

[bookmark: _GoBack]

Hands-On Lab
Working with Persistent Chat

Lab version: 		1.0
Last updated:		7/14/2012

[image:]
1.
Contents
Overview	3
Setup	4
Exercise 1: Exploring Persistent Chat Functionality in the Lync API	10
Task 1 – Open the Visual Studio Solution	10
Task 2 – Persistent Chat Room and LyncClient Events	11
Task 3 – Get a List of Rooms that the User is Following	12
Task 4 – Send a Message to a Room	13
Task 5 - Run the Application	15
Exercise 2: Exploring Chat Room Add-Ins	17
Task 1 – Beginning the Exercise	17
Task 2 – Create a Persistent Chat Room Add-in	18
Task 3 – Accessing the Persistent Chat Room from the Add-in	19
Task 4 – Run and Debug the Add-in	21
Exercise 3: Building a Bot Using the Persistent Chat Server SDK	21
Task 1 – Create a Persistent Chat Endpoint	21
Task 2 – Open and Configure the Visual Studio Solution	22
Task 3 – Initializing a Persistent Chat Endpoint and Creating a Room	23
Task 4 – Associating an Add-In with a Room	25
Task 5 – Sending Messages to a Room	25
Task 6 – Leaving a Persistent Chat Room and Shutting Down the Persistent Chat Endpoint	26
Task 7 – Run the Application	26
Summary	28

[bookmark: _Toc252824781][bookmark: _Toc324164898]Overview
Lab Time: 60 Minutes
Lab Folder: C:\% Lync15TK %\Labs\4\Source\Before
0. The After folder contains the completed lab exercises.
Lab Overview: The Lync API introduces new Persistent Chat functionality that allows you to interact with Persistent Chat Rooms, or build an add-in that will run in a Persistent Chat conversation window.
In this lab, you will explore the classes in the Microsoft.Lync.Model.Room namespace and build a WPF application that demonstrates the various events exposed by Persistent Chat in the Lync API and a simple Persistent Chat add-in that will show a history of the messages in the room. You will also use the Microsoft.Rtc.Collaboration.PersistentChat namespace to create and alter chat rooms from the server.
In this lab solution, you will use the Lync Managed API to do the following:
· Set up event handlers for room events
· Get a list of rooms that the user is a member of
· Show a list of room participants
· Post a message to a room
· Display new messages as they are posted to the room
· Filter and format room messages
· Create and interact with chat rooms from a bot.

[bookmark: _Toc157870738]System Requirements: You must have the following items to complete this lab:
· Microsoft Visual Studio 2010
· Microsoft Lync
· Microsoft Lync Managed API
· Microsoft Lync Persistent Chat Server SDK
· UCMA 4.0 SDK
· Two accounts (referred to as the primary and secondary lab users in this document), provisioned for Microsoft Lync Server, that are able to successfully sign in to Lync.

