
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
TOOLBOX
Windows Azure 
Development Resources
Terrence Dorsey  page 6

CUTTING EDGE
Aspect-Oriented Programming, 
Interception and Unity 2.0
Dino Esposito  page 10

DATA POINTS
Profi ling Database Activity 
in the Entity Framework
Julie Lerman  page 16

FORECAST: CLOUDY
Pushing Content from SharePoint 
to Windows Azure Storage
Joseph Fultz and Shad Phillips  page 26

TEST RUN
Web Application UI Testing 
with jQuery
James McCaffrey  page 70

THE WORKING PROGRAMMER
Multiparadigmatic Programming, 
Part 4: Object Orientation
Ted Neward  page 76

SECURITY BRIEFS
Improve ASP.NET Security with 
Visual Studio Code Analysis
Sacha Faust  page 80

UI FRONTIERS
Silverlight, Windows Phone 7 
and the Multi-Touch Thumb
Charles Petzold  page 84

DON’T GET ME STARTED
The Secret to a Successful 
Windows Phone 7 App
David Platt  page 88

DECEMBER 2010 VOL 25 NO 12

MOBILE APPS
Sudoku for Windows Phone 7
Adam Miller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Build Data-Driven Apps with Windows Azure 
and Windows Phone 7
Danilo Diaz and Max Zilberman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

PLUS

Behavior-Driven Development with 
SpecFlow and WatiN
Brandon Satrom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Performance Diagnostics of .NET 
Applications Using ETW
Subramanian Ramaswamy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Re-Introducing the Windows Azure AppFabric 
Access Control Service
Vittorio Bertocci and Wade Wegner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Using Quince™, you and your team can
collaborate on the user interface using
wireframes, designs and examples.

Then use NetAdvantage® UI controls,
like the map control used here, to bring
the application to life quickly & easily.

...

............................................................................................

.......................................................................

Untitled-7   2 11/10/10   10:59 AM

www.infragistics.com/impress


From start to finish, Infragistics gives you the tools to create
impressive user experiences that'll make end users happy!

SEE HOW WE USE THE TOOLS 
TO CREATE THIS KILLER APP AT 
INFRAGISTICS.COM/IMPRESS

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 •     @infragistics

..............................................................................................................................

...

Untitled-7   3 11/10/10   10:59 AM

www.infragistics.com/impress


magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval 
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group 
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue, 
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at 
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International 
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00. 
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine, 
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560. 
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada 
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation 
Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests 
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media, 
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information 
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy, 
there is no guarantee that the same or similar results may be achieved in all environments. Technical 
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone), 
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact: 
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available 
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000; 
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

DECEMBER 2010 VOLUME 25 NUMBER 12

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com


programmersparadise.com

Your best source for 
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

New
Service
Pack!

Professional Edition
Paradise # 

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler r7.3 – Product Plus 1 Year Enterprise Maintenance
CA ERwin Data Modeler is a data modeling solution that enables you to create and maintain 
databases, data warehouses and enterprise data resource models. These models help you 
visualize data structures so that you can effectively organize, manage and moderate data 
complexities, database technologies and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames, 

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free, 
robust and powerful word processing 
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance 
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with 

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise # 
P35 04201A01 
$550.99

Paradise # 
P26 04201E01
$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Document
Imaging v17.0:
by LEAD Technologies
LEADTOOLS Document Imaging has every 
component you need to develop powerful
image-enabled business applications including
specialized bi-tonal image display and 
processing, document clean up, annotation,
high-speed scanning, advanced compression
(CCITT G3/G4, JBIG2, MRC, ABC) and more.
• Multi-threaded OCR/ICR/OMR/

MICR/Barcodes (1D/2D)
• Forms recognition/processing
• PDF and PDF/A
• Win32/x64 binaries for C/C++, .NET,

Silverlight, WPF, WCF, & WF

Paradise # 
L05 03301A01 
$2,007.99

Certified 
for Windows
7/2008R2

VMware vSphere 
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and 
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX 
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts  
Paradise # 

V55 85101C02  

$446.99

ActiveReports 6
by GrapeCity

The de facto standard reporting tool for
Microsoft Visual Studio.NET

•  Fast and Flexible reporting engine
•  Flexible event-driven API to completely 

control the rendering of reports
•  Wide range of Export and Preview formats

including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

•  XCopy deployment
•  Royalty-Free Licensing for Web and 

Windows applications

Professional Ed.
Paradise # 
D03 04301A01   
$1,310.99

NEW
VERSION

6!

BUILD ON 
VMWARE ESXi
AND VSPHERE 
for Centralized Management, 
Continuous Application 
Availability, and Maximum 
Operational Efficiency in Your 
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend 
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES: 
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

programmers.com/flexera

InstallShield Professional for
Windows 2011
by Flexera Software
Microsoft’s Installation Solution of 
Choice for Visual Studio 2010 applications.
If your software targets Windows®, InstallShield®

is your solution. It makes it easy to author 
high-quality reliable Windows Installer (MSI) 
and InstallScript installations and App-V™ virtual
packages for Windows platforms, including
Windows 7. InstallShield, the industry standard
for MSI installations, also supports the latest
Microsoft technologies including Visual Studio
2010, .NET Framework 4.0, IIS7.0, SQL Server
2008 SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down. 

Upg from any  
Active IS Pro + 

IS Pro Silver Mtn
Paradise # 

I21H02401B01  

$1,384.99

866-719-1528

FREE 30-DAY 
PROOF OF CONCEPT

Learn more:
programmers.com/eliminate-wasteful-license-spend

STOP OVERBUYING SOFTWARE TODAY!
Eliminate Wasteful Software 
License Spend:
• Control your software 

licensing costs  

• Stop paying for licenses 
you’re not using  

• Reduce your license spend 
by $300+ per desktop user

NEW! Intel®
Parallel Studio 2011
by Intel
A comprehensive, all-in-one toolkit 
for Microsoft Visual Studio® C/C++
developers, Intel® Parallel Studio
2011 simplifies the analysis, 
compiling, debugging, error-checking,
and tuning of your serial and 
threaded apps.

With Intel Parallel Studio, get 
everything you need to optimize 
legacy serial code, exploit multicore,
and scale for manycore.

programmers.com/intel

Single User DVD
Paradise # 

I23 63101E03  

$753.99

NEW
RELEASE!

programmers.com/microsoft

Microsoft Visual Studio
Professional 2010
by Microsoft
Microsoft Visual Studio 2010 Professional with
MSDN Essentials Subscription is an integrated 
environment that simplifies creating, debugging
and deploying applications. Unleash your creativity
and bring your vision to life with powerful design
surfaces and innovative collaboration methods for
developers and designers. Work within a personal-
ized environment, targeting a growing number of
platforms, including Microsoft SharePoint and cloud
applications and accelerate the coding process by
using your existing skills. Integrated support for
Test-First Development and new debugging tools
let you find and fix bugs quickly and easily to
ensure high quality solutions.

FREE WEBINAR SERIES: MAXIMIZING DATA QUALITY FOR VALUE AND ROI
Data is a company’s greatest asset. Enterprises that can harness the power of their data will be strategically posi-
tioned for the next business evolution. But too often businesses get bogged down in defining a Data Management
process, awaiting some “magic bullet”, while the scope of their task grows larger and their data quality erodes.
Regardless of how your eventual data management solution is implemented, there are processes that need to
occur now to facilitate that process. In this new series, with a mixture of slides, demonstrations and Q&A sessions,
we will discuss how to use your existing Data Modeling assets to build the foundations of strong data quality.

REGISTER TODAY! programmers.com/CA

NEW
RELEASE!

with MSDN
Paradise # 

M47 40201A02  

$1,060.99

Untitled-9   1 11/2/10   11:40 AM

www.programmersparadise.com


msdn magazine4

Windows Phone 7 App-roval

his app failed the approval process. Th e problem was that he didn’t 
know why the app failed. Th e application-publishing site—or “App 
Hub,” as it’s called—didn’t tell him why the app failed. A PDF was 
supposed to give him information on why the failure occurred, but 
the document was blank, Baker says.

“Meanwhile, I didn’t know if it was something wrong with my 
code—or something else,” he explains. Baker e-mailed support, 
and eventually got a return PDF that said there was a screenshot 
failure. Th e explanation for the failure, according to Baker, was that 
he didn’t take a screenshot of the running application. Th ere was no 
other explanation—and the one he received was an unhelpful one 
at that, as he included screenshots with his submission.

Ultimately, the issue turned out to be a quirk in how a screen-
shot is captured. “I spent four to six hours banging my head against 
the App Hub, trying to get it to do what I wanted to do—checking 
forums, sending e-mail to support, etc.,” he says. It turns out that doing a 
“region capture” screenshot results in the inclusion of a border from 
the phone emulator he used. Th ose added pixels meant that Baker’s 
screenshot was too small, causing the failure. “Th ere’s a whole bunch 
of people who ran into the same thing,” he says. (As one developer 
said [geekswithblogs.net/dlussier/archive/2010/10/27/142465.aspx]: “Th e screen-
shot can be taken from an emulator, but can’t show the emulator.”) 
Aft er resubmitting the app with the new “window capture” screen-
shots, the app sailed through the approval process in less than a day.

In all, Baker says he’d give the current Microsoft  Windows Phone 
7 submission/approval process a “B-minus ... Th ere are lots of bugs 
in the App Hub system. I hope they get it fi xed.” He also says that 
he realizes this is brand-new territory for Microsoft , and is over-
all happy with the process. In fact, he enjoys mobile development 
enough now that he’s working on his next Windows Phone 7 app: 
a tuner for musical instruments. 

What have your eff orts to build a Windows Phone 7 app been 
like? Let me know at mmeditor@
microsoft .com.

A quick glance at this magazine’s cover reveals that our theme 
is Windows Phone 7 application development. In this space a 
few months ago, I listed some factors that will be important in 
selling your app (msdn.microsoft.com/magazine/gg232771), and in this 
issue, David Platt’s Don’t Get Me Started column (p. 92) has more 
good advice. 

But I think it’s time to hear from a developer who’s actually 
built an app for Windows Phone 7. Bob Baker wrote his fi rst PC 
statistics application in 1978. Since then, he’s worked in a lot of 
diff erent areas of development, including some “Silverlight insider 
work,” as he calls it, back in the day. Currently, he’s working as a 
contractor at a Fortune 50 company. Suffi  ce it to say that he’d be 
recognized as an expert witness if this were a court case.

Baker’s also a musician who plays bass and guitar. It’s only natural, 
then, that his fi rst Windows Phone 7 app is a metronome: he calls 
it “MetroGnome,” as it’s gnome-themed. It’s his fi rst-ever mobile 
app on any device, so Baker didn’t know exactly what to expect. 

Overall, Baker says that developing the app wasn’t particularly 
diffi  cult because he has a deep Silverlight background. Th e fi rst 
version of MetroGnome, in fact, took only about 12 hours of devel-
opment time. “It’s all .NET,” Baker says. “Th e general accessibility 
of writing something on this platform is miles ahead of Windows 
Mobile 6 and 5 ... Th at model of building something with the whole 
infrastructure is in place.” One thing Baker says he would like to 
have, though, is OS access.

Baker also pointed out a few other areas he’d like to see Microsoft  
improve upon. And it starts with better documentation. “Th e doc-
uments are pretty thin. Most of what I’ve learned is the result of 
pinging [Microsoft support], finding blog posts, sample code,” 
Baker says. He adds: “I wish [Microsoft had] spent more time 
tying together app submission guidelines and UI guidelines. Th ere 
aren’t a lot of helpful samples, at all,” from Microsoft .

Th e next set of challenges for Baker came when he submitted his 
app for Microsoft  approval. He says he submitted MetroGnome for 
approval on Oct. 18. Aft er nearly a week of waiting, he found out 

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN 
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit 
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The 
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make 
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are 
used by 1105 Media, Inc. under license from owner. 

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine/gg232771
http://geekswithblogs.net/dlussier/archive/2010/10/27/142465.aspx
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx


Untitled-2   1 11/17/10   12:11 PM

www.axosoft.com


msdn magazine6

Space fi ller...
If you’re already using Visual Studio, simply download and install 

the Windows Azure Tools for Microsoft Visual Studio (bit.ly/aAsgjt). 
These tools support both Visual Studio 2008 and Visual Studio 2010 
and contain templates and tools specifi cally for Windows Azure 
development. Windows Azure Tools includes the Windows Azure SDK.

Moving Data from SQL Server
If you’re migrating an existing Web application to Windows Azure, 
you’ll need some way to migrate the app’s data as well. For apps that 
employ SQL Server 2005 or SQL Server 2008 as a data store, the 
SQL Azure Migration Wizard (sqlazuremw.codeplex.com) makes this 
transition a lot easier (Figure 2). The wizard not only transfers the 
actual data, but also helps you identify and correct possible compat-
ibility issues before they become a problem for your app.

To get a handle on how to use the SQL Server Migration Wizard, 
along with a lot of other helpful information about moving existing 
apps to Windows Azure, see “Tips for Migrating Your Applications 

Windows Azure Development Resources

Getting Started
When you’re ready to start developing for the Windows Azure 
platform, your fi rst stop should be the Windows Azure Developer 
Center on MSDN (msdn.microsoft.com/windowsazure). Here you’ll 
fi nd information about the entire platform along with links to 
documentation, tools, support forums and community blog posts. 

Next, head over to the Windows Azure portal (windows.azure.com) 
and set up your account. This gives you access to Windows Azure, 
SQL Azure for storage and Windows Azure AppFabric (Figure 1). 
You’ll need a Windows Live ID to sign up. If you don’t have one 
already, there’s a link on the sign-in page. 

As we go to press, Microsoft is offering an introductory special that 
lets you try out many features of the Windows Azure platform at no 
charge. See microsoft.com/windowsazure/offers/ for details. 

Developer Tools
Before you can start slinging code, you’ll need to get your develop-
ment environment set up. While you could probably build your 
Windows Azure app with Notepad and an Internet connection, it’s 
going to be a lot more productive—and enjoyable—to use tools 
optimized for the job.

If you don’t have Visual Studio 2010, you can enjoy (most of ) the 
benefi ts of a Windows Azure-optimized development environment 
with Visual Web Developer 2010 Express (asp.net/vwd). You can get it 
via the Web Platform Installer (microsoft.com/express/web), which can 
also install SQL Server 2008 Express Edition, IIS, and extensions for 
Silverlight and ASP.NET development. 

           TOOLBOX

As you’ve probably read elsewhere in MSDN Magazine, the Windows Azure platform is Microsoft’s stack 
of cloud computing resources that range from coding, testing and deploying Visual Studio and Windows 
Azure AppFabric to Windows Azure itself and the SQL Azure storage services. Here’s a collection of tools 
and information that will get you writing apps for Windows Azure today.

TERRENCE DORSEY 

Figure 1 Running a Service on Windows Azure

Figure 2 SQL Azure Migration Wizard

http://msdn.microsoft.com/windowsazure
http://windows.azure.com
http://microsoft.com/windowsazure/offers/
http://asp.net/vwd
http://microsoft.com/express/web
http://bit.ly/aAsgjt
http://sqlazuremw.codeplex.com


Toll Free USA (888) 774-3273  |  Phone (913) 390-4797  |  sales@spreadsheetgear.com

Download the FREE fully functional 30-Day 
evaluation of SpreadsheetGear 2010 today at 

www.SpreadsheetGear.com.

ASP.NET Excel Reporting   
Easily create richly formatted Excel reports without Excel using the 
new generation of spreadsheet technology built from the ground up 
for scalability and reliability.

Excel Compatible Windows Forms Control 
Add powerful Excel compatible viewing, editing, formatting, calculating, 
charting and printing to your Windows Forms applications with the 
easy to use WorkbookView control.

Create Dashboards from Excel Charts and Ranges 
You and your users can design dashboards, reports, charts, and 
models in Excel rather than hard to learn developer tools and you can 
easily deploy them with one line of code.

20 Minutes to 4 Seconds...
SpreadsheetGear for .NET reduced the time to generate a 
critical Excel Report “from 20 minutes to 4 seconds” making 
his team “look like miracle workers.”

Luke Melia, Software Development Manager at Oxygen Media in New York 

Untitled-9   1 11/2/10   12:01 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com


msdn magazine8 Toolbox

to the Cloud” in the August 2010 issue of MSDN Magazine 
(msdn.microsoft.com/magazine/ff872379).

Security Best Practices
You need to take security into consideration with any widely 
available application, and cloud apps are about as widely available 
as they come. The Microsoft patterns & practices team launched a 
Windows Azure Security Guidance project in 2009 to identify best 
practices for building distributed applications on the Windows Azure 
platform. Their fi ndings have been compiled into a handy PDF that 
covers checklists, threats and countermeasures, and detailed 
guidance for implementing authentication and secure communica-
tions (bit.ly/aHQseJ). The PDF is a must-read for anyone building 
software for the cloud.

PHP Development on Windows Azure
Dating from before even the days of classic ASP, PHP continues to be 
a keystone of Web application development. With that huge base of 
existing Web apps in mind, Microsoft created a number of tools that 
bring support for PHP to the Windows Azure platform. These tools 
smooth the way for migrating older PHP apps to Windows Azure, as 
well as enabling experienced PHP developers to leverage their 
expertise in the Microsoft cloud. 

There are four tools for PHP developers:
•  Windows Azure Companion helps you install and confi gure the 

PHP runtime, extensions and applications on Windows Azure.
•  Windows Azure Tools for Eclipse for PHP is an Eclipse plug-in 

that optimizes the open source IDE for developing applications 
for Windows Azure (Figure 3).

•  Windows Azure Command-Line Tools for PHP provides a simple 
interface for packaging and deploying PHP applications on 
Windows Azure.

•  Windows Azure SDK for PHP provides an API for leveraging 
Windows Azure data services from any PHP application.

You’ll fi nd more information about the tools and links to the down-
loads on the Windows Azure Team Blog at bit.ly/ajMt9g.

Windows Azure Toolkit for Facebook
Building applications for Facebook is a sure-fi re way to reach tens of 
millions of potential customers. And if your app takes off, Windows 
Azure provides a platform that lets you scale easily as demand grows. 
The Windows Azure Toolkit for Facebook (azuretoolkit.codeplex.com) 
gives you a head start in building your own highly scalable Facebook 
app. Coming up with the next FarmVille is still up to you, though!

Windows Azure SDK for Java
PHP developers aren’t the only ones getting some native tools 
for Windows Azure. Now Java developers can also work in their 
language of choice and get seamless access to Windows 
Azure services and storage. The Windows Azure SDK for Java 
(windowsazure4j.org) includes support for Create/Read/ Update/Delete 
operations on Windows Azure Table Storage, Blobs and Queues. 
You also get classes for HTTP transport, authorization, RESTful 
communication, error management and logging.

Setting up Your System
Here are a few useful blog posts from the Windows Azure 
developer community that walk you through the process of setting 
up a development environment and starting your fi rst cloud apps: 

Mahesh Mitkari
Confi guring a Windows Azure Development Machine
blog.cognitioninfotech.com/2009/08/confi guring-windows-azure-development.html

Jeff Widmer
Getting Started with Windows Azure: Part 1 - 
Setting up Your Development Environment
weblogs.asp.net/jeffwids/archive/2010/03/02/

getting-started-with-windows-azure-part-1-setting-up-your-development-environment.aspx

David Sayed
Hosting Videos on Windows Azure
blogs.msdn.com/b/david_sayed/archive/2010/01/07/

hosting-videos-on-windows-azure.aspx

Josh Holmes
Easy Setup for PHP on Azure Development
joshholmes.com/blog/2010/04/13/easy-setup-for-php-on-azure-development/

Visual Studio Magazine
Cloud Development in Visual Studio 2010
visualstudiomagazine.com/articles/2010/04/01/using-visual-studio-2010.aspx

TERRENCE DORSEY is the technical editor of MSDN Magazine. You can read his 
blog at terrencedorsey.com or follow him on Twitter: @tpdorsey.

TOOLBOX

Figure 3 Windows Azure Tools for EclipseYou need to take security into 
consideration with any widely 

available application, and 
cloud apps are about as widely 

available as they come.

http://msdn.microsoft.com/magazine/ff872379
http://bit.ly/aHQseJ
http://bit.ly/ajMt9g
http://azuretoolkit.codeplex.com
http://windowsazure4j.org
http://blog.cognitioninfotech.com/2009/08/configuring-windows-azure-development.html
http://weblogs.asp.net/jeffwids/archive/2010/03/02/getting-started-with-windows-azure-part-1-setting-up-your-development-environment.aspx
http://blogs.msdn.com/b/david_sayed/archive/2010/01/07/hosting-videos-on-windows-azure.aspx
http://joshholmes.com/blog/2010/04/13/easy-setup-for-php-on-azure-development/
http://visualstudiomagazine.com/articles/2010/04/01/using-visual-studio-2010.aspx


Untitled-1   1 10/14/10   12:00 PM

www.DevExpress.com/Grids


msdn magazine10

The point is that DI will likely require ad hoc up-front design 
or a bit of refactoring. In other words, if you’re using a DI 
framework already, then it’s easy to bring in some AOP features. 
Conversely, if your system is DI-free, bringing in a DI framework 
may require quite a bit of work. This may not be always possible 
in a large project or during the update of a legacy system. With 
a classic AOP approach, instead, you wrap up any cross-cutting 
concerns in a new component called an aspect. In this article, I’ll 
first give you a quick overview of the aspect-oriented paradigm 
and then move on to see the AOP-related capabilities you find 
in Unity 2.0.

A Quick Guide to AOP
An object-oriented programming (OOP) project is made up of a 
number of source fi les, each implementing one or more classes. Th e 
project also includes classes representing cross-cutting concerns 
such as logging or caching. All classes are processed by a compiler 
and produce executable code. In AOP, an aspect is a reusable 
component that encapsulates the behavior required by multiple 
classes within the project. Th e way in which aspects are actually 
processed depends on the AOP technology you’re considering. In 
general, we can say that aspects aren’t simply and directly processed 
by the compiler. An additional technology-specifi c tool is required 
to modify the executable code to take aspects into account. Let’s 
briefl y consider what happens with AspectJ—a Java AOP compiler 
that was the fi rst AOP tool created. 

With AspectJ, you use the Java programming language to write 
your classes and the AspectJ language to write aspects. AspectJ 
supports a custom syntax through which you indicate the expected 
behavior of the aspect. For example, a logging aspect might specify 
that it will log before and aft er a certain method is invoked. Aspects 
are in some way merged into the regular source code and produce 
an intermediate version of the source code that will then be com-
piled to an executable format. In AspectJ jargon, the component 
that preprocesses aspects and merges them with source code is 
known as the weaver. It produces an output that the compiler can 
render to an executable.

In summary, an aspect describes a reusable piece of code that 
you want to inject in existing classes without touching the source 
code of those classes. In other AOP frameworks (such as the .NET 
PostSharp framework), you won’t fi nd a weaver tool. However, the 
content of an aspect is always processed by the framework and 
results in some form of code injection. 

          Aspect-Oriented Programming, 
Interception and Unity 2.0

Th ere’s no doubt that object orientation is a mainstream program-
ming paradigm, one that excels when it comes to breaking a system 
down into components and describing processes through compo-
nents. Th e object-oriented (OO) paradigm also excels when you 
deal with the business-specifi c concerns of a component. However, 
the OO paradigm isn’t as eff ective when it comes to dealing with 
cross-cutting concerns. In general, a cross-cutting concern is a 
concern that aff ects multiple components in a system.

To maximize the reuse of complex business logic code, you 
typically tend to design a hierarchy of classes around the core and 
primary business functions of the system. But what about other 
non-business-specifi c concerns that cross-cut through the hier-
archy of classes? Where would you fi t features such as caching, 
security and logging? Most likely, they end up being repeated in 
every aff ected object.

Not being a specific responsibility of a given component or 
family of components, a cross-cutting concern is an aspect of the 
system that must be dealt with at a different logical level, a level 
beyond application classes. For this reason, a distinct programming 
paradigm was defi ned years ago: aspect-oriented programming 
(AOP). Incidentally, the concept of AOP was developed at Xerox 
PARC laboratories in the 1990s. Th e team also developed the fi rst 
(and still most popular) AOP language: AspectJ. 

Even though almost everyone agrees on the benefi ts of AOP, it’s 
still not widely implemented. In my opinion, the main reason for 
such a limited adoption is essentially the lack of proper tools. I’m 
pretty sure the day that AOP is (even only partially) supported 
natively by the Microsoft  .NET Framework will represent a water-
shed in the history of AOP. Today, you can only do AOP in .NET 
using ad hoc frameworks. 

Th e most powerful tool for AOP in .NET is PostSharp, which you 
can fi nd at sharpcrafters.com. PostSharp off ers a full AOP framework 
where you can experience all the key features of the theory of AOP. 
However, it should be noted that many dependency injection (DI) 
frameworks include some AOP capabilities. 

For example, you fi nd AOP capabilities in Spring.NET, Castle 
Windsor and—of course—Microsoft  Unity. For relatively simple 
scenarios, such as tracing, caching and decoration of components 
in the application tier, the capabilities of DI frameworks usually do 
the trick. However, it’s diffi  cult to go with DI frameworks when it 
comes to domain objects and UI objects. A cross-cutting concern 
can certainly be seen as an external dependency, and DI techniques 
certainly allow you to inject external dependencies in a class. 

CUTTING EDGE DINO ESPOSITO

http://sharpcrafters.com


Untitled-1   1 10/14/10   12:00 PM

www.DevExpress.com/reporting


msdn magazine12 Cutting Edge

Note that in this regard, code injection is diff erent from dependency
injection. Code injection refers to the ability of an AOP frame-
work to insert calls to public endpoints in the aspect at specifi c 
points within the body of classes decorated with a given aspect. 
Th e PostSharp framework, for example, lets you write aspects as 
.NET attributes that you then attach to methods in your classes. 
PostSharp attributes are processed by the PostSharp compiler (we 
could even call it the weaver) in a post-build step. Th e net eff ect 
is that your code is enhanced to include some of the code in the 
attributes. But the injection points are resolved automatically, and 
all you do as a developer is write a self-contained aspect compo-
nent and attach it to a public class method. It’s easy to write and 
even easier to maintain the code.

To fi nish off  this quick overview about AOP, let me present a 
few specifi c terms and clarify their intended meaning. A join point 
indicates a point in the source code of the target class where you 
want to inject the aspect’s code. A pointcut represents a collection 
of join points. An advice refers to the code to inject in the target 
class. Th e code can be injected before, aft er and around the join 
point. An advice is associated with a pointcut. Th ese terms come 
from the original defi nition of AOP and may not be refl ected 
literally in the particular AOP framework you’re using. It’s recom-
mended that you try to pick up the concepts behind the terms—the 
pillars of AOP—and then use this knowledge to better understand 
the details of a particular framework.

A Quick Guide to Unity 2.0
Unity is an application block available as part of the Microsoft 
Enterprise Library project, as well as a separate download. The 
Microsoft  Enterprise Library is a collection of application blocks 
that addresses a bunch of cross-cutting concerns that characterize 
.NET application development—logging, caching, cryptography, 
exception handling and more. The latest version of the Enterprise 
Library is 5.0, released in April 2010 and coming with full 
support for Visual Studio 2010 (learn more about it at the patterns & 
practices Developer Center at msdn.microsoft.com/library/ff632023). 

Unity is one of the Enterprise Library application blocks. Also 
available for Silverlight, Unity is essentially a DI container with 
additional support for an interception mechanism through which 
you can make your classes a bit more aspect-oriented. 

Interception in Unity 2.0
Th e core idea of interception in Unity is enabling developers to 
customize the chain of calls that it takes to invoke a method on 

an object. In other words, the Unity inter-
ception mechanism captures calls being 
made to confi gured objects and customizes 
the behavior of the target objects by adding 
some extra code before, aft er or around the 
regular execution of methods. Interception 
is essentially an extremely fl exible approach 
to add new behavior to an object at run time 
without touching its source code and without 
aff ecting the behavior of classes in the same 
inheritance path. Unity interception is a way 

to implement the Decorator pattern, which is a popular design 
pattern devised to extend the functionality of an object at run time 
as the object is used. A decorator is a container object that receives 
(and maintains a reference to) an instance of the target object and 
augments its capabilities toward the outside world. 

Th e Interception mechanism in Unity 2.0 supports both instance 
and type interception. Furthermore, interception works regardless 
of the way in which the object is instantiated, whether the object is 
created through the Unity container or is a known instance. In the 
latter case, you can just use a diff erent, completely standalone API. If 
you do so, however, you lose the confi guration fi le support. Figure 1
shows the architecture of the interception feature in Unity, detailing 
how it works on a particular object instance not resolved through the 
container. (Th e fi gure is just a slightly reworked version of a fi gure 
you fi nd in the MSDN documentation.)

Th e interception subsystem is made of three key elements: the 
interceptor (or proxy); the behavior pipeline; and the behavior or 
aspect. At the two extremes of the subsystems you fi nd the client 
application and the target object—that is, the object being assigned 
additional behaviors not hardcoded in its source code. Once the 
client application is confi gured to use the interception API of Unity 
on a given instance, any method invocation goes through a proxy 
object—the interceptor. Th is proxy object looks at the list of regis-
tered behaviors and invokes them through the internal pipeline. 
Each confi gured behavior is given a chance to run before or aft er the 
regular invocation of the object method. Th e proxy injects input data 
into the pipeline and receives any return value as initially generated 
by the target object and then further modifi ed by behaviors.

Confi guring Interception
Th e recommended way of using interception in Unity 2.0 is dif-
ferent from earlier versions, although the approach used in earlier 
versions is fully supported for backward compatibility. In Unity 2.0, 
interception is just a new extension you add to the container to 
describe how an object is actually resolved. Here’s the code you 
need if you want to confi gure interception via fl uent code:

var container = new UnityContainer();
container.AddNewExtension<Interception>();

Th e container needs to fi nd information about types to inter-
cept and behaviors to add. Th is information can be added either 
using fl uent code or via confi guration. I fi nd confi guration to be 
particularly fl exible, as it lets you modify things without touching 
the application and without any new compile step. Let’s go with 
the configuration-based approach. 

Figure 1 Object Interception at Work in Unity 2.0

Return
Value

Invoke
Method

Unity Interception Pipeline

Input Return
ValueInput Return
Value

Client Application

Target ObjectBehavior Behavior Behavior

Unity Interceptor

http://msdn.microsoft.com/library/ff632023


Untitled-1   1 10/14/10   12:01 PM

www.DevExpress.com/analytics


msdn magazine14 Cutting Edge

To begin with, you add the following in the confi guration fi le:
<sectionExtension type="Microsoft.Practices.Unity.InterceptionExtension.
  Configuration.InterceptionConfigurationExtension, 
  Microsoft.Practices.Unity.Interception.Configuration"/>

Th e purpose of this script is extending the confi guration schema 
with new elements and aliases that are specifi c to the interception 
subsystem. Another due addition is the following:

<container> 
  <extension type="Interception" /> 
  <register type="IBankAccount" mapTo="BankAccount"> 
    <interceptor type="InterfaceInterceptor" /> 
    <interceptionBehavior type="TraceBehavior" /> 
  </register> 
</container> 

To achieve the same thing using fl uent code, you would call Add-
NewExtension<T> and RegisterType<T> on the container object. 

