
 

 

Making Real-Time Decisions with 
Visual Studio Team System 2008 
White Paper 

May 2008 

For the latest information, please see www.microsoft.com/teamsystem  

http://www.microsoft.com/teamsystem


 

 

This is a preliminary document and may be changed substantially 
prior to final commercial release of the software described herein. 

The information contained in this document represents the current 
view of Microsoft Corporation on the issues discussed as of the date 
of publication. Because Microsoft must respond to changing market 
conditions, it should not be interpreted to be a commitment on the 
part of Microsoft, and Microsoft cannot guarantee the accuracy of 
any information presented after the date of publication. 

This white paper is for informational purposes only. MICROSOFT 
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR 
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. 

Complying with all applicable copyright laws is the responsibility of 
the user. Without limiting the rights under copyright, no part of this 
document may be reproduced, stored in or introduced into a retrieval 
system, or transmitted in any form or by any means (electronic, 
mechanical, photocopying, recording, or otherwise), or for any 
purpose, without the express written permission of Microsoft 
Corporation. 

Microsoft may have patents, patent applications, trademarks, 
copyrights, or other intellectual property rights covering subject 
matter in this document. Except as expressly provided in any written 
license agreement from Microsoft, the furnishing of this document 
does not give you any license to these patents, trademarks, 
copyrights, or other intellectual property. 

© 2008 Microsoft Corporation. All rights reserved. 

Microsoft, Excel, SQL Server, and Visual Studio are trademarks of 
the Microsoft group of companies  

All other trademarks are property of their respective owners. 

 

 



 

 

Overview ................................................................................................... 1 

Managing a Development Project .......................................................... 2 

Breakdown of Data Warehouse TfsWarehouse ................................... 6 

Analyzing the Quality Indicators Report and Making Decisions ........ 8 

Working with/Modifying Team Foundation Server Reports .............. 11 

Conclusion ............................................................................................. 20 

About the Author ................................................................................... 21 
 

CONTENTS 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 1 

The ―center‖ of the Microsoft
®
 Visual Studio

®
 Team System 2008 Team 

Foundation Server universe is a Microsoft SQL Server™ OLAP Data 

Warehouse that tracks and stores information based on many developer 

activities in a Team System environment. You create a Team Project in 

Team Foundation Server, and crate a build definition–that data is recorded. 

You write code and execute unit tests–that data is recorded. You find and log 

bugs for your project– that data is recorded. You add, change, and remove 

lines of code (do you see a pattern emerging here?) that data is recorded. 

For nearly every activity that a team engages in there are records created in 

Team Foundation Server. That data tracking activity - often revealed through 

reports - becomes information that Project Managers, Development Leads, 

and other stakeholders can use to make project decisions. 

The world of software development has many nouns and verbs - bugs, 

hours, priority, triage, test, scenario, code change, etc. - along with many 

other factors and activities. Getting a handle (now, not later) on what areas of 

your project are solid (and aren’t solid), what’s currently happening, and also 

possessing facts on what has happened in the past, can all be very helpful in 

planning as well as making on-demand decisions. Team Foundation Server 

helps you to turn all of this raw data from your team’s daily activities into 

information that you can analyze to gauge your team’s performance with 

respect to your goals. 

Team Foundation Server provides an entire reporting infrastructure to help 

development teams make decisions on iteration planning, test coverage, bug 

trends, project schedules, resource allocation, and more. The reporting 

infrastructure is comprised of pre-built SQL Server 2005 Reporting Services 

reports, as well as an open-architecture OLAP Data Warehouse for building 

your own custom analysis. Team Foundation Server does this by storing all 

of the project information and activities and providing over a dozen reports at 

the click of a button.  

Do you want to track bugs by priority? Are you concerned whether your QA 

team is finding bugs quickly enough? Do you want to verify that each build 

contains sufficient code coverage testing when large amounts of code are 

added?  

This white paper will cover the following: 

 The types of challenges that software project managers face 

 The information items that Team Foundation Server tracks 

 The Team Foundation Server reports. As an example of what you 
can do with the kind of data Team Foundation Server helps you 
gather, the paper will drill down into one specific report (the Quality 
Indicators report). 

