

Microsoft Dynamics® GP

Using a .NET Assembly from

a Dexterity®-based

Application

White Paper

This paper describes how to create a .NET assembly and use it
in a Dexterity-based application.

Date: July, 2008

INNOVATE

2

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

Table of Contents

Introduction .. 3

Getting Started ... 3
Create a Project .. 3
Add Code for the Class .. 3
Edit the Assembly Information .. 5

Building and Registering the .NET Assembly ... 5
Build the .NET Assembly .. 5
Register the .NET Assembly ... 5
Create the COM Type Library .. 6
Create and Merge the Registry File .. 6

Using the .NET Assembly ... 6
Create a Dexterity-based Application ... 6
Add Resources to the Application Dictionary ... 6
Run the Test Application .. 7

Conclusion .. 8

3

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

Introduction

This document describes the steps to write a C# class and compile it into a .NET assembly that can be
called via COM from a Dexterity-based application such as Microsoft Dynamics GP. After the .NET
assembly is created, a Dexterity script is created that calls and tests the code in the assembly.

The C# class created for this example is a simple. However, more complex projects can be created
and used successfully. This document assumes that the reader has some experience with Microsoft
Dynamics GP, Microsoft Dexterity, and Microsoft Visual C#®.

This example was created and tested using the following:

 Microsoft Dynamics GP 10.0 SP2

 Microsoft Dexterity 10.0.313

 Microsoft Visual Studio® 2005 SP1

Getting Started

The first step is to use C# to create the .NET assembly that will be used from within the Dexterity-
based application.

Create a Project

Launch Microsoft Visual Studio. After the development environment is started, choose to create a new
project. Select Visual C# as the project type, and use the Class Library template. For this example,

set the name of the project to SimpleProperties. Click OK to create the project.

Add Code for the Class

In Solution Explorer, rename the default file Class1.cs to SimpleProperties.cs. Enter the

following C# code for the SimpleProperties.cs file to replace the default generated code. When you are

creating your own .NET assembly, you will use a tool like GUIDGen to create your own GUID attribute
value that uniquely identifies the COM interface.

Script: SimpleProperties.cs

using System;

using System.Runtime.InteropServices;

namespace SimpleProperties

{

 public class SimpleProperties

 {

 [GuidAttribute("AD4760A9-6F5C-4435-8844-D0BA7C66AC50"),

 ClassInterface(ClassInterfaceType.AutoDual)

 ComVisible(true)]

 public class ConvertDollars

 {

 private short cnts;

 private int dlrs;

 private int amnt;

4

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

 public ConvertDollars()

 { // Arbitrarily initialize this object instance to $10.25

 dlrs = 10;

 cnts = 25;

 }

 public ConvertDollars(int x)

 {

 // Second constructor, not available to COM.

 // Set a different field with this constructor.

 amount = x;

 }

 // Getter and setter methods for our properties.

 public int amount

 {

 get {return amnt;}

 set {amnt = value;}

 }

 public short cents

 {

 get {return cnts;}

 set {cnts = value;}

 }

 public int dollars

 {

 get {return dlrs;}

 set {dlrs = value;}

 }

 // This one is read-only for illustration purposes.

 public string sAmount

 {

 get {return "$" + dollars.ToString() + "." + cents.ToString();}

 }

 // This is the only method of this class. It takes a

 // string "in" as well as an "inout" reference param string array.

 public string SetArray(string s,ref string[] myarray)

 {

 // The example is passing a 5-element array.

 // C# uses a zero-based array

 // and Dexterity uses a one-based array.

 // Note that Dexterity will crash if this array is resized

 // because Dexterity cannot dynamically resize an array.

 try

 {

 myarray[0] = "one";

 myarray[1] = "two";

 myarray[2] = "three";

 myarray[3] = "four";

 myarray[4] = "five";

5

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

 return s; // Pass back in the string sent

 }

 catch(Exception e)

 {

 return "Exception caught:" + e.Message;

 }

 finally

 {

 }

 }

 }

 }

}

Edit the Assembly Information

In Solution Explorer, expand the Properties node and open the AssemblyInfo.cs file. This file

specifies how the .NET assembly will be created. Locate the ComVisible attribute and set its value to
true. This allows the .NET assembly to be accessed through COM. Save the changes and close the file.

// Setting ComVisible to false makes the types in this assembly not visible

// to COM components. If you need to access a type in this assembly from

// COM, set the ComVisible attribute to true on that type.

[assembly: ComVisible(true)]

Another way to set this property is to use the Assembly Information window. In Solution Explorer,
right-click the project and choose Properties. Display the Application properties. Click the Assembly
Information button. In the Assembly Information window, mark the Make assembly COM-Visible check

box, and then click OK.

Building and Registering the .NET Assembly

After the code is complete, you will build and register the .NET assembly.

Build the .NET Assembly

From the File menu, choose Save All to save your work. From the Build menu, choose to build the
project, which will generate the .NET assembly. If the build operation is successful, Visual Studio will
have generated a debug version of the SimpleProperties.dll assembly. This assembly is created in the

\bin\debug folder for your Visual Studio project. At this point, copy the SimpleProperties.dll from that
folder into the folder where you have Dexterity installed.

Register the .NET Assembly

The RegAsm.exe utility included with the Microsoft .NET Framework 2.0 is used to register the .NET

assembly. It is also used to create a registry file and a type library file that describe the assembly.
This utility is typically found in this location:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\regasm.exe

The following examples assume that the path to this location is set in the PATH environment variable.
If it is not, then the location to the RegAsm.exe must be fully-qualified when you use it.

The RegAsm.exe is called from a command prompt. The utility must be run with administrative

privileges. On Windows® XP or Server 2003 you must be part of the Administrators group. On
Windows Vista and Server 2008, you must start the command prompt with elevated privileges.