Let’s look at the confi guration script more closely. Th e <extension> 
element adds interception to the container. Note that the “Inter-
ception” being used in the script is one of the aliases defi ned in the 
section extension. The interface type IBankAccount is mapped 
to the concrete type BankAccount (this is the classic job of a DI 
container) and associated with a particular type of interceptor. 
Unity off ers two main types of interceptors: instance interceptors 
and type interceptors. Next month, I’ll delve deeper into intercep-
tors. For now, suffi  ce it to say that an instance interceptor creates a 
proxy to fi lter incoming calls directed at the intercepted instance. 
Type interceptors, instead, just mock the type of the intercepted 
object and work on an instance of a derived type. (For more infor-
mation on interceptors, see msdn.microsoft.com/library/ff660861(PandP.20).) 

The interface interceptor is an instance interceptor limited to 
act as the proxy of only one interface on the object. Th e interface 
interceptor uses dynamic code generation to create the proxy class. 
Th e interception behavior element in the confi guration indicates 
the external code you want to run around the intercepted object 
instance. Th e class TraceBehavior must be declaratively confi gured 
so the container can resolve it and any of its dependencies. You use 
the <register> element to tell the container about the TraceBehavior 
class and its expected constructor, as shown here:

<register type="TraceBehavior"> 
   <constructor> 
     <param name="source" dependencyName="interception" /> 
   </constructor> 
</register>

Figure 2 shows an excerpt from the TraceBehavior class.
A behavior class implements IInterceptionBehavior, which basi-

cally consists of the Invoke method. Th e Invoke method contains 
the entire logic you want to use for any method under the con-
trol of the interceptor. If you want to do something before the tar-
get method is called, you do it at the beginning of the method. 
When you want to yield to the target object—or, more precisely, to 
the next behavior registered in the pipeline—you call the getNext 
delegate provided by the framework. Finally, you can use any code you 
like to post-process the target object. Th e Invoke method needs to return 
a reference to the next element in the pipeline; if null is returned, then 
the chain is interrupted and further behaviors will never be invoked.

Confi guration Flexibility
Interception and, more generally, AOP, address a number of 
interesting scenarios. For example, interception allows you to 

add responsibilities to individual objects without modifying the 
entire class, keeping the solution much more fl exible than it would 
be with a decorator.  

Th is article just scratched the surface of AOP applied to .NET. 
In the next few months I’ll write more about interception in Unity 
and AOP in general. 

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC” 
from Microsoft Press (2010) and coauthor of “Microsoft .NET: Architecting 
Applications for the Enterprise” (Microsoft  Press, 2008). Based in Italy, Esposito 
is a frequent speaker at industry events worldwide. You can join his blog at 
weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article: 
Chris Tavares

class TraceBehavior : IInterceptionBehavior, IDisposable
{
  private TraceSource source;

  public TraceBehavior(TraceSource source)
  {
    if (source == null) 
      throw new ArgumentNullException("source");

    this.source = source;
  }
   
  public IEnumerable<Type> GetRequiredInterfaces()
  {
    return Type.EmptyTypes;
  }

  public IMethodReturn Invoke(IMethodInvocation input, 
    GetNextInterceptionBehaviorDelegate getNext)
  {
     // BEFORE the target method execution 
     this.source.TraceInformation("Invoking {0}",
       input.MethodBase.ToString());

     // Yield to the next module in the pipeline
     var methodReturn = getNext().Invoke(input, getNext);

     // AFTER the target method execution 
     if (methodReturn.Exception == null)
     {
       this.source.TraceInformation("Successfully finished {0}",
         input.MethodBase.ToString());
     }
     else
     {
       this.source.TraceInformation(
         "Finished {0} with exception {1}: {2}",
         input.MethodBase.ToString(),
         methodReturn.Exception.GetType().Name,
         methodReturn.Exception.Message);
     }

     this.source.Flush();
     return methodReturn;
   }

   public bool WillExecute
   {
     get { return true; }
   }

   public void Dispose()
   {
     this.source.Close();
   }
 }

Figure 2 A Sample Unity Behavior

http://msdn.microsoft.com/library/ff660861(PandP.20)
http://weblogs.asp.net/despos


Untitled-1   1 10/14/10   12:01 PM

www.DevExpress.com/scheduling


msdn magazine16

The Entity Framework 
ObjectContext.ToTraceString Method
Th e Entity Framework API (3.5 and 4) provides a single method 
for inspecting queries at run time, ToTraceString, which is useful 
but only provides information on a subset of the calls made to the 
database. ToTraceString is a method of ObjectQuery, so if you’re 
writing a LINQ to Entities query, you must fi rst cast the query to 
an ObjectQuery before calling ToTraceString. Here’s an example:

var query = from c in context.Customers where c.CustomerID == 3 select c;
var objectQuery=query as System.Data.Objects.ObjectQuery;
Console.WriteLine(objectQuery.ToTraceString());

Th is outputs the following string:
SELECT
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[Title] AS [Title],
[Extent1].[FirstName] AS [FirstName],
[Extent1].[MiddleName] AS [MiddleName],
[Extent1].[LastName] AS [LastName],
[Extent1].[Suffix] AS [Suffix],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[SalesPerson] AS [SalesPerson],
[Extent1].[EmailAddress] AS [EmailAddress],
[Extent1].[Phone] AS [Phone],
[Extent1].[ModifiedDate] AS [ModifiedDate],
[Extent1].[TimeStamp] AS [TimeStamp]
FROM [SalesLT].[Customer] AS [Extent1]
WHERE 3 = [Extent1].[CustomerID]

Notice that the code sample doesn’t execute the query. Nor does 
ToTraceString, which causes the query to be processed (trans-
formed to a store query) by the Entity Framework with help from 
the database provider, System.Data.SqlClient, but doesn’t force the 
query to be executed on the database.

You can use ToTraceString only with explicitly defi ned queries. 
Th erefore, you can’t use it to see queries executed as a result 
of deferred loading with the Load method or lazy load-
ing. Nor can you use it to inspect activity such as inserts, 
updates, deletes or stored procedure execution.

Finally, it’s important to note that you can’t easily get 
the results of ToTraceString into a debug process, by, for 
example, creating a debugger visualizer. Th at would require 
ObjectQuery to be serializable, which it’s not.

Profi ling with Visual Studio 2010 IntelliTrace
IntelliTrace is available in Visual Studio 2010 Ultimate 
but not the lesser versions. IntelliTrace captures database 
activity, including that which is triggered by the Entity 
Framework, but it doesn’t display the parameter values 
that were sent with the command.

Profi ling Database Activity 
in the Entity Framework

In last month’s Data Points column (msdn.microsoft.com/magazine/
gg309181), I wrote about profi ling the performance of the Entity 
Framework against SQL Azure. Th is month, I look at a diff erent 
type of profi ling—query profi ling—to see what queries and com-
mands are being executed on the database in response to queries 
and other data access activities in the Entity Framework.

One of the Entity Framework’s prime capabilities is command 
generation for executing database queries as well as inserts, updates 
and deletes. Th is is a huge benefi t for many developers, although 
there will always be an ongoing debate about the quality of SQL 
generated by object-relational mapping (ORM) tools versus SQL 
handwritten by experts (I won’t be engaging in that debate in 
this article). And for the most part, the SQL that’s generated is 
pretty good, especially considering that it has to be constructed 
dynamically in a generic way, regardless of how creative you get 
with your LINQ to Entities or Entity SQL query expressions. 

Although a lot of attention was paid to improving command genera-
tion in the Entity Framework 4, it’s still important to be aware of what’s 
happening in your database. Th e quality of the generated store query 
is only part of the story. You may be writing code that creates extended 
database execution times or an unusual number of trips to the database. 
Th ese are critical things to be aware of when profi ling your application.

For the fi rst few years of the Entity Framework’s life, there was 
nothing available outside of database-profi ling tools such as SQL 
Profiler, which, while informative, requires a lot of configuring 
and mining if you want to view the results in an easy-to-digest 
manner. Following are a variety of options for query profi ling the 
Entity Framework beyond the database-profi ling tools.

DATA POINTS JULIE LERMAN

Figure 1 A Series of Database Commands Displayed in the Visual 
Studio IntelliTrace Display

http://msdn.microsoft.com/magazine/gg309181
http://msdn.microsoft.com/magazine/gg309181


Untitled-1   1 10/14/10   12:02 PM

www.DevExpress.com/coderush


msdn magazine18 Data Points

Following is some code that performs the following tasks:
1.  Executes a query of 10 customers
2.  Lazy loads the orders for the fi rst returned customer
3.  Disables lazy loading
4.  Explicitly loads the orders for the second returned customer
5.  Modifi es a customer
6.  Sends the changes to the database with the 

SaveChanges method
7.  Executes a function that I’ve mapped to a stored proce-

dure in an Entity Data Model
var query = from c in context.Customers select c;
var custList = query.Take(10).ToList();

Customer custFirst = custList[0];
int orderCount = custFirst.Orders.Count; 

context.ContextOptions.LazyLoadingEnabled=false;
Customer custSecond = custList[1];
custSecond.Orders.Load(); 

custSecond.ModifiedDate = DateTime.Now;
context.SaveChanges(); 

ObjectResult<PartialOrderDetails> orders= 
  context.GetCustomerOrdersForId(custList[2].CustomerID);

When run, this code will force the execution of three SELECT 
statements, an UPDATE statement and then an Execute command 
for the stored procedure in the database.

Looking at the IntelliTrace screenshot in Figure 1, you can see 
all fi ve of these commands. 

However, expanding one of these items, as shown in Figure 2, 
shows that the command is there but the parameters are not.

Th erefore, if you want to see the database activity including 
parameters, you’ll need to use some type of external profi ler.

The EFTracingProvider on MSDN Code Gallery
Jarek Kowalski wrote the EFTracingProvider when he was on the 
Entity Framework team at Microsoft. There’s a version for the 
Microsoft  .NET Framework 3.5 and one for the .NET Framework 4.

To use the EFTracingProvider, you’ll need to build a wrapper around 
the ObjectContext class, AWEntities, and use that in place of AW Entities. 
Th is extended class provides tracing methods, such as Log, that you can 
use to log context activities. Th ere’s an example of the required class wrap-
per included with the EFTracingProvider download. You’ll also fi nd 
the relevant code in the download for this article (code.msdn.microsoft.com/
mag201012DataPoints). Additionally, you need to add two DbProviderFactories 
settings in the application’s confi g fi le. With all of this in place, you 
can then instantiate the extended context and begin logging.

Here’s an example that creates a text fi le to capture the log events and 
then uses the TracingProvider.Log method to log all of the activities:

using (TextWriter logFile = File.CreateText("sqllogfile.txt"))
{
  using (var context = new ExtendedAWEntities())
  {
    context.Log = logFile;
    var query = from c in context.Customers select c;
    var custList = query.Take(10).ToList();
  }
  Console.WriteLine(File.ReadAllText("sqllogfile.txt"));
}

Using the TracingProvider wrapper and the ExtendedAWEnti-
ties context class, I reran the same set of code as in the previous 
IntelliTrace example.

All fi ve database commands were logged and each command 
was logged with its relevant parameters. 

Figure 3, as an example, shows the command sent as a result of 
the lazy load where the value of the EntityKeyValue1 parameter is 
specifi ed aft er the command is listed.

Th e EFTracingProvider is simple to implement and provides 
you with all of the database commands generated by your Entity 
Framework code as raw text. You can also subscribe to the tracing 
events: CommandExecuting, CommandFinished and Command-
Failed on the context. Th ese give you access to the raw DbCommand 
just before and after it gets executed so you can analyze or log 
additional details. 

You can download the EFTracingProvider—along with its 
companion, the EFCachingProvider, and a sample solution, the 
EFProvider WrapperDemo, which explores all of these features—for free 
from the MSDN Code Gallery (code.msdn.microsoft.com/EFProviderWrappers). 

SELECT
[Extent1].[SalesOrderID] AS [SalesOrderID],
[Extent1].[OrderDate] AS [OrderDate],
[Extent1].[DueDate] AS [DueDate],
[Extent1].[OnlineOrderFlag] AS [OnlineOrderFlag],
[Extent1].[SalesOrderNumber] AS [SalesOrderNumber],
[Extent1].[PurchaseOrderNumber] AS [PurchaseOrderNumber],
[Extent1].[AccountNumber] AS [AccountNumber],
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[BillToAddressID] AS [BillToAddressID],
[Extent1].[CreditCardApprovalCode] AS [CreditCardApprovalCode],
[Extent1].[SubTotal] AS [SubTotal],
[Extent1].[Comment] AS [Comment],
[Extent1].[ModifiedDate] AS [ModifiedDate],
[Extent1].[ShipDate] AS [ShipDate]
FROM [SalesLT].[SalesOrderHeader] AS [Extent1]
WHERE [Extent1].[CustomerID] = @EntityKeyValue1
-- EntityKeyValue1 (dbtype=Int32, size=0, direction=Input) = 1

Figure 3 A Command Captured by the EFTracingProvider

Figure 2 A Detailed Select Statement Collected by the Visual 
Studio 2010 IntelliTrace Feature

http://code.msdn.microsoft.com/mag201012DataPoints
http://code.msdn.microsoft.com/mag201012DataPoints
http://code.msdn.microsoft.com/EFProviderWrappers


Untitled-1   1 10/14/10   12:02 PM

www.DevExpress.com/freeASP


msdn magazine20 Data Points

Third-Party Profi lers
You may, however, wish to go beyond the raw text of the EF-
TracingProvider’s log fi le. You can leverage and learn from the code 
in those log fi les or take advantage of two tools that have already 
done the work for you. Th ere are two third-party tools for profi ling 
Entity Framework queries: Hibernating Rhinos Entity Framework 
Profi ler and Huagati Query Profi ler. 

Additionally, LINQPad, which is focused on allowing you to test 
query expressions outside of your application, displays SQL for the 
expressions you’re executing. Although this is an indispensable 
tool for anyone writing LINQ against a large variety of providers, 
it doesn’t allow you to profile the queries generated by your 
application, and therefore I won’t explore it further in this column.

Entity Framework Profi ler (EF Prof ) is part of the Hibernating 
Rhinos UberProf family of profi lers (hibernatingrhinos.com/products/ 
UberProf). Th ere are also profi lers for nHibernate, Hibernate and LINQ 

to SQL. A fi ft h profi ler, LLBLGen 
Pro, was in beta at the time of writ-
ing. EF Prof combines the existing 
intellectual property derived from 
the other UberProf tools with 
some ideas gleaned from the 
EFTracingProvider. At its simplest, 
you can add a single line of code 
to your application to enable it to 
talk to EF Prof ’s engine and have 
the results reported in the EF Prof 
client application:
  HibernatingRhinos.Profiler.  
    Appender.EntityFramework.
    EntityFrameworkProfiler.Initialize

Database activity is grouped 
by ObjectContext instance. In 
Figure 4 , you can see that there 
are two ObjectContext instances 
displayed—that’s because I ran my 
example code twice.  

Also in Figure 4 , on the right, 
you can see a preview of each 
of the database calls for the 

selected context instance. It appears that there’s an extra SELECT 
being called aft er the UPDATE command. Th is is, in fact, part 
of the command that’s sent with SaveChanges as the Entity 
Framework is ensuring that the Customer row’s updated Time-
Stamp fi eld is returned to the customer instance.

As you highlight a SQL statement in the UI, you can see the 
complete SQL in the lower screen along with a reference to the 
fact that the value—5 in this case—was passed in as a parameter, 
@EntityKeyValue1.

EF Prof also allows you to see the resultant rows from the query, and 
even the database query plan. Th e Stack Trace tab, shown in Figure 5, 
lets you see how the application came to execute a particular command 
and even lets you jump directly to that line of code in Visual Studio.

EF Prof is able to capture all of an application’s Entity Frame-
work activity and presents it in an easy-to-navigate UI along with 
some great bells and whistles—such as the query plan view—and 

links back to the executing code. A 
standard license to EF Prof is $305 
with discounts for multiple licenses 
and a subscription plan. EF Prof 
works with any of the Entity Frame-
work data providers and therefore 
isn’t limited to SQL Server. It works 
with the .NET Framework versions 
3.5 and 4.

Huagati Query Profi ler, orig inally 
called L2S Profi ler, was updated in 
November to add support for the 
Entity Framework 4. You can also 
use it to profi le LINQ to SQL and 
LLBLGen Pro, but it currently only 
works with SQL Server. 

Figure 4 The EF Prof Query Profi ler UI

Figure 5 The EF Prof Stack Trace Lets You Jump to the Code that Executed the Selected 
Database Command

http://hibernatingrhinos.com/products/UberProf
http://hibernatingrhinos.com/products/UberProf


TECHNICAL
CONFERENCE

Learn | Inspire | Innovate

The Microsoft Dynamics AX team has been hard at work developing our 
most innovative release to date. We are inviting our partners and customers 
to Redmond to experience the product pre-release.
 

Microsoft Dynamics AX provides industry solutions for customers by bringing 
together a breadth of Microsoft products and technologies, including:

anuary  - ,   Redmond, WA

AX

Experience How. Get Involved.
Find out more at  http://www.microsoft.com/dynamics/daxconf2011/MSDN

Want to get involved? Email: daxconf@microsoft.com.

2011

Untitled-9   1 11/2/10   4:58 PM

http://www.microsoft.com/dynamics/daxconf2011/MSDN
mailto:daxconf@microsoft.com


msdn magazine22 Data Points

Implementing the Query Profi ler is a matter of referencing the 
profi ler’s assembly (Huagati.EFProfi ler.dll) in your application and 
adding two new constructors, plus some additional logic to your 
ObjectContext class in a partial class. Figure 6 shows the partial 
class I’ve created for my AWEntities class.

Th e EFProfi ler.GetConnection method hooks into the database 
to track its activity. You can learn more about various settings you 
can use when instantiating the EFProfi ler on the Huagati Web site.

Th e profi ler collects its data and outputs it to a fi le in the des-
ignated folder. You can then open that fi le up in the profi ler’s Log 
Explorer, shown in Figure 7.

As you can see in Figure 7 , all five database requests were 
collected. The Update command is combined with its SELECT 
command to return the TimeStamp, which is exactly how the 
command is sent to the database. 

Th e Log Explorer shown in Figure 7 displays the relevant lines 
from the SQL Server SQL Profi ler data. As with EF Prof, you can 
see the query with its parameters, link back to the relevant code 
lines in your application from the Stack view, view the execution 
plan and see some statistics about the queries.

Th e database activity for each context instance is stored in a 
separate log fi le, so the Log Explorer will only display one set of 
commands at a time. Th e Settings allow you to color-code alerts 
highlighting unusual activity levels such as noticeably or even 
alarmingly long execution times.

Th e Query Profi ler UI isn’t as slick as the EF Prof UI, and you need 
to make a slightly greater investment in your code (adding logic to 
each ObjectContext in your application). But the components are 
distributable, which means that you can collect profi ler informa-
tion for apps running in your client’s environment. Also, it doesn’t 
have as many analysis options as EF Prof. But the $20 Standard and 
$40 Professional sticker price (which includes all three profi lers), 
may make up for these diff erences for many developers. Keep in 
mind that the Huagati Entity Framework Profi ler was still in beta 
when I did my exploration and that it only works with SQL Server, 
as opposed to the ability of EF Prof to work with any of the avail-
able ADO.NET Data Providers that support the Entity Framework.

 An introduction to Hugati’s Entity Framework support can be 
found at tinyurl.com/26cfful. At the end of that blog post you’ll fi nd a 
link to download the beta version, 1.31.

The Right Tool for the Job
I’m a big believer of using the right tool for the job, and that it’s 
wasteful to try to squeeze functionality out of the Visual Studio 
2010 box when there are other great tools available. In this column, 
you’ve seen an array of tools built into the Entity Framework APIs 
and Visual Studio 2010, an extension that will provide you with raw 
data and two third-party tools that perform not only the task of 

data collection, but presentation as 
well. Whichever one of these paths 
you choose, even if you simply use 
SQL Profi ler, you shouldn’t take 
your database for granted when 
profi ling your application. 

JULIE LERMAN is a Microsoft  MVP, .NET 
mentor and consultant who lives in the hills 
of Vermont. You can fi nd her presenting on 
data access and other Microsoft  .NET topics 
at user groups and conferences around the 
world. She blogs at thedatafarm.com/blog 
and is the author of the highly acclaimed 
book, “Programming Entity Framework” 
(O’Reilly Media, 2010). Follow her on 
Twitter.com: julielerman.

THANKS to the following technical 
expert for reviewing this article: 
Jarek Kowalski

partial class AWEntities
{
  private HuagatiEFProfiler.EFProfiler _profiler = null;
  public AWEntities(bool enableProfiling)
    : this(enableProfiling, "name=AWEntities")
  {
  }
  public AWEntities(bool enableProfiling, string connectionString)
    : this(EFProfiler.GetConnection(enableProfiling, connectionString))
  {
    string profilerOutput =
      System.IO.Path.Combine(System.Environment.GetFolderPath(
        Environment.SpecialFolder.Personal),
      @"EFProfiler\Samples");
    _profiler=new HuagatiEFProfiler.EFProfiler(this, profilerOutput, null, 
      HuagatiEFProfiler.ExecutionPlanMode.Actual, false);
   _profiler.LogError += EFProfiler_LogError;
  }
}

Figure 6 The Partial Class to Use with Huagati Query Profi ler

Figure 7 The Huagati Entity Framework Query Profi ler UI

You shouldn’t take your 
database for granted when 
profi ling your application.

http://tinyurl.com/26cfful
http://Twitter.com/julielerman


Free 60 Day Evaluation!
www.leadtools.com/msdn
(800) 637-1840

Silverlight: 100% pure Silverlight 3 and 4 Imaging SDK.
Image Formats & Compression: Supports 150+ image formats and  compressions 

including TIFF, EXIF, PDF, JPEG2000, JBIG2 and CCITT G3/G4.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing functions 

supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit 

development ith PDF, PDF/A, XPS, DOC, XM  and Text output.
Forms Recognition & Processing: Automatically identify and classify forms and 

extract user lled data.
Barcode: Auto detect, read and rite 1D and 2D barcodes for multithreaded 32  64 bit 

development.
Document Cleanup/Preprocessing: Auto-des e , despec le, hole punch, line 

and border removal, inverted text correction and more for optimum results in OCR and  
Barcode recognition.
PDF & PDF/A: Read, rite and vie  searchable PDF ith text, images, boo mar s and 

annotations.
Annotations: Interactive UI for document mark-up, redaction and image measurement 

(including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly build 

high- uality, full-featured, eb-based medical image delivery and vie er applications.
PACS Workstation Framework: Set of .NET PACS components that can be used to 

build a full featured PACS Workstation application.
Medical Image Viewer: igh level display control ith built-in tools for image mark-up, 
indo  level, measurement, zoom/pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the DICOM standard 

(including Encapsulated PDF/CDA and Ra  Data).
PACS Communications: Full support for DICOM messaging and secure communication 

enabling uick implementation of any DICOM SCU and SCP services.
3D: Construct 3D volumes from 2D DICOM medical images and visualize ith a variety of 

methods including MIP, MinIP, MRP, VRT and SSD.
Scanning: TWAIN  WIA (32  64-bit), auto-detect optimum driver settings for high 

speed scanning.
DVD: Play, create, convert and burn DVD images.
MPEG Transport Stream: With DVR for UDP and TCP/IP streams  auto-live support.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, OGG, ISO,        

DVD and more.

Develop your application ith the same robust imaging technologies used by Microsoft, HP, 
Sony, Canon, Kodak, GE, Siemens, the US Air Force and Veterans Affairs Hospitals. 

EADTOO S provides developers easy access to decades of expertise in  
color, grayscale, document, medical, vector and multimedia imaging development. 
Install EADTOO S to eliminate months of research and programming time hile  
maintaining high levels of uality, performance and functionality.

Vector

DICOM Medical

Form Recognition 
& Processing

Multimedia

Barcode

DocumentSilverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-9   1 11/2/10   11:38 AM

http://www.leadtools.com/msdn


Untitled-4   2 11/8/10   2:56 PM

www.componentart.com


Untitled-4   3 11/8/10   2:56 PM

www.componentart.com


msdn magazine26

SharePoint 2010 Site and 
Document Library Confi guration
For this scenario, we created a SharePoint site 
using the Team Site template. In the Shared 
Documents library, we created a column 
that allows us to fl ag an item as archived to 
Windows Azure. This is done through the 
Library Settings accessible via the Ribbon. 
Once in Library Settings, we created a column 
with the properties illustrated in Figure 1.

In Advanced Settings, we also selected 
“Yes” for the “Allow the management of con-
tent types” setting.

We used this as part of the Content Type that 
we named Link to a Document. Next, we created 
instances of this Content Type as a means to link 
to the archived document, as shown in Figure 2.

Once the column and the content type 
were added to the document library, we 
uploaded a sample Word document named 
Services SOW.docx. 

SharePoint 2010 Web.confi g
In order to connect to the cloud, we needed to get the settings that 
are required to connect with Windows Azure. In this case, we used 
development storage and added the keys to the <appSettings> 
element in the web.confi g, as shown in Figure 3.

SharePoint Project
Fortunately, for SharePoint 2010 using Visual Studio 2010, it’s a nice 
developer experience to create, debug and publish new features. 
We created a SharePoint Feature (see msdn.microsoft.com/library/

bb861828(offi ce.12) for more information on this), which adds a cus-
tom action to the items’ action drop-down menus in the document 
library. Th e user will click it to use the archive feature.

We started by creating a solution named MSSAzureArchive 
using the Empty SharePoint Project template (see Figure 4). 

Next, we specifi ed the site and security level for debugging. We 
decided to choose “Deploy as a farm solution” because the code 
will need to make external calls, which the sandboxed solution 

Pushing Content from SharePoint 
to Windows Azure Storage

I have a coauthor this month, as colleague 
Shad Phillips helped me out with a recent 
project where I was working with a customer 
on a proof of concept that used SharePoint 
2010 as an application platform. On the side, 
one of the customer’s staffers asked me if 
I could think of a reasonable way to take 
approved content from SharePoint and pub-
lish it, making it available to people outside 
of the corporate network. 

The customer’s current infrastructure 
didn’t support external content (download-
able documents and videos). Having done a 
lot of work with Windows Azure, I immedi-
ately thought that it would be pretty simple to 
incorporate pushing the content to Windows 
Azure Storage as part of the workfl ow and 
then, depending on need, making it publicly 
available or providing lease-based access for 
restricted content. 

With that in mind, I talked with my col-
league, Shad, who had previously solved a 
similar problem where he had implemented a sample method to 
archive SharePoint documents from the library to Windows Azure 
Storage. Although the intent of that solution is diff erent from my 
goal, the mechanics are the same. This month, Shad and I will 
walk through a sample implementation that pushes content from 
SharePoint to Windows Azure Storage, and cover a little bit about 
lease-access control to the fi les.

Scenario and Setup
Specifically, we developed a custom feature that enables a user to 
selectively push a document from SharePoint to Windows Azure 
Storage. For some inexplicable reason, users don’t typically like 
it when their documents are moved and links aren’t provided to 
fi nd them, so we left  a link in the document library to the cloud 
location that behaves the same as it would if the document were 
at a non-cloud location.

Needed soft ware:
•  Visual Studio 2010 
•  Microsoft  SharePoint 2010
•  Windows Azure SDK
•  Windows Azure Development Storage Service

FORECAST: CLOUDY JOSEPH FULTZ AND SHAD PHILLIPS

Code download available at code.msdn.microsoft.com/mag201012Cloudy.

Figure 1 Column Settings on the 
Team Site Template

http://msdn.microsoft.com/library/bb861828(office.12)
http://msdn.microsoft.com/library/bb861828(office.12)
http://code.msdn.microsoft.com/mag201012Cloudy


Project3  12/16/09  11:55 AM  Page 1

www.nsoftware.com


msdn magazine28 Forecast: Cloudy

won’t allow. References needed to be added to the 
project for Microsoft .Windows.Azure.Storage-
Client and System.Web. Next, we added an Empty 
Element item to the project using the Empty-
Element template and named it AzureStorage-
Element. We added a <CustomAction/> element 
in order to add a new action item to the context 
menu for the document library items (see Figure 5). 

A new Feature called Feature1 was automati-
cally added to the project, which we renamed to 
MSSAzureArchive. We replaced the contents of 
the Elements.xml fi le for the AzureStorage Element 
that was added with the following:
 <?xml version="1.0" encoding="utf-8"?>
 <Elements xmlns="http://schemas.microsoft.com/sharepoint/">
   <CustomAction
     Id="UserInterfaceCustomActions.ECBItemToolbar"
     RegistrationType="List"
     RegistrationId="101"
     Location="EditControlBlock"
     Sequence="106"
     Title="Azure Storage">
     <UrlAction Url="~sitecollection/
       _layouts/MSSAzureArchive/
       AzureStorage.aspx?ItemUrl={ItemUrl}" />
   </CustomAction>
 </Elements>

For the uninitiated SharePoint developer, Figure 
6 shows a quick description of some of the <Custom-
Action/> properties (more information about the 
<CustomAction/> element and its properties can 
be found at msdn.microsoft.com/library/ms460194).

Note the Url property of the UrlAction element; 
this is the navigation action that happens in order 
to handle the command to archive the document. 
Based on this configuration, SharePoint knows 
where to put the feature in the UI and also what 
to do when someone clicks on it. SharePoint will 
navigate to a page we create that will handle the 
archiving of the selected document. Th is page will 
allow the user to select a target storage container 
or create a new storage container for the item, so 
we needed to add an Application Page item to the 
project. Once again using the SharePoint 2010 
templates, we chose the Application Page template 
and named it AzureStorage.aspx (see Figure 7).

Because this sample wasn’t meant to impress 
anyone with a genius UI design, we added only 
minimal controls needed to get the job done. In 
the <asp:Content> element of the page markup, 
we added the code shown in Figure 8.

Next, we edited the code-behind and wired the UI 
elements up to some code to talk to Windows Azure 
Storage, and rendered the information. We initialized 
the cloud storage client within the load event for the 
page and grabbed the available containers using the 
previous web.confi g settings (see Figure 9).

Because the focus here is on the archive func-
tionality, we concentrated on that. Th e other code is 

Figure 2 Our New “Link to a Document” Content Type

Figure 3 Adding Keys in Web.confi g

Figure 4 Project Selection in Visual Studio 2010

Figure 5 Adding an AzureStorageElement via Add New Item

http://msdn.microsoft.com/library/ms460194


DESIGN
Design Applications That Help Run the Business

Our xamMap™ control in Silverlight and
WPF lets you map out any geospatial
data like this airplane seating app to
manage your business. Come to
infragistics.com to try it today!

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6   1 11/10/10   11:41 AM

www.infragistics.com


msdn magazine30 Forecast: Cloudy

available via download (code.msdn.microsoft.com/mag201012Cloudy). We added a 
click handler for the archiveFile button and wired the Archive_Click 
function to it. Based on the UrlAction element, we can retrieve the path 
to the item. In the click function, the item is fetched from SharePoint 
using the object model, checked to see if it has already been archived 
and—if not—uploaded to the selected container (see Figure 10).