 How to modify/customize reports to your needs using SQL Server 
2005 Reporting Services and MDX, and even how to create new 
reports 

OVERVIEW 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 2 

A development manager must wear many hats and take on many roles. In 

one of those roles, a development manager must provide very current 

information to upper-level executives and project stakeholders about the 

status of a project. The manager must be able to answer questions about 

current and past productivity, how resources are currently being used, as 

well as whether additional resources may be needed in the future.  

The manager also needs to manage more detailed information ―in the 

trenches‖ with project team members on daily builds, prioritization of bugs, 

regression testing, bug rates, and utilization of each resource.   

Managers also need to monitor composite statistics, such as code churn 

(number of lines added, modified, or deleted from a file from one version to 

another):  they use this to measure the quantitative impact of code changes. 

Another common statistic that managers must consider is code coverage 

(the degree to which all aspects of a specific code module have been tested). 

Sometimes a picture can be worth a thousand words.  For example, a 

sudden spike in code churn indicates your team is adding or changing more 

lines of code, whereas a decreased trend likely means that fewer items are 

being added or changed, and therefore things may be moving towards 

stability.  

Team Foundation Server helps a development manager identify qualitative 

and quantitative information about key performance indicators in their team’s 

development process, their product, or even their entire business. Reporting 

features in Team Foundation Server makes this information available to help 

managers identify where their process needs to make adjustments to make 

their business process better Team Foundation Server captures the type of 

qualitative and quantitative information to assist you in making the types of 

decisions necessary to support your process, your product, or even your 

entire business.   

Key Performance Indicators to Analyze 

In trying to build a management evaluation process, one of the initial 

struggles can be identifying not only what data is critical for the process, but 

also how to easily obtain it, and how to output it in a meaningful way. Team 

Foundation Server has business intelligence features that enable you to 

analyze key performance indicators about a development project, and a 

flexible reporting architecture to turn tracked indicators into something that 

everyone can easily communicate.  

Any reporting architecture is only as effective as the quantity and quality of 

the raw underlying data used to drive the reports. Team Foundation Server 

tracks many key pieces of information that translate to indicators that a 

manager can use to not only track performance of your development team, 

but report progress and status and overall trends to upper management. 

MANAGING A 

DEVELOPMENT PROJECT 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 3 

Team Foundation Server saves you the time of identifying and searching for 

key measures by providing reports that focus on important indicators such as 

the following: 

 Code churn (lines added/changed/removed from code for a 
corresponding check-in/build) 

 % of Code coverage (what percentage of code has been tested 
through unit tests). Note that you must enable code coverage for 
unit tests. 

 Bugs unassigned, priority of bugs, etc. 

 Planned work 

 Unit Tests failed/passed/inconclusive 

 Regression test 

As you’ll learn as you read on, Team Foundation Server reports show these 

measures in a variety of detail and summarized ways, providing thorough 

listings and visual representations of the data. 

The Team Foundation Server Reporting Architecture  

Understanding the Team Foundation Server Reporting Architecture means 

understanding two areas:  first, the content of the reports themselves, and 

second, the underlying data warehouse (TfsWareHouse) used to generate 

the reports. This next section will list each report with a brief description, and 

will also cover the elements of the Team Foundation Server data warehouse 

that serves as a data source for the reports. After covering the general list of 

reports and the general structure of the TfsWarehouse, this paper will take 

one of the most popular reports (Quality Indicators) and talk in detail about 

how data ―makes it‖ onto the report, and how a manager might effectively 

use the report. 

Available Reports and What They Do 

Table 1 describes all of the reports in Team Foundation Server, along with a 

brief description. Note that the Scenario Details report is only available in the 

MSF for Agile Software Development template, and the following four reports 

are only available in the MSF for CMMI Process Improvement template: 

Issues and Blocked Work Items, Requirement Details, Requirements Test 

History and Overview, and Triage. 

 Actual Quality vs. Planned Velocity 
Bubble chart of bugs found per scenario resolved. This can provide a 
quick glance of how healthy a project is. 

 Bug Rates 
Line chart of bugs active, bugs new and reactivated, and bugs 
resolved, by date 

 Bugs by Priority 
Stacked column chart of bugs found and fixed by priority, by date 

 Bugs Found Without Corresponding Tests 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 4 

A listing of bugs encountered without actual tests  
 

 Builds 
A listing of program builds; % of tests passed, and code 
churn/coverage statistics 

 Exit Criteria 
A listing to view the status of all identified exit criteria (events that 
must occur before the particular process is complete) 

 Issues and Blocked Work Items  
Report that shows remaining open issues as well as the trend 
toward resolving them. 