Setup
In order to complete exercises in this lab, you will first need to create a Persistent Chat Room by doing the following:
Launch the Lync Server Management Shell from the Start menu.
Run the following command to create a new Persistent Chat Room category, make sure to replace the values in < … > with the correct values for the parameters. Take note of the category name you choose, also take note of the details the shell displays upon completion.
Name: Use “PersistentChatCategory” + the value of LocalSIPPort, e.g. PersistentChatCategory10600. LocalSIPPort refers to the unique port assigned for your use in this lab environment. Consult the lab setup documents to find your LocalSIPPort.
0. PowerShell
0. New-CSPersistentChatCategory -Name <String>
[image:]
Figure 1
Create a New Persistent Chat Category
Now that you have created a Persistent Chat category, run the following command to set who is allowed to join rooms in this category. Make sure to replace the values in < … > with the correct values for the parameters. Take note of the summary information displayed by the shell.
Identity represents the name of the Persistent Chat category created in the previous step; e.g.: PersistentChatCategory10600. You only need to specify the room name if there is only one Persistent Chat pool in your Lync Server topology.
AllowedMembers is a collection of users or reference to an Active Directory location containing users; e.g.: a PowerShell string array @(“OU=Domain Users,DC=Contoso,DC=com”, “CN=Users,DC=Contoso,DC=com").
PowerShell
Set-CSPersistentChatCategory -Identity <Identity> -AllowedMembers @("<Active Directory Container">)
[image:]
Figure 2
Set the AllowedMembers Property of a Persistent Chat Category
Run the following command to designate who should be allowed to create rooms in this category. Make sure to replace the values in < … > with the correct values for the parameters. Take note of the summary information displayed by the shell.
Identity represents the name of the Persistent Chat category created previously; e.g. PersistentChatCategory10600. You only need to specify the room name if there is only one Persistent Chat pool in your Lync Server topology.
Creators is a collection of users or reference to an Active Directory location containing users; e.g.: @("sip:username@contoso.com"). Set this to the SIP URI of your Primary Lab User.
PowerShell
Set-CsPersistentChatCategory –Identity <Identity> -Creators <"sip:username@contoso.com">
[image:]
Figure 3
Set the Creators Property of a Persistent Chat Category
Run the following command to designate whether rooms created under this category can send invitations to new members. Make sure to replace the values in < … > with the correct values for the parameters. Take note of the summary information displayed by the shell.
Identity represents the name of the Persistent Chat category created previously; e.g. PersistentChatCategory10600. You only need to specify the room name if there is only one Persistent Chat pool in your Lync Server topology.
Invitations is a Boolean value that specifies whether or not the category allows invitations. Set this to true.
PowerShell
Set-CsPersistentChatCategory -Identity <Identity> -Invitations $true
[image:]
Figure 4
Set the Invitations Flag of a Persistent Chat Category
Note: You can run the Set-CsPersistentChatCategory and set AllowedMembers, Creators, and Invitations at the same time; the steps are separated here for simplicity.
Run the following command to create a new Persistent Chat Room, make sure to replace the values in < … > with the correct values for the parameters. Take note of the summary information displayed by the shell.
Name represents the name of the room; e.g.: Room 10600
Category is the name of the category that created in the previous step
Description should be a brief summary of the room’s intent.
0. PowerShell
0. New-CSPersistentChatRoom -Name <String> -Category <String> -Description <String>
[image:]
Figure 5
Create a New Persistent Chat Room
Next, you need to specify which users should be able to manage this room. Managers can add members to a room and associate an add-in with the room. Run the following command to set the room's managers, make sure to replace the values in < … > with the correct values for the parameters. Take note of the summary information displayed by the shell.
Identity: the name of the Persistent Chat Room; e.g.: “Room 10600”
Members: the users to add as managers of the room formatted as a PowerShell array of strings; e.g.: @("sip:gdurzi@contoso.com").
PowerShell
Set-CsPersistentChatRoom -Identity <Identity> -Managers <Managers>
[image:]
Figure 6
Set the Managers of Property of a Persistent Chat Room
Next, you need to add your primary and secondary lab accounts as members of this new room. Run the following command to add members to the Persistent Chat Room, make sure to replace the values in < … > with the correct values for the parameters.
Identity: the name of the Persistent Chat Room; e.g.: “Room 10600”
Members: the users to add to the room formatted as a PowerShell array of strings; e.g.: @("sip:gdurzi@contoso.com", "sip:chrisa@contoso.com").
PowerShell
Set-CsPersistentChatRoom -Identity <Identity> -Members <Members>
[image:]
Figure 7
Set the Members Property of a Persistent Chat Room
Open Lync in your primary lab user’s remote desktop session. The Persistent Chat icon in the Lync client will have a badge showing the number 1 indicating that you have 1 invitation to join a new Persistent Chat Room. Right-click the room and choose the option to Follow this Room.
[image:]
Figure 8
The new Persistent Chat Room in the Lync client
Double-click the room name to enter the room.
Send a message to the room.
[image:]	
Figure 9
The primary lab user sending a message to the new Persistent Chat room
Open Lync in your secondary lab user’s remote desktop session and search for your Persistent Chat Room.
Double-click the room name to enter the room.
Send a message to the room. Note that the secondary lab user sees the message history in the room.
[image:]
Figure 10
The secondary lab user joins the new Persistent Chat Room and sends a message
Note: A Lync administrator can manage Persistent Chat categories, rooms, and add-ins using the Lync Server Control Panel or the PowerShell cmdlets. In upcoming versions of Lync 2013, end users will have access to an interface that they can use to create rooms.