Aft er the item is uploaded to storage, a new archive item of the type 
“Link to a Document” is created in place of the original document 
and the original document is deleted. If this were a 
publishing case instead of archival, the original item 
likely wouldn’t be deleted, but rather just marked as 
published with a link to the published version. Th e 
original item is used to get the target document 
library and the path of the original document. 
Th e new item is marked as archived by adding the 
IsArchived property and assigning the value “true.” 
First we did some work to get some of the values 
we needed, and then we created the new item and 
assigned the values to it, as shown here:

SPDocumentLibrary docLib = 
  fileToArchive.DocumentLibrary;

Hashtable docProperties = new Hashtable();
docProperties["IsArchived"] = true;
string docLibRelPath = 
  docLib.RootFolder.ServerRelativeUrl;
string docLibPath = string.Empty;
webSiteCollection = SPContext.Current.Site;
docLibPath = 
  webSiteCollection.MakeFullUrl(docLibRelPath);

string azureURL = cloudBlob.Uri.ToString();

Th e function BuildLinkToItem creates an instance of the content 
type “Link to a Document” using the path to the item in Windows 
Azure Storage. Th is instance of the content type will be added to 
the library as the link to retrieve the item from Windows Azure 
Storage via the SharePoint UI, as shown here:

string azureStub = this.BuildLinkToItem(azureURL).ToString();

  SPFile newFile = webSite.Files.Add(documentPath,     
    UTF8Encoding.UTF8.GetBytes(azureStub), docProperties, true);

  SPListItem item = newFile.Item;
  item["Content Type"] = "Link to a Document";
  SPFieldUrlValue itemUrl = new SPFieldUrlValue();
  itemUrl.Description = fileToArchive.Name;
  itemUrl.Url = azureURL;
  item["URL"] = itemUrl;
  item["IsArchived"] = true;
  item.Update();
  fileToArchive.Delete();

With the code completed to save the document, move it and replace 
it with a link to Windows Azure Storage, it was time to focus on the 
build and deployment of the solution. We double-clicked on the 
Package.package fi le to bring up the package designer and subse quently 
selected the Advanced tab at the bottom of the screen. Th is is where 

we added the package assemblies that we needed in order to include the 
Microsoft .WindowsAzure.StorageClient.dll. Keeping it simple for this 
sample, we set the Deployment Target to the GlobalAssemblyCache. 
We ensured that Development Storage was running by navigating to 
the Server Explorer, clicking on the Windows Azure Storage node, then 
clicking on the “(Development)” node.

Th rowing caution to the wind, we pressed F5 to build, deploy, 
attach to a process and initiate a browser session to start debugging 

our feature. We navigated back to the Shared Documents library 
mentioned earlier and opened the drop-down menu attached to 
the document we previously loaded. In the drop-down, we selected 
our new element, Azure Storage, which took us to the custom 
application page to select the destination container (see Figure 11).

Once on the page, we could have created a new container, but 
instead we used the documents container that we created and clicked 
the Archive File button to execute the code from earlier (see Figure 12). 

 Document to Archive:
<asp:Label ID="fileName" runat="server" ></asp:Label>   <br/>   
Choose Azure Container:
<asp:DropDownList ID="azureContainers" runat="server"  
  Visible="true"></asp:DropDownList>   
<asp:TextBox id="newContainerName" runat="server" Visible="false"></asp:TextBox>
<asp:Button ID="saveContainer" runat="server" Text="Save Container" 
  OnClick="SaveContainer_Click" Visible="false"></asp:Button>
<br />
<asp:Button ID="createContainer" runat="server" Text="Create New Container" 
  OnClick="CreateContainer_Click" />
<br/>
<asp:Button ID="archiveFile" runat="server" Text="Archive File" 
  OnClick="Archive_Click" />       
<br/>
<asp:Label ID="errMessage" runat="server" Text=""></asp:Label>

Figure 8 Adding the Minimum-Needed Controls

Property Function
Id Unique identifi er.
Location Specifi es where in the SharePoint UI the element should appear. In this case, the item menu (EditControlBlock) is the desired location 

versus, for example, the ribbon.
Sequence Specifi es the ordering priority for the actions. 

Figure 6 Properties of the <CustomAction/> Element

Figure 7 Adding a New Page in SharePoint 2010

http://code.msdn.microsoft.com/mag201012Cloudy


Create accurate PDF documents in a fraction of the time needed
with other tools

WHQL tested for all Windows 32 and 64-bit platforms

Produce fully compliant PDF/A documents

Standard PDF features included with a number of unique features

Interface with any .NET or ActiveX programming language

High-Performance PDF Printer Driver

Edit, process and print PDF 1.7 documents programmatically

Fast and lightweight 32 and 64-bit managed code assemblies 
for Windows, WPF and Web applications

Support for dynamic objects such as edit-fields and sticky-notes

Save image files directly to PDF, with optional OCR

Multiple image compression formats such as PNG, JBIG2 and TIFF

■

■

■

■

■

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2010 AMYUNI Technologies. All rights reserved.

www.amyuni.com

New Touchscreen Tablet
for Mobile Development!

The DevTouch Pro is a new color
touchscreen tablet designed to provide
mobile application developers with a
customizable develo  pment, testing
and deployment platform.

Fully open customizable tablet

Develop with .NET, Java or C++

Unrestricted development and 
flexible quantities 

Fully supported in North America

Learn more at www.devtouchpro.com

PDF Integration into Silverlight Applications

More Development Tools Available at:

v4.5!

v4.5!

New!

PDF Editor for .NET, now Webform Enabled

Server-side PDF component based on the robust Amyuni PDF 
Creator ActiveX or .NET components

Client-side C# Silverlight 3 control provided with source-code

Optimization of PDF documents prior to converting them into XAML

Conversion of PDF edit-boxes into Silverlight TextBox objects

Support for other document formats such as TIFF and XPS

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Untitled-3   1 11/8/10   2:53 PM

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com


msdn magazine32 Forecast: Cloudy

With the fi le archived to Windows Azure Storage, we navigated 
back to the Shared Documents library. Instead of seeing the docu-
ment, we saw a Link to a Document item that replaced the Services 
SOW.docx Word document (see Figure 13).

When we looked at the properties of the item, we saw the fi elds 
related to the content type, and in particular the URL to where the 
document now resides in Windows Azure Storage (see Figure 14).

We could open the document directly from Windows Azure 
Storage by clicking on Link to a Document. We could use the URL 
property to access it directly or via some other code or UI. For 
example, if we still wanted to index these items via the SharePoint 
Index Service, we could create a custom IFilter that would know 
how to process my Link to a Document Content Type to ensure 
the content would get indexed properly.

With the implementation of archiving content from a SharePoint 
Document Library to a Windows Azure Storage Container out 
of the way, it left  us with only public or no access to the archived 
documents for unauthenticated requests.

Access Control When Publishing
As mentioned earlier, what lead me to talk with Shad about his 
archival piece was the use of Windows Azure Storage as a means 
to provide a public landing spot for content that had gone through 
review and approval. In the case that I was considering, I didn’t 
have to include any access control because the documents were to 
be shared with everyone. However, it only took a few minutes for 
someone to ask the question: “What if we want to publish some-
thing and make it available only to certain people, for example, 
vendors, customers or employees?” Oft en a task like this is accom-
plished within companies by including those people as part of a 
corporate domain or having them somehow federated so they’re 
identifi ed via username and password challenge. Th is wasn’t the 
case here, and the customer didn’t really want to set up some 
application layer or front end to control access; developing the front 
end would reduce the value by increasing implementation costs. 

One solution is to use a SharedAccessPolicy on the blobs. Th e con-
tainer and blobs in the container would have their PublicAccess set 
to Off  with a little bit of code you would likely write doing Windows 
Azure Storage development anyway. Th e following code sample shows 
how I can set the PublicAccess to Off , but allow for SharedAccess 
on the container should I generate a signature and hand it out:

  BlobContainerPermissions permissions = new BlobContainerPermissions();
  permissions.PublicAccess = BlobContainerPublicAccessType.Off;

  SharedAccessPolicy accesspolicy = new SharedAccessPolicy();
  accesspolicy.Permissions = SharedAccessPermissions.Read;
  permissions.SharedAccessPolicies.Add("Read", accesspolicy);

  BlobContainer.SetPermissions(permissions);

protected void Page_Load(object sender, EventArgs e)
{

  this.InitializeCloudStorage();
  if (!IsPostBack)
  {
    this.GetContainers();
  }
}

private void GetContainers()
{
  IEnumerable<CloudBlobContainer> blobContainers =  
    cloudBlobClient.ListContainers();

  this.azureContainers.DataSource = blobContainers;
  azureContainers.DataTextField = "Name";
  this.azureContainers.DataBind();
  if (azureContainers.Items.Count < 1)
  {
    ListItem defaultContainer = new ListItem(defaultContainerName);
    defaultContainer.Selected = true;
    azureContainers.Items.Add(defaultContainer);
  }
}

Figure 9 Initializing the Cloud Storage Client

protected void Archive_Click(object o, EventArgs e)
{
  try
  {
    webSite = SPContext.Current.Web;
    filePath = webSite.Url.ToString() + 
    Request.QueryString["ItemUrl"].ToString();
    fileToArchive = webSite.GetFile(filePath);
    string sArchived = fileToArchive.Item["IsArchived"].ToString(); 

    bool isArchived = Convert.ToBoolean(sArchived);

    if (isArchived)
    {
      errMessage.Text = "This document has already been archived!";
    }
    else
    {
      string newGuid = Guid.NewGuid().ToString();
      string uniqueBlobName = string.Format(newGuid + "_" + 
        fileToArchive.Name.ToString());

      blobContainer = cloudBlobClient.GetContainerReference(
        this.azureContainers.SelectedValue);
      blobContainer.CreateIfNotExist();
      cloudBlob = blobContainer.GetBlockBlobReference(uniqueBlobName);
      cloudBlob.UploadByteArray(fileToArchive.OpenBinary());

Figure 10 Code for the Click Function to Fetch 
the Item from SharePoint

Figure 11 Selecting the Windows Azure Storage Element

Our solution concepts don’t 
have to be in the cloud or 

on-premises exclusively. The two 
can be easily mixed. 



1110msdn_GrapeCity_Insert.indd   1 10/6/10   11:09 AM

www.GCPowerTools.com


1110msdn_GrapeCity_Insert.indd   2 10/6/10   11:10 AM

www.GCPowerTools.com


33December 2010msdnmagazine.com

If we ask for a resource directly in the storage container, we’ll get 
a 404 Page Not Found. As we upload the blobs, we do a similar bit 
of work for the blob itself, but we create a SharedAccessPolicy that 
allows read, set an expiry time for it and ask for a Shared Access 
Signature back, like this:

SharedAccessPolicy policy = new SharedAccessPolicy();
policy.Permissions = SharedAccessPermissions.Read;
policy.SharedAccessExpiryTime = DateTime.Now.AddDays(5);
string SharedAccessSignature = destBlob.GetSharedAccessSignature(policy));

Th e call to GetSharedAccessSignature returns a string like this:
?se=2010-08-26T18%3A22%3A07Z&sr=b&sp=r&sig=WdUHKvQYnbOcMwUdFavn4QS0lvhAn
qBAnVnC6x0zPj8%3D

If I concatenate that query string onto the end of the URI for the 

blob, I should receive it back, providing the expiry hasn’t passed. 
More information about the signature and Shared Access Policies 
can be found at msdn.micro soft.com/library/ee395415. 

To solve the problem, I’d generate signatures and provide signed 
URIs that had a long expiry, which makes it easy to create them at 
the time of upload and then store a list of links to the published 
documents. For something a little more secure and for which I want 
to provide access to a single user for a short period of time, I would 
need a piece of UI. Th at UI would allow a user to request access 
to one or more resources and get back signed URIs that would 
provide access for a short duration of time.

Mixing with the Cloud
Here Shad and I used one general implementation 
to address two diff erent scenarios. Th is was par-
ticularly useful for both scenarios, as we needed a 
particular piece of functionality (scalable, reliable 
and expandable storage) that the cloud provided 
without us having to do much in the way of setup 
and costing only what we used. Th e main idea that 
we hope to convey is that, as professionals looking 
to create solutions for our customers (internal or 
external), our solution concepts don’t have to be in 
the cloud or on-premises exclusively. Th e two can 
be easily mixed. As the Service Updates get applied 
over time, it will become easier and easier to blend 
the corporate network to the cloud network. I expect 

in the future that it will blend to the point of there 
not being much of a diff erence. So, as you’re looking 
at solutions for your soft ware or business systems, 
you might take a moment to pause and think, “Is 
there something in the cloud that will help me?” 

JOSEPH FULTZ is an architect at the Microsoft  Technology 
Center in Dallas where he works with enterprise customers 
and ISVs designing and prototyping soft ware solutions to meet 
business and market demands. He’s spoken at events such as 
Tech·Ed and similar internal training events.

SHAD PHILLIPS is an architect at the Microsoft  Technology 
Center in Dallas where he works with enterprise customers and 
partners designing and deploying enterprise content manage-
ment solutions built on Microsoft  SharePoint 2010. 

THANKS to the following technical expert for reviewing 
this article: Jasen Tenney

Figure 13 Link to Document in the SharePoint Documents Library

Figure 14 Link Properties

Figure 12 Selecting the Container 

www.MSDNmagazine.com
http://msdn.microsoft.com/library/ee395415


© 1987-2010 ComponentOne LCC.  All rights reserved.  All other product and brand
names are trademarks and/or registered trademarks of their respective holders.

Untitled-4   2 11/8/10   2:58 PM

www.componentone.com/blueprint


Untitled-4   3 11/8/10   2:58 PM

www.componentone.com/blueprint


msdn magazine36

W IN DOWS PHONE  7  DEV ELOP M ENT

Sudoku for 
Windows Phone 7

Sudoku has become a popular game over the last 10 years, 
fi nding a home in most newspapers right next to the crossword 
puzzle. Game shows based on Sudoku have even been created. If 
you’re unfamiliar with it, Sudoku is a number placement game. 
Th e game board is a 9x9 grid and the goal is to place the numbers 
1-9 in the grid such that each row, column and sub 3x3 grid con-
tains each number once. Th e nature of the game lends itself nicely 
to play on a portable device, and Windows Phone 7 should be no 
exception. You can soon expect a handful of Sudoku applications 
in the marketplace aft er the recent release of Windows Phone 7, 
and you can even add your own to that list by following this article.

Adam Miller

MVVM Introduction
My application will roughly follow the Model-View-ViewModel 
(MVVM) design pattern. Although there won’t be any actual Models 
(because this app doesn’t require database storage), it will still be a good 
learning tool because the ViewModel is really the core of the pattern. 

Th ere can be a bit of a learning curve to understand the MVVM 
pattern, but once it clicks, you’ll fi nd you can get a really nice sepa-
ration between the UI and business logic. Furthermore, it reveals 
the power of data binding in Silverlight while freeing you from 
the majority of the tedious code of updating a UI (FirstNameText-
Box.Text = MyPerson.FirstName will be a thing of the past!). For 
more information about data binding in Silverlight, take a look at 
the MSDN Library article “Data Binding” at tinyurl.com/SLdatabind. 

Because of the size and simplicity of this app, and the focus 
of this article, a third-party MVVM framework won’t be used. 
However, it’s likely that your application will grow to be more 
complex than this one, and you’d be wise to start with a third-party 
framework such as the MVVM Light Toolkit (mvvmlight.codeplex.com). 
It will provide you with free, tested code that you’ll end up writing 
anyway (noted from experience).

Creating the Application
After you’ve installed the developer tools from create.msdn.com, 
start by creating your new Windows Phone 7 project by opening 
Visual Studio and selecting File | New | Project, then in the new 
project dialog, Visual C# | Silverlight for Windows Phone | Windows 

This article discusses:
• The Model-View-ViewModel design pattern

• Creating a Visual Studio application

• Implementing individual squares

• Implementing the game board

• Implementing the input grid

• Bringing the application together in MainPage.xaml

Technologies discussed:
Windows Phone 7

Code download available at:
code.msdn.microsoft.com/mag201012Sudoku

http://code.msdn.microsoft.com/mag201012Sudoku
http://tinyurl.com/SLdatabind
http://mvvmlight.codeplex.com
http://create.msdn.com


37December 2010msdnmagazine.com

Phone Application. Start by creating two new 
folders, Views and ViewModels, following a 
common MVVM pattern. At this point, you can 
also start debugging if you want to take a peek 
at the emulator provided as part of the SDK.

Th e Sudoku game can be broken down into three 
conceptual types: each of the individual squares (81 
total in the typical 9x9 board); the overall game 
board that houses the squares; and a grid for the 
numbers 1-9 for input. To create the views for these 
items, right-click on the Views folder and select Add 
| New Item. Select Windows Phone User Control 
from the dialog and name the fi rst fi le Game-
BoardView.xaml. Repeat for SquareView.xaml and 
InputView.xaml. Now, in the ViewModel folder, 
add the following classes: GameBoardViewModel 
and SquareView Model. Th e Input View won’t 
require a ViewModel. You’ll also want to create 
a base class for your ViewModels to avoid code 
duplication. Add a ViewModelBase class to your ViewModels folder. 
At this point, your solution should look similar to Figure 1.

ViewModel Base Class
The ViewModelBase class will need to implement the INotify-
PropertyChanged interface found in System.ComponentModel. 
Th is interface is what allows the public properties in ViewModels 
to bind to controls in the views. Th e implemen-
tation of the INotifyProperty Changed interface 
is pretty simple—only the PropertyChanged 
event must be implem ented. Your ViewModel-
Base.cs class should look similar to the 
following (don’t forget the using statement 
for System.ComponentModel):

public class ViewModelBase : INotifyPropertyChanged
{
  public event PropertyChangedEventHandler  
    PropertyChanged;
  private void NotifyPropertyChanged(String info)
  {
    if (PropertyChanged != null)
    {
      PropertyChanged(this, 
        new PropertyChangedEventArgs(info));
    }
  }
}

Most of the third-party MVVM frameworks 
will include a ViewModel base class that contains 
this boilerplate code. All of your ViewModels will 
inherit from ViewModelBase. Th e properties 
in a ViewModel that the UI will bind to need to 
call NotifyPropertyChanged in the setter. Th is is 
what allows the UI to automatically update when 

the value of a property changes. It does get a bit 
tedious implementing all of your properties in 
this way, so it’s a bit of a tradeoff  for the code that 
you don’t have to write to update the UI.

Implementing the Individual Squares
Start by implementing the SquareViewModel 
class. Add public properties for Value, Row and 
Column as integers; and IsSelected, IsValid and 
IsEditable as Booleans. Although the UI can bind 
to the Value property directly, this will cause 
issues because “0” will be displayed for unas-
signed squares. To resolve this, you can either 
implement a binding converter or create a read-
only “StringValue” property that will return an 
empty string when the Value property is zero.

Th e SquareViewModel will also be responsible 
for notifying the UI of its current state. Th e four 
states for an individual square in this app are 

Default, Invalid, Selected and UnEditable. Normally this would 
be implemented as an enum; however, enums in the Silverlight 
framework don’t have a couple of the methods that enums in the full 
Microsoft  .NET Framework have. Th is causes an exception to be thrown 
during serialization, so the states have been implemented as constants:

public class BoxStates
{
  public const int Default = 1;
  public const int Invalid = 2;
  public const int Selected = 3;
  public const int UnEditable = 4;
}

Now, open SquareView.xaml. You’ll notice some styles have been 
applied at the control level for the font size and color. Th e preset style 
resources are usually found in a separate resources fi le, but in this 

case, Windows Phone 7 provides them to your 
application by default. Th e resources are described 
on the MSDN Library page, “Th eme Resources 
for Windows Phone,” at tinyurl.com/WP7Resources. 
Some of these styles will be used in this appli-
cation so the application colors will match the 
user-selected theme. Th e theme can be selected 
in the emulator by going to the home screen 
and clicking the more arrow | Settings | theme. 
From here you can change the background and 
accent colors (Figure 2).

Inside the grid in SquareView.xaml, place a 
Border and a TextBlock:
  <Grid x:Name="LayoutRoot" MouseLeftButtonDown=
    "LayoutRoot_MouseLeftButtonDown">
    <Border x:Name="BoxGridBorder" 
      BorderBrush="{StaticResource PhoneForegroundBrush}" 
      BorderThickness="{Binding Path=BorderThickness}">
      <TextBlock x:Name="MainText" 
        VerticalAlignment="Center" Margin="0" Padding="0" 
        TextAlignment="Center" Text=
        "{Binding Path=StringValue}">
      </TextBlock>
    </Border>
  </Grid>

Th e code-behind for SquareView.xaml.cs can 
be seen in the accompanying code download. 

Figure 1 Sudoku Windows 
Phone 7 Solution with Views 
and ViewModels

Figure 2 Windows Phone 7 
Theme Settings Screen

 There can be a bit of a 
learning curve to understand 

the MVVM pattern.

www.MSDNmagazine.com
http://tinyurl.com/WP7Resources


msdn magazine38 Windows Phone 7 Development

Th e constructor requires an instance of the SquareViewModel. 
Th is will be provided when the game board is bound. Also, there’s 
a custom event raised when the user clicks inside the grid. Using 
custom events is one way to allow ViewModels to communicate 
with each other; however, for larger applications, this approach 
can get messy. Another option is to implement a Messenger class 
that will facilitate the communication. Most MVVM frameworks 
provide a Messenger (sometimes referred to as Mediator) class.

It may seem messy from an MVVM purist’s standpoint to update 
the UI using the code-behind, but these items don’t lend themselves 
nicely to a BindingConverter. Th e BoxGridBorder’s BorderTh ickness 
is based on two properties, and the Foreground and Background 
brushes come from the application resources, which aren’t readily 
accessible in a BindingConverter.

Implementing the Game Board
Th e GameBoard view and ViewModel can now be implemented. 
Th e view is simple, just a 9x9 grid. Th e code-behind, available in 

the code download, is almost as simple—just a public property to 
expose the ViewModel and a couple private methods to handle the 
child box click and binding the game array.

 The ViewModel contains the bulk of the code. It contains 
methods to validate the board aft er user input, to solve the puzzle 
and to save and load the board from storage. Th e board is serialized 
to XML when saving, and IsolatedStorage is used to save the fi le. 
For full implementation, please see the source code download; the 
storage code is of most interest and is shown in Figure 3 (note that 
you’ll need a reference to System.Xml.Serialization).

public void SaveToDisk()
{
  using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())
  {
    if (store.FileExists(FileName))
    {
      store.DeleteFile(FileName);
    }

    using (IsolatedStorageFileStream stream = store.CreateFile(FileName))
    {
      using (StreamWriter writer = new StreamWriter(stream))
      {
        List<SquareViewModel> s = new List<SquareViewModel>();
        foreach (SquareViewModel item in GameArray)
          s.Add(item);

        XmlSerializer serializer = new XmlSerializer(s.GetType());
        serializer.Serialize(writer, s);
      }
    }
  }
}

public static GameBoardViewModel LoadFromDisk()
{
  GameBoardViewModel result = null;

  using (IsolatedStorageFile store = IsolatedStorageFile.
    GetUserStoreForApplication())
  {
    if (store.FileExists(FileName))
    {
      using (IsolatedStorageFileStream stream = 
        store.OpenFile(FileName, FileMode.Open))
      {
        using (StreamReader reader = new StreamReader(stream))
        {
          List<SquareViewModel> s = new List<SquareViewModel>();
          XmlSerializer serializer = new XmlSerializer(s.GetType());
          s = (List<SquareViewModel>)serializer.Deserialize(
            new StringReader(reader.ReadToEnd()));

          result = new GameBoardViewModel();
          result.GameArray = LoadFromSquareList(s);
        }
      }
    }
  }

  return result;
}

Figure 3 The Board Storage Code

public event EventHandler SendInput;

private void UserInput_Click(object sender, RoutedEventArgs e)
{
  int inputValue = int.Parse(((Button)sender).Tag.ToString());
  if (SendInput != null)
      SendInput(inputValue, null);
}

public void RotateVertical()
{
  TopRow.Orientation = Orientation.Vertical;
  BottomRow.Orientation = Orientation.Vertical;
  OuterPanel.Orientation = Orientation.Horizontal;
}

public void RotateHorizontal()
{
  TopRow.Orientation = Orientation.Horizontal;
  BottomRow.Orientation = Orientation.Horizontal;
  OuterPanel.Orientation = Orientation.Vertical;
}

Figure 4 The Code-Behind for the Input View

protected override void OnOrientationChanged(OrientationChangedEventArgs e)
{
  switch (e.Orientation)
  {
    case PageOrientation.Landscape:
    case PageOrientation.LandscapeLeft:
    case PageOrientation.LandscapeRight:
      TitlePanel.Visibility = Visibility.Collapsed;
      Grid.SetColumn(InputControl, 1);
      Grid.SetRow(InputControl, 0);
      InputControl.RotateVertical();
      break;
    case PageOrientation.Portrait:
    case PageOrientation.PortraitUp:
    case PageOrientation.PortraitDown:
      TitlePanel.Visibility = Visibility.Visible;
      Grid.SetColumn(InputControl, 0);
      Grid.SetRow(InputControl, 1);
      InputControl.RotateHorizontal();
      break;
    default:
      break;
  }
  base.OnOrientationChanged(e);
}

Figure 5 Code to Handle Phone Rotation

Using the Application Bar will 
make the application feel more 

integrated with the phone.



ADVERTISEMENT

VISUAL STUDIO PARTNER PROFILE

To access your 30-day, risk-free trial visit:
www.componentone.com/vsp2

Just in Time for the Holidays: 
Solutions to Speed Up Your 
.NET Development Projects

This time of year is always busy for developers. If we’re not at 
an event like PDC, TechEd, or DevConnections, we’re trying to 
fi gure out how to get started with new projects while 
fi nishing up existing projects. This is where third-party control 

vendors, like ComponentOne, help to jumpstart projects with unique 
controls, enhanced performance, and easy setup. 

In their latest developer tools release, Studio Enterprise 2010 v3, 
ComponentOne continues to expand .NET capabilities in reporting, 
charting, and grids. This partner solution summarizes some of the new 
and updated controls found in this release.

Unifi ed Reporting on Multiple Technologies
In many enterprises, the Business Intelligence (BI) infrastructure 
includes a number of reporting technologies, such as Microsoft Access, 
Crystal Reports, and SSRS. This variety hampers the delivery of 
information, as well as the ongoing development and maintenance of 
BI systems. ComponentOne’s reporting controls allow enterprises to 
reap the benefi ts of a common BI infrastructure in less time than a total 
revamp of BI resources. For instance, they can import and display 
Access, Crystal, and SSRS reports in a single application. This  
application can be built in ASP.NET, Silverlight, WPF or WinForms.  
Also included in each studio are the C1ReportDesigner application  
and C1ReportScheduler control.

Studios for Silverlight and WPF
In addition to the new reporting components, Studio Enterprise has 
expanded to include a PdfViewer, ScrollViewer, and Chart3D control. 
In the nearby screenshot, you can see the versatility of the 3D Chart 
control. Updated popular controls include the Scheduler, which now 
supports resource grouping; the famous FlexGrid, which supports 
native Silverlight 4 printing and additional group total options; and the 
Toolbar, which now has tabs to organize controls in a logical manner. 
For ease of design, ComponentOne ClearStyle™ technology is now 
supported in all controls, allowing designers or developers to achieve a 
uniform look with little eff ort.

Studio for WinForms 
The popular gauges and charts controls have been updated too. The 
gauges now ship with over 20 templates to speed the development of  
BI dashboards. The C1Chart can now expose the VisualEff ectsEditor, allow-
ing end-users to design their own charts at run time. Since applications are 
typically more than a single screen, clean navigation is essential. The naviga-
tion controls, C1Ribbon and C1NavBar, have been updated to support the 
sleek Microsoft Offi  ce 2010 styles, and the C1DockingTab now supports 
two docking styles inspired by Microsoft Visual Studio 2008 and 2010.

Studio for ASP.NET AJAX
This studio includes the reporting improvements as well as more 
templates for gauges, additional groupings and subtotals for rows and 
columns in Excel for .NET, and an enhanced framework with jQuery.

Studio for iPhone
ComponentOne Studio for iPhone, a unique suite of ASP.NET controls, 
renders pages sized and styled for mobile browsers, including those 
found on iOS, Android, and WebOS. The controls employ the conven-
tions of popular smartphone UI elements and come equipped with 
attractive built-in styles, meaning that developers only need to add the 
business aspects to build professional-looking, user-friendly mobile 
sites. Support for iPhone 4, iPad, and more Android phones have 
recently been added to this suite of controls.

While I understand this is a lot of functionality for you to take in a single 
article, I was hoping you’d fi nd a control or feature you’ve been looking 
to add to your enterprise solution. You may also like to know that it’s easy 
to get started. All the ComponentOne Studios listed above are available 
individually or as part of the Studio Enterprise. Additionally, the OLAP 
and LiveLinq components (available separately) can be combined with 
these controls to provide a highly performant and well-rounded   
BI implementation.

VSP2

Rich Dudley
Technical Evangelist

ComponentOne

New Chart3D Control for Silverlight and WPF

Untitled-5   1 11/12/10   12:12 PM

http://www.componentone.com/vsp2


msdn magazine40 Windows Phone 7 Development

Implementing the Input Grid
Th e input view is simple as well, just some but-
tons nested in stackpanels.

Th e code-behind, shown in Figure 4, exposes 
a custom event to send the clicked button’s value 
to the application, as well as two methods that will 
assist in making this game playable in portrait or 
landscape mode.

Bringing Views Together 
on MainPage.xaml
Finally, the application is brought together 
with the implementation of MainPage.xaml. 
The Input and GameBoard views are placed 
in a grid. Th is application will require all of the 
screen real estate available, so the PageTitle 
TextBlock that was automatically inserted when 
the project was created has to be removed. Th e 
ApplicationTitle TextBlock will only be visible 
in portrait mode. Th e Windows Phone 7 Applic-
ation Bar will also be taken advantage of. Using 
the Application Bar will make the application 
feel more integrated with the phone and will 
provide the Sudoku application a nice interface to allow the user 
to solve, reset and start a new puzzle:

 <phone:PhoneApplicationPage.ApplicationBar>
   <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
     <shell:ApplicationBarIconButton x:Name="NewGame"  
      IconUri="/Images/appbar.favs.rest.png" Text="New Game" 
      Click="NewGame_Click"></shell:ApplicationBarIconButton>
     <shell:ApplicationBarIconButton x:Name="Solve" 
      IconUri="/Images/appbar.share.rest.png" Text="Solve" 
      Click="Solve_Click"></shell:ApplicationBarIconButton>
     <shell:ApplicationBarIconButton x:Name="Clear" 
      IconUri="/Images/appbar.refresh.rest.png" Text="Clear" 
      Click="Clear_Click"></shell:ApplicationBarIconButton>
  </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Th e images are taken from a set of icons provided by Microsoft  
specifi cally for Windows Phone 7 that are installed with the tools 
at C:\Program Files (x86)\Microsoft  SDKs\Windows Phone\v7.0\
Icons. Aft er images are imported into the project, select the image 
properties and change Build Action from “Resource” to “Content” and 
Copy to Output Directory from “Do Not Copy” to “Copy If Newer.”

Th e fi nal piece of this application puzzle is to implement the Main-
Page code-behind. In the constructor, the SupportedOrientations 

property is set to allow the application to rotate 
when the user rotates the phone. Also, the In-
putView’s SendInput event is handled and the 
input value is forwarded to the GameBoard:
public MainPage()
{
  InitializeComponent();
  SupportedOrientations = SupportedPageOrientation.Portrait |
    SupportedPageOrientation.Landscape;
  InputControl.SendInput += new 
    EventHandler(InputControl_SendInput);
}

void InputControl_SendInput(object sender, EventArgs e)
{
  MainBoard.GameBoard.SendInput((int)sender);
}

The Navigation methods also need to be 
implemented to handle loading and saving the 
game board:
protected override void OnNavigatedTo(NavigationEventArgs e)
{
  GameBoardViewModel board = 
    GameBoardViewModel.LoadFromDisk();
  if (board == null)
    board = GameBoardViewModel.LoadNewPuzzle();

  MainBoard.GameBoard = board;
  base.OnNavigatedTo(e);
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
  MainBoard.GameBoard.SaveToDisk();
  base.OnNavigatedFrom(e);
}

When the phone is rotated, the application will receive a notifi -
cation. Th is is where the InputView moves from below the game 
board to the right of it and is rotated (see Figure 5).