 Issues List 
Listing of open issues, assigned to person, priority, remaining hours 

 Load Test Detail/Summary 
Summary and detail reports on results of load testing on application 
performance 

 Project Velocity 
A line chart that shows the rate of planned work resolved and 
closed by date 

 Quality Indicators 
A detailed stacked column chart that is used to display overall 
project health: plots tests passed/failed/inconclusive as vertical 
bars, and code churn/code coverage/active bugs as lines.  

 Reactivations 
A column chart showing reactivated work items versus total work 
items 

 Regressions 
A listing of regression tests (tests that once passed and are now 
failing) 

 Related Work Items 
A listing of work items that are related to/dependant on other work 
items 

 Remaining Work 
A stacked area chart that shows active work remaining resolved and 
closed over time. Helps to predict when you will be at Code 
Complete. 

 Requirement Details/Test  
Report shows testing results against defined scenarios and 
requirements.  

 Requirements Test History 
Shows the progress of system testing of product requirements 
(functional, operational, security, safety, and interface) or user 
acceptance testing of customer requirements (scenarios and 
qualities of service) over the duration of an iteration. 

 Scenario Details 
Report provides information on each scenario (completion status, 
risks, and testing progress) 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 5 

 

 Tests Failing Without Active Bugs 
A listing of tests failing without any active bugs documented 

 Tests Passing With Active Bugs 
A listing of tests passing with active bugs still present 

 Triage 
Report shows every work item still in the proposed state and 
waiting prioritization 

 Unplanned Work 
A stacked area chart that shows total work versus remaining work, 
and distinguishes planned from unplanned tasks 
 

Note that each report includes several run-time parameters to scope the 

output. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 6 

Almost all report data comes from the Team Foundation Server Data 

Warehouse, called TfsWarehouse. When your development team uses Team 

System as part of their daily work tasks (e.g. add/change source code and 

check it in, post bugs, run unit tests, etc.), Team System actually posts this 

information to the TfsWarehouse. Team Foundation Server collects these 

activities as data that it can use in reports that reflect the activities of your 

development team. 

Figures 1 and 2 show the complete OLAP cube, TfsWarehouse, in Microsoft 

Analysis Services. Figure 1 shows the available measure groups, and figure 

2 shows the available dimensions that you can use to filter/scope the 

measure groups. 

 

Figure 1: The complete TfsWarehouse OLAP cube. 

 

BREAKDOWN OF DATA 

WAREHOUSE 

TFSWAREHOUSE 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 7 

  

Figure 2: The complete TfsWarehouse dimensions. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 8 

Suppose you’ve made some staffing changes to your development and QA 

testing team, just prior to starting your latest project. One of the reasons for 

the staffing change was because of the increasing number of new bugs with 

each new build, and a wild variation of failed tests across builds.   

As a manager you understand that even the best of development teams 

could produce a poor build—you are concerned with trends, especially as 

you get closer to milestones and delivery dates. Over a period of critical 

builds, you want to know the following: 

 Whether more tests are passing than failing 

 Whether the number active bugs is going up or down  

 How much code is being affected by each build  

 The trend of code churn with each changeset  

 If the % of code coverage testing has ever fallen below the team’s 
agreed-upon threshold 

One of the most popular Team Foundation Server reports is Quality 

Indicators, a chart that plots these very measures across builds (figure 3). 

When you run the report, you supply a project as a parameter, and the report 

will show tests passed/failed, how much code modules have been tested 

(code coverage), and the extent of code change (code churn). The Quality 

Indicators report provides an excellent ―quick-glance‖ of the overall status 

and trend of recent builds. 

So, after your team has gone through a few iterations of the following: 

 Added a Team System project to Team Foundation Server source 
control 

 Created build definitions   

 Defined unit tests 

 Released builds to QA, who in turn reported bugs (which were 
triaged), and then marked addressed bugs as either fixed or not 
fixed 

You can run the quality indicators report for a specific project, Build type, 

Platform, Flavor, and set of Builds themselves. (You define these parameters 

when you define the project and create Build Definitions). Figure 3 shows an 

example of the Quality Indicators report: 

ANALYZING THE 

QUALITY INDICATORS 

REPORT AND MAKING 

DECISIONS  



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 9 

 

Figure 3: Solution Explorer for an SSRS Report Server project. 