Exercise 1: Exploring Persistent Chat Functionality in the Lync API
[bookmark: _Toc324164901]Task 1 – Open the Visual Studio Solution
In this task, you will open the project and prepare for the exercises in this lab.
Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
Click on the Microsoft Visual Studio 2010 icon to start Visual Studio 2010.
Select File >> Open Project.
Navigate to the folder C:\%Lync15TK%\Labs\4\Source\Before.
Open the LyncPersistentChat solution.
In Solution Explorer, right-click the LyncPersistentChat project and select Set as StartUp Project.
Select View >> Task List and select Comments from the menu.

[bookmark: _Toc252824786][bookmark: _Toc252824104][bookmark: _Toc324164902]Task 2 – Persistent Chat Room and LyncClient Events
In this task, you will subscribe to both Lync Client and Persistent Chat Room events. Subscribing to these events will allow you to see what happens when your code interacts with the Lync Persistent Chat Room.
Double click TODO: 4.1.1.
[bookmark: _Toc252824787][bookmark: _Toc252824105]Add the following code after the TODO: 4.1.1 comment. This code uses the LyncClient class to get a handle to the running instance of the Lync client. This code also subscribes to events for changes in the state of the Lync client.
C#
// Set up the Lync client and subscribe to changes in its state
_client = LyncClient.GetClient();
_client.StateChanged += Client_StateChanged;

// Subscribe to RoomManagerEvents
_client.RoomManager.FollowedRoomAdded += RoomManager_FollowedRoomAdded;
_client.RoomManager.FollowedRoomRemoved += RoomManager_FollowedRoomRemoved;
_client.RoomManager.RoomManagerStateChanged += RoomManager_RoomManagerStateChanged;
Double click TODO: 4.1.2.
Add the following code after the TODO: 4.1.2 comment. This code subscribes to the active room’s events.
1. C#
0. followedRoom.IsSendingMessage += followedRoom_IsSendingMessage;
0. followedRoom.JoinStateChanged += followedRoom_JoinStateChanged;
0. followedRoom.MessagesReceived += followedRoom_MessagesReceived;
0. followedRoom.ParticipantAdded += followedRoom_ParticipantAdded;
0. followedRoom.ParticipantRemoved += followedRoom_ParticipantRemoved;
0. followedRoom.PropertyChanged += followedRoom_PropertyChanged;
0. followedRoom.UnreadMessageCountChanged += followedRoom_UnreadMessageCountChanged;
[bookmark: _Toc252824788][bookmark: _Toc252824106]Double click TODO: 4.1.3.
Add the following code after the TODO: 4.1.3 comment. This code unsubscribes to the active room’s events. It will execute when the application’s selected room changes to avoid subscribing to the same room’s events twice.
0. C#
0. followedRoom.IsSendingMessage -= followedRoom_IsSendingMessage;
0. followedRoom.JoinStateChanged -= followedRoom_JoinStateChanged;
0. followedRoom.MessagesReceived -= followedRoom_MessagesReceived;
0. followedRoom.ParticipantAdded -= followedRoom_ParticipantAdded;
0. followedRoom.ParticipantRemoved -= followedRoom_ParticipantRemoved;
0. followedRoom.PropertyChanged -= followedRoom_PropertyChanged;
0. followedRoom.UnreadMessageCountChanged -= followedRoom_UnreadMessageCountChanged;

[bookmark: _Toc324164903]Task 3 – Get a List of Rooms that the User is Following
In this task, you will use the RoomManager class to get a collection of Persistent Chat Rooms that the user follows.
Navigate to TODO: 4.1.4.
Add the following code after the TODO: 4.1.4 comment. The following code will populate the Followed Rooms list box in the application by iterating through the LyncClient.RoomManager.FollowedRooms collection.
C#
// Iterate on the collection of Room instances that are followed by the user
foreach (Room followedRoom in _client.RoomManager.FollowedRooms)
{
 // Add a room to the Dictionary<string,Microsoft.Lync.Model.Room.Room>()
 // Dictionary entry key is room title and value is room instance
 _followedRoomsList.Add(
 followedRoom.Properties[RoomProperty.Title].ToString(),
 followedRoom);

 // Add a followed room title to the UI list box of followed room titles.
 // User selects a room title from the list box and the corresponding Room
 instance is obtained from the _followedRoomsList dictionary.

