
NOVEMBER 2009 VOL 24 NO 11

Michele Leroux Bustamante page 34

THIS MONTH at msdn.microsoft.com/magazine:
WORKFLOW ESSENTIALS IN SHAREPOINT 2010
Paul Andrew

SANDBOXED SOLUTIONS IN SHAREPOINT 2010
Paul Stubbs

INSIDE MICROSOFT PATTERNS & PRACTICES:
CUSTOMIZING WORK ITEMS
Chris Tavares

USABILITY IN PRACTICE: SEARCH IS KEY TO FINDABILITY
Charles B. Kreitzberg & Ambrose Little

Zulfi qar Ahmed page 50

Mi

Jack Davis page 60

Todo List
Client

(requestor)

RP-STS
(IdP)

RP Domain

RP-STS
(IdP)

Proxy

1

43

52

Authenticate/
Issue

Authorize

Credentials

RST

Security
Token

RSTR

ar Ahmed page 50

Ja

Part ‘r’
Signed

Part ‘s’
Signed

Part ‘t’
Signed

Signature 1

Signature 2

Daniel Simmons page 68

COLUMNS
Toolbox
Database Documentation, API
for Pre- and Post-Conditions,
Blogs and More
Scott Mitchell page 9

CLR Inside Out
Exploring the .NET Framework 4
Security Model
Andrew Dai page 14

Cutting Edge
Conditional Rendering in ASP.NET
AJAX 4.0
Dino Esposito page 23

Security Briefs
XML Denial of Service Attacks
& Defenses
Bryan Sullivan page 76

Under the Table
Visualizing Spatial Data
Bob Beauchemin page 83

Foundations
Workfl ow Services for Local
Communication
Matthew Milner page 91

Windows with C++
Windows Web Services
Kenny Kerr page 98

C
la

im
s

-
B

a
s

e
d

 A
p

p
s


A

D
 F

S
 2

.0



D

i g
ita

l S
i g

n
a

tu
re

s


N

-
T

ie
r A

p
p

s
 a

n
d

 th
e

 E
F

M
SDN M

agazine
NOVEM

BER 2009
Vol 24 No 11

http://msdn.microsoft.com/magazine

4 msdn magazine Printed in the USA

LUCINDA ROWLEY Director

EDITORIAL: mmeditor@microsoft.com

HOWARD DIERKING Editor-in-Chief

WEB SITE

MICHAEL RICHTER Webmaster

CONTRIBUTING EDITORS Don Box, Keith Brown, Dino Esposito, Juval Lowy,
Dr. James McCaffrey, Fritz Onion, John Papa, Ted Pattison, Charles Petzold,
Jeff Prosise, Jeffrey Richter, John Robbins, Aaron Skonnard, Stephen Toub

MSDN Magazine (ISSN # 1528-4859) is published monthly by TechWeb, a division of United Business
Media LLC., 600 Community Drive, Manhasset, NY 11030 516-562-5000. Periodicals Postage Paid
at Manhasset, NY and at additional mailing offi ces. Back issue rates: U.S. $10. All others: $12. Basic
one-year subscription rates: U.S. $45. Canada and Mexico $55. Registered for GST as TechWeb, a
division of United Business Media LLC., GST No. R13288078, Customer No. 2116057 Canada Post:
Publications Mail Agreement #40612608. Canada Returns to be sent to Bleuchip International, P.O.
Box 25542, London, ON N6C 6B2. All other foreign orders $70, must be prepaid in U.S. dollars drawn
on a U.S. bank. Circulation Department, MSDN Magazine, P.O. Box 1081, Skokie, IL 60076-8081, fax
847-763-9583. Subscribers may call from 8:00 AM to 4:30 PM CST M-F. In the U.S. and Canada 888-
847-6188; all others 847-763-9606. U.K. subscribers may call Jill Sutcliffe at Parkway Gordon 01-49-
1875-386. Manuscript submissions and all other correspondence should be sent to MSDN Magazine,
6th Floor, 1290 Avenue of the Americas, New York, NY 10104. Copyright © 2009 Microsoft Corporation.
All rights reserved; reproduction in part or in whole without permission is prohibited.

POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 1081, Skokie, IL 60076-8081

READERS: Order, renew, or make payment for subscriptions; order back issues; and submit
customer service inquiries via the Web at http://msdn.microsoft.com/msdnmag/service.

PUBLISHER:
Jill Thiry jthiry@techweb.com
650-728-7368

ADVERTISING SALES:
Ed Day Western US Accounts/eday@techweb.com/785-838-7547
Brenner Fuller Eastern US Accounts/bfuller@techweb.com/603-746-3057
Michele Hurabiell Key Accounts/mhurabiell@techweb.com/415-378-3540
Wright’s Reprints 877-652-5295

ONLINE SERIVCES:
Meagon Marshall Online Accounts & Programs/mmarshall@techweb.com/
785-838-7524

MANUFACTURING:
Pete C. Scibilia Production Manager/pscibili@ubm-us.com/516-562-5134

MARKETING:
Jon Guerringue Marketing/jguerringue@techweb.com/516-562-5957
Laura Robison Marketing/lrobison@techweb.com/415-947-6182

AUDIENCE AND SUBSCRIBERS SERVICES:
Karen McAleer Audience Development Director/kmcaleer@techweb.com/
516-562-7833
Andrew Athanasiou Audience Development Assistant/aathansiou@techweb.com/
516-562-7981
SUBSCRIBER SERVICES: 800-677-2452

TechWeb, a division of United Business Media LLC.–The Global Leader in Business Technology Media

Tony L. Uphoff CEO
Bob Evans SVP and Content Director
Eric Faurot SVP, Live Events Group
Joseph Braue SVP, Light Reading Communications Group
John Siefert VP and Publisher, InformationWeek and TechWeb Network
Scott Vaughan VP, Marketing Services
John Ecke VP, Financial Technology Group
Jill Thiry Publisher, MSDN Magazine and TechNet Magazine
John Dennehy General Manager
Fritz Nelson Executive Producer, TechWeb TV
Scott Popowitz Senior Group Director, Audience Development
Beth Rivera Senior Human Resources Manager

NOVEMBER 2009 VOLUME 24 NUMBER 11

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/msdnmag/service
mailto:jthiry@techweb.com
mailto:eday@techweb.com/785-838-7547
mailto:bfuller@techweb.com/603-746-3057
mailto:mhurabiell@techweb.com/415-378-3540
mailto:mmarshall@techweb.com/
mailto:pscibili@ubm-us.com/516-562-5134
mailto:jguerringue@techweb.com/516-562-5957
mailto:lrobison@techweb.com/415-947-6182
mailto:kmcaleer@techweb.com/
mailto:aathansiou@techweb.com/

msdn magazine6

Beginnings and Endings

As the title indicates, this month’s
Editor’s Note is about beginnings and end-
ings. To begin with, I want to share with you
just a few of the myriad changes that we have
recently implemented across both the MSDN
Web sites and the MSDN Subscriptions pro-
gram. Starting with the Web sites, you can see
that we have made some tremendous updates

to the user experience not just with respect to aesthetics but also
to some of the more fundamental metaphors for navigating and
interacting with the site itself, the content and the people behind
the content. Even the MSDN Library has been overhauled to in-
clude a more understandable and more responsive user experience
option called “scriptless.” Over time, expect to see many more im-
provements and innovations made in this arena.

The MSDN Subscriptions program is also going to have some
really cool new benefits added to it. The benefit that I’m most
excited about: Your MSDN Subscription will include a cloud
computing sandbox environment on Windows Azure. This sand-
box includes everything from the Azure computing platform to
SQL Azure to the various elements of the .NET Services stack.
For example, for MSDN Premium subscribers who sign up by
June 30, 2010, your Azure sandbox would include the following
for eight months:

EDITOR’S NOTE

© 2009 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by United Business Media LLC. United Business Media LLC is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this
magazine. The recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation
does not make any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and
Microsoft logos are used by United Business Media under license from owner.

Correction: In the October 2009 issue, John Papa’s Data Points column had a disclaimer that the content was based on pre-release versions of the technology when it was actually based on RTM.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Like I said, I am excited to see this particular benefi t added to the
MSDN subscription program because I believe giving cloud com-
puting tools equal visibility and access as their more established
desktop and Web counterparts is an essential element in bringing
the cloud into the mainstream of thinking about not just applica-
tion deployment, but design and development as well.

Finally, in order to help you be successful with all of these new
tools that you will have access to, the MSDN subscription will now
also include a collection of Microsoft e-learning, which is about
20 hours worth of instruction. And naturally, you’ll also continue
to have access to MSDN Magazine!

And there’s one more change to tell you about. I have greatly
enjoyed my tenure as editor in chief for MSDN Magazine. I feel
as though we’ve continued to make some forward progress in
improving the way that people think about designing and con-
structing soft ware. However, over the last several months, I have
felt the pull to get back to my roots and get closer to the soft ware
development process, so I recently accepted a position in a more
engineering-focused role.

Fortunately, Diego Dagum from Th e Architecture Journal is step-
ping up to run MSDN Magazine, and I’m confi dent that he will do
a fantastic job. I wish both him and you all the best. I have been a
huge fan of MSDN Magazine since long before I stepped into this
role and will continue to be a fan long aft erward.

So, in the tradition of my predecessor and friend Stephen Toub,
I’ll close with the following:

public static void UntilNextTime() {
 System.Windows.Forms.Application.Exit();
 System.Environment.Exit(0);
 System.Diagnostics.Process.GetCurrentProcess().Kill();
 System.Environment.FailFast("Thanks for the memories!");
}

Windows Azure • 750 compute hours/month
• 10GB storage
• 1M storage transactions

SQL Azure • Web Edition (1GB db)—3 databases
.NET Services • 1M messages/month
Data Transfers • 7GB in, 14GB out /month (Europe and North

America)
• 2.5GB in, 5GB out (Asia Pacifi c)

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

TOOLBOXSCOTT MITCHELL

All prices confi rmed at press time are subject to change. The opinions expressed in this column are solely
those of the author and do not necessarily refl ect the opinions at Microsoft.

Send your questions and comments for Scott to toolsmm@microsoft.com.

One-Click Database Documentation
Over the course of my career I have seen a
variety of techniques used for documenting
the structure and purpose of a database.
Most developers use Microsoft SQL Server’s
Database Diagram tool to generate a picto-
rial representation, and then call it a day.
While this is a good fi rst step, it is rarely
suffi cient. For starters, sharing database
diagrams with other stakeholders can be
diffi cult at best. (I had one client e-mail
me dozens of screenshots that, stitched
together, comprised one large database
diagram.) And such diagrams are often less
than ideal for large databases; a diagram
displaying hundreds of tables is diffi cult to
read and understand.

While a database diagram is certainly
useful, there are much better tools for docu-
menting your database. One such tool is BI
Documenter (version 3.0), a user-friendly
application for auto-generating documen-
tation for Microsoft SQL Server databases.
To get started, launch BI Documenter and
create a Solution fi le. The Solution fi le
specifi es the databases to document and
maintains a history of snapshots. A snapshot
is a description of the database’s structure at
a particular point in time and is generated
for you by BI Documenter. Over the lifespan
of a project, a database’s schema usually
changes, sometimes signifi cantly—new
tables get added, existing columns get
modifi ed or removed, indexes may be
added or dropped. These snapshots ensure
that the documentation you create today
can be faithfully reproduced in the future.
When generating the documentation,
you can either create a new snapshot of
the current database schema or you can
regenerate the documentation from a
previous snapshot.

After selecting the database to document
and creating the snapshot, all that remains is
to confi gure the documentation options. BI
Documenter can create a Compiled HTML
Help fi le (.chm) or a series of HTML pages.
There are settings to customize the colors
used in the documentation as well as the
ability to add a logo to each page. You can
optionally select what database object
types to document and which ones to omit.
What’s more, BI Documenter includes a
built-in database diagramming tool you can
use to create and add database diagrams to
the documentation. Plus, you can import
your own Microsoft Word and image fi les.

The generated documentation includes
a detailed list of the specifi ed database

objects, which includes users, roles, indexes,
triggers, tables, and more. Viewing informa-
tion about a particular table lists that table’s
columns, triggers, indexes, constraints,
dependencies, extended properties, and
the SQL statements needed to create
the table. The table’s columns, triggers,
and other information are displayed as
links that, when clicked, load a page with
further details.

BI Documenter is available in three edi-
tions: Database, Enterprise, and Workgroup.
The Database Edition can only document
Microsoft SQL Server databases, while the
Enterprise and Workgroup Editions can
also document Analysis Services data-
bases, Integration Services packages, and

Database Documentation, API for Pre- and
Post-Conditions, Blogs and More

9November 2009

BI Documenter

mailto:toolsmm@microsoft.com

msdn magazine10 Toolbox

Reporting Services servers. The Database
and Professional Editions enable a single
user to create the documentation, while
the Workgroup Edition allows multiple
users to collaborate.

Price: $195 for the Database Edition,
$395 for the Enterprise Edition, $495
for the Workgroup Edition
bidocumenter.com

Blogs of Note
I recently worked on a project that involved
adding new functionality to an existing
line-of-business Windows Presentation
Foundation (WPF) application. During my
time on that project I found Beth Massi’s
blog to be an indispensible resource. Beth
is a Program Manager for the Visual Studio
Community Team at Microsoft. She has cre-
ated numerous tips, tricks, videos, articles
and tutorials on her blog and on Microsoft’s
Channel 9 Web site (channel9.msdn.com) that
explore topics like LINQ, Entity Framework,
WPF, ADO.NET Data Services, and Microsoft
Offi ce development.

Most of Beth’s blog entries describe a
specifi c programming scenario and then
show how to solve it with lucid step-by-
step instructions, numerous screen shots
and code snippets, and links to blog posts
and articles with more information. For
example, the blog entry titled “Master-
Detail Data Binding in WPF with Entity

Framework” starts by walking the reader
through creating the Entity Data Model.
Beth then shows different ways to use LINQ
to pull back the appropriate detail records.
Other blog entries written in a similar style
include “Using TableAdapters To Insert
Related Data Into An MS Access Database”
and “Tally Rows In A DataSet That Match A
Condition,” among many others.

What makes Beth’s blog stand out is her
passion for Visual Basic. All of Beth’s code
examples are in VB and she frequently
posts about upcoming language features,
such as support for collection initializers
in Visual Basic 10. She’s also interviewed
several Microsoft MVPs who are using
VB, asking them about the applications
they’re building, their favorite language
features, and so on. These interviews (and
others like them) can be seen at Channel
9 (channel9.msdn.com/tags/MVP) and at the “I’m
a VB” Web site, imavb.net.

blogs.msdn.com/bethmassi

A Fluent API for Pre- and Post-
Conditions
When a method is called, it expects its envi-
ronment to be in a certain state prior to its
execution; it may also assume certain condi-
tions hold once execution completes. These
assumptions are called pre-conditions and
post-conditions. Pre-conditions commonly
apply to a method’s input parameters. For

example, in the .NET Framework the File
class’s ReadAllText method accepts the path
of a fi le as input and returns the contents
of the fi le as a string. The inputted fi le path
cannot be a zero-length string, contain
only white space characters, or include any
invalid fi le-path characters; it cannot be null;
and its length cannot exceed the system-
defi ned maximum fi le-path length. If any
of these preconditions are not met, the
ReadAllText method throws an exception.

Pre- and post-conditions are typi-
cally implemented using a series of con-
ditional statements as shown in Figure
1. CuttingEdge.Conditions (version 1.0),
an open source project started by Steven
van Deursen, provides a fl uent interface
for specifying pre- and post-conditions. (A
fl uent interface is an API design style that
maximizes readability through the use of
descriptive names and method chaining.)

To apply a pre-condition on an input
parameter, property, or variable, use the
Requires extension method; for post-condi-
tions, use the Ensures extension method. Both
methods return a Validator object, which has
a host of methods available for applying rule
checks, such as IsNotNull, IsNotEmpty, and
IsEqualTo, among many others. Figure 2
shows the same method as Figure 1, but
uses the CuttingEdge.Conditions API to
implement the pre- and post-conditions.

public string ReadAllText(string path)
{
 // Pre-conditions...
 if (path == null)
 throw new ArgumentNullException(...);
 if (path.Length == 0)
 throw new ArgumentException(...);
 if (IsOnlyWhitespace(path) ||
 ContainsInvalidCharacters(path))
 throw new ArgumentException(...);
 if (path.Length >
 GetMaximumFilePathLength())
 throw new PathTooLongException(...);

 // Open file and read and return contents
 as string...
 object contents = GetFileContents(path);

 // Post-conditions
 if (!contents is string)
 throw
 new InvalidFileTypeException(...);
 if (string.IsNullOrEmpty(
 (string) contents))
 throw new EmptyFileException(...);
}

Figure 1 Pre- and Post-Conditions
Implemented Using Conditionals

Beth Massi’s blog

http://bidocumenter.com
http://channel9.msdn.com
http://channel9.msdn.com/tags/MVP
http://imavb.net
http://blogs.msdn.com/bethmassi

msdn magazine12 Toolbox

Each Validator method call—IsNotNull,
IsNotEmpty, and so on—throws an excep-
tion if the condition is not met. For example,
if path is null, the IsNotNull method call will
throw an ArgumentNullException. And
you can optionally provide a string to use
as the exception’s message.

Sometimes a pre- or post-condition can-
not be expressed using one of the Validator
class’s built-in methods. In such cases you
have two options. You can either create an
extension method on the Validator class or
you can use the Evaluate method, which lets
you specify a Boolean or lambda expression
to evaluate. If the expression returns true,
processing continues; if it returns false, an
exception is thrown. Figure 2 illustrates
using both forms of the Evaluate method
in the pre-conditions section.

Price: Free, open source
conditions.codeplex.com

The Bookshelf
ASP.NET MVC is a relatively new framework
added to the ASP.NET stack that enables
developers to create Web applications
using a Model-View-Controller (MVC)
pattern. It differs from the traditional Web
Forms development model in many ways.
For starters, ASP.NET MVC affords much
more control over the rendered markup
and provides a more distinct separation of
concerns. Web pages are accessed using

terse, SEO-friendly URLs. And the MVC
architecture allows for better testability. For
a more in-depth look at the differences be-
tween ASP.NET MVC and Web Forms, refer
to Dino Esposito’s article in the July 2009
issue (msdn.microsoft.com/magazine/dd942833.aspx).

Getting started with ASP.NET MVC
involves a bit of a learning curve, even for
experienced ASP.NET developers, because
of the numerous differences between the
two frameworks. For example, when creat-
ing an ASP.NET MVC application in Visual
Studio, you are prompted to create a unit
test project. With ASP.NET MVC, you design
your Web pages using HTML along with
a few helper classes—there are no Web
controls to drag and drop onto the page.
And unlike Web Forms, there are no baked-
in postback or Web control event models.
In short, there are a lot of new techniques
to learn when moving from Web Forms to
ASP.NET MVC.

If you are an intermediate to experienced
ASP.NET developer who wants to learn
ASP.NET MVC, check out Stephen Walther’s
latest book, “ASP.NET MVC Framework
Unleashed” (Sams, 2009). Walther does
an excellent job introducing new concepts
and showing how they’re used—without
overwhelming the reader with an avalanche
of information.

The book starts with a short overview
of ASP.NET MVC—the motivation behind
the new framework, its design goals,

and benefi ts. The next 500 pages walk
the reader through the key aspects of
ASP.NET MVC, one at a time. First, the reader
learns how to create a new ASP.NET MVC
application in Visual Studio, how to add a
database, how models, views and control-
lers are added to the project, and so forth.
The next 100 pages explore models, views
and controllers in detail. Each concept is
clearly described and is accompanied by
screenshots and code samples in both C#
and Visual Basic. Later chapters look at
the HTML helpers available; explore tech-

niques for validating form data; and dissect
ASP.NET MVC’s URL routing feature. There
are also chapters on authentication, AJAX,
jQuery and deployment.

After examining the core pieces of
ASP.NET MVC, in separate chapters, in
detail, and with the aid of several simple
exercises, the book fi nishes with an end-
to-end example of building a real-world
ASP.NET MVC Web application. This fi nal
project, spread over 150 pages, cements the
concepts explored in the earlier chapters
and highlights many of the benefi ts of the
ASP.NET MVC framework.

Price: $49.99
samspublishing.com

SCOTT MITCHELL, author of numerous books and
founder of 4GuysFromRolla.com, is an MVP who has
been working with Microsoft Web technologies since 1998.
Mitchell is an independent consultant, trainer and writer.
Reach him at Mitchell@4guysfromrolla.com or via his
blog at ScottOnWriting.net.

public string ReadAllText(string path)
{
 // Pre-conditions...
 path.Requires()
 .IsNotNull()
 .IsNotEmpty()
 .Evaluate(!IsOnlyWhitespace(path)) &&
 !ContainsInvalidCharacters(path),
 "path contains whitespace only or
invalid characters")
 .Evaluate(p => p.Length <=
 GetMaximumFilePathLength());

 // Open file and read and return contents
 // as string...
 object contents = GetFileContents(path);

 // Post-conditions
 contents.Ensures()
 .IsOfType(typeof(string))
 .IsNotNull()
 .IsNotEmpty();
}

Figure 2 Pre- and Post-Conditions
Implemented Using
CuttingEdge.Conditions

ASP.NET MVC Framework Unleashed

There are a lot of
new techniques
to learn when
moving from
Web Forms to
ASP.NET MVC.

mailto:Mitchell@4guysfromrolla.com
http://conditions.codeplex.com
http://msdn.microsoft.com/magazine/dd942833.aspx
http://samspublishing.com
http://ScottOnWriting.net
http://4GuysFromRolla.com

msdn magazine14

assemblies or applications to a given permission grant set. Th e
preferred way to sandbox is to create a sandboxing application
domain containing a permission grant set for loaded assemblies
and an exemption list for specifi c library assemblies (these are
given full trust). With the obsoletion of CAS policy, partial trust
code always gets sandboxed this way in .NET Framework 4.

• Enforcement—Enforcement refers to the mechanism that
keeps untrusted code restricted to its sandbox. Proper use of
enforcement APIs prevents one untrusted assembly from sim-
ply calling an API in a diff erent, more-trusted assembly and
exercising greater permissions that way. It also allows host and
library developers to expose controlled, limited access to el-
evated behavior and provide meaningful services to partially
trusted code. Th e Level 2 Security Transparency model makes
it much easier to safely do this.
Th e .NET security model has always been of particular impor-

tance to host and library developers (who oft en go hand in hand).
Examples of the .NET security model are ASP.NET and SQL CLR,
which both host managed code within controlled environments and
restricted contexts. When a host like these wants to load a partially
trusted assembly, it creates a sandboxed application domain with
the appropriate permission grant set. Th e assembly is then loaded
into this sandboxed domain. Th e host also provides library APIs
that are fully trusted but callable from the hosted code. Th e librar-
ies are also loaded into the sandboxed domain, but are explicitly
placed on the exemption list mentioned earlier. Th ey rely on the
.NET Framework’s enforcement mechanisms to ensure that access
to its elevated abilities is tightly controlled.

For most managed application developers, this is all magic that
is happening at the framework level—even developers writing code
that will be run in a sandbox don’t need to know all the details of
how the security model works. Th e framework ensures sandboxed
code is limited to using APIs and abilities that the host provides.
Th e .NET security model and CAS have long been the realm of en-
terprise administrators and host and library developers; for them,
we’ve made things easier than ever.

Policy
CAS policy has been provided since the beginning of the .NET
Framework to give machine and enterprise administrators a way to
fi ne-tune what the runtime considered trusted or untrusted. While

CLR INSIDE OUT

Exploring the .NET Framework 4
Security Model

Th e .NET Framework 4 introduces many updates to the .NET
security model that make it much easier to host, secure and
provide services to partially trusted code. We’ve overhauled the
complicated Code Access Security (CAS) policy system, which
was powerful but diffi cult to use and even more diffi cult to get right.
We’ve also improved upon the Security Transparency model, bring-
ing much of the Silverlight improvements (which I talked about last
October: msdn.microsoft.com/magazine/cc765416.aspx) in security
enforcement to the desktop framework. Finally, we’ve introduced
some new features that give host and library developers more fl ex-
ibility over where their services are exposed. With these chang-
es, the .NET Framework 4 boasts a simpler, improved security
model that makes it easy for hosts and libraries to sandbox code and
libraries to safely expose services.

A Background in .NET Framework Security
Before diving into any particular feature, it helps to have a little
background on how security in the .NET Framework works. Par-
tially trusted code is restricted by the permissions it has, and dif-
ferent APIs will require diff erent permissions to successfully be
called. Th e goal of CAS is to make sure that untrusted code runs
with appropriate permissions and can’t do anything beyond its
permissions without authorization.

We can think of the .NET security model as comprising three parts.
Specifi c improvements have been made in each area, and the rest of
this article is organized according to these three fundamental sections:

• Policy—Security policy determines which permissions to
give a particular untrusted assembly or application. Managed
code has Evidence objects associated with it, which can de-
scribe where the code is loaded from, who published it and
so on. Evidence can be used to determine which permissions
are appropriate; the result is called a permission grant set. Th e
.NET Framework has traditionally used CAS policy as a ma-
chine-wide mechanism to govern this. As mentioned before,
CAS policy has been overhauled in favor of giving hosts more
fl exibility over their own security policy and unhosted code
parity with native code.

• Sandboxing—Sandboxing is the actual process of restricting

ANDREW DAI

Send your questions and comments to clrinout@microsoft.com.

mailto:clrinout@microsoft.com
http://msdn.microsoft.com/magazine/cc765416.aspx

15November 2009msdnmagazine.com

CAS policy was very powerful and allowed for very granular con-
trols, it was extremely diffi cult to get right and could hinder more
than help. Machine administrators could lock certain applications
out of needed permissions (described in the next major section,
Sandboxing), and many people wondered why their applications
suddenly stopped working once they decided to put them on a net-
work share. Furthermore, CAS policy settings didn’t move forward
from one version of the runtime to another, so the elaborate cus-
tom CAS policy that someone set up in .NET Framework 1.1 had
to be redone by hand for .NET Framework 2.0.

Security policy could be split into two scenarios: security policy
for hosted code and security policy for the machine or enterprise.
Regarding machine policy, the Common Language Runtime se-
curity team has decided that the runtime was the wrong place to
govern it, as native code was obviously not subject to its restrictions.
While it makes sense for hosts to be able to determine what their
hosted code can do, unhosted exes that are simply clicked or run
from the command line should behave like their native counterparts
(especially since they look identical to the users running them).

Th e correct place for global security policy is at the operating
system level, where such a policy would apply to native and man-
aged code equally. Th erefore, we’re encouraging machine admin-
istrators to look at solutions like Windows Soft ware Restriction
Policies and disabling machine-wide CAS policy resolution by
default. Th e other scenario, security policy for hosted code, is still
very much valid in the managed code world. Host security policy
is now easier to govern, as it will no longer clash with an arbitrary
machine policy.

What This Means for You
For one, all unhosted managed code runs as fully trusted by de-
fault. If you run an .EXE from your hard drive or a network share,
your app will have all the abilities a native app running from the
same place would have. Hosted code, however, is still subject to the
security decisions of the host.(Note that all the ways that code can
arrive via the Internet are hosted scenarios—ClickOnce applica-
tions, for example—so this does not mean that code running over
the Internet is fully trusted.)

For many applications, these changes are mostly in the back-
ground and will have no perceived eff ect. Th ose that are aff ected
by the change may run into two issues. Th e fi rst is that certain CAS
policy-related APIs are deprecated, many having to do with assem-
bly loads (so read on if you do this at all). Second, and aff ecting
fewer people (primarily hosts), will be the fact that heterogeneous
application domains (which are described in the Sandboxing sec-
tion) aren’t available by default.

But I’m not doing any of this! How do I just make it work?
Perhaps you’ve run into an error or obsoletion message that looked
something like this:

This method [explicitly/implicitly] uses CAS policy, which has been
obsoleted by the .NET Framework. In order to enable CAS policy for
compatibility reasons, please use the NetFx40_LegacySecurityPolicy
configuration switch. Please see [link to MSDN documentation]for more
information.

For compatibility reasons, we’ve provided a confi guration switch
that allows a process to enable CAS policy resolution on it. You
may enable CAS policy by placing the following in your project’s
app.confi g fi le:

<configuration>
 <runtime>
 <!-- enables legacy CAS policy for this process -->
 <NetFx40_LegacySecurityPolicyenabled="true" />
 </runtime>
</configuration>

Th e following section describes where to start looking for mi-
gration, if the exception is being thrown from your own code. If
it isn’t, then the confi guration switch is the way to go and the fol-
lowing section shouldn’t apply directly to you.

Affected APIs
Aff ected APIs can be divided into two groups: those that are ex-
plicitly using CAS policy and those that are implicitly using it.
Explicit usages are obvious—they tend to reside in the System.Se-
curity.Policy.SecurityManager class and look something like Secu-
rityManager.ResolvePolicy. Th ese APIs directly call or modify the
machine’s CAS policy settings, and they have all been deprecated.

Implicit usages are less obvious—these tend to be assembly
loads or application domain creations that take evidence. CAS
policy is resolved on this evidence, and the assembly is loaded
with the resulting permission grant set. Since CAS policy is off by
default, it doesn’t make sense to try to resolve it on this evidence.
An example of such an API is Assembly.Load(AssemblyName
assemblyRef,Evidence assemblySecurity).

Th ere are a couple of reasons why such an API would be called:
1. Sandboxing—Perhaps you know that calling that Assem-

bly.Load overload with zone evidence from the Internet will
result in that assembly being loaded with the Internet named
permission set (unless, that is, an administrator changed that
evidence mapping for this particular machine or user!).

2. Other parameters on the overload—Maybe you just
wanted to get to a specifi c parameter that existed only on this
overload. In this case, you might’ve simply passed null or As-
sembly.GetExecutingAssembly().Evidence for the evidence
parameter.
If you’re trying to sandbox, the Sandboxing section describes

how to create a sandboxed application domain restricted to the In-
ternet named permission set.. Your assembly could then be loaded
into that domain and be guaranteed to have the permissions you
intended (that is, not subject to the whims of an administrator).

In the second scenario, we’ve added overloads to each of these
APIs that expose all necessary parameters but don’t expose an ev-
idence parameter. Migration is a simple matter of cutting out the
evidence argument to your calls. (Note that passing null Evidence
into an obsolete API still works as well, as it doesn’t result in CAS
policy evaluation.)

One additional thing to note is that if you’re doing an assembly
load from a remote location (that is, Assembly.LoadFrom("http://...")),
you’ll initially get a FileLoadException unless the following con-

http://msdnmagazine.com

msdn magazine18 CLR Inside Out

fi guration switch is set. Th is was done because this call would’ve
sandboxed the assembly in the past. With CAS policy gone, it is
fully trusted!

<configuration>
 <runtime>
 <!-- WARNING: will load assemblies from remote locations as fully
 trusted! -->
 <loadFromRemoteSources enabled="true" />
 </runtime>
</configuration>

Another way to do this, without turning this switch on for the
whole process, is to use the new Assembly.UnsafeLoadFrom API,
which acts like LoadFrom with the switch set. Th is is useful if you
only want to enable remote loads in certain places or you don’t own
the primary application.

With machine-wide CAS policy out of the picture, all exami-
nation of assembly evidence and decisions regarding appropri-
ate permission sets is left up to hosts of managed code. Without a
complicated system on top of it interfering with its security deci-
sions (aside from any OS security policy), a host is free to assign
its own permissions. Now it’s time to assign those permissions to
partial trust assemblies.

Sandboxing
Via a host’s security policy, we can determine the correct permission
grant set to give to a partial trust assembly. Now we need a simple,
eff ective way to load that assembly into an environment that is re-
stricted to that particular grant set. Sandboxing, particularly us-
ing the simple sandboxing CreateDomain overload, does just that.

Sandboxing in the Past
With the old CAS policy model, it was possible to create a hetero-
geneous application domain, where every assembly in the domain
had its own permission set. An assembly load with Internet zone
evidence could result in two or more assemblies at diff erent par-
tial trust levels being loaded into the same domain as the full trust
assembly doing the loading. Furthermore, the application domain
could have its own evidence, giving it its own permission set.

Th ere are several issues with this model:
• Th e permission set granted to an assembly is dependent on

CAS policy, as several policy levels are intersected to compute
the fi nal permission set. Th erefore, it is possible to end up with
fewer permissions than intended.