Th is is also where the menu item clicks are handled:
private void NewGame_Click(object sender, EventArgs e)
{
  MainBoard.GameBoard = GameBoardViewModel.LoadNewPuzzle();
}

private void Solve_Click(object sender, EventArgs e)
{
  MainBoard.GameBoard.Solve();
}

private void Clear_Click(object sender, EventArgs e)
{
  MainBoard.GameBoard.Clear();
}

At this point, the game is complete and playable (see Figures 
6 and 7).

So there you have it, a nice game waiting for you the next time 
you’re waiting in line. Th is article has demonstrated how to get 
started creating Silverlight-based Windows Phone 7 applications. 
Also, it has shown how to use serialization and user storage to per-
sist an application and how to allow your application to support 
multiple orientations. In addition, you should now be familiar with 
the MVVM pattern and how to use data binding with it. 

ADAM MILLER is a soft ware engineer for Nebraska Global in Lincoln, Neb. You 
can follow him at blog.milrr.com.

THANKS to the following technical experts for reviewing this article: 
Larry Lieberman and Nick SherrillFigure 7 Solved Game in Landscape Mode

Figure 6 Sudoku Game in 
Portrait Mode

http://blog.milrr.com


Untitled-2   1 11/17/10   12:46 PM

www.techexcel.com


msdn magazine42

W IN DOWS PHONE  7  APPS

Build Data-Driven Apps 
with Windows Azure 
and Windows Phone 7

In the last 30 years, we’ve seen an explosion in the computer 
hardware industry. From mainframes to desktop computers to hand-
held devices, the hardware keeps getting more powerful even as it 
shrinks. Developers have, to some extent, become a bit spoiled by 
this constant increase in computing power and now expect limitless 
computer resources on every device for which they write applications. 
Many younger developers have no memory of a time when the size 
and effi  ciency of your code were important factors.

Th e latest trend in development is in embracing the rise in popu-
larity of smartphones. When coding for smartphone devices, many 
developers have to adjust to the fact that, although today’s phones are 
extremely powerful compared to devices of just a few years ago, they 
do face limitations. Th ese limitations are related to size, processor 
power, memory and connectivity. You need to understand how to 
work around these limitations when creating mobile applications 
to ensure good performance and the best user experience.

Danilo Diaz and Max Zilberman

Some of the reasons for less-than-optimal app performance can 
be attributed directly to poor design decisions by the developer. 
However, in other cases, some of these factors are not directly in the 
control of the developer. A poorly performing application could be 
a symptom of a slow or offl  ine third-party service, dropped mobile 
broadband connections or the nature of the data you’re working 
with (such as streaming media fi les or large sets of data). 

Whatever the cause might be, the performance perceived by the end 
user of your application must be one of the top concerns of any soft ware 
developer. In this article, we’ll cover some high-level considerations 
for designing robust, data-driven Windows Phone 7 applications in 
a way that can provide a great user experience and scale gracefully.

Let’s fi rst take a moment and set up a scenario within which we 
can examine some design and coding choices. As an example, we’re 
going to work with a fi ctitious travel information application that 
provides information about user-selected airline fl ights. As shown 
in Figure 1, the main screen of the application shows a number of 
data elements including current weather and fl ight status. You can 
see that, as applications become more expressive and data-centric, 
developing them becomes a bit more challenging. Th ere are simply 
more areas where your code can fall short.

UI Thread Blocking
Let’s start by looking at the UI. It’s easy to get the pattern wrong by 
designing the app as if you’re coding for the desktop, so let’s take a 
look at some phone-specifi c UI issues.

This article discusses:
• UI performance

• Storing and returning data

• Dealing with network failures

• Caching local data

Technologies discussed:
Windows Phone 7, Windows Azure



43December 2010msdnmagazine.com

When an application doesn’t respond as 
expected to user commands, the eff ect on the 
overall user experience can be dramatic. Slow 
response to swipe, tap or pinch can be detrimen-
tal to the overall appeal of the app. However, 
these are pretty simple issues to anticipate and 
address, as you’ll see.

Consider a ListBox. When an ItemTemplate 
contains images or is loading data from a feed, 
there’s a very good chance the UI thread will be 
blocked and the UI will pause until the requests 
or calculations complete. Th erefore, as you de-
velop the UI, one approach is to perform long 
calculations—including WebRequests—off of 
the UI thread. In fact, this is a good approach for 
any app, mobile or not.

Another issue that may create performance 
problems is when you’re binding lots of items to 
the ItemSource without throttling injection into 
the ListBox control. A better approach would be 
to bind an ObservableCollection and populate 
a few items into the collection every 20-30 ms. 
Th is unlocks the UI thread to be responsive to the user.

In the case of our sample app, we’re also making heavy use of 
images on the screen. Th e ListBox needs to actually download the 
image in order to display that data. While this seems OK, doing 
this work on the UI thread would block the user from any gesture 
input. Loading images on a background thread solves a number of 
problems both in terms of memory requirements and freeing up 
the UI thread, while at the same time making the application faster.

Everything that we display to the user must be rendered. Render-
ing requires layout, alignment and calculation to display correctly. 
As more layers are added to the UI, the calculation and overall 
rendering costs increase. Although Silverlight already virtualizes 
the UI, it doesn’t virtualize the data that’s being bound. Th is means 
that if we were to bind 10,000 items to our ListBox, Silverlight 
would instantiate all 10,000 ListItems before they were rendered. 

Be aware of what you’re data-binding and keep the bound set 
as small as possible. If you need to handle large sets of data-bind 
items, consider dynamically handling the rendering behind the 
scenes. Th is is true of desktop apps as well, of course—the impact 
of these choices is just amplifi ed on a phone.

ValueConverters may have a drastic impact on rendering 
performance because they’re defined using custom code and 
rendering cannot be pre-determined and cached ahead of actual 
element rendering and layout.

Dealing with Data
Next, we need to talk about data storage in 
Windows Phone 7. Let’s just get straight to the 
point: There’s no relational database engine 
available to developers. SQL Server Compact 
(SQL CE) is installed with the Windows Phone 
7 OS, but currently there’s no API available 
to developers. So creating a database to store 
application data—in our example, trip informa-
tion—isn’t going to work. 

Th at said, there’s a wide range of options for 
getting data to and from our application. A com-
mon approach is to use a clou d service such as 
Windows Azure for data persistence. Th ere are 
many technologies available for building the 
service layer of your application, REST and 
SOAP being the most popular. SOAP is the 
fi rst choice for many developers, but we think 
REST provides a more effi  cient and simpler-to-
implement method of making data requests.

We employ a few methods that provide data 
to the application and that we can access by 

using REST expressions such as these:
/Trip/Create/PHL-BOS-SEA/xxxx/2010-04-10
/Flight/CheckStatus/US743

REST enables us to use either XML or JSON for a message format. 
From the Web front-end perspective, we chose the ASP.NET 

MVC framework (asp.net/mvc) because it allows us to process 
the request and return any type of markup using a custom view. 

Our sample application needs to handle both trip and fl ight in-
formation, so we create a FlightController and a TripController 
that intercept requests for this information:

// GET: /Flight/CheckStatus/US743
public ActionResult CheckStatusByFlight(
  string flightNumber) {
  return CheckStatus(flightNumber, DateTime.Now);
}

// GET: /Flight/RegisterInterest/US743/2010-04-12
public ActionResult CheckStatus(
  string flightNumber, DateTime date) {
  Flight f = new Flight(flightNumber, date);
  GetFlightStatus(f);
  return new XmlResultView<Flight>(f);
}

To provide simplifi ed access methods and save a few bytes of 
bandwidth, if the date is today we might design a shortcut method 
for getting this data without implicitly specifying today’s date.

Cached and Persistent Data
Th e fl ight status service is an element in our application that’s not 
in our control and thus will be part of the performance puzzle. 
Because successful application may receive a considerable number 
of requests, it’s important to think about a caching strategy. 

Typically, the closer the flight is to departure, the higher the 
number of requests for its information can be expected. Higher 
numbers of near-concurrent requests can affect not only the 
performance of the application, but also the costs associated with 
storing and manipulating the data. As a general rule, Windows 
Azure applications accrue bandwidth charges both on request 

Figure 1 The Flight Information 
Sample App

Today’s phones are extremely 
powerful compared to devices of 

just a few years ago.

www.MSDNmagazine.com


msdn magazine44 Windows Phone 7 Apps

and return, and fl ight information services could also incur access 
charges. Th e amount of data returned will need to be no more than 
what’s needed by the application.

Th e Windows Azure platform provides a wide range of options 
for data storage—from tables, blobs and queues to relational 
data base-like storage via SQL Azure. We decided to use SQL Azure 
because it uses familiar SQL Server programming techniques and 
enables us to easily store and access both cached fl ight data and 
persistent trip information.

Figure 2 shows the simple storage layer we designed using the 
Entity Framework.

Returning Data
We return data to the client via our custom view. Because we’re using 
ASP.NET MVC, each view needs to derive from ActionResult and 
implement ExecuteResult. 

As mentioned earlier, we can provide either XML or JSON rep-
resentations of the fl ight information via our REST service. Let’s 
take a look at the XML option fi rst. Th e serializer to produce XML 
requires a type, so we create a Generics class as shown in Figure 3.

We could just as easily work with JSON for our data. Th e only 
element of our solution that would change would be the contents 
of the ExecuteResult method. Using JsonResult, we can produce 
the JSON return from our service in just a few lines of code:

// Create the serializer
var result = new JsonResult();
// Enable the requests that originate from an HTTP GET
result.JsonRequestBehavior = JsonRequestBehavior.AllowGet;
// Set data to return
result.Data = _model;
// Write the data to the stream
result.ExecuteResult(context);

What about saving data to the actual device? It wouldn’t make 
sense to force the application to pull data from the service every 
time the user needs access to trip information. Although there’s 
no relational data store in Windows Phone 7, developers do have 

access to a feature called Isolated Storage. This works just like 
Silverlight 4 Isolated Storage, but without a size limit. 

Th ere are two main methods you need to save and retrieve data 
on the phone: SaveData and GetSavedData. Examples showing how 
we’d use these for the fl ight information app are shown in Figure 4.

Dealing with Network Failures 
Th e networks used by mobile devices can have widely variable 
connectivity—sometimes becoming completely unavailable due 
to location, congestion or even users disconnecting manually (in 
the case of airplane mode, for instance). You have to accept this as 
a fact of life. As mobile application developers we must take this 
into consideration when building applications. 

Another type of network failure is service layer failure. Many 
mobile applications consume data from third-party services. Th ese 
services may not come with service-level agreements, which leaves 
your application at the mercy of the provider. In other words, it’s out 
of your control, and you have to be prepared to deal with outages. 

Regardless of the source of the network failure, you still need to 
provide the best user experience possible. You need to provide some 
level of functionality in the event of any type of network failure. 
For our fl ight status application this means that we want to allow 
the user to access as much information as possible even if network 
connectivity is lost from either the server or the client side. 

There are numerous ways to achieve this. For now, we’ll 
concentrate on three simple ways in which you could accomplish 
this: get the data while you can, cache data locally and cache data 
on a server you control. 

Using Push Notifi cations
When the user enters trip information into the application, the 
information will be uploaded to a cloud service. Th e service will 
then keep polling the various services that provide its fl ight and 
weather data. It also looks for changes in the data over time, such 
as a fl ight status change or an airport that reports a delay. 

When a change is found, you want to get that information to the 
user as promptly and effi  ciently as possible. One way to do that is 
for the service to push the information to the client app. Th is will 
provide the user access to the most current set of available data 
the moment the data becomes available. Because the data was 
pushed to the client, the data is available even if the user loses his 
network connection. 

We can accomplish this with our Windows Azure Service by 
using Windows Phone Push Notification. The Windows Phone 
Push Notification feature is made up of three components: 
monitor services, the Microsoft  Push Notifi cation Service and a 
message handling method. Figure 2 Flight Data Storage Schema

DepartureTime
FlightNumber
RowDate

FlightStatus

Id
TripCode
Private

Trip

Id
TripId
DeviceId

Devices

Id
TripId
FlightNumber
Origin
Destination
departureTime

Flight

Be aware of what you’re 
data-binding and keep the 

bound set as small as possible.



Untitled-2   1 11/17/10   12:31 PM

www.textcontrol.com


msdn magazine46 Windows Phone 7 Apps

A monitor service is a cloud service that constantly looks for new 
information for our application. We’ll discuss this in more detail later. 

Th e Push Notifi cation Service is part of the Microsoft  hosted 
services that are used to relay messages to Windows Phone 7 devices. 
Th is service is available to all Windows Phone 7 app developers. 

Th e message handler method does what its name suggests: It 
simply receives messages from the Push Notifi cation Service. 

Th ere are three default notifi cation types in Windows Phone 7: 
Tile, Push and Toast notifi cations. Notifi cations are an important 
part of the user experience and you need to consider their use care-
fully. Repetitive or intrusive notifi cations can degrade performance 
of your application and others running on the device. Th ey can also 
annoy users. Consider the frequency at which notifi cations are sent 
and the types of events that you want to get the attention of users.

In Windows Phone 7, notifi cations are delivered via batching, so 
the transaction may not be instant. Th e timeliness of the notifi cation 
is not guaranteed and the decision on how to deliver the notifi ca-
tion to the client is handled by the service; the service does its best to 
determine how quickly it can deliver the message to the phone.

Th e workfl ow for push notifi cations is:
1.  Client app requests a channel connection to the Push 

Notifi cation Service.
2.  Th e Push Notifi cation Service responds with the channel URI.
3.  Th e client app sends a message to the monitoring service 

with the Push Notifi cation Service channel URI as well 
as a payload. 

4.  When the monitoring service detects a change of 
information (fl ight cancellations, fl ight delays or 
weather alerts in our sample app) it sends a message to 
the Push Notifi cation Service.

5.  Th e Push Notifi cation Service relays the message to the 
Windows Phone 7 device.

6.  Th e message handler processes the message on the device.

Caching Data Locally
Another way to make data available to your app is to cache it 
locally so there’s always some data in the UI. Then you can use 
other means in the background to update the local data (if pos-
sible). Th e upside of this method is that the application can load 
and be usable quickly even if updating information has to occur 
asynchronously behind the scenes.

In a nutshell, you use Isolated Storage to save the most recent 
set of data. When the application opens, it immediately grabs 
any data available in local Isolated Storage and renders it. In the 
meantime, the application calls the Windows Azure Service for 
updated information. If new information is found, it’s serialized 
and transferred to the device, Isolated Storage gets updated, and 
you render the UI again with updated information. For a better 
user experience, you probably want to indicate in the UI what time 
and date the information was refreshed. 

On a side note, if the application is using the Model-View-
ViewModel (MVVM) design pattern, the update to the UI can 
happen automatically via Silverlight data-binding features. For 
more information on MVVM and Silverlight, see Robert McCarter’s 
article, “Problems and Solutions with Model-View-ViewModel,” 
at msdn.microsoft.com/magazine/ff798279.

Caching Data on Your Server
Th ere’s a middle ground between pushing data directly to your 
app as it becomes available and storing data on the device: grab-
bing data from third-party services and caching it in your cloud 
app until the Windows Phone 7 app requests it. 

Th is technique requires a new layer of abstraction in your appli-
cation. In essence, the goal here is to remove the dependency of a 
third-party service from your application. Your service pulls and 
caches the data for any third-party service dependencies. If the 
third-party service goes down, you’ll at least have some data in the 
cache that you can provide to the application on devices. 

A service like this could be easily cloned or extended to pull the 
data from various services, thus reducing your dependency on any 
one vendor or data source, which makes changing vendors a lot easier. 

For more information about setting up data-focused solutions in 
Windows Azure, see “Fueling Your Application’s Engine with Windows 

public class XmlResultView<T> : ActionResult {
  object _model = null;
  public XmlResultView(object model) {
    this._model = model;
  }

  public override void ExecuteResult(ControllerContext context) {
    // Create where to write 
    MemoryStream mem = new MemoryStream();

    // Pack characters as compact as possible, 
    // remove the decl, do not indent.
    XmlWriterSettings settings = new XmlWriterSettings() { 
      Encoding = System.Text.Encoding.UTF8, 
      Indent = false, OmitXmlDeclaration = true };
    XmlWriter writer = XmlTextWriter.Create(mem, settings);
    
    // Create a type serializer
    XmlSerializer ser = new XmlSerializer(typeof(T));

    // Write the model to the stream
    ser.Serialize(writer, _model);

    context.HttpContext.Response.OutputStream.Write(
      mem.ToArray(), 0, (int)mem.Length);
  }
}

Figure 3 Serializing XML

The Windows Azure platform 
provides a wide range of options 

for data storage.

The networks used by 
mobile devices can have widely 

variable connectivity.

http://msdn.microsoft.com/magazine/ff798279


Untitled-1   1 10/4/10   11:54 AM

www.aspose.com


msdn magazine48 Windows Phone 7 Apps

Azure Storage” by Kevin Hoff man and Nathan Dudek (msdn.microsoft.com/
magazine/ee335721). In addition, although not directly focused on 
Windows Phone 7 scenarios, Paul Stubb’s article, “Create a Silverlight 4 
Web Part for SharePoint 2010,” is good reading on data-bound design 
for Silverlight and Web services (msdn.microsoft.com/magazine/ff956224).

Monitoring Service
As mentioned earlier, the notifi cation feature is an important part 
of our fl ight status application. Th is feature is actually composed of 
several diff erent services within the application. Perhaps most impor-
tant to the usefulness of the app, the monitoring service periodically 
polls third-party data services and relays information like fl ight delays, 
airport delays and weather alerts back to the device. 

In our application, the monitoring service reads the current list 
of fl ights and airport codes and uses this information to collect 
relevant data. Th is information is then stored back in the SQL 
Azure database as a cache entry so that it can be retrieved by the 
/Flight/CheckStatus service shown earlier. Our monitoring service is 
implemented with a Windows Azure Worker Role. Th e main goal on 
this Worker Role is to pull status information on fl ight delays and air-
port status for every user’s fl ight collection. Th e frequency of the update 
pull increases as it approaches the scheduled fl ight departure time. 

For some ideas about how you could implement such a 
service, be sure to check out  the Azure Publish-Subscribe project 
on CodePlex (azurepubsub.code plex.com) or read Joseph Fultz’s blog 
post, “Migrating Windows Service to Azure Worker Role: Image 
Conversion Example Using Storage” (bit.ly/aKY8iv).

Putting It All Together
Hopefully we’ve given you a broad overview of the issues you need to 
consider when designing a data-driven Windows Phone 7 applica-
tion. UI responsiveness, as well as time access to your data sources, 
play into making a great user experience for your app.

To dig a bit deeper, start with Joshua Partlow’s article, “Getting Started 
with Windows Phone Development Tools” (msdn.microsoft.com/magazine/
gg232764). You’ll also want to see the article, “Developing and Deploy-
ing Windows Azure Apps in Visual Studio 2010,” by Jim Nakashima, 
Hani Atassi and Danny Th orpe (msdn.microsoft.com/magazine/ee336122).

To put your Windows Azure and Windows Phone 7 development 
together, take a look at Ramon Arjona’s article, “Windows Phone and 
the Cloud—an Introduction” (msdn.microsoft.com/magazine/ff872395). 

DANILO DIAZ is a developer evangelist for the Microsoft  Mid-Atlantic State district. 
In this role, he helps developers understand Microsoft  product off erings and strategy.

MAX ZILBERMAN is an architect evangelist in the NYC and Mid-Atlantic States 
districts. Prior to joining Microsoft , Zilberman held various senior technical 
positions at a top-tier health insurer.

THANKS to the following technical expert for reviewing this article: 
Ramon Arjona

public static IEnumerable<Trips> GetSavedData() {
  IEnumerable<Trips> trips = new List<Trips>();
  try {
    using (var store = 
      IsolatedStorageFile.GetUserStoreForApplication()) {
      string offlineData = 
        Path.Combine("TravelBuddy", "Offline");
      string offlineDataFile = 
        Path.Combine(offlineData, "offline.xml");

      IsolatedStorageFileStream dataFile = null;

      if (store.FileExists(offlineDataFile)) {
        dataFile = 
          store.OpenFile(offlineDataFile, FileMode.Open);
        DataContractSerializer ser = 
          new DataContractSerializer(
          typeof(IEnumerable<Trips>));

        // Deserialize the data and read it 
        trips = 
          (IEnumerable<Trips>)ser.ReadObject(dataFile);
        dataFile.Close();
      }
      else
        MessageBox.Show("No data available");
    }
  }

  catch (IsolatedStorageException) {
    // Fail gracefully
  }

  return trips;
}

public static void SaveOfflineData(IEnumerable<Trips> trip) {
  try {
    using (var store = 
      IsolatedStorageFile.GetUserStoreForApplication()) {

      // Create three directories in the root.
      store.CreateDirectory("TravelBuddy");

      // Create three subdirectories under MyApp1.
      string offlineData = 
        Path.Combine("TravelBuddy", "Offline");

      if (!store.DirectoryExists(offlineData))
        store.CreateDirectory(offlineData);

      string offlineDataFile = 
        Path.Combine(offlineData, "offline.xml");
      IsolatedStorageFileStream dataFile = 
        dataFile = store.OpenFile(offlineDataFile, 
        FileMode.OpenOrCreate);

      DataContractSerializer ser =
        new DataContractSerializer(typeof(IEnumerable<Trip>));
      ser.WriteObject(dataFile, trip);
                   
      dataFile.Close();
    }
  }

  catch (IsolatedStorageException) {
    // Fail gracefully
  }
}

Figure 4 Saving and Retrieving Local Data

Another way to make 
data available to your app is 

to cache it locally.

http://msdn.microsoft.com/magazine/ee335721
http://msdn.microsoft.com/magazine/ee335721
http://msdn.microsoft.com/magazine/ff956224
http://azurepubsub.codeplex.com
http://bit.ly/aKY8iv
http://msdn.microsoft.com/magazine/gg232764
http://msdn.microsoft.com/magazine/gg232764
http://msdn.microsoft.com/magazine/ee336122
http://msdn.microsoft.com/magazine/ff872395


DEVELOP
Rich Business Intelligence Applications in WPF and Silverlight

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91 80 4151 8042

@infragistics

Robust Pivot Grids for WPF and
Silverlight let your users analyze data
to make key business decisions.
Visit infragistics.com to try it today!

Untitled-6   1 11/10/10   10:57 AM

www.infragistics.com


msdn magazine50

B DD PR I MER

Behavior-Driven 
Development with 
SpecFlow and WatiN

As automated unit testing becomes more ubiquitous 
in soft ware development, so does the adoption of various test-fi rst 
methods. Th ese practices each present a unique set of opportuni-
ties and challenges to development teams, but all strive to establish 
a “testing as design” mindset with practitioners. 

For much of the test-fi rst era, however, the method for expressing 
the behavior of a user has been through unit tests written in the 
language of the system—a language disconnected from that of the 
user. With the advent of Behavior-Driven Development (BDD) 
techniques, this dynamic is changing. Using BDD techniques you 
can author automated tests in the language of the business, all while 
maintaining a connection to your implemented system.

Of course, a number of tools have been created to help you 
implement BDD in your development process. These include 
Cucumber in Ruby and SpecFlow and WatiN for the Microsoft  
.NET Framework. SpecFlow helps you write and execute specifi -
cations within Visual Studio, while WatiN enables you to drive the 
browser for automated end-to-end system testing.

In this article, I’ll provide a brief overview of BDD and then 
explain how the BDD cycle wraps the traditional Test-Driven 

Brandon Satrom

Dev elopment (TDD) cycle with feature-level tests that drive unit-
level implementation. Once I’ve laid the groundwork for test-fi rst 
methods, I’ll introduce SpecFlow and WatiN and show you ex-
amples of how these tools can be used with MSTest to implement 
BDD for your projects. 

A Brief History of Automated Testing
One of the most valuable practices to emerge from the Agile Soft ware 
movement is an automated, test-fi rst development style, oft en referred 
to as Test-Driven Development, or TDD. A key tenet of TDD is that 
test creation is as much about design and development guidance as 
it is about verifi cation and regression. It’s also about using the test to 
specify a unit of required functionality, and using that test to then 
write only the code needed to deliver that functionality. Th erefore, 
the fi rst step in implementing any new functionality is to describe 
your expectations with a failing test (see Figure 1).

Many developers and teams have had great success with TDD. 
Others have not, and fi nd that they struggle with managing the 
process over time, especially as the volume of tests begins to grow 
and the fl exibility of those tests begins to degrade. Some aren’t sure 
how to start with TDD, while others find TDD easy to initiate, 
only to watch it abandoned as deadlines near and large backlogs 
loom. Finally, many interested developers meet resistance to the 
practice within their organizations, either because the word “test” 
implies a function that belongs on another team or because of 
the false perception that TDD results in too much extra code and 
slows down projects. 

Steve Freeman and Nat Pryce, in their book, “Growing Object- 
Oriented Soft ware, Guided by Tests” (Addison-Wesley Professional, 
2009), note that “traditional” TDD misses some of the benefi ts of 
true test-fi rst development:

“It is tempting to start the TDD process by writing unit tests for 
classes in the application. Th is is better than having no tests at all 

This article discusses:
• Automated testing basics

• Using SpecFlow and WatiN

• Your fi rst acceptance test

• Writing unit tests to implement steps

Technologies discussed:
Visual Studio 2010, SpecFlow, WatiN

Code download available at:
code.msdn.microsoft.com/mag201012BDD

http://code.msdn.microsoft.com/mag201012BDD


51December 2010msdnmagazine.com

and can catch those basic programming errors that 
we all know but fi nd so hard to avoid … But a project 
with only unit tests is missing out on critical benefi ts 
of the TDD process. We’ve seen projects with high-
quality, well unit-tested code that turned out not to be 
called from anywhere, or that could not be integrated 
with the rest of the system and had to be rewritten.” 

In 2006, Dan North documented many of these 
challenges in an article in Better Soft ware magazine 
(blog.dannorth.net/introducing-bdd). In his article, North 
described a series of practices that he had adopted over the prior 
three years while in the trenches with testing. While still TDD by 
defi nition, these practices led North to adopt a more analysis-centric 
view of testing and to coin the term Behavior-Driven Development 
to encapsulate this shift . 

One popular application of BDD attempts to extend TDD by 
tightening the focus and process of creating tests through Accep-
tance Tests, or executable specifi cations. Each specifi cation serves 
as an entry point into the development cycle and describes, from 
the user’s point of view and in a step-by-step form, how the system 
should behave. Once written, the developer uses the specifi cation 
and their existing TDD process to implement just enough produc-
tion code to yield a passing scenario (see Figure 2).

Where Design Begins
BDD is considered by many a superset of TDD, not a replacement 
for it. The key difference is the focus on initial design and test 
creation. Rather than focusing on tests against units or objects, as 
with TDD, I focus on the goals of my users and the steps they take 
to achieve those goals. Because I’m no longer starting with tests of 
small units, I’m less inclined to speculate on fi ne-grained usage or 
design details. Rather, I’m documenting executable specifi cations 
that prove out my system. I still write unit tests, but BDD encourages 
an outside-in approach that starts with a full description of the 
feature to be implemented.

Let’s look at an example of the diff erence. In a traditional TDD 
practice, you could write the test in Figure 3 to exercise the Create 
method of a CustomersController.

With TDD, this tends to be one of the fi rst tests I write. I design 
a public API to my CustomersController object by setting expec-
tations of how it will behave. With BDD I still create that test, but 
not at fi rst. Instead, I elevate the focus to feature-level functionality 
by writing something more like Figure 4. I then use that scenario 
as guidance toward implementing each unit of code needed to 
make this scenario pass.

Th is is the outer loop in Figure 2, the 
failing Acceptance Test. Once this test has 
been created and fails, I implement each 
step of each scenario in my feature by 
following the inner TDD loop depicted 
in Figure 2. In the case of the Customers-
Controller in Figure 3, I’ll write this test 
once I reach the proper step in my feature, 
but before I implement the controller logic 
needed to make that step pass. 

BDD and Automated Testing
From the start, the BDD community has sought to 
provide the same level of automated testing with 
Acceptance Tests that has been the norm in unit test-
ing for some time. One notable example is Cucumber 
(cukes.info), a Ruby-based testing tool that emphasizes 
the creation of feature-level Acceptance Tests written 
in a “business-readable, domain-specifi c language.” 

Cucumber tests are written using User Story 
syntax for each feature fi le and a Given, When, Th en 

(GWT) syntax for each scenario. (For details on User Story syntax, 
see c2.com/cgi/wiki?UserStory.) GWT describes the current context 
of the scenario (Given), the actions taken as a part of the test 
(When) and the expected, observable results (Th en). Th e feature in 
Figure 4 is an example of such syntax. 

In Cucumber, user-readable feature fi les are parsed, and each 
scenario step is matched to Ruby code that exercises the public 
interfaces of the system in question and determines if that step 
passes or fails. 

In recent years, innovations enabling the use of scenarios as 
automated tests have extended into the .NET Framework ecosystem. 
Developers now have tools that enable specifi cations to be written 
using the same structured English syntax that Cucumber utilizes, and 
which can then use those specifi cations as tests that exercise the code. 
BDD testing tools like SpecFlow (specfl ow.org), Cuke4Nuke (github.com/

richardlawrence/Cuke4Nuke) and others enable you to create executable 
specifi cations fi rst in the process, leverage those specifi cations as you 
build out functionality and end with a documented feature that’s tied 
directly to your development and testing process.

Getting Started with SpecFlow and WatiN
In this article, I’ll utilize SpecFlow to test a Model-View-Controller 
(MVC) application. To get started with SpecFlow, you’ll fi rst need 
to download and install it. Once SpecFlow is installed, create a 
new ASP.NET MVC application with a unit test project. I prefer 
that my unit test project contain only unit tests (controller tests, 
repository tests and so on), so I also create an AcceptanceTests test 
project for my SpecFlow tests.

Once you’ve added an AcceptanceTests project and added refer-
ences to the TechTalk.SpecFlow assembly, add a new Feature using 
the Add | New Item templates that SpecFlow creates on installation 
and name it CreateCustomer.feature. 

Notice that the fi le is created with a .feature extension, and that 
Visual Studio recognizes this as a supported fi le, thanks to SpecFlow’s 
integrated tooling. You may also notice that your feature fi le has a 

related .cs code-behind fi le. Each time you 
save a .feature fi le, SpecFlow parses the 
fi le and converts the text in that fi le into 
a test fi xture. Th e code in the associated 
.cs fi le represents that test fi xture, which 
is the code that’s actually executed each 
time you run your test suite.

By default, SpecFlow uses NUnit as its 
test-runner, but it also supports MSTest 
with a simple confi guration change. All 

Figure 1 The Test-Driven 
Development Cycle

Write a
Failing

Test

Make
the Test

Pass

Refactor

Figure 2 The Behavior-Driven 
Development Cycle

Write a
Failing

Unit Test

Write a Failing 
Acceptance

Test

Make
the Test

Pass

Refactor

www.MSDNmagazine.com
http://blog.dannorth.net/introducing-bdd
http://c2.com/cgi/wiki?UserStory
http://specflow.org
http://github.com/richardlawrence/Cuke4Nuke
http://github.com/richardlawrence/Cuke4Nuke


msdn magazine52 BDD Primer

you need to do is add an app.confi g fi le to your test project and add 
the following elements:

<configSections>
  <section name="specFlow"
    type="TechTalk.SpecFlow.Configuration.ConfigurationSectionHandler, 
TechTalk.SpecFlow"/>
</configSections>
<specFlow>
  <unitTestProvider name="MsTest" />
</specFlow>

Your First Acceptance Test
When you create a new feature, SpecFlow populates that fi le with 
default text to illustrate the syntax used to describe a feature. 
Replace the default text in your CreateCustomer.feature fi le with 
the text in Figure 4.