 lstFollowedRooms.Items.Add(
 followedRoom.Properties[RoomProperty.Title].ToString());
}
Note: The Lync client displays three lists of chat rooms: Followed, Member Of, and New. It is important to note that being a member of a room doesn’t necessarily mean that you are following it. To follow a room, you need to add it to your contact list in the Lync client. Only followed rooms are included in RoomManager.FollowedRooms.
Navigate to TODO: 4.1.5.
Add the following code after the TODO: 4.1.5 comment. This code will return the Room instance that matches the room that the user selects to see events for.
0. C#
0. stage = _client.RoomManager.FollowedRooms.Where(p =>
0. p.Properties[RoomProperty.Title].Equals(title)).FirstOrDefault();
[bookmark: _Toc252824789][bookmark: _Toc252824107]Navigate to TODO: 4.1.6.
Add the following code after the TODO: 4.1.6 comment. This code will use the LyncClient ContactManager class to retrieve the room participants’ DisplayName.
0. C#
0. displayName = _client.ContactManager
0. .GetContactByUri(roomUser.Uri)
0. .GetContactInformation(ContactInformationType.DisplayName).ToString();

[bookmark: _Toc324164904]Task 4 – Send a Message to a Room
In this task, you will send a message to a room, flag it as a specific type of message, and learn how to filter message contents prior to posting them to a room.
Navigate to TODO: 4.1.7.
Add the following code after the TODO: 4.1.7 comment. This code will create an instance of the RoomMessageType enumeration. The RoomMessageType enumeration denotes Alert, Regular and Story message types.
0. C#
0. RoomMessageType messageType = RoomMessageType.Regular;
Navigate to TODO: 4.1.8.
Add the following code after the TODO: 4.1.8 comment. This code will set the MessageType to Alert when the alert checkbox is checked in the application.
5. C#
0. [bookmark: _Toc252824790][bookmark: _Toc252824108]messageType = RoomMessageType.Alert;
Navigate to TODO: 4.1.9.
Add the following code after the TODO: 4.1.9 comment. This code will send a message to the selected room.
0. C#
0. // Start sending message using an asynchronous call and a lambda callback
0. room.BeginSendMessage(message, messageType, (ar) =>
0. {
0. string statusMessage = "";
0. try
0. {
0. // Pass the result of the call to the End method to complete the send.
0. room.EndSendMessage(ar);
0.
0. // Change text to show success.
0. statusMessage = "Message sent.";
0. }
0. catch
0. {
0. // Change text to show failure.
0. statusMessage = "Message failed to send.";
0. }
0. finally
0. {
0. // Clear text box text on UI thread.
0. Dispatcher.Invoke(
0. DispatcherPriority.Normal,
0. (Action)delegate()
0. {
0. txtMessage.Text = "";
0. txtMessageStatus.Text = statusMessage;
0. });
0. }
0. }, null);
Navigate to TODO: 4.1.10.
Add the following code after the TODO: 4.1.10 comment. This code enabled message filtering on outbound messaging which is necessary to filter the message contents.
0. C#
0. SelectedRoom.EnableOutgoingMessageFilter();
Navigate to TODO: 4.1.11.
Add the following code after the TODO: 4.1.11 comment. This code creates a RoomMessage instance based upon the RoomMessageEventArgs object that is filtered if the criteria are met.
0. C#
0. RoomMessage filteredMessage = e.Message;
Navigate to TODO: 4.1.12.
Add the following code after the TODO: 4.1.12 comment. This code will process the content of the message by filtering it appropriately in accordance to user interface filtered text value, which in this case is the filtering criterion.
0. C#
0. if (!string.IsNullOrEmpty(filterText) &&
0. ((string)filteredMessage.MessageDictionary
0. [RoomMessageFormat.PlainText]).IndexOf(filterText) >= 0)
0. {
0. var rtBox = new System.Windows.Forms.RichTextBox();
0. rtBox.Text = (string)filteredMessage.MessageDictionary
0. [RoomMessageFormat.PlainText];
0. rtBox.ForeColor = System.Drawing.Color.Red;
0.
0. filteredMessage.MessageDictionary[RoomMessageFormat.Rtf] = rtBox.Rtf;
0. SelectedRoom.SendFilteredMessage
0. (filteredMessage, RoomMessageFilteringAction.Replaced);
0. }
0. else
0. {
0. // send unaltered message
0. SelectedRoom.SendFilteredMessage(
0. filteredMessage,
0. RoomMessageFilteringAction.Passed);
0. }