• Similar to the previous point, evidence evaluation on an as-
sembly is done by CAS policy, which could diff er across ma-
chines, users and even versions of the runtime (CAS policy
settings didn’t move forward with new versions of the runtime).
Th erefore, it wasn’t always obvious what permission grant set
an assembly was getting.

• Partial trust assemblies are not usually examined for secu-
rity hardening, making “middle trust” assemblies vulnerable
to “lowest trust” assemblies. Assemblies are freely and easily
able to call each other, so having many of them with diff erent
abilities becomes problematic from a security perspective. Can
someone be certain that every combination of calls from as-

semblies at diff erent trust levels is secure? Is it absolutely safe
to cache information from a middle trust layer?
Because of these issues, we introduced the concept of a homo-

geneous application domain, which contains only two permission
grant sets (partial trust and full trust) and is extremely simple to
create and reason about. Homogeneous domains, and how to cre-
ate them, are described later in this section.

Another popular mechanism for sandboxing was the use of Per-
mitOnly and Deny, which are stack walk modifi ers that list specifi c
allowed permissions (and nothing more) and disallow specifi c per-
missions, respectively. It seemed useful to say, “I only want callers
with permissions x and y to be able to call this API,” or, “as an API,
I want to deny permission to all my callers.” However, these modi-
fi ers did not actually change the permission grant set of a particular
assembly, which meant that they could be asserted away because
all they did was intercept demands. An example of this in action is
shown in Figure 1.

Without the red Assert, the demand hits the Deny and the stack
walk is terminated. When the red Assert is active, however, the
Deny is never hit, as Untrusted has asserted the demand away.
(Notes: Call stack is growing down. APIs do not represent actual
APIs in the framework.) For this reason, Deny is deprecated in
the .NET Framework 4, because using it is always a security hole
(PermitOnly is still around because it can be legitimately used in
a few corner cases, but is generally discouraged). Note that it can
be reactivated using the NetFx40_LegacySecurityPolicy switch,
mentioned in the policy section above.

Sandboxing Today
For the .NET Framework, the unit of isolation we use is the appli-
cation domain. Each partial trust application domain has a single
permission grant set that all assemblies loaded into it get, except
for the ones specifi cally listed on the full trust exemption list or
loaded from the Global Assembly Cache. Creating this domain is
very simple — the .NET Framework provides a simple sandbox-
ing API that takes in everything you need to create the domain:

AppDomain.CreateDomain(string friendlyName,
 Evidence securityInfo,
 AppDomainSetup info,
 PermissionSet grantSet,
 params StrongName[] fullTrustAssemblies);

Where the parameters are:
• friendlyName—The friendly name of the application

domain.

Method Called Assembly’s Grant Set Stack walk op/modifi er
Host.Main FullTrust
Host.LoadUntrusted FullTrust Deny X permission
Untrusted.DoEvil FullTrust Assert X permission
File.FormatDisk FullTrust Demand X permission

Figure 1 A Call Stack Representing an Attempt at
Sandboxing with Deny

msdn magazine20 CLR Inside Out

• securityInfo—Evidence associated with the application do-
main. Th is isn’t used for CAS policy resolution, obviously, but
can be used to store things like publisher information.

• info—Application domain initialization information. Th is
must include, at minimum, an ApplicationBase, representing
the store where partial trust assemblies reside.

• grantSet—Th e permission grant set of all loaded assemblies
in this domain, except for those on the full trust list or in the
Global Assembly Cache.

• fullTrustAssemblies—A list of StrongNames of assemblies
that are granted full trust (exempt from partial trust).
Once the domain is created, you can call AppDomain.Create-

InstanceAndUnwrap on a MarshalByRefObject in your partial
trust assembly and then call into its entry point method to kick it
off , as shown in Figure 2.

Th at’s it! With several lines of code, we now have a sandbox with
partial trust code running in it.

Th is CreateDomain API was actually added in .NET Framework
2.0, so it’s not new. However, it’s worth mentioning as it’s now the
only truly supported way to sandbox code. As you can see, the per-
mission set is passed directly, so no evidence has to be evaluated
in loading assemblies into this domain; you know exactly what
each loaded assembly is going to get. Furthermore, you’re using a
real isolation boundary to contain partial trust code, which is ex-
tremely helpful in making security assumptions. With the simple
sandboxing CreateDomain API, sandboxes become more obvi-
ous, consistent and secure—all things that help make dealing with
untrusted code easier.

Enforcement
At this point, we have an appropriate permission grant set for our
partial trust assembly and have loaded the assembly into a proper
sandbox. Great! However, what if we actually want to expose some
elevated functionality to partially trusted code? For example, I may
not want to give full fi le system access to an Internet application, but
I don’t mind if it reads and write from a known temporary folder.

Th ose of you who read last year’s column on Silverlight security
(msdn.microsoft.com/magazine/cc765416.aspx) know exactly how this issue
is addressed in that platform—through the Security Transparency
model that neatly divides code into three buckets. I’m happy to say
that Silverlight’s advancement of the model is now in eff ect on .NET
Framework 4. Th is means that the benefi ts of the simpler model
enjoyed by the Silverlight platform libraries are now available to
non-Microsoft developers of partial trust libraries. Before I go into
that and other improvements in the enforcement space, though,
I’ll discuss our primary enforcement mechanisms from before.

Enforcement in the Past
I mentioned last year that Security Transparency was actually
introduced in .NET Framework 2.0, but served primarily as
an audit mechanism rather than an enforcement one (the new
Security Transparency model is both). In the older model, or
Level 1 Security Transparency, violations did not manifest them-
selves as hard failures—many of them (like p/invoking into
native code) resulted in permission demands. If your transpar-
ent assembly happened to have UnmanagedCode in its grant set,
it could still go ahead and do what it was doing (violating the
Transparency rules in the process). Furthermore, Transparency
checks stopped at the assembly boundary, further reducing its
enforcement effectiveness.

True enforcement in the .NET Framework 2.0 came in the form
of LinkDemands— JIT time checks that checked if the grant set of
the calling assembly contained the specifi ed permission. Th at was
all well and good, but this model essentially required library devel-
opers to use two diff erent mechanisms for audit and enforcement,
which is redundant. Th e Silverlight model, which consolidated
and simplifi ed these two concepts, was a natural progression from
this state and became what is now Level 2 Security Transparency.

Level 2 Security Transparency
Level 2 Security Transparency is an enforcement mechanism that
separates code that is safe to execute in low-trust environments
and code that isn’t. In a nutshell, it draws a barrier between code
that can do security-sensitive things (Critical), like fi le operations,
and code that can’t (Transparent).

Th e Security Transparency model separates code into three buck-
ets: Transparent, Safe Critical and Critical.. Th e following diagram,
Figure 3, describes these buckets. (Note: Green arrows represent
calls that are allowed; red arrows represent those that aren’t. Self-
loops are valid as well, but not shown.)

For typical desktop applications, the Level 2 Transparency
model has no noticeable effect—code that does not have any
security annotations and is not sandboxed is assumed to be
Critical, so it is unrestricted. However, since it is Critical, it is
off-limits to partial trust callers. Therefore, developers who don’t
have partial trust scenarios won’t have to worry about exposing
anything to partial trust.

For sandboxed applications, the opposite is true—any assem-
bly loaded into a sandboxed application domain is assumed to be

PermissionSetpermset = newPermissionSet(PermissionState.None);
ps.AddPermission(newSecurityPermission(
 SecurityPermissionFlag.Execution));
AppDomainSetup ptInfo = new AppDomainSetup();
ptInfo.ApplicationBase = ptAssemblyStore;

AppDomainsandboxedDomain = AppDomain.CreateDomain(
 "Sandbox",
 AppDomain.CurrentDomain.Evidence,
 ptInfo,
 permset);

ExampleTypeet = sandboxedDomain.CreateInstanceAndUnwrap(
 typeof(ExampleType).Assembly.FullName,
 typeof(ExampleType).FullName)
 as PartialTrustType;

et.EntryPoint();

Figure 2 Sandbox with Partial Trust Code Running Inside

http://msdn.microsoft.com/magazine/cc765416.aspx

msdnmagazine.com

completely Transparent (even if it has annotations specifying
otherwise). This ensures that partial trust code cannot attempt
to elevate via asserting for permissions or calling into native code
(a Full Trust equivalent action).

Libraries exposed to partial trust callers, unlike desktop or sand-
boxed apps, must be keenly aware of their security requirements
and have much more fl exibility over their abilities and what they
expose. A typical partial trust-callable library should be primarily
Transparent and Critical code with a minimal set of Safe Critical
APIs. Critical code, while unrestricted, is known to be inaccessible
from partial trust code. Transparent code is callable from partial
trust code but is safe. Safe Critical code is extremely dangerous, as
it provides elevated functionality, and utmost care must be taken
to make sure its caller is validated before transitioning over to
Critical code.

The Security Transparency attributes and their behaviors are
listed and described in Figure 4. Keep in mind that the highest-
scoped attribute applies for all introduced APIs under it, regardless
of whether those APIs have their own annotations. AllowPar-
tiallyTrustedCallers is different in that it defers to and honors
lower-level attributes. (Note: This table describes the attributes
and their behavior when applied at the assembly, type or mem-
ber level. The attributes apply only to introduced APIs, which
means subclasses and overrides are subject to the inheritance
rules and may be at different Transparency levels.)

Th ose of you who remember last October’s article will probably
notice that the attributes work, more or less, the same way they do
in Silverlight. You might also remember that there were specifi c
inheritance rules associated with the diff erent types of code. Th ose
are also in eff ect in the desktop. For more details on the inheri-
tance rules and other aspects of Level 2 Transparency, take a look
at last year’s article, “Security in Silverlight 2” (msdn.microsoft.com/

magazine/cc765416.aspx).

Conditional AllowPartiallyTrustedCallers
Th e AllowPartiallyTrustedCallers attribute (APTCA) indicates
that an assembly is a library that may expose security-sensitive
functionality to partial trust. APTCA library assemblies are oft en
written in conjunction with hosts, since the hosts typically want
to expose specifi c functionality to their hosting environments.
One major example is ASP.NET, which exposes the System.Web
namespace to its hosted code, which may be at various trust levels.

However, putting APTCA on an assembly means it’s available to
partial trust in any host that decides to load it, which can be a li-
ability if the assembly author doesn’t know how that assembly will
behave in diff erent hosts. Th erefore, host developers sometimes
want their libraries to be available to partial trust only when loaded
in their own domains. ASP.NET does exactly this, and in earlier
versions has had to use LinkDemands for special permissions on
their APIs. While this works, it causes everyone building on top of
them to have to satisfy that LinkDemand, preventing those up-stack
assemblies from being transparent.

To solve this, we introduced the Conditional APTCA feature,which

21November 2009

http://msdnmagazine.com
http://msdn.microsoft.com/en-us/magazine/cc765416.aspx

msdn magazine22 CLR Inside Out

allows libraries to expose APIs to partial trust
callers only in an enabling host (via a list).

Th e specifi c roles of the host and library are:
• The librar y simply qualifies the

AllowPartiallyTrusted Callers attribute
with a parameter, the PartialTrustVisibil-
ityLevel enum. For example:
[assembly: AllowPartiallyTrustedCallers(PartialT
rustVisibilityLevel=
PartialTrustVisibilityLevel.NotVisibleByDefault)]

 Th is attribute basically says that the library
is not callable from partial trust unless the
host has it on its allow-list, mentioned be-
low. A value of VisibleToAllHosts would
make the library callable from partial trust
in all hosts.

• Th e host specifi es partial trust visible as-
semblies, per application domain, via an
allow list. Th is list is typically populated
via a confi guration fi le supplied to the
host. An important thing to keep in mind
is that unconditional APTCA assemblies,
like the basic framework libraries, do not
have to be added to this list.(Also impor-
tant to keep in mind is that if you’re en-
abling a Conditional APTCA assembly,
you should enable its transitive closure of dependent Condi-
tional APTCA assemblies as well. Otherwise, you might end
up with odd behavior, as your original assembly tries to call
APIs that it assumes are accessible but really aren’t.)

Easier to Secure
Much has happened in the security model for the .NET
Framework 4. CAS policy has been disabled by default, leav-
ing all security policy decisions up to the host and granting
unhosted managed exes behavioral parity with native exes. Disabling
CAS policy has also disabled heterogeneous application domains,
finally making the efficient simple-sandboxing CreateDomain
overload the primary supported sandboxing mechanism for
partial trust assemblies. Silverlight’s improvements to the Security
Transparency model, described last October, have also come to

the desktop, providing partial trust library developers with the
same efficiency and cleanliness benefits that were provided to
the Silverlight platform.

We’ve crafted these changes in such a way that most appli-
cations will continue to work as they have before, but the host
and library developers out there will find a simpler model to
work with—one that is more deterministic, simpler to use and,
therefore, easier to secure. 

Transparent

• Cannot contain unverifiable code.

• Cannot p/invoke into native code.

• Cannot elevate or assert for permissions.

• Cannot directly call Critical code.

Safe Critical

• Full Trust code that acts as the bridge between Transparent and
 Critical code, but has all the abilities of Critical code.

• Provides access to underlying Critical code/full trust services.

• Meant to perform input and output validation of data, arguments,
 and return values (potentially including exceptions).

Critical

• Full Trust code that can do anything.

• Can access other Critical code/state.

Figure 3 Security Transparency Model

Assembly Level Type Level Member Level
SecurityTransparent All introduced types and members

are Transparent.
N/A N/A

SecuritySafeCritical N/A Type and all introduced members
are Safe Critical.

Member is Safe Critical.

SecurityCritical All introduced types and members
are Critical.

Type and all introduced members
are Critical.

Member is Critical.

AllowPartiallyTrustedCallers All code is Transparent unless annotated
otherwise.

N/A N/A

Figure 4 Security Transparency Attributes and Their Behaviors

A N D R E W D A I i s a program manager on the CLR securit y team.
For more, in-depth information on how to use the features mentioned
in this article, please visit the CLR team blog (blogs.msdn.com/clrteam)
and Shawn Farkas’ .NET security blog (blogs.msdn.com/shawnfa).

THANKS to the following technical experts for reviewing this article: Cristian
Eigel, Shawn Farkas, Joshua Goodman, Mike Rousos and Mueez Siddiqui.

http://blogs.msdn.com/clrteam
http://blogs.msdn.com/shawnfa

23November 2009

CUTTING EDGEDINO ESPOSITO

in Figure 1 can be attached to any DOM elements used in an
ASP.NET AJAX template.

Note that attributes in Figure 1 were scoped in the code:
namespace up until Preview 4 of the ASP.NET AJAX 4 library and
Visual Studio 2010 beta 1. Starting with Preview 5, the ASP.NET
team eliminated the code: namespace, and it is using only the
sys: namespace for everything.

Conditional Rendering in Action
Th e sys:if attribute is assigned a Boolean expression. If the expres-
sion returns true, then the element is rendered; otherwise, the al-
gorithm proceeds with the next step. Here’s a trivial example, just
to quickly illustrate the point:

<div sys:if="false">
:
</div>

While processing this markup, the builder just ignores the DIV
tag and all of its content. In a certain way, the sys:if attribute can be
used to comment out parts of the template at development time.
All in all, assigning a constant value of false to the sys:if attribute
is not much diff erent from doing the following in C#:

if (false)
{
 :
}

Setting sys:if to a false value, doesn’t exactly hide a HTML ele-
ment. It should be noted that any ASP.NET AJAX template is ini-
tially treated like plain HTML by the browser. Th is means that any

Conditional Rendering in
ASP.NET AJAX 4.0

Client-side rendering is by far the most exciting, and long-awaited,
new feature you’ll fi nd in ASP.NET AJAX 4. Client-side rendering
allows you to use HTML templates to defi ne your desired layout and
supplies a text-based syntax for placeholders of run-time data. It all
looks like server-side data binding, except that it takes place within
the client browser with external data downloaded via Web services.

Last month, I covered the basics of the new DataView client
control and the binding techniques that will be most commonly
used. In this article, I’ll go one step further and cover conditional
template rendering.

Conditional Template Rendering
In ASP.NET AJAX 4, an HTML template for data binding is a piece
of markup that may contain ASP.NET markup, HTML literals and
some placeholders for run-time data. Th e rendering algorithm
is fairly simple: bound to such templates, the DataView control
fetches some data and uses that to fi ll up the template. Th e result-
ing markup, with actual data substituted for placeholders, is then
displayed in lieu of the original HTML template.

Th ere are a couple of ways in which you can create an instance
of the DataView control: declaratively or programmatically. How-
ever, the algorithm used to generate the markup remains the same.
Th is is where we left the matter in last month’s article.

Going forward, a question springs up naturally. What if some
logic is required to render the template? What if you need condi-
tional rendering that produces a diff erent markup based on diff erent
run-time conditions? Some client-side code must be intertwined
with markup to check the values of data items being bound as well
as the state of other global JavaScript objects.

ASP.NET AJAX 4 defines a special set of namespaced attri-
butes through which you attach custom behaviors to the HTML
template. These behaviors are JavaScript expressions to be
evaluated and executed at very specific stages of the rendering
process. Figure 1 lists the predefined code attributes for con-
ditional template rendering.

Code attributes are recognized by the template builder and their
content is appropriately used in the rendering process. Attributes

This column is based on a pre-release version of ASP.NET 4.0.

Send your questions and comments for Dino to cutting@microsoft.com.

Attribute Description
sys:codeif The attribute evaluates to a Boolean

expression that controls the rendering of the
HTML element. If the expression returns false,
the element is not rendered.

sys:codebefore The attribute is expected to contain an
arbitrary piece of JavaScript code that
executes before the HTML element is
rendered.

sys:codeafter The attribute is expected to contain an
arbitrary piece of JavaScript code to be
executed right after the rendering of the
HTML element.

Figure 1 Attributes for Conditional Rendering of DOM
Elements Within a Template

mailto:cutting@microsoft.com

msdn magazine24 Cutting Edge

template is fully processed to a document object model (DOM)
tree. However, as an ASP.NET AJAX template is decorated with the
sys-template attribute, nothing of the DOM tree shows up when
the page is displayed. In fact, the sys-template attribute is a CSS
class that contains the following:

.sys-template { display:none; visibility:hidden; }

Th e sys:if attribute keeps the HTML element off the actual mark-
up for the template. Th e sys:if attribute is ignored if attached to a
HTML element outside any ASP.NET AJAX templates. Th e sys:if
attribute is not currently associated with an else branch.

If defi ned, the sys:codebefore and sys:codeaft er attributes ex-
ecute before and aft er the rendering of the HTML element. Th e
two attributes can be used together or individually as it best suits
you. Th e content of the attributes must be a piece of executable
JavaScript code.

Altogether, the code attributes give you enough power to deal
with nearly every possible scenario, even though not always with
a straightforward solution. Let’s consider a less trivial example of
sys:if and sys:codebefore.

By the way, you may have noticed a few weird $-prefi xed vari-
ables in the preceding code. Let me briefl y introduce them just be-
fore introducing the example.

Template Pseudo-Variables
In the custom code you use within the code attributes of a tem-
plate, you have access to the full set of public properties of the data
item. In addition, you can access some extra variables defi ned and
exposed by the template builder for your convenience.

Currently, the documentation refers to them as "pseudo-col-
umns" but I personally like the term “pseudo-variable.” Figure 2
lists them all.

Th ese pseudo-variables provide a glimpse of the internal state
of the rendering engine as it is working. You can use any of such
variables as you would use any JavaScript variable in the ASP.NET
AJAX template.

Coloring Matching Rows in a Table
As an example, let’s consider a page that shows a list of customers
plus a drop-down list to pick up a country. Whenever a new coun-
try is selected, the list of customers refreshes to render customers
from that country in a diff erent style (see Figure 3).

Figure 4 shows the markup for the sample page. As you can
see, the page is a content page associated with a master page. Th e
required Sys namespace is declared in the Body tag defi ned in the
master page.

You should note that Preview 5 of ASP.NET AJAX requires you
to override the MicrosoftAjax.js file that comes with the Script-
Manager control and beta 1. This is a temporary fix that will no
longer be necessary as assemblies are updated to beta 2 and then
to release to manufacturing.

Before coming to grips with ASP.NET AJAX templates, let me
focus on the markup code for the drop-down list control.

Variable Description
$component Added in Preview 5, it returns the last component that was created via sys:attach.
$context Added in Preview 5, it returns is an instance of Sys.UI.TemplateContext, so you have all the information available to you from

that (e.g., $context.parentContext, $context.dataItem, $context.data, others). Another noteworthy addition is $context.data,
which is equal to the entire dataset that the dataItem is from. For example, you can obtain $dataItem as follows: $dataItem ==
$context.data[$index].

$dataItem Returns the current data object being currently bound to the template. For example, if the template is bound to an array of
MyCustomer objects, $dataItem returns the MyCustomer object being bound in the current iteration.

$element Returns the DOM element that is being rendered in the template. If used in, say, a sys:codebefore attribute attached to a TD
element, $element references the current TD object.

$id("yourID") Returns a unique ID based on the specifi ed string. You use this variable in a template when you need to assign a unique ID to
a given element within each instance of the template. The ID is typically obtained by concatenating the $index value to the
specifi ed string. However, the primary goal of $id is just isolating you from the details of the ID function being used.

$index Returns the 0-based index of the current iteration.

Figure 2 Pseudo-Variables Supported by the ASP.NET AJAX Template Builder

Figure 3 A Sample ASP.NET AJAX Page with Conditional
Template Rendering

msdn magazine26 Cutting Edge

Setting up the Drop-Down List
Th e code for the drop-down list for countries is as follows:

<asp:DropDownList ID="listOfCountries" runat="server"
 ClientIDMode="Static"
 onchange="listOfCountries_onchange()">
</asp:DropDownList>

As you can see, the control assigns a value to the new ClientID-
Mode property and provides a client-side handler for the DOM-
level onchange event. Th e control is bound to its data on the server,
precisely in the classic Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 // Fetch data
 string[] countries = new string [] {"[All]", "USA", ... "};

 // Serialize data to a string
 string countriesAsString = "'[All]', 'USA', ...'";

 // Emit the array in the page
 this.ClientScript.RegisterArrayDeclaration(
 "theCountries", countriesAsString);

 // Bind data to the drop-down list
 listOfCountries.DataSource = countries;
 listOfCountries.DataBind();
 }
}

Th e binding procedure is articulated in two steps. First, a Java-
Script array is emitted in the response that contains the same data
bound programmatically to the DropDownList control. Next, the
classic server-side data binding takes place.

Th is technique is known as Dual-Side Templating and is a vari-
ation of the standard client-side data binding pattern. Th e diff er-
ence consists in the fact that data to bind is fetched on the server
the fi rst time the page is accessed and served to the client as an
embedded JavaScript array.

Further client-side data binding that proves necessary can then
take place using the embedded array. In this way, you basically save
an extra roundtrip to get the data. Th is variation of the classic cli-
ent data binding is helpful when you display static data that don’t

change during the user interaction. In the example, I used this
technique only for getting the list of countries; the list of custom-
ers, instead, is fetched from the Web server using a Web service.

When you use a server-side control to emit HTML markup,
you may have little control over the actual ID if you’re using a
master page. In ASP.NET AJAX 4, the new ClientIDMode prop-
erty gives you more flexible ways to deal with the issue.

In particular, if you set ClientIDMode to Static as in the
example, then the client ID of the HTML element will match
exactly the server ID. This trick is not useful when you’re go-
ing to repeat that server control in the context of a data-bound
templated control.

Th e following script code handles the change of selection event
in the drop-down list:

<script language="javascript" type="text/javascript">
 var currentCountry = "";

 function listOfCountries_onchange() {
 // Pick up the currently selected item
 var dd = $get("listOfCountries");
 currentCountry = dd.options[dd.selectedIndex].value;

 // Refresh the template
 refreshTemplate();
 }

 function refreshTemplate() {
 var theDataView = $find("grid");
 theDataView.refresh();
 }
</script>

Note that this code will raise a JavaScript error if you don’t set
the ClientIDMode property of the DropDownList control to Static.
Th is is because of the ID-mangling work that ASP.NET usually does
to ensure that when master pages are used each produced HTML
element has a unique ID.

The preceding onchange event handler saves the name of
the currently selected country to a global JavaScript variable
and then refreshes the ASP.NET AJAX template. Let’s focus on
templates now.

<asp:Content ContentPlaceHolderID="PH_Body" runat="server">

 <asp:ScriptManagerProxy runat="server" ID="ScriptManagerProxy1">
 <Scripts>
 <asp:ScriptReference Name="MicrosoftAjax.js"
 Path="~/MicrosoftAjax.js" />
 <asp:ScriptReference Path="~/MicrosoftAjaxTemplates.js" />
 </Scripts>
 </asp:ScriptManagerProxy>

 <div>
 <asp:DropDownList ID="listOfCountries" runat="server"
 ClientIDMode="Static"
 onchange="listOfCountries_onchange()">
 </asp:DropDownList>

 <table id="gridLayout">
 <tr>
 <th>ID</th>
 <th>COMPANY</th>
 <th>COUNTRY</th>
 </tr>
 <tbody id="grid" class="sys-template">

 <tr sys:if="$dataItem.Country != currentCountry">
 <td align="left">{{ ID }}</td>
 <td align="right">{{ CompanyName }}</td>
 <td align="right">{{ Country }}</td>
 </tr>
 <tr sys:if="$dataItem.Country == currentCountry"
 class="highlight">
 <td align="left"
 sys:codebefore="if($dataItem.Country == 'USA') {
 $element.style.color = 'orange';
 $element.style.fontWeight=700;
 }">
 {{ ID }}
 </td>
 <td align="right">{{ CompanyName }}</td>
 <td align="right">{{ Country }}</td>
 </tr>
 </tbody>
 </table>

 </div>
</asp:Content>

Figure 4 Code Attributes in Action

msdn magazine28 Cutting Edge

Conditional Templates
Th e template is created and populated programmatically as below:

<script language="javascript" type="text/javascript">
 function pageLoad()
 {
 dv = $create(Sys.UI.DataView,
 {
 autoFetch: true,
 dataProvider: "/ajax40/mydataservice.asmx",
 fetchOperation: "LookupAllCustomers"
 },
 {},
 {},
 $get("grid")
);
 }
</script>

Th e DataView client control makes a call to the specifi ed Web
service, performs the given fetch operation and uses any returned
data to fi ll the ASP.NET AJAX template rooted in the DOM ele-
ment named “grid.”

Th e overall template is rendered using a DataView instance bound
to the return value of the LookupAllCustomers method on the
sample Web service. Th e method returns a collection of Customer
objects with properties such as ID, CompanyName and Country.

Th e template will stay bound to its data for the entire lifetime of
the page regardless of the changes that may occur to the data. What
if, instead, you just want to modify the rendering of the template—no
data refresh whatsoever—as certain run-time conditions change? To
get this, you need to insert code attributes in the template.

What you really need here is a truly conditional rendering that
renders the template in one way if a given condition is verifi ed and
otherwise if the condition is not verifi ed. As mentioned, the sys: if
attribute doesn’t support “if-then-else” semantics, and all it does is
rendering, or ignoring, its parent element based on the value of the
Boolean guard.

A possible workaround to simulate the two branches of a condi-
tion consists in using two mutually exclusive portions of template,
each controlled by a diff erent Boolean expression. Also shown in
Figure 4, the code follows the schema below:

<tr sys:if="$dataItem.Country != currentCountry">
 :
</tr>
<tr sys:if="$dataItem.Country == currentCountry"
 class="highlight">
 :
</tr>

Th e variable currentCountry is a global JavaScript variable that
contains the name of the currently selected country. Th e variable
is updated every time the onchange event is raised by the HTML
markup for the server-side DropDownList control.

In the preceding code snippet, the former TR element is ren-
dered conditionally based on the value of the Country property
of the data item being bound. If the variable matches the selected
country, the former TR is skipped. Th is behavior relies on the fact
that the global variable is initialized to the empty string and doesn’t
subsequently match any value. As a result, the table row template
is initially rendered for any returned customer.

As the user makes a selection in the drop-down list, the global
currentCountry variable is updated. However, this action doesn’t

automatically trigger any refresh on the template as you see in Fig-
ure 3. Th e refresh of the template must be explicitly commanded
in the onchange event handler. Here’s a possible way of doing that:

var theDataView = $find("grid");
theDataView.refresh();

The $find function is shorthand for a lookup function that in
the Microsoft AJAX library retrieves instances of components.
To use $find (or $get), you must have a ScriptManager control at
work and configured in a way that references the MicrosoftAjax.
js core library. Once you have retrieved the DataView instance as-
sociated with the “grid” template, you just invoke its refresh method.
Internally, the method just recompiles the template and updates
the DOM. Note that you don’t strictly need to retrieve the DataView
instance from the list of registered components. You can also save
the DataView instance to a global variable as you create it upon
page loading:

var theDataView = null;
function pageLoad()
{
 theDataView = $create(Sys.UI.DataView, ...);
 :
}

Next, in the onchange handler you just call the refresh method
on the global instance:

theDataView.refresh();

In this fi rst example, I used a drop-down list to render the portion
of the user interface responsible for triggering changes on the rest of
page. Th e drop-down list element is particular because it incorporates
the logic to raise a change event when one of its elements is selected.

ASP.NET AJAX, however, provides a more general mechanism
to trigger change/notifi cation events that result in page-specifi c
operations. Let’s rework the previous example using a plain hand-
made list instead of a drop-down list.

The sys:command Attribute
Th e list of countries is now generated using HTML tags for an un-
ordered bulleted list. Th e template is as follows:

<fieldset>
 <legend>Countries</legend>
 <ul id="listOfCountries" class="sys-template">

 {{ $dataItem }}

</fieldset>

Th e template is programmatically attached to a DataView control
for rendering purposes. Data to fi ll up the template is provided via
an embedded JavaScript array. Th e JavaScript array that contains the
list of countries is emitted from the server using the services of the
ClientScript object on the Page class. Unlike the previous example,
the Page_Load code doesn’t include server-side binding operations:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 string[] countries = new string [] {"[All]", "USA", ... "};
 string countriesAsString = "'[All]', 'USA', ...'";
 this.ClientScript.RegisterArrayDeclaration(
 "theCountries", countriesAsString);
 }
}

msdn magazine30 Cutting Edge

By using the sys:command attribute on a HTML element within
a template, you instruct the template builder to dynamically attach
a bunch of event handlers to the element, as follows:

<ul id="listOfCountries" class="sys-template">
 <li sys:command="select">
 {{ $dataItem }}

Figure 6 shows how such modifi ed LI elements show up in the
Developer Tools window of Internet Explorer 8. Th e sys:command
attribute takes a string value that represent the name of the com-

Figure 6 Event Handlers Dynamically Added as the Effect of sys:command

A second DataView control is instantiated on the client as the
page is loaded. Here’s the modifi ed code for the JavaScript page-
Load function, as shown in Figure 5.

As you can see, the second DataView used to bind countries to
a UL-based template has quite a diff erent structure than the other.

Th e fi rst diff erence is that the data property is used to import data.
Th is is the correct procedure when embedded data is being used.

When the data source is an array of user-defi ned objects, you
perform binding via the {{expression}} syntax. Th e content of the
expression is typically the name of a public property exposed by
the data item. In this example, instead, the source of data binding
is a plain array of strings. Subsequently, the data item is a string
with no public properties to refer to in the binding expression. In
this case, you resort to the following:

 {{ $dataItem }}

Th e initialSelectedIndex and selectedItemClass properties con-
fi gure the expected behavior of the DataView as far the selection
of a displayed item is concerned.

Th e DataView can attach the template the built-in behavior of
selection. Th e item at the position specifi ed by initialSelectedIndex
will be styled according to the CSS class set via the selectedItem-
Class property. You set initialSelectedIndex to -1 if you don’t want
any selection made on fi rst display.

Th e list that results from the template is a plain UL list and, as
such, it doesn’t natively incorporate any logic to handle selection,
as you see here:

 [All]
 USA
 :

<script language="javascript" type="text/javascript">
 function pageLoad()
 {
 $create(Sys.UI.DataView,
 {
 autoFetch: true,
 dataProvider: "/ajax40/mydataservice.asmx",
 fetchOperation: "LookupAllCustomers"
 },
 {},
 {},
 $get("grid")
);
 $create(Sys.UI.DataView,
 {
 autoFetch: true,
 initialSelectedIndex: 0,
 selectedItemClass:"selectedItem",
 onCommand: refreshTemplate,
 data:theCountries
 },
 {},
 {},
 $get("listOfCountries")
);
 }
</script>

Figure 5 JavaScript pageLoad Function

msdn magazine32 Cutting Edge

mand triggered. Th e name is actually up to you. Commands are
triggered by clicking on the element. Common commands are se-
lect, delete, insert and update. When the command is triggered, the
DataView fi res the onCommand event. Here’s the code that handles
the onCommand event and refreshes the template:

<script type="text/javascript">
 var currentCountry = "";
 function refreshTemplate(args)
 {
 if (args.get_commandName() == "select")
 {
 // Pick up the currently selected item
 currentCountry = args.get_commandSource().innerHTML.trim();

 // Refresh
 var theDataView = $find("grid");
 theDataView.refresh();
 }
 }
</script>

Th e same approach can be used for a drop-down list as long as
you emit it directly in HTML, as below:

<select>
 <option sys:command="select"> {{ $dataItem }} </option>
</select>

Note, though, that a bug prevents the preceding code to work
as expected in beta 1. (Figure 7 shows the sample page in action.)