Additionally, you can use the information on the Quality Indicators report with 

your own knowledge of the project to make conclusions. Have you ever 

heard the old joke that goes, ―The operation was a success, but the patient 

didn’t make it?‖ You may form conclusions from what you don’t see on the 

report. For instance, maybe your team hasn’t built enough test definitions into 

the process. Perhaps your team was distracted by other changes and didn’t 

have time to define tests in certain areas.  

Other times, you may spot delays between large code churn and an increase 

in bugs–this could be due to Q/A backlog, lack of communication on 

changes, or other issues.  

You can use this Quality Indicators chart, along with your own knowledge of 

the project and the project team, to visually see if the overall health of your 

project builds is holding steady, improving, or getting worse. 

You may spot a trend from the Quality Indicators report and decide to drill 

down to details for a particular build. Perhaps the code churn is high and 

regression testing is finding new bugs:  therefore, you might want to look at 

reports that show regression testing data. Additionally, you want to make 

sure that your code coverage testing is commensurate with any increase in 

code churn. 

You may see an increase in active bugs as you draw closer to a milestone 

date, and you may decide to analyze the Remaining Work items report to see 

if you have the resources necessary to meet the milestone date. Or, you may 

be surprised by the high number of tests failed for a build and decide to run 

the Tests Failing report to try to zoom in on specifics for the failing tests. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 10 

Team Foundation Server reports contain a number of ―pairs‖ of summarized 

charts and detailed report listings—helping you to first view trends and then 

drill down to see supporting details. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 11 

Modifying Existing Reports 

No matter how much you may like ―out-of-the-box‖ reports, you’ll likely want 

to modify them at some point. Additionally, you may want to create a report 

that borrows pieces from multiple existing reports.  Team Foundation Server 

reports are ―open-architecture‖ in nature:  the reports themselves are SQL 

Server 2005 Reporting Services files (i.e., they all have an RDL extension). If 

you need to modify a report (from something as simple as changing a report 

header to something more involved, such as adding measures to a report), 

the steps are fairly easy. Essentially, you need to do the following: 

1. First, create a Report Server project  
2. Second, in the project, create a Data Source for the TfsWarehouse 

OLAP database (again, all Team System activities are ultimately 
posted to the Data Warehouse, so you’ll always need to use 
TfsWarehouse), and retrieve any of the reports you want to change 

3. Third, make the necessary report changes. Your changes might be 
data changes, changes to report input parameters, or report layout 
changes. 

4. Finally, publish the report to the Report Server that Team 
Foundation Server uses when users run the report 

Creating the Report Server Project 

Launch SQL Server 2005 Business Intelligence Development Studio, and 

create a new Report Server Project. For demonstration purposes just call the 

project Team Foundation Server Reports. You can store the project in the 

location best suited for your development environment. 

Defining the Report Data Source 

Second, you need to create a Data Source for any reports you retrieve. The 

Team Foundation Server reports use both the TfsWarehouse OLAP 

database from Analysis Services, along with the ―regular‖ SQL Server 

TfsWarehouse database. Right-click on the Shared Data Sources folder in 

Solution Explorer (Figure 3), and create the two data sources, one at a time. 

You must call them TfsReportDS (for the regular database), and 

TfsOlapReportDS (for the OLAP Database). 

Retrieve any of the reports you wish to modify. (Since you’re going to modify 

at least one of them, you may wish to just retrieve all of them now, even if 

you only plan to modify one or two for now). Right-click on the Reports folder 

in Solution Explorer, and select ―Add…Existing Item‖ to navigate to the 

stored RDL.  

As of this writing, the RDL files are stored in a zip file in either of the two 

locations, depending on whether you are using the MSF for Agile Software 

Development template or the MSF for CMMI Process Improvement template: 

C:\Program Files\Microsoft Visual Studio 2008 Team Foundation Server\TF 

Setup\MsfAgile_new.zip\Reports 

WORKING 

WITH/MODIFYING TEAM 

FOUNDATION SERVER 

REPORTS 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 12 

C:\Program Files\Microsoft Visual Studio 2008 Team Foundation Server\TF 

Setup\1033\MsfFormal_new.zip 

After you retrieve the report (in this example, I’ve retrieved the Quality 

Indicators Report), Solution Explorer should look like Figure 4. 