[bookmark: _Toc324164905]Task 5 - Run the Application
In this task, you will run the application and examine Persistent Chat Room events in the client application.
Select a Followed Room, enter a message in the Send a Message text box, and hit Enter.
Notice the Events that fire and the message in the Room Messages Event list box.
[image:]
Figure 11
Persistent Chat Events
Select the Filter Message text box and enter a word that should be filtered, and then in the Send a Message text box type a message containing the word you would like to filter and hit Enter.
Notice that in the Lync Client the message is in red because Lync applied the filter.
[image:]
Figure 12
Sending a filtered message
[image:]
Figure 13
Filtered message in the Persistent Chat room
Close the application.

Exercise 2: Exploring Chat Room Add-Ins
[bookmark: _Toc324164907]Task 1 – Beginning the Exercise
In this task, you will open the project and set up some properties to allow you to run a web application that hosts a Persistent Chat add-in
Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
Click on the Microsoft Visual Studio 2010 icon to start Visual Studio 2010.
Select File >> Open Project.
Navigate to the folder C:\%Lync15TK%\Labs\4\Source\Before.
Open the LyncPersistentChat solution.
Right-click the LyncPersistentChat-AddIn.Web project and select Set as StartUp Project.
Right-click the LyncPersistentChat-AddIn.Web project and select Properties.
Open the Web tab.
Visual Studio’s built-in development web server automatically assigns a port to host the web application. However, in order to ensure that you are using a unique port, press [Ctrl]+[F5] to run the project and launch Visual Studio’s built-in web server. Make note of the port.
[image:]
Figure 1
Visual Studio’s built-in web server starts
Back on the Web tab of the project’s Properties dialog, under Use Visual Studio development server, choose Specific Port, and enter the port in the textbox.
[image:]
Figure 2
Configure Visual Studio’s built in web server to run on a specific port
Open the Page.xaml.cs file of the LyncPersistentChat-AddIn project.
Select View >> Task List and select Comments from the menu.
Run the Windows Registry file called CreateTrustedSitesEntry.reg that is in the LyncPersistentChat-AddIn project. This creates a registry entry that allows you to run Lync API code on the local host.
Run CreateTrustedSitesEntry.reg again the secondary lab user’s remote desktop session.

[bookmark: _Toc252824793][bookmark: _Toc252824111][bookmark: _Toc324164908]Task 2 – Create a Persistent Chat Room Add-in
In this task, you will define a Persistent Chat Room Add-in using the Lync Server Management Shell and associate it with the previously created Persistent Chat Room. Later in this exercise, you will complete the functionality of the add-in.
Launch the Lync Server Management Shell from the Start menu.
Run the following command to create a new Persistent Chat Room Add-in, make sure to replace the values in < … > with the correct values for the parameters.
Name is the name of the add-in; e.g.: AddIn10600
PersistentChatPoolFqdn is the fully qualified domain name of the Persistent Chat pool in your Lync Server topology; e.g.: w15-gc.contoso.com.
URL is the url of the new add-in; e.g.: http://localhost:6280.
9. PowerShell
73. New-CsPersistentChatAddin -Name <String> -PersistentChatPoolFqdn <String> -Url http://localhost:<Port>
[image:]
Figure 3
Creating a new Persistent Chat Room Add-In
Run the following command to associate the Persistent Chat Room Add-in created in the previous step to the Persistent Chat Room created at the beginning of this lab, make sure to replace the values in < … > with the correct values for the parameters.
Identity is the name of your Persistent Chat Room; e.g.: Room 10600
Addin is the name of the add-in; e.g.: AddIn10600
9. PowerShell
73. Set-CSPersistentChatRoom -Identity <String> -Addin <String>
[image:]
Figure 4
Associating an Add-In with a Persistent Chat Room
To make sure that the add-in was successfully associated with the Persistent Chat Room, open the Persistent Chat Room. You should see the add-in load. Next, you will build the functionality in the add-in.
[image:]
Figure 5
The Add-In loads in the Persistent Chat Room