HTML Attributes
In ASP.NET AJAX 4, a special bunch of sys: attributes specify ad
hoc bindings for HTML attributes. Functionally speaking, these
attributes are like HTML attributes and you won’t notice any dif-
ferent behavior. Figure 8 lists the namespaced HTML attributes.

All element attributes in a template can be prefi xed with the
sys: namespace. So what’s the ultimate reason for using mapped
attributes? And why are only a few of them are listed in Figure 8?

Oft en you want to bind to HTML attributes but you don’t want
to set the attribute itself to your {{...}} binding expression. From the
DOM perspective, the binding expression is simply a value assigned
to an attribute and it is processed as such. Th is, of course, may have
some unpleasant side eff ects. For example, if you bind to the value
attribute of an input element, or to the content of an element, the
binding string may appear for a second to the user as the page is
being loaded. Th e same happens if you are using binding expres-
sions outside of a template (i.e., live binding or two-way binding).
In addition, there are a bunch of HTML attributes—those listed
in Figure 8—where the use of binding expressions may originate
unwanted eff ects. For example, consider the following markup:

It triggers a request for the string “URL” rather than the value of
the property URL on the data item.

Other issues you may face include XHTML validation issues and
in general wrong attribute resolution by the browser. If you prefi x
such critical attributes with the sys namespace, you solve the issue.

So the best practice is to always prefi x with the sys namespace any
attributes being assigned a binding expression. Th e DOM doesn’t care
about namespaced attributes, so attributes retain their binding expres-
sion with no side eff ects until it is processed by the template builder.

Namespaced attributes are recommended in client-side render-
ing, even though they are not certainly mandatory except in situa-
tions where they can save you the eff ects of wrong HTML parsing.

Whole New World
Templates and data binding open up a whole new world of pos-
sibilities to ASP.NET AJAX developers. Next month, I’ll be back to
cover various types of binding, including live binding and master/
detail views. 

DINO ESPOSITO is an architect at IDesign and the co-author of “Microsoft .NET:
Architecting Applications for the Enterprise” (Microsoft Press, 2008). Based in Italy, Dino is a
frequent speaker at industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical experts for reviewing this article: Ed Essey
and Stephen Walther.

Attribute Description
sys:checked Maps to the “checked” attribute of an INPUT

checkbox element.
sys:disabled Maps to the “disabled” attribute of an INPUT

element.
sys:id Maps to the “id” attribute of any HTML

element.
sys:innerHTML Maps to the “innerHTML” attribute of any

HTML element.
sys:innerText Maps to the “innerText” attribute of any

HTML element.
sys:src Maps to the “src” attribute of an IMG

element.

Figure 8 HTML Mapped Attributes

Figure 7 Commands are Used to Handle Selection

CL A IMS -B A SED APPS

Claims-Based
Authorization with WIF

Over the past few years, federated security models and
claims-based access control have become increasingly popular. In
a federated security model, authentication can be performed by a
Security Token Service (STS), and the STS can issue security to-
kens carrying claims that assert the identity of the authenticated
user and the user’s access rights. Federation allows users to authen-
ticate in their own domain while being granted access to applica-
tions and services that belong to another domain—provided the
domains have an established trust relationship. Th is approach re-
moves the need to provision and manage duplicate accounts for
a single user, and enables single sign-on (SSO) scenarios. Claims-
based access is central to a federated security model whereby appli-
cations and services authorize access to features and functionality
based on claims from issuers (the STS) in trusted domains. Claims
can contain information about the user, roles or permissions, and
this makes for a very fl exible authorization model. Together, fed-
erated security and claims-based access enable a range of integra-
tion scenarios across applications, departments and partners in a
wider ecosystem.

This article discusses:
• Federated security

• Claims-based authorization

• Windows Communication Foundation

Technologies discussed:
• WIF

• WCF

Code Download URL:
code.msdn.microsoft.com/mag200911WIF

Michele Leroux Bustamante

 Platform tools in this area have also come a long way. Windows
Identity Foundation (WIF) is a rich identity model framework de-
signed for building claims-based applications and services and for
supporting active and passive federated security scenarios. With
WIF, you can enable passive federation for any ASP.NET applica-
tion, and integrate a claims-based authorization model into your
ASP.NET applications and WCF services without breaking a sweat.
Furthermore, WIF provides the plumbing to build custom STS
implementations, and includes features and controls to support
authentication scenarios that involve managed information cards
and identity selectors such as Windows CardSpace.

WIF signifi cantly reduces the code required to implement rich ap-
plication scenarios that involve federated and claims-based security. In
this two-part article, I’ll focus on the framework’s core functionality for
enabling passive federation in ASP.NET applications and for support-
ing claims-based security models in both WCF and ASP.NET. I’ll focus
on WCF in this article and ASP.NET in a later one.

Why Federated and Claims-Based Security?
Th e benefi ts of federated and claims-based security can be seen in
the context of a few distinct goals:

• Decoupling the authentication mechanism from applications
and services.

• Replacing roles with claims as a more fl exible, granular artifact
for authorization.

• Reducing IT pain related to provisioning and deprovisioning
users.

• Granting trusted domains, including possibly external feder-
ated partners, access to application features and functionality.
If even one of these goals rings true for your application scenario,

adopting a claims-based model that can immediately or eventually
involve federated security is incredibly useful.

msdn magazine34

http://code.msdn.microsoft.com/mag200911WIF

35November 2009msdnmagazine.com

When you design your applications and
services, the authentication and autho-
rization model is part of this design. For
example, an intranet application typically
expects users to authenticate to a particu-
lar domain with their Windows credentials,
while an Internet application typically uses
a custom credential store such as Microsoft
SQL Server. Applications can also require
certificates or Smart Card authentication,
or support multiple credential types so that
different groups of users can use the appro-
priate type. If your application will only (and
always) expect users to authenticate with a
single credential type, your job is easy. More
often than not, however, the credential types
supported by an application can evolve to
support alternative modes of authentication
or additional modes that accommodate a
different set of users.

For example, an application might support
internal users behind the fi rewall within a do-
main while also supporting external users over the Internet. When
the security model for an application is decoupled from the mode
of authentication—as it can be with a claims-based model—there
is very little, if any, impact to the application when you introduce
new modes of authentication.

In a similar vein, applications are more fl exible if authorization
is not tied to a fi xed set of roles. If your application will always rely
on a specifi c set of roles to authorize access, and if those roles will
always carry the same meaning in terms of access rights to features
and functionality, you’re again in good shape. But the meaning of
roles oft en varies across departments that use an application and
thus require customization. Th at might mean evaluating roles
diff erently depending on the user’s domain, or allowing custom
roles to be created to control access rights. WIF makes adopting
a claims-based security model easy so you can decouple roles (if
applicable) from the authorization mechanism. Th is way, logical
roles can be mapped to a more granular set of claims, and the ap-
plication authorizes access based on those claims. If modifi ed or
new roles warrant a diff erent set of claims to be issued, the appli-
cation isn’t aff ected.

Of course, claims can be much more than just roles or permis-
sions. One of the added benefi ts of working with a claims-based
model is that a claim can carry information about an authenti-
cated user, such as e-mail address, full name, birth date and so on.
Claims can also be used to verify information, for example, with-
out sharing a user’s actual age or birth date (information that many
users don’t want to be public knowledge). A claim could indicate
whether a user is at least the age required to perform an action (a
Boolean claim indicating IsOver21 or IsOver13), or verify that a
user belongs to a particular department without sharing a list of
all departments the user belongs to.

Although decoupling the authentication mechanism and specifi c
roles from applications and services makes accommodating change
easier, the claims-based model is also central to federated security
scenarios, which make granting access to users belonging to any
trusted domain much easier. Federation reduces IT overhead and
some of the risks associated with identity management. It removes
the need to maintain user credentials across multiple applications
or domains, and this helps reduce risks when provisioning and
deprovisioning accounts across domains—for example, forgetting
to delete an account in multiple places. Password synchronization
when multiple copies of an account aren’t managed also ceases to
be a problem. Federation also facilitates SSO scenarios because us-
ers can log on to one application and be granted access to another
(possibly across security domains) without having to authenticate
again. Finally, adding new trust relationships between domains is
also made easy with federated security platforms such as Active
Directory Federation Server (ADFS) and WIF. Th us, extending
an application to additional domains within a corporate entity, or
even to external partner domains, is streamlined.

Active Federation with WIF
Active federation scenarios are based on the WS-Federation
Active Requestor Profi le (see the WS-Federation TC at oasis-open.org/

committees/tc_home.php?wg_abbrev=wsfed) and the WS-Trust specifi -
cation (see WS-Trust 1.3 at docs.oasis-open.org/ws-sx/ws-trust/200512/

ws-trust-1.3-os.html). From a high level, WS-Trust describes a contract
with four service operations: Issue, Validate, Renew and Cancel.
Respectively, these operations are called by clients to request a
security token, to validate a security token, to renew an expired
security token and to cancel a security token that should no lon-
ger be used. Each operation processes messages in the form of a

Todo List
Client

(requestor)

RP-STS
(IdP)

RP Domain

RP-STS
(IdP)

Proxy

1

43

52

Authenticate/
Issue

Authorize

Credentials

RST

Security
Token

RSTR

Figure 1 A Simple Active Federation Scenario

http://msdnmagazine.com

msdn magazine38 Claims-Based Apps

Request for Security Token (RST) and sends responses in the form
of an RST Response (RSTR) following the WS-Trust specifi cation.
Th ese WS-Trust features are implemented by an STS (or token is-
suer), an important participant in any federated security scenario.

A simple active federation scenario is illustrated in Figure 1. Th is
scenario involves a Windows client application (the requestor), a
WCF service (the relying party, or RP), and an STS belonging to
the RP domain (RP-STS). As the fi gure shows, the client uses a
WCF proxy to coordinate fi rst authenticating to the RP-STS, then
requesting a security token, and then calling the RP, passing the
issued security token along with the request.

In this scenario, RP-STS is also the Identity Provider (IdP) for
users authenticating to the RP domain. Th at means that the RP-
STS is responsible for authenticating users, asserting the identity
of those users, and issuing claims relevant to the RP for authori-
zation. Th e RP verifi es that the security token is issued by RP-STS
and authorizes access based on the issued claims.

I’ve created a Todo List application to facilitate implementation
discussions for this scenario. Th e accompanying code sample in-
cludes a WPF client, a WCF service, and an active STS implemented
with WIF. To provide further context, the WCF service, TodoList-
Service, implements the ITodoListService contract shown in Fig-
ure 2. Th e client calls the service by using a WCF proxy to get all
the Todo items, and to add, update or delete items. Th e TodoList-

Service relies on create, read, update and delete claims to authorize
access to its operations.

To implement this active federation scenario, you need to
follow these four steps:
1. Expose a federated security WCF endpoint for the TodoList-

Service.
2. Generate a WCF proxy for the client application and initialize

the proxy with credentials to authenticate to the RP-STS.
3. Enable WIF for the TodoListService to enable claims-based

authorization.
4. Place permission demands (IsInRole) or other authorization

checks to control access to service operations or other func-
tionality.
I’ll discuss these steps in the sections that follow.

Exposing Federated Endpoints
Claims-based WCF services typically expose federated endpoints
that receive issued tokens such as those based on the SAML standard.
WCF supplies two bindings to support federated security scenarios
with WS-Trust. WSFederationHttpBinding is the original standard
binding based on WS-Trust 2005 (an earlier version of the protocol),
and WS2007FederationHttpBinding is the latest version of the binding
(released with Microsoft .NET Framework 3.5) and supports WS-Trust
1.3, the approved standard. Typically, you should use WS2007Federa-
tionHttpBinding unless an interoperability requirement dictates the
use of the earlier version. An STS based on ADFS version 2 or WIF
can support either version of WS-Trust.

When you expose a federated endpoint for a service, you usu-
ally provide information about the expected security token for-
mat, the required and optional claim types and the trusted token
issuer. Figure 3 shows the system.serviceModel listing for the
TodoListService, which exposes a single federated endpoint over
WS2007FederationHttpBinding.

Federated security scenarios typically rely on SAML tokens, although
this is not a strict requirement. For this scenario, SAML 1.1 tokens

[ServiceContract(Namespace="urn:TodoListApp/2009/06")]
public interface ITodoListService
{
 [OperationContract]
 List<TodoItem> GetItems();
 [OperationContract]
 string CreateItem(TodoItem item);
 [OperationContract]
 void UpdateItem(TodoItem item);
 [OperationContract]
 void DeleteItem(string id);
}

Figure 2 ITodoListService Defi nition

<system.serviceModel>
 <services>
 <service name="TodoList.TodoListService"
behaviorConfiguration="serviceBehavior">
 <endpoint address="" binding="ws2007FederationHttpBinding"
bindingConfiguration="wsFed" contract="Contracts.ITodoListService" />
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8000/TodoListService"/>
 </baseAddresses>
 </host>
 </service>
 </services>
 <bindings>
 <ws2007FederationHttpBinding>
 <binding name="wsFed">
 <security mode="Message" issuedTokenType=
"http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-.1#SAMLV1.1"
issuedKeyType="SymmetricKey" negotiateServiceCredential="true">
 <message>

 <claimTypeRequirements>
 <add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name"
isOptional="false"/>
 <add claimType= "urn:TodoListApp/2009/06/claims/permission"
isOptional="false"/>
 </claimTypeRequirements>
 <issuerMetadata address="http://localhost:8010/rpsts/mex" />
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 </bindings>
 <behaviors>
 <serviceBehaviors>
 <behavior name="serviceBehavior">
 <serviceMetadata/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Figure 3 The Federated Endpoint Exposed by the TodoListService

msdn magazine40 Claims-Based Apps

are used, as indicated by the issuedTokenType URI (docs.oasis-open.org/

wss/oasis-wss-saml-token-profi le-1.1#SAMLV1.1). For an alternate token type,
such as SAML 1.0 or SAML 2.0, use the URI for that standard. Of
course, the STS indicated in the federated binding confi guration
must support the token type you are requesting.

Other relevant settings in the
message section include issued-
KeyType and negotiateService-
Credential. The issuedKeyType
setting indicates whether the proof
key (see blogs.msdn.com/vbertocci/

archive/2008/01/02/on-prooftokens.aspx)
is symmetric (the default) or asym-
metric (carries more overhead).
Once again, this setting must be
compatible with the STS. If nego-
tiateServiceCredential is set to true, the client doesn’t need access
to the RP public key a priori, but negotiation is not an interop-
erable protocol. If the client is not a WCF client, you should set
negotiateServiceCredential to false. But don’t worry. If it is set
to false, proxy generation with SvcUtil supplies the client with a
base64 encoded copy of the RP’s public key.

Th e claim types supplied in the claimTypeRequirements section
indicate the required and optional claim types that the service re-
lies on for authorization. In this case, the service expects a name
claim to identify the user and at least one permission claim—a
custom claim type that indicates the user’s rights to create, read,
update or delete Todo items. (Th ese claim types are listed later in
Figure 4.) Th e list of claim types is included in the service meta-
data so that clients are able to include this information in the RST.
Frequently, the STS knows the claims it will issue for a particular
RP, which means that the list doesn’t need to be exhaustive in the
federation binding.

Th e trusted token issuer for this scenario is RP-STS, which hap-
pens to be implemented with WIF. RP-STS exposes a single WS-
Trust endpoint at http://localhost:8010/rpsts, and its metadata
exchange address is located at http://localhost:8010/rpsts/mex. In

Figure 3, the issuer’s metadata address is supplied in the issuer-
Metadata section so that when the client generates the proxy, it can
discover the available STS endpoints.

Suppose the STS were to expose multiple endpoints—for ex-
ample, to authenticate intranet users with Windows credentials

at http://localhost:8010/rpsts/in-
ternal and to authenticate Inter-
net users with a username and
password at http://localhost:8010/
rpsts/external. The RP service can
opt to specify a particular issuer
endpoint associated with its fed-
erated endpoint configuration so
that when clients generate a proxy,
the configuration to communicate
with the STS matches that end-

point instead of the first compatible endpoint. You accomplish
this by supplying an address for both the issuerMetadata and is-
suer elements as follows:

<issuerMetadata address="http://localhost:8010/rpsts/mex" />
<issuer address="http://localhost:8010/rpsts/mex/external" />

Th e advantage of this approach is to simplify proxy generation
for clients if there are multiple STS endpoints to choose from and
the RP wants to infl uence which one is used. If the RP doesn’t care
which endpoint the client authenticates to, it is best to supply only
the issuerMetadata setting and let the client application determine
the appropriate endpoint for authentication.

Keep in mind that if the service confi guration omits the issuer-
Metadata element and supplies only the issuer address, the address
should evaluate to the issuer’s logical URI (http://localhost:8010/
rpsts/issuer), which may not necessarily map to a physical STS end-
point address. An equivalent confi guration at the client will prompt
the user to select a managed information card from the same is-
suer (via Windows CardSpace), and the card must also meet the
criteria of the requested token format and claim types. For more
information on active federation scenarios with Windows Card-
Space, see wpfandcardspace.codeplex.com.

Client Proxy Generation
When you generate a proxy for a Windows
client using SvcUtil or Add Service Refer-
ence, the metadata exchange address for
the issuer is used to gather information
about the endpoints exposed by the issuer.
To reiterate, some possible scenarios are:
• If the federation binding for the RP ser-
vice endpoint supplies an issuer metadata
address without a specifi c issuer address,
the client confi guration will include the
fi rst protocol-compatible STS endpoint
with any other compatible endpoints
commented for the client developer to
optionally use.

Username Claim Type Claim Value
Admin http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name Admin

urn:TodoListApp/2009/06/claims/permission /create
urn:TodoListApp/2009/06/claims/permission /read
urn:TodoListApp/2009/06/claims/permission /update

urn:TodoListApp/2009/06/claims/permission /delete

User http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name User

urn:TodoListApp/2009/06/claims/permission /create

urn:TodoListApp/2009/06/claims/permission /read

Guest http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name Guest

urn:TodoListApp/2009/06/claims/permission /read

Figure 4 Claims Issued Per User for the Todo List Application Scenario

Federated security scenarios
typically rely on SAML tokens,

although this is not a strict
requirement.

http://localhost:8010/rpsts
http://localhost:8010/rpsts/mex
http://localhost:8010/rpsts/in-ternaland
http://localhost:8010/rpsts/in-ternaland
http://localhost:8010/rpsts/in-ternaland
http://localhost:8010/
http://localhost:8010/rpsts/mex
http://localhost:8010/rpsts/mex/external
http://localhost:8010/rpsts/issuer
http://localhost:8010/rpsts/issuer
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name
http://blogs.msdn.com/vbertocci/archive/2008/01/02/on-prooftokens.aspx
http://wpfandcardspace.codeplex.com

msdn magazine42 Claims-Based Apps

• If the federation binding for the RP service supplies an is-
suer metadata address and a specifi c issuer address, the client
confi guration will include that specifi c address (assuming it is
protocol compatible).

• If the federation binding for the RP service supplies only a
metadata address, the client confi guration will include only the
metadata address as well, without a binding confi guration for
the issuer. Th is means an identity selector such as CardSpace
will be triggered, as I mentioned earlier.
Assuming that the client generates a proxy for the TodoList-

Service whose confi guration is shown in Figure 3 and that the
STS exposes a single endpoint, the client-side version of the WS-
2007FederationHttpBinding confi guration will include the follow-
ing issuer and issuerMetadata settings:

<issuer address="http://localhost:8010/rpsts"
 binding="ws2007HttpBinding"
 bindingConfiguration="http://localhost:8010/rpsts">
 <identity>
 <certificate encodedValue="[base64 encoded RP-STS certificate]" />
 </identity>
</issuer>
<issuerMetadata address="http://localhost:8010/rpsts/mex" />

Note that the issuer element specifi es the issuer endpoint and
the required binding confi guration to communicate with that end-
point. In this case, the client authenticates to the STS with a user
name and password using message security, as shown in the fol-
lowing WS2007HttpBinding confi guration:

<ws2007HttpBinding>
 <binding name="http://localhost:8010/rpsts" >
 <security mode="Message">
 <message clientCredentialType="UserName"
 negotiateServiceCredential="false"
 algorithmSuite="Default"
 establishSecurityContext="false" />
 </security>
 </binding>
</ws2007HttpBinding>

Th e client endpoint associates the federation binding confi gu-
ration with the RP endpoint:

<client>
 <endpoint address="http://localhost:8000/TodoListService"
 binding="ws2007FederationHttpBinding"
 bindingConfiguration="wsFed"
 contract="TodoList.ITodoListService" name="default">
 <identity>
 <certificate encodedValue="[base64 encoded RP certificate" />
 </identity>
 </endpoint>
</client>

With this confi guration, the client proxy need only be initialized
with a valid user name and password before calling the service:

TodoListServiceProxy _Proxy = new TodoListServiceProxy("default");

if (!ShowLogin()) return;

this._Proxy.ClientCredentials.UserName.UserName = this.Username;
this._Proxy.ClientCredentials.UserName.Password = this.Password;
this._TodoItems = this._Proxy.GetItems();

Token Issuance
Th e proxy fi rst supplies credentials to authenticate to RP-STS, send-
ing an RST that asks for a SAML 1.1 token, indicating that the RP
requires at least one name and permission claim. Th e user is au-

thenticated against the STS credential store, and the appropriate
claims are issued for the authenticated user. Th e proxy then pro-
cesses the RSTR that carries the issued token and passes that token
to the RP to establish a secure session for the authenticated user.

For this example, the STS was built with WIF and authenticates
users against a custom credential store, issuing claims for each user
according to Figure 4.

Note that an STS based on ADFS version 2 authenticates users
against the Windows domain and issues claims according to your
ADFS confi guration. A custom STS based on WIF can authenti-
cate users against a credential store of your choosing, but you must
roll your own code to manage the credential store and the relevant
claims-mapping process.

 Identity Model Confi guration
To enable claims-based authorization for your WCF services us-
ing WIF, you initialize the ServiceHost instance for federation. You
can do this programmatically by calling the Confi gureServiceHost
method exposed by the FederatedServiceCredentials type, as follows:

ServiceHost host = new ServiceHost(typeof(TodoList.TodoListService));
FederatedServiceCredentials.ConfigureServiceHost(host);
host.Open();

You can achieve the same result declaratively by using the be-
havior extension Confi gurationServiceHostBehaviorExtension:

<serviceBehaviors>
 <behavior name="fedBehavior" >
 <federatedServiceHostConfiguration/>
 <serviceMetadata />
 </behavior>
</serviceBehaviors>

In either case, the ServiceHost is assigned an instance of the
FederatedServiceCredentials type to drive claims-based authori-
zation behavior for the service. Th is type can be initialized either
programmatically or by the microsoft .identityModel confi guration
section for the service. Identity model settings are specifi c to WIF
and supply settings for claims-based authorization in ASP.NET
and WCF applications, most of which are summarized in Figure 5.

For WCF services that use WIF, you no longer need to initialize
the ServiceHost with typical WCF authentication and authoriza-
tion behaviors. WIF supersedes this and provides a cleaner way to
confi gure security in general. (WIF is useful beyond claims-based
and federated scenarios). Figure 6 shows the identity model set-
tings used for the TodoListService.

Th e issuerNameRegistry setting is used to specify any trusted
certifi cate issuers. If you use the Confi gurationBasedIssuerNa-
meRegistry as shown in Figure 6, you must provide a list of trusted
certifi cate issuers by specifying their thumbprints. At run time, the
Confi gurationBased IssuerNameRegistry checks X509 security to-
kens against this list and rejects those with thumbprints not found
in the list. You can use the SimpleIssuerNameRegistry to allow any
X509 or RSA token, but more likely you will supply a custom Issu-
erNameRegistry type to validate tokens using your own heuristics
if the Confi gurationBasedIssuer NameRegistry doesn’t do the trick.

Th e confi guration in Figure 6 rejects any tokens that are not signed
by the RP-STS (using the certifi cate thumbprint for CN=RPSTS).

43November 2009msdnmagazine.com

Th e following confi guration instead specifi es a custom Issuer-
NameRegistry type, TrustedIssuer NameRegistry:

<issuerNameRegistry type="TodoListHost.TrustedIssuerNameRegistry,
TodoListHost"/>

Th e TrustedIssuerNameRegistry implementation is used to
achieve the same result—rejecting tokens not signed by CN=RPSTS
by checking the subject name of the incoming token:

public class TrustedIssuerNameRegistry : IssuerNameRegistry
{
 public override string GetIssuerName(SecurityToken securityToken)
 {
 X509SecurityToken x509Token = securityToken as
 X509SecurityToken;
 if (x509Token != null)
 {
 if (String.Equals(x509Token.Certificate.SubjectName.Name,
 "CN=RPSTS"))
 {
 return x509Token.Certificate.SubjectName.Name;
 }
 }

 throw new SecurityTokenException("Untrusted issuer.");
 }
}

Th e serviceCertifi cate setting in Figure 6 indicates the certifi -
cate to be used to decrypt incoming security tokens, assuming
they are encrypted for the RP by the issuing STS. For the Todo
List application, the RP-STS encrypts tokens using the public key
for the RP, CN=RP.

Usually, the SAML token includes an audience URI element that
evaluates to the RP, indicating who the token was issued for. You
can explicitly refuse tokens that were not intended to be sent to
the RP. By default, the audienceUris mode is set to Always, which
means that you must supply at least one URI for validation against
incoming tokens. In Figure 6, the confi guration allows only SAML

tokens that include an audience URI match-
ing the TodoListService address. Although
not generally recommended, you can set
the audienceUris mode to Never to sup-
press evaluation of the audience restriction
condition for an incoming SAML token:
<audienceUris mode="Never"/>

Be aware that when the client sends an
RST to the STS, it usually includes an Ap-
pliesTo setting that indicates who the token
should be issued to—the RP. Th e STS can
use this information to populate the SAML
token audience Uri.

Th e certifi cateValidation setting controls
how incoming X509 tokens—those used
for token signatures, for example—are val-
idated. In Figure 6, certifi cateValidation-
Mode is set to PeerTrust, which means that
certifi cates are valid only if the associated
certifi cate is found in the TrustedPeople
store. Th is setting is more appropriate than
PeerOrChainTrust (the default) for token
issuer validation because it requires you to

explicitly install the trusted certifi cate in the certifi cate store. Peer-
OrChainTrust indicates that signatures are also authorized if the
root certifi cate authority (CA) is trusted, which on most machines
includes a signifi cant list of trusted CAs.

I’ll discuss a few of the other settings from Figure 5 and Figure 6
shortly. One other point to make about the subject of WIF initializa-
tion is that you can also programmatically initialize an instance of
FederatedServiceCredentials and pass it to Confi gureServiceHost
rather than initializing from the microsoft .identityModel section.
Th e following code illustrates this:

ServiceHost host = new ServiceHost(typeof(TodoList.TodoListService));

ServiceConfiguration fedConfig = new ServiceConfiguration();
fedConfig.IssuerNameRegistry = new TrustedIssuerNameRegistry();
fedConfig.AudienceRestriction.AudienceMode = AudienceUriMode.Always;
fedConfig.AudienceRestriction.AllowedAudienceUris.Add(new
Uri("http://localhost:8000/TodoListService"));
fedConfig.CertificateValidationMode =
X509CertificateValidationMode.PeerTrust;
fedConfig.ServiceCertificate = CertificateUtil.GetCertificate(
StoreName.My, StoreLocation.LocalMachine, "CN=RP");

FederatedServiceCredentials fedCreds =
new FederatedServiceCredentials(fedConfig);

FederatedServiceCredentials.ConfigureServiceHost(host,fedConfig);
host.Open();

Programmatic initialization is particularly useful for initializ-
ing the ServiceHost from database settings that apply to an entire
server farm.

WIF Component Architecture
When you apply WIF behavior to a ServiceHost, several WIF
components are initialized to facilitate claims-based authoriza-
tion—many of them WCF extensions. Ultimately, this leads to a

Section Description
issuerNameRegistry Specifi es a list of trusted certifi cate issuers. This list is primarily

useful for validating the token signature so that tokens signed by
untrusted certifi cates will be rejected.

audienceUris Specifi es a list of valid audience URIs for incoming SAML tokens.
Can be disabled to allow any URI.

securityTokenHandlers Customizes confi guration settings for token handlers or supplies
custom token handlers to control how tokens are validated,
authenticated and serialized.

maximumClockSkew Adjusts the allowed time difference between tokens and application
servers for token validity. The default skew is 5 minutes.

certifi cateValidation Controls how client certifi cates are validated.

serviceCertifi cate Supplies a service certifi cate for decrypting incoming tokens.

claimsAuthenticationManager Supplies a custom ClaimsAuthenticationManager type to customize
or replace the IClaimsPrincipal type to be attached to the request
thread.

claimsAuthorizationManager Supplies a custom ClaimsAuthorizationManager type to control
access to functionality from a central component.

federatedAuthentication Supplies settings specifi c to passive federation.

Figure 5 Summary of the Essential microsoft.identityModel Elements

http://msdnmagazine.com

msdn magazine44 Claims-Based Apps

ClaimsPrincipal being attached to the request thread, and this
supports claims-based authorization. Figure 7 captures the rela-
tionship between the core WIF components and the ServiceHost.

Th e FederatedServiceCredentials type replaces the default Service-
Credentials behavior, and the IdentityModelServiceAuthorizationMan-
ager (installed during initialization of FederatedServiceCredentials)
replaces the default ServiceAuthorizationBehavior. FederatedService-
Credentials also constructs a FederatedSecurityTokenManager instance.
Collectively, these types drive authentication and authorization for
each request, with the help of the ClaimsAuthenticationManager, the
ClaimsAuthorizationManager, and the SecurityTokenHandler that
applies to the specifi c request.

Figure 8 illustrates the fl ow of communication to these compo-
nents that leads to constructing a security principal for the request
thread—in this case, a ClaimsPrincipal type—and to opportunities
to authorize access based on this security principal.

Th e FederatedSecurityTokenManager returns the appropriate
token handler for the request—which in this case would be the
Saml11SecurityTokenHandler—providing it with a reference to
the ClaimsAuthorizationManager. Th e token handler constructs a
ClaimsIdentity from the incoming token, creates the ClaimsPrinci-
pal (via a wrapper class) and passes it to the ValidateToken method
for the ClaimsAuthorizationManager. Th is yields an opportunity
to modify or replace the ClaimsPrincipal that will be attached to
the request thread. Th e default implementation merely returns the
same ClaimsPrincipal provided:

public virtual IClaimsPrincipal Authenticate(string resourceName,
IClaimsPrincipal incomingPrincipal)
{
 return incomingPrincipal;
}

You might consider providing a custom ClaimsAuthentica-
tionManager to transform the incoming claims from the security

token into something that the RP can use
to authorize access. For this example, how-
ever, the SAML token carries the appropri-
ate RP claims issued by RP-STS, and so the
Claims Principal constructed from those
claims works for authorization.

