is a function that accepts one int argument and yields the
same output as if you had called multiply with x equal to 2 and y
equal to that argument. In terms of behavior, it’s the same as this code:

let double2 z = multiply 2 z

Oft en, people mistakenly say that multiply is curried to form
double. But this is only somewhat true. Th e multiply function is
curried, but that happens when it is defi ned because functions in
F# are curried by default. When the double function is created, it’s
more accurate to say that the multiply function is partially applied.

Let’s go over these steps in more detail. Currying breaks a function
with many arguments into a series of functions that each take one
argument and ultimately produce the same result as the original
function. Th e multiply function has the following type signature
according to F# Interactive:

val multiply : int -> int -> int

Up to this point, you decrypted this to mean that multiply is a function
that takes two int arguments and returns an int result. Now I’ll
explain what really happens. Th e multiply function is really a series of
two functions. Th e fi rst function takes one int argument and returns
another function, eff ectively binding x to a specifi c value. Th is function
also accepts an int argument that you can think of as the value
to bind to y. Aft er calling this second function, x and y are both
bound, so the result is the product of x and y as defi ned in the
body of double.

To create double, the first function in the chain of multiply
functions is evaluated to partially apply multiply. The resulting
function is given the name double. When double is evaluated, it
uses its argument along with the partially applied value to
create the result.

Using F# and Functional Programming
Now that you have enough vocabulary to get started with F# and func-
tional programming, you have plenty of options for what to do next.

F# Interactive allows you to explore F# code and quickly build
up F# scripts. It is also useful for validating everyday questions
about the behavior of .NET library functions without resorting to
help fi les or Web searches.

F# excels at expressing complicated algorithms, so you can
encapsulate these portions of your applications into F# libraries
that can be called from other .NET languages. Th is is especially
useful in engineering applications or multi-threaded situations.

Finally, you can use functional programming techniques in your
everyday .NET development without even writing F# code. Use
LINQ instead of for or foreach loops. Try using delegates to
create higher-order functions. Limit your use of mutability and
side eff ects in your imperative programming. Once you start
writing code in a functional style, you’ll soon fi nd yourself
wishing you were writing more F# code.

CHRIS MARINOS is a soft ware consultant at SRT Solutions in Ann Arbor, Mich.
You can hear him talk about F#, functional programming, and other exciting
topics at events around the Ann Arbor area or on his blog at srtsolutions.com/
blogs/chrismarinos.

THANKS to the following technical experts for reviewing this article:
Luke Hoban

IList<int> values = 0.Through(10).ToList();

// square a list
IList<int> squaredValues = new List<int>();

foreach (int value in values) {
 squaredValues.Add(Square(value));
}

// filter out the even values in a list
IList<int> evens = new List<int>();

foreach(int value in values) {
 if (IsEven(value)) {
 evens.Add(value);
 }
}

// take the square of the even values
IList<int> results = new List<int>();

foreach (int value in values) {
 if (IsEven(value)) {
 results.Add(Square(value));
 }
}

Figure 4 Using foreach Loops

Currying means breaking a
function with many arguments

into a series of functions.

http://msdnmagazine.com
http://srtsolutions.com/blogs/chrismarinos
http://srtsolutions.com/blogs/chrismarinos

msdn magazine56

V I S UA L C++

Exploring New C++
and MFC Features
in Visual Studio 2010

Visual Studio 2010 presents huge benefi ts for C++
developers. From the ability to employ the new features off ered
by Windows 7 to the enhanced productivity fe atures for working
with large code bases, there is something new and improved for
just about every C++ developer.

In this article, I will explain how Microsoft has addressed some
of the broad problems faced by C++ developers. Specifi cally,
Visual Studio 2010 enables a more modern programming model by
adding core language features from the upcoming C++0x standard,
and by overhauling the standard library to take advantage of the
new language features. Th ere are new parallel programming
libraries and tools to simplify the creation of parallel programs.
You’ll also fi nd enhanced overall performance and developer

Sumit Kumar

productivity thanks to IntelliSense and code-understanding
features that scale to large code bases. And you’ll benefi t from
the improved performance of libraries and other features across
design time, build time, compile time and link time.

Visual Studio 2010 migrates the build system to MSBuild to
make it more customizable and to support native multi-targeting.
And enhancements in the MFC library harness the power of new
Windows 7 APIs, enabling you to write great Windows 7 applications.

Let’s take a closer look at these C++-focused advancements in
Visual Studio 2010.

C++0x Core Language Features
Th e next C++ standard is inching closer to being fi nalized. To
help you get started with the C++0x extensions, the Visual C++
compiler in Visual Studio 2010 enables six C++0x core language
features: lambda expressions, the auto keyword, rvalue references,
static_assert, nullptr and decltype.

Lambda expressions implicitly defi ne and construct unnamed
function objects. Lambdas provide a lightweight natural syntax
to defi ne function objects where they are used, without incurring
performance overhead.

Function objects are a very powerful way to customize the
behavior of Standard Template Library (STL) algorithms, and
can encapsulate both code and data (unlike plain functions).
But function objects are inconvenient to defi ne because of the
need to write entire classes. Moreover, they are not defi ned in the

This article discusses a prerelease version of Visual Studio 2010.
All information is subject to change.

This article discusses:
• C++0x core language features

• C++ library improvements

• Concurrent programming

• MSBuild integration

• Building apps for Windows 7

Technologies discussed:
Visual Studio 2010, Visual C++, MFC

57April 2010msdnmagazine.com

place in your source code where
you’re trying to use them, and the
non-locality makes them more
difficult to use. Libraries have
attempted to mitigate some of
the problems of verbosity and
non-locality, but don’t off er much
help because the syntax becomes
complicated and the compiler
errors are not very friendly. Using
function objects from libraries is
also less effi cient since the function
objects defi ned as data members
are not in-lined.

Lambda expressions address
these problems. Th e following code
snippet shows a lambda expres-
sion used in a program to remove
integers between variables x and y
from a vector of integers.

v.erase(remove_if(v.begin(),
 v.end(), [x, y](int n) {
 return x < n && n < y; }),
 v.end());

 The second line shows the
lambda expression. Square brackets,
called the lambda-introducer,
indicate the defi nition of a lambda
expression. This lambda takes
integer n as a parameter and the
lambda-generated function object
has the data members x and y.
Compare that to an equivalent
handwritten function object to get
an appreciation of the convenience
and time-saving lambdas provide:

class LambdaFunctor {
public:
 LambdaFunctor(int a, int b) : m_a(a), m_b(b) { }
 bool operator()(int n) const {
 return m_a < n && n < m_b; }
private:
 int m_a;
 int m_b;
};
v.erase(remove_if(v.begin(), v.end(),
 LambdaFunctor(x, y)), v.end());

Th e auto keyword has always existed in C++, but it was rarely
used because it provided no additional value. C++0x repurposes
this keyword to automatically determine the type of a variable from
its initializer. Auto reduces verbosity and helps important code to
stand out. It avoids type mismatches and truncation errors. It also
helps make code more generic by allowing templates to be written
that care less about the types of intermediate expressions and
eff ectively deals with undocumented types like lambdas. Th is code
shows how auto saves you from typing the template type in the for
loop iterating over a vector:

vector<int> v;
for (auto i = v.begin(); i != v.end(); ++i) {
// code
}

Rvalue references are a new reference type introduced in C++0x
that help solve the problem of unnecessary copying and enable
perfect forwarding. When the right-hand side of an assignment is
an rvalue, then the left -hand side object can steal resources from
the right-hand side object rather than performing a separate
allocation, thus enabling move semantics.

Perfect forwarding allows you to write a single function template
that takes n arbitrary arguments and forwards them transparently to
another arbitrary function. Th e nature of the argument (modifi able,
const, lvalue or rvalue) is preserved in this forwarding process.

template <typename T1, typename T2> void functionA(T1&& t1, T2&& t2) {
 functionB(std::forward<T1>(t1), std::forward<T2>(t2));
}

Figure 1 Parallel Stacks and Parallel Tasks Debug Windows

The Visual C++ compiler in
Visual Studio 2010 enables six

C++0x core language features.

http://msdnmagazine.com

msdn magazine58 Visual C++

A detailed explanation of rvalue references is out of scope for
this article, so check the MSDN documentation at msdn.microsoft.com/
library/dd293668(VS.100) for more information.

Static_assert allows testing assertions at compile time rather than
at execution time. It lets you trigger compiler errors with custom
error messages that are easy to read. Static_assert is especially
useful for validating template parameters. For example, compiling
the following code will give the error “error C2338: custom assert:
n should be less than 5”:

template <int n> struct StructA {
 static_assert(n < 5, "custom assert: n should be less than 5");
};

int _tmain(int argc, _TCHAR* argv[]) {
 StructA<4> s1;
 StructA<6> s2;
 return 0;
}

Nullptr adds type safety to null pointers and is closely related
to rvalue references. Th e macro NULL (defi ned as 0) and literal
0 are commonly used as the null pointer. So far that has not been
a problem, but they don’t work very well in C++0x due to poten-
tial problems in perfect forwarding. So the nullptr keyword has
been introduced particularly to avoid mysterious failures in perfect
forwarding functions.

Nullptr is a constant of type nullptr_t, which is convertible to
any pointer type, but not to other types like int or char. In addition
to being used in perfect forwarding functions, nullptr can be used
anywhere the macro NULL was used as a null pointer.

A note of caution, however: NULL is still supported by the
compiler and has not yet been replaced by nullptr. Th is is mainly

to avoid breaking existing code due to the pervasive and oft en
inappropriate use of NULL. But in the future, nullptr should be
used everywhere NULL was used, and NULL should be treated
as a feature meant to support backward compatibility.

Finally, decltype allows the compiler to infer the return type of
a function based on an arbitrary expression and makes perfect
forwarding more generic. In past versions, for two arbitrary types
T1 and T2, there was no way to deduce the type of an expression
that used these two types. Th e decltype feature allows you to state,
for example, an expression that has template arguments, such as
sum<T1, T2>() has the type T1+T2.

Standard Library Improvements
Substantial portions of the standard C++ library have been
rewritten to take advantage of new C++0x language features and
increase performance. In addition, many new algorithms have
been introduced.

Th e standard library takes full advantage of rvalue references
to improve performance. Types such as vector and list now have
move constructors and move assignment operators of their own.
Vector reallocations take advantage of move semantics by picking

up move constructors, so if your
types have move constructors
and move assignment operators, the
library picks that up automatically.

You can now create a shared
pointer to an object at the same time
you are constructing the object with
the help of the new C++0x function
template make_shared<T>:
auto sp =
 make_shared<map<string,vector>>
 (args);

In Visual Studio 2008 you would
have to write the following to get
the same functionality:
shared_ptr<map<string,vector>>
 sp(new map<string,vector>(args));

Using make_shared<T> is more
convenient (you’ll have to type
the type name fewer times), more
robust (it avoids the classic unnamed
shared_ptr leak because the pointer
and the object are being created
simultaneously), and more effi cient
(it performs one dynamic memory
allocation instead of two).

Th e library now contains a new,
safer smart pointer type, unique_ptr Figure 2 Live Error Reporting Showing IntelliSense Errors

Rvalue references are a
new reference type introduced

 in C++0x.

http://msdn.microsoft.com/library/dd293668(VS.100)
http://msdn.microsoft.com/library/dd293668(VS.100)

Untitled-11 1 3/11/10 10:36 AM

http://www.purecm.com/start10-1

msdn magazine60 Visual C++

(which has been enabled by rvalue references). As a result, auto_ptr
has been deprecated; unique_ptr avoids the pitfalls of auto_ptr by
being movable, but not copyable. It allows you to implement strict
ownership semantics without aff ecting safety. It also works well
with Visual C++ 2010 containers that are aware of rvalue references.

Containers now have new member functions—cbegin and cend—
that provide a way to use a const_iterator for inspection regardless
of the type of container:

vector<int> v;

for (auto i = v.cbegin(); i != v.cend(); ++i) {
 // i is vector<int>::const_iterator
}

Visual Studio 2010 adds most of the algorithms proposed in
various C++0x papers to the standard library. A subset of the
Dinkumware conversions library is now available in the standard
library, so now you can do conversions like UTF-8 to UTF-16
with ease. Th e standard library enables exception propagation via
exception_ptr. Many updates have been made in the header
<random>. Th ere is a singly linked list named forward_list in
this release. Th e library has a header <system_error> to improve
diagnostics. Additionally, many of the TR1 features that existed in

namespace std::tr1 in the previous
release (like shared_ptr and regex)
are now part of the standard library
under the std namespace.

Concurrent Programming
Improvements
Visual Studio 2010 introduces the
Parallel Computing Platform, which
helps you to write high-performance
parallel code quickly while avoiding
subtle concurrency bugs. Th is lets you
dodge some of the classic problems
relating to concurrency.

Th e Parallel Computing Plat-
form has four major parts: the
Concurrency Runtime (ConcRT),
the Parallel Patterns Library (PPL),
the Asynchronous Agents Library,
and parallel debugging and profi ling.

ConcRT is the lowest soft ware
layer that talks to the OS and arbi-
trates among multiple concurrent

components competing for resources. Because it is a user mode process,
it can reclaim resources when its cooperative blocking mechanisms are
used. ConcRT is aware of locality and avoids switching tasks between
diff erent processors. It also employs Windows 7 User Mode Scheduling
(UMS) so it can boost performance even when the cooperative blocking
mechanism is not used.