 

Figure 4: Solution Explorer for an SSRS Report Server project. 

 

Making Changes to the Report 

You can now open the report and make the necessary changes. Here are 

some definite ―things to know‖ about modifying the reports, which usually 

falls into three categories: changing data, changing parameters, and/or 

changing output. 

Changing Data on the Report 

As the OLAP database TfsWarehouse drives most of the report content, the 

SSRS report uses MDX to query the database. In a nutshell, MDX is to 

OLAP databases as T-SQL is to relational databases. At the end of this 

article, I’ll include some recommended references for MDX programming. 

Figure 5 shows the Data tab of the SSRS 2005 designer. Note the DataSet 

pull-down—this lists every set of data that the report uses (either for actual 

content, or to drive the content of report parameter pull-downs). Each 

DataSet contains MDX code to retrieve the necessary measures, often 

scoped to whatever filters/dimensions the report utilizes.  



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 13 

 

Figure 5: The Data tab of a Team Foundation Server report, showing DataSets 

and MDX code. 

Changing Parameters on the Report  

Most of the Team Foundation Server reports prompt for several parameters 

to scope the output of the report. For instance, the Quality Indicators chart 

prompts for the following parameters (the project, build type, platform, etc.) 

(Figure 6). 

 

Figure 6: User-specified parameters for the Quality Indicators Report. 

While a few parameters are free-form text, most parameters are pull-down 

lists that are driven by DataSet parameters. To see the definitions for these 

parameters, click on the main Reports pull-down option in the SSRS Layout 

designer and select the option for Report Parameters. You will see all of the 

parameters, along with options to define any of the parameter data sources 

(Figure 7). 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 14 

 

Figure 7: Report Parameters. 

 

You can see the connection to define a data-driven report parameter: 

1. First create a DataSet in the Data tab to define the data.   
2. Second, create a report Parameter. 
3. Third, in the report Parameter, specify the name of the DataSet that 

provides the data for the parameter. Also note (Figure 6) that you 
can define a parameter to contain multiple values—this is helpful if a 
user needs to run a report for multiple selections. 

Changing the Layout of a Report 

Finally, you can go to the Layout tab to make any physical changes to the 

layout of the report. The change might be something as simple as adding or 

changing a label, or something as complex as changing the nature of a chart. 

There are countless ways that you might change the layout of a report—far 

too many to consider all of them here. However, when a report contains a 

single large control (such as a chart control for the Quality Indicators report), 

it’s important to have a general understanding of the configuration of the 

chart. Figure 7 shows the chart options for the Quality Indicators chart:  a 

column chart that plots test aggregation counts as stacked bars, and plots 

other measures as lines. This type of output is helpful to visually analyze how 

the different measures potentially relate to each other. For each measure, 

you click on the value name in Figure 8 and select Edit to define the actual 

plot type and other plotting display options. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 15 

 

Figure 8: Chart Options for the Quality Indicators Report 

So what might be an example of a modification to this report? You might 

want to display information on the failed tests, or information on the active 

bugs, etc. In this case, you would go to the layout and add a new report 

Table control underneath the chart, and drag data from the report DataSet 

containing the necessary information. (Note that the level of detail you want 

to display may not exist, either in part or in full, in any of the existing 

DataSets. In that case, you’ll likely need to add some MDX code to retrieve 

the desired information. 

Publishing Changes to the Report 

You’re almost there! The final step is to publish the changes to the report. 

You’ll need to determine the name and location of your SSRS report server, 

and then enter those values into the Report Server Project options screen 

(Figure 9): 

 

  



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 16 

 

Figure 9: Report Server Property Page, with TargetReportFolder and 

TargetServerURL for deployment. 

After you specify the TargetReportFolder and TargetServerURL, you can 

right-click on the project and specify ―Deploy‖. Deployment is usually very 

fast, and you’ll be able to immediately see the effect of your changes! 

Writing Custom MDX Against the Data Warehouse 

Figure 4 showed an excerpt of MDX code for querying the TfsWarehouse 

OLAP database. As outlined earlier in this article, MDX is the programming 

language for querying SQL Server Analysis Services OLAP databases. You’ll 

need to have a good understanding of MDX if you want to build your own 

custom Team Foundation Server reports.  