Next, the IdentityModelServiceAutho-
rizationManager, which references the
ClaimsAuthorizationManager, calls its
CheckAccess method, yielding an opportu-
nity to customize how access is controlled.
Th e default implementation does not re-
strict access:
public virtual bool CheckAccess(AuthorizationCo
ntext context)
{
 return true;
}

The AuthorizationContext parameter
supplies access to the ClaimsPrincipal
and its associated claims, a collection of
actions relevant to the request (such as a
URI indicating the service operation to be

<microsoft.identityModel>
 <service>
 <issuerNameRegistry type="Microsoft.IdentityModel.Tokens.
 ConfigurationBasedIssuerNameRegistry, Microsoft.IdentityModel,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35">
 <trustedIssuers>
 <add name="http://localhost:8010/rpsts" thumbprint=
"c3 95 cd 4a 74 09 a7 77 d4 e3 de 46 d7 08 49 86 76 1a 99 50"/>
 </trustedIssuers>
 </issuerNameRegistry>
 <serviceCertificate>
 <certificateReference findValue="CN=RP" storeLocation="LocalMachine"
 storeName="My" x509FindType="FindBySubjectDistinguishedName"/>
 </serviceCertificate>
 <audienceUris mode="Always">
 <add value="http://localhost:8000/TodoService"/>
 </audienceUris>
 <certificateValidation certificateValidationMode="PeerTrust" />
 <securityTokenHandlers>

 <remove type="Microsoft.IdentityModel.Tokens.Saml11.
 Saml11SecurityTokenHandler, Microsoft.IdentityModel,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <add type="Microsoft.IdentityModel.Tokens.Saml11.
 Saml11SecurityTokenHandler, Microsoft.IdentityModel,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35">
 <samlSecurityTokenRequirement >
 <roleClaimType
 value="urn:TodoListApp/2009/06/claims/permission"/>
 </samlSecurityTokenRequirement>
 </add>
 </securityTokenHandlers>
 <claimsAuthorizationManager
 type="TodoList.CustomClaimsAuthorizationManager, TodoList"/>
 </service>
</microsoft.identityModel>

Figure 6 Identity Model Settings Frequently Supplied for WCF Services

Figure 7 Core Components Installed with WIF

ServiceHost

IdentityModel
ServiceAuthorization

Manager

Federated
Service

Credentials

FederatedSecurity
Token Manager

Claims
Authentication

Manager

Claims
Principal

Claims
Authorization

Manager

Check
Access()

Validate
Token()

Service
Credentials

Service
Authorization

Behavior

Security
Token

Handler

msdn magazine46 Claims-Based Apps

called) and information about the resource associated with the
request (for example, the service URI), which can be useful to
disambiguate calls to multiple services passing through the same
authorization path. To implement centralized authorization, you
can supply a custom ClaimsAuthorizationManager. I will de-
scribe an example when I discuss techniques for authorization.

Role-based security in the .NET Framework is founded on the
premise that a security principal based on IPrincipal is attached
to each thread, and this security principal wraps the identity of
the authenticated user in an IIdentity implementation. Without
WIF, WCF attaches a security principal to each request thread
based on the system.serviceModel configuration for authenti-
cation and authorization.

An IIdentity type is constructed based on the type of creden-
tials presented for authentication. For example, a Windows cre-
dential will evaluate to a Window sIdentity, an X.509 certificate
to an X509Identity, and a UserName token to a GenericIdentity.

The ServiceAuthorizationBehavior controls the type of IPrin-
cipal wrapper for the identity. For example, with Windows au-
thorization, a WindowsPrincipal is constructed; with the ASP.
NET membership provider, a RoleProviderPrincipal. Otherwise,
a custom authorization policy is used to construct an IPrincipal
object of your choosing. The IPrincipal object exposes an IsIn-
Role method that can be called directly or indirectly through per-
mission demands to control access to features and functionality.

WIF extends this model by supplying ClaimsPrincipal and Claims-
Identity types—based on IClaimsPrincipal and IClaimsIdentity—
that ultimately derive from IPrincipal and IIdentity. All tokens are
mapped to a ClaimsIdentity with WIF. When each incoming secu-

rity token is validated, its associated SecurityTokenHandler type
constructs a ClaimsIdentity, supplying it the appropriate claims.
Th is ClaimsIdentity is wrapped in a ClaimsIdentityCollection (in
the event a token produces multiple ClaimsIdentity instances),
and this collection is wrapped in a ClaimsPrincipal and attached
to the request thread. It is this ClaimsPrincipal that is the heart of
WIF authorization for your WCF services.

Claims-Based Authorization
For WCF services, your approach to authorization will likely in-
volve one of the following techniques:

• Use the ClaimsPrincipal to perform dynamic IsInRole checks.
• Use the PrincipalPermission type to perform dynamic permis-

sion demands.
• Use the PrincipalPermissionAttribute to supply declarative

permission demands at each operation.
• Provide a custom ClaimsAuthorizationManager to centralize

access checks in a single component.
Th e fi rst three of these options ultimately rely on the IsInRole method

exposed by the ClaimsPrincipal type. Th is doesn’t exactly mean you are
doing role-based security; it just means that you select a role-claim type so
that the correct claims are checked against the requested claims passed to
IsInRole. Th e default role-claim type for WIF is schemas.microsoft .com/
ws/2008/06/identity/claims/role. If the STS associated with the federa-
tion scenario issues this type of claim, you can optionally control ac-
cess based on this claim type. For the Todo List application scenario, I
mentioned that a custom permission claim type is used for authoriza-
tion, so the identity model confi guration must specify this as the role-
claim type to facilitate IsInRole checks.

You provide the role claim type to the SecurityToken Handler
for the expected token type, in this case the Saml11Security-

class CustomClaimsAuthorizationManager : ClaimsAuthorizationManager
{
 public CustomClaimsAuthorizationManager()
 {
 }

 public override bool CheckAccess(AuthorizationContext context)
 {

 if (context.Resource.Where(x=> x.ClaimType ==
 System.IdentityModel.Claims.ClaimTypes.Name && x.Value ==
 "http://localhost:8000/TodoListService").Count() > 0)
 {
 if (context.Action.Where(x=> x.ClaimType ==
 System.IdentityModel.Claims.ClaimTypes.Name && x.Value ==
 Constants.Actions.GetItems).Count() > 0)
 {
 return
 context.Principal.IsInRole(
 Constants.Permissions.Read);
 }

 // other action checks for TodoListService
 }
 return false;
 }
}

Figure 9 Custom ClaimsAuthorizationManager
Implementation

Figure 8 Components That Create and
Can Authorize Against the ClaimsPrincipal

Claims
Principal

FederatedSecurity
Token Manager

Security
Token

Handler

Claims
Authentication

Manager

IdentityModel
ServiceAuthorization

Manager

Claims
Authorization

Manager

Create
ClaimsPrincipal

Modify
ClaimsPrincipal

Authorize
ClaimsPrincipal

47November 2009msdnmagazine.com

Token Handler. As Figure 6 illustrates, you can modify the de-
fault confi guration for a SecurityTokenHandler by removing it
and then adding the same one again, specifying the preferred
property settings. SAML token handlers have a samlSecurity Token-
Requirement section in which you can provide a setting for the name
or role-claim type, along with other settings related to certifi cate vali-
dation and Windows tokens. For this scenario, I supplied a custom
role claim type:

<samlSecurityTokenRequirement >
 <roleClaimType value= "urn:TodoListApp/2009/06/claims/permission"/>
</samlSecurityTokenRequirement>

What this means is that any time IsInRole is called for the
Claims Principal, I check for a valid permission claim. One way to
accomplish this is to explicitly call IsInRole before a section of code
executes that requires a particular claim. You can access the current
principal through the Th read.CurrentPrincipal property as follows:

if (!Thread.CurrentPrincipal.
IsInRole("urn:TodoListApp/2009/06/claims/permission/delete"))
 throw new SecurityException("Access is denied.");

Aside from explicit IsInRole checks at run time, you can also
write classic role-based permission demands using the Princi-
palPermission type. You initialize the type with the required role
claim (the second constructor parameter), and when Demand is
called, the IsInRole method of the current principal is called. An
exception is thrown if the claim is not found:

PrincipalPermission p = new PrincipalPermission("",
"urn:TodoListApp/2009/06/claims/permission/delete");
p.Demand();

You can also build a PermissionSet to collect several claims to check for:
PermissionSet ps = new PermissionSet(PermissionState.Unrestricted);
ps.AddPermission(new PrincipalPermission("", "urn:TodoListApp/2009/06/
claims/permission/create"));
ps.AddPermission(new PrincipalPermission("", "urn:TodoListApp/2009/06/
claims/permission/read"));
ps.Demand();

If access checks apply to the entire service operation, you can ap-
ply the PrincipalPermissionAttribute instead, which is a nice way to
declaratively associate required claims to the operation being called.
Th ese attributes can also be stacked to check for multiple claims:

[PrincipalPermission(SecurityAction.Demand, Role = Constants.
Permissions.Create)]
[PrincipalPermission(SecurityAction.Demand, Role = Constants.
Permissions.Read)]
public string CreateItem(TodoItem item)

In some cases, you might fi nd it useful to centralize authorization
to a single component, which means you would provide a custom
ClaimsAuthorizationManager to perform access checks. Figure 6
illustrates how to confi gure a custom ClaimsAuthorizationManager,
and the implementation of this for the TodoListService is shown
in Figure 9 (partially listed for brevity).

Th e ClaimsAuthorizationManager provides an override for Check-
Access that receives an AuthorizationContext parameter with reference
to the resource (in this case, the service URI); a collection of actions (in
this case, a single action indicating the service operation URI); and the
ClaimsPrincipal, which is not yet attached to the request thread. You
can check the resource if the component is shared across services, as
this example does for illustration. Primarily, you will check the action
against a list of service operation URIs and perform IsInRole checks
according to the requirements of the operation.

Generally, I’m not a big fan of decoupling the authorization check
from the protected operation or code block. It is much easier to main-
tain code that is declared at a location in context with the activity.

To Be Continued
At this point you should have a pretty good idea of how to set up an ac-
tive federation scenario with WCF and WIF, including understanding
federation bindings for WCF and proxy generation semantics; the token
issuance process; confi guring WIF at the service; and implementing
various claims-based authorization techniques. In a follow-up article,
I will move on to passive federation with ASP.NET and WIF. 

MICHELE LEROUX BUSTAMANTE is chief architect at IDesign, Microsoft
regional director for San Diego and a Microsoft MVP for Connected Systems. Her
latest book is "Learning WCF." Reach her at mlb@idesign.net or visit idesign.net.
She also blogs at dasblonde.net.

In some cases, you might
fi nd it useful to centralize
authorization to a single

component.

mailto:mlb@idesign.net
http://msdnmagazine.com

AD FS 2 . 0 IN IDENT IT Y SOLUT IONS

Using Active Directory
Federation Services 2.0
in Identity Solutions

As a developer, you probably know something about Windows
Identity Foundation (WIF), formerly called “Geneva Framework,”
which provides a powerful API to claims-enable your applications
and to create custom security token services. Perhaps less familiar
to you is Active Directory Federation Services version 2.0 (AD FS
2.0), originally code named “Geneva server,” which is an enterprise-
ready federation and single-sign-on (SSO) solution. AD FS 2.0 is
an evolution of AD FS 1.0, and it supports both active (WS-Trust)
and passive (WS-Federation and SAML 2.0) scenarios.

 In this article, I start with an overview of AD FS 2.0 and then pro-
vide insight into how developers can use AD FS 2.0 in their identity
solutions. Th e focus is on the token issuance functionality of AD FS
2.0, based on the Beta 2 release. As you can see from Figure 1, this to-

This article discusses:
• Token issuance functionality in AD FS 2.0

• AD FS 2.0 as an identity provider

• AD FS 2.0 STS interactions with WCF

• Federating AD FS 2.0 with another STS

Technologies discussed:
Active Directory Federation Services 2.0, Windows Identity
Foundation, Windows Communication Foundation, Visual Studio,
ASP.NET

Code Download URL:
code.msdn.microsoft.com/mag200911ADFS2

Zulfiqar Ahmed

ken issuance is only one small piece of AD FS 2.0, but it is one of par-
ticular interest to .NET developers moving toward federated identity.
Architecturally, AD FS 2.0 is built on top of WIF and Windows Com-
munication Foundation (WCF), so if you’re familiar with these tech-
nologies, you should feel right at home with AD FS 2.0.

Overview of AD FS 2.0
At a high level, AD FS 2.0 is a collection of the services shown in
Figure 2.

At the core of AD FS 2.0 is a security token service (STS) that
uses Active Directory as its identity store and Lightweight Direc-
tory Access Protocol (LDAP), SQL or a custom store as an attribute
store. Th e STS in AD FS 2.0 can issue security tokens to the caller
using various protocols, including WS-Trust, WS-Federation and
Security Assertion Markup Language (SAML) 2.0. Th e AD FS 2.0
STS also supports both SAML 1.1 and SAML 2.0 token formats.

AD FS 2.0 is designed with a clean separation between wire
protocols and the internal token issuance mechanism. Diff erent
wire protocols are transformed into a standardized object model
at the entrance of the system while internally AD FS 2.0 uses the
same object model for every protocol. Th is separation enables AD
FS 2.0 to off er a clean extensibility model, independent of the in-
tricacies of diff erent wire protocols. Further details of AD FS 2.0
extensibility will be provided in the AD FS 2.0 SDK prior to RTM.

AD FS 2.0 as an Identity Provider
You can use AD FS 2.0 in several common scenarios. Th e simplest
and most common scenario is to use AD FS 2.0 as an identity pro-

msdn magazine50

http://code.msdn.microsoft.com/mag200911ADFS2

51November 2009msdnmagazine.com

vider so that it can issue SAML tokens for the identities it manages.
For that, a new relying party needs to be created. A relying party
in AD FS 2.0 is a representation of an application (a Web site or a
Web service) and contains all the security-related information, such
as encryption certifi cate, claims transformation rules and so on.

Setting Up a Relying Party
Setting up a new relying party via AD FS 2.0 is easy. You can ac-
cess the Add Relying Party Wizard through the Policy node of the
AD FS 2.0 Management console. Once there, you or your system
administrator needs to specify the appropriate data sources in the
Select Data Source page of the wizard, which is shown in Figure 3.

Th e fi rst two options enable you to automatically confi gure
the relying party using federation metadata. If you have access
to the relying party’s federation metadata on a network or in a

local fi le, select one of these two options because
they are less prone to error, they automate the en-
tire process and they auto-update if any details
of the relying party change in the future. Th ese
o p t i o n s a r e a m a j o r i m p r o v e m e n t
over AD FS 1.0, which doesn’t offer such a
utomated processes.

Th e third option requires you to enter all the confi gu-
ration details manually. Use this option only when you
don’t have access to federation metadata or you want
to control the details of the relying party confi guration.

It’s instructive to run through the “Enter relying
party configuration manually” option just so you
can see all the steps that are required to set up a new
relying party. In the next few pages of the wizard,
you’ll be asked to choose a profile—choose AD FS
2.0 Profile if you want to support both browser-

based and WCF-based clients or AD FS 1.x Profile if you only
need AD FS 1.x interoperability and don’t support active (WCF,
CardSpace) clients; configure the certificate that is used to encrypt
the token so that only the relying party with the corresponding
private key can decrypt and use the issued token; and configure
the identifier that will be used to identify this relying party in all
token issuance requests.

Once you fi nish the Add Relying Party Wizard, a Rules Editor
tool opens. In this tool, you confi gure claims issuance and trans-
formation rules. Figure 4 shows the Rules Editor tool confi gured
to issue a token with a single claim whose value will be retrieved
from the main attribute store. Notice that the displayName attri-
bute is mapped to the Given Name claim. AD FS 2.0 introduces a
new, textual domain-specifi c language that enables you to defi ne
simple rules for deriving the claims issuance and transformation
process. Each rule consists of a condition and an action and ends—
as in [c] => a;—with a semicolon. Th e transformation logic is a se-
ries of rules that execute sequentially during the token issuance
process. In Figure 4, the Simple View tab provides a user interface
to defi ne these rules. Th e Advanced View tab lets you author rules
directly using the domain-specifi c language.

Th is example has illustrated how easy it is to confi gure a trusted
relying party in AD FS 2.0. At this point, when AD FS 2.0 receives
a token issuance request, it extracts an identifi er from the wire pro-
tocol (for example, the appliesTo element in the case of WS-Trust)
and uses it to look up a target relying party. Once a relying party
is found, the settings specifi ed in the wizard are used to derive the
token issuance logic.

Now let’s look at how you can use WCF to request a token for
this relying party from AD FS 2.0.

Requesting a Token Using WCF
Th ere are two options for interacting with AD FS 2.0 STS using WCF:

• Explicitly acquire a token acting as a WS-Trust client
• Confi gure a WCF client so that the infrastructure implicitly

acquires a token as part of the call

Active Directory Federation Services (AD FS) 2.0

Windows Identity Foundation

.NET 3.5 (WCF)

Management,
diagnostics

and
Windows PowerShell

Claims transformation

Web single-sign-on

Card issuance

Policy management

Token issuance

Extensibility

.NET 2.0

Figure 1 Architecture of AD FS 2.0

Figure 2 Components of AD FS 2.0

AD FS 2.0

Configuration
Service

SOAP: Configuration Contract

SOAP: Card Issuance Contract

SOAP: WS-Trust

HTTP

Card Issuance
Service

Security Token
Service (STS)

Federation
Metadata Service

http://msdnmagazine.com

msdn magazine52 AD FS 2.0 in Identity Solutions

In the explicit option, the WSTrustClient
class provides a simple and direct API to re-
quest tokens from an STS using the WS-Trust
protocol, as shown here.

string baseUri = "https://bccoss.com/";

WindowsWSTrustBinding binding = new WindowsWSTru
stBinding(SecurityMode.Transport);

WSTrustClient tokenClient = new
WSTrustClient(binding,
 new EndpointAddress(baseUri + "Trust/2005/
WindowsTransport/"),
 TrustVersion.WSTrustFeb2005,
 new ClientCredentials());

//create a token issuance issuance
RequestSecurityToken rst =
 new RequestSecurityToken(WSTrustFeb2005Const
ants.RequestTypes.Issue);
//Relying Party's identifier
rst.AppliesTo = new EndpointAddress("http://
local.zamd.net/");
//call ADFS STS
SecurityToken token = tokenClient.Issue(rst);

Th is code requests a token using Windows
Authentication with transport security. As you
can see, in explicit mode, you get access to the
raw token, which you can use to call services later
on. For example, in a smart client application,
you might acquire tokens for diff erent services
at application startup or login time, save them
in a token cache and then use them throughout
the lifetime of the application to call diff erent
back-end services. Also, in a scenario where
many services live in the same logical security
boundary, sharing the same certifi cate, you can
use the explicit mode to acquire a single token
and then use it when calling all those services.

 In a test environment, in which you usu-
ally have access to the relying party’s private
key, you can use the following code to extract
a SAML assertion from the returned token.

//Private Key certificate of RP (local.zamd.net)
X509Certificate2 rpCertificate = new
X509Certificate2(“zamd.net.pfx”, “pwd”);
string assertion = Util.
ExtractSAMLAssertion(token, rpCertificate);

<saml:Attribute AttributeName=”givenname”
AttributeNamespace=”http://schemas.xmlsoap.org/
ws/2005/05/identity/claims”>
 <saml:AttributeValue>Zulfiqar Ahmed</saml:AttributeValue>
</saml:Attribute>

Th e SAML token contains only the claims confi gured for this
particular relying party. Refer back to Figure 4, which shows how
this relying party’s output token was confi gured to return a single
attribute. You can edit the relying party’s confi guration to include
more claims in the output, and you should see all of them refl ect-
ed here. You can also use claims policy language directly to defi ne
rich transformation and fi ltering logic.

Both the WSTrustClient API and the new WSTrust bindings
are part of WIF, so for the preceding code to work, WIF must be

installed on the client. You can also use the WCF API directly to
explicitly acquire a token, but the simplicity and ease of use WIF
off ers can take one task off your to-do list.

In the code in Figure 5, IssuedSecurityTokenProvider is the WCF
equivalent of WSTrustClient and is normally used by wsFederation-
Binding when requesting tokens on your behalf. Because it’s a public
API, you are free to use it in your code should you need access to a raw
token. Th e CustomBinding is equivalent to WindowsWSTrustBinding.

In the implicit option, you can use the standard wsFederation-
HttpBinding, in which case the WCF infrastructure transparently
acquires the token and sends it to the service as part of the call. When-

Figure 3 Select Data Source Page of Add Relying Part Wizard

Figure 4 Rules Editor Tool

msdn magazine54 AD FS 2.0 in Identity Solutions

ever you create a new WCF proxy and use
it to call a service, the infrastructure fetches
a new token for you. Obviously, this would
be overkill in some scenarios. Th e code in
Figure 6 confi gures a fi ctional Employee-
Service to require tokens from AD FS 2.0.

Mapping AD FS 2.0
Concepts to WCF
Th e core responsibility of AD FS 2.0 is
to issue tokens to authenticated users.
Users can be authenticated using diff er-
ent authentication mechanisms (such as
Windows Authentication). You can see
all the supported authentication mecha-
nisms by selecting the Endpoints node
in the management console.

You’ll notice two familiar WCF se-
curity concepts as column headings within the End-
points node:

• Authentication Type is the AD FS 2.0 equivalent of
the WCF clientCredentialType terminology.

• Security Mode choices are Transport, Message or
Mixed. Mixed is the AD FS 2.0 equivalent of WCF’s
TransportWithMessageCredentials.
Diff erent combinations of these two values are ex-

posed using diff erent endpoints, and you choose a spe-
cifi c endpoint based on your authentication needs. For
example, if you need to authenticate using Username/
Password, you would choose the Clear Password au-
thentication endpoint.

For AD FS 2.0 STS, mapping these concepts back to
Address, Binding and Contract (ABC) in WCF, you
get the following equivalents:

• Address = AD FS 2.0 base address + the endpoint’s
URL Path

• Binding = Endpoint’s Security Mode + Authentica-
tion Type

• Contract = Standard WS-Trust protocol

Federating AD FS 2.0 with Another STS
In addition to creating relying parties, you can establish a trust
relationship between AD FS 2.0 and your custom STS or another
AD FS 2.0. For example, if you already have an STS that authen-
ticates users and issues tokens, you can simply add it as a trusted
identity provider inside AD FS 2.0, which will accept tokens is-
sued from the STS.

Setting Up an Identity Provider
Setting up a new, trusted identity provider in AD FS 2.0 is similar
to setting up a new relying party. Th e Add Identity Provider wiz-
ard you use looks and acts a lot like the Add Relying Party Wizard
(refer back to Figure 3).

To get to the Confi gure Identifi er page, select the manual con-
fi guration option again (as you did in Figure 3) and select AD FS
2.0 Profi le on the Choose Profi le page. Leave the default settings
on the Confi gure URL page. You then choose an identifi er and a
public key certifi cate for your identity provider and fi nish the wiz-
ard to register the new identity provider.

Requesting a Token Using WCF
Once you register an additional identity provider with AD FS 2.0, the
logical architecture looks like the confi guration shown in Figure 7.

Th e code in Figure 8 lets you acquire a token explicitly, giving
you the fl exibility to cache the token locally and send it to the ser-
vice as needed.

sstring baseUri = "https://bccoss.com/";

//Limited edition of WSTrustClient:)
IssuedSecurityTokenProvider provider = new IssuedSecurityTokenProvider();
provider.SecurityTokenSerializer = new WSSecurityTokenSerializer();

//Relying Party's identifier
provider.TargetAddress = new EndpointAddress(new Uri("http://local.zamd.net"));
provider.IssuerAddress = new EndpointAddress(new Uri(baseUri + "Trust/2005/WindowsTransport/"));

provider.SecurityAlgorithmSuite = SecurityAlgorithmSuite.Basic256;
provider.MessageSecurityVersion = MessageSecurityVersion.
WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10;

HttpsTransportBindingElement tbe = new HttpsTransportBindingElement();
tbe.AuthenticationScheme = AuthenticationSchemes.Negotiate;
CustomBinding stsBinding = new CustomBinding(tbe);

provider.IssuerBinding = stsBinding;
provider.Open();
//Request a token from ADFS STS
SecurityToken issuedToken = provider.GetToken(TimeSpan.FromSeconds(30));

Figure 5 Using IssuedSecurityTokenProvider to Access a Raw Token

<system.serviceModel>
 <services>
 <service name="EmployeeService.EmployeeService">
 <endpoint address="http://localhost:9990/ES"
 binding="ws2007FederationHttpBinding"
 contract="EmployeeServiceContract.IEmployeeService"
 bindingConfiguration="adfsFed"/>
 </service>
 </services>
 <bindings>
 <ws2007FederationHttpBinding>
 <binding name="adfsFed">
 <security mode="Message">
 <message negotiateServiceCredential="false" >
 <issuer address="https://bccoss.com/Trust13/KerberosMixed"
 binding="customBinding" bindingConfiguration="MixedKerberos"/>
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 <customBinding>
 <binding name="MixedKerberos">
 <security authenticationMode="KerberosOverTransport"/>
 <httpsTransport/>
 </binding>
 </customBinding>
 </bindings>
</system.serviceModel>

Figure 6 Using wsFederationHttpBindingto Acquire a Token Implicitly

55November 2009msdnmagazine.com

IssuedTokenWSTrustBinding is very similar to wsFedera-
tionHttpBinding in that it hides all the complexity of interme-
diate tokens by transparently talking to the IP-STS to acquire an
intermediate token that is then sent to R-STS as an authentica-
tion token.

The code in Figure 9 uses wsFederationHttpBinding to
enable a WCF client to implicitly acquire a token as part of a
service call.

Notice that I’m using a custom Binding
when talking to the /IssuedToken-
MixedSymmetricBasic256 endpoint.
Th e standard wsFederationHttp Binding
doesn’t work here because it tries to
establish a secure session, which is
incompatible with this AD FS 2.0
endpoint. To federate WCF clients
with AD FS 2.0, you have to use either
a custom Binding or one of the new WS-
Trust-based bindings that ships
with WIF.

AD FS 2.0 and Browser Clients
AD FS 2.0 has fi rst-class support for Web
single sign-on (WebSSO) and federation
using both WS-Federation and SAML
2.0 protocols.

Conceptually, WS-Federation and
the SAML protocol are similar even
though they have diff erent wire repre-

sentations. Th e WS-Federation wire format is closely related to
WS-Trust protocol, so it is the logical choice when you’re serving
both active and passive (browser-based) clients. Th e SAML proto-
col has better interoperability across diff erent vendors. AD FS 2.0
natively supports both of these protocols. It’s a good idea to stick
to a single protocol (for example, WS-Federation) inside your se-
curity boundary and use AD FS 2.0 as a protocol broker hub for
incoming or outgoing SSOs.

Let’s consider an example. Say that you
have a simple ASP.NET application that
provides functionality only to authenti-
cated users. As a stand-alone application,
authentication logic is implemented as
part of the application, and an interac-
tion with this application would follow
the steps shown in Figure 10.

Here the usual ASP.NET authentica-
tion mechanisms, such as Forms Au-
thentication, are being implemented.
Our goal is to extract the authentication
functionality from this application and
use AD FS 2.0 instead.

In the AD FS 2.0 setup, which is
shown in Figure 11, the application
becomes a trusted relying party inside
AD FS 2.0 and therefore trusts tokens
issued by AD FS 2.0. The application
uses WIF to do all the heavy lifting of
token parsing, extracting claims and
so on. Identity information is provided
to the application using the standard
IIdentity/IPrincipal abstractions.

string adfsStsUri = "http://bccoss.com/Trust/2005/IssuedTokenAsymmetricBasic256";

//binding for local STS(IP-STS)
WSHttpBinding localStsBinding = new WSHttpBinding(SecurityMode.Message);

localStsBinding.Security.Message.ClientCredentialType = MessageCredentialType.None;
localStsBinding.Security.Message.EstablishSecurityContext = false;
localStsBinding.Security.Message.NegotiateServiceCredential = false;

EndpointAddress localStsEpr = new EndpointAddress(
 new Uri("http://localhost:9000/STS/"),
 new X509CertificateEndpointIdentity(new X509Certificate2(@"MyCustomSTSPublicKey.cer")));

//This binding will transparently acquire all the intermediate tokens as part of the call. (R-STS)
IssuedTokenWSTrustBinding fedBinding = new IssuedTokenWSTrustBinding(localStsBinding, localStsEpr);
fedBinding.TrustVersion = TrustVersion.WSTrustFeb2005;

EndpointAddress adfsStsEpr = new EndpointAddress(
 new Uri(adfsStsUri),
 new X509CertificateEndpointIdentity(new X509Certificate2("AdfsStsPubicKeyOnly.cer")));

WSTrustClient trustClient = new WSTrustClient(fedBinding, adfsStsEpr, TrustVersion.WSTrustFeb2005,
 null);

//Create a security token request
RequestSecurityToken rst = new RequestSecurityToken(RequestTypeConstants.Issue);
//Set Relying Party's identifier accordingly
rst.AppliesTo = new EndpointAddress("http://local.zamd.net");

SecurityToken finalToken = trustClient.Issue(rst);

Figure 8 Using IssuedTokenWSTrustBinding to Acquire a Token Explicitly

Account STS
(IP-STS)

3: Call service + SAML token

2: Get Token

Trust

1:
 G

et
 To

ke
n

Tr
us

t

Geneva

WCF Client
WCF

Services
(RP)

Resource STS
(R-STS) Geneva

Figure 7 Architecture of AD FS 2.0 with an Additional Identity Provider

http://msdnmagazine.com

msdn magazine56 AD FS 2.0 in Identity Solutions

Th e distributed authentication in AD FS 2.0 is much more fl ex-
ible than direct authentication, and it provides some major benefi ts:

• Authentication is externalized from the application, so the au-
thentication mechanism can be changed (for example, from
username to Kerberos) without aff ecting the application.

• Th e fl exibility of a claims-based model can provide all the re-
quired information to the application (as part of the token)
directly rather than the application itself retrieving that infor-
mation from diff erent sources.
The Beta 2 release of WIF introduced new project templates

that make it easy to externalize an application’s authentication
logic to an STS. As of this writing, these templates are available
only in C#.

Externalizing Authentication Logic
To externalize an application’s authentication logic, you use the Mi-
crosoft Visual Studio dialog box New Web Site. Select the Claims-
aware Web Site template to create a standard ASP.NET Web site
that is preconfi gured with WIF.

To launch the Federation Utility wizard, shown in Figure 12,
right-click the Web Site node in Solution Explorer and select Mod-
ify STS Reference from the menu.

For this example, let’s choose the “Use an existing STS” option
and specify AD FS 2.0 as the STS. Th e wizard requires the URL of
the metadata document to automate all the required confi gura-
tions. Th e metadata document URL is available as an endpoint
inside AD FS 2.0.

Federation metadata contains essential information such as the
STS signing certifi cate, the claims off ered and the token issuance
URL. Having a standardized format for this information enables

tools to automate the establishment of trusts between an STS and
relying parties.

Th e Summary page of the wizard summarizes the changes that
are going to be made in the web.confi g fi le.

Th e Federation Utility wizard confi gures WIF on your Web site
to provide the following functionality:

•All unauthenticated requests will be redirected to AD FS 2.0.
• Any request containing a valid token will be processed, and

identity information will be presented to the application in
the form of ClaimsIdentity/ClaimsPrincipal. Th e Application

<system.serivceModel>
 <bindings>
 <wsFederationHttpBinding>
 <binding name="R-STS">
 <security mode="Message">
 <message>
 <issuer address="https://bccoss.com/Trust/2005/IssuedTokenMixedSymmetricBasic256" binding="customBinding" bindingConfiguration="IP-STS"/>
 </message>
 </security>
 </binding>
 </wsFederationHttpBinding>

 <customBinding>
 <binding name="IP-STS">
 <security authenticationMode="IssuedTokenOverTransport">
 <issuedTokenParameters>
 <issuer address="http://localhost:9000/CustomSTS" binding="wsHttpBinding"/>
 </issuedTokenParameters>
 </security>
 <httpsTransport/>
 </binding>
 </customBinding>
 </bindings>

 <client>
 <endpoint address="http://localhost:9990/ES" binding="wsFederationHttpBinding" bindingConfiguration="R-STS"
 contract="ServiceReference1.IEmployeeService" name="WSFederationHttpBinding_IEmployeeService"/>
 </client>
</system.serviceModel>

Figure 9 Using wsFederationHttpBinding to Acquire a Token Implicitly

Figure 10 Direct Authentication in a Simple ASP.NET Application

ASP.NET
Web Portal

4: User is
authenticated

2: Redirect/
Login.aspx

1: Get/
Default.aspx

3: POST/
Login.aspx

5: Redirect/
Default.aspx

Web Browser

msdn magazine58 AD FS 2.0 in Identity Solutions

will continue to access identity information using the standard
IPrincipal/IIdentity abstractions regardless of the source of that
information.
Before testing the application, you need to make one last confi gu-

ration change on AD FS 2.0. You must add an additional endpoint
to the relying party for browser clients. Th is endpoint is required
because once AD FS 2.0 has processed a token issuance request,
two pieces of information are required before it can send the to-
ken back to the browser:

•Th e address where the token should be sent
•Th e protocol (SAML or WS-Federation) over which the to-

ken should be sent
You can add a passive endpoint to the relying party in the End-

points tab of the Test RP Properties dialog
box. For example, if you select WS-Federa-
tion as the Endpoint Type, AD FS 2.0 will
send tokens back to the relying party using
the WS-Federation protocol. Inside the re-
lying party, the WIF, which natively under-
stands WS-Federation protocol, processes
these tokens.