PPL supplies the patterns for writing parallel code. If a
computation can be decomposed into sub-computations that
can be represented by functions or function objects, each of these
sub-computations can be represented by a task. Th e task concept is
much closer to the problem domain, unlike threads that take you
away from the problem domain by making you think about the
hardware, OS, critical sections and so on. A task can execute
concurrently with the other tasks independent of what the other
tasks are doing. For example, sorting two diff erent halves of an
array can be done by two diff erent tasks concurrently.

PPL includes parallel classes (task_handle, task_group and
structured_task_group), parallel algorithms (parallel_invoke,
parallel_for and parallel_for_each), parallel containers (combinable,
concurrent_queue, and concurrent_vector), and ConcRT-aware
synchronization primitives (critical_section, event and reader_
writer_lock), all of which treat tasks as a fi rst-class concept. All
components of PPL live in the concurrency namespace.

Task groups allow you to execute a set of tasks and wait for them
all to fi nish. So in the sort example, the tasks handling two halves of
the array can make one task group. You are guaranteed that these Figure 4 Inactive Code Blocks Retain Colorization

Figure 3 Using the Navigate To Feature

Visual Studio 2010 introduces the
Parallel Computing Platform.

61April 2010msdnmagazine.com

two tasks are completed at the end of the wait member function
call, as shown in the code example of a recursive quicksort written
using parallel tasks and lambdas:

void quicksort(vector<int>::iterator first,
vector<int>::iterator last) {
 if (last - first < 2) { return; }
 int pivot = *first;
 auto mid1 = partition(first, last, [=](int elem) {
 return elem < pivot; });
 auto mid2 = partition(mid1, last, [=](int elem) {
 return elem == pivot; });
 task_group g;
 g.run([=] { quicksort(first, mid1); });
 g.run([=] { quicksort(mid2, last); });
 g.wait();
}

 Th is can be further improved by using a structured task group
enabled by the parallel_invoke algorithm. It takes from two to 10
function objects and executes all of them in parallel using as many
cores as ConcRT provides and waits for them to fi nish:

parallel_invoke(
 [=] { quicksort(first, mid1); },
 [=] { quicksort(mid2, last); });

parallel_invoke(
 [=] { quicksort(first, mid1); },
 [=] { quicksort(mid2, last); });

Th ere could be multiple subtasks created by each of these tasks.
Th e mapping between tasks and execution threads (and ensuring
that all the cores are optimally utilized) is managed by ConcRT.
So decomposing your computation into as many tasks as possible
will help take advantage of all the available cores.

Another useful parallel algorithm is parallel_for, which can be
used to iterate over indices in a concurrent fashion:

parallel_for(first, last, functor);
parallel_for(first, last, step, functor);

Th is concurrently calls function objects with each index, starting
with fi rst and ending with last.

Th e Asynchronous Agents Library gives you a datafl ow-based
programming model where computations are dependent on the
required data becoming available. Th e library is based on the concepts
of agents, message blocks and message-passing functions. An agent
is a component of an application that does certain computations
and communicates asynchronously with other agents to solve a
bigger computation problem. Th is communication between agents
is achieved via message-passing functions and message blocks.

Agents have an observable lifecycle that goes through various
stages. Th ey are not meant to be used for the fi ne-grained parallelism
achieved by using PPL tasks. Agents are built on the scheduling
and resource management components of ConcRT and help
you avoid the issues that arise from the use of shared memory in
concurrent applications.

You do not need to link against or redistribute any additional
components to take advantage of these patterns. ConcRT, PPL and
the Asynchronous Agents Library have been implemented within
msvcr100.dll, msvcp100.dll and libcmt.lib/libcpmt.lib alongside
the standard library. PPL and the Asynchronous Agents Library
are mostly header-only implementations.

Th e Visual Studio debugger is now aware of ConcRT and makes
it easy for you to debug concurrency issues—unlike Visual Studio
2008, which had no awareness of higher-level parallel concepts. Visual
Studio 2010 has a concurrency profi ler that allows you to visualize
the behavior of parallel applications. Th e debugger has new windows
that visualize the state of all tasks in an application and their call
stacks. Figure 1 shows the Parallel Tasks and Parallel Stacks windows.

IntelliSense and Design-Time Productivity
A brand-new IntelliSense and browsing infrastructure is included in
Visual Studio 2010. In addition to helping with scale and responsiveness
on projects with large code bases, the infrastructure improvements
have enabled some fresh design-time productivity features.

IntelliSense features like live error reporting and Quick Info
tooltips are based on a new compiler front end, which parses the

Figure 5 Targeting Multiple Platform Toolsets

A brand-new IntelliSense
and browsing infrastructure is
included in Visual Studio 2010.

MSBuild is now used to
build C++ projects.

http://msdnmagazine.com

msdn magazine62 Visual C++

full translation unit to provide rich and accurate information about
code semantics, even while the code fi les are being modifi ed.

All of the code-browsing features, like class view and class hierarchy,
now use the source code information stored in a SQL database that
enables indexing and has a fi xed memory footprint. Unlike previous
releases, the Visual Studio 2010 IDE is always responsive and you
no longer have to wait while compilation units get reparsed in
response to changes in a header fi le.

IntelliSense live error reporting (the familiar red squiggles)
displays compiler-quality syntax and semantic errors during
browsing and editing of code. Hovering the mouse over the error
gives you the error message (see Figure 2). Th e error list window
also shows the error from the fi le currently being viewed, as well
as the Intelli Sense errors from elsewhere in the compilation unit.
All of this information is available to you without doing a build.

 In addition, a list of relevant include fi les is displayed in a
dropdown while typing #include, and the list refi nes as you type.

Th e new Navigate To (Edit | Navigate To or Ctrl+comma) feature
will help you be more productive with fi le or symbol search. Th is
feature gives you real-time search results, based on substrings as
you type, matching your input strings for symbols and fi les across
any project (see Figure 3). Th is feature also works for C# and
Visual Basic fi les and is extensible.

Call Hierarchy (invoked using Ctrl+K, Ctrl+T or from the right-
click menu) lets you navigate to all functions called from a particular
function, and from all functions that make calls to a particular
function. Th is is an improved version of the Call Browser feature

that existed in previous versions of
Visual Studio. Th e Call Hierarchy
window is much better organized
and provides both calls from and
calls to trees for any function that
appears in the same window.

Note that while all the code-
browsing features are available
for both pure C++ and C++/CLI,
IntelliSense-related features like live
error reporting and Quick Info will
not be available for C++/CLI in the
fi nal release of Visual Studio 2010.

Other staple editor features are
improved in this release, too. For
example, the popular Find All
References feature that is used
to search for references to code
elements (classes, class members,
functions and so on) inside the
entire solution is now more
flexible. Search results can be
further refi ned using a Resolve
Results option from the right-click
context menu.

Inactive code now retains
semantic information by main-
taining colorization (instead of

becoming gray). Figure 4 shows how the inactive code is dimmed
but still shows diff erent colors to convey the semantic information.

In addition to the features described already, the general editor
experience is enhanced in Visual Studio 2010. Th e new Windows
Presentation Foundation (WPF)-based IDE has been redesigned
to remove clutter and improve readability. Document windows
such as the code editor and Design view can now fl oat outside the
main IDE window and can be displayed on multiple monitors.
It is easier to zoom in and out in the code editor window using
the Ctrl key and the mouse wheel. Th e IDE also has improved
support for extensibility.

Build and Project Systems
Visual Studio 2010 also boasts substantial improvements in the
build system and the project system for C++ projects.

Th e most important change is that MSBuild is now used to build
C++ projects. MSBuild is an extensible, XML-based build orches-
tration engine that has been used for C# and Visual Basic projects
in previous versions of Visual Studio. MSBuild is now the common
Microsoft build system for all languages. It can be used both in the
build lab and on individual developer machines.

Figure 6 MFC Application Wizard with File Handler Options

MSBuild makes the C++ build
system far more extensible.

63April 2010msdnmagazine.com

C++ build processes are now
defined in terms of MSBuild
target and task fi les and give you a
greater degree of customizability,
control and transparency.

Th e C++ project type has a new
extension: .vcxproj. Visual Studio
will automatically upgrade old
.vcproj files and solutions to
the new format. Th ere is also a
command-line tool, vcupgrade.exe,
to upgrade single projects from the
command line.

In the past, you could only use
the toolset (compiler, libraries and
so on) provided with your current
version of Visual Studio. You had
to wait until you were ready to
migrate to the new toolset before
you could start using the new IDE.
Visual Studio 2010 solves that prob-
lem by allowing you to target multi-
ple toolset versions to build against.
For example, you could target the
Visual C++ 9.0 compiler and
libraries while working in Visual
Studio 2010. Figure 5 shows the
native multi-targeting settings on
the property page.

Using MSBuild makes the C++ build system far more extensible.
When the default build system is not suffi cient to meet your needs,
you can extend it by adding your own tool or any other build
step. MSBuild uses tasks as reusable units of executable code to
perform the build operations. You can create your own tasks and
extend the build system by defi ning them in an XML fi le. MSBuild
generates the tasks from these XML fi les on the fl y.

Existing platforms and toolsets can be extended by adding .props
and .targets fi les for additional steps into ImportBefore and Import-
Aft er folders. Th is is especially useful for providers of libraries and
tools who would like to extend the existing build systems. You
can also defi ne your own platform toolset. Additionally, MSBuild
provides better diagnostic information to make it easier for you to
debug build problems, which also makes incremental builds more
reliable. Plus, you can create build systems that are more closely
tied to source control and the build lab and less dependent on
developer machine confi guration.

Th e project system that sits on top of the build system also takes
advantage of the fl exibility and extensibility provided by MSBuild. Th e
project system understands the MSBuild processes and allows Visual
Studio to transparently display information made available by MSBuild.

Customizations are visible and can be confi gured through the
property pages. You can confi gure your project system to use your
own platform (like the existing x86 or x64 platforms) or your own
debugger. Th e property pages allow you to write and integrate
components that dynamically update the value of properties that

depend on context. Th e Visual Studio 2010 project system even
allows you to write your own custom UI to read and write properties
instead of using property pages.

Faster Compilation and Better Performance
In addition to the design-time experience improvements described so
far, Visual Studio 2010 also improves the compilation speed, quality and
performance for applications built with the Visual C++ compiler, as a re-
sult of multiple code generation enhancements to the compiler back end.

Th e performance of certain applications depends on the working set.
Th e code size for the x64 architecture has been reduced in the range of 3
percent to 10 percent by making multiple optimizations in this release,
resulting in a performance improvement for such applications.

Single Instruction Multiple Data (SIMD) code generation—
which is important for game, audio, video and graphics develop-
ers—has been optimized for improved performance and code quality.
Improvements include breaking false dependencies, vectorization
of constant vector initializations, and better allocation of XMM
registers to remove redundant loads, stores and moves. In addition,
the__mm_set_**, __mm_setr_** and __mm_set1_** intrinsic fam-
ily has been optimized.

Figure 7 Tabbed Thumbnail and Thumbnail Preview in an MFC Application

Compilation speed on x64
platforms has been improved.

http://msdnmagazine.com

msdn magazine64 Visual C++

For improved performance, applications should be built using Link
Time Code Generation (LTCG) and Profi le Guided Optimization (PGO).

Compilation speed on x64 platforms has been improved by
making optimizations in x64 code generation. Compilation with
LTCG, recommended for better optimization, usually takes longer
than non-LTCG compilation especially in large applications. In
Visual Studio 2010, the LTCG compilation has been improved
by up to 30 percent. A dedicated thread to write PDB fi les has been
introduced in this release, so you will see link time improvements
when you use the /DEBUG switch.

PGO instrumentation runs have been made faster by adding
support for no-lock versions of instrumented binaries. Th ere is also
a new POGO option, PogoSafeMode, that enables you to specify
whether to use safe mode or fast mode when you optimize an
application. Fast mode is the default behavior. Safe mode is thread-
safe, but slower than fast mode.

Th e quality of compiler-generated code has been improved.
Th ere is now full support for Advanced Vector Extensions (AVX),
which are very important for fl oating-point-intensive applications
in AMD and Intel processors via intrinsic and /arch:AVX options.
Floating-point computation is more precise with /fp:fast option.

Building Applications
for Windows 7
Windows 7 introduced a number of
exciting new technologies and fea-
tures and added new APIs, and Visual
Studio 2010 provides access to all the
new Windows APIs. Th e Windows
SDK components needed to write
code for native Windows APIs are
included in Visual Studio 2010. You
can take advantage of innovations like
Direct3D 11, DirectWrite, Direct2D
and Windows Web Service APIs by
using the SDK headers and librar-
ies available in Visual Studio 2010.

In addition to making all the
Windows APIs available to devel-
opers, this release of Visual Studio
also makes it easier for you to
write applications for Windows
with the help of a beefed up MFC.
You get access to substantial
Windows 7 functionality through
MFC libraries without having to

write directly to native APIs. Your existing MFC applications
will light up on Windows 7 just by recompiling. And your new
applications can take full advantage of the new features.

MFC now includes improved integration with the Windows
shell. Your application’s integration with Windows Explorer can
now be much better by making use of the fi le handlers for preview,
thumbnails and search that have been added in this release. Th ese
features are provided as options in the MFC Application Wizard
as shown in Figure 6. MFC will automatically generate the ATL
DLL project that implements these handlers.