[bookmark: _Toc252824794][bookmark: _Toc252824112][bookmark: _Toc324164909]Task 3 – Accessing the Persistent Chat Room from the Add-in
In this task, you will access the Persistent Chat Room that is hosting the add-in, and display the history of messages in the room.
1. Navigate to TODO: 4.2.1.
1. Add the following code after the TODO: 4.2.1 comment. This declares an instance of the Room class.
0. C#
0. private readonly Room _room = null;
1. Navigate to TODO: 4.2.2.
1. Add the following code after the TODO: 4.2.2 comment. This initializes an instance of the Room class using the LyncClient.GetHostingRoom method. The GetHostingRoom method accesses the Persistent Chat Room in which the add-in is running.
0. C#
0. //Get the hosting chat room
0. _room = (Room)LyncClient.GetHostingRoom();
1. Navigate to TODO: 4.2.3.
1. Add the following code after the TODO: 4.2.3 comment. If the room exists, it sets up an event handler for the MessageReceived event and calls the BeginRetrieveLatestMessages method of the Room class to get the 1000 most recent messages in the room.
C#
0. if (_room != null)
0. {
0. _room.BeginRetrieveLatestMessages(1000, GetMessagesCallback, "Latest");
0. _room.MessagesReceived += new
0. EventHandler<RoomMessagesEventArgs>(_room_MessagesReceived);
0. }
1. Navigate to TODO: 4.2.4.
1. Add the following code after the TODO: 4.2.4 comment. This calls the BeginRetrieveLatestMessages method of the Room class again to retrieve the latest messages in the message history.
C#
0. _room.BeginRetrieveLatestMessages(1000, GetMessagesCallback, "Latest");
1. Navigate to TODO: 4.2.5.
1. Add the following code after the TODO: 4.2.5 comment. This calls the EndRetrieveLatestMessages method in the callback method for the BeginRetrieveLatestMessages method call.
C#
0. //Get the collection of the latest messages sent
0. messages = _room.EndRetrieveLatestMessages(ar);

[bookmark: _Toc324164910]Task 4 – Run and Debug the Add-in
In this task, you will run the Add-in created in the last segment, and learn to debug your Add-in code.
Compile your Visual Studio solution.
Open your Persistent Chat Room.
Send some messages back and forth between your primary and secondary lab user accounts.
The messages are grouped in the add-in by day; you can expand a day to see the messages from that day.
[image:]
Figure 6
A Persistent Chat add-in that groups messages by day

Exercise 3: Building a Bot Using the Persistent Chat Server SDK
[bookmark: _Toc324164912]Task 1 – Create a Persistent Chat Endpoint
In this task, you will use the Lync Server Management Shell to create a Persistent Chat endpoint.
Launch the Lync Server Management Shell from the Start menu.
Run the following command to create a new Persistent Chat endpoint. Make sure to replace the values in < … > with the correct values for the parameters. Take note of the category name you choose, also take note of the details the shell displays upon completion.
SipAddress: represents the sip address that this endpoint uses. In the lab, use the following naming convention: “sip:PersistentChatEndpoint” + the value of LocalSIPPort + “@contoso.com”, e.g. sip:PersistentChatEndpoint10600@contoso.com.
PersistentChatPoolFqdn: represents the fully qualified domain name of the Persistent Chat pool. In the lab environment, this is w15-gc.contoso.com.
C#
New-CsPersistentChatEndpoint -SipAddress <String>
-PersistentChatPoolFqdn <String>
[image:]
Figure 7
Create a Persistent Chat Endpoint

[bookmark: _Toc324164913]Task 2 – Open and Configure the Visual Studio Solution
In this task, you will open the project and put the proper configuration values in the App.config file.
Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
Right click on the Microsoft Visual Studio 2010 icon and select Run as Administrator to start Visual Studio 2010.
Select File >> Open Project.
Navigate to the folder C:\%Lync15TK%\Labs\4\Source\Before.
Open the LyncPersistentChat solution.
In Solution Explorer, right-click the LyncPersistentChat-ServerSDKBot project and select Set as StartUp Project.
Select View >> Task List and select Comments from the menu.
Open the file App.config.
Change the ApplicationId to the application id assigned to you, e.g. urn:application:LabApp10600.
Change the ApplicationName to the application name assigned to you, e.g. LabApp10600.
Change PrimaryLabUserId to the SIP address of your primary lab account.
Change PersistentChatEndpointUri to the SIP address of the Persistent Chat endpoint you created in the previous task.
Change PersistentChatAddInUri to the URL of the add-in you created in Exercise 2; e.g. http://localhost:6280.
Change RoomNamePrefix to “Lab” + the value of LocalSIPPort; e.g. Lab10600.
Open the file “ServerSDKBot.cs”.