Now when you try to browse to the ap-
plication, you are automatically redirect-
ed to AD FS 2.0 for authentication, where
you can choose the authentication method
you want to use: Windows Integrated Au-
thentication, Certifi cate Authentication or
Username/Password Form.

Once authentication is successful, you—
along with a token issued by AD FS 2.0—are
redirected back to the application. WIF pro-
cesses this token and makes the fi nal identity
(in the form of claims) available to the appli-
cation using the standard ASP.NET mecha-
nisms (for example, Page.User).

Browser-Based Federation
You can extend a basic external authenti-
cation scenario into a federation scenario
by adding an additional trusted identity
provider. Th e identity provider options are
shown during the authentication process.

You can authenticate with AD FS 2.0 or an-
other trusted identity provider. If you select a
diff erent identity provider, you are redirected
to that identity provider and, upon successful
authentication, redirected back to AD FS 2.0,
which would then authenticate you based on
the token issued by the trusted identity provider.

Powerful Combination
As you’ve seen in this article, AD FS 2.0
STS provides a simply and ready-made so-
lution to claims-enable your WCF services

and browser-based applications. STS itself is only one small piece
of AD FS 2.0, which also includes a CardSpace provisioning sys-
tem, a rule-based claims transformation engine, automatic trust
management infrastructure, management and confi guration
services and their respective tools. Along with WIF, AD FS 2.0
creates a powerful combination to program identity solutions on the
Windows platform. 

ZULFIQAR AHMED is a Senior Consultant on the UK Application Development
Consulting (ADC) team and can be reached at http://zamd.net.

THANKS to the following technical expert for reviewing this article:
Colin Brace

Figure 11 Distributed Authentication in AD FS 2.0

AD FS 2.0

ASP.NET
Web Portal

4: Authenticate

7: Redirect/
Default.aspx

2: Redirect/
Geneva/
Default.aspx

1: Get/
Default.aspx

3: Get/Default.aspx

5: Token + Script

to send it to RP

6: POST/
Signin.aspx
+ Token

Web Browser

Figure 12 Federation Utility

http://zamd.net

msdn magazine60

D IG ITAL S IGNAT UR ES

Application Guidelines
on Digital Signature
Practices for Common
Criteria Security

The transition from paper documents with hand-
written signatures to electronic fi les with digital signatures is moving
at a rapid pace. To meet user needs and certifi cation requirements,
electronic documents with digital signatures need to provide the
same functionality and security that manually signed paper doc-
uments off er. Th is article describes how you, as a soft ware devel-
oper, can do just that: design applications that have built-in digital
signature functionality that meets the requirements for ISO/IEC
15408 Common Criteria security.

In the realm of documents and data fi les, digital signatures pro-
vide two key features:

• Identify the originator (the signer) of the document or
fi le content

This article discusses:
• Best practices for digital signatures

• ISO/IEC Common Criteria security standards

• OOXML and OPC conventions

• Guidelines for signing categories

Technologies discussed:
ISO/IEC, Offi ce Open XML, Microsoft Open XML Format

SDK, Microsoft .NET System.IO.Packaging API

Jack Davis

• Verify that the signed information hasn’t been altered aft er the
signature was applied

Beyond the basic principle of “What You See Is What You Sign”
(WYSIWYS), you and your UI designers need to be aware of several
additional security and user considerations when building applica-
tions that support digital signatures. You also need to understand
the security issues that can aff ect your products in meeting certi-
fi cation requirements. Certifi cations, such as those for ISO/IEC
15408 Common Criteria security, provide organizations and users
a reliable way of identifying products that have been tested to meet
usability and security standards. Increasingly, independent secu-
rity certifi cation is becoming a prerequisite in purchase decisions.

By the end of this article, you’ll better understand the range of
issues associated with digital signatures and the inherent need for
clear, accurate and open disclosure to users.

ISO/IEC 15408 Common
Criteria Security Certifi cation
Supported by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC),
Common Criteria is a suite of methodologies designed to assess
and certify the security capabilities of information technology
products. Common Criteria security techniques are published in
ISO/IEC standards 15408 and 18045.

61November 2009msdnmagazine.com

As of the publication date of this article, the Common
Criteria security standard has been approved and adopted by 26
countries. You can fi nd a list of Common Criteria members at
commoncriteriaportal.org/members.html.

Offi ce Open XML and
Open Packaging Conventions
In 2008, ISO/IEC approved and adopted Offi ce Open XML
(OOXML) as an open international standard. Th e Open Pack-
aging Conventions (OPC) component of OOXML provides an
industry standard container-fi le technology. OPC combines the
use of ZIP and XML to enable applications to defi ne fi le formats
that are open and easily accessible. OPC also defi nes functional-
ity to support digital signatures, metadata properties and content
relationships. Access to both application data and OPC elements
is provided through a common set of APIs.

Microsoft Word (.docx), Excel (.xlsx) and PowerPoint (.pptx) and
the XML Paper Specifi cation (.xps) are examples of OPC-based fi le
formats, and each employs its own unique content organization
(schema) that is associated with a specifi c application. Each OPC fi le
format can also defi ne its own signing policy for digital signatures. A
fi le format signing policy specifi es what content items must be signed,
what items can optionally be signed and what items shouldn’t be
signed as part of the digital signature signing or validation process.

In this article, you’ll learn more about how to validate and dis-
play signature information stored with digitally signed electronic
documents. Th ese design considerations are based on the digital
signature functionality provided by the OPC component of the
ISO/IEC 29500 and ECMA 376 Offi ce Open XML standards.
Keep in mind that the digital signature signing policies of specifi c
OPC-based fi le formats might employ only a subset of the signing
options described in this article.

Digital Signatures
OPC fi le formats, such as those described in OOXML, use X.509
certifi cates and XML Digital Signature (W3C, 2008) technologies
to provide two elements of security:

• Identity repudiation securely identifi es the individual or group
originating a signature.

• Content validation securely ensures that all signed content is
present and hasn’t been modifi ed in any way aft er it was signed.

An alteration to any part of a digital signature or to any content
signed by the signature will be detected during signature valida-
tion, and the user will be notifi ed through an error message that
the signature is broken.

Some of the fi gures in this article are sample notifi cation or sta-
tus messages for the user. Whether they confi rm success or failure
of a signature validation or highlight special features that the user
should be aware of, they represent the kind of clear and specific
wording you should use. Your application defines when and
where the user sees these digital signature status messages.
Digital signature validation is sometimes scheduled to perform
automatically whenever a signed document is opened. In this

case, the message would be displayed when a user opens the
document. If the user is required to perform the digital signature
validation manually through a menu selection, you might want
to present the signature status in a pop-up dialog box. You and
your UI designer have some leeway in the timing and placement
of these user messages—just remember to make them as intui-
tive and easy to understand as possible.

Signing Categories
Getting your application to report success or failure when verifying
the integrity of the signature and the signed content is only the fi rst
step in writing a digitally secure program. You also need to consider
the various types of content your application will encounter.

In the simplest form of signing, called comprehensive signing,
a user applies his or her signature to all the content in a single
document. The digital signature and signed content are later
verified and then reported as either valid or invalid. Figure 1
is an example of the kind of digital signature status message a
user would see.

Document elements in four additional categories also need to
be considered to avoid confusion or mistaken trust assumptions:

• Unsigned content
• Signed content groups
• Externally referenced content
• Dynamic content

Comprehensive Signing
Most people are very familiar with signing paper documents
and contracts. Individuals initial each page or sign at the end of a
document to identify themselves and acknowledge their review,
approval and acceptance.

This document and all items contained in the document file are signed.
All signatures are valid. Click here to view the signer’s identity.

Figure 1 Sample User Message for Comprehensive Signing

Getting your application to
report success or failure when
verifying the integrity of the
signature and the signed
content is only the fi rst
step in writing a digitally

secure program.

http://msdnmagazine.com

msdn magazine62 Digital Signatures

As mentioned earlier, the simplest and most straightforward
signing case in a digital document is comprehensive signing. To be
classifi ed as this type of signature, all content associated with the
document fi le must meet the following four criteria:

• All content items are located in a single document package.
• All content items are static.
• Th ere are no links or references to external content.
• All content items in the document package are signed.
For a document to be fully static, content elements can’t contain

any dynamically alterable items such as text created through mac-
ros or input from external sources. When all content elements in a
static document fi le are signed, both the digital signature and the
signed content can be verifi ed with a summary result reporting the
signature and associated signed content as either valid or invalid.

In Figure 2, Signature 1 signs document parts r, s and t. A later
validation performed on the signature will verify that Signature 1
is still intact and valid, and that each of its associated signed parts
(r, s and t) hasn’t been altered aft er being signed.

Figure 3 illustrates a variation in signing, in which two (or more)
signatures are applied to a document. Multiple signatures common-

ly occur in a review and approval cycle that requires individuals to
indicate their approval and acceptance of a document aft er review-
ing it. In this form, each signature can be verifi ed independently
along with the associated signed document parts.

You can use the following method and property to verify sig-
natures and identify each signer in a signature and signed content
validation scenario.

• Th e PackageDigitalSignatureManager.VerifySignatures meth-
od verifi es that the signatures are valid and the signed parts
within the package haven’t been modifi ed.

• Th e PackageDigitalSignature.Signer property returns a copy
of the X.509 certifi cate that identifi es the signer.

Unsigned Content
Unsigned content is a potential risk to the implied trust association.
With paper documents, people commonly sign or initial pages to
identify themselves and acknowledge their review and approval.
Any pages left unsigned (or added later as unsigned pages) have
no formal association or legal weight with the signer.

In digital documents, the validation of a digital signature and
its related content verifies that the user can trust both the sig-
nature and the associated signed content. Unfortunately, many
nontechnical users don’t have the expertise to differentiate be-
tween digital signatures, signed content, unsigned content and
the container in which the document components are packaged.
If only a positive validation of a digital signature and its signed
content is displayed, users might incorrectly assume that the
validation extends to the entire package, which could include
unsigned content that shouldn’t be associated with a trusted sig-
nature. Unsigned content has no identifiable source, and it can
be added after other components are signed or modified within
the document package.

Signature trust associations need to be clear to all users. Users
should be made aware of unsigned content included within any
package and provided with a means to clearly distinguish it from
trusted signed content. Figure 4 shows the kind of message users
should receive to alert them to unsigned content within a valid
digitally signed document.

In Figure 5, document parts m and n are signed and can be vali-
dated with Signature 1. Th e same document package also contains
unsigned parts x and y that can’t be validated. Parts x and y are in-
dependent and not associated, even implicitly, with Signature 1.

You can use the following properties, method and pseudocode
to identify packages that contain unsigned parts:

This document is signed. All signatures are valid. Click here to view the signer’s identity.

This file also contains one or more unsigned items that cannot be validated. The originator of
unsigned items cannot be determined, and changes to these items cannot be detected. Unsigned
content is not associated with a signature, cannot be validated against changes, and should not be
assumed trustworthy.

Click here to view a list of unsigned items that cannot be validated.

Figure 4 Sample User Message for Unsigned Content

Part ‘r’
Signed

Part ‘s’
Signed

Part ‘t’
Signed

Signature 1

Figure 2 Single-Signature Signed Content

Part ‘r’
Signed

Part ‘s’
Signed

Part ‘t’
Signed

Signature 1

Signature 2

Figure 3 Multiple-Signature Signed Content

msdn magazine64 Digital Signatures

• Th e PackageDigitalSignature.Signer property returns a copy
of the X.509 certifi cate that identifi es the signer.

• Th e Package.GetParts method returns a collection of all the
parts contained in the package.

• Th e PackageDigitalSignature.SignedParts property returns a
collection of all the parts signed with a given signature.

Th e following pseudocode determines whether any parts in a
document package aren’t signed:

PackageDigitalSignatureManager dsm = new PackageDigitalSignatureManager
(package);
PackagePartCollection partCollection = Package.GetParts();
foreach (PackagePart part in partCollection)
 foreach (PackageDigitalSignature signature in dsm.Signatures)
 {
 // Search if "part" is included in signature.SignedParts.
 // If "part" is included in signature.SignedParts
 // then it is a signed part
 // else it is an unsigned part
 }

Signed Content Groups
A document with multiple signed content groups is another risk
for implied trust by association. With paper documents, one in-
dividual can sign pages in one section and a second person can
sign pages in a separate section. Th e signature and pages the fi rst
individual signs have no formal association with the pages the sec-
ond individual signs. Likewise, the signature and pages the second
individual signs have no formal association with the pages the fi rst
individual signs. Only pages cosigned by both individuals repre-
sent a joint association. An example of signed content groups is a

document in which the body is written and signed by one indi-
vidual and appendix sections added for reference are written and
signed by other individuals.

In some fi le formats, diff erent content elements could be signed
by diff erent individuals. Users need to know that when signatures
relate to diff erent content groups they are independent of one an-
other and that each signature and content group must be validated
separately. Figure 6 shows a user message that could accompany
a document with signed content groups.

In Figure 7, document parts r, s and t are signed and validated
with Signature 1, and document parts x, y and z are signed and vali-
dated with Signature 2. Th e two signatures and their related content
groups are independent and not associated with each other even
though they are contained in the same document.

In a variation of Figure 7, Figure 8 illustrates a situation in which
one or more document parts are cosigned with two or more signa-
tures. While Signature 1 and Signature 2 jointly sign one or more
common items (Group C), the signature relationship for Signature
1 with Group A and Signature 2 with Group B remains indepen-
dent and unassociated with the other. In describing signature in-
formation to users, you must explicitly and clearly explain the
signature associations of independent and jointly signed content.

This document is signed. All signatures are valid. Click here to view the signer’s identity.
This document contains multiple signed content groups. All signatures and content groups are
valid. Signatures associated with one content group are independent* and should not be associated
with another content group or its signature. Click here to view a list of content groups and signer
identities.
 *Caution: Signed content groups added after the original document signature could be
fraudulent.
 Carefully review each signer’s identity before accessing independently signed content groups.

Figure 6 Sample User Message for Signed Content Groups

Part ‘m’
Signed

Part ‘n’
Signed Part ‘x’

Unsigned

Part ‘x’
Unsigned

Signature 1

Figure 5 Signed Document That Includes Unsigned Parts

Part ‘r’
Signed by Sig1

Part ‘s’
Signed by Sig1

Part ‘t’
Signed by Sig1

Part ‘x’
Signed by Sig2

Part ‘y’
Signed by Sig2

Part ‘z’
Signed by Sig2

Signed
Group A

Signed
Group B

Signature 1

Signature 2

Figure 7 Two Signed Groups

Part ‘r’
Signed by Sig1

Part ‘s’
Signed by Sig1

Part ‘t’
Signed by

Sig1 and Sig2

Part ‘x’
Signed by Sig2

Part ‘y’
Signed by Sig2

Part ‘z’
Signed by Sig2

Co-signed
Group C

Signed
Group B

Signed
Group A

Signature 1

Signature 2

Figure 8 Signed and Cosigned Groups

65November 2009msdnmagazine.com

Th e following properties and pseudocode identify packages that
contain multiple signed content groups:

• Th e PackageDigitalSignature.Signer property returns a copy
of the X.509 certifi cate that identifi es the signer.

• Th e PackageDigitalSignature.SignaturePart property returns
the name of the part that contains the signature.

Th e following pseudocode creates a list of the signed content
groups contained in a package:

PackageDigitalSignatureManager dsm =
 new PackageDigitalSignatureManager(package);
foreach (PackageDigitalSignature signature in dsm.Signatures)
{
 // Add to list(signature.SignaturePart, signature.Signer);
}
// Upon completion the list will contain one entry for each signature
// along with the X.509 certificate that identifies the signer.
// If the list contains more than one entry and different signers,
// the package contains multiple signed content groups.

SECURING AGAINST MULTIPLE SIGNED CONTENT GROUPS
Multiple signed content groups add complexity to a file format
signing policy given that they increase the possibility that some-
one could add fraudulently signed content to a document with
the intent to create a misleading association to an existing signa-
ture and content. To secure your application against this threat,
you can require a user’s signature to sign the package’s signature-
origin-relationships part. (The signature-origin-relationships
part is a special file in the package with the name \package\
services\digital-signatures_rels\origin.psdor.rels.) When both
the content and the signature-origin-relationships part are signed,
any signatures added later will modify the signature-origin-
relationships part, causing the original signature to fail and re-
port the package as invalid.

Externally Referenced Content
Externally referenced content is another
potentially improper trust by association
scenario. Items within a signed document
can contain references to separate, external
documents. Unless these other documents
are also signed, external references are con-
sidered informational and have no formal
association with the signed document.

Content accessed through external links
and references outside of the document pack-
age can change at any time. Ideally, the con-
tent being signed shouldn’t contain any links
or references to materials outside the docu-
ment package. Users must be able to clearly

identify and understand situations that could involve signing and
validating content that includes links and references to external
materials. Figure 9 is a sample message indicating externally ref-
erenced content within a document.

When validating signed content that includes links to external
materials, use the following guidelines:

• Alert users to the presence of references and links to external
materials. Th e notifi cation should clarify that external mate-
rials are unsigned and not associated with any signature or
signature trust.

• Provide users with the means to clearly distinguish between signed
static content and unsigned external material. For example, when
users are validating and viewing signed content, only internal links
to other signed content should be shown—external links and
references to external content should be hidden.

In Figure 10, document parts r, s and t are signed and can
be validated with Signature 1. Document part s, however, con-
tains a link to an internal signed reference for Part t and links
to two external references for unsigned Content x and Content
y. When validating and describing signature information to us-
ers, your application should explicitly and clearly notify the user
that links x and y refer to unsigned content that isn’t associated
with Signature 1 and is unrelated to other validated content ele-
ments (parts r, s and t).

Identifying items that refer to external content is dependent
on the schema of the specific OPC file format. In the online ma-
terial that accompanies this article, which is at msdn.microsoft.com/

magazine/dd890995, you can find methods, properties and pseudo-
code that you can use to identify externally referenced content
in Microsoft Office file formats for Word (.docx), Excel (.xlsx)
and PowerPoint (.pptx).

Dynamic Content
Dynamic unsigned content is also a potential improper trust by
association situation. Dynamic alterable content has no analogy
in paper documents. Changes or alterations made to a paper doc-
ument after it is signed legally invalidate the signature. To bear

This document is signed. All signatures are valid. Click here to view the signer’s identity.
This document contains references or links to external materials that are unsigned, that are not
associated with a signature, and that cannot be validated for changes or modifications. Click here to
view a list of unsigned externally referenced content.

Figure 9 Sample User Message for Externally
Referenced Content

Figure 10 Externally Referenced Content

Part ‘t’
Signed

Part ‘s’
Signed

Part ‘r’
Signed

Signature 1
Content ‘x’
Unsigned

Content ‘y’
Unsigned

Link ‘x’

Link ‘y’ Link ‘z’

http://msdnmagazine.com
http://msdn.microsoft.com/magazine/dd890995.aspx

msdn magazine66 Digital Signatures

legal weight, modifications to a signed paper document must be
reviewed, acknowledged and re-signed by the original signators.

From a signature-trust standpoint, content that can be dynam-
ically added, removed or altered is by its very nature unsignable.
Dynamic content, such as text created through the execution of
functions and macros, can violate the fundamental principle of
WYSIWYS. Dynamic content is commonly produced from func-
tions that insert text for variables such as “today’s date” and “last
saved date,” formulas such as Sum, Reference fi elds or other con-
tent created when custom macros are executed.

Dynamic content created as a result of running custom macros
can be used maliciously, and it presents a security vulnerability. Ex-
ecutable operations add complexity that makes dynamic content
diffi cult for users to clearly understand. To enforce the WYSIWYS
principle, documents that need to be signed shouldn’t include dy-
namic content and should instead use static content only.

Situations that involve signing and validating documents
that contain dynamic content must be openly, clearly and
accurately represented to users. When signing a document
that contains dynamic content is unavoidable, adhere to the
following guidelines:

• Alert users to the presence of dynamic content. Th e notifi ca-
tion should clarify that the dynamic content is unsigned and
unrelated to any signature, and can’t be associated with any
level of signature trust.

• Provide users with the means to clearly identify and distin-
guish between signed static content and unsigned dynamic
content. For example, when validating and viewing signed
content, dynamic content should be hidden; the signer should
see only the static content originally displayed.

Figure 11 shows a message that warns the user of dynamically
computed content.

In Figure 12, document parts r and s are signed and can be
validated with Signature 1. However, the document package also
contains a piece of dynamic content, Part z, that can’t be signed or
validated. Part z is independent and not associated, even implic-
itly, with Signature 1.

Identifying items that contain dynamic content is dependent
on the schema of the specifi c OPC fi le format. In the online ma-
terial that accompanies this article, which is at msdn.microsoft.com/

magazine/dd890995, you can fi nd methods, properties and pseudocode
that you can use to identify dynamic content in Microsoft Offi ce
fi le formats for Word (.docx), Excel (.xlsx) and PowerPoint (.pptx).

Maintaining Transparency
I’ll say it again: In building applications that support digital
signatures, you need to ensure that users are given the same
functionality and transparency they would have with a hand-
written signature. In addition to being aware of the basic
operations of validating signature certificates (X.509) and signed
content (cryptographic hashes), you and your UI designers need
to be watchful for any situations that might not be intuitively
clear to the user.

To summarize, potential issues could arise from the following
culprits:

• Presence and identifi cation of unsigned content
• Associations between signers of multiple content groups
• Presence and identifi cation of unsigned externally referenced

material.
Presence and identifi cation of unsigned dynamic content.
If you don’t exclude such types of content from your application

by design, you must openly and accurately present them to the user.
Again, the clear and accurate disclosure of digital signature infor-
mation is a fundamental user need and a requirement for ISO/IEC
15408 Common Criteria security certifi cation.

In the shift to electronic documents, security-conscious groups
and individuals will increasingly rely on independent certifi ca-
tions, such as ISO/IEC 15408 Common Criteria. To ensure that
your product is positioned to succeed in today’s market, take
the time to write a soft ware application that meets the user and
security certifi cation standards.

For more information on and links to various standards, go to the
online material that accompanies this article, at msdn.microsoft.com/

magazine/dd890995.You’ll also find an overview of how to
identify dynamic and externally referenced content in Microsoft
Offi ce documents. 

This document is signed. All signatures are valid. Click here to view the signer’s identity.
This document contains content items that are dynamically computed. Dynamic content can
change independently and is not related to any signatures or other signed content contained in this
document. Click here to view a list of dynamic content elements.

Figure 11 Sample User Message for Dynamic Content

Figure 12 Dynamic Content

JACK DAVIS is program manager for the Windows OPC “Packaging” team. Davis
is a prior contributor to MSDN Magazine (“OPC: A New Standard for Packag-
ing Your Data,” August 2007) and blogs on the Microsoft Packaging team’s Web
site at blogs.msdn.com/opc. He can be reached at jack.davis@microsoft.com.

THANKS to the following technical experts for reviewing this article: Miguel
Bañón, Andree Gagnon (LCA), Zeyad Rajabi, Jose Emilio Rico, Sarjana Sheth,
Miriam Wallace and Bob Watson.

Part ‘r’
Signed

Signature 1

Part ‘s’
Signed

Part ‘z’
Dynamic Content

Unsigned

mailto:jack.davis@microsoft.com
http://msdn.microsoft.com/magazine/dd890995.aspx
http://msdn.microsoft.com/magazine/dd890995.aspx
http://blogs.msdn.com/opc

N -T I E R APPS AND T HE ENT IT Y FRAMEWORK

Building N-Tier
Apps with EF4

This article is the third in a series
about n-tier programming with the Entity
Framework (see msdn.microsoft.com/magazine/

dd882522.aspx and msdn.microsoft.com/magazine/

ee321569.aspx), specifi cally about build-
ing custom Web services with the Entity
Framework (EF) and Windows Commu-
nication Foundation (WCF). (In some
situations, a REST-based service or some
other approach is appropriate, but in these
articles, I’ve focused on custom Web ser-
vices.) Th e fi rst article described a number
of important design considerations and
antipatterns. In the second article, I wrote
about four patterns that can be used suc-
cessfully in an n-tier application. Th at ar-
ticle also included code samples that illustrate how the fi rst release of
the Entity Framework (EF 3.5 SP1) can be used to implement what
I call the Simple Entities pattern. In this article, I’ll look at some fea-
tures coming in the second release of the Entity Framework (EF4)
and how you use them to implement the Self-Tracking Entities and
Data Transfer Objects (DTOs) n-tier patterns.

While Simple Entities is usually not the preferred pattern for
 n-tier applications, it is the most viable option in the fi rst release

Disclaimer: Portions of this article are based on a pre-release
version of the Entity Framework. All information is subject to change.

Technologies discussed:
Entity Framework, Windows Communication Foundation

This article discusses:
Entity Framework 4, Self-Tracking Entities pattern, Data Transfer

Objects pattern

Code Download URL:
code.msdn.microsoft.com/mag200911EF4

Daniel Simmons

of the EF. EF4, however, signifi cantly
changes the options for n-tier program-
ming with the framework. Some of the
key new features include the following:
1. New framework methods that sup-

port disconnected operations, such
as ChangeObjectState and Change-
RelationshipState, which change an
entity or relationship to a new state
(added or modifi ed, for example);
Apply OriginalValues, which lets you
set the original values for an entity;
and the new ObjectMaterialized event,
which fi res whenever an entity is cre-
ated by the framework.

2. Support for Plain Old CLR Objects
 (POCO) and foreign key values on entities. Th ese features let

you create entity classes that can be shared between the mid-
tier service implementation and other tiers, which may not have
the same version of the Entity Framework (.NET 2.0 or Silver-
light, for example). POCO objects with foreign keys also have
a straightforward serialization format that simplifi es interop-
erability with platforms like Java. Th e use of foreign keys also
enables a much simpler concurrency model for relationships.

3. T4 templates to customize code generation. Th ese templates
provide a way to generate classes implementing the Self-
Tracking Entities or DTOs patterns.
Th e Entity Framework team has used these features to imple-

ment the Self-Tracking Entities pattern in a template, making
that pattern a lot more accessible, and while DTOs still require
the most work during initial implementation, this process is also
easier with EF4. (Th e Self-Tracking Entities template and a few
other EF features are available as part of a Web download feature
community technology preview (CTP) rather than in the Visual
Studio 2010/.NET 4 box. Th e samples in this article assume that
Visual Studio 2010/.NET 4 and the feature CTP are installed.) With

msdn magazine68

Figure 1 Comparing N-Tier Patterns with EF4

Ease of Implementation

Data
Transfer
Objects

Change
Set

Self-
Tracking
Entities

Simple
Entities

Ar
ch

ite
ct

ur
al

 G
oo

dn
es

s

http://code.msdn.microsoft.com/mag200911EF4
http://msdn.microsoft.com/magazine/dd882522.aspx
http://msdn.microsoft.com/magazine/dd882522.aspx
http://msdn.microsoft.com/magazine/ee321569.aspx

msdn magazine70 N-Tier Apps and the Entity Framework

these new capabilities, one way to evaluate the four patterns I’ve
described (Simple Entities, Change Set, Self-Tracking Entities and
DTOs) is in terms of a trade-off between architectural goodness
(separation of concerns/loose coupling, strength of contract, effi cient
wire format and interoperability) and ease of implementation and
time to market. If you plot the four patterns on a graph that repre-
sents this trade-off , the result might look something like Figure 1.

Th e right pattern for a particular situation depends on a lot of fac-
tors. In general, DTOs provide many architectural advantages at a high
initial implementation cost. Change Set exhibits few good architectural
characteristics but is easy to implement (when it’s available for a partic-
ular technology—for example, the DataSet in traditional ADO.NET).

I recommend a pragmatic/agile balance between these concerns
by starting with Self-Tracking Entities and moving to DTOs if the
situation warrants it. Oft en, you can get up and running quickly with
Self-Tracking Entities and still achieve many important architectural
goals. Th is approach represents a much better trade-off than Change
Set or Simple Entities, either of which I would recommend only if you
have no other viable options. DTOs, on the other hand, are defi nitely
the best choice as your application becomes larger and more complex
or if you have requirements that can’t be met by Self-Tracking Entities,
like diff erent rates of change between the client and the server. Th ese
two patterns are the most important tools to have in your toolbox, so
let’s take a look at each of them.

Self-Tracking Entities
To use this pattern with the Entity Framework, start by creating an
Entity Data Model that represents your conceptual entities and
map it to a database. You can reverse engineer a model from a da-
tabase you have and customize it, or you can create a model from
scratch and then generate a database to match (another new fea-
ture in EF4). Once this model and mapping are in place, replace
the default code generation template with the Self-Tracking Enti-
ties template by right-clicking the entity designer surface and choos-
ing Add Code Generation Item.

Next, choose the Self-Tracking Entities template from the list of in-
stalled templates. Th is step turns off default code generation and adds
two templates to your project: one template generates the Object Context,
and the other template generates entity classes. Separating code gen-
eration into two templates makes it possible to split the code into sep-
arate assemblies, one for your entity classes and one for your context.

Th e main advantage of this approach is that you can have your
entity classes in an assembly that has no dependencies on the En-
tity Framework. Th is way, the entity assembly (or at least the code
that it generates) and any business logic you have implemented
there can be shared by the mid-tier and the client if you want. Th e
context is kept in an assembly that has dependencies on both the
entities and the EF. If the client of your service is running .NET 4,
you can just reference the entity assembly from the client project.
If your client is running an earlier version of .NET or is running
Silverlight, you probably want to add links from the client project
to the generated fi les and recompile the entity source in that proj-
ect (targeting the appropriate CLR).

Regardless of how you structure your project, the two templates
work together to implement the Self-Tracking Entities pattern. Th e
generated entity classes are simple POCO classes whose only feature
beyond basic storage of entity properties is to keep track of changes to
the entities—the overall state of an entity, changes to critical properties
such as concurrency tokens, and changes in relationships between
entities. Th is extra tracking information is part of the DataContract
defi nition for the entities (so when you send an entity to or from a
WCF service, the tracking information is carried along).

On the client of the service, changes to the entities are tracked au-
tomatically even though the entities are not attached to any context.
Each generated entity has code like the following for each property.
If you change a property value on an entity with the Unchanged
state, for instance, the state is changed to Modifi ed:

[DataMember]
public string ContactName
{
 get { return _contactName; }
 set
 {
 if (!Equals(_contactName, value))
 {
 _contactName = value;
 OnPropertyChanged("ContactName");
 }
 }
}
private string _contactName;

Similarly, if new entities are added to a graph or entities are deleted
from a graph, that information is tracked. Since the state of each entity
is tracked on the entity itself, the tracking mechanism behaves as you
would expect even when you relate entities retrieved from more than
one service call. If you establish a new relationship, just that change is
tracked—the entities involved stay in the same state, as though they
had all been retrieved from a single service call.

Th e context template adds a new method, ApplyChanges, to the
generated context. ApplyChanges attaches a graph of entities to
the context and sets the information in the ObjectStateManager to
match the information tracked on the entities. With the informa-
tion that the entities track about themselves and ApplyChanges,
the generated code handles both change tracking and concurrency
concerns, two of the most diffi cult parts of correctly implement-
ing an n-tier solution.

As a concrete example, Figure 2 shows a simple ServiceContract
that you could use with Self-Tracking Entities to create an n-tier
order submission system based on the Northwind sample database.

Th e GetProducts service method is used to retrieve reference
data on the client about the product catalog. Th is information is
usually cached locally and isn’t oft en updated on the client. Get-
Customer retrieves a customer and a list of that customer’s orders.
Th e implementation of that method is quite simple, as shown here:

public Customer GetCustomer(string id)
{
 using (var ctx = new NorthwindEntities())
 {
 return ctx.Customers.Include("Orders")
 .Where(c => c.CustomerID == id)
 .SingleOrDefault();
 }
}

msdn magazine72 N-Tier Apps and the Entity Framework

Th is is essentially the same code that you would write for an
implementation of this kind of method with the Simple Entities
pattern. Th e diff erence is that the entities being returned are self-
tracking, which means that the client code for using these methods
is also quite simple, but it can accomplish much more.