One of the most noticeable user interface changes in Windows
7 is the new taskbar. MFC allows you to quickly take advantage of
features like jump lists, tabbed thumbnails, thumbnail preview,

Figure 9 Task Dialog

Figure 8 Ribbon-Style Dropdown in an MFC Application

MFC now includes
improved integration with the

Windows shell.

65April 2010msdnmagazine.com

progress bars, icon overlay and so
on. Figure 7 shows thumbnail pre-
views and tabbed thumbnails for
a tabbed MDI MFC application.

Th e ribbon UI now has a Win-
dows 7-style ribbon, too, and your
application can swap the UI on the fl y
any time during development from
several Offi ce-style ribbons to the
Windows 7 ribbon by using the style
dropdown as shown in Figure 8.

MFC enables your applications
to become multi-touch aware and
calls appropriate messages for you
to handle when the various touch
events occur. Just registering for
touch and gesture events will route
those events for your application.
MFC also makes applications
high-DPI-aware by default so they
adapt to high-DPI screens and do
not look pixelated or fuzzy. MFC
internally scales and changes fonts
and other elements to make sure
your UI continues to look sharp on high DPI displays.

In addition to the new Windows 7 features, some other Windows
features that have existed since Windows Vista but were not included
in previous releases of MFC have been included now. For example,
Restart Manager is a useful feature introduced in Windows Vista
that enables an application to perform an application save before
terminating. Th e application can invoke this feature and then
restore its state when restarting. You can now take full advantage of
Restart Manager in your MFC application to handle crashes and
restarts more elegantly. Simply add a line of code to enable restart
and recovery in your existing application:

CMyApp::CMyApp() {
 m_dwRestartManagerSupportFlags =
 AFX_RESTART_MANAGER_SUPPORT_RESTART;
// other lines of code ...
}

 New MFC applications get this functionality automatically by
using the MFC Application Wizard. Th e auto-save mechanism is
available to applications that save documents, and the auto-save
interval can be defi ned by the user. Applications can choose only
restart support or application recover start (applicable to Doc/View
type applications) in the MFC Application Wizard.

Another addition is the Windows Task dialog, which is an
improved type of message box (see Figure 9). MFC now has a
wrapper for the Task dialog that you can use in your applications.

MFC Class Wizard Is back
Not only has new functionality been added in the MFC library,
this release also makes it easier to work with MFC in the Visual
Studio IDE. One of the most commonly requested features, the
MFC Class Wizard (shown in Figure 10), has been brought back
and improved. You can now add classes, event handlers and other
elements to your application using the MFC Class Wizard.

Another addition is the Ribbon Designer, which allows you to
graphically design your ribbon UI (instead of defining it in code as
in Visual Studio 2008) and store it as an XML resource. This designer
is obviously useful for creating new applications, but existing
applications can also take advantage of the designer to update their
UIs. The XML definition can be created just by adding a line of
code temporarily to the existing code definition of the ribbon UI:

m_wndRibbonBar.SaveToXMLFile(L"YourRibbon.mfcribbon-ms");

Th e resulting XML fi le can then be consumed as a resource fi le
and further modifi cations can be made using the Ribbon Designer.

Wrapping Up
Visual Studio 2010 is a major release in the evolution of Visual C++
and makes lives of developers easier in many ways. I have barely
scratched the surface of various C++-related improvements in this
article. For further discussion on diff erent features, please refer to
the MSDN documentation and to the Visual C++ team’s blog at
blogs.msdn.com/vcblog, which was also used as the basis for some of
the sections in this article.

SUMIT KUMAR is a program manager in the Visual C++ IDE team. He holds an
MS degree in Computer Science from the University of Texas at Dallas.

THANKS to the following technical experts: Stephan T. Lavavej, Marian
Luparu and Tarek Madkour

Figure 10 MFC Class Wizard

The MFC Class Wizard has been
brought back and improved.

http://msdnmagazine.com
http://blogs.msdn.com/vcblog

Untitled-2 2 3/2/10 10:44 AM

www.xceed.com

Untitled-2 3 3/2/10 10:45 AM

www.xceed.com

msdn magazine68

There are many reasons to deploy an application or
services onto Windows Azure, the Microsoft cloud services plat-
form. Th ese include reducing operation and hardware costs by
paying for just what you use, building applications that are able to
scale almost infi nitely, enormous storage capacity, geo-location ...
the list goes on and on.

Yet a platform is intellectually interesting only when developers
can actually use it. Developers are the heart and soul of any platform
release—the very defi nition of a successful release is the large
number of developers deploying applications and services on it.
Microsoft has always focused on providing the best development
experience for a range of platforms—whether established or
emerging—with Visual Studio, and that continues for cloud
computing. Microsoft added direct support for building
Windows Azure applications to Visual Studio 2010 and Visual
Web Developer 2010 Express.

This article will walk you through using Visual Studio 2010
for the entirety of the Windows Azure application development
lifecycle. Note that even if you aren’t a Visual Studio user today, you

can still evaluate Windows Azure development for free, using the
Windows Azure support in Visual Web Developer 2010 Express.

Creating a Cloud Service
Start Visual Studio 2010, click on the File menu and choose
New | Project to bring up the New Project dialog. Under Installed
Templates | Visual C# (or Visual Basic), select the Cloud node.
Th is displays an Enable Windows Azure Tools project template
that, when clicked, will show you a page with a button to install
the Windows Azure Tools for Visual Studio.

Before installing the Windows Azure Tools, be sure to install
IIS on your machine. IIS is used by the local development simula-
tion of the cloud. Th e easiest way to install IIS is by using the Web
Platform Installer available at microsoft.com/web. Select the
Platform tab and click to include the recommended products in
the Web server.

Download and install the Windows Azure Tools and restart
Visual Studio. As you’ll see, the Enable Windows Azure Tools
project template has been replaced by a Windows Azure Cloud
Service project template. Select this template to bring up the New
Cloud Service Project dialog shown in Figure 1. Th is dialog enables
you to add roles to a cloud service.

A Windows Azure role is an individually scalable component
running in the cloud where each instance of a role corresponds to
a virtual machine (VM) instance.

Th ere are two types of role:
• A Web role is a Web application running on IIS. It is accessible

via an HTTP or HTTPS endpoint.
• A Worker role is a background processing application that runs

arbitrary .NET code. It also has the ability to expose Internet-
facing and internal endpoints.

WIN DOWS A ZUR E

Developing and
Deploying Cloud Apps in
Visual Studio 2010

This article is based on a prerelease version of Visual Studio 2010.
All information is subject to change.

This article discusses:
• Developing a cloud service

• Hosting data in the cloud

• Debugging and deployment

• Promoting the hosted service

Technologies discussed:
Windows Azure, ASP.NET, Visual Studio 2010

Jim Nakashima, Hani Atassi and Danny Thorpe

http://microsoft.com/web

69April 2010msdnmagazine.com

As a practical example, I can have a Web
role in my cloud service that implements a
Web site my users can reach via a URL such as
http://[somename].cloudapp.net. I can also have
a Worker role that processes a set of data used
by that Web role.

I can set the number of instances of each
role independently, such as three Web role
instances and two Worker role instances, and
this corresponds to having three VMs in the
cloud running my Web role and two VMs in
the cloud running my Worker role.

You can use the New Cloud Service Proj-
ect dialog to create a cloud service with any
number of Web and Worker roles and use
a diff erent template for each role. You can
choose which template to use to create each
role. For example, you can create a Web role
using the ASP.NET Web Role template, WCF
Service Role template, or the ASP.NET MVC
Role template.

Aft er adding roles to the cloud service and clicking OK, Visual
Studio will create a solution that includes the cloud service project
and a project corresponding to each role you added. Figure 2
shows an example cloud service that contains two Web roles and
a Worker role.

The Web roles are ASP.NET Web application projects with
only a couple of differences. WebRole1 contains references to the
following assemblies that are not referenced with a standard
ASP.NET Web application:

• Microsoft.WindowsAzure.Diagnostics (diagnostics and
logging APIs)

• Microsoft .WindowsAzure.ServiceRuntime (environment and
runtime APIs)

• Microsoft .WindowsAzure.StorageClient
(.NET API to access the Windows Azure
storage services for blobs, tables and
queues)
Th e fi le WebRole.cs contains code to set up

logging and diagnostics and a trace listener in
the web.confi g/app.confi g that allows you to
use the standard .NET logging API.

The cloud service project acts as a
deployment project, listing which roles are
included in the cloud service, along with the
defi nition and confi guration fi les. It provides
Windows Azure-specifi c run, debug and
publish functionality.

It is easy to add or remove roles in the cloud
service aft er project creation has completed.
To add other roles to this cloud service, right-
click on the Roles node in the cloud service
and select Add | New Web Role Project or
Add | New Worker Role Project. Selecting
either of these options brings up the Add

New Role dialog where you can choose which project template to
use when adding the role.

You can add any ASP.NET Web Role project to the solution by
right-clicking on the Roles node, selecting Add | Web Role Project
in the solution, and selecting the project to associate as a Web role.

To delete, simply select the role to delete and hit the Delete key.
Th e project can then be removed.

You can also right-click on the roles under the Roles node
and select Properties to bring up a Configuration tab for that
role (see Figure 3). This Configuration tab makes it easy to
add or modify the values in both the ServiceConfiguration.
cscfg and ServiceDefinition.csdef files.

When developing for Windows Azure, the cloud service project
in your solution must be the StartUp project for debugging to work

correctly. A project is the StartUp project
when it is shown in bold in the Solu-
tion Explorer. To set the active project,
right-click on the project and select Set as
StartUp project.

Data in the Cloud
Now that you have your solution set up
for Windows Azure, you can leverage your
ASP.NET skills to develop your application.

As you are coding, you’ll want to con-
sider the Windows Azure model for mak-
ing your application scalable. To handle
additional traffi c to your application, you
increase the number of instances for each
role. Th is means requests will be load-
balanced across your roles, and that will
aff ect how you design and implement
your application.

In particular, it dictates how you access
and store your data. Many familiar data

Figure 1 Adding Roles to a New Cloud Service Project

Figure 2 Projects Created for Roles in the
Cloud Service

http://msdnmagazine.com

msdn magazine70 Windows Azure

storage and retrieval methods are not scalable, and therefore are
not cloud-friendly. For example, storing data on the local fi le system
shouldn’t be used in the cloud because it doesn’t scale.

To take advantage of the scaling nature of the cloud, you need
to be aware of the new storage services. Windows Azure Storage
provides scalable blob, queue, and table storage services, and
Microsoft SQL Azure provides a cloud-based relational database
service built on SQL Server technologies. Blobs are used for storage
of named fi les along with metadata. Th e queue service provides
reliable storage and delivery of messages. Th e table service gives
you structured storage, where a table is a set of entities that each
contain a set of properties.

To help developers use these services, the Windows Azure SDK
ships with a Development Storage service that simulates the way
these storage services run in the cloud. Th at is, developers can write
their applications targeting the Development Storage services using
the same APIs that target the cloud storage services.

Debugging
To demonstrate running and debugging on Windows Azure
locally, let’s use one of the samples from code.msdn.microsoft.com/
windowsazuresamples. This MSDN Code Gallery page contains a
number of code samples to help you get started with building
scalable Web application and services that run on Windows
Azure. Download the samples for Visual Studio 2010, then extract
all the fi les to an accessible location like your Documents folder.

Th e Development Fabric requires running in elevated mode, so
start Visual Studio 2010 as an administrator. Th en, navigate to where
you extracted the samples and open the Th umbnails solution, a
sample service that demonstrates the use of a Web role and a
Worker role, as well as the use of the StorageClient library to
interact with both the Queue and Blob services.

When you open the solution, you’ll notice three different
projects. Thumbnails is the cloud service that associates two
roles, Thumbnails_WebRole and Thumbnails_WorkerRole.
Thumbnails_WebRole is the Web role project that provides a
front-end application to the user to upload photos and adds a
work item to the queue. Thumbnails_WorkerRole is the Worker
role project that fetches the work item from the queue and creates
thumbnails in the designated directory.

Add a breakpoint to the submitButton_Click method in the
Default.aspx.cs fi le. Th is breakpoint will get hit when the user
selects an image and clicks Submit on the page.

protected void submitButton_Click(
 object sender, EventArgs e) {
 if (upload.HasFile) {
 var name = string.Format("{0:10}", DateTime.Now.Ticks,
 Guid.NewGuid());
 GetPhotoGalleryContainer().GetBlockBlob(name).
UploadFromStream(upload.FileContent);

Now add a breakpoint in the Run method of the worker fi le,
WorkerRole.cs, right aft er the code that tries to retrieve a message
from the queue and checks if one actually exists. Th is breakpoint
will get hit when the Web role puts a message in the queue that is
retrieved by the worker.

while (true) {
 try {
 CloudQueueMessage msg = queue.GetMessage();
 if (msg != null) {
 string path = msg.AsString

To debug the application, go to the Debug menu and select Start
Debugging. Visual Studio will build your project, start the Devel-
opment Fabric, initialize the Development Storage (if run for the
fi rst time), package the deployment, attach to all role instances, and
then launch the browser pointing to the Web role (see Figure 4).