Each feature fi le has two parts. Th e fi rst part is the feature name 
and description at the top, which uses User Story syntax to describe 
the role of the user, the user’s goal, and the types of things the user 
needs to be able to do to achieve that goal in the system. Th is section 
is required by SpecFlow to auto-generate tests, but the content itself 
is not used in those tests.

Th e second part of each feature fi le is one or more scenarios. Each 
scenario is used to generate a test method in the associated .feature.cs 
fi le, as shown in Figure 5, and each step within a scenario is passed 
to the SpecFlow test runner, which performs a RegEx-based match 
of the step to an entry in a SpecFlow fi le called a Step Defi nition fi le.

Once you’ve defi ned your fi rst feature, Press Ctrl+R,T to run your 
SpecFlow tests. Your CreateCustomer test will fail as inconclusive 
because SpecFlow cannot fi nd a matching step defi nition for the 
fi rst step in your test (see Figure 6). Notice how the exception is 
reported in the actual .feature fi le, as opposed to the code-behind fi le.

Because you haven’t yet created a Step Defi nition fi le, this excep-
tion is expected. Click OK on the exception dialog and look for the 
CreateABasicCustomerRecord test in the Visual Studio Test Results 
window. If a matching step isn’t found, SpecFlow uses your feature 
fi le to generate the code you need in your step defi nition fi le, which 
you can copy and use to begin implementing those steps.

In your AcceptanceTests project, create a step defi nition fi le using 
the SpecFlow Step Defi nition template and name it CreateCustomer.cs. 
Th en copy the output from SpecFlow into the class. You’ll notice that 
each method is decorated with a SpecFlow attribute that designates 

the method as a Given, When or Th en step, and provides the RegEx 
used to match the method to a step in the feature fi le.

Integrating WatiN for Browser Testing
Part of the goal with BDD is to create an automated test suite that 
exercises as much end-to-end system functionality as possible. 
Because I’m building an ASP.NET MVC application, I can use tools 
that help script the Web browser to interact with the site. 

One such tool is WatiN, an open source library for automating Web 
browser testing. You can download WatiN from watin.sourceforge.net

and add a reference to WatiN.Core to your Acceptance Tests 
project to use it.

public virtual void CreateABasicCustomerRecord() {
  TechTalk.SpecFlow.ScenarioInfo scenarioInfo = 
    new TechTalk.SpecFlow.ScenarioInfo(
    "Create a basic customer record", ((string[])(null)));

  this.ScenarioSetup(scenarioInfo);
  testRunner.Given(
    "I am logged into the site as an administrator");
  testRunner.When("I click the \"Create New Customer\” link");

  TechTalk.SpecFlow.Table table1 = 
    new TechTalk.SpecFlow.Table(new string[] {
    "Field", "Value"});
  table1.AddRow(new string[] {
    "Name", "Hugo Reyesv"});
  table1.AddRow(new string[] {
    "Email", "hreyes@dharmainitiative.com"});
  table1.AddRow(new string[] {
    "Phone", "720-123-5477"});

  testRunner.And("I enter the following information", 
    ((string)(null)), table1);
  testRunner.And("I click the \"Create\" button");

  TechTalk.SpecFlow.Table table2 = 
   new TechTalk.SpecFlow.Table(new string[] {
  "Value"});
  table2.AddRow(new string[] {
    "Hugo Reyes"});
  table2.AddRow(new string[] {
    "hreyes@dharmainitiative.com"});
  table2.AddRow(new string[] {
    "720-123-5477"});
  testRunner.Then("I should see the following details on screen:", 
    ((string)(null)), table2);
  testRunner.CollectScenarioErrors();
}

Figure 5 Test Method Generated by SpecFlow

[TestMethod]
public void PostCreateShouldSaveCustomerAndReturnDetailsView() {
  var customersController = new CustomersController();
  var customer = new Customer {
    Name = "Hugo Reyes",
    Email = "hreyes@dharmainitiative.com",
    Phone = "720-123-5477" 
  };

  var result = customersController.Create(customer) as ViewResult;

  Assert.IsNotNull(result);
  Assert.AreEqual("Details", result.ViewName);
  Assert.IsInstanceOfType(result.ViewData.Model, typeof(Customer));

  customer = result.ViewData.Model as Customer;
  Assert.IsNotNull(customer);
  Assert.IsTrue(customer.Id > 0);
}

Figure 3 Unit Test for Creating a Customer

Feature: Create a new customer
  In order to improve customer service and visibility
  As a site administrator
  I want to be able to create, view and manage customer records

Scenario: Create a basic customer record
  Given I am logged into the site as an administrator
  When I click the "Create New Customer" link
  And I enter the following information
    | Field | Value                       |
    | Name  | Hugo Reyes                  |
    | Email | hreyes@dharmainitiative.com |
    | Phone | 720-123-5477                |
  And I click the "Create" button
  Then I should see the following details on the screen:
    | Value                       |
    | Hugo Reyes                  |
    | hreyes@dharmainitiative.com |
    | 720-123-5477                |

Figure 4 Feature-level Specifi cation

http://watin.sourceforge.net


A New Evolution, a New Opportunity
with Microsoft Dynamics AX
Q What is Microsoft Dynamics?
A Microsoft Dynamics is a line of ERP and CRM applications 
developed by the Microsoft Business Solutions group within 
Microsoft. You can read more at http://www.microsoft.com/
dynamics. 

Q What is Microsoft Dynamic AX?
A Microsoft Dynamics AX is a Microsoft enterprise resource 
planning product that provides solutions for industries like 
distribution, manufacturing, professional services, retail, and 
public sector. http://www.microsoft.com/dynamics/en/us/
products/ax-overview.aspx

Q Why is this interesting for developers?
A Microsoft Dynamics AX is an application built on the 
Microsoft sta ck. Developers can leverage their skills in the .NET 
Framework to extend the solution into speci  c industry vertical. 

Q How is the .NET Framework is leveraged?
A For example, the Windows Work  ow foundation is the 
orchestration engine coordinating business processes in 
Microsoft Dynamics AX. The Windows Communication 
Foundation provides a uni  ed programming model for 
leveraging business processes through services. 

Q How is the application lifecycle managed?
A Microsoft Dynamics AX is integrated with Visual Studio 
Team System allowing developers to manage their solution 
with standard Microsoft tools. 

Q Is there a new release coming? 
A Yes. A new version of Microsoft Dynamics AX is expected  
in 2011.

Q Is there somewhere that I could go and learn about 
the upcoming release?
A Yes. We are hosting a pre-release conference called the 
Microsoft Dynamics AX Technical Conference 2011 focused 
on helping developers get their solutions prepared for the  
next release.

Q What can people expect when attending   
this conference?
A We have a great lineup. There will be over 65 sessions 
covering the upcoming release, with time set aside to 
collaborate with the development team in Chalk and Talk  

and Ask the Experts sessions. Microsoft Dynamics AX Certi  ed 
Trainers will host instructor-led labs. 

Also, partners and customers can network with the develop-
ment team, not only from Microsoft Dynamics AX, but with 
others that work on the core technologies that AX builds on.  

Q What topics will be covered? 
A With all of the innovation in this new version there is 
something for everyone. Topics cover developer tools, 
database modeling, application component design, business 
intelligence tools, of  ce integration around Microsoft 
SharePoint and the core Microsoft Of  ce products, services 
integration, IT management, performance, and application 
lifecycle management. 

Q Sounds great! How do I sign up?
A We are excited to be able to put on this event, as we think 
it is our little version of PDC for developers or TechEd for the 
IT folks, but just focused on Microsoft Dynamics AX and 
speci  cally the next release. 

Register at http://www.microsoft.com/dynamics/daxconf2011/
msdn. And be sure to check out the sample of the session 
content. Look for the full catalog by the end of October.

Experience How. Get Involved.
Find out more at http://www.microsoft.com/dynamics/daxconf2011/MSDN

Want to get involved? Email: daxconf@microsoft.com.

Untitled-1   1 10/14/10   4:53 PM

http://www.microsoft.com/dynamics/daxconf2011/MSDN
mailto:daxconf@microsoft.com


msdn magazine54 BDD Primer

Th e primary way you interact with WatiN is through a browser 
object—either IE() or FireFox(), depending on your browser of choice—
that provides a public interface to control an instance of an installed 
browser. Because you need to walk the browser through several steps 
in a scenario, you need a way to pass the same browser object between 
steps in the step defi nition class. To handle this, I usually create a 
WebBrowser static class as part of my AcceptanceTests project, and use 
that class to work with the WatiN IE object and the ScenarioContext 
that SpecFlow uses to store state between steps in a scenario:

public static class WebBrowser {
  public static IE Current {
    get {
      if (!ScenarioContext.Current.ContainsKey("browser"))
        ScenarioContext.Current["browser"] = new IE();
      return ScenarioContext.Current["browser"] as IE;
    }
  }
}

Th e fi rst step you’ll need to implement in CreateCustomer.cs is 
the Given step, which begins the test by logging the user into the 
site as an administrator: 

[Given(@"I am logged into the site as an administrator")]
public void GivenIAmLoggedIntoTheSiteAsAnAdministrator() {
  WebBrowser.Current.GoTo(http://localhost:24613/Account/LogOn);

  WebBrowser.Current.TextField(Find.ByName("UserName")).TypeText("admin");
  WebBrowser.Current.TextField(Find.ByName("Password")).TypeText("pass123");
  WebBrowser.Current.Button(Find.ByValue("Log On")).Click();

  Assert.IsTrue(WebBrowser.Current.Link(Find.ByText("Log Off")).Exists);
}

Remember that the Given portion of a 
scenario is for setting up the context of the 
current test. With WatiN, you can have your 
test drive and interact with the browser to 
implement this step.

For this step, I use WatiN to open Internet 
Explorer, navigate to the Log On page of the 
site, fill out the User name and Password 
textboxes, and then click the Log On button 
on the screen. When I run the tests again, an 
Internet Explorer window will open auto-
matically and I can observe WatiN in action 
as it interacts with the site, clicking links and 
entering text (see Figure 7).

Th e Given step will now pass and I’m a step 
closer to implementing the feature. SpecFlow 
will now fail on the fi rst When step because 
the step is not yet implemented. You can 
implement it with the following code:
[When("I click the \" (.*)\" link")]
public void WhenIClickALinkNamed(string linkName) {
  var link = WebBrowser.Link(Find.ByText(linkName));

  if (!link.Exists)
    Assert.Fail(string.Format(
      "Could not find {0} link on the page", 
linkName));

  link.Click();
}

Now, when I run the tests again, they fail 
because WatiN cannot fi nd a link with the text 
“Create New Customer” on the page. By simply 

adding a link with that text to the homepage, the next step will pass.
Sensing a pattern yet? SpecFlow encourages the same Red-Green-

Refactor methodology that’s a staple of test-first development 
methods. Th e granularity of each step in a feature acts like virtual 
blinders for implementation, encouraging you to implement only 
the functionality that you need to make that step pass.

But what about TDD inside of the BDD process? I’m only work-
ing at the page level at this point, and I have yet to implement the 
functionality that actually creates the customer record. For the sake 
of brevity, let’s implement the rest of the steps now (see Figure 8).

I re-run my tests, and things now fail because I don’t have a page 
to enter customer information. To allow customers to be created, I 
need a Create Customer View page. In order to deliver such a view in 
ASP.NET MVC, I need a CustomersController that delivers that view. 
I now need new code, which means I’m stepping from the outer loop 
of BDD and into the inner loop of TDD, as shown back in Figure 2. 

Th e fi rst step is to create a failing unit test.

Writing Unit Tests to Implement Steps
Aft er creating a CustomerControllersTests test class in the UnitTest 
project, you need to create a test method that exercises the function-
ality to be exposed in the CustomersController. Specifi cally, you want 
to create a new instance of the Controller, call its Create method 
and ensure that you receive the proper View and Model in return:

[TestMethod]
public void GetCreateShouldReturnCustomerView() {
  var customersController = new CustomersController();
  var result = customersController.Create() as ViewResult;

  Assert.AreEqual("Create", result.ViewName);
  Assert.IsInstanceOfType(
    result.ViewData.Model, typeof(Customer));
}

Th is code doesn’t yet compile because you 
haven’t created CustomersController or its 
Create method. Upon creating that controller 
and an empty Create method, the code 
compiles and the test now fails, which is the 
desired next step. If you complete the Create 
method, the test now passes:
public ActionResult Create() {
  return View("Create", new Customer());
}

Figure 6 SpecFlow Cannot Find a Step Defi nition

Figure 7 The Browser on Autopilot 
with WatiN



(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/12

US Headquarters 
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters 
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE 
United Kingdom

Asia / Pacific Headquarters 
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

BEST SELLER TX Text Control .NET and .NET Server    from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts    from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER Spread for Windows Forms    from $959.04
A comprehensive Excel compatible spreadsheet component for Windows Forms applications.

BEST SELLER

BEST SELLER ActiveReports 6    from $685.02
Latest release of the best selling royalty free .NET report writer.

BEST SELLER

Untitled-9   1 11/2/10   11:37 AM

http://www.componentsource.com


msdn magazine56 BDD Primer

If you re-run the SpecFlow tests, you get a bit further, but the 
Feature still doesn’t pass. Th is time, the test will fail because you 
don’t have a Create.aspx view page. If you add it along with the 
proper fi elds as directed by the feature, you’ll move another step 
closer to a completed feature. 

Th e outside-in process for implementing this Create function-
ality looks something like Figure 9.

Th ose same steps will repeat themselves oft en in this process, 
and your speed in iterating over them will increase greatly over 
time, especially as you implement helper steps (clicking links and 
buttons, fi lling in forms and so on) in the AcceptanceTests project 
and get down to testing the key functionality in each scenario. 

From a valid Create View, the Feature will now fill out the 
appropriate form fi elds and will attempt to submit the form. You 
can guess by now what happens next: Th e test will fail because you 
don’t yet have the logic needed to save the customer record.

Following the same process as before, create the test using the 
unit-test code shown earlier in Figure 3 . Aft er adding an empty 
Create method that accepts a customer object to allow this test to 
compile, you watch it fail, then complete the Create method like so:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(Customer customer) {
  _repository.Create(customer);

  return View("Details", customer);
}

My Controller is just a controller, and the actual creation of the 
customer record belongs to a Repository object that has knowledge 
of a data storage mechanism. I’ve left  that implementation out of this 
article for brevity, but it’s important to note that, in a real scenario, 
the need for a repository to save a customer should kick off  another 

sub-loop of unit testing. When you need access to any collaborating 
object and that object does not yet exist, or doesn’t off er the func-
tionality you require, you should follow the same unit test loop that 
you’re following for your Feature and Controllers. 

Once you’ve implemented the Create method and have a working 
repository, you’ll need to create the Details View, which takes the 
new customer record and displays it on the page. Th en you can run 
SpecFlow once more. Finally, aft er many TDD loops and sub-loops, 
you now have a passing feature that proves out some end-to-end 
functionality in your system. 

Congratulations! You’ve now implemented a unit of end-to-end 
functionality with an acceptance test and a complete set of unit 
tests that will ensure the new functionality will continue to work 
as your system expands to add new features.

A Word About Refactoring
Hopefully, as you create unit-level tests in your UnitTests project, you’re 
constantly refactoring with each test creation. As you move back up the 
chain from passing unit tests to a passing acceptance test, you should fol-
low the same process, watching for opportunities to refactor and refi ne 
your implementation for each feature and all the features that come aft er.

Be on the lookout for opportunities to refactor the code in your 
AcceptanceTests project as well. You’ll fi nd that some steps tend 
to be repeated oft en across several features, especially your Given 
steps. With SpecFlow, you can easily move these steps into separate 
Step Defi nition fi les organized by function, such as LogInSteps.cs. 
Th is leaves your main Step Defi nition fi les clean and targeted at the 
unique scenario you’re  specifying. 

BDD is about focus in design and development. By elevating your 
focus from an object to a feature, you enable yourself and your team to 
design from the perspective of the user of a system. As feature design 
becomes unit design, be sure to author tests with your feature in mind, 
and ensure the tests are guided by discrete steps or tasks.

Like any other practice or discipline, BDD takes time to fi t into 
your workfl ow. I encourage you to try it out for yourself, using any 
of the available tools, and see how it works over time. As you develop 
in this style, pay attention to the questions that BDD encourages you 
to ask. Constantly pause and look for ways to improve your practice 
and process, and collaborate with others on ideas for improvement. 
My hope is that, no matter your toolset, the study of BDD adds value 
and focus to your own soft ware development practice. 

BRANDON SATROM works as a developer evangelist for Microsoft  in Austin, Texas. 
He blogs at userinexperience.com and can be found on Twitter as @BrandonSatrom.

THANKS to the following technical experts for refviewing this article: 
Paul Rayner and Clark Sell

[When(@"I enter the following information")]
public void WhenIEnterTheFollowingInformation(Table table) {
  foreach (var tableRow in table.Rows) {
    var field = WebBrowser.TextField(
      Find.ByName(tableRow["Field"]));

    if (!field.Exists)
      Assert.Fail(string.Format(
        "Could not find {0} field on the page", field));
    field.TypeText(tableRow["Value"]);
  }
}

[When("I click the \"(.*)\" button")]
public void WhenIClickAButtonWithValue(string buttonValue) {
  var button = WebBrowser.Button(Find.ByValue(buttonValue));

  if (!button.Exists)
    Assert.Fail(string.Format(
      "Could not find {0} button on the page", buttonValue));

  button.Click();
}

[Then(@"I should see the following details on the screen:")]
public void ThenIShouldSeeTheFollowingDetailsOnTheScreen(
  Table table) {
  foreach (var tableRow in table.Rows) {
    var value = tableRow["Value"];

    Assert.IsTrue(WebBrowser.ContainsText(value),
      string.Format(
        "Could not find text {0} on the page", value));
  }
}

Figure 8 Remaining Steps in the Step Defi nition

Figure 9 Scenario-to-Unit Test Process

Scenario
Step Fails

Create Failing
Unit Test

Next Scenario
Step Fails

Scenario
Step Passes

Implement
Production Code

Unit Test
Passes

http://Twitter.com/BrandonSatrom


Untitled-1   1 1/11/10   10:55 AM

www.alexcorp.com


msdn magazine58

E V E N T  TR AC ING  FOR  W INDOWS

Diagnosing Performance 
Issues in .NET 
Applications Using Event 
Tracing for Windows 

You write a managed application and take it for a spin—and 
it’s slow. Your application is functionally correct, but its perform ance 
is much to be desired. You’d like to diagnose the performance issues 
and resolve them, but your application is running in a production 
environment, so you can’t install profilers or disrupt it. Or your 
application may not be used widely enough to justify buying 
Visual Studio Profi ler for CPU profi ling. 

Happily, Event Tracing for Windows (ETW) can mitigate these 
issues. Th is powerful logging technology is built into many parts 
of the Windows infrastructure and is leveraged in the Microsoft  
.NET Framework 4 CLR to make it simpler than ever to profi le 
your managed application. ETW collects system-wide data and 
profi les all resources (CPU, disk, network and memory), making it 
extremely useful for obtaining a holistic view. Moreover, the ETW 

Subramanian Ramaswamy

ecosystem can be tuned so it’s low overhead, making it suitable 
for production diagnostics. 

The goal of this article is to give you an idea of the power of 
using ETW to profile your managed application. I won’t cover 
everything—there are several OS events and CLR ETW events avail-
able for diagnostics that we won’t look at. But you will get insights 
into how the performance and functionality of your managed app 
can be improved dramatically using the ETW ecosystem. To get 
you started with ETW-based diagnostics for your managed code, I’ll 
showcase a sample investigation using the freely available ETW tool, 
PerfMonitor, downloadable from bcl.codeplex.com/releases/view/49601.

PerfMonitor
PerfMonitor lets you quickly and easily collect ETW performance 
data and generate useful reports. It’s not intended to be a replace-
ment for deep analysis tools, such as the Visual Studio Profi ler; 
rather, it provides you with an overview of an application’s perfor-
mance characteristics and lets you perform some quick analyses.

Th ere’s another tool for ETW diagnostics called XPerf, which 
is freely available through the Windows Performance Toolkit. 
However, while XPerf is great for native code profi ling on Windows, 
it does not yet have deep support for managed code profiling. 
Perf Monitor, on the other hand, exposes the scope and power of 
profi ling managed code using ETW. PerfMonitor has the ability to 
gather symbolic information associated with .NET Framework run-
time code, making it valuable for .NET Framework performance 

This article discusses:
• Event Tracing for Windows

• Diagnosing performance issues

• Using PerfMonitor to profi le managed code

Technologies discussed:
Event Tracing for Windows, Microsoft .NET Framework 4 CLR

Code download available at:
code.msdn.microsoft.com/mag201012ETW

http://code.msdn.microsoft.com/mag201012ETW
http://bcl.codeplex.com/releases/view/49601


59December 2010msdnmagazine.com

investigations, although it doesn’t support the in-depth analysis 
that XPerf can provide. 

PerfMonitor is a fully self-contained tool, and is all you need to 
start profi ling and diagnosing your managed application. Th e only 
other requirement is that you must be running at least Windows 
Vista or Windows Server 2008. PerfMonitor is a command-line 
tool, and typing PerfMonitor.exe usersGuide from its location will 
bring up an overview. If you have a customer whose program you 
want to diagnose under operating conditions—for instance, on a 
production server—all you need to do is copy the fi le over to that 
machine and you’re ready to start collecting profi les. Th e profi les 
can be analyzed offl  ine if needed.

Four factors are generally examined during any performance 
investigation: CPU, disk I/O, memory and scalability. Most investiga-
tions start with the CPU, which aff ects both the startup and execution 
time of your application. Examining disk I/O is 
most helpful when diagnosing lengthy startup 
times (disk I/O is a major factor in cold startup 
times, which is the time it takes for an application 
to start when it’s not present in memory, such as 
after a reboot), whereas excessive memory 
consumption (or leaks) can cause your app to 
grow slower over time. Scalability matters if you 
want your application to achieve throughput 
proportional to the number of processors.

PerfMonitor helps you get a quick snap-
shot of all these except scalability, and it also 
provides you with enough information to dig 
deeper using other specialized tools. For exam-
ple, for diagnosing issues with the CLR .NET 
garbage collection (GC) heap, the CLRProfi ler 
is a better bet. However, PerfMonitor quickly 
informs you whether there’s an issue and you 
need to dig deeper using other tools. In some 
cases, PerfMonitor itself points out the prob-
lem and contains all the information you need 
to tackle a performance bug, as you’ll soon see. 
Take a look at the CLR Inside Out column, 
“Memory Usage Auditing for .NET Appli-
cations” (msdn.microsoft.com/magazine/dd882521), 
which discusses the importance of auditing 
your program for memory usage and planning 
for performance. Extending that philosophy, 
PerfMonitor quickly lets you audit many per-
formance aspects of your managed program, 
not just memory. 

A Sample Investigation: CsvToXml
Th e sample program I’ll diagnose using ETW 
converts a CSV fi le into an XML fi le. Th e source 
code, along with the solution package (and a 
sample input CSV fi le, data.csv), is available at 
code.msdn.microsoft.com/mag201012ETW. To execute 
the program, run the command CsvToXml.exe 
data.csv output.xml. 

Like many programs, CsvToXml was quickly stitched together 
and the developer never anticipated that it would be used for large 
CSV fi les. When I began using it in the real world, I found it was 
too slow. It took more than 15 seconds to process a 750K fi le! I knew 
there was a problem, but without a profi ling tool, I’d really just be 
guessing as to the cause of the slowness. (Can you spot it just by look-
ing at the source?) Luckily, PerfMonitor can help you fi gure it out.

Generating and Viewing the Program Trace
Th e fi rst step is to do a quick audit of the application by executing the 
following command in an administrator command-prompt window 
(ETW collects data machine-wide, and hence needs admin privileges):

PerfMonitor runAnalyze CsvToXml.exe data.csv out.xml

This will start ETW logging, launch CsvToXml.exe, wait for 
CsvToXml to complete, stop logging and, fi nally, bring up a Web 

F igure 1 Performance Analysis for CsvToXml

www.MSDNmagazine.com
http://msdn.microsoft.com/magazine/dd882521
http://code.msdn.microsoft.com/mag201012ETW


msdn magazine60 Event Tracing for Windows

page showing the analysis for CsvToXml. In one easy step, you 
have a wealth of data to help you uncover the performance bottle-
necks in CsvToXml. 

Th e result of this command is captured in Figure 1 . Th e page 
contains, among other data, the process ID, the command line used, 
and a breakdown of high-level performance data including CPU 
statistics, GC statistics and just-in-time (JIT) statistics. PerfMonitor 
also provides a fi rst-level analysis on where to begin the diagnostics, 
with useful links to informational articles or other tools.

 The report shows that the format conversion took nearly 14 
seconds, of which 13.6 seconds were in the CPU with an average 
utilization of 99 percent. Th us, the scenario was CPU-bound. 

Th e total time in GC and the GC Pause times are low, which is 
good; however, the max GC allocation rate is 105.1MB/sec, which 
is excessive—this merits further investigation.

CPU Analysis
Th e Detailed CPU Analysis provides a breakdown of CPU time, 
as shown in Figure 2, and there are three 
ways of reading CPU profile data. The 
bottom-up view quickly tells you which 
methods are consuming the most CPU 
time and should be diagnosed fi rst. Th e 
top-down view is useful for fi nding out 
if your code needs architectural or struc-
tural changes and helps you understand 
the overall performance of your program. 
Th e caller-callee view indicates the rela-
tionship among methods— for example, 
which methods call which.  

Like other CPU profi lers, PerfMonitor 
views give you the inclusive time (the time 
spent in a particular method, including 
time spent in its callees) and the exclu-
sive time (the time spent in a particular 
method excluding callees). When inclusive 
and exclusive times are equal, the work is 

done within that particular method. Perf-
Monitor also provides a CPU Utilization 
graph that breaks down CPU usage over 
time for a particular method. Hovering 
over the column headings in the report 
gives you more details on what they mean.

Most performance investigations start 
with the bottom-up view, which is a list-
ing of methods by exclusive time (this 
view is shown in Figure 2). Upon selecting 
the bottom-up view, you can see that the 
mscorlib method System.IO.File.OpenText 
is the one using the most CPU. Clicking 
that link brings up the caller-callee view 
for the OpenText method, which reveals 
that the CsvToXml.Csv File.get_Column-
Names method is invoking OpenText from 
the program—and get_ColumnNames is 

consuming almost 10 seconds of CPU time (Figure 3). Further-
more, this method is called from CsvToXml.CsvFile.XmlElement-
ForRow within a loop (XmlElementForRow itself is called from 
the Main method).

Th us, something seems to be amiss in these methods. Pulling up 
the code of these methods leads you to the problem, highlighted 
in Figure 4: the fi le is opened and parsed repeatedly inside a loop!

Similar scenarios happen more frequently than you’d think. 
When the method was originally written, the developer may have 
believed it was going to be invoked only rarely (as was the case with 
ColumnNames), and thus may not have paid too much attention 
to its performance. However, situations oft en come along later that 
end up calling the method in a loop, and the performance of the 
application suff ers.

In a CSV fi le, all rows have the same format, so there’s no point in 
doing this every time. You can hoist the ColumnNames functionality 
into the constructor, as in Figure 5, leaving the property to provide 
the cached column names. Th is ensures that the fi le is read only once.

Fi gure 2 Bottom-Up Analysis of CsvToXml.exe

Fig ure 3 Caller-Callee View for get_ColumnNames



EXPERIENCE
Beautiful Data Visualizations That Bring Your Data to Life

Use our Motion Framework™ to see your
data over time and give your users new
insight into their data. Visit infragistics.com
to try it today!

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.
Motion Framework is a trademark of Infragistics, Inc.

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6   1 11/10/10   10:57 AM

www.infragistics.com


msdn magazine62 Event Tracing for Windows

Aft er rebuilding, we execute the previous command again and fi nd 
the application much snappier; the duration is now only 2.5 seconds.

Nonetheless, reviewing the data with the fi x, you’ll notice that CPU 
time is still dominant. By again drilling into CPU time and looking 
at the bottom-up analysis, you can see that Regex.Replace is now 
the most-expensive method, and that it’s called from EscapeXml 
and ToValidXmlName. B ecause EscapeXml is the more-expensive 
method (330 ms exclusive time), check its source code:

private static string EscapeXml(string str)
{
  str = Regex.Replace(str, "\"", "&quote;");
  str = Regex.Replace(str, "<", "&lt;");
  str = Regex.Replace(str, ">", "&gt;");
  str = Regex.Replace(str, "&", "&amp;");
  return str;
}

EscapeXml is also called within a loop in XmlElementForRow, and 
thus has the potential to be a bottleneck. Regular expressions are a bit 
of overkill for these replacements, and using a string Replace method 
would be more effi  cient. So replace EscapeXml with the following:

private static string EscapeXml(string str)
{
  str = str.Replace("\"", "&quote;");
  str = str.Replace("<", "&lt;");
  str = str.Replace(">", "&gt;");
  str = str.Replace("&", "&amp;");
  return str;
}

With this transformation, you’ve reduced the overall time to approxi-
mately two seconds, with CPU time still dominant. Th is is acceptable 
performance—you’ve improved the execution speed almost sevenfold.

As an exercise for the reader, I’ve left  a few more performance bugs 
in the sample program that can be identifi ed using ETW events. 

Exploring GC Statistics
PerfMonitor GC statistics supply a quick overview of the memory 
profi le. As you may recall, I strongly recommend memory usage 
auditing, and the information provided through GC ETW events 
provides a quick snapshot of any problems with the .NET GC 
heap. The quick summary view tells you the aggregate GC heap 
size, the allocation rates and the GC pause times. Selecting the 
GC Time Analysis link on the PerfMonitor results tab shows you 
the details of the GCs, when they occurred, how much time they 
consumed and so forth. 

Th e information lets you determine if you need to dig further 
into any memory issues using the CLRProfi ler or other memory 
profi lers. Th e article “Profi ling the .NET Garbage-Collected Heap” 
(msdn.microsoft.com/magazine/ee309515) digs into debugging the .NET 
GC heap using the CLRProfi ler.

For this particular program, none of the GC statistics looks 
worrisome. Th e allocation rate is high; a good rule of thumb is to 
have your allocation rate below 10MB/s. However, pause times are 
very small. High allocation rates show up under CPU time, which 
mostly means that there are CPU gains to be had—as you found 
out. However, aft er the fi xes, the allocation rates remain high, and 
this means there are a lot of allocations happening (can you fi x 
this?). Th e GC pause-time of a few milliseconds is a testament to 
the self-tuning and effi  cient GC that the .NET Framework runtime 
provides. Th us, the .NET Framework GC is automatically taking 
care of memory management.