To illustrate, let’s assume that in the order submission process
you want not only to create an order with appropriate order de-
tail lines but also to update parts of the customer entity with the
latest contact information. Further, you want to delete any orders
that have a null OrderDate (maybe the system marks rejected or-
ders that way). With the Simple Entities pattern, the combination
of adding, modifying and deleting entities in a single graph would
require multiple service calls for each type of operation or a very
complicated custom contract and service implementation if you
tried to implement something like Self-Tracking Entities in the fi rst
release of the EF. With EF4, the client code might look like Figure 3.

Th is code creates the service, calls the fi rst two methods on it to
get the product list and a customer entity, and then makes changes
to the customer entity graph using the same sort of code you would
write if you were building a two-tier Entity Framework application
that talks directly to the database or were implementing a service
on the mid-tier. (If you aren’t familiar with this style of creating a
WCF service client, it automatically creates a client proxy for you
without creating proxies for the entities, since we are reusing the
entity classes from the Self-Tracking entities template. You could
also use the client generated by the Add Service Reference com-
mand in Visual Studio if you want.) But here, there is no Object-
Context involved. You are just manipulating the entities themselves.
Finally, the client calls the SubmitOrder service method to push
the changes up to the mid-tier.

Of course, in a real application the client’s changes to the graph
would probably have come from a UI of some sort, and you would
add exception handling around the service calls (especially impor-
tant when you have to communicate over the network), but the code
in Figure 3 illustrates the principles. Another important item to
notice is that when you create the order detail entity for the new
order, you set just the ProductID property rather than the Prod-
uct entity itself. Th is is the new foreign key relationship feature in
action. It reduces the amount of information that travels over the

wire because you serialize only the ProductID back to the mid-tier,
not a copy of the product entity.

It’s in the implementation of the SubmitOrder service method
that Self-Tracking Entities really shines:

public bool SubmitOrder(Order newOrder)
{
 using (var ctx = new NorthwindEntities())
 {
 ctx.Orders.ApplyChanges(newOrder);
 ValidateNewOrderSubmission(ctx, newOrder);
 return ctx.SaveChanges() > 0;
 }
}

Th e call to ApplyChanges performs all the magic. It reads the
change information from the entities and applies it to the context
in a way that makes the result the same as if those changes had
been performed on entities attached to the context the whole time.

Validating Changes
Something else you should notice in the SubmitOrder implemen-
tation is the call to ValidateNewOrderSubmission. Th is method,
which I added to the service implementation, examines the Object-
StateManager to make sure that only the kinds of changes we ex-
pect in a call to SubmitOrder are present.

Th is step is really important because by itself, ApplyChanges
pushes whatever changes it fi nds in an entire graph of related objects
into the context. Our expectation that the client will only add new
orders, update the customer and so on doesn’t mean that a buggy
(or even malicious) client would not do something else. What if it
changed the price on a product to make an order cheaper or more
expensive than it should be? Th e details of how the validation is
performed are less important than the critical rule that you should
always validate changes before saving them to the database. Th is
rule applies regardless of the n-tier pattern you use.

 A second critical design principle is that you should develop sep-
arate, specifi c service methods for each operation. Without these

[ServiceContract]
public interface INorthwindSTEService
{
 [OperationContract]
 IEnumerable<Product> GetProducts();

 [OperationContract]
 Customer GetCustomer(string id);

 [OperationContract]
 bool SubmitOrder(Order order);

 [OperationContract]
 bool UpdateProduct(Product product);
}

Figure 2 A Simple Service Contract for
the Self-Tracking Entities Pattern

var svc = new ChannelFactory<INorthwindSTEService>(
 "INorthwindSTEService")
 .CreateChannel();

var products = new List<Product>(svc.GetProducts());
var customer = svc.GetCustomer("ALFKI");

customer.ContactName = "Bill Gates";

foreach (var order in customer.Orders
 .Where(o => o.OrderDate == null).ToList())
{
 customer.Orders.Remove(order);
}

var newOrder = new Order();
newOrder.Order_Details.Add(new Order_Detail()
 {
 ProductID = products.Where(p => p.ProductName == "Chai")
 .Single().ProductID,
 Quantity = 1
 });
customer.Orders.Add(newOrder);

var success = svc.SubmitOrder(newOrder);

Figure 3 Client Code for the Self-Tracking Entities Pattern

73November 2009msdnmagazine.com

separate operations, you do not have a strong contract represent-
ing what is and isn’t allowed between your two tiers, and properly
validating your changes can become impossible. If you had a single
SaveEntities service method instead of a SubmitOrder and a sepa-
rate UpdateProduct method (only accessible by users authorized to
modify the product catalog), you could easily implement the apply
and save part of that method, but you would be unable to validate
properly because you would have no way to know when product
updates are allowed and when they are not.

Data Transfer Objects
Th e Self-Tracking Entities pattern makes the n-tier process easy,
and if you create specifi c service methods and validate each one,
it can be fairly sound architecturally. Even so, there are limits to
what you can do with the pattern. When you run into those lim-
its, DTOs are the way out of the dilemma.

In DTOs, instead of sharing a single entity implementation between
the mid-tier and the client, you create a custom object that’s used only
for transferring data over the service and develop separate entity imple-
mentations for the mid-tier and the client. Th is change provides two
main benefi ts: it isolates your service contract from implementation
issues on the mid-tier and the client, allowing that contract to remain
stable even if the implementation on the tiers changes, and it allows
you to control what data fl ows over the wire. Th erefore, you can avoid
sending unnecessary data (or data the client is not allowed to access)
or reshape the data to make it more convenient for the service. Gener-
ally, the service contract is designed with the client scenarios in mind
so that the data can be reshaped between the mid-tier entities and the
DTOs (maybe by combining multiple entities into one DTO and skip-
ping properties not needed on the client), while the DTOs can be used
directly on the client.

Th ese benefi ts, however, come at the price of having to create
and maintain one or two more layers of objects and mapping. To
extend the order submission example, you could create a class just
for the purpose of submitting new orders. Th is class would combine
properties of the customer entity with properties from the order
that are set in the new order scenario, but the class would leave out
properties from both entities that are computed on the mid-tier or
set at some other stage in the process. Th is makes the DTO as small
and effi cient as possible. Th e implementation might look like this:

public class NewOrderDTO
{
 public string CustomerID { get; set; }
 public string ContactName { get; set; }
 public byte[] CustomerVersion { get; set; }
 public List<NewOrderLine> Lines { get; set; }
}

public class NewOrderLine
{
 public int ProductID { get; set; }
 public short Quantity { get; set; }
}

Okay, this is really two classes—one for the order and one for
the order detail lines—but the data size is kept as small as pos-
sible. Th e only seemingly extraneous information in the code is
the CustomerVersion fi eld, which contains the row version infor-

mation used for concurrency checks on the customer entity. You
need this information for the customer entity because the entity
already exists in the database. For the order and detail lines, those
are new entities being submitted to the database, so their version
information and the OrderID aren’t needed—they are generated
by the database when the changes are persisted.

Th e service method that accepts this DTO uses the same lower-
level Entity Framework APIs that the Self-Tracking Entities tem-
plate uses to accomplish its tasks, but now you need to call those
APIs directly rather than let the generated code call them for you.
Th e implementation comes in two parts. First, you create a graph
of customer, order and order detail entities based on the informa-
tion in the DTO (see Figure 4).

Th en you attach the graph to the context and set the appropri-
ate state information:

ctx.Customers.Attach(customer);
var customerEntry = ctx.ObjectStateManager.GetObjectStateEntry(customer);
customerEntry.SetModified();
customerEntry.SetModifiedProperty("ContactName");

ctx.ObjectStateManager.ChangeObjectState(order, EntityState.Added);
foreach (var order_detail in order.Order_Details)
{
 ctx.ObjectStateManager.ChangeObjectState(order_detail,
 EntityState.Added);
}

return ctx.SaveChanges() > 0;

Th e fi rst line attaches the entire graph to the context, but when
this occurs, each entity is in the Unchanged state, so fi rst you tell the
ObjectStateManager to put the customer entity in the Modifi ed state,
but with only one property, ContactName, marked as modifi ed. Th is
is important because you don’t actually have all the customer infor-
mation—just the information that was in the DTO. If you marked
all properties as modifi ed, the Entity Framework would try to per-
sist a bunch of nulls and zeroes to other fi elds in the customer entity.

Next you change the state of the order and each of its order de-
tails to Added, and then you call SaveChanges.

Hey, where’s the validation code? In this case, because you have
a very specifi c DTO for your scenario, and you are interpreting
that object as you map the information from it into your entities,
you perform the validation as you go along. Th ere’s no way this
code could inadvertently change the price of a product because
you never touch the product entity. Th is is another benefi t of the
DTO pattern, but only in a roundabout way. You still have to do
the validation work; the pattern just forces one level of validation.
In many cases, your code needs to include additional validation
of the values or other business rules.

One other consideration is properly handling concurrency excep-
tions. As I mentioned earlier, the version information for the customer
entity is included in the DTO, so you are set up to properly detect con-
currency issues if someone else modifi es the same customer. A more
complete sample would either map this exception to a WCF fault so
that the client could resolve the confl ict, or it would catch the excep-
tion and apply some sort of automatic policy for handling the confl ict.

If you wanted to extend the sample further by adding another op-
eration, like the ability to modify an order, you would create another

http://msdnmagazine.com

msdn magazine74 N-Tier Apps and the Entity Framework

DTO specifi cally for that scenario, with just
the right information for it. Th is object would
look something like our NewOrder DTO,
but it would have the OrderID and Version
properties for the order and order details
entities as well as each property you want to
allow the service call to update. Th e service
method implementation would also be sim-
ilar to the SubmitOrderDTO method shown
earlier—walking through the DTO data, cre-
ating corresponding entity objects and then
setting their state in the state manager before
saving the changes to the database.

If you were to implement the order up-
date method both with Self-Tracking Enti-
ties and Data Transfer Objects, you would
fi nd that the Self-Tracking Entities imple-
mentation reuses the entities and shares almost all the same service
implementation code between it and the new order submission
method—the only diff erence would be the validation code, and
even some of that might be shared. Th e DTO implementation,
however, requires a separate Data Transfer Object class for each of
the two service methods, and the method implementations follow
similar patterns but have very little if any code that can be shared.

Tips from the Trenches
Here are some tips for what to watch out for and understand.

•Make certain to reuse the Self-Tracking Entity tem-
plate’s generated entity code on your client. If you
use proxy code generated by Add Service Reference in Visual
Studio or some other tool, things look right for the most part,
but you will discover that the entities don’t actually keep track
of their changes on the client.

•Create a new ObjectContext instance in a Using state-
ment for each service method so that it is disposed
of before the method returns. Th is step is critical for scal-
ability of your service. It makes sure that database connections
are not kept open across service calls and that temporary state
used by a particular operation is garbage collected when that
operation is over. Th e Entity Framework automatically caches
metadata and other information it needs in the app domain,
and ADO.NET pools database connections, so re-creating the
context each time is a quick operation.

•Use the new foreign key relationships feature when-
ever possible. It makes changing relationships between en-
tities much easier. With independent associations—the only
type of relationship available in the fi rst release of the Entity
Framework—concurrency checks are performed on relation-
ships independently of the concurrency checks performed on
entities, and there is no way to opt out of these relationship
concurrency checks. Th e result is that your services must carry
the original values of relationships and set them on the context
before changing relationships. With foreign key relationships,

though, the relationship is simply a prop-
erty of the entity, and if the entity passes
its concurrency check, no further check
is needed. You can change a relationship
just by changing the foreign key value.
•Be careful of EntityKey collisions
when attaching a graph to an Ob-
jectContext. If, for instance, you are us-
ing DTOs and parts of your graph represent
newly added entities for which the entity key
values have not been set because they will be
generated in the database, you should call the
AddObject method to add the whole graph
of entities fi rst and then change entities not
in the Added state to their intended state
rather than calling the Attach method and
then changing Added entities to that state.

Otherwise, when you fi rst call Attach, the Entity Framework thinks
that every entity should be put into the Unchanged state, which as-
sumes that the entity key values are fi nal. If more than one entity of
a particular type has the same key value (0, for example), the Entity
Framework will throw an exception. By starting with an entity in
the Added state, you avoid this problem because the framework
does not expect Added entities to have unique key values.

•Turn off automatic lazy loading (another new EF4
feature) when returning entities from service meth-
ods. If you don’t, the serializer will trigger lazy loading and try
to retrieve additional entities from the database, which will
cause more data than you intended to be returned (if your
entities are thoroughly connected, you might serialize the
whole database), or, more likely, you will receive an error be-
cause the context will be disposed of before the serializer tries
to retrieve the data. Self-Tracking Entities does not have lazy
loading turned on by default, but if you are creating a DTOs
solution, this is something to watch out for.

And in the End
Th e .NET 4 release of the Entity Framework makes the creation
of architecturally sound n-tier applications much easier. For most
applications, I recommend starting with the Self-Tracking Entities
template, which simplifi es the process and enables the most reuse.
If you have diff erent rates of change between service and client, or
if you need absolute control over your wire format, you should
move up to a Data Transfer Objects implementation. Regardless of
which pattern you choose, always keep in mind the key principles
that the antipatterns and patterns represent—and never forget to
validate your data before saving. 

DANIEL SIMMONS is an architect on the Entity Framework team at Microsoft .

THANKS to the following technical experts for reviewing this article: Jeff
Derstadt, Diego Vega and Alex James.

var customer = new Customer
 {
 CustomerID = newOrderDTO.CustomerID,
 ContactName = newOrderDTO.ContactName,
 Version = newOrderDTO.CustomerVersion,
 };

var order = new Order
 {
 Customer = customer,
 };

foreach (var line in newOrderDTO.Lines)
{
 order.Order_Details.Add(new Order_Detail
 {
 ProductID = line.ProductID,
 Quantity = line.Quantity,
 });
}

Figure 4 Creating a Graph of Entities

SECURITY BRIEFS

XML Denial of Service Attacks and Defenses

BRYAN SULLIVAN

Denial of service (DoS) attacks are among the oldest types of at-
tacks against Web sites. Documented DoS attacks exist at least as
far back as 1992, which predates SQL injection (discovered in 1998),
cross-site scripting (JavaScript wasn’t invented until 1995), and
cross-site request forgery (CSRF attacks generally require session
cookies, and cookies weren’t introduced until 1994).

From the beginning, DoS attacks were highly popular with
the hacker community, and it’s easy to understand why. A single
“script kiddie” attacker with a minimal amount of skill and resources
could generate a fl ood of TCP SYN (for synchronize) requests suf-
fi cient to knock a site out of service. For the fl edgling e-commerce
world, this was devastating: if users couldn’t get to a site, they couldn’t
very well spend money there either. DoS attacks were the virtual
equivalent of erecting a razor-wire fence around a brick-and-mortar
store, except that any store could be attacked at any time, day or night.

Over the years, SYN fl ood attacks have been largely mitigated by im-
provements in Web server soft ware and network hardware. However,
lately there has been a resurgence of interest in DoS attacks within the
security community—not for “old school” network-level DoS, but in-
stead for application-level DoS and particularly for XML parser DoS.

XML DoS attacks are extremely asymmetric: to deliver the at-
tack payload, an attacker needs to spend only a fraction of the
processing power or bandwidth that the victim needs to spend to
handle the payload. Worse still, DoS vulnerabilities in code that
processes XML are also extremely widespread. Even if you’re using
thoroughly tested parsers like those found in the Microsoft .NET
Framework System.Xml classes, your code can still be vulnerable
unless you take explicit steps to protect it.

Th is article describes some of the new XML DoS attacks. It also
shows ways for you to detect potential DoS vulnerabilities and how
to mitigate them in your code.

XML Bombs
One type of especially nasty XML DoS attack is the XML bomb—a
block of XML that is both well-formed and valid according to the
rules of an XML schema but which crashes or hangs a program when

that program attempts to parse it. Th e best-known example of an
XML bomb is probably the Exponential Entity Expansion attack.

Inside an XML document type defi nition (DTD), you can defi ne
your own entities, which essentially act as string substitution mac-
ros. For example, you could add this line to your DTD to replace
all occurrences of the string &companyname; with “Contoso Inc.”:

<!ENTITY companyname "Contoso Inc.">

You can also nest entities, like this:
<!ENTITY companyname "Contoso Inc.">
<!ENTITY divisionname "&companyname; Web Products Division">

While most developers are familiar with using external DTD fi les,
it’s also possible to include inline DTDs along with the XML data itself.
You simply defi ne the DTD directly in the <!DOCTYPE > declara-
tion instead of using <!DOCTYPE> to refer to an external DTD fi le:

<?xml version="1.0"?>
<!DOCTYPE employees [
 <!ELEMENT employees (employee)*>
 <!ELEMENT employee (#PCDATA)>
 <!ENTITY companyname "Contoso Inc.">
 <!ENTITY divisionname "&companyname; Web Products Division">
]>
<employees>
 <employee>Glenn P, &divisionname;</employee>
 <employee>Dave L, &divisionname;</employee>
</employees>

An attacker can now take advantage of these three properties
of XML (substitution entities, nested entities, and inline DTDs)
to craft a malicious XML bomb. Th e attacker writes an XML doc-
ument with nested entities just like the previous example, but in-
stead of nesting just one level deep, he nests his entities many levels
deep, as shown here:

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol "lol">
 <!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;
&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;
&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;
&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;
&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;
&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;
&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;
&lol8;">
]>
<lolz>&lol9;</lolz>

Some information in this article is based on a prerelease version of Microsoft
.NET Framework 4. All information is subject to change.

Send your questions and comments to briefs@microsoft.com.

msdn magazine76

mailto:briefs@microsoft.com

It should be noted that this XML is both well-formed and val-
id according to the rules of the DTD. When an XML parser loads
this document, it sees that it includes one root element, “lolz”, that
contains the text “&lol9;”. However, “&lol9;” is a defi ned entity that ex-
pands to a string containing ten “&lol8;” strings. Each “&lol8;” string
is a defi ned entity that expands to ten “&lol7;” strings, and so forth.
Aft er all the entity expansions have been processed, this small (< 1 KB)
block of XML will actually contain a billion “lol”s, taking up almost
3GB of memory! You can try this attack (sometimes called the Billion
Laughs attack) for yourself using this very simple block of code—just
be prepared to kill your test app process from Task Manager:

void processXml(string xml)
{
 System.Xml.XmlDocument document = new XmlDocument();
 document.LoadXml(xml);
}

Some of the more devious readers may be wondering at this point
whether it’s possible to create an infi nitely recursing entity expan-
sion consisting of two entities that refer to each other:

<?xml version="1.0"?>
<!DOCTYPE lolz [
 <!ENTITY lol1 "&lol2;">
 <!ENTITY lol2 "&lol1;">
]>
<lolz>&lol1;</lolz>

Th is would be a very eff ective attack, but fortunately it isn’t legal
XML and will not parse. However, another variation of the Expo-
nential Entity Expansion XML bomb that does work is the Qua-
dratic Blowup attack, discovered by Amit Klein of Trusteer. Instead
of defi ning multiple small, deeply nested entities, the attacker de-
fi nes one very large entity and refers to it many times:

<?xml version="1.0"?>
<!DOCTYPE kaboom [
 <!ENTITY a "aaaaaaaaaaaaaaaaaa...">
]>
<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;...</kaboom>

If an attacker defi nes the entity “&a;” as 50,000 characters long,
and refers to that entity 50,000 times inside the root “kaboom” ele-
ment, he ends up with an XML bomb attack payload slightly over
200 KB in size that expands to 2.5 GB when parsed. Th is expansion
ratio is not quite as impressive as with the Exponential Entity Expan-
sion attack, but it is still enough to take down the parsing process.

Another of Klein’s XML bomb discoveries is the Attribute Blow-
up attack. Many older XML parsers, including those in the .NET
Framework versions 1.0 and 1.1, parse XML attributes in an ex-
tremely ineffi cient quadratic O(n2) runtime. By creating an XML
document with a large number of attributes (say 100,000 or more)
for a single element, the XML parser will monopolize the proces-
sor for a long period of time and therefore cause a denial of ser-
vice condition. However, this vulnerability has been fi xed in .NET
Framework versions 2.0 and later.

External Entity Attacks
Instead of defi ning entity replacement strings as constants, it is
also possible to defi ne them so that their values are pulled from
external URIs:

<!ENTITY stockprice SYSTEM
 "http://www.contoso.com/currentstockprice.ashx">

While the exact behavior depends on the particular XML parser
implementation, the intent here is that every time the XML parser
encounters the entity “&stockprice;” the parser will make a request
to www.contoso.com/currentstockprice.ashx and then substitute
the response received from that request for the stockprice entity.
Th is is undoubtedly a cool and useful feature of XML, but it also
enables some devious DoS attacks.

Th e simplest way to abuse the external entity functionality is to
send the XML parser to a resource that will never return; that is,
to send it into an infi nite wait loop. For example, if an attacker had
control of the server adatum.com, he could set up a generic HTTP
handler fi le at http://adatum.com/dos.ashx as follows:

using System;
using System.Web;
using System.Threading;

public class DoS : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 Thread.Sleep(Timeout.Infinite);
 }

 public bool IsReusable { get { return false; } }
}

He could then craft a malicious entity that pointed to
http://adatum.com/dos.ashx, and when the XML parser reads the XML
fi le, the parser would hang. However, this is not an especially eff ective
attack. Th e point of a DoS attack is to consume resources so that they are
unavailable to legitimate users of the application. Our earlier examples
of Exponential Entity Expansion and Quadratic Blowup XML bombs
caused the server to use large amounts of memory and CPU time, but
this example does not. All this attack really consumes is a single thread
of execution. Let’s improve this attack (from the attacker’s perspective)
by forcing the server to consume some resources:

public void ProcessRequest(HttpContext context)
{
 context.Response.ContentType = "text/plain";
 byte[] data = new byte[1000000];
 for (int i = 0; i < data.Length; i++) { data[i] = (byte)'A'; }
 while (true)
 {
 context.Response.OutputStream.Write(data, 0, data.Length);
 context.Response.Flush();
 }
}

Th is code will write an infi nite number of ‘A’ characters (one mil-
lion at a time) to the response stream and chew up a huge amount
of memory in a very short amount of time. If the attacker is unable
or unwilling to set up a page of his own for this purpose—perhaps
he doesn’t want to leave a trail of evidence that points back to him—
he can instead point the external entity to a very large resource on
a third-party Web site. Movie or fi le downloads can be especially
eff ective for this purpose; for example, the Visual Studio 2010 Pro-
fessional beta download is more than 2GB.

Yet another clever variation of this attack is to point an external
entity at a target server’s own intranet resources. Discovery of this
attack technique is credited to Steve Orrin of Intel. Th is technique
does require the attacker to have internal knowledge of intranet sites
accessible by the server, but if an intranet resource attack can be
executed, it can be especially eff ective because the server is spend-

77November 2009msdnmagazine.com

http://msdnmagazine.com

msdn magazine78 Security Briefs

ing its own resources (processor time, bandwidth, and memory) to
attack itself or its sibling servers on the same network.

Defending Against XML Bombs
Th e easiest way to defend against all types of XML entity attacks is
to simply disable altogether the use of inline DTD schemas in your
XML parsing objects. Th is is a straightforward application of the
principle of attack surface reduction: if you’re not using a feature,
turn it off so that attackers won’t be able to abuse it.

In .NET Framework versions 3.5 and earlier, DTD parsing be-
havior is controlled by the Boolean ProhibitDtd property found in
the System.Xml.XmlTextReader and System.Xml.XmlReaderSet-
tings classes. Set this value to true to disable inline DTDs completely:

XmlTextReader reader = new XmlTextReader(stream);
reader.ProhibitDtd = true;

or
XmlReaderSettings settings = new XmlReaderSettings();
settings.ProhibitDtd = true;
XmlReader reader = XmlReader.Create(stream, settings);

Th e default value of ProhibitDtd in XmlReaderSettings is true, but
the default value of ProhibitDtd in XmlTextReader is false, which
means that you have to explicitly set it to true to disable inline DTDs.

In .NET Framework version 4.0 (in beta at the time of this writ-
ing), DTD parsing behavior has been changed. Th e ProhibitDtd
property has been deprecated in favor of the new DtdProcessing
property. You can set this property to Prohibit (the default value)
to cause the runtime to throw an exception if a <!DOCTYPE> el-
ement is present in the XML:

XmlReaderSettings settings = new XmlReaderSettings();
settings.DtdProcessing = DtdProcessing.Prohibit;
XmlReader reader = XmlReader.Create(stream, settings);

Alternatively, you can set the DtdProcessing property to Ignore, which
will not throw an exception on encountering a <!DOCTYPE> element
but will simply skip over it and not process it. Finally, you can set Dtd-
Processing to Parse if you do want to allow and process inline DTDs.

If you really do want to parse DTDs, you should take some ad-
ditional steps to protect your code. Th e fi rst step is to limit the size
of expanded entities. Remember that the attacks I’ve discussed
work by creating entities that expand to huge strings and force the
parser to consume large amounts of memory. By setting the Max-
CharactersFromEntities property of the XmlReaderSettings object,

you can cap the number of characters that can be created through
entity expansions. Determine a reasonable maximum and set the
property accordingly. Here’s an example:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ProhibitDtd = false;
settings.MaxCharactersFromEntities = 1024;
XmlReader reader = XmlReader.Create(stream, settings);

Defending Against External Entity Attacks
At this point, we have hardened this code so that it is much less vulner-
able to XML bombs, but we haven’t yet addressed the dangers posed
by malicious external entities. You can improve your resilience against
these attacks if you customize the behavior of XmlReader by changing
its XmlResolver. XmlResolver objects are used to resolve external ref-
erences, including external entities. XmlTextReader instances, as well
as XmlReader instances returned from calls to XmlReader.Create, are
prepopulated with default XmlResolvers (actually XmlUrlResolvers).
You can prevent XmlReader from resolving external entities while still
allowing it to resolve inline entities by setting the XmlResolver prop-
erty of XmlReaderSettings to null. Th is is attack surface reduction at
work again; if you don’t need the capability, turn it off :

XmlReaderSettings settings = new XmlReaderSettings();
settings.ProhibitDtd = false;
settings.MaxCharactersFromEntities = 1024;
settings.XmlResolver = null;
XmlReader reader = XmlReader.Create(stream, settings);

If this situation doesn’t apply to you—if you really, truly need to re-
solve external entities—all hope is not lost, but you do have a little more
work to do. To make XmlResolver more resilient to denial of service
attacks, you need to change its behavior in three ways. First, you need

private const int TIMEOUT = 10000; // 10 seconds

public override object GetEntity(Uri absoluteUri, string role,
 Type ofObjectToReturn)
{
 System.Net.WebRequest request = WebRequest.Create(absoluteUri);
 request.Timeout = TIMEOUT;

 System.Net.WebResponse response = request.GetResponse();
 if (response == null)
 throw new XmlException("Could not resolve external entity");

 Stream responseStream = response.GetResponseStream();
 if (responseStream == null)
 throw new XmlException("Could not resolve external entity");
 responseStream.ReadTimeout = TIMEOUT;
 return responseStream;
}

Figure 1 Confi guring Timeout Values

private const int TIMEOUT = 10000; // 10 seconds
private const int BUFFER_SIZE = 1024; // 1 KB
private const int MAX_RESPONSE_SIZE = 1024 * 1024; // 1 MB

public override object GetEntity(Uri absoluteUri, string role,
 Type ofObjectToReturn)
{
 System.Net.WebRequest request = WebRequest.Create(absoluteUri);
 request.Timeout = TIMEOUT;

 System.Net.WebResponse response = request.GetResponse();
 if (response == null)
 throw new XmlException("Could not resolve external entity");

 Stream responseStream = response.GetResponseStream();
 if (responseStream == null)
 throw new XmlException("Could not resolve external entity");
 responseStream.ReadTimeout = TIMEOUT;

 MemoryStream copyStream = new MemoryStream();
 byte[] buffer = new byte[BUFFER_SIZE];
 int bytesRead = 0;
 int totalBytesRead = 0;
 do
 {
 bytesRead = responseStream.Read(buffer, 0, buffer.Length);
 totalBytesRead += bytesRead;
 if (totalBytesRead > MAX_RESPONSE_SIZE)
 throw new XmlException("Could not resolve external entity");
 copyStream.Write(buffer, 0, bytesRead);
 } while (bytesRead > 0);

 copyStream.Seek(0, SeekOrigin.Begin);
 return copyStream;
}

Figure 2 Capping the Maximum Amount of Data Retrieved

79November 2009msdnmagazine.com

to set a request timeout to prevent infi nite delay attacks. Second, you
need to limit the amount of data that it will retrieve. Finally, as a de-
fense-in-depth measure, you need to restrict the XmlResolver from
retrieving resources on the local host. You can do all of this by creat-
ing a custom XmlResolver class.

Th e behavior that you want to modify is governed by the Xml-
Resolver method GetEntity. Create a new class XmlSafeResolver
derived from XmlUrlResolver and override the GetEntity meth-
od as follows:

class XmlSafeResolver : XmlUrlResolver
{
 public override object GetEntity(Uri absoluteUri, string role,
 Type ofObjectToReturn)
 {

 }
}

Th e default behavior of the XmlUrlResolver.GetEntity method
looks something like the following code, which you can use as a
starting point for your implementation:

public override object GetEntity(Uri absoluteUri, string role,

 Type ofObjectToReturn)
{
 System.Net.WebRequest request = WebRequest.Create(absoluteUri);
 System.Net.WebResponse response = request.GetResponse();
 return response.GetResponseStream();
}

Th e fi rst change is to apply timeout values when making the
request and when reading the response. Both the System.Net.
WebRequest and the System.IO.Stream classes provide inherent
support for timeouts. In the sample code shown in Figure 1, I
simply hardcode the timeout value, but you could easily expose a
public Timeout property on the XmlSafeResolver class if you want
greater confi gurability.

Th e next step is to cap the maximum amount of data that is retrieved
in the response. Th ere’s no “MaxSize” property or the equivalent for the
Stream class, so you have to implement this functionality yourself. To
do this, you can read data from the response stream one chunk at a time
and copy it into a local stream cache. If the total number of bytes read
from the response stream exceeds a predefi ned limit (again hardcoded
for simplicity only), you stop reading from the stream and throw an
exception (see Figure 2).

As an alternative, you can wrap the Stream class and imple-
ment the limit checking directly in the overridden Read method
(see Figure 3). This is a more efficient implementation since you
save the extra memory allocated for the cached MemoryStream
in the earlier example.

Now, simply wrap the stream returned from WebResponse.Get-
ResponseStream in a LimitedStream and return the LimitedStream
from the GetEntity method (see Figure 4).

Finally, add one more defense-in-depth measure by blocking
entity resolution of URIs that resolve to the local host (see Figure
5).Th is includes URIs starting with http://localhost, http://127.0.0.1,
and fi le:// URIs. Note that this also prevents a very nasty informa-
tion disclosure vulnerability in which attackers can craft entities
pointing to fi le://resources, the contents of which are then duly re-
trieved and written into the XML document by the parser.

http://msdnmagazine.com

msdn magazine80 Security Briefs

Now that you’ve defi ned a more secure XmlResolver, you need
to apply it to XmlReader. Explicitly instantiate an XmlReaderSet-
tings object, set the XmlResolver property to an instance of Xml-
SafeResolver, and then use the XmlReaderSettings when creating
XmlReader, as shown here:

XmlReaderSettings settings = new XmlReaderSettings();
settings.XmlResolver = new XmlSafeResolver();
settings.ProhibitDtd = false; // comment out if .NET 4.0 or later
settings.DtdProcessing = DtdProcessing.Parse; // comment out if
 // .NET 3.5 or earlier
settings.MaxCharactersFromEntities = 1024;
XmlReader reader = XmlReader.Create(stream, settings);

Additional Considerations
It’s important to note that in many of the System.Xml classes, if an Xml-
Reader is not explicitly provided to an object or a method, then one is
implicitly created for it in the framework code. Th is implicitly created
XmlReader will not have any of the additional defenses specifi ed in this
article, and it will be vulnerable to attack. Th e very fi rst code snippet in
this article is a great example of this behavior:

void processXml(string xml)
{
 System.Xml.XmlDocument document = new XmlDocument();
 document.LoadXml(xml);
}

Th is code is completely vulnerable to all the attacks described in
this article. To improve this code, explicitly create an XmlReader with
appropriate settings (either disable inline DTD parsing or specify a
safer resolver class) and use the XmlDocument.Load(XmlReader)
overload instead of XmlDocument.LoadXml or any of the other
XmlDocument.Load overloads, as shown in Figure 6.