At this point, you’ll see that the browser points to your Web role
and that the notifi cations area of the taskbar shows the Develop-
ment Fabric has started. Th e Development Fabric is a simulation Figure 3 Confi guring a Role

Figure 4 Running the Thumbnails Sample

Figure 5 The Development Fabric

http://code.msdn.microsoft.com/windowsazuresamples
http://code.msdn.microsoft.com/windowsazuresamples

71April 2010msdnmagazine.com

environment that runs role instances on your machine in much
the way they run in the real cloud.

Right-click on the Windows Azure notifi cation icon in the task-
bar and click on Show Development Fabric UI. Th is will launch
the Development Fabric application itself, which allows you to
perform various operations on your deployments, such as view-
ing logs and restarting and deleting deployments (see Figure 5).
Notice that the Development Fabric contains a new deployment
that hosts one Web role instance and one Worker role instance.

Look at the processes that Visual Studio attached to (Debug/
Windows/Processes); you’ll notice there are three: WaWebHost.exe,
WaWorkerHost.exe and iexplore.exe.

WaWebHost (Windows Azure Web instance Host) and
WaWorkerHost (Windows Azure Worker instance Host) host your
Web role and Worker role instances, respectively. In the cloud, each
instance is hosted in its own VM, whereas on the local develop-
ment simulation each role instance is hosted in a separate process
and Visual Studio attaches to all of them.

By default, Visual Studio attaches using the managed debugger.
If you want to use another one, like the native debugger, pick it
from the Properties of the corresponding role project. For Web
role projects, the debugger option is located under the project
properties Web tab. For Worker role projects, the option is under
the project properties Debug tab.

By default, Visual Studio uses the script engine to attach
to Internet Explorer. To debug Silverlight applications, you
need to enable the Silverlight debugger from the Web role
project Properties.

Browse to an image you’d like to upload and click Submit. Visual
Studio stops at the breakpoint you set inside the submitButton_Click
method, giving you all of the debugging features you’d expect from
Visual Studio. Hit F5 to continue; the submitButton_Click method
generates a unique name for the fi le, uploads the image stream to
Blob storage, and adds a message on the queue that contains
the fi le name.

Now you will see Visual Studio pause at the breakpoint set in
the Worker role, which means the worker received a message from
the queue and it is ready to process the image. Again, you have all
of the debugging features you would expect.

Hit F5 to continue, the worker will get the fi le name from the mes-
sage queue, retrieve the image stream from
the Blob service, create a thumbnail image,
and upload the new thumbnail image to the
Blob service’s thumbnails directory, which
will be shown by the Web role.

Deployment
Now that you’ve created, edited and debugged
your application locally, you’re ready to
deploy it to the cloud. Here’s a good process
to follow when deploying an application to
Windows Azure:

• Get your application running locally in
the Windows Azure Development Fabric
using local storage.

• Run your application locally in the Development Fabric using
a Windows Azure Storage Account.

• Run your application on Windows Azure using a Windows
Azure Storage Account.
In the fi rst stage, you can do all your development on your local

machine using the Development Fabric and Development Storage
as surrogates for the Windows Azure cloud infrastructure. You
don’t even need a network connection—you can develop and
debug your Windows Azure application or service completely
offline. You’ll probably do 70 percent of your project development
in this fi rst stage.

In the second stage, you replace the local storage surrogate with the
real deal, Windows Azure Storage, but retain the debugging and
diagnostic advantages of executing your Windows Azure application
code in the local Development Fabric. You can set breakpoints in
source code, step through source code line by line, evaluate expres-
sions, and examine call stacks while your Windows Azure app
interacts with cloud storage. You’ll probably spend 20 percent to 25
percent of your project cycle in this stage, refi ning your code and
testing against real-world asynchronous operations.

By the time you get to the third stage, your Windows Azure
application should be all but fi nished. You should be feature-
complete and code-complete except for bug fi xes. Your main focus
in this stage is testing and performance tuning. With your
Windows Azure application executing in the cloud, you won’t have
the luxury of source code debugging so you’ll have to fall back to
diagnostic logging.

You probably don’t want your brand-new Windows Azure
application to be seen by the whole wide world on your target
URL the instant you upload it to the Windows Azure cloud.
The Windows Azure Hosted Service has the notion of multiple
deployments within the same hosted service. Each Windows
Azure Hosted Service has a private staging deployment area
where you can quietly test your code in the cloud, and a public
production deployment area where you release your tested code
for your customers to use.

Staging deployments can only be accessed via a unique URL
that is prefi xed by a GUID assigned by the system. Production
deployments can be the target of custom domain name mappings
for easy access.

Figure 6 Confi guring a Storage Service

http://msdnmagazine.com

msdn magazine72 Windows Azure

Moving to Windows Azure Storage
Now that the Th umbnails service is running on a local machine in
the Developer Fabric, let’s upgrade it to work against a Windows
Azure Storage account in the cloud. Th is involves getting a storage
account and making the confi guration changes to run the Th umb-
nails service against your storage account. Executing locally but
using cloud storage for data is a great way to ensure that your code
will run when hosted on Windows Azure.

Start by navigating to the Windows Azure Developer Portal
(windows.azure.com) and sign in with your Live ID. From the page,
select New Service and click on Storage Account. In the Create a
Service page (see Figure 6), fi ll in a friendly name for the storage
account (this is not the service/domain name; you will be prompted
for that on the next page). Optionally enter a project description. Th en
fi ll in the service/domain name on the next page (see Figure 7). Th is
domain name is global so you may need to fi ddle with it a bit to get a
name that is not already in use by another service. Be sure to click
on Check Availability to test for uniqueness.

It’s a good idea to create an affi nity group
to ensure that your storage and the hosted
services that use it are located in the same
datacenter whenever possible. Affi nity groups
can also specify a preference for a geographi-
cal region so that service and storage are as
close to your target audience as possible to
minimize network transit time.

Click Create and you’ll see a summary
page for your new storage account.

Now you need to tell your Thumbnails
service to use your new storage account to
store its thumbnails and images. Double-click
on the Th umbnails_WebRole node under
Roles in the Visual Studio Solution Explorer
to open its properties page. Select the Settings
tab, select DataConnectionString, and click
on the edit button on the far right of the grid
row. Th is brings up the Storage Connection
String dialog, shown in Figure 8.

“Use development storage” is the default
for new Azure projects. Click on “Enter stor-
age credentials” and then enter your storage

service details. In the Account name fi eld, type the service/domain
name you entered when creating your storage service. Th is is the fi rst
part of your domain, thumbnails1138 (all lower case) in the example.

In the Account key fi eld, enter the Primary Access Key displayed
on your storage service summary Web page. You can select the key
text in the browser, copy it, and paste it into the AccountSharedKey
edit box.

Note that the Secondary Access Key provides the same access
to your storage account as the Primary Access Key and is generated
as a backup should your Primary Access Key be compromised.
Regenerating a key invalidates the old key, shutting down storage
access to anyone still using the old key.

Leave the connection endpoints set to use the default HTTPS
endpoints and click OK.

Repeat these steps for the Th umbnails_WorkerRole under Roles
as well, so that the Web role will be talking to the same storage service
as the Worker role. When you have multiple roles to update, you can
copy the connection string value to the clipboard and just paste it
into the DataConnectionString value cell in each of the other role
properties pages to save a little time.

Once you have switched the Web and Worker roles to use
Windows Azure storage, hit F5 in Visual Studio to debug your cloud
service and ensure that everything works correctly.

You’ll see that the Web page URL you’re debugging is still locally
hosted, but the URLs of the thumbnails (visible in their Properties
dialogs) now point to Windows Azure Storage.

Note that this stage of development—local services with cloud
storage—will most likely have the worst performance of the three
stages of deployment. Stage 1 (local/local) will be pretty snap-
py because everything is in the same box and has a total audi-
ence of one (you!). Stage 3 (cloud/cloud) will have the benefi t of
cloud scale hardware and datacenter affi nity. Stage 2 (local/cloud),

Figure 7 Confi guring a Storage Domain

Figure 8 Storage Connection String Properties

http://windows.azure.com

Untitled-11 1 3/11/10 10:45 AM

www.appdev.com

msdn magazine74 Windows Azure

however, will be executing code that rea-
sonably assumes its storage is nearby, but in
fact the data is probably many network hops
away from the local execution environment.

Don’t evaluate the performance of your
app in the local/cloud confi guration. You
can turn that network lag to your advantage,
though: use this stage as a stress test to see
how your code handles exaggerated response
times from its storage service. If you have
handled something with a synchronous call
that should really be asynchronous, you’ll
probably notice it pretty quickly.

Once you have everything working in
the local/cloud confi guration, you are ready
to deploy your code to a Windows Azure
hosted service.

Creating a Hosted Service
To create the fully hosted service, go back
to the Windows Azure Developer Portal
and sign in with your Live ID. Click on New
Service, then on Hosted Services. Th is takes
you to a page where you can specify the
project-friendly name and description used
by the developer portal. Enter a service label
and optionally a service description. Click
Next. Now you can enter a domain name
for your hosted service project (see Figure
9). Set the affi nity group to match the
Th umbnails affi nity group created earlier
with the storage service. Aft er the project is
created, you will see a summary page for
your project.

To deploy the project from Visual Studio,
right-click on the Th umbnails project node
in Solution Explorer and select Publish.
Th is command builds a package of your
Windows Azure application binaries and
related fi les, opens Windows Explorer to
show the local directory where the package
was built, and launches your default Web browser to browse to
the developer portal.

From the developer portal Web page, navigate to the Th umbnails
Hosted Service summary page and click Deploy from under Staging
to bring up the Staging Deployment page (see Figure 10). Th is is
where you specify the package and the confi guration fi le to upload.

You can copy the path from the Windows Explorer window that
Visual Studio opened into this File Open dialog, which makes it
easy for you to select the Service Package (.cspkg) and Service
Confi guration fi les.

Th e portal will then upload the package and deploy your cloud
service to staging, which puts your roles in the Allocated state. Th is
means your Windows Azure application has been provisioned with
datacenter hardware, but it is not yet scheduled to run.

To test your Cloud Service in the Staging area, you need to run
it. Click Run. Th is will put your Web role in the Initializing state.
When the Web role is ready, the state will change to Started.

Note that there are plans to make deploying straight to the cloud
from Visual Studio even simpler in future updates, but this pro-
cedure will remain valid even when those features are in place.

Once your roles have been started, you can test by navigating to
the staging URL (the cloudapp.net URL that begins with a GUID).

Provisioning an application in the datacenter involves a lot of
heavy lift ing behind the scenes. Allow at least 10 minutes for your
app to transition from Initializing to Started. Now aren’t you glad
you have the Developer Fabric on your local machine?

Aft er you’re happy with your cloud service on staging, you can pro-
mote it to production by clicking on the button shown in Figure 11.

Figure 9 Confi guring a Hosted Service

Figure 10 Choosing the Package to Deploy

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine76 Windows Azure

When the details of your deployment show up on the
Production side of the page, your service will be up and
running at its fi nal URL.

If you need to test a hotfi x for your app, or just want to
continue development in parallel to the running produc-
tion deployment, you can upload a new package to staging
and test it via the staging URL. Promoting to production
is actually a swap: staging moves to production and what
was in production goes into staging.

While you can directly upload to production, it is highly recom-
mended to always deploy fi rst to staging and perform some degree
of acceptance testing before pushing it to production.

Note that multiple deployments will default to using the same
storage service—if you need data isolation between production
and staging (for example, so staging can wipe its database without
aff ecting production data), you will need to modify your storage
bindings for each deployment before you deploy them. Th is is typi-
cally done by using two sets of storage and migrating production
data to staging before promoting staging to production.

Updating the Service Confi guration
If you want to spin up additional instances of your service in
anticipation of additional load, or shut down unused instances,
you can do that by modifying the deployment confi guration on
the fl y. You don’t have to redeploy the entire package, just the
service confi guration fi le. In the portal, click Confi gure to update
the service confi guration (cscfg), either by uploading a new service
confi guration fi le created by Visual Studio or by using the editor
provided by the developer portal.

Let’s now add an HTTPS endpoint to the Th umbnails appli-
cation. Th is is a three-step process. You need to confi gure the
endpoint, confi gure the certifi cate and upload the certifi cate.

To confi gure the endpoint, open up the confi guration UI on the
Web role by right-clicking on the Th umbnails_WebRole node
under the Roles node in Solution Explorer and selecting Properties.
Switch to the Endpoints tab and click the checkbox to select HTTPS.
Th is adds the HTTPS endpoint, but doesn’t specify the certifi cate.

Switch to the Confi guration page and uncheck the “Launch
browser for: HTTP endpoint” option. By unselecting this option,
on run or debug of the cloud service, the default browser will be
launched only for the HTTPS endpoint.

In Visual Studio, click Debug | Start Debugging to package and
run the cloud service on the local development simulation. Th e
development simulation always uses a self-signed certifi cate issued
to and issued by 127.0.0.1, which corresponds to the local host.
Because the certifi cate is not trusted, the Web browser will come
up with a certifi cate error. Th is is expected. Click “Continue to this
website (not recommended)” to browse to the Web site.

To make the certificate trusted and therefore not see the
certifi cate errors, you can install the certifi cate to the Trusted Root
Certifi cation Authorities certifi cate store. Do so only if you have an
appropriate understanding of the security implications.