6

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

Open the command prompt. Set the current directory to the location where you copied the
SimpleProperties.dll assembly. Use RegAsm.exe to register all of the public classes in the assembly.
For example, the following command registers the SimpleProperties assembly.

regasm SimpleProperties.dll

Create the COM Type Library

The COM type library must be created that describes the COM objects that are available in the
assembly. Using the RegAsm.exe application, create .tlb file that contains the definitions of the public
types in the assembly. The following command creates the .tlb for the SimpleProperties assembly.

regasm SimpleProperties.dll /tlb:SimpleProperties.tlb

This is the type library you will reference from within Dexterity to access the capabilities made
available through COM. When your application accesses the assembly you created with C#, the
assembly and type library should be located in the same directory as Dexterity (Dex.exe) or the

Runtime engine (Dynamics.exe).

Create and Merge the Registry File

A registry file must be created to allow access to the assembly through COM. Using the RegAsm.exe
application, create a registry file that describes the assembly. This file must be merged into the
registry on any systems that use the .NET assembly. The following command creates the .reg file for
the SimpleProperties assembly.

regasm SimpleProperties.dll /regfile:SimpleProperties.reg

To merge the information from the SimpleProperties.reg file into the registry, type the following in the
command line:

SimpleProperties.reg

Or, double-click the SimpleProperties.reg file to include it into the registry. Click Yes in the dialog that

is displayed to merge the registry information.

Close the command prompt.

Using the .NET Assembly

After the .NET assembly has been created and registered, it can be used from the Dexterity-based
application.

Create a Dexterity-based Application

To test the .NET assembly, you will build a stand-alone Dexterity application. Launch

Dexterity. When prompted, choose the option to create a new dictionary with a Main Menu

form. Specify the name and location of the new dictionary. For this document, the path and

file name used is c:\dexterity\app.dic. Click OK to create the dictionary.

Add Resources to the Application Dictionary

Use the following procedure to add resources to the text dictionary.

1. After the Resource Explorer window opens, expand the Base node and select Libraries. Click the
New button. The Library Definition window will appear.

2. In this window, specify COM Type Library as the type of library being created. Click the Name
lookup button and choose the SimpleProperties COM library file that was registered in the previous

section. Click OK button to save this library definition.

7

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

3. In the Resource Explorer, select the Forms node from the Resources list. In the right-hand pane
of the Resource Explorer, double click the Main Menu item to open the Main Menu form. Click New
on the Form Definition window to create a new window on the Main Menu form. The Layout
window will open.

4. In the Layout window, create a new local push button by selecting the Push Button tool from the
Toolbox and clicking on the window layout. Double-click the new button to open the Script Editor
window.

5. In the Script Editor, paste the following Dexterity code. Note that curly brackets are beginning
and ending comment markers for the Dexterity scripting language and will be ignored by the
compiler.

Script: Button Change Script

local SimpleProperties.ConvertDollars obj;

local text tText;

local string ReturnValue;

local integer x;

local string myarray[5]; {5 element string array}

obj = new SimpleProperties.ConvertDollars();

{obj initializes with dollars = 10 and cents = 25}

tText = tText + "Object initialized to: " + str(obj.dollars)

 + "." + str(obj.cents) + char(13);

{Switch the dollars to 15}

obj.dollars = 15;

{Switch cents to 40}

obj.cents = 40;

tText = tText + "Dollars and cents switched to: " + str(obj.dollars)

 + "."+ str(obj.cents) + char(13);

{Return a string property}

tText = tText + "Getting a string property returned: "

 + str(obj.sAmount) + char(13);

{Pass in a string and string array}

ReturnValue = obj.SetArray("Test Array", myarray);

{Append to the output field the contents of the string array}

for x = 1 to 5 do

 tText = tText + "Array Element " + str(x) + ": "

 + myarray[x] + char(13);

end for;

{Destroy the object}

clear obj;

{Display the results}

warning tText;

6. Click Compile to compile the Dexterity code. Close the Script Editor. Close the Layout window,
and click Yes to save the changes. Finally, click OK to close the Form Definition window.

Run the Test Application

Use the following procedure to run the test application.

1. Choose Test Mode from the Debug menu, or press Control-T. Dexterity will switch to Test Mode
and automatically open the Main Menu form.

8

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

2. Click the button that was added in the previous section. The button script will be executed that
invokes the ConvertDollars class created in the SimpleProperties assembly and will display a dialog
box with the following results.

Object initialized to: 10.25

Dollars and cents switched to: 15.40
Getting a string property returned: $15.40
Array Element 1: one
Array Element 2: two
Array Element 3: three
Array Element 4: four
Array Element 5: five

Conclusion

By exposing managed .NET code to COM, a Dexterity-based application can be extended to take

advantage of the functionality and benefits of the Microsoft .NET Framework.

9

USING A .NET ASSEMBLY FROM A DEXTERITY-BASED APPLICATION

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS

TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, the Microsoft Dynamics Logo, Dexterity, Microsoft Dynamics, Visual C#, Visual Studio, Windows, and Windows Server are

either registered trademarks or trademarks of Microsoft Corporation, FRx Software Corporation, or Microsoft Business Solutions ApS

in the United States and/or other countries. Microsoft Business Solutions ApS is a subsidiary of Microsoft Corporation.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

	Introduction
	Getting Started
	Create a Project
	Add Code for the Class
	Edit the Assembly Information

	Building and Registering the .NET Assembly
	Build the .NET Assembly
	Register the .NET Assembly
	Create the COM Type Library
	Create and Merge the Registry File

	Using the .NET Assembly
	Create a Dexterity-based Application
	Add Resources to the Application Dictionary
	Run the Test Application

	Conclusion