Exploring JIT Statistics 
To improve startup time, one of the fi rst items to look into is the time 
needed for JIT compiling of methods. If the time taken is signifi cant 
(for example, most of the time used during startup of your app is 
consumed by JIT compilation), the application might benefi t from 
native image generation (NGen), which eliminates JIT compilation 
time by precompiling the assembly and saving it on disk. That 
is, the assembly is JIT-compiled and saved on disk, eliminating the 
need for JIT compilation for subsequent executions. Before going 
down the NGen route, though, you may also want to consider 
deferring some of the methods being JIT compiled to a later point in 
the program so the JIT compilation times don’t aff ect startup. For 
more information, please see the article, “Th e Performance Benefi ts 
of NGen” (msdn.microsoft.com/magazine/cc163610).

Th e sample application CsvToXml.exe didn’t have a signifi cant 
startup cost, and allowing it to JIT compile all methods every time 
is fi ne. Th e JIT compilation statistics also tell you that the number 
of methods that were JIT compiled was 17 (suggesting that all the 
methods called were JIT compiled), and the total JIT compilation 
time was 23 ms. Neither of these is a performance issue with this 
application, but for larger applications where JIT compilation time 
is a factor, using NGen should eliminate any problems. Normally, 
JIT compilation time becomes a factor when an application starts 
JIT compiling hundreds or thousands of methods. In such cases, 
NGen is the solution to eliminate JIT compilation costs.

More guidance on improving startup is available in other MSDN 
Magazine articles, and the ETW events can help identify and fi x 
bottlenecks. Several other JIT events are available as well, including 

public string[] ColumnNames
{
  get
  {
    using (var reader = File.OpenText(Filename))
      return Parse(reader.ReadLine());
  }
}

public string XmlElementForRow(string elementName, string[] row)
{
  string ret = "<" + elementName;
  for (int i = 0; i < row.Length; i++)
    ret += " " + ToValidXmlName(ColumnNames[i]) + "=\"" + 
EscapeXml(row[i]) + "\"";
  ret += "/>";
  return ret;
}

Figure 4 Method ColumnNames Is Invoked by 
Method XmlElementForRow

public CsvFile(string csvFileName)
{
  Filename = csvFileName;

    using (var reader = File.OpenText(Filename))
      ColumnNames = Parse(reader.ReadLine());
        
}

public string Filename { get; private set; }

public string[] ColumnNames { get; private set;}           

Figure 5 Caching the Column Names for Better Performance

http://msdn.microsoft.com/magazine/ee309515
http://msdn.microsoft.com/magazine/cc163610


63December 2010msdnmagazine.com

JIT inline events that can provide insights into why a method 
wasn’t inlined. 

CLR ETW Events in the .NET Framework 4
Th e CLR team wrote a blog post on tracking down DLL loads and 
determining whether a particular DLL needs to be loaded during 
startup. Th e process of determining whether a DLL load needs to 
happen during startup becomes simpler with ETW events. By using 
the ETW Module Load events available in the .NET Framework 4, 
we know which modules are loaded and why. Th ere are also events 
for module unloads and so on.

Th ere are several other events in the .NET Framework 4 that 
make diagnosing your managed application simpler than ever. 
Figure 6  summarizes these events. All the events that were 
triggered during execution can be dumped with the PerfMonitor 
runPrint command. Th e CLR team has also run down events that 
allow you to attach and detach ETW profi ling, and the team plans 
to keep adding more ETW events to make the process of debugging 
managed applications simpler in future releases.

You’ll fi nd two fi les with the suffi  x PerfMonitorOutput in the exe-
cution directory; these are the ETW log fi les. You’ll also see fi les with 
the suffi  x kernel, signifying they contain the OS events. Th e data 
collected by PerfMonitor is the same data that XPerf uses, so you can 
use PerfMonitor to simplify data collection and simple reporting and 
XPerf for more advanced analysis of the same data. Th e PerfMonitor 
merge command converts the ETW fi les to an XPerf-readable format.

Wrapping Up
Performance investigation using ETW is simple, yet powerful. 
Various free, low-overhead ETW-based tools are available that 
allow debugging of managed code effi  ciently. I’ve just skimmed the 
surface of the ETW events that are available in the .NET Framework 
runtime. My aim was to get you started debugging your man-
aged application using ETW events and tooling. Downloading 
PerfMonitor and using the MSDN documentation of ETW events 
in CLR, along with the CLR Perf Blog, will jump-start your perfor-
mance investigations of your managed applications.

A special thanks to Vance Morrison, partner architect for CLR 
Performance, for his guidance and assistance with this article. 

SUBRAMANIAN RAMASWAMY is the program manager for CLR Performance 
at Microsoft . He holds a Ph.D. in Electrical and Computer Engineering from the 
Georgia Institute of Technology. 

Event Category Name Description
Runtime Information ETW Event Captures information about the runtime, including the SKU, version number, the manner in which the runtime was 

activated, the command-line parameters it was started with, the GUID (if applicable) and other relevant information.
Exception Thrown ETW Event Captures information about exceptions that are thrown.
Contention ETW Events Captures information about contention for monitor locks or native locks that the runtime uses.
Thread Pool ETW Events Captures information about worker thread pools and I/O thread pools.
Loader ETW Events Captures information about loading and unloading application domains, assemblies and modules.
Method ETW Events Captures information about CLR methods for symbol resolution.
GC ETW Events Captures information pertaining to GC.
JIT Tracing ETW Events Captures information about JIT inlining and tail calls.
Interop ETW Events Captures information about Microsoft intermediate language (MSIL) stub generation and caching.
Application Domain Resource 
Monitoring (ARM) ETW Events

Captures detailed diagnostic information about the state of an application domain. 

Security ETW Events Captures information about strong name and Authenticode verifi cation.
Stack ETW Event Captures information that’s used with other events to generate stack traces after an event is raised.

Figure 6 ETW Events in the .NET Framework 4

www.MSDNmagazine.com
www.godiagram.com


msdn magazine64

W IN DOWS A ZUR E  ACC ESS

Re-Introducing the 
Windows Azure 
AppFabric Access 
Control Service

If you’re looking for a service that makes it easier to authen-
ticate and authorize users within your Web sites and services, you 
should take another look at the Windows Azure AppFabric Access 
Control service (ACS for short), as some signifi cant updates are in 
the works (at the time of this writing). 

Opening up your application to be accessed by users belong-
ing to diff erent organizations—while maintaining high security 
standards—has always been a challenge. Th at problem has tradi-
tionally been associated with business and enterprise scenarios, 
where users typically live in directories. Th e rise of the social Web 
as an important arena for online activities makes it increasingly 
attractive to make your application accessible to users from the likes 
of Windows Live ID, Facebook, Yahoo and Google.

Vittorio Bertocci and Wade Wegner

With the emergence of open standards, the situation is improving; 
however, as of today, implementing these standards directly in your 
applications while juggling the authentication protocols used by all 
those diff erent entities is a big challenge. Perhaps the worst thing about 
implementing these things yourself is that you’re never done: Proto-
cols evolve, new standards emerge and you’re oft en forced to go back 
and upgrade complicated, cryptography-ridden authentication code. 

Th e ACS greatly simplifi es these challenges. In a nutshell, the 
ACS can act as an intermediary between your application and the 
user repositories (identity providers, or IP) that store the accounts 
you want to work with. The ACS will take care of the low-level 
details of engaging each IP with its appropriate protocol, protect-
ing your application code from having to take into account the 
details of every transaction type. The ACS supports numerous 
protocols such as OpenID, OAuth WRAP, OAuth 2.0, WS-Trust 
and WS-Federation. Th is allows you to take advantage of many IPs. 

Outsourcing authentication (and some of the authorization) 
from your solution to the ACS is easy. All you have to do is 
leverage Windows Identity Foundation (WIF)—the extension to 
the Microsoft  .NET Framework that enhances applications with 
advanced identity and access capabilities—and walk through a 
short Visual Studio wizard. You can usually do this without having 
to see a single line of code!

Does this sound Greek to you? Don’t worry, you’re not alone; as 
it oft en happens with identity and security, it’s harder to explain 
something than actually do it. Let’s pick one common usage of the 
ACS, outsourcing authentication of your Web site to multiple Web 
IPs, and walk through the steps it entails.

This article is based on a prerelease version of the Windows Azure 
AppFabric Access Control service. All information is subject to change.

This article discusses:
• Outsourcing authentication of a Web site to the ACS

• Confi guring an ACS project

• Choosing identity providers

• Adding rules

• Testing authentication fl ow

• The structures and features of the ACS

Technologies discussed:
Windows Azure



65December 2010msdnmagazine.com

Outsourcing Authentication of a Web Site to the ACS
Let’s start by taking a vanilla Web site and enabling users to log in 
using a Google account.

Before we get started, let’s make sure we have the prerequisites 
covered. Here’s what we need:

•  Visual Studio 2010
•  Windows Identity Foundation Runtime
•  Windows Identity Foundation SDK and one of the 

following: Windows 7, Windows Server 2008, 
Windows Server 2008 R2 or Windows Vista SP1

Although it’s not a hard requirement, having IIS on the machine 
will help; if you don’t have IIS installed, you’ll have to adjust the 
steps of the walkthrough here and there.

While Visual Studio requires no introduction, it will probably 
help to expand a bit on WIF (pronounced “dub-IF”), and why it’s a 
prerequisite. (For a thorough explanation of WIF, see “Programming 
Windows Identity Foundation” [Microsoft  Press, 2010]).

WIF is an extension to the .NET Framework that provides you 
with a new model for dealing with authentication and user identity, 
a model that decouples your application from the details of how 
authentication takes place. Traditional authentication systems (such 
as the ASP.NET Membership provider APIs) force you to cope with 
the details of how authentication takes place. Th is requires you to 
use low-level APIs to deal with low-level constructs such as pass-
words, certifi cates and the like. WIF 
changes all this by off ering a handy 
abstraction that allows you to spec-
ify an external entity to handle user 
authentication. With Forms-based 
authentication, you specify a given 
page—typically login.aspx—where 
requests are redirected whenever 

the caller is not yet authenticated. 
With WIF, you can enlist an exter-
nal entity—an IP—to be invoked 
whenever a user needs authenti-
cation. Th e ways in which the IP is 
chosen at design time and engaged 
at run time follow well-known 
protocols. WIF takes care of dis-
covering which protocols should 
be used and enforcing communi-
cation policies accordingly. Once 
again, this is much easier to show 
than to explain.

Create the Initial Solution
Open up Visual Studio. Create a 
new Web site by selecting File | 
New | Web Site. Let’s create a new 
ASP.NET Web site—but fi rst, be 
sure that you’ve selected the Web 
location as “HTTP” and config-
ured the URL so that it’s running 
in IIS (see Figure 1 ).This will 

ensure a smooth run when using the WIF tools. If you have HTTPS 
available on your Web server, it’s a good idea to use it; although not 
strictly necessary for this walkthrough, it’s highly recommended on 
production systems and will save you some warnings from WIF.

When you hit F5, you’ll see that you have a basic ASP.NET 
Web site, and by clicking the “Log In” link you’ll get prompted 
to enter a username and password. This is what we’re going to 
change— instead of using a username and password and handling 
authentication directly in the Web site, we’re going to use WIF to 
outsource authentication to the ACS. Th e ACS will in turn allow 
us to open up access to external IPs.

Confi gure an ACS Project
To begin, we need to create a project in the Windows Azure App Fabric 
LABS portal. Th e LABS portal is an environment set up specifi cally 
for allowing the community to access early bits. There’s no cost 
associated with AppFabric LABS, but there are also no service-level 
agreements or guarantees. 

Open your browser and go to portal.appfabriclabs.com. You’ll be 
prompted to log in with a Windows Live ID. Once logged in, you’ll 
need to create a new project—click the “create a project” link. You’ll 
have to choose a project name—select something appropriate 
and click OK. Once complete, you’ll see an active project name 
(“acsdemoproject” in our example)—click it (see Figure 2).

Figure 1 Selecting an ASP.NET Web Site with HTTP as the Location

Figure 2 Creating a Project in the Windows Azure AppFabric LABS Portal

www.MSDNmagazine.com
http://portal.appfabriclabs.com


msdn magazine66 Windows Azure Access

Before you can outsource authentication to the ACS, you need to 
defi ne a service namespace. Th ink of the service namespace as pro-
viding you with your own slice of the AppFabric LABS environment 
and—for the ACS—the unique component for all the URIs of the 
resources you’ll use when interacting with the ACS from your appli-
cation. Everything contained within the service namespace is yours 
to control. Click “Add Service Namespace,” specify a name, choose a 
zone—in LABS you can only select “United States (South/Central)”—

and click Create. Note that the URIs used 
by AppFabric are available on the public 
Internet and are meant to uniquely identify 
services; hence you must choose a namespace 
that hasn’t been picked by anybody else.

It’ll take a few moments, but aft er your 
service namespace activates, you’ll be able 
to click the “Access Control” link to start 
confi guring the ACS for your Web site.

 Now you’ve made it to the management 
portal, where you can confi gure the ACS 
for your Web sites (see Figure 3). 

Click the “Manage” button to get started. 
The management portal provides some 
guided steps to walk you through the 
process of getting started, and that’s just 
what we’re going to do.

Choosing the Identity 
Providers You Want
Click the “Identity Providers” link. Here 
we want to configure the various social 
IPs we want to leverage from within your 
application. Windows Live ID is present in 

the list by default; let’s add support for Google accounts.
Click the “Add Identity Provider” link, which will show a list of 

providers. Click the “Add” button next to Google. You can specify a 
custom image URL for the IP, but go ahead and just click “Save.” Just 
like that, we’ve added Google as a recognized source of user identities.

Getting the ACS to Recognize Your Web Site
Now that our IPs have been confi gured, we need to provide infor-

mation to the ACS about our Web site. In 
identity jargon, we oft en refer to applica-
tions as “Relying Parties,” an expression 
that refers to the fact that the application 
relies on one or more IPs to take care of 
authentication on their behalf. Th e ACS 
UI is consistent with this terminology.

Click the “Relying Party Applications” 
URL, and then “Add Relying Party Applica-
tion.” Let’s specify the following information:
•  Name: My Website
•  Realm: https://localhost/Website/
•  Return URL: https://localhost/Website/
•  Token format: SAML 2.0
•  Token signing: Use service namespace 

certifi cate (typical)
Th e Token Format fi eld deserves at least 

a short explanation (we’ll spend more time 
on the topic later in the article). A token 
is an artifact—typically an XML fragment 
or something in another serialization 
format—used by IPs to indicate that a 
successful authentication operation took 

Figure 3 The Windows Azure AppFabric Access Control Service Management Portal

Figure 4 Starting the Federation Utility Wizard in Visual Studio



67December 2010msdnmagazine.com

place. Once a user authenticates, using what-
ever system the IP chooses, the user’s browser 
will be redirected to the ACS carrying a token 
that certifies the user has been recognized. 
The token format and protocol used will be 
determined according to the IP. Th e ACS will 
examine the token and, if it fi nds it satisfactory 
(more about this later), will emit a new token 
of its own and send it back to your application. 
Th e settings you change in this step determine 
which token format you wish the ACS to use 
for communicating back to your application. 
Th e ACS is capable of emitting three types of 
tokens—SAML2.0, SAML1.1 and SWT—repre-
senting diff erent trade-off s between expressive 
power, security, applicability for certain client types and so on. 
Just pick SAML2.0 here; the details aren’t imperative at this point.

It’s important that the realm corresponds to the URL for the 
Web site we created earlier. Once the authentication with the IP of 
choice takes place, the ACS will redirect the user back to your Web 
site using the URL you specify here. Note that, by default, “Create 
New Rule Group” is selected—we’ll leverage this in the next step. 
Click “Save” once you’re done and return to the management portal.

Adding Rules
Rules are interesting constructs that give you fi ne-grained control 
over user identity information. Th e scenario we’re enabling right now, 
however, doesn’t require the explicit use of rules in order to enable 
sign-on from multiple IPs. Th erefore, we’ll postpone all explanations 
about what rules are to a later section in the article, where they’ll 
actually come in handy; here we’ll just go with the default settings.

Click the “Rule Groups” link. You should see the rule group created 
when we added the relying party application (“Default Rule Group for 
My Website”). Select this rule group, click the “Generate Rules” link, 
confi rm that both Google and Windows Live ID are selected, and then 

click the “Generate” button—that’s all you need to 
do in regard to rules in this scenario. 

Collecting the WS-Federation 
Metadata Address
At this point, we’re fi nished confi guring the ACS. 
However, before we jump back to Visual Studio, 
let’s grab some information from the Applica-
tion Integration page. Click the “Application 
Integration” link and copy the “WS-Federation 
Metadata” URL—we’re going to use this with 
WIF to set up our Web site to leverage.

Without going into too much detail, the 
WS-Federation Metadata document is a 
machine-readable description of how the ACS 

handles authentication. Your application will need it in order to be 
confi gured to outsource authentication to the ACS.

Confi guring the Web Site to Use the ACS
Return to Visual Studio and your Web site. We now want to 
leverage WIF to outsource authentication to the ACS, which will 
in turn enable Google accounts to access our application. In the 
Solution Explorer, right-click the Web site project and select “Add 
STS Reference.” This will launch the Federation Utility wizard, 
which will confi gure the Web site to use WIF as the authentica-
tion mechanism and the ACS as the authenticating authority. 
STS stands for “Security Token Service,” which indicates a special 
kind of Web service or Web page that offers an entry point for 
requesting tokens; usually every IP or token issuer uses one.

 You can just click “next” most of the time; the steps in which you’ll 
have to enter information are precious few. Advance to the “Security 
Token Service” step, and specify “Use an existing STS.” Paste the federa-
tion metadata URL you copied from the ACS portal (see Figure 4).

From there, leave the defaults, click through to the end and select 
Finish. Th e wizard will add all the required WIF assemblies, add 
some fi les to your Web site and (most importantly) update your 
web.confi g with the information required to engage with the ACS 
at authentication time.

Testing the Authentication Flow
It’s fi nally time to give your newly secured Web site a spin! Hit F5. 
You’ll immediately be redirected to the Home Realm Discovery 
page, which off ers the user the chance to pick among the IPs we 
confi gured earlier in the ACS management portal (see Figure 5).

Aft er you select Google and enter your Google account credentials, 
you’ll see an approval page that requires you to allow the ACS project 

access—this is important to under-
stand, as it’s not your Web site that’s 
requesting permission, but instead 
the ACS (see Figure 6).

Once you’ve allowed the ACS 
the access it requires, you’ll get 
redirected back to the Web site 
(see Figure 7 ). That’s it—you’re 
logged in!

Figure 5 The Home Realm 
Discovery Page

Figure 6 The Windows Azure AppFabric Access Control Service Asking for Permission to Get 
Information from Google

The ACS can act as an 
intermediary between your 

application and the user 
repositories that store the 

accounts you want to work with.

www.MSDNmagazine.com


msdn magazine68 Windows Azure Access

If you want to verify that the same experience would work with 
Windows Live ID, the other IP confi gured in your namespace, all 
you need to do is close the browser, hit F5 again and at the Home 
Realm Discovery page pick Windows Live ID instead of Google.

If you have any experience in enabling authentication protocols 
on Web sites, you know that, traditionally, adding an IP means 
studying its protocols and API, writing fairly challenging code and 
testing, testing, testing before getting it right. And every additional 
IP requires the same, plus the extra complication of understanding 
from the request which protocol is being used.

Here, we didn’t need to do any of that; in fact, you may have 
noticed that we didn’t write a single line of code. If we want to add 
extra identity providers, all we’ll need to do is go through a couple of 

screens on the ACS management 
portal, with no impact whatsoever 
on the application itself. If the IPs 
evolve their protocols, the ACS 
will change its code to accom-
modate the new conditions, and 
our application won’t even know 
anything changed at all.

The ACS: 
Structure and Features
Now that you’ve had a chance to 
experience fi rsthand the power 
of the ACS, you’re ready for a brief 
overview of what the ACS really 
is and what makes it tick. Th is 
will require a bit of theory, but 
you’ll discover that you already 
learned most of what you need to 
know while walking through the 
scenario described earlier.

The ACS operates according 
to the principles of claims-based identity. Th e main idea behind 
claims-based identity is that every entity in an identity transaction 
plays one or more canonical roles, taken from a short list of four: 
subject, identity provider (IP), relying party (RP) and federation 
provider (FP). In the walkthrough, you’ve seen all those in action. 
Th e interaction among those entities boils down to requesting, 
obtaining and forwarding security tokens, as shown in Figure 8.

Th e subject is the role played by the user—that is, the entity 
that needs to be authenticated. Th e IP is the entity that stores the 
account for the subject: username, credentials, attributes and so 
on. Th e IP uses one or more STSes for exposing its authentication 
capabilities and for issuing tokens. Th e RP is the application that the 
subject wants to use. Th ose three roles are enough for describing the 
most basic case: the subject obtains a token from an IP that the RP 
trusts, uses that token with the RP and the authentication is done. 

One thing we didn’t cover during the walkthrough is that the 
tokens aren’t just representing the successful outcome of the auth-
entication operation, but they’re also used to transport attributes 
describing the user: name, e-mail address roles and anything else 
that the RP needs to know and that the IP makes available. If you 
recall the properties of signed security tokens, you’ll see how 
those attributes can’t be tampered with and are cryptographically 
guaranteed to come from a specifi c IP. Th at means that one RP 
can choose to consider valid the attributes it receives according to 
how much it trusts the IP that originated them. Th ink of real-life 
situations in which you need to prove something—for example, 
that you actually live at a certain address. Companies oft en ask 
you to provide a utility bill, mainly because they trust the utility 
company more than they trust you. Th e information is the same 
(the address), but the IP that produced it makes all the diff erence. 

When an attribute is issued as part of a security token, we call 
that attribute a claim. Th is concept is so important that it gives the 
name to the entire approach, and practically everything the ACS 

Figure 7 Success! Logging in to the Web Site

Figure 8 Requesting, Obtaining and Forwarding Security Tokens

Subject

Token1

2

Relying Party

Identity Provider



69December 2010msdnmagazine.com

does revolves around claims. We just need to get another concept 
out of the way and then we’ll go in the details.

Although you could use the subject-RP-IP roles for modeling 
every system, in practice it’s not very handy. If one RP trusts mul-
tiple IPs, as was the case in our scenario, the model would require 
the RP to maintain multiple relationships, handle diff erent proto-
cols and so on. This is where the fourth role, the FP, comes into 
play. An FP is an intermediary between one or more RPs and one 
or more IPs, as shown in Figure 9.

Th e FP trusts multiple IPs, behaving like an application and 
expecting tokens from the IPs. In turn, the RP trusts the FP; to that 
purpose the FP exposes its own STS, which issues tokens for the 
RP. The FP takes care of the details of engaging with the 
various IPs, while always presenting to the RP the same façade, so 
IPs can be on-boarded and de-provisioned without aff ecting the 
RP. Th e FP can also transform the claims coming from diff erent 

IPs to make them more useful for the RP. It can normalize 
diff erent incoming claim types, add extra claims such as roles or 
permissions, and so on. 

As you may have guessed by now, the ACS plays the role of the 
FP, as illustrated in Figure 10.

When you create a service namespace, you get your very own 
full-featured FP in the cloud. Out of the box, that FP includes four 
diff erent STS endpoints, all off ering diff erent protocols that are 
suitable for diff erent application types: WS-Federation for signing 
in to Web sites; WS-Trust for invoking SOAP Web services; 
OAuth WRAP and OAuth 2 for REST Web services; and Web 
APIs in general. Th ose are the endpoints you use to confi gure your 
application to outsource authentication.

Th e ACS is already pre-confi gured to trust various Web IPs, as 
we’ve seen, and it facilitates the experience of choosing among them 
by providing pages or embeddable code for them. In addition to 
that, the ACS is able to establish trust with commercial IPs such 
as Active Directory Federation Services 2.0 (AD FS 2.0), which 
expose STS endpoints themselves. In practice, the ACS exposes 
the counterpart of the “Add STS reference” functionality you’ve 
seen when confi guring your Web site to trust the ACS. Using AD 
FS 2.0 as an IP is extremely interesting, as it allows you to reuse 
user accounts whenever you want, including those in Windows 
Azure-hosted applications that would traditionally be valid only 
on-premises. Another interesting feature of business IPs is that 
they usually provide much richer claims sets that can be used for 
adding sophisticated identity-driven logic in the token processing.

The ACS allows you to describe your claims transformation 
login in the form of rules, a simple but powerful mechanism. For 
example, you can assign a role to a user as simply as entering some-
thing along the lines of “if the incoming name identifi er claim has 
value X, please add an output claim of type role and value Y.”

All of the functionality discussed here can be accessed through 
the management portal you used in the walkthrough; alternatively, 
there’s an OData-based management service that gives you full control 
on the ACS settings while integrating with your existing processes. 

As trite as it may sound, we did barely scratch the surface of what 
the ACS can do for you. We invite you to check out the hands-on 
lab in the identity developer training kit and the Windows Azure 
platform training kit for exploring more scenarios in greater 
detail. If you want to simplify access management for your Web 
site, Web service or Web API, the ACS can help! 

VITTORIO BERTOCCI is a senior architect evangelist in the Developer and Platform 
Evangelism team and a member of the extended engineering team that produces 
Microsoft  claims-based platform components. He’s responsible for identity evan-
gelism for the .NET developer community and drove initiatives such as the Identity 
Developer Training Kit and the IdElement show on Channel 9. He recently wrote 
“Programming Windows Identity Foundation” (Microsoft  Press, 2010).

WADE WEGNER is a senior technical evangelist at Microsoft, responsible for 
infl uencing and driving Microsoft ’s technical strategy for the Windows Azure 
platform. You can reach him through his blog at wadewegner.com or on Twitter 
at twitter.com/WadeWegner.

THANKS to the following technical expert for reviewing this article: 
Kent Brown

Figure 9 The Federation Provider as an Intermediary

Subject

1

4

2

3

Relying Party

Identity Provider

Identity Provider

Federation Provider

Figure 10 The Windows Azure AppFabric Access Control 
Service Playing the Role of Federation Provider

Identity Providers

ADFS2 Your Application

ACS

www.MSDNmagazine.com
http://twitter.com/WadeWegner


msdn magazine70

The Application Under Test
Let’s take a look at the code for the MiniCalc ASP.NET Web appli-
cation, which is the target of my jQuery-based UI test automation. 

I created the MiniCalc application using Visual Studio 2008. 
Aft er launching Visual Studio I clicked File | New | Web Site. To avoid 
the ASP.NET code-behind mechanism and keep all the code for my 
Web application in a single fi le, I selected the Empty Web Site option. 
Next, I selected the HTTP mode option (rather than File mode) 
from the Location fi eld drop-down and specifi ed the location as: 

http://localhost/TestWithJQuery/MiniCalc

I decided to use C# for the MiniCalc app logic. Th e test auto-
mation techniques presented here will work with ASP.NET Web 
applications written with C# and Visual Basic as well as Web 
applications created using technologies such as classic ASP, CGI, 
PHP, JSP, Ruby and so on. 

Web Application UI Testing with jQuery

Th e jQuery library is an open source collection of 
JavaScript functions. Although jQuery was created 
with Web development in mind, the library has 
several characteristics that make it well-suited 
for lightweight Web application UI test automa-
tion. In this month’s column I’ll show you how to 
do just that. 

Th e best way for you to see where I’m headed is to 
examine the screenshot in Figure 1, which shows 
UI test automation with jQuery in action. Th e test 
harness is hosted by Internet Explorer and consists 
of an HTML page named UITestHarness.html. 

Th e harness page is really just a container with 
two HTML frame elements. Th e frame on the right 
holds the Web application under test, in this case 
a simple but representative ASP.NET calculator 
application named MiniCalc. Th e frame on the left  
holds an HTML page named TestScenario001.html, 
which consists of a TextArea element to display 
progress messages, a Button element to manually 
launch the automation, and jQuery-based JavaScript 
functions that manipulate the Web application 
under test and check the resulting state of the 
application to determine a pass/fail result.

Th e jQuery library is also well-suited for HTTP 
request-response testing, and I addressed request-
response testing with jQuery in the January 2010 Test Run column 
(msdn.microsoft.com/magazine/ee335793). 

Th is article assumes you have basic familiarity with ASP.NET 
technology and intermediate JavaScript programming skills, but 
does not assume you have any experience with the jQuery library. 
However, even if you’re new to ASP.NET and test automation in 
general, you should still be able to follow this month’s column 
without too much diffi  culty.

In the sections that follow, I’ll fi rst describe the MiniCalc appli-
cation so you’ll know exactly how the implementation of the 
application under test is related to the UI test automation. Next, I’ll 
walk you through the details of creating lightweight jQuery-based 
UI test automation as shown in Figure 1. I’ll wrap up by describing 
how you can extend the techniques I’ve presented to meet your own 
needs, and I’ll discuss the advantages and disadvantages of jQuery 
UI test automation compared to alternative approaches. I think 
the techniques presented here are interesting and can be a useful 
addition to your testing, development and management toolsets.

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201012TestRun.

Figure 1 UI Test Automation with jQuery

http://msdn.microsoft.com/magazine/ee335793
http://code.msdn.microsoft.com/mag201012TestRun


71December 2010msdnmagazine.com

I clicked OK on the New Web Site dialog to confi gure IIS and 
generate the structure of my Web app. Next, I went to the Solution 
Explorer window, right-clicked the MiniCalc project name, and 
selected Add New Item from the context menu. I then selected 
Web Form from the list of installed templates and accepted the 
Default.aspx fi le name. I cleared the “Place code in separate fi le” 
option and then clicked the Add button.

Next, I double-clicked on the Default.aspx fi le name in Solution 
Explorer to load the template-generated code into the text editor. I 
deleted all the template code and replaced it with the code shown 
in Figure 2.

To keep the size of my source code small and easy to understand, 
I omitted normal error checking. The complete source code for 
the MiniCalc application and the test harness is available from 
code.msdn.microsoft.com/mag201012TestRun. 

To write test automation for Web applications, in most cases 
you need to know the IDs of the various user controls. As you can 
see in Figure 2 , I used TextBox1 and TextBox2 to hold two user 
integer input values—RadioButton1 and RadioButton2 to select 
addition or multiplication—and TextBox3 to hold the arithmetic 
calculation result. 

When a user clicks on the Button1 control, the MiniCalc app 
first goes into a random delay of one to five seconds to simulate 
server-side processing of some sort, and then computes and displays 
either a sum or product of the two user input values. 

Next, I decided to make the MiniCalc app asynchronous by using 
AJAX technology. To do that I needed a web.confi g fi le for the applica-
tion, so, rather than create a web.confi g fi le manually from scratch, I hit 
the F5 key to instruct Visual Studio to build and run the app through 
the debugger. When Visual Studio prompted me for permission to 
add a web.confi g fi le, I clicked OK. Next, I added a ScriptManager 
server-side control to the MiniCalc application to enable AJAX:

<asp:ScriptManager ID="sm1" runat="server" EnablePartialRendering="true" />

Th en I added the tags necessary to asynchronously update the 
TextBox3 result element in conjunction with the Button1 click event:

<asp:UpdatePanel ID="up1" runat="server">
<ContentTemplate>
<p><asp:TextBox id="TextBox3" width="120"  runat="server" />
</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger ControlID="Button1" EventName="Click" />
</Triggers>
</asp:UpdatePanel> 

If you examine Figure 1 closely, you can see that, to emphasize 
the fact that MiniCalc is an AJAX app, I placed a client-side page 
life counter in the UI. When an asynchronous request to MiniCalc 
returns, only TextBox3 is updated and the page life counter is not 
reset. Th e pageLife text box is defi ned as:

<input type="text" id="pageLife" size="1"/> 

Th e associated client-side JavaScript is:
<script language="javascript">
  var count = 0;
  function updatePageLife() {
    ++count;
    var tb = document.getElementById("pageLife");
    tb.value = parseInt(count);
    window.setTimeout(updatePageLife, 1000);
  }
</script>

Th e counter is started up by the application onload event:
<body bgColor="#ccffff" onload="updatePageLife();">

Recall that the window.setTimeout function calls its function 
argument only once aft er the specifi ed delay in milliseconds, so 
timing algorithms typically use recursive calls, as in this code.