To confi gure a certifi cate for use in the cloud, you need a
certifi cate that will be uploaded to the cloud and to confi gure
that certifi cate for the role. For the purpose of this article, we’ll

create and use a self-signed certifi cate. Create a self-signed
certifi cate by opening the IIS Manager, selecting Server
Certifi cates, and clicking Create Self-Signed Certifi cate
under the Actions heading on the far right of the dialog.
Aft er creating the certifi cate, click Export to export the
certifi cate to a .pfx fi le.

Navigate to the Windows Azure Developer Portal and se-
lect the Hosted Service component to deploy to. Under the
Certifi cates heading, select Manage. Upload the certifi cate

by entering the name of the .pfx fi le and the corresponding pass-
word you entered during the export step. Copy the thumbprint of
the certifi cate aft er it is installed to your hosted service component.

To confi gure the certifi cate, go back to Visual Studio, open the
Th umbnails_WebRole confi guration UI, click the Certifi cates tab
and click Add Certifi cate. Give the certifi cate a name (for example,
sslCert), paste in the thumbprint, and leave the store location and
name at the default of LocalMachine and My.

Th e certifi cates confi guration page allows you to specify for a
given role what certifi cates should be installed to the VM instances
for that role and in which stores to install those certifi cates. In other
words, this same process can be used for any certifi cates you want
to have on your VMs in the cloud, and not just for SSL certifi cates.

Finally, switch to the Endpoints tab and select sslCert for the
HTTPS certifi cate.

Now deploy your application. You will now be able to access
your Web site via HTTP and HTTPS. Because we uploaded a self-
signed certifi cate, the browser will display a certifi cate error when
browsing to your HTTPS endpoint. Using a real signed certifi cate
will solve this problem.

Wrapping Up
Th e Windows Azure Tools and Visual Studio 2010 make it easy to
create, edit, confi gure, debug and deploy applications that run on
Windows Azure. Th ey allow you to leverage your existing skills
with ASP.NET and with Visual Studio.

Th e Windows Azure Tools add-in is designed for both Visual
Studio 2010 and Visual Studio 2008. Th e easiest way to install the
Windows Azure Tools for Visual Studio 2008 is by using the Web
Platform Installer available at microsoft.com/web. Be sure to add the
developer tools scenarios in the options.

For the latest news and information about Windows Azure,
please see windowsazure.com and blogs.msdn.com/jnak.

HANI ATASSI is a soft ware engineer on the Windows Azure Tools team. Prior to his
work on cloud tools, Atassi spent time developing Windows Vista and Microsoft .com.

DANNY THORPE is a principal soft ware engineer on the Windows Azure Tools
team. In past lives he was a contributing founder of Google Gears at Google and
a Delphi Compiler Architect at Borland.

JIM NAKASHIMA is a program manager on the Windows Azure Tools team
focusing on building end-to-end developer experiences for Windows Azure.
Nakashima spent a number of years working on the Windows Presentation
Foundation and Silverlight Designer and tools before being attracted to the
infi nite possibilities of the cloud.
THANKS to the following technical experts for reviewing this article:
Anson Horton and Gus Perez

Figure 11
Promotion
Button

http://windowsazure.com
http://blogs.msdn.com/jnak
http://microsoft.com/web

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/04

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Add Outlook style interfaces to your WinForms applications.

BEST SELLER Janus WinForms Controls Suite from $757.44

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

Untitled-5 1 2/26/10 12:01 PM

http://www.componentsource.com

Book your room with us at 800.438.6720 for the $149/night rate at the Bellagio. (space limited)

Be a part of the
Microsoft launch for
Visual Studio 2010!

CHECK WEB SITE FOR DESCRIPTIONS OF SESSIONS AND WORKSHOPS

www.DevConnections.com • 800.438.6720 • 203.400.6121 • Register Today!

SCOTT GUTHRIE
MICROSOFT
Corporate
Vice President,
.NET Developer
Platform

BOB MUGLIA
MICROSOFT
President of the
Server and Tools
Business (STB)

EXCITING KEYNOTES DELIVERED BY ...

CO-LOCATED WITH:

Keep your competitive edge as
you dive deep into Visual Studio
2010, Silverlight 4, ASP.NET 4.0,
Microsoft SQL Server, AJAX and MVC.

� Attend Microsoft executive launch
keynotes

� Train with Microsoft architects and
industry experts

� Join the launch and party with
colleagues from around the world

� Visit the exciting expo hall and meet
our partners

3 Conferences for the Price of One!

Untitled-2 2 3/2/10 10:51 AM

http://www.DevConnections.com

Powered by Microsoft and DevConnections Magazine

APRIL 12-14, 2010 • LAS VEGAS, NV
BELLAGIO HOTEL AND CASINO

JUVAL LOWY
IDESIGN, INC.

RICHARD
CAMPBELL

STRANGELOOP
NETWORKS

KIMBERLY L. TRIPP
SQLSKILLS.COM

MICHELE LEROUX
BUSTAMANTE
IDESIGN, INC.

ROCKY LHOTKA
MAGENIC

DOUG SEVEN
MICROSOFT

BILLY HOLLIS
AUTHOR

KATHLEEN
DOLLARD

APPVENTURE

A SAMPLING OF INDUSTRY EXPERTS :

A SAMPLING OF THE MANY IN-DEPTH SESSIONS

VISUAL STUDIO
� Design Better Systems with Microsoft Visual Studio 2010
� Improve the Management of Your Team's Code Using Visual Studio Team

Foundation Server 2010
� Develop for SharePoint 2010
� Build Better User Interfaces with WPF and Silverlight Technologies in

Visual Studio 2010
� Use Windows Workflow Foundation to Encapsulate Business Processes
� Learn the New Features of Visual Basic 10 and Visual C# 4.0

ASP.NET
� Build Client Side User Interfaces with ASP.NET 4.0 AJAX
� Watch a Complete End-to-End Solution Being Built using .NET

on the Microsoft Web Platform
� Learn the New Features for Web Forms in Visual Studio 2010
� Deploy Your Applications with MSDeploy and Visual Studio 2010

� Explore All of ASP.NET MVC
� Optimize Performance of Your ASP.NET Applications
� Learn How to Use Silverlight 4

SQL SERVER
� Design, Build and Deploy an Analysis Services Database
� Walk Through Microsoft SQL Server 2008 R2 StreamInsight
� Learn About Spatial Types and Methods Supported in SQL Server 2008
� Deliver Self-Serve BI with Gemini
� Explore the New Reporting Services
� Encryption and Debugging
� Learn How to Use Master Data Services in SQL Server 2008 R2
� Achieve SQL Server High Availability with Virtualization
� Combine Disparate Data Sources in SSRS Reports
� Learn to Deploy SQL Server Azure Databases

Untitled-2 3 3/2/10 10:51 AM

http://www.DevConnections.com

msdn magazine80

Among its many new improvements, Visual Studio
2010 introduces the much-anticipated Entity Framework 4.0 and
WCF Data Services 4.0 (formerly ADO.NET Data Services), which
together simplify how you model, consume and produce data.

Entity Framework 4.0 (EF 4.0) focuses on enabling and simplifying
two primary scenarios: domain-centric application development and
the traditional data-centric “forms over data.” It introduces features
such as model fi rst development, which allows you to create a
model and have customized T-SQL generated for you; support for
persistence ignorance; foreign keys; lazy loading and custom code
generation for entities.

WCF Data Services 4.0 focuses on enabling updates to the
Open Data Protocol (odata.org) and on its new features, including
two-way data binding for Windows Presentation Foundation (WPF)
and Silverlight, row count, server-driven paging, enhanced binary
large object support and support for projections.

Using a sample weblog application (MyBlog), I will explore the
new features in both EF and WCF Data Services and explain how
the technologies work together to simplify the way data is modeled
and consumed. Th is sample application will have both an ASP.NET
Web application that provides a read-only view of blog posts, and a
Silverlight blog administrator client that allows the blog owner to
edit posts. I will begin the application using model fi rst to create an
Entity Data Model (EDM), and then generate a database and the code to
interact with that database. Th is sample will also make use of the
ADO.NET Data Services Update for Silverlight 3 CTP 3.

Getting Started with EF 4.0
I’ll begin with the ASP.NET Web Application project. (My application
is called BlogModel; you can download the accompanying code at

DATA S ER V IC ES

Entity Framework 4.0 and
WCF Data Services 4.0
in Visual Studio 2010
Elisa Flasko

This article discusses prerelease versions of Visual Studio 2010
and ADO.NET Data Services Update for Silverlight 3 CTP 3. All
information is subject to change.

This article discusses:
• Foreign key support in Entity Framework 4.0

• Model fi rst with Entity Framework 4.0

• Custom code generation

• Using POCO entities

• Lazy loading

• Creating a WCF Data Service

• Consuming a WCF Data Service in Silverlight

• Data binding in WCF Data Services 4.0

• Server-driven paging

Technologies discussed:
Visual Studio 2010, ADO.NET Data Services Update for Silverlight 3
CTP 3, Entity Framework 4.0, WCF Data Services 4.0

Code download available at:
code.msdn.microsoft.com/mag201004VSData

http://code.msdn.microsoft.com/mag201004VSData

81April 2010msdnmagazine.com

code.msdn.microsoft.com/mag201004VSData.) To get started with EF, I use
the Add New Item wizard to add an ADO.NET EDM, and select
an Empty model that I’ll call BlogModel as well. By right-clicking
on the empty Designer surface and choosing Properties, you can
see the default Entity Container name, BlogModelContainer, in
this case. First I’ll change the name to BlogContext, and then I’ll
create the model.

MyBlog requires three Entities I’ll call Blog, Post and Tag, as shown
in Figure 1. To create them, I drag an Entity from the toolbox to
the design surface, then right-click and select Properties to edit the
entity properties. I’ll also need a few scalar properties on each of the
entities (right-click on the entity and select Add | Scalar Property).

Foreign Key Support in EF 4.0
Next, I’ll add relationships between these entities. Right-click
on the design surface and select Add | Association, as shown in
Figure 2. EF now supports foreign keys, allowing the inclusion of
foreign key properties on an entity. Notice that adding the relationship
added a BlogBlogID property (the foreign key) to the Post entity.

The inclusion of foreign key properties on
entities simplifies a number of key coding
patterns, including data binding, dynamic
data, concurrency control and n-tier
development. For example, if I’m databind-
ing a grid that shows products and I have the
CategoryID (a foreign key value) in a grid
but I don’t have the corresponding Category
object, the foreign key support in EF means I
no longer need to take on the cost of a query
to separately pull back the Category object.

Model First with EF 4.0
Now that the model is built (see Figure 3),
the application needs a database. In this case,
MyBlog is a new application and doesn’t yet
have a database. I don’t want to create the
database myself; I’d rather just have it done
for me—and I can. With model fi rst in
EF 4.0, Visual Studio can now generate not
only custom code for the entities, but also a
database based on the model just created.

First, I need to create the empty database to which I will apply the
generated schema. To do this, I open Server Explorer, right-click
on the Data Connections node and select Create New SQL Server
Database (see Figure 4). With the empty database created, I right-
click on the model design surface and select Generate Database
from Model. Walking through the Generate Database wizard creates
a Blog Model.edmx.sql fi le. With this new fi le open, it’s simple
to right-click on the fi le and execute the SQL script to create the
schema for my database.

Custom Code Generation with EF 4.0
At this point, there are a number of next steps possible, one of which
is to customize the code that EF generates, using T4 Templates.
In Visual Studio 2008 SP1, although EF provided some hooks

Figure 1 Blog, Post and Tag Entities and Associated Property Settings

Figure 2 Associations Between Blog, Post and Tag Entities

Entity Framework 4.0 focuses
on enabling and simplifying

two primary scenarios:
domain-centric application

development and the traditional
data-centric “forms over data.”

http://msdnmagazine.com
http://code.msdn.microsoft.com/mag201004VSData

msdn magazine82 Data Services

for customizing code generation, it was relatively inflexible and
hard to use. EF 4.0 now leverages T4 Templates, providing a
much simpler, more flexible and more powerful way to custom-
ize generated code.

To add a new T4 Template to the project, right-click on the
Entity Designer surface and select Add Code Generation Item.
From here, choose any currently installed template to use as a
starting point, or view the templates available in the Online
Gallery. To use the default EF template as the starting point for
this project, I’ll choose the ADO.NET EntityObject Generator
template; by default the template is called Model1.tt. By add-
ing a code generation template in this manner, EF automatically
disables default code generation for the model. Th e generated code is
removed from BlogModel.Designer.cs and now exists in Model1.cs.
At this point, the template can be edited to customize the entities
it will generate, and every time the .tt fi le is saved, the dependent
code will be regenerated. For more information on editing and
using T4 Templates with EF 4.0, check out the ADO.NET Team
blog at blogs.msdn.com/adonet.

Using POCO Entities with EF 4.0
Visual Studio 2008 SP1 imposed a number of restrictions on entity
classes that made it diffi cult, to say the least, to build classes that
were truly independent of persistence concerns. One of the most
requested features in EF 4.0 is the ability to create Plain Old CLR
Object (POCO) types for entities that work with EF and don’t
impose the type of restrictions in Visual Studio 2008 SP1.