XLinq is somewhat safer in its default settings; the XmlReader
created by default for System.Xml.Linq.XDocument does allow
DTD parsing, but it automatically sets MaxCharactersFrom Entities
to 10,000,000 and prohibits external entity resolution. If you are
explicitly providing an XmlReader to XDocument, be sure to ap-
ply the defensive settings described earlier.

Wrapping Up
XML entity expansion is a powerful feature, but it can easily be
abused by an attacker to deny service to your application. Be sure
to follow the principle of attack surface reduction and disable entity
expansion if you don’t require its use. Otherwise, apply appropri-
ate defenses to limit the maximum amount of time and memory
your application can spend on it. 

class LimitedStream : Stream
{
 private Stream stream = null;
 private int limit = 0;
 private int totalBytesRead = 0;

 public LimitedStream(Stream stream, int limit)
 {
 this.stream = stream;
 this.limit = limit;
 }

 public override int Read(byte[] buffer, int offset, int count)
 {
 int bytesRead = this.stream.Read(buffer, offset, count);
 checked { this.totalBytesRead += bytesRead; }
 if (this.totalBytesRead > this.limit)
 throw new IOException("Limit exceeded");

 return bytesRead;
 }

 ...
}

Figure 3 Defi ning a Size-Limited Stream Wrapper Class

private const int TIMEOUT = 10000; // 10 seconds
private const int MAX_RESPONSE_SIZE = 1024 * 1024; // 1 MB

public override object GetEntity(Uri absoluteUri, string role, Type
ofObjectToReturn)
{
 System.Net.WebRequest request = WebRequest.Create(absoluteUri);
 request.Timeout = TIMEOUT;

 System.Net.WebResponse response = request.GetResponse();
 if (response == null)
 throw new XmlException("Could not resolve external entity");

 Stream responseStream = response.GetResponseStream();
 if (responseStream == null)
 throw new XmlException("Could not resolve external entity");
 responseStream.ReadTimeout = TIMEOUT;

 return new LimitedStream(responseStream, MAX_RESPONSE_SIZE);
}

Figure 4 Using LimitedStream in GetEntity

public override object GetEntity(Uri absoluteUri, string role,
 Type ofObjectToReturn)
{
 if (absoluteUri.IsLoopback)
 return null;

 ...

}

Figure 5 Blocking Local Host Entity Resolution

void processXml(string xml)
{
 MemoryStream stream =
 new MemoryStream(Encoding.Default.GetBytes(xml));
 XmlReaderSettings settings = new XmlReaderSettings();

 // allow entity parsing but do so more safely
 settings.ProhibitDtd = false;
 settings.MaxCharactersFromEntities = 1024;
 settings.XmlResolver = new XmlSafeResolver();

 XmlReader reader = XmlReader.Create(stream, settings);
 XmlDocument doc = new XmlDocument();
 doc.Load(reader);
}

Figure 6 Applying Safer Entity Parsing Settings to
XmlDocument

BRYAN SULLIVAN is a security program manager for the Microsoft
Security Development Lifecycle team, specializing in Web application and .NET
security issues. He is the author of "AJAXSecurity" (Addison-Wesley, 2007).

THANKS to the following technical expert for reviewing this article:
Sergey Dubinets

tions. One of the most common types of map for analyzing busi-
ness data is a choropleth, a thematic map in which areas are shaded
in proportion to the statistical variable you’d like to analyze. For
example, a choropleth map showing sales by state in the United
States might look like the screenshot in Figure 1. Add a second
layer that shows the location of your stores, and you have another
layer of analysis available.

As a report programmer, you can access SQL Server 2008 R2
Map Control through either Report Builder 3.0 or a Reporting
Services project in Business Intelligence Development Studio
(BIDS). Th e Map appears as one of the choices on the main
Report Builder template. In a BIDS project, you add a Map
Control to a report by dragging it from the toolbox. Either way,
the map wizard walks you through the basics.

UNDER THE TABLE

Visualizing Spatial Data

In SQL Server 2008, Microsoft introduced spa-
tial data support with two new built-in data
types, geometry and geography. Although you
could “see” the data in spatial columns in three
formats—Well-Known Text, Well-Known Binary,
and Geographic Markup Language (GML)—the
only built-in way to visualize your data on a map
was via the Spatial Results tab that was added to
SQL Server Management Studio. Th is was a boon
to developers who were visualizing map polygons
or even geometric data unrelated to a map (the
geometric layout of a warehouse, perhaps), but
if you had a collection of points with locations
of cities, you could see only the points. To add a
“base map” (for example, a map of the world to
layer your city locations on), you could use the
UNION ALL syntax with a SELECT statement
and visualize it with the Spatial Results tab:

SELECT city_name, geog FROM cities
UNION ALL
SELECT NULL, geog FROM map_of_the_world_table;

But SQL Server Management Studio is an administrator and pro-
grammer tool. You’d like to be able to visualize your data inside the re-
ports you’re producing for management. It’s easier to see trends when
graphics are involved, and as Waldo Tobler’s First Law of Geography
states, “Everything is related to everything else, but closer things are
more closely related.” In this article, I want to show you three new ar-
rivals on the SQL Server spatial visualization scene: the map control
in SQL Server 2008 R2 Reporting Services (SSRS), the ESRI MapIt
product, and the MapPoint Add-In for SQL Server 2008.

Reporting Services Map Control
Map visualizations use a layer concept. Th e background or base
map (for example, the map of the world) is overlaid with one or
more layers of spatial information and database information. Spa-
tial information might consist of sets of polygons like your sales
territories, linestrings like roads or rivers, or points like store loca-

BOB BEAUCHEMIN

Send your questions and comments for Bob to mmdbdev@microsoft.com.

83November 2009

Figure 1 Choropleth Map of Sales in the U.S. by State

mailto:mmdbdev@microsoft.com

msdn magazine84 Under theTable

First, you choose your base map using the New Map Layer dia-
log. Th e base map can come from the built-in Map Gallery, an ESRI
shapefi le (a standard data format for representing geospatial data),
or a SQL Server spatial query. Th is is shown in Figure 2.

If you choose a SQL Server spatial query, you’ll obtain map data
from a spatial column in a SQL Server table. Th e wizard walks you
through creating a Data Connection when you are creating a query
with the Query Designer. Your query must contain at least one col-
umn of data type geometry or geography or you’ll get an error. Th e
next dialog, Choose Spatial Data and Map View options, allows you
to choose a spatial fi eld (in case your query includes multiple spatial
fi elds) and a Layer Type as shown in Figure 3. Ordinarily, a spatial
column in a table will contain all points, all linestrings or all poly-
gons, and the Map wizard looks at the data and returns the kind of
layer type that corresponds. You can change the layer type; however,
if you choose a fi eld that contains all polygons (or multipolygons)
but select Layer Type: Point, no map data will
appear in the preview pane. One nice feature is
the option to include a Bing Maps background,
so if you have point data, you can use Bing Maps
tiles as the base map background for your map
control. With Bing Maps tiles as a background,
you can choose Street Map, Aerial, or Hybrid
view. If you choose Bing Maps, your spatial data
will be layered on top of the Bing Map base layer.

Once you have set your base layer or layers,
you’re presented with a set of map type choices,
which vary depending whether your spatial data
consists of points, linestrings or polygons. For
example, if your layer contains polygons, you
can choose between Basic Map (just the spatial
data you’ve selected), Color Analytical Map (the
choropleth maps mentioned earlier where the
color of each polygon is based on an analytic
variable), or Bubble Map (where a symbol in
the center of each area is sized proportionally
by an analytic variable). Linestring data gives

you a choice of Basic Line Map or Analytical Line Map. Point
data gives you a choice of Basic Marker Map, Analytical Marker
Map or Bubble Map. Th e choropleth map in Figure 1 is a Color
Analytical Map produced by the wizard.

Choosing a color analytical or bubble map leads to a panel that
lets you select the data column to analyze. Th is data may be in the
same dataset as your spatial data or in a diff erent dataset with a re-
lated fi eld. For example, you might have a table that contains state
information and another table that contains SalesTotals for each
state. Although the map shape data can only come from shapefi les,
map gallery or SQL Server spatial tables, the analytic data can come
from any data source, including SQL Server Analysis Services.

Aft er you’ve chosen your analytic data source, if needed, the fi nal
panel allows you to choose common visualization aspects, such as
the size of bubbles in a bubble map or polygon colors, to visual-
ize data. You can also choose whether your layers’ labels will ap-
pear. For example, if your map consists of polygons that represent
shapes of states, the label might be the name of the state. Bear in
mind that labels only appear in polygons where the polygon is large
enough to hold the text.

Of course, as with wizard-based development in general, the
wizard only scratches the surface of what you can do. Th e Map
portion of the control is contained within a Viewport, which is a
separate control that enforces the boundaries of the map on the
report page. Th e map control properties are divided roughly into
Viewport Properties, Map Properties and Layer Properties. You can
change the properties using either the context menus or a more de-
tailed view provided in the Properties Windows. Th e set of proper-
ties that you see in the corresponding Properties Window depend
on which part of the Map Control has the focus.

Th e Map Projection is specifi ed in the Viewport’s properties.
Your choices depend on the spatial column type you’re using in the

Figure 2 New Map Layer Dialog in SSRS 2008 R2

Figure 3 Choose Spatial Data and Map Options

msdn magazine86 Under theTable

layer, and it’s important to realize how your data and SRID (spatial
reference ID) aff ects your choice. To start with the simplest case,
suppose you’d like a map of the layout of your company’s ware-
house (a physical warehouse where goods are stored, not a data
warehouse). You’d likely measure the warehouse, draw a fl oor plan,
and map the placement of the goods based on their location in the
fl oor plan. In this case, the distance being mapped is so small that
the fact that the Earth is round rather than fl at does not matter.
You’re measuring in terms of a geometric coordinate system (X
and Y coordinates) and SQL Server’s geometry data type. In this
case, you set the Viewport’s Coordinate System property to Planar.

Th e more common case is that you’re plotting positions on the
Earth in terms of latitude and longitude. Your map data contains
latitude and longitude, so you’re probably using the geography data
type. To produce a fl at map from the earth (which is technically
an oblate spheroid), the map control provides a set of map projec-
tions. To use the map projections appropriately, your geography
data type column should be using SRID 4326, 4269 or one of the
other common Earth-related SRIDs that the map control is expect-
ing. In this case, you set the Viewport’s Coordinate System prop-
erty to Geographic and choose a map projection as the Viewport’s
Projection property list.

Th e last case is when your data is using a projected coordinate
system. In this scenario, you’re using SQL Server’s geometry data
type, not geography. Th e map control will do nothing to project
the data, because the projection information is already part of
the data type itself. Common SRIDs for the projected coordinate
system include the State Plane data projection or the British
National Grid. In this case, you set the Viewport’s Coordinate
System property to Planar.

Th e reason I mention all this is that, except for projecting geog-
raphy coordinates (which are assumed to be 4326 - WGS84 coor-
dinates), the map control will not automatically reproject between
diff erent coordinate systems. For example, you can’t mix a Bing
Maps Tile Layer (geographic) with a British National Grid Layer
(planar) on the same map. Th e result wouldn’t be pretty.

Th e big win with the Reporting Services 2008 R2 Map Control
is that the SQL Server spatial data is automatically visualizable in a
variety of map formats. Correlations between the business data and
spatial data are easy to accomplish with the wizard, and all the ad-
ditional power you need is available with a host of customizations
through properties. One of my favorite (nonspatial) features of the
map control is the ability to enable drilldown through the normal
“Action” mechanism in SQL Server Reporting Services. Simply se-
lect the Action tab in the Map Properties dialog and you can link
together reports that contain maps that show Sales by Country on
a World map, then drill down to State or Region, then to City. At
the City level, you could add a point layer with the location of your
stores. For additional information about preparing and using spa-
tial data with the SQL Server 2008 R2 Reporting Services map con-
trol, see Ed Katibah’s excellent blog series starting at blogs.msdn.com/

edkatibah/archive/2009/05/09/cartographic-adjustment-of-spatial-data-for-sql-

server-reporting-services-part-1.aspx.

The ESRI MapIt Product
ESRI, the world’s leading GIS company, released a product named
MapIt at its 2009 Users Conference. MapIt is actually a set of com-
ponents that make it easier to work with existing business data that
involves location. Th is product directly produces and consumes
SQL Server 2008 spatial data types, so no additional ESRI soft ware
is required to use it.

Th e most common example of location-based business data is
address data, and so MapIt includes a program, the Spatial Data
Assistant, that performs geocoding on address data in diff erent for-
mats. Th e Spatial Data Assistant will add a new Geometry column
to any SQL Server table with addresses and populate it by calling
Web-based services. You have a choice of the ESRI Map Service or
the Bing Maps Geocoding service. Once the existing data is updat-
ed, you can use geocoding in a trigger to keep the location in sync.
An example of such a trigger is available on the MapIt support site.

To display your business data along with other map layers (for
example, addresses of students along with a layer that consists of
school district boundaries), you’ll need to import the addition-
al location information into SQL Server 2008. The Spatial Data
Assistant can import existing GIS data in ESRI Shapefile format
or sets of free ESRI map data available online. On import, you’re
allowed to change the data projection to correspond to the pro-
jection used by Bing Maps or the ARCGIS Server. You can even
specify the SRID of your choice from a list of supported SRIDs.
The import function produces a SQL Server geometry column
in the imported table.

Once you have your business data and other map layer data
in SQL Server, you can visualize it in your own programs. ESRI
provides a free Silverlight and Windows Presentation Foundation
(WPF) API that can be used to create rich Web and Windows-
based applications. To enable the use of your SQL Server spatial
data with these APIs, MapIt includes a REST-based Spatial Data
Service, which allows you to expose one or more Web endpoints
that produce JSON or HTML output in the format that the Sil-
verlight APIs consume. It includes a Spatial Data Services direc-
tory that allows you to browse your tables and views, and query the

<!—UserControl element and namespace declarations elided for clarity -->
<Grid x:Name="LayoutRoot">
 <esri:Map x:Name="MyMap" >
 <esri:Map.Layers>
 <esri:ArcGISTiledMapServiceLayer ID="StreetMapLayer"
 Url="http://server.arcgisonline.com/ArcGIS/rest/services/ESRI_
StreetMap_World_2D/MapServer"/>
 <esri:FeatureLayer ID="MyFeatureLayer"
 Url="http://zmv10/SDS/databases/AdventureWorks2008/Sales.
vIndividualCustomerSpatial"
 Where="CountryRegionName = 'United States'">
 <esri:FeatureLayer.Clusterer>
 <esri:FlareClusterer FlareBackground="#99FF0000"
 FlareForeground="White" MaximumFlareCount="9" />
 </esri:FeatureLayer.Clusterer>
 </esri:FeatureLayer>
 </esri:Map.Layers>
 </esri:Map>
</Grid>

Figure 4 Using the Spatial Data Service with a View

http://blogs.msdn.com/edkatibah/archive/2009/05/09/cartographic-adjustment-of-spatial-data-for-sql-server-reporting-services-part-1.aspx

msdn magazine88 Under theTable

ones that include geometry and geography
columns. Once you’ve decided on the data
you’d like to use in your map, simply copy
that table or view’s URL from the Spatial
Data Services directory location and paste it
into an application that uses the API. Here’s
an example of exposing the Customer ad-
dresses in the AdventureWorks2008 da-
tabase using the Spatial Data Service with
a view, Sales.vIndividualCustomerSpatial,
that I created by adding the SpatialLocation
column to an existing AdventureWorks2008
view (Figure 4). Th is map includes one of
my favorite features—adding a clustering
component to cluster points at lower map
resolutions. As you drill down into higher
map resolutions, the point clusters are vis-
ible as individual points.

Th is code produces the results shown in
Figure 5. Note that you can mix and match
SQL Server 2008 spatial data layers with ARCGIS or Bing Maps base
map layers, as well as other layers you’ve imported with the Spatial
Data Assistant. For example, you can add a layer containing Sales-
Person addresses to visualize the location of your salespeople vis-à-
vis your customers. A Layer type is also available for Graphics and a
Drawing surface is supported in the API for further map interactiv-
ity. Finally, there are specialized layers available at the ESRI support
Web site for GEORSS and KML. I’ve barely scratched the surface of
the API’s functionality. For more information about the Silverlight
and WPF API, see resources.esri.com/arcgisserver/apis/silverlight/index.cfm.

You may want to provide professional-looking maps based on
your SQL Server data without incurring the cost of programming
and maintaining a Silverlight or WPF application. MapIt includes
a Web Part that allows you to add maps to SharePoint sites with no
programming. You can include spatial data from:

•SharePoint lists that include addresses or latitude/longitude fi elds
• SQL Server spatial data exposed with the Spatial Data Assistant
• ARCGIS Server data

Editing an instance of the ESRI SharePoint Web Part permits
you to import layers of spatial data by providing a URL or Share-
Point list name. You can use either Bing Maps or ARCGIS Server
as a base map. Additional dialogs enable you to specify fi lter ex-
pressions, defi ne pop-ups that display additional information as
you hover over individual points (these are known as MapTips in
the Silverlight API), choose symbology and add point clustering
by clicking a checkbox. Th e maps will refresh to display the most
current information if you have dynamically changing data. You
can confi gure data refresh and caching at an individual Web Part
level, or globally for the Spatial Data Service.

MapPoint 2010 Add-In for SQL Server 2008
MapPoint is Microsoft ’s original off ering in the realm of business spa-
tial data visualization and location-based queries. One of its strengths

is that MapPoint comes with a rich collection of multi-level map in-
formation that works in an offl ine mode, as well as letting you add
your own spatial layers. Th e latest versions of MapPoint even come
with GPS integration. In August 2009, Microsoft released a free Map-
Point Add-In for SQL Server 2008 spatial data, which makes it easy to
add layers of SQL Server-based information, perform spatial queries
against the data and the layers, and save the end product to disk for
further refi nement. Th e saved version of the map can be distributed
without requiring access to SQL Server to use.

Figure 5 MapIt-Generated Map with Customer Locations Showing Point Clustering

Figure 6 MapPoint Add-In Add Layer Dialog

http://resources.esri.com/arcgisserver/apis/silverlight/index.cfm

89November 2009msdnmagazine.com

Th e WPF-based add-in uses a direct ADO.NET connection to
talk to SQL Server. Once you’ve connected to the SQL Server in-
stance and the database that contains your spatial data in the Add
Layer tab (shown in Figure 6), you choose a table that contains a
spatial column to use as your layer. You can reduce the amount of
data that is returned (and therefore make the layer populate faster)
by limiting features to the current map extent, as well as selecting
a subset of columns and generalizing the data that’s returned. You
can also specify a SQL WHERE clause on your query. Th e query
interface was designed for maximum speed; to ensure the spatial
index is used, you can choose to use a common table expression for
more complex queries. Of course, a dialog is provided that gives
you complete control of the symbology.

Th e Map Tips that appear when you select spatial features like
points include all of the data in the table you’ve specifi ed. Th is
data is “live,” that is, you can edit the data corresponding to indi-
vidual spatial feature tables and the updated data will be saved to
the database when you hit the Save button. You can even add new
features (rows containing spatial data) or delete features directly
from the add-in.

Finally, you can refi ne queries based on an existing spatial data
layer. For example, once I’ve retrieved a set of school locations
based on a map extent that roughly corresponds to my city limits,
I can query that set to fi nd the schools within a mile of my house.
Or I can query on any of the other fi elds I’ve retrieved. Each ad-
ditional query will bring back an additional layer, and you can
hide, show and refi ne your layers before saving the map. When
you save the map, it not only saves the graphic layers but also the
SQL queries that produced them, so you can update your layers if
the data changes. For sub-layer queries, the generated SQL is vis-
ible in the window before you execute the query. Th ere’s a user-
settable timeout value, and you can cancel executing layer queries
in progress. Th e fact that you’re connecting directly to SQL Server
makes the experience much more interactive. Th ere’s even a util-
ity that allows you to import data into SQL Server from shape fi les
or MapInfo .MIF fi les.

Th e products and features I’ve mentioned here are just the latest
ones that expand the ways to use SQL Server spatial data. In ad-
dition, Safe Soft ware’s FME for SQL Server 2008 product is inte-
grated with SQL Server Integration Services (SSIS) to allow spatial
ETL in SSIS workfl ows. Perhaps the next release of SQL Server will
see more integration with SQL Server Analysis Services and even
data mining features. Th e built-in and third-party visualization
support expands the usefulness of location data beyond analyz-
ing addresses, to make ordinary business data come alive. 

BOB BEAUCHEMIN is a database-centric application practitioner and ar-
chitect, course author and instructor, writer and Developer Skills partner at
SQLskills. He’s written books and articles on SQL Server, data access and integra-
tion technologies, and database security. You can reach him at bobb@sqlskills.com.

THANKS to the following technical expert for reviewing this article: Ed Katibah

mailto:bobb@sqlskills.com
http://msdnmagazine.com

91November 2009

Modeling Communication
Th e fi rst step in modeling communication is to defi ne the con-
tracts between your host application and the workfl ow. WCF ser-
vices use contracts to defi ne the collection of operations that make
up the service and the messages that are sent and received. In this
case, because you are communicating from the host to the work-
fl ow and from the workfl ow to the host, you need to defi ne two
service contracts and related data contracts, as shown in Figure 1.

With the contracts in place, modeling the workfl ow using the
Send and Receive activities works as it does for remote com-
munication. Th at is one of the beautiful things about WCF: re-
mote or local, the programming model is the same. As a simple
example, Figure 2 shows a workfl ow with two Receive activities

FOUNDATIONS

Workfl ow Services for
Local Communication

In a previous column (see “Workfl ow Communications” in the Sep-
tember 2007 issue of MSDN Magazine at msdn.microsoft.com/magazine/

cc163365.aspx), I wrote about the core communication architecture
in Windows Workfl ow Foundation 3 (WF3). One topic I did not
cover is the local communications activities that are one abstrac-
tion on top of this communication architecture. If you look at .NET
Framework 4 Beta 1, you will notice no HandleExternalEvent ac-
tivity. In fact, with WF4, the communications activities included
are built on Windows Communication Foundation (WCF). Th is
month, I’ll show you how to use WCF for communication between
a workfl ow and a host application in Windows Workfl ow Founda-
tion 3. Gaining this knowledge should help with your development
eff orts using WF3 and prepare you for WF4, where WCF is the
only abstraction over queues (referred to as “bookmarks" in WF4)
that ships with the framework. (For basic information on Work-
fl ow Services in WF3, see my Foundations column in the Visual
Studio 2008 Launch issue of MSDN Magazine, at msdn.microsoft.com/

magazine/cc164251.aspx.)

Overview
Communication between host applications and workfl ows proves
challenging for some developers because they can easily overlook the
fact that the workfl ow and host oft en execute on diff erent threads.
Th e design of the communication architecture is intended to shield
developers from having to worry about managing thread context,
marshaling data and other low-level details. One abstraction over
the queuing architecture in WF is the WCF messaging integration
that was introduced in Version 3.5 of the .NET Framework. Most
examples and labs show how the activities and extensions to WCF
can be used to expose a workfl ow to clients that are external to the
hosting process, but this same communication framework can be
used to communicate within the same process.

Implementing the communication involves several steps, but the
work does not amount to much more than what you would have
to do with the local communication activities.

Before you can do anything else, you need to defi ne (or mini-
mally begin to defi ne in an iterative approach) the contracts for
communication using WCF service contracts. Next, you need to
use those contracts in your workfl ows to model the communica-
tion points in the logic. Finally, to hook it all together, the work-
fl ow and other services need to be hosted as WCF services with
endpoints confi gured.

MATT MILNER

Send your questions and comments for Matt to mmnet30@microsoft.com.

Code download available at code.msdn.microsoft.com/
mag200911Foundations.

[ServiceContract(
 Namespace = "urn:MSDN/Foundations/LocalCommunications/WCF")]
public interface IHostInterface
{
[OperationContract]
void OrderStatusChange(Order order, string newStatus, string oldStatus);
}

[ServiceContract(
 Namespace="urn:MSDN/Foundations/LocalCommunications/WCF”)]
public interface IWorkflowInterface
{
 [OperationContract]
 void SubmitOrder(Order newOrder);

 [OperationContract]
 bool UpdateOrder(Order updatedOrder);
}

[DataContract]
public class Order
{
 [DataMember]
 public int OrderID { get; set; }
 [DataMember]
 public string CustomerName { get; set; }
 [DataMember]
 public double OrderTotal { get; set; }
 [DataMember]
 public string OrderStatus { get; set; }
 }

Figure 1 Contracts for Communication

mailto:mmnet30@microsoft.com
http://code.msdn.microsoft.com/mag200911Foundations
http://code.msdn.microsoft.com/mag200911Foundations
http://msdn.microsoft.com/magazine/cc163365.aspx
http://http://msdn.microsoft.com/magazine/cc164251.aspx

msdn magazine92 Foundations

and one Send activity modeling the communication between the
workfl ow and the host. Th e receive activities are confi gured with the
IWorkfl owInterface service contract, and the Send activity uses the
IHostInterface contract.

So far, using WCF for local communications is not much diff er-
ent from using WCF for remote communications and is very simi-
lar to using the local communications activities and services. Th e
main diff erence comes in how the host code is written to start the
workfl ow and handle communication coming from the workfl ow.

Hosting the Services
Because we want communication to fl ow both ways using WCF, we
need to host two services—the workfl ow service to run the workfl ow
and a service in the host application to receive messages from the
workfl ow. In my example, I built a simple Windows Presentation
Foundation (WPF) application to act as the host and used the App
class's OnStartup and OnExit methods to manage the hosts. Your
fi rst inclination might be to create the Workfl owServiceHost class

and open it right in the OnStartup method. Since the Open method
does not block aft er the host is open, you can continue processing,
load the user interface and begin interacting with the workfl ow. Be-
cause WPF (and other client technologies) uses a single thread for
processing, this soon leads to problems because both the service
and the client call cannot use the same thread, so the client times
out. To avoid this, the Workfl owServiceHost is created on another
thread using the Th readPool, as shown i n Figure 3.

Th e next challenge you encounter is choosing the appropriate
binding for local communication. Currently, there is no in-memory
or in-process binding that is extremely lightweight for these kinds
of scenarios. Th e best option for a lightweight channel is to use the
NetNamedPipeBinding with security turned off . Unfortunately, if
you try to use this binding and host the workfl ow as a service, you
get an error informing you that the host requires a binding with the
Context channel present because your service contract may require
a session. Further, there is no NetNamedPipeContextBinding in-
cluded with the .NET Framework, which ships with only three con-
text bindings: BasicHttpContextBinding, NetTcpContextBinding
and WSHttpContextBinding. Fortunately, you can create your own
custom bindings to include the context channe l. Figure 4 shows
a custom binding that derives from the NetNamed PipeBinding
class and injects the ContextBindingElement into the binding.
Communication in both directions can now use this binding in
the endpoint registration by using diff erent addresses.

With this new binding, you can create an endpoint on the
Workfl owServiceHost and open the host with no more errors. Th e
workfl ow is ready to receive data from the host using the service
contract. To send that data, you need to create a proxy and invoke
the operation, as shown in Figure 5.

Because you’re sharing the contracts, there is no proxy class, so you
have to use the ChannelFactory<TChannel> to create the client proxy.

While the workfl ow is hosted and ready to receive messages, it
still needs to be confi gured to send messages to the host. Most im-
portant, the workfl ow needs to be able to get a client endpoint when
using the Send activity. Th e Send activity allows you to specify the

ThreadPool.QueueUserWorkItem((o) =>
{

//host the workflow
workflowHost = new WorkflowServiceHost(typeof(
 WorkflowsAndActivities.OrderWorkflow));
workflowHost.AddServiceEndpoint(
 "Contracts.IWorkflowInterface", LocalBinding, WFAddress);

try
{
 workflowHost.Open();
}
catch (Exception ex)
{
 workflowHost.Abort();
 MessageBox.Show(String.Format(
 "There was an error hosting the workflow as a service: {0}",
 ex.Message));
}
});

Figure 3 Hosting the Workfl ow Service

F igure 2 Workfl ow Modeled Against Contracts

93November 2009msdnmagazine.com

endpoint name, which is typically a mapping to a named endpoint
in the confi guration fi le. Although putting the endpoint information
in a confi guration fi le works, you can also use the ChannelManager-
Service (as discussed in my August 2008 column at msdn.microsoft.com/

magazine/cc721606.aspx) to hold the client endpoints used by your
Send activities in the workfl ow. Figure 6 shows the hosting code
to create the service, provide it with a named endpoint, and add
it to the Workfl owRuntime hosted in the Workfl owServiceHost.

Having the workfl ow service hosted provides the ability to send mes-
sages from the host to the workfl ow, but to get messages back to the host,
you need a WCF service that can receive messages from the workfl ow.
Th is service is a standard WCF service self-hosted in the application.
Because the service is not a workfl ow service, you can use the standard
NetNamedPipeBinding or reuse the NetNamedPipeContextBinding
shown previously. Finally, because this service is invoked from the
workfl ow, it can be hosted on the UI thread, making interaction with
UI elements simp ler. Figure 7 shows the hosting code for the service.

With both services hosted, you can now run the workfl ow, send
a message and receive a message back. However, if you try to send
a second message using this code to the second receive activity in
the workfl ow, you will receive an error about the context.

Handling Instance Correlation
One way to handle the context problem is to use the same client
proxy for every invocation of the service. Th is enables the client

public class NetNamedPipeContextBinding : NetNamedPipeBinding
{
 public NetNamedPipeContextBinding() : base(){}

 public NetNamedPipeContextBinding(
 NetNamedPipeSecurityMode securityMode):
 base(securityMode) {}

 public NetNamedPipeContextBinding(string configurationName) :
 base(configurationName) {}

 public override BindingElementCollection CreateBindingElements()
 {
 BindingElementCollection baseElements = base.CreateBindingElements();
 baseElements.Insert(0, new ContextBindingElement(
 ProtectionLevel.EncryptAndSign,
 ContextExchangeMechanism.ContextSoapHeader));

 return baseElements;
 }
}

Figure 4 NetNamedPipeContextBinding

One way to handle the
context problem is to use the
same client proxy for every
invocation of the service.

http://msdnmagazine.com
http://msdn.microsoft.com/magazine/cc721606.aspx

msdn magazine94 Foundations

proxy to manage the context identifi ers (using the NetNamedPipe-
ContextBinding) and send them back to the service with subse-
quent requests.

In some scenarios, it’s not possible to keep the same proxy around
for all requests. Consider the case where you start a workfl ow, per-
sist it to a database and close the client application. When the client
application starts up again, you need a way to resume the workfl ow
by sending another message to that specifi c instance. Th e other com-
mon use case is when you do want to use a single client proxy, but
you need to interact with several workfl ow instances, each with a
unique identifi er. For example, the user interface provides a list of
orders, each with a corresponding workfl ow, and when the user
invokes an action on a selected order, you need to send a message
to the workfl ow instance. Letting the binding manage the context
identifi er will not work in this scenario because it will always be
using the identifi er of the last workfl ow with which you interacted.

For the fi rst scenario—using a new proxy for each call—you need
to manually set the workfl ow identifi er into the context by using the
IContextManager interface. IContextManager is accessed through
the GetProperty<TProperty> method on the IClientChannel in-
terface. Once you have the IContextManager, you can use it to get
or set the context.

Th e context itself is a dictionary of name-value pairs, the
most important of which is the instanceId value. The following
code shows how you retrieve the ID from the context so it can
be stored by your client application for later, when you need to
interact with the same workflow instance. In this example, the

ID is being displayed in the client user interface rather than be-
ing stored in a database:

IContextManager mgr = ((IClientChannel)proxy).
GetProperty<IContextManager>();

string wfID = mgr.GetContext()["instanceId"];
wfIdText.Text = wfID;

Once you make the fi rst call to the workfl ow service, the context
is automatically populated with the instance ID of the workfl ow
by the context binding on the service endpoint.

When using a newly created proxy to communicate with a work-
fl ow instance that was previously created, you can use a similar
method to set the identifi er in the context to ensure your message
is routed to the correct workfl ow instance, as shown here:

IContextManager mgr = ((IClientChannel)proxy).
GetProperty<IContextManager>();
 mgr.SetContext(new Dictionary<string, string>{
 {"instanceId", wfIdText.Text}
 });

When you have a newly created proxy, this code works fi ne the
fi rst time but not if you try to set the context a second time for in-
voking another workfl ow instance. Th e error you get tells you that
you cannot change the context when automatic context manage-
ment is enabled. Essentially, you are told that you can’t have your
cake and it eat too. If you want the context to be managed auto-
matically, you can’t manipulate it manually. Unfortunately, if you
want to manage the context manually, you fail to get automatic
management, which means you cannot retrieve the workfl ow in-
stance ID from the context as I showed previously.