Web Application UI Testing with jQuery
Now that you’ve seen the Web application under test, let’s dive right 
into the UI test automation code. Th e main test harness is simply 
an ordinary HTML page with two frame elements:

<html>
<!-- UITestHarness.html -->
<head>
  <title>Test Harness for MiniCalc AJAX Web App</title>
</head>
  <frameset cols="45%,*" onload="leftFrame.appLoaded=true">
    <frame src="http://localhost/TestWithJQuery/TestScenario001.html"
       name="leftFrame" >
    <frame src="http://localhost/TestWithJQuery/MiniCalc/Default.aspx"
       name="rightFrame">
  </frameset>
</html>

Th e frame named rightFrame hosts the Web application under test 
as is, without any modifi cations or test instrumentation. Th e frame 
named left Frame hosts an HTML page named TestScenario001.html, 
which contains all the jQuery test automation code. Notice that when 
the frameset element onload event fi res, a variable in the left Frame 
page, named appLoaded, is set to true. Th is variable will be used to 
make sure that the test automation does not begin before the Web 
application under test is completely loaded into the test harness. Th e 
structure of the test scenario code is listed in Figure 3.

Th e test script begins by referencing the jQuery library:
<script src='http://localhost/TestWithJQuery/jquery-1.3.2.js'>

Here I point to a local copy of the jQuery library that I had down-
loaded from the jQuery Project Web site (jquery.com) and copied to 
the MiniCalc application root directory. I used jQuery version 1.3.2. 
Th e library is under constant development, so there will likely be a 
newer version available by the time you read this article. For more 
information about referencing the jQuery library in your code, see 
“Getting the jQuery Library” on p. 72. 

Next, I use a standard jQuery idiom to determine if my automa-
tion has access to the jQuery library:

<%@ Page Language="C#" %>
<script runat="server">
  static Random rand = null;

  private void Page_Load(object sender, EventArgs e)
  {
    if (!IsPostBack) 
      rand = new Random(0);
  }

  private void Button1_Click(object sender, System.EventArgs e)
  {
    int randDelay = rand.Next(1, 6); // [1-5]
    System.Threading.Thread.Sleep(randDelay * 1000);
    int x = int.Parse(TextBox1.Text);
    int y = int.Parse(TextBox2.Text);
    if (RadioButton1.Checked)
      TextBox3.Text = (x + y).ToString("F4");
    else if (RadioButton2.Checked)
      TextBox3.Text = (x * y).ToString("F4");
  }
</script>
<html>
  (client-side JavaScript and UI elements here)
</html>

Figure 2 MiniCalc Web Application Under Test Source

www.MSDNmagazine.com
http://code.msdn.microsoft.com/mag201012TestRun
http://jquery.com


msdn magazine72 Test Run

$(document).ready(function() {
  logRemark("jQuery Library found and harness DOM is ready\n");
} );

Th e jQuery ready function fi res as soon as the containing docu-
ment DOM is fully loaded into the test host memory and all DOM 
elements are available. If the jQuery library is not accessible—which 
typically happens when you specify an incorrect path to the 
library—an “Object expected” error will be thrown. 

The ready function accepts an anonymous function as its 
single parameter. Anonymous functions are used frequently in test 
automation for both jQuery and JavaScript. You can think of an 
anonymous function as a function that’s defi ned on the fl y using 
the function keyword. 

Here’s an example for a function called logRemark:
function logRemark(comment) {
  var currComment = $("#comments").val();
  var newComment = currComment + "\n" + comment;
  $("#comments").val(newComment);
}

In this situation I defi ne a function that simply invokes a program-
defi ned logging function called logRemark to display a message to 
the test harness that jQuery is available. I could also have used the 
intrinsic JavaScript alert function. 

I begin by using the jQuery selector and chaining syntax to get 
the current text in the textarea with ID “comments.” Th e $ notation 
is a shortcut alias for the jQuery meta-class. Th e # syntax is used 
to select an HTML element by ID, and the val function can act 
as both a value setter and getter (a property in object-oriented 
programming terminology). I append the comment parameter 
and a newline character to the existing comment text, and then use 
jQuery syntax to update the TextArea element. 

Next, I set up a few test automation global variables:
var testScenarioID = "Test Scenario 001";
var maxTries = 20;
var numTries;
var polling = 500;
var appLoaded = false;
var started = false;

Because my automation deals with an asynchronous applica-
tion, I don’t use arbitrary time delays. Instead, I use a sequence 
of short (defi ned by variable polling) delays, checking repeatedly 
(variable numTries) to see if the value of some HTML element sat-
isfi es a Boolean condition, up to a maximum number of attempts 
(variable maxTries). In this test scenario I delay a maximum of 
20 attempts at 500 ms delay per attempt for a total of 10 seconds. 
Th e appLoaded variable is used to determine when the Web app 
under test is fully loaded into the test harness. Th e started variable 
is used to coordinate test harness execution. 

To manually start the automation you can click on the Run Test button:
<input type="button" value="Run Test" onclick="runTest();" />

The launch function shown in Figure 3  is used for full test 
automation, as I’ll explain shortly. Th e runTest function acts as the 
main coordinating function for the test automation:

function runTest() {
  waitUntilAppLoaded();
  started = true;
  try {
    logRemark(testScenarioID);
    logRemark("Testing 3 + 5 = 8.0000\n");
    step1();
  }
  catch(ex) {
    logRemark("Fatal error: " + ex);
  }
}

Th e runTest function begins by calling the waitUntilAppLoaded 
function, which is defi ned as:

function waitUntilAppLoaded() {
  if (appLoaded == true) return true;
  else window.setTimeout(waitUntilAppLoaded, 100);
}

Recall that the test scenario initializes variable appLoaded to 
false and that the harness frameset onload event sets appLoaded 
to true. Here I use the intrinsic setTimeout function to repeatedly 
pause for 100 ms until the value of appLoaded becomes true. Note 
that this approach could delay forever. To prevent this possibility, 
you may want to add a global counter and return false aft er some 
maximum number of delays. 

After setting the global start variable, runTest displays some 
comments and invokes a step1 function in an exception handler 
wrapper. Th e harness structure I present here is only one possibility, 
and you can modify the harness organization to suit your program-
ming style and test environment. With my structure I consider 
a test scenario as a sequence of state changes, each of which is 
represented by a stepX function. 

Anonymous functions are used 
frequently in test automation for 

both jQuery and JavaScript.

You have a few options for the location of the jQuery library used 
by your application. As mentioned, you can download the latest 
version from jquery.com and use it from your local fi le system. The 
jQuery site has both development (uncompressed) and 
production (minifi ed—white space removed—for a smaller 
footprint) downloads available. Just select the package you want 
and save the .js fi le to your project directory.

If your application host has an active Internet connection, an 
even easier option is to point to the most current version of 
jQuery from an online content delivery network (CDN). There are 
a number of sources you can use (including your own hosted 
version), but two highly available CDNs are the Microsoft AJAX 
Content Delivery Network (asp.net/ajaxlibrary/cdn.ashx) and the 
Google Libraries API (code.google.com/apis/libraries). 

For example, you could use the minifi ed version of jQuery from 
the Microsoft Ajax CDN with the following script tag:

<script 
  src="http://ajax.microsoft.com/ajax/jquery/jquery-1.3.2.min.js" 
  type="text/javascript">
</script>

Scott Guthrie has a useful blog post on using the Microsoft 
Ajax CDN for both jQuery and ASP.NET AJAX at tinyurl.com/q7rf4w.

In general, when using jQuery for test automation, using a local, 
unpacked copy of the library in the test harness is more reliable 
than using a remote or packed copy. For production applications, 
however, you’ll want to use a reliable hosted library.

Getting the jQuery Library

http://jquery.com
http://asp.net/ajaxlibrary/cdn.ashx
http://code.google.com/apis/libraries
http://tinyurl.com/q7rf4w


73December 2010msdnmagazine.com

Th e step1 function manipulates the state of the Web application 
under test by simulating user input, as shown in Figure 4.

Th e jQuery syntax for accessing and manipulating HTML elements 
is consistent, elegant and, for the most part, browser-independent. 
Notice that to access the Web app loaded in the rightFrame element 
from code in the left Frame element, I must use the parent keyword. 
Also notice that I must use the jQuery fi nd fi lter. 

When manipulating the TextBox1 and TextBox2 elements, I 
make the assumption that the Web app under test is fully loaded 
into the rightFrame element. Th is assumption may not be reason-
able for applications with long load times, and in such situations you 
can place the jQuery selector code in a window.setTimeout delay 
loop, testing the target object against the built-in “undefi ned” value. 

Because the MiniCalc application under test is an AJAX applica-
tion, my harness cannot simply invoke the Calculate button click 
event, because the test harness code would continue execution 
without waiting for the application’s asynchronous response. So, I 
use a program-defi ned callAndWait function:

function callAndWait(action, checkControlFunc, controlID,
  controlVal, callbackFunc, pollTime) {
    numTries = 0;
    action();
    window.setTimeout(function(){doWait(
      checkControlFunc, controlID, controlVal, 
      callbackFunc, pollTime);}, pollTime);
}

Th e callAndWait function will invoke a function (the action 
parameter), go into a delay loop and pause a short amount of time 
(variable pollTime), and check to see if some application state is true 
by calling parameter function checkControlFunc with arguments 
of parameter controlID and controlVal. When checkControlFunc 

returns true, or a maximum number of delays have been executed, 
control will be transferred to parameter function callbackFunc. 

Th e callAndWait function works hand-in-hand with a program-
defi ned doWait function:

function doWait(checkControlFunc, controlID, 
  controlVal, callbackFunc, pollTime) {
  ++numTries;

  if (numTries > maxTries) finish();
  else  if (checkControlFunc(controlID, controlVal)) 
    callbackFunc();
  else window.setTimeout(function(){
    doWait(checkControlFunc, controlID,
    controlVal, callbackFunc, pollTime);}, pollTime);
}

Th e doWait function is recursive and exits when checkControlFunc 
returns true or local counter numTries exceeds global variable max-
Tries. So, this calls a function named clickCalculate, goes into a delay 
loop, pauses polling for 500 ms and calls the function checkControl 
with arguments of TextBox3 and 8.0000 until checkControl returns 
true or the delay loop has executed 20 times (specifi ed by maxTries):

callAndWait(clickCalculate, checkControl, "TextBox3", 
  "8.0000", step2, polling);

If checkControl returns true, control is transferred to function 
step2. Th e clickCalulate function uses jQuery selection and chaining:

function clickCalculate() {
  var btn1 = $(parent.rightFrame.document).find('#Button1');
  if (btn1 == null || btn1.val() == undefined) 
    throw "Did not find btn1";
  btn1.click();
}

Th e main reason for defi ning an action wrapper function like this 
is so that the function can be conveniently passed by name to the 
callAndWait function. Th e checkControl function is straightforward:

<html>
<!-- TestScenario001.html -->
<head>
  <script src='http://localhost/TestWithJQuery/jquery-1.3.2.js'></script>
  <script type="text/javascript">
    $(document).ready(function() {
      logRemark("jQuery Library found and harness DOM is ready\n");
    } );
  
    var testScenarioID = "Test Scenario 001";
    var maxTries = 20;
    var numTries;
    var polling = 500; // milliseconds
    var appLoaded = false;
    var started = false;
    
    function launch() {
      if (!started)
        runTest();
    }
    
    function waitUntilAppLoaded() {
      // Code
    }
    
    function runTest() {
      // Start automation
    }
    
    function step1() {
      // Manipulate state
    }

    function clickCalculate() {
      // Click the Calculate button
    }

    function checkControl(controlID, controlVal) {
      // Determine if control has specified value
    }
    
    function step2() {
      // Manipulate state
    }
    
    function callAndWait(action, checkControlFunc, controlID, controlVal,
      callbackFunc, pollTime) {
      // The heart of the automation
    }

    function doWait(checkControlFunc, controlID, controlVal, 
      callbackFunc, pollTime) {
      // Wait until Web app responds
    }
    
    function finish() {
      // Determine pass/fail result
    }
       
    function logRemark(comment) {
      // Utility logging function
    }
  </script>

</head>
<body bgcolor="#F5DEB3">
  <h3>This is the UI test scenario with jQuery script page</h3>
  <p>Actions:</p><p><textarea id="comments" rows="22" cols="34">
  </textarea></p>
  <input type="button" value="Run Test" onclick="runTest();" /> 
</body>
</html>

Figure 3 Structure of UI Test Automation Page

www.MSDNmagazine.com


msdn magazine74 Test Run

function checkControl(controlID, controlVal) {
  var ctrl = $(parent.rightFrame.document).find('#' + controlID);
  if (ctrl == null || ctrl.val() == undefined || ctrl.val() == "")
    return false;
  else
    return (ctrl.val() == controlVal);
} 

First I use jQuery syntax to get a reference to the control speci-
fi ed by parameter controlID. If the value of the control is not yet 
available, I immediately return to the delay loop. Once the control 
value is ready I can check to see whether it’s equal to some expected 
value given by parameter controlVal. 

Aft er calling as many stepX functions as I care to call, I transfer 
control to a finish function. That function first determines how 
it was reached:

if (numTries > maxTries) {
  logRemark("\nnumTries has exceeded maxTries");
  logRemark("\n*FAIL*");
}
else ....

If the value of the global numTries variable exceeds the value of 
maxTries, then I know that the Web application under test hasn’t 
responded within the time allowed. Here I arbitrarily decide that 
this is a test case failure rather than some form of an undetermined 
result. If numTries hasn’t exceeded maxTries I begin checking the 
fi nal state of the app under test:

logRemark("\nChecking final state");
var tb1 = $(parent.rightFrame.document).find('#TextBox1');
var tb2 = $(parent.rightFrame.document).find('#TextBox2');
var tb3 = $(parent.rightFrame.document).find('#TextBox3');

Here I get references to the three textbox controls. Exactly which 
elements of the Web app under test you decide to check will depend 
on the details of your particular application. Next, I examine the 
value of each textbox control to see if each has an expected value:

var result = "pass";
if (tb1.val() != "3") result = "fail";
if (tb2.val() != "5") result = "fail";
if (tb3.val() != "8.0000") result = "fail";

My test scenario script has all test case input and expected 
values hard-coded. Th e test automation I present is best suited for 
lightweight, quick testing situations where hard-coded test data is 
simple and eff ective. 

Th e fi nish function wraps up the test run by displaying a pass 
or fail result:

if (result == 'pass')
  logRemark("\n*Pass*");
else
  logRemark("\n*FAIL*");

As with the test case input data, this approach is lightweight and 
you may want to write test results to an external fi le on the test host or 
Web server, or perhaps send test results via SMTP to an e-mail address.

Wrapping Up
Th e harness described here is semi-automated in the sense that 
you must click on a button control to launch the test. You can fully 
automate the harness by adding a start-wrapper function:

function launch() {
  if (!started)
    runTest();
}

Add an attribute of onload=“left Frame.launch();” to the frameset 
element in the harness page. Each load of the Web application in the 
harness will trigger an onload event, so I use the global “start” vari-

able to prevent the test automation from restarting. Interestingly, 
even though the HTML Frame element doesn’t support an onload 
event, you can in fact place an onload attribute in the harness frame 
element, and the event will bubble up to its parent frameset element. 

Now you can create a .bat fi le with commands such as:
iexplore http://localhost/TestWithJQuery/UITestHarness001.html
iexplore http://localhost/TestWithJQuery/UITestHarness002.html

When the .bat file executes —perhaps via a Windows Task 
Scheduler—the harness will load, and your automation will 
launch automatically. Another way you might want to extend the 
test system I’ve presented here is to place the program-defi ned 
functions into a jQuery plug-in.

When writing lightweight Web application UI test automation 
you have several alternatives to the jQuery-based approach I’ve 
presented here. One of the primary advantages of using the jQuery 
library compared to using raw JavaScript is that jQuery works 
across multiple browsers such as Internet Explorer, Firefox and 
Safari. Another signifi cant advantage is that by using jQuery to 
write test automation, you can actively build your knowledge of 
using jQuery for Web development tasks. 

Using jQuery does have disadvantages compared to alternative 
approaches. Th e use of jQuery entails an external dependency to 
some extent, and script-based test automation tends to be more 
diffi  cult to manage than non-script test automation. Compared to 
using a test framework such as Selenium or Watir, writing jQuery-
based automation gives you more fl exibility, but you must write 
code at a lower level of abstraction. 

As usual, I’ll remind you that no one particular test automation 
approach is best suited for all situations, but jQuery-based Web 
application UI test automation can be an effi  cient and eff ective 
technique in many soft ware development scenarios. 

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he 
manages technical training for software engineers working at the Microsoft 
Redmond, Wash., campus. He’s worked on several Microsoft  products, including Internet 
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation 
Recipes” (Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article: 
Scott Hanselman and Matthew Osborn

function step1() {
  logRemark(
    "Entering 3 and 5 and selecting Addition");
  var tb1 = 
    $(parent.rightFrame.document).find('#TextBox1');
  tb1.val('3');

  var tb2 = 
    $(parent.rightFrame.document).find('#TextBox2');
  tb2.val('5');

  var rb1 = 
    $(parent.rightFrame.document).find('#RadioButton1');
  rb1.attr("checked", true);

  logRemark(
    "\nClicking Calculate, waiting for async response '8.0000'");
  asyncCall(clickCalculate, checkTextBox3, "8.0000", 
    step2, polling);
}

Figure 4 Simulating Input with the step1 Function

mailto:jammc@microsoft.com


DynamicPDF Generator v6.0 for .NET

 

ceTe Software has been delivering quality software applications and components to our customers for over 10 years.  Our 
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to 
respond to the changing needs of software developers.  We back our products with a first class support team trained to 
provide timely, accurate and thorough responses to any support needs.  

 Easy-to-use    Highly efficient
 Industry leading support     Huge feature set

DynamicPDF…Proven .NET Components for Real-Time PDFs

Layout reports in DynamicPDF Designer with its Visual Studio look and feel.

.

Untitled-1   1 3/15/10   11:50 AM

www.cete.com


msdn magazine76

as it were—and where commonality emerges, elevating that com-
monality into a base class, thus creating an “IS-A” relationship. A 
Student IS-A Person, an Instructor IS-A Person, a Person IS-A 
Object and so on. Inheritance thus gave developers a new axis on 
which to analyze commonality and variability.

In the days of C++, the implementation-inheritance approach 
stood alone, but as time and experience progressed, interface 
inheritance emerged as an alternative. In essence, the introduction 
of interface inheritance into the designer’s toolbox allowed for 
a lighter-weight inheritance relationship, declaring that a type 
IS-A diff erent type, but without the behavior or structure of the 
parent type. Interfaces thus provide a mechanism for “grouping” 
types along an inheritance axis without enforcing any particular 
restrictions on their implementation.

Consider, for example, the canonical object-oriented example, 
that of a hierarchy of geometric shapes that can be drawn (if only 
fi guratively) to screen:

class Rectangle
{
  public int Height { get; set; }
  public int Width { get; set; }
  public void Draw() { Console.WriteLine("Rectangle: {0}x{1}", Height, 
Width); }
}

class Circle
{
  public int Radius { get; set; }
  public void Draw() { Console.WriteLine("Circle: {0}r", Radius); }
}

Multiparadigmatic .NET, Part 4: 
Object Orientation

In the previous article, we explored commonalities and variability 
as expressed through procedural programming, and discovered 
several interesting “sliders” by which variability can be introduced 
into designs. In particular, two design approaches emerged out of 
the procedural line of thought: name-and-behavior variability, and 
algorithm variability.

As the complexity of programs and their requirements grew, 
developers found themselves struggling to keep all of the various 
subsystems straight. Procedural abstractions, we discovered, didn’t 
“scale” as well as we might’ve hoped. With the advent of the GUI, a 
new style of programming began to emerge, one that many readers 
who learned the “plain old SDK” style of building Windows apps 
from the Windows 3 SDK and Charles Petzold’s classic “Programming 
Windows” (Microsoft  Press, 1998) will recognize instantly. Ostensibly 
procedural in nature, this style followed a particularly interesting 
pattern. Each procedure in a closely clustered knot of related func-
tionality centered around a “handle” parameter, most oft en taking 
it as a fi rst (or only) parameter, or returning it from a Create call or 
the like: CreateWindow, FindWindow, ShowWindow and more, all 
centered around a window handle (HWND), for example.

What developers didn’t realize at the time was that this was 
actually a new way of programming, a new paradigm that would 
make itself felt within just a few years. Hindsight, of course, makes 
it obvious that this was object-oriented programming, and most 
readers of this column will be well-versed with its precepts and 
ideas already. Given that, why would we decide to spend precious 
column inches on the subject? Th e answer is that no discussion of 
multiparadigm design would be complete without incorporating 
objects within its purview.

Object Fundamentals
Object orientation is, in many ways, an exercise in inheritance. 
Implementation inheritance has dominated much of the object 
design discussion, with advocates suggesting that proper abstrac-
tions are built by identifying the entities in the system—the “nouns,” 

THE WORKING PROGRAMMER TED NEWARD

class Rectangle : Shape
{
  public virtual int Height { get; set; }
  public virtual int Width { get; set; }
  public override void Draw() { 
    Console.WriteLine("Rectangle: {0}x{1}", Height, Width); }
}

class Square : Rectangle
{
  private int height;
  private int width;
  public override int Height { 
    get { return height; } 
    set { Height = value; Width = Height; } 
  }
  public override int Width {
    get { return width; }
    set { Width = value; Height = Width; }
  }
}

Figure 1 Deriving a Square

Inheritance gave developers a 
new axis on which to analyze 
commonality and variability.



77December 2010msdnmagazine.com

Th e commonality between the classes suggests that a superclass 
is in order here, to avoid repeating that commonality in every 
drawable geometric shape:

abstract class Shape
{
  public abstract void Draw();
}
  
class Rectangle : Shape
{
  public int Height { get; set; }
  public int Width { get; set; }
  public override void Draw() { 
    Console.WriteLine("Rectangle: {0}x{1}", Height, Width); }
}

class Circle : Shape
{
  public int Radius { get; set; }
  public override void Draw() { Console.WriteLine("Circle: {0}r", 
Radius); }
  }

So far, so good—most developers would take no issue with 
what’s been done thus far. Unfortunately, a problem lies in wait 
for the unwary.

Liskov Rides Again
Th e catch here is known as the Liskov Sub-
stitution Principle: any type that inherits 
from another must be completely substitut-
able for that other. Or, to use the words that 
originally described the principle, “Let q(x) 
be a property provable about objects x of 
type T. Th en q(y) should be true for objects 
y of type S where S is a subtype of T.”

What that means in practice is that any 
particular derivation of Rectangle, such as 
a Square class, must ensure that it obeys the 
same behavioral guarantees provided by 
the base. Because a Square is essentially a 
Rectangle with the guarantee that both the 
Height and Width are always the same, it 

seems reasonable to write Square like the example in Figure 1.
Notice how Height and Width properties are now virtual so as to 

avoid any kind of accidental shadowing or slicing behavior when 
overriding them in the Square class. So far so good.

Next, a Square gets passed in to a method that takes a Rectangle 
and “grows” it (what graphics geeks sometimes call a “transform”):

class Program
{
  static void Grow(Rectangle r)
  {
    r.Width = r.Width + 1;
    r.Height = r.Height + 1;
  }

  static void Main(string[] args)
  {
    Square s = new Square();
    s.Draw();
    Grow(s);
    s.Draw();
  }
}

Figure 2 shows the net result of calling this code, which is not 
what you might expect.

class Square : Shape
{
  public int Edge { get; set; }
  public Rectangle AsRectangle() { 
    return new Rectangle { Height = this.Edge, Width = this.Edge }; 
  }
  public override void Draw() { Console.WriteLine("Square: {0}x{1}", 
Edge, Edge); }
}

class Program
{
  static void Grow(Rectangle r)
  {
    r.Width = r.Width + 1;
    r.Height = r.Height + 1;
  }

  static void Main(string[] args)
  {
    Square s = new Square() { Edge = 2 };
    s.Draw();
    Grow(s.AsRectangle());
    s.Draw();
  }
}

Figure 3 Conversion Operation 

class Square : Shape
{
  public int Edge { get; set; }
  public static implicit operator Rectangle(Square s) { 
    return new Rectangle { Height = s.Edge, Width = s.Edge }; 
  }
  public override void Draw() { Console.WriteLine("Square: {0}x{1}", 
Edge, Edge); }
}

class Program
{
  static void Grow(Rectangle r)
  {
    r.Width = r.Width + 1;
    r.Height = r.Height + 1;
  }

  static void Main(string[] args)
  {
    Square s = new Square() { Edge = 2 };
    s.Draw();
    Grow(s);
    s.Draw();
  }
}

Figure 4 The C# Conversion Operator Facility 

Figure 2 A Surprising Result with Grow Code

www.MSDNmagazine.com


msdn magazine78 The Working Programmer

Th e problem here, as careful readers may have already surmised, is 
that each property implementation assumes it’s being called in isola-
tion, and thus has to act independently to ensure the Height==Width 
constraint around Square at all times. Th e Grow code, however, 
assumes that a Rectangle is being passed in, and remains entirely 
ignorant of the fact that it’s a Square coming in (as intended!), and 
acts in a manner entirely appropriate for Rectangles.

Th e core of the problem? Squares aren’t rectangles. Th ey have a 
lot of similarity, granted, but at the end of the day, the constraints 
of a square don’t hold for rectangles (which is also true, by the 
way, for ellipses and circles), and trying to model one in terms of 
the other is based on a fallacy. It’s tempting to inherit Square from 
Rectangle, particularly because it lets us reuse some code, but it’s a 
false premise. In fact, I’ll even go so far as to suggest that one should 
never use inheritance to foster reuse until the Liskov Substitution 
Principle for those two types has been proven to be true.

Th is example isn’t new—Robert “Uncle Bob” Martin (bit.ly/4F2R6t) 
discussed Liskov and this exact example back in the mid-90s when 
talking to C++ devel opers. Some problems like this can be solved 
partly by using interfaces to describe the relationships, but that 
doesn’t help this particular case, because Height and Width remain 
separate properties.

Is there a solution in this case? Not really, not while keeping the 
Square-as-derived-from-Rectangle relationship in place. Th e best 
answer comes from making Square a direct descendent of Shape, 
and abandoning the inheritance approach entirely:

class Square : Shape
{
  public int Edge { get; set; }
    public override void Draw() { Console.WriteLine("Square: {0}x{1}", 
Edge, Edge); }
}

class Program
{
    static void Main(string[] args)
    {
      Square s = new Square() { Edge = 2 };
      s.Draw();
      Grow(s);
      s.Draw();
    }
}

Of course, now we have the problem that Square can’t be passed 
in to Grow at all, and it does seem like there’s a potential code-reuse 

relationship there. We can solve this in one 
respect by providing a view of the Square as 
a Rectangle using a conversion operation, as 
shown in Figure 3. 

It works—but it’s a bit awkward. We might 
also use the C# conversion operator facility 
to make it easier to convert Squares to Rect-
angles, as shown in Figure 4. 

Th is approach, while perhaps strikingly dif-
ferent from what’s expected, off ers the same 
client perspective as before, but without the 
problems of the earlier implementation, as 
Figure 5 shows.

In fact, we have a diff erent problem—where 
before the Grow method modifi ed the Rect-
angle being passed in, now it appears that it’s 

doing nothing, largely because it’s modifying a copy of the Square, 
not the original Square itself. We could fi x this by having the conver-
sion operator return a new subclass of Rectangle that holds a secret 
reference back to this Square instance, so that modifi cations to the 
Height and Width properties will in turn come back and modify 
the Square’s Edge ... but then we’re back to the original problem!

No Happy Ending Here
In Hollywood, movies have to end in a fashion commensurate with 
audience expectations or face being rejected at the box offi  ce. I’m 
not a moviemaker, so I feel no compulsion to present the readers of 
this column with a happy ending in every case. Th is is one of those 
cases: trying to keep the original code in place and make it all work 
just creates deeper and deeper hacks. Solutions might be to move 
the Grow or Transform method directly on to the Shape hierarchy 
or just make the Grow method return the modifi ed object rather 
than modify the object passed in (which is something we’ll talk 
about in another column), but in short, we can’t keep the original 
code in place and keep everything working correctly.

All of this is designed to showcase precisely one thing: object-
oriented developers are comfortable with modeling commonality 
and variability with inheritance, perhaps too much so. Remember, 
if you choose to use the inheritance axis to capture commonality, 
you have to ensure this commonality holds across the entire 
hierarchy if subtle bugs like this are to be avoided.

Remember, too, that inheritance is always a positive variability 
(adding new fi elds or behaviors), and that modeling negative vari-
ability in inheritance (which is what Square tried to do) is almost 
always a recipe for disaster along Liskovian lines. Ensure that all 
inheritance-based relationships involve a positive commonality, 
and things should be good. Happy coding! 

TED NEWARD is a principal with Neward & Associates, an independent fi rm 
specializing in enterprise .NET Framework and Java platform systems. He’s written 
more than 100 articles, is a C# MVP and INETA speaker and has authored and 
coauthored a dozen books, including “Professional F# 2.0” (Wrox, 2010). He also 
consults and mentors regularly. Reach him at ted@tedneward.com with questions 
or consulting requests, and read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article: 
Anthony Green

Figure 5  The Result of Using the C# Conversion Operator Facility

mailto:ted@tedneward.com
http://blogs.tedneward.com
http://bit.ly/4F2R6t


Untitled-1   1 6/9/10   11:03 AM

www.nevron.com


msdn magazine80

Overview
You can download the ASP.NET security code analysis rules package 
for Visual Studio 2010 and FxCop version 10.0 from go.microsoft.com/
?linkid=9750555. Th e installation contains three new rules packages:

•  ASP.NET.Security: This category focuses on security 
best practices related to how System.Web.Ui.Page properties 
are initialized.

•  ASP.NET.MVC.Security: Th is category focuses on sec-
urity best practices related to how ASP.NET MVC is used.

•  ASP.NET.Security.Confi guration: Th is category 
focuses on security best practices related to confi guration 
elements under the web.confi g fi les.

Once the rules package is installed, you can start reviewing the sec-
urity of your Web application automatically by clicking on the Run 
Code Analysis on Web Site button under the Build menu (see Figure 
1). Th e analysis will review each Page class and web.confi g fi le of your 
application against a series of security best practices for ASP.NET.

For example, one widespread security vulnerability in Web 
applications is cross-site request forgery, which allows an attacker 

Improving ASP.NET Security with 
Visual Studio 2010 Code Analysis

Anyone doing ASP.NET development prob-
ably admits, openly or not, to introducing or 
stumbling upon a security issue at some point 
during their career. Developers are oft en pres-
sured to deliver code as quickly as possible, and 
the complexity of the platform and vast number 
of confi guration options oft en leaves the ap-
plication in a less than desirable security state. 
In addition, the confi guration requirements 
for debugging and production are diff erent, 
which can oft en introduce debugging settings 
in production, causing a variety of issues. 

Over the years, the ASP.NET platform has 
matured and better documentation has been 
made available through MSDN and com-
munity blogs, but knowing which feature or 
confi guration setting to use is oft en trouble-
some. Even with good knowledge of the 
security functionality, mistakes can happen 
that could result in security vulnerabilities 
in your application.