Let’s go back to the MyBlog sample. I’m going to create POCO
objects for the three entities—Blog, Post and Tag. First, code
generation needs to be turned off and I need to remove the .tt fi le I
added in the last section. To check out the properties of the model,
right-click on the Entity Designer surface. As shown in Figure 5,
there is a property named Code Generation Strategy that needs to
be set to None to turn off code generation.

Note that this property is set to None automatically when you add
a Code Generation Item (T4 Template) to a project. If the project
currently has a .tt fi le included, you will need to remove it before
using POCO objects. From here, the classes for the POCO objects can be
added—Blog.cs, Post.cs and Tag.cs, as shown in Figures 6, 7 and 8.

Last, I need to create the context class, which is much like the
ObjectContext implementation generated with default code
generation, but I’ll call it BlogContext. It will inherit from the
ObjectContext class. Th e context is the class that is persistence-
aware. It will allow the composition of queries, materialize entities
and save changes back to the database (see Figure 9).

Lazy Loading
In Visual Studio 2008 SP1, EF supported two basic ways of loading
related entities, both ensuring that the application hits the
database only when explicitly told to do so, using either the Load
method to explicitly load the related entities, or the Include method
to eagerly load related entities within a query. Another
of the most requested features now in EF 4.0 is lazy loading.
When performing explicit loads is not required, you can use
lazy loading (also known as deferred loading) to load related
entities when a navigation property is accessed for the fi rst time.
In Visual Studio 2010, this is done by making the navigation
properties virtual properties.

Figure 4 Create a New Empty Database and Generate
Database Schema from EDM

Entity Framework now
supports foreign keys, allowing

the inclusion of foreign key
properties on an entity.

Figure 3 Blog Model

http://blogs.msdn.com/adonet

83April 2010msdnmagazine.com

In the MyBlog sample, the public
List<Post> Posts property in both Blog.cs
and Tag.cs would become public virtual
List<Post> Posts, and the public List<Tag>
Tags property in Post.cs would become public
virtual List<Tag> Tags. EF would then create a
proxy type at runtime that knows how to per-
form a load so that no additional code changes
are necessary. However, because the
MyBlog sample uses WCF Data Services to
expose entities over an Open Data Protocol
(OData) service, the application doesn’t make
use of lazy loading.

Creating a WCF Data
Service in Visual Studio 2010
MyBlog takes advantage of the near-turnkey solution supplied by
WCF Data Services to provide an OData service over an EDM, and
includes a Silverlight blog administrator client that uses the OData
service. Th e Open Data Protocol is a data-sharing standard that
breaks down silos and fosters a powerful, interoperative ecosystem
for data consumers (clients) and producers (services), enabling
more applications to make sense of a broader set of data.

With an EDM and database set up, adding a new WCF Data
Service to the application is simple; using the Add New Item
wizard, I add a WCF Data Service (I’ll call it BlogService). Th is
generates a BlogService.svc fi le that represents the skeleton of
the service and is pointed at the EDM by providing it with the
context created earlier. Because the service is fully locked down
by default, access to the entity sets that are to be made available
over the service must be explicitly allowed using confi g.SetEntity-
SetAccessRule. To do this, a rule is set for each EntitySet that is
made available, as seen in Figure 10.

(Note: If you download the sample code for this article, you’ll notice it
uses a very simple Forms Authentication scheme to secure the site, and the
remaining examples will also use this scheme to fi lter data based on the
currently logged-in user. Because implementing Forms Authentication is
beyond the scope of this article, however, I’m going to skip the details here.)

With the service up and running, the next step is to fi lter the
results based on the user currently logged in so that only Blogs
owned by that user are returned. You can accomplished this by
adding Query Interceptors as seen in Figure 11 to restrict the
entities returned by a query.

Consuming a WCF Data
Service in Silverlight
Th e details of building a Silverlight UI are beyond the scope of
this article, so I’ll gloss over some of them. But before digging
in to how to hook up the data service to a Silverlight app, I’ll
add a new Silverlight application to the project that contains the
default Silverlight page MainPage.xaml. To that I add a basic Data-
Grid, ComboBox, Button and a couple of labels. With a skeleton
Silverlight app ready (see Figure 12), we can hook up the data service.

To start, the Silverlight application needs objects that represent
each of the entities defi ned by the data service. To do this, you

use the Add Service Reference wizard in
Visual Studio to automatically generate
client classes for the data service. (Note
that to use Add Service Reference, I need
to temporarily disable the authorization
checks implemented on the service so that
Add Service Reference has full access
to the service. I point the Add Service
Reference wizard at the base URI for
the service, which in MyBlog is local-
host:48009/BlogService.svc).

Data Binding in
WCF Data Services 4.0
Improved support for data binding in WCF

Data Services 4.0 adds a new collection type, DataServiceCollection,
to the client library, extending ObservableCollection. However, in Sil-
verlight 3, data binding is turned off by default when a service reference
is added to the project. So to take advantage of the new data binding

Figure 5 Code Generation Strategy Property

public class Blog
{
 public intBlogID
 {
 get;
 set;
 }
 public string Name
 {
 get;
 set;
 }
 public string Owner
 {
 get;
 set;
 }
 public List<Post> Posts
 {
 get { return _posts; }
 set { _posts = value; }
 }
 List<Post> _posts = new List<Post>();
}

Figure 6 POCO Object for Blog Entity

public class Tag
{
 public int TagID
 {
 get;
 set;
 }
 public string Name
 {
 get;
 set;
 }
 public List<Post> Posts
 {
 get { return _posts; }
 set { _posts = value; }
 }
 List<Post> _posts = new List<Post>();
}

Figure 7 POCO Object for Tag Entity

http://msdnmagazine.com

msdn magazine84 Data Services

functionality in WCF Data Services, data binding needs to be
turned on and the service reference needs to be updated. From the
Solution Explorer, click the Show All Files button and expand the
BlogService item under the Service References node. Double-click
the Reference.datasvc map fi le and replace the Parameters element
with the XML snippet shown here:

<Parameters>
 <Parameter Name="UseDataServiceCollection" Value="true" />
 <Parameter Name="Version" Value="2.0" />
</Parameters>

Setting the UseDataServiceCollection parameter to true auto-
generates client-side types that implement the INotifyProperty-
Changed and INotifyCollectionChanged interfaces. Th is means
that any changes made to contents of a DataServiceCollection or
the entities in the collection are refl ected on the client context. It also

means that if an entity in the collection is requeried, any changes to
that entity are refl ected in the entities in the DataServiceCollection.
And it means that because the DataServiceCollection implements
the standard binding interfaces, it can be bound as the DataSource
to most WPF and Silverlight controls.

Going back to the MyBlog sample, the next step is to create a
connection to the service by creating a new DataServiceContext and
use it to query the service. Figure 13 includes MainPage.xaml and
MainPage.xaml.cs and shows the creation of a new DataService-
Context, querying the service for all blogs—in this case the service
returns all blogs owned by the logged-in user—and binding the
blogs to a ComboBox on the Silverlight application.

To bind the DataGrid, a cboBlogs_SelectionChanged()
method is added:

private void cboBlogs_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 this.grdPosts.DataContext = ((Blog)cboBlogs.SelectedItem);
}public class BlogService : DataService<BlogContext>

{
 // This method is called only once to initialize service-wide
policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and service
 // operations are visible, updatable, etc.
 // Examples:
 config.SetEntitySetAccessRule("Blogs", EntitySetRights.All);
 config.SetEntitySetAccessRule("Posts", EntitySetRights.All);
 config.SetEntitySetAccessRule("Tags", EntitySetRights.All);
 // config.SetServiceOperationAccessRule("MyServiceOperation",
 // ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
}

Figure 10 BlogService.svc

// returns only public posts and posts owned by the current user
[QueryInterceptor("Posts")]
public Expression<Func<Post, bool>>OnPostQuery()
{
 return p =>p.Public == true ||
 p.Blog.Owner.Equals(HttpContext.Current.User.Identity.Name);
}
// returns only the blogs the currently logged in user owns
[QueryInterceptor("Blogs")]
public Expression<Func<Blog, bool>>OnBlogQuery()
{
 return b =>
 b.Owner.Equals(HttpContext.Current.User.Identity.Name);
}

Figure 11 Query Interceptor

public class BlogContext : ObjectContext
{
 public BlogContext()
 : base("name=BlogContext", "BlogContext")
 {
 }
 public ObjectSet<Blog> Blogs
 {
 get
 {
 if (_Blogs == null)
 {
 _Blogs =
 base.CreateObjectSet<Blog>("Blogs");
 }

 return _Blogs;
 }
}
private ObjectSet<Blog> _Blogs;
public ObjectSet<Post> Posts
{
 get
 {
 if (_Posts == null)
 {
 _Posts =
 base.CreateObjectSet<Post>("Posts");
 }
 return _Posts;
 }

}
private ObjectSet<Post> _Posts;
public ObjectSet<Tag> Tags
{
 get
 {
 if (_Tags == null)
 {
 _Tags = base.CreateObjectSet<Tag>("Tags");
 }
 return _Tags;
 }
}
private ObjectSet<Tag> _Tags;
}

Figure 9 BlogContext

public class Post
{
 public int PostID
 {
 get;
 set;
 }
 public DateTime CreatedDate
 {
 get;
 set;
 }
 public DateTime ModifiedDate
 {
 get;
 set;
 }

 public string Title
 {
 get;
 set;
 }

 public string PostContent
 {
 get;
 set;
 }
 public Blog Blog
 {
 get;
 set;
 }
 public int BlogBlogID

 {
 get;
 set;
 }
 public Boolean Public
 {
 get;
 set;
 }
 public List<Tag> Tags
 {
 get { return _tags; }
 set { _tags = value; }
 }
 private List<Tag> _tags = new List<Tag>();
}

Figure 8 POCO Object for Post Entity

DynamicPDF Generator v6.0 for .NET

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

 Easy-to-use Highly efficient
 Industry leading support Huge feature set

DynamicPDF…Proven .NET Components for Real-Time PDFs

Layout reports in DynamicPDF Designer with its Visual Studio look and feel.

.

Untitled-1 1 3/15/10 11:50 AM

http://www.cete.com

msdn magazine86 Data Services

Th is method will be called every time the item currently selected
in the ComboBox is changed.

Th e last item to be hooked up on the Silverlight application is the
Save Button, which is enabled by adding a btnSave_Click method that
calls SaveChanges on the DataServiceContext, as seen in Figure 14.

Server-Driven Paging
Oft en there’s a need to limit the total number of results a server will
return for a given query, to avoid having an application accidentally
pull back an extremely large amount of data. Server-driven
paging in WCF Data Services 4.0 allows a service author to set per-
collection limits on the total number of entities a service returns
for each request by setting the SetEntitySetPageSize property in the
InitializeService method for each collection of entities. In addition
to limiting the number of entities returned for each request, the
data service provides the client with a “next link”—a URI specifying
how the client is to retrieve the next set of entities in the collection,
in the form of the AtomPub<link rel="next"> element.

Going back to the MyBlog example, I’ll set the SetEntitySetPage-
Size property on my service for the Posts EntitySet to fi ve results:

config.SetEntitySetPageSize("Posts", 5);

Th is will limit the number of entities returned when the service is
queried for Posts. I’m setting the SetEntitySetPageSize property to
a small number here to illustrate how the feature works; generally
an application would set a limit that most clients would not run into
(rather the client would use $top and $skip to control the amount
of data requested at any time).

I’ll also add a new button to the application to allow the user to
request the next page of Posts from the service. Th is snippet shows
the btnMorePosts_Click method accessing the next set of Posts:

private void btnMorePosts_Click(object sender, RoutedEventArgs e)
{
 Blog curBlog = cboBlogs.SelectedItem as Blog;
 curBlog.Posts.LoadCompleted += new
 EventHandler<LoadCompletedEventArgs>(Posts_LoadCompleted);
 curBlog.Posts.LoadNextPartialSetAsync();
}

Row Count
One of the most requested features aft er the release of ADO.NET
Data Services in Visual Studio 2008 SP1 was the ability to determine the
total number of entities in a set without the need to pull them all
back from the database. In WCF Data Services 4.0, we added the
Row Count feature to do this.

When creating a query on the client, the IncludeTotalCount
method can be called to include the count tag in the response.
Th e value can then be accessed, as shown in Figure 15, using the
TotalCount property on the QueryOperationResponse object.