To deal with this mismatch, you handle each case separately. For
the initial call to a workfl ow, you use a new proxy, but for all subse-

ServiceEndpoint endpoint = new ServiceEndpoint
(
 ContractDescription.GetContract(typeof(Contracts.IHostInterface)),
 LocalBinding, new EndpointAddress(HostAddress)
);
endpoint.Name = “HostEndpoint”;

WorkflowRuntime runtime =
 workflowHost.Description.Behaviors.Find<WorkflowRuntimeBehavior>().
WorkflowRuntime;

ChannelManagerService chanMan =
 new ChannelManagerService(
 new List<ServiceEndpoint>
 {
 endpoint
 });

runtime.AddService(chanMan);

Figure 6 Adding the ChannelManagerService to the Runtime

ServiceHost appHost = new ServiceHost(new HostService());
appHost.AddServiceEndpoint(“Contracts.IHostInterface”,
LocalBinding, HostAddress);

try
{
 appHost.Open();
}
catch (Exception ex)
{
 appHost.Abort();
 MessageBox.Show(String.Format(
 “There was an error hosting the local service: {0}”,
 ex.Message));
}

Figure 7 Hosting the Host Service

App a = (App)Application.Current;

if (updateProxy == null)
{
 if (factory == null)
 factory = new ChannelFactory<IWorkflowInterface>(
 a.LocalBinding, a.WFAddress);

 updateProxy = factory.CreateChannel();
 IContextManager mgr =
 ((IClientChannel)updateProxy).GetProperty<IContextManager>();
 mgr.Enabled = false;
 ((IClientChannel)updateProxy).Open();
}

Figure 8 Disabling Automatic Context Management

App a = (App)Application.Current;
 IWorkflowInterface proxy = new ChannelFactory<IWorkflowInterface>(
 a.LocalBinding, a.WFAddress).CreateChannel();

 proxy.SubmitOrder(
 new Order
 {
 CustomerName = "Matt",
 OrderID = 0,
 OrderTotal = 250.00
 });

Figure 5 Host Code to Start a Workfl ow

95November 2009msdnmagazine.com

quent calls to an existing workfl ow instance, you use a single client
proxy and manage the context manually.

For the initial call, you should use a single Channe l-
Factory<TChannel> to create all the proxies. Th is results in bet-
ter performance because the creation of the ChannelFactory has
some overhead you do not want to duplicate for every fi rst call.
Using code like that shown earli er in Figure 5, you can use a single
ChannelFactory<TChannel> to create the initial proxy. In your call-
ing code, aft er using the proxy, you should follow the best practice
of calling the Close method to release the proxy.

Th is is standard WCF code for creating your proxy using the
channel factory method. Because the binding is a context binding,
you get automatic context management by default, which means
you can extract the workfl ow instance identifi er from the context
aft er making the fi rst call to the workfl ow.

For making subsequent calls, you need to manage the con-
text yourself, and this entails using WCF client code that is not as
frequently used by developers. To set the context manually, you
need to use an OperationContextScope and create the Message-
ContextProperty yourself. Th e MessageContextProperty is set on

using (OperationContextScope scope =
 new OperationContextScope((IContextChannel)proxy))
{
 ContextMessageProperty property = new ContextMessageProperty(
 new Dictionary<string, string>
 {
 {“instanceId”, wfIdText.Text}
 });

 OperationContext.Current.OutgoingMessageProperties.Add(
 "ContextMessageProperty", property);

 proxy.UpdateOrder(
 new Order
 {
 CustomerName = "Matt",
 OrderID = 2,
 OrderTotal = 250.00,
 OrderStatus = "Updated"
 });
}

Figure 9 Using OperationContextScope

For making subsequent calls,
you need to manage the

context yourself, and
this entails using WCF client
code that is not as frequently

used by developers.

http://msdnmagazine.com

msdn magazine96 Foundations

the message as it is being sent, which is equivalent to using the
IContext Manager to set the context, with the exception that using
the property directly works even when the context management
is dis abled. Figure 8 shows the code to create the proxy using the
same ChannelFactory<TChannel> that was used for the initial
proxy. Th e diff erence is that in this case, the IContextManager is
used to disable the automatic context management feature and a
cached proxy is used rather than creating a new one on each request.

Once the proxy is created, you need to create an Operation-
ContextScope and add the MessageContextProperty to the out-
going message properties on the scope. Th is enables the property
to be included on the outgoing messages during the duration of
the scope. Figure 9 shows the code to create and set the message
property using the OperationContextScope.

Th is might seem like quite a bit of work just to talk between the
host and the workfl ow. Th e good news is that much of this logic
and the management of identifi ers can be encapsulated in a few
classes. However, it does involve coding your client in a particular
way to ensure that the context is managed correctly for those cases
in which you need to send more than one message to the workfl ow
instance. In the code download for this article, I have included a
sample host for a workfl ow using local communications that at-
tempts to encapsulate much of the complexity, and the sample ap-
plication shows how to use the host.

A Word About User Interface Interaction
One of the main reasons you send data from the workfl ow to the
host is that you want to present it to a user in the application inter-
face. Fortunately, with this model you have some options to take
advantage of user interface features, including data binding in
WPF. As a simple example, if you want your user interface to use
data binding and update the user interface when data is received

from the workfl ow, you can bind your user interface directly to the
host’s service instance.

Th e key to using the service instance as the data context for
your window is that the instance needs to be hosted as a singleton.
When you host the service as a singleton, you have access to the in-
stance and can use it in your UI. Th e simple host service shown in
Figure 10 updates a property when it receives information from
the workfl ow and uses the INotifyPropertyChangedInterface to
help the data binding infrastructure pick up the changes imme-
diately. Notice the ServiceBehavior attribute indicating that this
class should be hosted as a singleton. If you look back to Figure 7,
you can see the ServiceHost instantiated not with a type but with
an instance of the class.

To databind to this value, the DataContext of the window, or a
particular control in the window, can be set with the instance. Th e
instance can be retrieved by using the SingletonInstance property
on the ServiceHost class, as shown here:

HostService host = ((App)Application.Current).appHost.SingletonInstance
as HostService;
 if (host != null)
 this.DataContext = host;

Now you can simply bind elements in your window to properties
on the object, as shown with this TextBlock:

<TextBlock Text="{Binding CurrentMessage}" Grid.Row="3" />

As I said, this is a simple example of what you can do. In a real
application, you likely would not bind directly to the service in-
stance but instead bind to some objects to which both your win-
dow and the service implementation had access.

Looking Ahead to WF4
WF4 introduces several features that will make local commu-
nications over WCF even easier. Th e primary feature is message
correlation that does not rely on the protocol. Th at is, the use of a
workfl ow instance identifi er will still be an option, but a new op-
tion will enable messages to be correlated based on the content of
the message. So, if each of your messages contain an order ID, a
customer ID or some other piece of data, you can defi ne correla-
tions between those messages and not have to use a binding that
supports context management.
Additionally, the fact that both WPF and WF build on the same
core XAML APIs in .NET Framework Version 4 might open up
some interesting possibilities for integrating the technologies in
new ways. As we get closer to the release of .NET Framework 4, I
will provide more details on integrating WF with WCF and WPF,
along with other content on the inner workings of WF4. 

MATT MILNER is a member of the technical staff at Pluralsight, where he
focuses on connected systems technologies (WCF, Windows Workfl ow
Foundation, BizTalk, “Dublin,” and the Azure Services Platform). Matt
is also an independent consultant specializing in Microsoft .NET appli-
cation design and development. He regularly shares his love of technol-
ogy by speaking at local, regional and international conferences such as
Tech·Ed. Microsoft has recognized Milner as an MVP for his community
contributions around connected systems technology. You can contact him
via his blog at pluralsight.com/community/blogs/matt.

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
internal class HostService : IHostInterface, INotifyPropertyChanged
{
 public void OrderStatusChange(Order order, string newStatus,
 string oldStatus)
 {
 CurrentMessage = String.Format("Order status changed to {0}",
 newStatus);
 }

 private string msg;

 public string CurrentMessage {
 get { return msg; }
 set
 {
 msg = value;
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(
 "CurrentMessage"));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

Figure 10 Service Implementation with
INotifyPropertyChanged

http://pluralsight.com/community/blogs/matt

msdn magazine98

Although there are too many to enumerate here, a few are worth
mentioning. Th e Windows HTTP Services (WinHTTP) API pro-
vides a powerful and fl exible solution for writing HTTP clients.
You can read more about WinHTTP in my August 2008 column.
Th e HTTP Server (HTTP.sys) API provides the foundations for
building high-performance HTTP servers without relying on a
full-fl edged Web server like Internet Information Services (IIS). In
fact, IIS itself is based on this same API. And of course the XmlLite
API provides a small and fast XML parser for native code. You can
read more about XmlLite in my April 2007 feature article.

Given all of this, it is still quite a daunting task to write a SOAP
client or server. Although SOAP started off “simple” (that’s what the
“S” stands for), it didn’t stay that way for long. WinHTTP, HTTP.
sys and XmlLite may get you a long way by handling the HTTP
transport and parsing the XML, but there is still a ton of code to
write to handle the communications layer: things like formatting
and interpreting SOAP headers, not to mention supporting other
transports like TCP or UDP. Even if you could somehow manage
all of this, you’re still left with parsing SOAP envelopes instead of
being able to treat logical SOAP operations as function calls.

Well, these headaches are a thing of the past. With the introduc-
tion of the Windows Web Services (WWS) API, C++ developers
no longer have to think of themselves as second-class citizens in the
world of Web Services. WWS is designed from the ground up to be a
completely native-code implementation of SOAP, including support
for many of the WS-* protocols. WWS is, strictly speaking, exposed

WINDOWS WITH C++

Windows Web Services

One of the main reasons many developers flocked to the
Microsoft .NET Framework, and Java to a lesser degree, was the
fact that it made it much easier to write soft ware for the Internet.
Whether you were writing an HTTP client or server application,
the .NET Framework had you covered with classes for making
HTTP requests and processing XML easily. You could even gen-
erate SOAP clients from WSDL documents and implement SOAP
servers with ASP.NET. As the standards around Web services ma-
tured, Microsoft developed the Windows Communications Foun-
dation (WCF), also built on the .NET Framework, to make it easier
to use the increasingly complex Web standards for handling dif-
ferent transports, such as TCP and UDP, and provide more versa-
tile security options.

C++ developers, however, were left wondering whether it was
even practical to use C++ to write Web applications. Microsoft
had provided a couple of temporary solutions in the form of ATL
classes and a COM-based toolkit, but in the end these couldn’t keep
up with the progress that the managed SOAP stacks had made and
thus were largely abandoned.

Despite the seemingly single-minded focus on the .NET
Framework, developers at Microsoft haven’t forgotten about the
C++ developer. In fact, many of them are still and will continue
to be passionate C++ developers. As a result, solutions that help
C++ developers are a key part of Microsoft ’s strategy for the
Windows platform. Of course, many of the APIs targeted at C++
developers also end up underpinning many of the managed
frameworks.

KENNY KERR

Send your questions and comments to mmwincpp@microsoft.com.

Code download available at msdn.microsoft.com/msdnmag/kerr1009.aspx.

5,000,000

� WWS

� WCF

4,500,000

4,000,000

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

0
TCP/Binary HTTP/UTF8

Solutions that help C++
developers are a key part of
Microsoft’s strategy for the

Windows platform.

Figure 1 Comparing Client Working Set (Lower Is Better)

mailto:mmwincpp@microsoft.com
http://code.msdn.microsoft.com/mag200911kerr1009

99November 2009msdnmagazine.com

through a C API, making interoperability with other languages and
runtimes very straightforward, but it is the C++ developer who will
likely benefi t the most. In fact, with a little help from C++, it can
be a real joy to use—as you shall see in this article.

Architecture and Principles
WWS embodies everything that .NET Framework-based libraries are
not. It is designed for native code. It is designed to introduce a minimal
number of dependencies. It is designed to use as little memory as pos-
sible. And it is designed to be fast. Really fast. Th e team responsible for
developing WWS runs performance tests on each new build, compar-
ing it with WCF and RPC. RPC is used as a sort of baseline since noth-
ing could be faster, but it does provide a reliable way of tracking speed
regressions. It is, however, illuminating when you compare WCF and
WWS. Figure 1 shows a comparison of the working set for a client

using WCF and WWS respectively. Th at’s a pretty dramatic margin, but
perhaps not that surprising when you think that the .NET Framework
is involved. Figure 2, however, should be surprising if you, like many
others, consider WCF to be state of the art. It shows the throughput in
operations per second for a server using WCF and WWS respectively.
WWS is more than twice as fast! Don’t get me wrong: Th ere is noth-
ing wrong with WCF or the .NET Framework, but when you need
something small and fast, it’s hard to beat C++ and native code. But
you know that already!

Th e WWS runtime is packaged in WebServices.dll, which is in-
cluded with Windows 7 and Windows Server 2008 R2. It is also
available as a system update for Windows XP and later. Functions
exported from WebServices.dll represent the WWS API and you
can gain access to them by linking to WebServices.lib and includ-
ing the WebServices.h header fi le from the Windows SDK. So far,

Application code

Service model

Channel

XML

Transports

Figure 3 Layered APIFigure 2 Comparing Server Throughput (Higher Is Better)

� WWS

� WCF

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0
TCP/Binary HTTP/UTF8

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="ttp://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://calculator.example.org/"
 targetNamespace="http://calculator.example.org/">

 <wsdl:types>
 <xsd:schema elementFormDefault="qualified"
 targetNamespace="http://calculator.example.org/">
 <xsd:element name="AddRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="first" type="xsd:double" />
 <xsd:element name="second" type="xsd:double" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="AddResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="result" type="xsd:double" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="AddRequestMessage">
 <wsdl:part name="parameters" element="tns:AddRequest" />
 </wsdl:message>
 <wsdl:message name="AddResponseMessage">

 <wsdl:part name="parameters" element="tns:AddResponse" />
 </wsdl:message>

 <wsdl:portType name="CalculatorPort">
 <wsdl:operation name="Add">
 <wsdl:input message="tns:AddRequestMessage" />
 <wsdl:output message="tns:AddResponseMessage" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="CalculatorBinding" type="tns:CalculatorPort">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Add">
 <soap:operation soapAction=
 "http://calculator.example.org/Add" style="document"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="CalculatorService">
 <wsdl:port name="CalculatorPort" binding="tns:CalculatorBinding">
 <soap:address location="http://localhost:81/calculator"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Figure 4 Web Service Defi nition

http://msdnmagazine.com

msdn magazine100 Windows with C++

so good. But what does the API look like? Well, unlike COM-style
APIs like that of XmlLite or Direct2D, this C API requires you to
imagine a set of logical layers and objects that live behind the scenes
and are just waiting to break out. Let’s fi rst take a look at it in terms
of layers. Figure 3 illustrates the layers of functionality exposed by
the WWS API, with each layer building upon the one beneath it.
Each layer is represented by a number of functions and structures
and provides a set of abstractions. As you can guess, the applica-
tion can make use of any of the layers, but for the most part you
will want to stick with the service model that provides the simplest
programming model and hides many of the details for you. Th e
transports layer is just a reminder that underneath it all there will
be some network protocol. WWS will use WinHTTP, HTTP.sys,
or Winsock, depending on the selected transport and whether it
is used to implement a client or server.

As its name suggests, the service model layer entirely abstracts
the SOAP message exchanges and models the logical Web service

operations as function calls. It does not, however, stand alone but
relies on the use of a command-line tool called Wsutil.exe from
the Windows SDK. Given a WSDL file, this tool will generate a
header file as well as a C source file with most of the code nec-
essary to both connect to a Web service of the given description
and to implement such a Web service, taking care to ensure the
channel binding is properly configured and messages are prop-
erly formatted. This is by far the simplest approach and provides
a programming model that is very much like what you would ex-
pect from traditional RPC.

Th e channel layer, on the other hand, exposes the messages sent
and received on a particular transport, but still optionally shields
you from having to actually format the messages yourself. Th e
benefi t here is that you are shielded from the particular transport
and encoding that is used. Th e channel layer is where you control
binding information and where you can secure your communica-
tion whether for authentication or privacy.

Th e XML layer exposes you to the formatting of messages and
serialization of data. You have full access to the content of mes-
sages but are shielded from the particular encoding whether
you’re communicating with text, binary or MTOM. You might
be surprised to hear that WWS has its own XML parser. Why
doesn’t it just use XmlLite? Although XmlLite is certainly light-
weight and very fast, it isn’t quite a perfect match for a number

WsError error;
HR(error.Create(0, 0));
// Something goes wrong . . .
ULONG stringCount = 0;
HR(error.GetProperty(WS_ERROR_PROPERTY_STRING_COUNT,&stringCount));

for (ULONG i = 0; i < stringCount; ++i)
{
 WS_STRING string;
 HR(error.GetString(i, &string));
 wprintf(L"Error %d: %.*s\n", i, string.length, string.chars);
}

Figure 6 Enumerate the Strings in an Error Object.

class WsHeap
{
 WS_HEAP* m_h;
public:
 WsHeap() : m_h(0)
 {}
 ~WsHeap()
 {
 if (0 != m_h) WsFreeHeap(m_h);
 }
 HRESULT Create(SIZE_T maxSize, SIZE_T trimSize,
 const WS_HEAP_PROPERTY* properties,
 ULONG propertyCount,
 in_opt WS_ERROR* error)
 {
 return WsCreateHeap(maxSize, trimSize, properties, propertyCount,
 &m_h, error);
 }
 operator WS_HEAP*() const
 {
 return m_h;
 }
};

Figure 7 Heap Object Wrapper

The error object can store a
number of strings with

different levels of information
about an error.

class WsError
{
 WS_ERROR* m_h;
public:
 WsError* m_h(0)
 {}
 ~WsError()
 {
 if (0 != m_h)
 }
 HRESULT Create(const WS_ERROR_PROPERTY* properties,
 ULONG propertyCount)
 {
 return WsCreateError(properties, propertyCount, &m_h);
 }
 HRESULT GetProperty(WS_ERROR_PROPERTY_ID id, void* buffer,
 ULONG bufferSize)
 {
 return WsGetErrorProperty(m_h, id, buffer, bufferSize);
 }
 template <typename T>
 HRESULT GetProperty(WS_ERROR_PROPERTY_ID id, out T* buffer)
 {
 return GetProperty(id, buffer, sizeof(T));
 }
 HRESULT GetString(ULONG index, WS_STRING* string)
 {
 return WsGetErrorString(m_h, index, string);
 }
 operator WS_ERROR*() const
 {
 return m_h;
 }
};

Figure 5 Error Object Wrapper

of reasons. Th e most obvious reason is that WWS needs to sup-
port diff erent encodings while XmlLite supports only text. SOAP
messages are also typically encoded using UTF-8, while XmlLite
exposes all properties with Unicode strings and this introduces
unnecessary cost when copying values. WWS also has very strict
memory consumption goals (there is actually an API for this, as
we’ll see later on) that cannot be met with XmlLite. In the end, the
WWS team was able to implement a custom parser specifi cally
for SOAP that is considerably faster than XmlLite. Keep in mind
that the WWS parser is not meant to replace XmlLite. As a general
purpose XML parser, it is hard to beat, but the WWS XML layer
provides developers with very specifi c features aimed at effi ciently
serializing data into and out of SOAP message using the subset of
XML required by SOAP.

Apart from the functions and data structures that logically
belong to these three layers, the WWS API provides a number
of facilities that are common to all layers, including error han-
dling, asynchronous completion, cancellation, memory manage-
ment and more. Because I have limited space and want to help
you get started quickly, I’m going to limit the rest of this article
to the use of the service model for building a Web service client
and server. In a future article, I’ll dig more deeply into the other
parts of WWS.

Getting Started
To get started, I’ll use the minimal Web service defi nition from
Figure 4. Th is WSDL document defi nes the types, messages,
operations, endpoints and channel bindings of the service. Th e fi rst
thing to do is run it through Wsutil.exe as follows:

Wsutil.exe Calculator.wsdl

Th is will produce a header fi le called Calculator.wsdl.h and a C
source fi le called Calculator.wsdl.c.

Before we take a look at what was generated, we need to get some
groundwork done, regardless of whether you’re implementing the
client or the server. Th e fi rst thing you’ll need is a way to express
error information. Th e WWS API exposes rich error informa-
tion both for its own functions as well as SOAP faults via an error
object. Being a C API, this object is represented by an opaque
handle and a set of functions. In this case, WS_ERROR* repre-

sents a handle to an error object and WsCreateError is the func-
tion that creates it. Th e object is freed by calling the WsFreeError
function. Th e error object can store a number of strings with dif-
ferent levels of information about an error. To retrieve these, you
need to fi rst determine how many strings are present. Th is is done
by calling the WsGetErrorProperty function, giving it the handle
to the error object and specifying the WS_ERROR_PROPERTY
_STRING_COUNT constant. Armed with this information, you
call the WsGetErrorString function, giving it the handle to the er-
ror object as well as the zero-based index of the string to retrieve.
You can also use the API functions to populate your own error
objects. Naturally, a little C++ will go a long way to making this
simpler and more reliable. Figure 5 provides a simple error object
wrapper. You can easily enumerate the strings in an error object,
as shown in Figure 6.

Th e next thing we’ll need is a heap object. Th e heap object pro-
vides precise control over memory allocation when producing or
consuming messages and when needing to allocate various other
API structures. It also simplifi es the programming model since
there is no need for you to know precisely how much memory is
required for any particular function to succeed. Many older func-
tions in the Windows SDK will, for example, either require you to
guess how much storage is required or to fi rst call a function in

class WsServiceProxy
{
 WS_SERVICE_PROXY* m_h;
public:
 WsServiceProxy() : m_h(0)
 {}
 ~WsServiceProxy()
 {
 if (0 != m_h)
 {
 Close(0, 0); // error
 WsFreeServiceProxy(m_h);
 }
 }
 HRESULT Open(const WS_ENDPOINT_ADDRESS* address,
 const WS_ASYNC_CONTEXT* asyncContext,
 WS_ERROR* error)

 {
 return WsOpenServiceProxy(m_h, address, asyncContext, error);
 }
 HRESULT Close(const WS_ASYNC_CONTEXT* asyncContext,
 WS_ERROR* error)
 {
 return WsCloseServiceProxy(m_h, asyncContext, error);
 }
 WS_SERVICE_PROXY** operator&()
 {
 return &m_h;
 }
 operator WS_SERVICE_PROXY*() const
 {
 return m_h;
 }
};

Figure 8 Service Proxy Wrapper

WsServiceProxy serviceProxy;

HR(CalculatorBinding_CreateServiceProxy(0, // template value
 0, // properties
 0, // property count
 &serviceProxy,
 error));

WS_ENDPOINT_ADDRESS address =
{
 {
 static_cast<ULONG>(wcslen(url)),
 const_cast<PWSTR>(url)
 }
};

HR(serviceProxy.Open(&address,
 0, // async context
 error));

Figure 9 Create and Open Service Proxy

msdn magazine102 Windows with C++

a particular way to determine how much memory you should
allocate for the function to succeed. The use of the WWS heap
object removes all this extra coding and provides a nice way to
control the memory usage of the API. This also comes in handy
from a security perspective where you may want to specify ex-
pected limits on how much the API may allocate. WS_HEAP*
represents a handle to a heap object and WsCreateHeap is the
function that creates it. The object is freed by calling the Ws-
FreeHeap function. Once it’s created, you can allocate memory
from the heap using the Ws Alloc function, but for this article
we’ll just pass the handle to the heap object to other API func-
tions for them to use as necessary.

Figure 7 provides a simple heap object wrapper. Given this, you
can create a heap object limited to 250 bytes as follows:

WsHeap heap;

HR(heap.Create(250, // max size
 0, // trim size
 0, // properties
 0, // property count
 error));

Notice how I’m passing the error object to the heap object’s Cre-
ate method. Should anything go wrong while creating the heap ob-
ject, I’ll be able to interrogate the error object to fi nd out the cause.

The Client
Th e client-side of the service model centers on the service proxy
object. Th e generated source code includes a function called
Calculator Binding_CreateServiceProxy. Th e name is derived from
that of the endpoint or binding name defi ned in the WSDL docu-
ment. Th is function creates a service proxy object and returns a
WS_SERVICE_PROXY* representing an opaque handle to that
object. Th e object is freed by calling the WsFreeServiceProxy func-
tion. Once created, your application can open the service endpoint
using the WsOpenServiceProxy function and then make calls
via the service proxy to the Web service. What exactly WsOpen-

ServiceProxy does is dependent on the transport being used. You
must also take care to close the service proxy prior to freeing the
object using the WsCloseServiceProxy function. Naturally, all of
this housekeeping can be nicely wrapped up in a simple class pro-
vided in Figure 8. Given this, you can create and open the service
proxy, as shown in Figure 9.

Th e WS_ENDPOINT_ADDRESS structure is used to address
the messages being sent. You will typically use this structure when
programming at the channel layer. In this case, we populate only
the URL portion and the service proxy takes care of the rest.

At this point, we can use another generated function namely
CalculatorBinding_Add, which unsurprisingly represents the Web
service’s Add operation. It really doesn’t get much easier than this:

const double first = 1.23;
const double second = 2.34;
double result = 0.0;

HR(CalculatorBinding_Add(serviceProxy,
 first,
 second,
 &result,
 heap,
 0, // properties
 0, // property count
 0, // async context
 error));

ASSERT(3.57 == result);

Once you are done interacting with the Web service you just need
to close the service proxy’s communication channel:

HR(serviceProxy.Close(0, // async context
 error));

WsServiceProxy serviceProxy;
const WS_STRING address =
{
 static_cast<ULONG>(wcslen(url)),
 const_cast<PWSTR>(url)
};

CalculatorBindingFunctionTable functions =
{
 AddCallback
};

WS_SERVICE_ENDPOINT* endpoint = 0;

HR(CalculatorBinding_CreateServiceEndpoint(0, // template value
 &address,
 &functions,
 0, // authz callback
 0, // properties
 0, // property count
 heap,
 &endpoint,
 error));

Figure 10 CalculatorBinding_CreateServiceEndpoint

class WsServiceHost
{
 WS_SERVICE_HOST* m_h;
public:
 WsServiceHost() : m_h(0)
 {}
 ~WsServiceHost()
 {
 if (0 != m_h)
 {
 Close(0, 0);
 WsFreeServiceHost(m_h);
 }
 }
 HRESULT Create(const WS_SERVICE_ENDPOINT** endpoints,
 const USHORT endpointCount,
 const WS_SERVICE_PROPERTY* properties,
 ULONG propertyCount, WS_ERROR* error)
 {
 return WsCreateServiceHost(endpoints, endpointCount, properties,
 propertyCount, &m_h, error);
 }
 HRESULT Open(const WS_ASYNC_CONTEXT* asyncContext, WS_ERROR* error)
 {
 return WsOpenServiceHost(m_h, asyncContext, error);
 }
 HRESULT Close(const WS_ASYNC_CONTEXT* asyncContext, WS_ERROR* error)
 {
 return WsCloseServiceHost(m_h, asyncContext, error);
 }
 operator WS_SERVICE_HOST*() const
 {
 return m_h;
 }
};

Figure 11 Service Host Wrapper

103November 2009msdnmagazine.com

http://msdnmagazine.com

The Server
While the client-side programming model centers on the service proxy,
the server instead creates and manages a service host, which provides
the necessary runtime to listen on the various endpoints based on
the provided channel information. Again, because we’re using the
service model, most of the details are abstracted away, and we’re left
only to create the service endpoint and host. WWS will do the rest.

Th e fi rst step is to create the service endpoint. Th e service model
takes care of this in the form of another generated function, namely
Calculator Binding_CreateServiceEndpoint, as Figure 10 shows.
Creating the endpoint requires specifying the address on which the
endpoint is going to listen. Th is is provided by the WS_STRING struc-
ture, which is a length-prefi xed Unicode string and is not required to
be null terminated. Because the endpoint is responsible for fulfi lling
requests, you need to provide a table of function pointers mapping to
the operations exposed by the service. Th e generated CalculatorBinding-

FunctionTable structure is used for this purpose. Finally, the endpoint
itself is represented by the WS_SERVICE_ENDPOINT structure and
is allocated in the provided heap.

Th e next step is to create the service host. WS_SERVICE_
HOST* represents a handle to a service host object and WsCreate-
ServiceHost is the function that creates it. Th e object is freed by
calling the WsFreeServiceHost function. Th e WsCreateServiceHost
function creates the service host object given a list of endpoints.
At this point, you can start the listeners on all the endpoints using
the WsOpenServiceHost function. Stop the communication using
the WsCloseServiceHost function. As with the service proxy, be
sure to close the service host prior to freeing it. Again, all of this
housekeeping can be nicely wrapped up in a simple class provided
in Figure 11. Given this, you can start the Web service as follows:

const WS_SERVICE_ENDPOINT* endpoints[] = { endpoint };

WsServiceHost serviceHost;

HR(serviceHost.Create(endpoints,
 _countof(endpoints),
 0, // properties
 0, // property count
 error));

HR(serviceHost.Open(0, // async context
 error));

In this case, there is only a single endpoint but you can see how
easy it would be to add additional endpoints to the service host.
When it is time to stop the service, you just need to close the ser-
vice host’s communication channels.

HR(serviceHost.Close(0, // async context
 error));

Actually implementing the Web service operation is about the
easiest part:

HRESULT CALLBACK AddCallback(__in const WS_OPERATION_CONTEXT*,

 __in double first,
 __in double second,
 __out double* result,
 __in_opt const WS_ASYNC_CONTEXT* /*asyncContext*/,
 __in_opt WS_ERROR* /*error*/)
{
 *result = first + second;
 return S_OK;
}

Th e signature for the AddCallback function is also provided
by the generated source code, should you have any doubts about
how to specify it.

And that’s all I have space for this month, but you should now
have a good idea of the features and benefi ts that the Windows Web
Services API has to off er. As you can see, C++ developers fi nally
have a modern SOAP stack right out of the box. It off ers the best
possible performance and memory usage and is a pleasure to use
with a little help from C++. 

Various teams at Microsoft have already started
adopting the Windows Web Services (WWS) API within their own
products or technologies. In many cases, this replaces custom-
built SOAP stacks and some even chose to replace commercial
implementations like Windows Communication Foundation (WCF)
with WWS. Here are just a few examples.

The Microsoft Web Services on Devices (WSD) API enables
developers to write clients and servers based on the Devices
Profi le for Web Services (DPWS). In Windows 7, the WSD API has
started using WWS for the creation and canonicalization of XML
in SOAP messages that the WSD runtime sends out. The WSD
team plans to expand their use of WWS as they add new features
and refactor existing code.

Windows CardSpace is Microsoft’s implementation of an
identity system based on Web service standards. Originally
implemented with WCF, it is being rewritten using native code
and WWS to meet very strict business requirements on the size of
the downloadable installer and the runtime working set.

The Microsoft Forefront Threat Management Gateway (TMG) is
a security platform providing fi rewall and caching features to
secure and improve the performance of networks. Its URL fi ltering
feature uses WWS to connect to the Microsoft Reputation Service
to categorize URLs.

Finally, the Windows Public Key Infrastructure (PKI) client
provides automatic lifecycle management of certifi cates with auto
enrollment as well as user and application driven certifi cate
enrollment. Windows 7 introduces a new set of Web services that
allow for certifi cate enrollment to be completed without the
traditional limitations of LDAP and DCOM. The PKI client makes
use of WWS for all operations, including a new Certifi cate
Enrollment Policy (MS-XCEP) protocol and a WS-Trust extension
for certifi cate enrollment (MS-WSTEP). The WWS client commu-
nicates with a new set of Active Directory Certifi cate Services in
Windows Server 2008 R2 that are implemented with WCF, as well
as with Web services provided by public certifi cate issuers.

Who’s Using It?

KENNY KERR is a soft ware craft sman specializing in soft ware development for
Windows. He has a passion for writing and teaching developers about program-
ming and soft ware design. You can reach Kerr at weblogs.asp.net/kennykerr.

THANKS to the following technical expert for reviewing this article: Nikola
Dudar

msdn magazine104 Windows with C++

	Back
	Print
	MSDN Magazine, November 2009
	Contents
	Toolbox
	CLR Inside Out
	Cutting Edge
	Claims-Based Apps with WIF
	AD FS 2.0 in Identity Solution
	Digital Signatures
	N-Tier Apps and the EF
	Security Briefs
	Under the Table
	Foundations
	Windows with C++