Since the TfsWarehouse OLAP environment is really no different than any 

other general OLAP environment, you may find yourself wanting to extend 

the reporting capabilities programmatically. That is where MDX comes in. 

Here are some areas where you might want to use MDX: 

 Add new custom calculations to the TfsWarehouse OLAP cube. 

 Create custom MDX named sets for any special report 
requirements.  

Creating New Team Foundation Server Reports Using Microsoft 

Excel 2007 

The classic line in many OLAP environments is that the ultimate Business 

Intelligence reporting tool is Microsoft Excel. You or your managers may 

prefer to create new reports/charts against the TfsWarehouse using Excel 

2007. The steps to accomplish this are very easy. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 17 

First, from the main Excel 2007 toolbar, create a Data Connection to 

Microsoft Analysis Services (figure 10): 

 

Figure 10: Creating a Data Connection. 

Next, Excel will prompt you for the server name where the TfsWarehouse 

OLAP database resides. After you provide the server name (and any 

login/authentication information), Excel will prompt you for the OLAP 

database and the cube in figure 11 (in case the server contains more than 

one OLAP database): 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 18 

 

Figure 11: Select the TfsWarehouse OLAP database and the Team System 

cube. 

 

Finally, Excel will create a PivotTable work area and a PivotTable field list. 

You can then drag measures from the TfsWarehouse OLAP database onto 

the PivotTable work area (figure 12). You can also create charts as well. 

Finally, when you are finished, you can save the spreadsheet as a standard 

Excel file, or you can publish the spreadsheet to Excel Services for eventual 

deployment to SharePoint. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 19 

 

Figure 12: Available field list from the OLAP database. 



 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 20 

As team members use Team Foundation Server, their activities get fed into a 

SQL Server OLAP Data Warehouse. That activity data is a valuable source 

of information about that project. Team Foundation Server enables a 

manager to turn the information from the data warehouse into customizable 

reports.  It’s important to understand how Team System tracks development 

team activities and stores these activities in the data warehouse and how a 

development/project manager can use reports to analyze team performance. 

For a manager who needs to make real-time decisions as a project strives to 

reach milestones, it’s worth your time and effort to explore how Team 

Foundation Server enables the team to capture nearly all of a team’s 

activities. It’s important to study the Team Foundation Server Data 

Warehouse to see what information items are stored in the database, which 

items are important to your project’s success, and then generate reports that 

drive critical business decisions. 

References 

 You can find more information on working with Team Foundation 
Server reports at http://msdn.microsoft.com/library/bb906045.  

 For more information on writing MDX queries, I recommend the 
book Fast Track to MDX, by Mark Whitehorn, Robert Zare, Mosha 
Pasumansky.  

 I’ve also written an article for CoDe Magazine on MDX, at 
http://www.code-magazine.com/Article.aspx?quickid=0801051.  

 For more information on integrating Reporting Services 2005 with 
SharePoint, you can read the following white paper, at 
http://technet2.microsoft.com/windowsserver/WSS/en/library/61b
0a571-e337-4c98-b9da-19394682f49c1033.mspx?mfr=true. 

 Additionally, the following blog also covers Reporting Services 2005 
deployment to SharePoint: 
http://blogs.sqlxml.org/bryantlikes/articles/628.aspx  

CONCLUSION 

http://msdn.microsoft.com/library/bb906045
http://www.code-magazine.com/Article.aspx?quickid=0801051
http://technet2.microsoft.com/windowsserver/WSS/en/library/61b0a571-e337-4c98-b9da-19394682f49c1033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/WSS/en/library/61b0a571-e337-4c98-b9da-19394682f49c1033.mspx?mfr=true
http://blogs.sqlxml.org/bryantlikes/articles/628.aspx


 

 White Paper: Making Real-Time Decisions with Visual Studio Team System 2008 21 

Kevin S. Goff is the principal consult for Common Ground Solutions 

(www.commongroundsolutions.net), and has been a Microsoft .NET/C# MVP 

from 2005 to 2008. He is a .NET and SQL Server consultant, developer, 

trainer, and writer, and can be reached via his blog at 

www.TheBakersDozen.net, and via email at 

kgoff@commongroundsolutions.net.  

This white paper was developed in partnership with A23 Consulting. 

ABOUT THE AUTHOR 

mailto:kgoff@commongroundsolutions.net