Projections
Another of the most requested features in WCF Data Services 4.0 is
Projections, the ability to specify a subset of an entity’s properties to
be returned from a query, allowing applications to optimize for band-

Figure 12 Basic Layout of MyBlog Silverlight
Administrator Application

MainPage.xaml
<Grid x:Name="LayoutRoot" Background="White" Width="618">
 <data:DataGrid Name="grdPosts" AutoGenerateColumns="False"
 Height="206" HorizontalAlignment="Left"Margin="17,48,0,0"
 VerticalAlignment="Top" Width="363" ItemsSource="{Binding Posts}">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header="Title" Binding="{Binding Title}"/>
 <data:DataGridCheckBoxColumn Header="Public"
 Binding="{Binding Public}"/>
 <data:DataGridTextColumn Header="Text"
 Binding="{Binding PostContent}"/>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <Button Content="Save" Height="23" HorizontalAlignment="Left"
 Margin="275,263,0,0" Name="btnSave" VerticalAlignment="Top"
 Width="75" Click="btnSave_Click_1" />
 <ComboBox Height="23" HorizontalAlignment="Left"
 Margin="86,11,0,0" Name="cboBlogs" VerticalAlignment="Top"
 Width="199" ItemsSource="{Binding}" DisplayMemberPath="Name"
 SelectionChanged="cboBlogs_SelectionChanged" />
 <dataInput:Label Height="50" HorizontalAlignment="Left"
 Margin="36,15,0,0" Name="label1"
 VerticalAlignment="Top"Width="100" Content="Blogs:" />
 <dataInput:Label Height="17" HorizontalAlignment="Left"
 Margin="17,263,0,0" Name="lblCount" VerticalAlignment="Top"
 Width="200" Content="Showing 0 of 0 posts"/>
 <Button Content="Load More Posts" Height="23"

HorizontalAlignment="Left" Margin="165,263,0,0" Name="btnMorePosts"
VerticalAlignment="Top" Width="100" Click="btnMorePosts_Click" />
</Grid>

MainPage.xaml.cs
public MainPage()
{
 InitializeComponent();
 svc = new BlogContext(new Uri("/BlogService.svc", UriKind.Relative));
 blogs = new DataServiceCollection<Blog>(svc);
 this.LayoutRoot.DataContext = blogs;
 blogs.LoadCompleted +=
 new EventHandler<LoadCompletedEventArgs>(blogs_LoadCompleted);
 var q = svc.Blogs.Expand("Posts");
 blogs.LoadAsync(q);
}
void blogs_LoadCompleted(object sender, LoadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 if (blogs.Count> 0)
 {
 cboBlogs.SelectedIndex = 0;
 }
 }
}

Figure 13 MainPage.xaml and MainPage.xaml.cs

msdnmagazine.com

width consumption and memory footprint. In Visual Studio 2010, the
Data Services URI format has been extended to include the $select
query option, enabling clients to specify the subset of properties to be
returned by the query. For example, with MyBlog, I could query for
all Posts and project only Title and PostContent using the following
URI: BlogService.svc/Posts?$select=Title,PostContent. On the client
side, you can also now use LINQ to query with projections.

Learning More
Th is article covers just enough to get you started with Entity
Framework 4.0 and WCF Data Services 4.0 in Visual Studio 2010.
Th ere are a number of other topics and new features you may be
interested in. For more information, check out the MSDN Data
Development center at msdn.microsoft.com/data.

ELISA FLASKO is a program manager in the Data Programmability team at
Microsoft , working on the ADO.NET Entity Framework, WCF Data Services,
M, Quadrant and SQL Server Modeling Services technologies. She can be reached
at blogs.msdn.com/elisaj.

THANKS to the following technical experts for reviewing this article:
Jeff Derstadt and Mike Flasko

private void cboBlogs_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 Blog curBlog = this.cboBlogs.SelectedItem as Blog;
 this.grdPosts.DataContext = curBlog;
 var q = (from p in svc.Posts.IncludeTotalCount()
 where p.BlogBlogID == curBlog.ID
 select p) as DataServiceQuery<Post>;
 curBlog.Posts.LoadCompleted += new
 EventHandler<LoadCompletedEventArgs>(Posts_LoadCompleted);
 curBlog.Posts.LoadAsync(q);
}
void Posts_LoadCompleted(object sender, LoadCompletedEventArgs e)
{
 if (e.Error == null)
 {
 Blog curBlog = cboBlogs.SelectedItem as Blog;
 totalPostCount = e.QueryOperationResponse.TotalCount;
 string postsCount = string.Format("Displaying {0} of {1} posts",
 curBlog.Posts.Count, totalPostCount);
 this.lblCount.Content = postsCount;
 curBlog.Posts.LoadCompleted -= Posts_LoadCompleted;
 }
}

Figure 15 Using Row Count

private void btnSave_Click_1(object sender, RoutedEventArgs e)
{
 svc.BeginSaveChanges(SaveChangesOptions.Batch, OnChangesSaved, svc);
}
private void OnChangesSaved(IAsyncResult result)
{
 var q = result.AsyncState as BlogContext;
 try
 {
 // Complete the save changes operation
 q.EndSaveChanges(result);
 }
 catch (Exception ex)
 {
 // Display the error from the response.
 MessageBox.Show(ex.Message);
 }
}

Figure 14 Saving Changes Back to the Database

www.visualstudiomagazine.com
http://msdnmagazine.com
http://msdn.microsoft.com/data
http://blogs.msdn.com/elisaj

msdn magazine88

In a sense, the Projection property gives
Silverlight a little bit of “pseudo 3D.” It’s not
a real 3D system, because there’s no way to
defi ne objects in 3D space, no concept of
cameras, lights or shading and—perhaps most
important—no clipping of objects based on
their arrangement in 3D space.

Nevertheless, working with the Projection
transform requires the programmer to begin thinking about three
dimensions and especially about 3D rotation. Fortunately, the
developers of Silverlight have made some common and simple use
of the Projection property fairly easy.

The Easier Approach
You can set the Projection property to either a Matrix3DProjection
object or a PlaneProjection object. Th e Matrix3DProjection
property defi nes only one object, but it’s a 4x4 Matrix3D structure,
which requires lots of mathematics. (For some approaches to this
structure, see the blog entries on my Web site—charlespetzold.com—
dated July 23, 2009, and July 31, 2009.)

But in this article, I’ve promised myself to avoid mathematics for
the most part, which means I’ll be sticking with the PlaneProjection
class. Although the class defi nes 12 settable properties, I’ll be
focusing on only six of them.

In the downloadable source code for this article is PlaneProjection-
Experimenter, which lets you interactively experiment with these
six properties. Figure 2 shows the program in action. You can run
it by compiling the downloadable program, or you can run it at
my Web site at charlespetzold.com/silverlight/PlaneProjectionDemos, along
with all the other programs in this article. For now, ignore the blue
dot in the middle.

Th e three crucial properties of PlaneProjection are RotationX,
RotationY and RotationZ, which you can change using the three
ScrollBars. Th ese properties assume a 3D coordinate system where
X values increase to the right and Y values increase going down the
screen. (Th is is consistent with the normal Silverlight coordinate
system but not with typical 3D systems, where values of Y usually
increase going up.) Increasing values of Z seem to come out of the
screen toward the viewer. Th ese three properties cause rotation
around the three axes.

In pretty much any graphics system, trans-
forms constitute the most important feature
that doesn’t actually draw anything. Instead,
transforms alter the appearance of visual
objects by modifying coordinates with
mathematical formulas generally expressed
as a matrix multiplication.

Th e RenderTransform property defi ned
by the UIElement has been in Silverlight from its beginning, and
before that, in the Windows Presentation Foundation (WPF).
Because the property is defi ned by UIElement, you can use it with
graphical objects as well as text, controls and media. Simply set the
RenderTransform to an object of type TranslateTransform, Scale-
Transform, RotateTransform, SkewTransform, MatrixTransform
(for complete control over the transform matrix) or a Transform-
Group for a combination of multiple transforms.

Th e types of transforms you set with RenderTransform are
all examples of two-dimensional (2D) affi ne transforms. Affi ne
transforms are very well behaved and just a little dull: Straight
lines are always transformed to straight lines, ellipses are always
transformed to ellipses and squares are always transformed to
parallelograms. If two lines are parallel before the transform, they’re
still parallel aft er the transform.

Pseudo 3D
Silverlight 3 introduced a new UIElement property named Projection
that allows setting non-affi ne transforms on graphical objects, text,
controls and media. Non-affi ne transforms do not preserve parallelism.

Th e type of non-affi ne transform allowed in Silverlight 3 is still
represented by a matrix multiplication, and it still has restrictions
on what it can do. Straight lines are always transformed to straight
lines, and a square is always transformed into a simple convex
quadrilateral. By “quadrilateral,” I mean a four-sided fi gure (also
called a tetragon or quadrangle); by “simple,” I mean that the sides
don’t intersect except at their vertices; by “convex,” I mean that the
internal angles at each vertex are less than 180 degrees.

Th is type of non-affi ne transform is useful for creating taper
transforms, where opposite sides of a square or rectangle taper
somewhat in one direction. Figure 1 shows some text with a taper
transform realized through a very simple Projection property setting.

Th e text appears to be somewhat three dimensional (3D) because
the tail end seems further away from our eyes—an eff ect called a
perspective projection.

Projection Transforms Sans Math

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201004UIF.

Figure 1 Text with a Taper Transform

http://charlespetzold.com
http://charlespetzold.com/silverlight/PlaneProjectionDemos
http://code.msdn.microsoft.com/mag201004UIF

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine90 UI Frontiers

Th e ScrollBars for X and Y are positioned perpendicularly to
the axis of rotation. For example, the vertical ScrollBar on the left
rotates the fi gure around the X axis, which runs horizontally through
the center of the letter. Th e top and bottom of the letter seem to fl ip
toward or away from the viewer.

At fi rst, it’s best to try each axis of rotation independently of the
others and refresh your browser between experimentations. You can
anticipate the direction of rotation using the right-hand rule. Point
your thumb in the direction of the positive axis. (For X, that’s to
the right; for Y it’s down; for Z, it’s toward you.) Th e curve that your

other fi ngers make indicates the direction of rotation for positive
rotation angles. Negative angles rotate in the opposite direction.

A composite rotation depends on the order in which the
individual rotations are applied. Using PlaneProjection sacrifi c-
es some fl exibility in these rotations. PlaneProjection always ap-
plies RotationX fi rst, then RotationY and fi nally RotationZ. How
can we tell? Try leaving RotationZ at 0 and manipulate RotationX
and RotationY. You’ll see that RotationX always rotates the letter
around the horizontal axis of the letter itself, whereas RotationY
rotates the letter around the vertical axis of the window, meaning
that RotationY is applied to the letter already rotated by the
RotationX angle. Now, with RotationX and RotationY set to
anything, manipulate RotationZ. Th is rotation is also relative to
the window, and doesn’t change the appearance of the letter at all.

In real life, you can simply set one property of Projection and
get a reasonable result. Th e text in Figure 1 is part of the TaperText
project and was displayed using the following XAML:

<TextBlock Text="TAPER"
 FontFamily="Arial Black"
 FontSize="144"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Projection>
 <PlaneProjection RotationY="-60" />
 </TextBlock.Projection>
</TextBlock>

As with RenderTransform, Projection doesn’t aff ect layout. Th e
layout system sees an un-transformed and un-projected element.

Of course, the RotationX, RotationY and RotationZ properties
are all backed by dependency properties, so they can also become
animation targets.

The FlipPanel
With just this much knowledge of PlaneProjection, it’s possible to
code a “fl ip panel,” which is a technique to minimize an application

using System;
using System.Windows;
using System.Windows.Controls;

namespace FlipPanelDemo
{
 public partial class FlipPanel : UserControl
 {
 public static readonly DependencyProperty Child1Property =
 DependencyProperty.Register("Child1",
 typeof(UIElement),
 typeof(FlipPanel),
 new PropertyMetadata(null, OnChild1Changed));

 public static readonly DependencyProperty Child2Property =
 DependencyProperty.Register("Child2",
 typeof(UIElement),
 typeof(FlipPanel),
 new PropertyMetadata(null, OnChild2Changed));

 public FlipPanel()
 {
 InitializeComponent();
 }

 public UIElement Child1
 {
 set { SetValue(Child1Property, value); }
 get { return (UIElement)GetValue(Child1Property); }
 }

 public UIElement Child2
 {
 set { SetValue(Child2Property, value); }
 get { return (UIElement)GetValue(Child2Property); }
 }

 public void Flip()
 {
 flipStoryboard.Begin();
 }

 public void FlipBack()
 {
 flipBackStoryboard.Begin();
 }

 static void OnChild1Changed(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as FlipPanel).child1Container.Content = args.NewValue;
 }

 static void OnChild2Changed(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as FlipPanel).child2Container.Content = args.NewValue;
 }
 }
}

Figure 3 The FlipPanel.xaml.cs File

Figure 2 The PlaneProjectionExperimenter Program

91April 2010msdnmagazine.com

footprint onscreen by organizing controls on the front and back
of a panel (or so it seems). In WPF, a FlipPanel control requires
switching back and forth between 2D and 3D. In Silverlight, the
FlipPanel becomes quite simple.

Th e FlipPanelDemo project includes a FlipPanel control derived
from UserControl. Th e code part shown in Figure 3 defi nes two
new properties named Child1 and Child2 of type UIElement, and
public methods named Flip and FlipBack.

The XAML part in Figure 4 shows how Child1 and Child2
occupy the same space and have Projection transforms applied.
In the initial position, the PlaneProjection transform for Child2
has RotationX set to -90 degrees, which means that it’s at right
angles to the viewer and is effectively invisible. The “flip” anima-
tions simply swing Child1 out of view by animating RotationX
to 90; they swing Child2 into view by animating RotationX to 0.
The “flip back” animations reverse those actions.

Commonly, Child1 and Child2 would be set to panels of some
sort covered with controls. In the FlipPanelDemo program,
Child1 and Child2 simply have different colors and a single
button to trigger the flip. The flipping
action seems to be more comforting to
the user than navigating to a new page
because it implies that a set of controls
aren’t disappearing irrevocably but can
easily be retrieved.

Center of Rotation
All rotation is relative to a center. Rotation
in two dimensions is relative to a point.
Rotation in three dimensions is relative
to a line in 3D space—often referred to as
an “axis of rotation.” For convenience—
and perhaps to avoid introducing 3D
lines and 3D vectors into Silverlight—the
projection transform is considered to be
relative to a 3D point.