Peer code review is a useful process and 
 a good way to catch issues early. Still, not 
everyone has the time or budget—or knowl-
edgeable peers at hand—for such review. 

Since the introduction of code analysis in Visual Studio 2005, 
developers have been able to automatically analyze their code to 
see if it complies with a series of best practices ranging from design, 
maintainability, performance and security. So far, code analysis has 
been a great tool, but it hasn’t focused on providing best security 
practice guidance for ASP.NET—until now. 

In this article I’ll introduce you to the new ASP.NET code analysis 
rules that can be used with Visual Studio code analysis as well as 
with the standalone FxCop application to improve the security of 
your ASP.NET applications.

SECURITY BRIEFS SACHA FAUST

Figure 1  Running Code Analysis on a Sample Web Site

Peer code review is a useful 
process and a good way to catch 

issues early.

http://go.microsoft.com/?linkid=9750555
http://go.microsoft.com/?linkid=9750555


81December 2010msdnmagazine.com

to execute commands as another user. Th e com-
mon mitigation for this vulnerability is to use the 
Page.ViewStateUserKey property (bit.ly/cTSHM0). 
You can also employ the AntiForgeryToken in 
ASP.NET MVC (bit.ly/ciiQIP). Both techniques prevent a 
malicious replay attack on your application. Th e 
code analysis will make sure that the appropriate 
mitigation is being used in your application. 

A common bit of feedback I’ve heard from 
developers running code analysis for the fi rst 
time is the overwhelming number of warnings 
returned (see Figure 2). It’s easy to feel like you’re 
on your own to fi gure out how to fi x all of them.

To eliminate some of the burden of fi xing each 
warning, each rule includes a clear indication of 
what needs to be fi xed and how to fi x it, along 
with some references if you need more informa-
tion before applying the change (see Figure 3).

Code analysis can also be confi gured to run 
aft er each build by clicking Website | Confi gure 
Code Analysis for Website and then checking the 
“Enable Code Analysis on Build (defi nes CODE_
ANALYSIS constant)” option (see Figure 4).

Code Analysis with FxCop
Th e code analysis feature is only available in Visual 
Studio Premium and Ultimate versions. However, 
you can also use the standalone FxCop tool to per-
form ASP.NET code analysis. FxCop is available 
as part of the Windows SDK. Th e Windows SDK 
7.1 release is available from bit.ly/dzCizq.

When using the standard FxCop tool, a little 
bit more work is required to perform the analysis. 
I’ll walk you through the steps to get it working.

Normally when you compile your Web project, 
the page markup—the page code not included 
in a code-behind fi le—is not compiled and is 
left  intact in the Web root of your application. 
When the fi rst user requests the page, the mark-
up is compiled into separate assemblies. This 
allows a site to be updatable without requiring 
everything else to be recompiled. (For details 
about the ASP.NET page compilation process, 
see msdn.microsoft.com/library/ms366723.) 

Figure 2  Violations Are Listed in the Error List Warnings Tab

Figure 3 Detailed Information in the Warnings Section

Figure 4 Enabling Code Analysis During Build

Each rule includes a 
clear indication of what 
needs to be fi xed and 

how to fi x it.

www.MSDNmagazine.com
http://bit.ly/cTSHM0
http://bit.ly/ciiQIP
http://bit.ly/dzCizq
http://msdn.microsoft.com/library/ms366723


msdn magazine82 Security Briefs

Because not all code is automatically compiled, some of the code 
isn’t visible during analysis and important security issues could be 
missed. To make sure that all code is available during analysis, you 
need to force the precompilation of all pages. Precompilation can be 
achieved by using the Publish Web Site tool, which can be started 
by clicking Build | Public Web Site. Th e tool allows you to confi gure 

how the Web site will be published, and this is where precompila-
tion can be enabled. Simply uncheck the “Allow this precompiled 
site to be updatable” option and click OK (see Figure 5). Th is will 
result in a fully compiled site ready for analysis.

Now that you have a fully compiled site, unleash FxCop on it. 

ASP.NET analysis requires functionality that 
is only available in the command-line version of 
FxCop, so open a command prompt and navi-
gate to the FxCop installation. This will most 
likely be one of the following, depending on 
whether you’re running a 32- or 64-bit version 
of Windows:
  C:\Program Files (x86)\Microsoft FxCop 10.0
  C:\Program Files\Microsoft FxCop 10.0

From the FxCop folder you can run 
Fxcopcmd.exe to start your code analysis. For 
an ASP.NET Web site you simply need to use 
a command like this:
  fxcopcmd.exe /file:"H:\MSDN\PrecompiledWeb\
    MSDNSampleSite\bin" /rule:
    AspNetConfigurationSecurityRules.dll 
    /rule:AspNetMvcSecurityRules.dll 
    /rule:ASPNetSecurityRules.dll /aspnet /console

Let’s walk through this so you understand the 
options I’m using.

Th e /fi le option indicates what assemblies are to be analyzed. In 
this example, my precompiled site assemblies are under H:\MSDN\
PrecompiledWeb\MSDNSampleSite\bin.

Th e /rule option indicates which rules to use during analysis. For 
the purpose of this example, I’m only using three ASP.NET security 
rules: AspNetConfi gurationSecurityRules.dll, AspNetMvcSecurity-
Rules.dll and ASPNetSecurityRules.dll. 

Th e /aspnet option enables ASP.NET analysis, and the /console 
option directs analysis output to the command window. You can see 
the results in Figure 6. More information about the Fxcopcmd and its 
various options can be found at msdn.microsoft.com/library/bb429474(VS.80).

Wrapping Up
Making ASP.NET sites more secure can be a diffi  cult task, but the 
ASP.NET security code analysis rules does a lot of the work for 
you by identifying some signifi cant threats. As you’ve seen in this 
article, the process is simple and can be confi gured to run each time 
you build, giving you early identifi cation of issues. 

I recommend deploying the rules to each developer machine and 
also adding them as part of a Team Foundation Sever or other reposi-

tory check-in policy. Th is enables individual de-
velopers to verify their code at build time and also 
enforces the policy so that no code can be checked 
that doesn’t meet best practices.

You can also implement your own custom 
code analysis rules. If you’re interested in going 
down this route, there’s some excellent infor-
mation in a blog post by Duke Kamstra on the 
Code Analysis Team Blog (bit.ly/blpP38). You can 
also fi nd a useful walkthrough of the process on 
Tatham Oddie’s blog (bit.ly/5tFrMw). 

SACHA FAUST is a developer on the Microsoft Office 365 
platform team. You can follow Faust at blogs.msdn.com/sfaust.

THANKS to the following technical expert for reviewing 
this article: Bryan Sullivan

Figure 5 Publishing Web Site with Precompilation

Figure 6 Running ASP.NET Rules Using Fxcopcmd.exe

Now that you have 
a fully compiled site, unleash 

FxCop on it.

http://msdn.microsoft.com/library/bb429474(VS.80)
http://bit.ly/blpP38
http://bit.ly/5tFrMw
http://blogs.msdn.com/sfaust


Untitled-4   1 11/9/10   11:32 AM

www.codeproject.com


msdn magazine84

Moving from the mouse to multi-touch 
will require some thought: Both Silverlight 
for the Web and Silverlight for Windows 
Phone support the static Touch.Frame-
Reported event, but this event is a rather 
low-level interface to multi-touch. I fo-
cused on this event in my article “Finger 
Style: Exploring Multi-Touch Support 
in Silverlight” in the March 2010 issue 
(msdn.microsoft.com/magazine/ee336026). 

Silverlight for Windows Phone supports 
a subset of the Manipulation events that originated in the Surface 
SDK and have since become part of Windows Presentation Foun-
dation (WPF). It’s an example of how multi-touch is becoming 
more mainstream in steps. Th e phone supports only the translation 
and scaling functions, not rotation, and does not implement inertia, 
although suffi  cient information is available to implement inertia 
on your own. Th ese Manipulation events are not yet supported in 
the Web version of Silverlight.

In summary, if you want to share code between Silverlight for 
the Web and Silverlight for Windows Phone, you’ll be sticking 
either with mouse events or with Touch.FrameReported.

Consider the Thumb
However, there’s another option: If you need only the translation 
support of the Manipulation events, and you don’t want to worry 
about whether the input is coming from the mouse or touch, there 
is a control that provides this support in a very pure form. This 
control is the Th umb.

It’s possible that you’ve never actually encountered the Th umb. Th e 
Th umb control is hidden away in the System.Windows.Controls.
Primitives namespace and is primarily intended for ScrollBar and 
Slider templates. But you can also use it for other chores, and I’ve 
recently come to think of the Th umb as a high-level implementation 
of the translation feature of the Manipulation events.

Now, the Th umb isn’t a truly “multi”-touch control—it supports 
only one touch at a time. However, exploring the Th umb in some 
detail will give you an opportunity to experiment with supporting 
touch computing along with sharing code between a Silverlight 
application and a Windows Phone 7 application.

Silverlight, Windows Phone 7 and the 
Multi-Touch Thumb

For many Silverlight programmers, the 
most exciting news about Windows Phone 7 
is its support for Silverlight as one of its 
two programming interfaces. (Th e other 
one is XNA.) Not only can Silverlight pro-
grammers leverage their existing knowl-
edge and skills in writing new applications 
for the phone, but they should be able to 
build Silverlight programs for the Web 
and the phone that share code.

Of course, sharing code—particularly 
UI code—is rarely as easy as it fi rst seems. Th e version of Silverlight 
used in the phone is called Silverlight for Windows Phone, and it’s 
mostly a stripped-down implementation of Silverlight 3. When 
contemplating a shared-code application, you’ll want to take a close 
look at the documentation: For each Silverlight class, the online 
documentation indicates which environments support that class. 
Within each class, lists of properties, methods and events use icons 
to indicate Windows Phone 7 support.

A Silverlight application for the Web gets user input through 
the keyboard, mouse and perhaps multi-touch. In a Windows 
Phone 7 program, multi-touch is the primary means of input. 
Th ere’s no mouse, and while there might be a hardware keyboard 
on the phone, Silverlight programs can rely only on the existence 
of a virtual keyboard—the Soft ware Input Panel, or SIP—and only 
through the TextBox control.

If your existing Silverlight programs never directly obtain 
keyboard or mouse input and rely entirely on controls, you won’t 
have to worry about the conversion to multi-touch. Also, if your 
programs contain their own mouse logic, you can actually retain 
that logic when porting the program to the phone. 

On the phone, primary touch events are converted to mouse 
events, so your existing mouse logic should work fi ne. (A primary 
touch event is the entire activity of a fi nger that fi rst touches the 
screen when no other fi ngers are in contact with the screen.) 

UI FRONTIERS CHARLES PETZOLD  

Code download available at code.msdn.microsoft.com/mag201012UIFrontiers.

Figure 1 The Silverlight and Windows Phone 
Thumb Controls

Moving from the 
mouse to multi-touch will 

require some thought.

http://msdn.microsoft.com/magazine/ee336026
http://code.msdn.microsoft.com/mag201012UIFrontiers


85December 2010msdnmagazine.com

Th e Th umb defi nes three events: 
•  DragStarted is fi red when the user fi rst touches the 

control with a fi nger or mouse.
•  DragDelta indicates movement of the mouse or fi nger 

relative to the screen.
•  DragCompleted indicates the mouse or fi nger has lift ed.

Th e DragDelta event is accompanied by event arguments with 
the properties HorizontalChange and VerticalChange that indicate 
the mouse or fi nger movement since the last event. You’ll generally 
handle this event by adding the incremental changes to the X and Y 
properties of a TranslateTransform set to a RenderTransform prop-
erty of some draggable element, or the Canvas.Left  and Canvas.Top 
attached properties.

In its default state, the Th umb is rather plain. As with other con-
trols, the HorizontalAlignment and VerticalAlignment properties 
are set to Stretch so the Th umb normally fi lls the area allowed for 
it. Otherwise, the Silverlight Th umb is just four pixels square. In 
Silverlight for Windows Phone, the Thumb is 48 pixels square, 
but visually it’s really just 24 pixels square with a 12-pixel wide 
transparent border on all four sides. 

At the very least, you’ll probably want to set an explicit Height and 
Width on the Th umb. Figure 1 shows the Silverlight and Windows 
Phone 7 versions side by side, with the default light-on-dark color 
theme of the phone. For both I’ve set the Height and Width to 72 
and Background to Blue, which in the Silverlight version becomes 
a gradient that changes when the Th umb is pressed. Neither Th umb 
pays attention to the Foreground property.

Very oft en you’ll want not only to resize the Th umb, but also to 
apply a ControlTemplate that redefi nes the control’s visuals. Th is 
ControlTemplate can be extremely simple. 

Sharing Controls
Suppose you want a simple control that lets the user drag bitmaps 
around the screen. A very easy approach is to put both an Image 
element and a Th umb in a single-cell Grid, with the Th umb the 
same size as the Image and overlaying it. If the ControlTemplate for 
the Th umb is just a transparent Rectangle, the Th umb is invisible 
but it still fi res drag events.

Let’s try to create such a control usable in both regular Silverlight 
and Windows Phone 7 projects. I’ll assume you have the Windows 
Phone 7 DeveloperTools installed (create.msdn.com). These tools 
allow you to create Windows Phone 7 projects from Visual Studio.

Begin by creating a regular Silverlight 4 project called Drag-
Image. Th e resulting DragImage solution contains the customary 
Drag Image project (which is the Silverlight program itself ) and a 
Drag Image.Web project (which hosts the Silverlight program in 
an HTML or ASP.NET page).

Next, add a new project of type Windows Phone Application 
to the solution. Call this project DragImage.Phone. (It’s likely you 
won’t want that name showing up in the program list of the phone 
or the phone emulator, so you can change the display name in the 
Title attribute of the App tag in the WMAppManifest.xml fi le.)

By right-clicking either the DragImage.Web project or the Drag-
Image.Phone project, you’ll get a context menu from which you can 
select Set as StartUp Project and run either the regular Silverlight 

program or the Windows Phone 7 program. A toolbar drop-down 
in Visual Studio lets you deploy the phone program to either an 
actual phone device or the phone emulator. (Visual Studio won’t 
build the projects if this drop-down is set for Windows Phone 7 
Device and no phone is attached.)

In the DragImage project (the regular Silverlight project), add a 
new item of type Silverlight User Control. Call it DraggableImage. 
As usual, Visual Studio creates DraggableImage.xaml and Drag-
gableImage.xaml.cs fi les for this control.

Figure 2 shows DraggableImage.xaml with the visual tree of the 
control. Th e standard outer Grid named LayoutRoot will occupy the 
full dimensions of the control’s container; the inner Grid is aligned 
at the upper-left  corner, but there’s a TranslateTransform assigned 
to its RenderTransform property to move it within the outer Grid. 
Th is inner Grid holds an Image element with a Th umb control on 
top with its Template property set to a visual tree containing only 
a transparent Rectangle. 

Notice that the Source property of the Image element is bound 
to the Source property of the control itself. Th at property is defi ned 
in the DraggableImage.xaml.cs fi le shown in Figure 3. Th at fi le also 
processes the DragDelta event from the Th umb by changing the X 
and Y properties of the TranslateTransform.

To share that control with the Windows Phone 7 project, right-
click the DragImage.Phone project and select Add | Existing Item 
to bring up the Add Existing Item dialog box. Navigate to the 
DragImage project directory. Select DraggableImage.xaml and 
DraggableImage.xaml.cs, but don’t click the Add button. Instead, 
click the little arrow to the right of the Add button and select 
Add as Link. The files show up in the DragImage.Phone project 
with little arrows on the icons indicating that the fi les are shared 
between the two projects. 

Now you can make changes to the DraggableImage fi les and 
both projects will use the revised versions.

To test it out, you’ll need a bitmap. Store the bitmap in an Images 
directory within each of the projects. (You don’t need to make 
copies of the bitmap; you can add the bitmap to the Images direc-
tory using a link.)

<UserControl x:Class="DragImage.DraggableImage"
  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
  Name="ctrl">
    
  <Grid x:Name="LayoutRoot">
    <Grid HorizontalAlignment="Left"
          VerticalAlignment="Top">
      <Image Name="image" Stretch="None"
             Source="{Binding ElementName=ctrl, Path=Source}" />
      <Thumb DragDelta="OnThumbDragDelta">
        <Thumb.Template>
          <ControlTemplate>
            <Rectangle Fill="Transparent" />
          </ControlTemplate>
        </Thumb.Template>
      </Thumb>
      <Grid.RenderTransform>
        <TranslateTransform x:Name="translate" />
      </Grid.RenderTransform>
    </Grid>
  </Grid>
</UserControl>

Figure 2 DraggableImage.xaml

www.MSDNmagazine.com
http://create.msdn.com


msdn magazine86 UI Frontiers

Th ere should be two MainPage.xaml fi les fl oating around. One 
is from the regular Silverlight project and the other is from the 
Windows Phone 7 project. In MainPage.xaml for the Silverlight proj-
ect, add an XML namespace binding called (traditionally) “local”:

xmlns:local="clr-namespace:DragImage"
Now you can add DraggableImage to the page:
<Grid x:Name="LayoutRoot" Background="White">
  <local:DraggableImage 
    Source="Images/BuzzAldrinOnTheMoon.png" />
</Grid>

Th e MainPage class for the Windows Phone 7 project is in a name-
space called DragImage.Phone, but the shared DraggableImage class 
is in the namespace DragImage. You’ll need an XML namespace 
binding for the DragImage namespace, which you can call “shared”:

xmlns:shared="clr-namespace:DragImage"

Now you can add DraggableImage to the content area of the page:
<Grid x:Name="ContentPanel" 
  Grid.Row="1" Margin="12,0,12,0">
  <shared:DraggableImage 
    Source="Images/BuzzAldrinOnTheMoon.png" />
</Grid>

Th at’s probably the simplest way you can share a control between 
two Silverlight projects, one for the Web and one for Windows 
Phone 7. Because the control uses the Th umb, both programs work 
with the mouse or touch.

Th e downloadable code for the DragImage solution also includes 
a project named DragImage.Wpf, which is a WPF program that 
also uses this control. In the general case, however, sharing con-
trols between Silverlight and WPF is harder than sharing controls 
between Silverlight and Windows Phone 7.

Color and Resolution
Aside from mouse and touch input, when attempting to share code 
between Silverlight and Windows Phone 7, you’ll need to deal with 
two other issues: color and video resolution.

On the desktop, Silverlight displays black text on a white back-
ground. (However, a Silverlight program could use the SystemColors 
class in order to display the Windows colors selected by the user.) 
By default, Windows Phone 7 displays white text on a black back-
ground except if the user changes the color theme to display black 
on white. Windows Phone 7 provides handy, predefi ned resource 
keys, such as PhoneForegroundBrush and PhoneBackgroundBrush, 
to help a program use the selected color scheme.

Any code or markup shared between Silverlight and Windows 
Phone 7 that uses explicit colors will have to fi gure out some way to 
determine the platform on which it’s running to get the correct colors.

Th e video resolution problem is a little trickier. All Silverlight 
coordinates are in units of pixels, and that rule applies to the phone 
as well. Th e average desktop video display probably has a resolution 
somewhere in the vicinity of 100 dots per inch (DPI). (For exam-
ple, suppose a 21-inch video display handles 1600 × 1200 pixels, 
or 2000 pixels diagonally. Th at’s a resolution of 105 DPI.) By default, 
Windows assumes that the display resolution is 96 DPI, although 
the user can change that to make the screen easier to read.

A Windows Phone 7 device has a screen that’s 480 × 800 pixels 
with a diagonal of 933 pixels. Yet the screen measures only 3.5 inches 
diagonally, which means the resolution is about 264 DPI, some 2.75 
times the resolution of the desktop display. 

Th is means that shared elements of a particular size that look 
fi ne on the desktop are going to be too small on the phone. How-
ever, the viewing distance of the phone is usually shorter than for 
desktop displays, so the elements don’t have to be increased by a 
full 2.75 times to be visible on the phone. 

How big should the Th umb be for touch purposes? One criterion 
I’ve read indicates that touch targets should be 9 millimeters (or 0.25 
inches) wide and high. On a desktop display with a resolution of 96 
pixels to the inch, that’s 34 pixels—but on the phone it’s 93 pixels.

<Style x:Key="thumbStyle" TargetType="Thumb">
  <Setter Property="HorizontalAlignment" 
          Value="Left" />
  <Setter Property="VerticalAlignment" 
          Value="Top" />
  <Setter Property="Width" 
          Value="{StaticResource ThumbSize}" />
  <Setter Property="Height" 
          Value="{StaticResource ThumbSize}" />
  <Setter Property="RenderTransform">
    <Setter.Value>
      <TranslateTransform 
        X="{StaticResource HalfThumbOffset}"
        Y="{StaticResource HalfThumbOffset}" />
    </Setter.Value>
  </Setter>
</Style>

Figure 4 The Thumb Style from TextTransformer.xaml

using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;

namespace DragImage {
  public partial class DraggableImage : UserControl {
    public static readonly DependencyProperty SourceProperty =
      DependencyProperty.Register("Source",
      typeof(ImageSource),
      typeof(DraggableImage),
      new PropertyMetadata(null));

    public DraggableImage() {
      InitializeComponent();
    }

    public ImageSource Source {
      set { SetValue(SourceProperty, value); }
      get { return (ImageSource)GetValue(SourceProperty); }
    }

    void OnThumbDragDelta(object sender, DragDeltaEventArgs args) {
      translate.X += args.HorizontalChange;
      translate.Y += args.VerticalChange;
    }
  }
}

Figure 3 DraggableImage.xaml.cs

All Silverlight coordinates are 
in units of pixels, and that rule 
applies to the phone as well.



87December 2010msdnmagazine.com

On the other hand, the standard button on a Windows Phone 7 
device is only 72 pixels tall, and that seems adequate. Perhaps the best 
approach is to experiment until you fi nd something that’s easy to 
use but isn’t too clunky. 

Making Adjustments
Traditionally, programs adjusted themselves for different plat-
forms using preprocessor directives for conditional compilation. 
A Silverlight program defi nes the conditional compilation symbol 
SILVERLIGHT, and a Windows Phone 7 program defines both 
SILVERLIGHT and PHONE. (You can see these by selecting the 
Build tab on the project Properties page.) Th at means you can have 
code that looks something like this:

#if PHONE
  // Code for Windows Phone 7
#else
  // Code for regular Silverlight
#endif

Or, you can diff erentiate at run time by accessing the Environment.
OSVersion object. If the Platform property is PlatformID.WinCE 
and the Version.Major property is 7 or greater, your code is running 
on a Windows Phone 7 device (or perhaps Windows Phone 8 or 9).

In theory, it’s possible to defi ne conditional sections of XAML 
fi les using the AlternateContent and Choice tags defi ned in the 
markup-compatibility (mc) namespace, but these tags don’t seem 
to be supported in Silverlight. 

But XAML can contain data bindings, and these bindings can refer-
ence diff erent objects depending on the platform. XAML can also have 

StaticResource references that retrieve diff erent objects for diff erent 
platforms. It is this approach I used in the TextTransform program.

I created the TextTransform solution the same way I created the 
DragImage solution. Th e solution has three projects: TextTransform 
(Silverlight program), TextTransform.Web (Web project to host the 
Silverlight program) and TextTransform.Phone (Windows Phone 7).

In the Silverlight project, I then created a TextTransformer con-
trol that derives from UserControl. Th is control is shared between 
the Silverlight project and the Windows Phone 7 project. Th e Text-
Transformer control contains a hardcoded text string (the word 
“TEXT”) surrounded by a Border with four Th umb controls at 
the corners. Moving a Th umb causes a non-affi  ne transform to 
be applied to the Border and TextBlock. (It only works correctly if 
the quadrilateral formed by the Border has no concave corners.) 

Th e TextTransformer.xaml fi le doesn’t create a new template for 
the Th umb, but it does defi ne a Style as shown in Figure 4.

Notice the references to ThumbSize and HalfThumbOffset. 
Although the TextBlock displaying the text gets the correct Fore-
ground property through property inheritance, the Border must 
be explicitly colored with the same foreground color:

<Border Name="border"
        BorderBrush="{StaticResource ForegroundBrush}"
        BorderThickness="1">

Where are these resources defi ned? Th ey’re defi ned in App.xaml. 
Th e regular Silverlight project includes a Resources collection in its 
App.xaml fi le that contains the following:

<Application.Resources>
  <SolidColorBrush x:Key="BackgroundBrush" Color="White" />
  <SolidColorBrush x:Key="ForegroundBrush" Color="Black" />
  <system:Double x:Key="ThumbSize">36</system:Double>
  <system:Double x:Key="HalfThumbOffset">-18</system:Double>
</Application.Resources>

Th e App.xaml fi le for the Windows Phone 7 program references the 
predefi ned resources for the two brushes and defi nes larger Th umb-
Size and HalfTh umbOff set values:

<Application.Resources>
  <SolidColorBrush x:Key="BackgroundBrush"
     Color="{StaticResource PhoneBackgroundColor}" />
  <SolidColorBrush x:Key="ForegroundBrush"
     Color="{StaticResource PhoneForegroundColor}" />
  <system:Double x:Key="ThumbSize">96</system:Double>
  <system:Double x:Key="HalfThumbOffset">-48</system:Double>
</Application.Resources>

Figure 5 shows the program running in the browser and Figure 
6 shows the program running on the Windows Phone 7 emulator. 
Th e emulator is displayed at 50 percent of full size to compensate 
for the higher pixel density on the phone.

Th ese techniques suggest that sharing code between the desktop 
and phone has become a reality. If you want to delve a bit deeper into this 
subject, the Surface Toolkit for Windows Touch includes a SurfaceTh umb 
control for WPF developers. Th is is just like the normal Th umb control, 
but it adds support for true multi-touch and events for when the thumb is 
fl ick ed. For more information, see the Surface Toolkit for Windows 
Touch beta page at msdn.microsoft.com/library/ee957351. 

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. His 
new book, “Programming Windows Phone 7,” is available as a free download at 
bit.ly/cpebookpdf. 

THANKS to the following technical experts for reviewing this article: 
Doug Kramer and Robert Levy

Figure 5 The TextTransform Program in the Browser

Figure 6 The TextTransform Program on the Phone Emulator

www.MSDNmagazine.com
http://msdn.microsoft.com/library/ee957351
http://bit.ly/cpebookpdf


msdn magazine88

easier. Th is wave is primarily controlled by women, 
either on their own or as telecommunication 
managers for their families. Th ey have diff erent 
technology-usage patterns and goals than male 
users, as I wrote in my August column, “Mars and 
Venus” (msdn.microsoft.com/magazine/ff898402). A killer 
app to them is very diff erent from a killer app for 
the predominantly male early adopter audience. 

My wife rolls her eyes at the farting apps. 
(My daughters, 10 and 7, think they’re way cool, 
especially when networked with the companion 
lighter app on another iPhone. But they don’t 
control the purse strings.) She absolutely loathes 
the iRevolver Russian Roulette app, and is 
underwhelmed by the iBeer drinking app—aft er 
working her job and schlepping the kids around 
all day, she needs the real thing. Only male geeks 
can pacify themselves by sucking on the corner 
of a plastic phone. 

What is the overriding factor in the life of 
today’s female smartphone purchaser? She’s busy. 
She works a demanding job, then takes care of 
her kids, her pets, her parents and her in-laws, 

herself and her husband—very much in that order. She needs apps 
that deliver groceries because she doesn’t have time to stop at the 
supermarket; apps that schedule appointments and track medical 
data with the pediatrician (or geriatrician or obstetrician or vet); 
apps that tell her where her kids are and how late her husband’s 
train is running; apps that play soothing music while she waits for 
the kids’ gymnastics practice to end, or drown out the caterwaul-
ing at their violin lessons. In a word: tools, not the geek toys that 
drove the early adopters. 

Th e next wave of customers will demand completely diff erent apps. 
Developers will succeed in satisfying these customers if and only if 
they follow Platt’s First, Last and Only Law of User Experience Design: 
“Know Th y User, for He Is Not Th ee.” Th e cool app that so impressed 
the fi rst wave will leave the much-larger second wave cold. 

DAVID S. PLATT teaches Programming .NET at Harvard University Extension 
School and at companies all over the world. He’s the author of 11 programming books, 
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft  .NET” (Microsoft  Press, 2002). Microsoft  named him a Soft ware 
Legend in 2002. He wonders whether he should tape down two of his daughter’s 
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

The Secret to a Successful 
Windows Phone 7 App

Killer applications sell the hardware and the OS 
that runs them. Th e classic example is Lotus 1-2-3, 
for which users bought the original IBM PC. 
Th e killer apps for dumb cell phones are voice 
and text messaging. Th ey’ve been fantastically 
successful, with a mobile phone in the pocket of 
more than half the world’s population. 

Th e killer app for smartphones is more elusive. 
Worldwide smartphone sales in 2009 were 172 
million units, about 14 percent of total phone 
sales of 1.2 billion units. 

Microsoft  has just released Windows Phone 
7. Many reviewers dismiss it as too little, too late. 
But I think Microsoft ’s stolid, un-hip image (very 
diff erent from 20 years ago) will play well to the 
much larger audience now considering the move 
to smartphones, provided that app developers 
recognize the composition of that audience and 
adjust their off erings to it. 

Anyone who owns a smartphone today is, by 
defi nition, an early adopter. Th ey bought an iPhone 
or Android because they enjoy the technology for 
its own sake, and for displaying status within their 
geek peer group. Th ey consider the iPhone app store amazingly cool 
because it contains more than 100 apps that make fart noises, which 
they enjoy comparing and contrasting in bars with their friends. 

The first app programmers resembled, and often were, their 
early adopter customers. They had only to build apps that they 
themselves liked in order to be successful. I’d bet that somewhere 
in the app is an Easter egg crediting the original expeller of the 
fart sounds and the brave anosmic souls that recorded them. But 
that’s not the killer app that will catapult smartphones from early 
adopters into the mainstream.

Th e next wave of smartphone adoption will come from users 
who value technology not for itself, but only for making their lives 

DON’T GET ME STARTED DAVID PLATT

Only male geeks can pacify 
themselves by sucking on the 

corner of a plastic phone.

http://msdn.microsoft.com/magazine/ff898402
http://rollthunder.com


Untitled-14   1 10/7/10   3:47 PM

www.GCPowerTools.com


Untitled-1   1 11/4/10   4:37 PM

www.dundas.com

	Back
	Print
	MSDN Magazine, December 2010
	Contents
	TOOLBOX: Windows Azure Development Resources
	CUTTING EDGE: Aspect-Oriented Programming, Interception and Unity 2.0
	DATA POINTS: Profiling Database Activity in the Entity Framework
	FORECAST-CLOUDY: Pushing Content from SharePoint to Windows Azure Storage
	MOBILE APPS:
	Sudoku for Windows Phone 7
	Build Data-Driven Apps with Windows Azure and Windows Phone 7

	Behavior-Driven Development with SpecFlow and WatiN
	Performance Diagnostics of .NET Applications Using ETW
	Re-Introducing the Windows Azure AppFabric Access Control Service
	TEST RUN: Web Application UI Testing with jQuery
	THE WORKING PROGRAMMER: Multiparadigmatic Programming, Part 4: Object Orientation
	SECURITY BRIEFS: Improve ASP.NET Security with Visual Studio Code Analysis
	UI FRONTIERS: Silverlight, Windows Phone 7 and the Multi-Touch Thumb
	DON’T GET ME STARTED: The Secret to a Successful Windows Phone 7 App

	GrapeCity Insert