The PlaneProjection class supports changing the center of
rotation using three properties:

• CenterOfRotationX (relative coordinate; default is 0.5)
• CenterOfRotationY (relative coordinate; default is 0.5)
• CenterOfRotationZ (absolute coordinate; default is 0)

Let’s look at the fi rst two fi rst. Like the RenderTransform Origin
property, these values are relative to the upper-left corner of the
element being transformed. Th ey diff er in that the default value of
RenderTransformOrigin is the point (0, 0), whereas the default values
for PlaneProjection cause the rotations to be centered on the element.

In PlanProjectionExperimenter, you can change CenterOf-
RotationX and CenterOfRotationY using the blue dot. (A tooltip
indicates the current values.) You’ll probably notice right away that
CenterOfRotationX does not aff ect rotation around the X axis, and
CenterOfRotationY does not aff ect rotation around the Y axis.

If you make CenterOfRotationX equal to 0, rotation around the
Y axis is relative to the left side of the element; similarly, if you set it
to 1, rotation is around the right side. You can make the value less
than 0 or greater than 1 for some very wide swings. Th e element

seems to get very close to the viewer and
go very far away.

Try this: Make CenterOfRotationY
approximately equal to 0. Now, set
RotationX equal to 90 degrees or there-
abouts. You’ll notice that the element is still
visible. In the FlipPanel, a rotation of 90
degrees or -90 degrees causes the element to
be invisible because it’s viewed on its edge.
Th e mathematical calculations going on
inside the PlaneProjection class assume that
the viewer’s eye (or the metaphorical camera)
is always aligned in the center of the element
looking straight back in the negative-Z
direction. If something is off -center and
rotated back 90 degrees, it’s still going to be
visible from the center of the element.

<UserControl x:Class="FlipPanelDemo.FlipPanel"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <UserControl.Resources>
 <Storyboard x:Name="flipStoryboard">
 <DoubleAnimation Storyboard.TargetName="planeProjection1"
 Storyboard.TargetProperty="RotationX"
 To="90"
 Duration="0:0:0.5" />

 <DoubleAnimation Storyboard.TargetName="planeProjection2"
 Storyboard.TargetProperty="RotationX"
 To="0"
 BeginTime="0:0:0.5"
 Duration="0:0:0.5" />
 </Storyboard>

 <Storyboard x:Name="flipBackStoryboard">
 <DoubleAnimation Storyboard.TargetName="planeProjection1"
 Storyboard.TargetProperty="RotationX"
 To="0"
 BeginTime="0:0:0.5"
 Duration="0:0:0.5" />

 <DoubleAnimation Storyboard.TargetName="planeProjection2"
 Storyboard.TargetProperty="RotationX"
 To="-90"
 Duration="0:0:0.5" />
 </Storyboard>

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <ContentControl Name="child1Container">
 <ContentControl.Projection>
 <PlaneProjection x:Name="planeProjection1" />
 </ContentControl.Projection>
 </ContentControl>
 <ContentControl Name="child2Container">
 <ContentControl.Projection>
 <PlaneProjection x:Name="planeProjection2"
 RotationX="-90" />
 </ContentControl.Projection>
 </ContentControl>
 </Grid>
</UserControl>

Figure 4 The FlipPanel.xaml File

Figure 5 A Proposed Three-Panel Carousel

http://msdnmagazine.com

msdn magazine92 UI Frontiers

Th e CenterOfRotationZ axis is handled diff erently
from X and Y. It’s in Silverlight absolute coordinates
rather than relative coordinates, and the default is 0.
In PlaneProjection Experimenter, you can change
this value using the mouse wheel. Th e blue dot grows
and shrinks to represent the change in the property.

Rotation with a non-default CenterOfRotationZ
is probably the hardest to visualize mentally, so it’s
worth the time to experiment a bit.

Th e element being projected is assumed to sit in the
XY plane—that is, the plane in 3D space where Z equals
0. If you leave the CenterOfRotationZ property at its
default value of 0 and manipulate RotationX or Rota-
tionY, parts of the letter get larger as they move into
positive-Z space, and parts get smaller as they move
into negative-Z space. Now increase CenterOfRota-
tionZ to a value of about 200 and manipulate Rotatio-
nY. Th e letter will get larger because it’s rotating around
the center where Z equals 200 from an area of space
where Z equals 0 to the area where Z equals 400.
When you set CenterOfRotationZ to 500 or great-
er, the whole thing stops working well because the
internal mathematics of PlaneProjection assume
that the viewer (or camera) is located 1,000 units
from XY plane. With a rotation center of 500, the element is actually
being projected behind the camera.

Three-Panel Carousel
Can we make something similar to a FlipPanel with three sides rather
than just two? Yes, but it will require a tiny bit of trigonometry
and a whole lot of messing around with Z indices.

Figure 5 shows a top view of what I envision. It’s a view from a
negative position on the Y axis—above the monitor, so to speak—
looking down. Th e thick lines represent the three panels. All these
panels are actually positioned in the same spot. Only the Projection
transform causes them to appear in diff erent locations. Th e visible one
in front has no rotations applied to it. Th e other two have been subjected
to rotations where RotationY is set to 120 (for the one on the right) and
-120 degrees (on the left). Both rotations are centered on a negative
CenterOfRotationZ value, which corresponds
to the black dot. What is that value?

If you connect that dot with a dotted line to
the vertex at the right, the dotted line makes
an angle of 30 degrees with the X axis. Th e
tangent of 30 degrees is 0.577. Th at’s the
ratio of the distance of the dot to the X axis,
divided by half the width of the panel. If the
panel is 200 units wide, that dot is at -57.7.
Set CenterOfRotationZ to that value.

Now, to rotate the carousel from one panel
to the next, just animate RotationY to
increase it by 120 degrees for all three panels.

Well, not exactly. Even though we’re
picturing these panels in 3D space, they re-
ally still exist in 2D space, and they’re actually

stacked on top of one another. As they’re rotating, the
Canvas.ZIndex attached property of each of the three
panels must be changed to reorder the panels. Th is
is how elements seemingly can be moved “in front
of ” or “behind” other elements.

Let’s assume rotation is clockwise based on the
Figure 5 diagram. To begin, the panel in front
should have a Z index of 2 (foreground), the one
on the right has a Z index of 1 and the one on the
left has a Z index of 0 (background). Now start the
120-degree rotation. Halfway through—that is,
when each panel has been rotated 60 degrees and
two panels are equally visible—the Z indices must
be changed. Th e panel moving into view should
have its Z index set to 2, and the one moving out
of view should have its Z index set to 1.

Th is is all implemented in the Th reePanelCarousel
project. In actual use, of course, the three panels
would be covered with controls; in this demonstra-

tion program, they just have diff erent colors and
one button. I’ve left the panels partially trans-
parent so you can see what’s going on. Figure
6 shows the panels in action.

You may wonder if it’s possible to apply a
single projection rotation to the composite group of three panels.
No, it’s not. Multiple projection transforms can’t be compounded
over child elements.

Other Effects
As you experiment with the Projection property, don’t forget about
other eff ects to “enhance” the 3D-ishness of your application. A little
shadow always helps, and it’s easy to simulate a shadow—even a
moving shadow—with a gradient brush.

Th e AsTh eDaysGoBy program uses a combination of animations to
simulate the days fl ying off a daily desk calendar, as if in an old movie
to suggest the passing of time. Th e calendar page has its Projection
property set to a PlaneProjection object with the CenterOfRotationX
and CenterOfRotationY properties both set to 0. RotationX and
RotationY are both animated to move the page up and to the left

while an animated gradient brush sweeps
up the page. Finally, the page just seems to
disappear as its Opacity property is animated
to 0. Figure 7 shows the program in action.

Th e animation lasts a second, so the program
goes through 60 days every minute, or about
10 years per hour. Aft er about a month, the
program will be approaching the maximum
DateTime value, and it will soon terminate
with an exception. Until then, enjoy.

CHARLES PETZOLD is a long-time contributing
editor to MSDN Magazine. His most recent book
is “Th e Annotated Turing: A Guided Tour Th rough
Alan Turing’s Historic Paper on Computability and the
Turing Machine” (Wiley, 2008). Petzold blogs on his
Web site charlespetzold.com.

Figure 6 The ThreePanelCarousel
Program as it’s Spinning

Figure 7 The AsTheDaysGoBy Program

http://charlespetzold.com

Untitled-1 1 1/29/10 10:18 AM

www.aspose.com

Untitled-1 2 3/16/10 4:32 PM

www.vslive.com

Untitled-1 3 3/16/10 4:32 PM

www.vslive.com

msdn magazine96

of ourselves for being smart. We respect
people who can remember command keys
without a keyboard template, or shout out
each line of the boot script half a second
before it appears on the screen. Th e most
toxic word in our vocabulary is “stupid.”

Some geeks today resent making their
programs easy to use, wanting users to strug-
gle as we had to. It’s like your Depression-

era grandparents resenting today’s coddled
youth: “When I was a boy, we didn’t have

air-conditioned school buses with cushy reclin-
ing seats and personal video screens and 87 satellite dish channels.
No! We had to walk 10 miles through the snow, uphill both ways
…” Th ere’s no place for that attitude today in a profi table company.
If your car could magically drive itself, or we had transporters so
we didn’t need cars, wouldn’t you use them?

Of course, dumbing down has to be done well, which requires a
smart interaction designer—someone who knows how to think like a
user, to make main use cases easy by omitting obscure edge cases, to
choose helpful default values, to explain choices in terms of the user’s
thoughts rather than the program’s implementation. Th e designers of
the Windows Move Maker did this well, as I wrote in my blog posting
at suckbusters2.blogspot.com/2007/02/another-application-that-just-works-at.html.

Th e “dumbed down” backup program that so infuriated my
listener means that many more users actually will back up their
data, so they won’t lose it when their disks crash or their offi ces burn
down or their laptops get stolen. I fi nd that extremely smart.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” and “Introducing Microsoft .NET.”
Microsoft named him a Soft ware Legend in 2002. He wonders whether he should
tape down two of his daughter’s fi ngers so she learns how to count in octal. You
can contact him at rollthunder.com.

DON’T GET ME STARTED

In Praise of Dumbing Down

A typical geek hurried up to me aft er a
talk I’d given, elbowing other attendees
aside to get fi rst crack at me. Red-faced,
he spluttered, “You just spent an hour
telling us to dumb down our programs.
Th at’s awful, and you ought to be shot.”

I had praised a particular auto mated disk
backup program. Like seat belts or birth
control, disk backup programs only work if
you use them. Th e hassle of confi g uring and
running backup (or birth control) is the main
reason it fails. Th e program I was praising avoids
that through seamless automation. Th e user doesn’t have to touch it
aft er installation, ever. He doesn’t have to specify which fi les to back
up; the program automatically copies all data fi les to a remote server,
then automatically copies every new or changed fi le thereaft er. Users
don’t control very much: they don’t supply their own encryption keys,
don’t set compression levels, don’t even schedule when the program
runs; it’s always there in the background. Th e geek objected strongly
to this lack of control, not just saying he wouldn’t buy it, but insisting
that it was sinful and shouldn’t exist and I was evil for praising it.

I have more experience being heckled than most hecklers have doing
it, so I slammed right back at him: “Was it dumbing down when Ford
removed the spark timing lever from the Model T? Was it dumbing
down when they replaced the hand crank with a self-starter?”
Geek: “No, those are reasonable. Anyway, cranking the engine is

a hardware problem.”
Me: “Does your car have GPS?”
Geek: “Yeah, and it’s really cool!”
Me: “Is it dumbing down when it gives you directions—‘Move left

one lane and take the middle fork’? No, you say, ‘Wow, one-meter
precision, cool.’ How about when the power seat remembers your
reclining settings, or the stereo remembers the songs you like?”

Th e geek didn’t give up: “But it takes brains to drive a car, and to use
a computer, and if you’re not smart enough, you shouldn’t be doing it.”

Perhaps, but less every year for both, and I welcome both decreases.
I was taught years ago to pump the brakes when my car skidded.
Today’s cheap automatic anti-lock brakes do that far better than the
best human drivers could. And today’s automated traction control
systems greatly reduce skidding. Does that make the world a better
place or a worse one? I say better, unless you own a body shop.

So don’t get me started on the term “dumbing down.” It’s a load-
ed, judgmental term that reveals our prejudices. We geeks are proud

DAVID S. PLATT

The hassle of confi guring and
running backup (or birth control)

is the main reason it fails.

http://suckbusters2.blogspot.com/2007/02/another-application-that-just-works-at.html
http://rollthunder.com

Untitled-4 1 2/9/10 2:06 PM

www.fpoint.com

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

• Rapid dashboard development

• Flexible integration and customization

• The latest Silverlight 3.0 technology

Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries.

Project1 11/12/09 10:14 AM Page 1

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, April 2010
	Contents
	Editor's Note
	Cutting Edge
	Better Coding with Visual Studio
	What’s New in Visual Basic 2010
	Debugging Applications with IntelliTrace
	An Introduction to Functional Programming for .NET Developers
	Exploring New C++ and MFC Features
	Developing and Deploying Cloud Apps
	Entity Framework 4.0 and WCF Data Services 4.0
	UI Frontiers
	Don't Get Me Started