[bookmark: _Toc324164914]Task 3 – Initializing a Persistent Chat Endpoint and Creating a Room
In this task, you will establish a Persistent Chat endpoint and create a room using the Persistent Chat Server SDK.
Navigate to TODO: 4.3.1.
Add the following code after the TODO: 4.3.1 comment. This code creates a Persistent Chat endpoint for the given User Endpoint.
C#
_persistentChatEndpoint = new PersistentChatEndpoint(
	new Uri(_persistentChatEndpointUri),
	_userEndpoint);

Navigate to TODO: 4.3.2.
Add the following code after the TODO: 4.3.2 comment.
The PersistentChatEndpoint class exposes a PersistentChatServices class which you can use to access ChatRoomManagementServices to perform operations on rooms. This code run when the BeginFindCategoriesWithCreateRights asynchronous operation has completed; and returns the categories which the user has permission to create rooms in.
C#
categories = _persistentChatEndpoint
			.PersistentChatServices
			.ChatRoomManagementServices
			.EndFindCategoriesWithCreateRights(ar);

Navigate to TODO: 4.3.3.
Add the following code after the TODO: 4.3.3 comment.
This code runs after the BeginCreateChatRoom asynchronous operation has completed; and returns the Uri of the newly created room.
C#
newRoomUri = _persistentChatEndpoint
			.PersistentChatServices
			.ChatRoomManagementServices
			.EndCreateChatRoom(arCreateRoom);

Navigate to TODO: 4.3.4.
Add the following code after the TODO: 4.3.4 comment.
After using PersistentChatServices.UserAdministrationServices to find the user with the specified SIP URI, this code adds the user to the members list of the newly created room.
C#
_persistentChatEndpoint
	.PersistentChatServices
	.ChatRoomManagementServices
	.EndAddUsersOrGroupsToRole(asr);

Navigate to TODO: 4.3.5.
Add the following code after the TODO: 4.3.5 comment.
This code will create and join a Persistent Chat room session, which serves as the connection between the room and the endpoint.
C#
_chatRoomSession = new ChatRoomSession(_persistentChatEndpoint);
_chatRoomSession.ChatRoomSessionStateChanged += OnChatRoomSessionStateChanged;
_chatRoomSession.BeginJoin(
	chatRoomName,
	ar =>
	{
		try
		{
			_chatRoomSession.EndJoin(ar);
			Console.WriteLine("Joined chat room: " + chatRoomName);
			AssociateAddInToRoom();
		}
		catch (Exception ex)
		{
			Console.WriteLine(ex);
		}
	}, null);

[bookmark: _Toc324164915]Task 4 – Associating an Add-In with a Room
In this task, you will configure the room to use the add-in you created in Exercise 2.
Navigate to TODO: 4.3.6.
Add the following code after the TODO: 4.3.6 comment.
This code runs after the BeginGetAllAddIns asynchronous operation has completed and retrieved all the registered add-ins; it then finds the specific add-in using its Uri.
C#
addins = _persistentChatEndpoint
		.PersistentChatServices
		.ChatRoomManagementServices
		.EndGetAllAddIns(ar);
myAddin = addins.FirstOrDefault(
	a => a.UriString.Equals(_persistentChatAddInUri,
		StringComparison.InvariantCultureIgnoreCase));

Navigate to TODO: 4.3.7.
Add the following code after the TODO: 4.3.7 comment.
This code runs after the BeginUpdateChatRoom asynchronous operation has completed; and associates the add-in with the room.
C#
_persistentChatEndpoint
	.PersistentChatServices
	.ChatRoomManagementServices
	.EndUpdateChatRoom(arUpdateChatRoom);

[bookmark: _Toc324164916]Task 5 – Sending Messages to a Room
In this task, you will send messages to the chat room using the ChatRoomSession object.
Navigate to TODO: 4.3.8.
Add the following code after the TODO: 4.3.8 comment. This code sends a text message to the chat room.
C#
_chatRoomSession.BeginSendChatMessage(
 string.Format("{0} - {1}", title, link),
 ar =>
 {
 try
 {
 _chatRoomSession.EndSendChatMessage(ar);
 }
 catch (RealTimeException ex)
 {
 Console.WriteLine(ex);
 }
 }, null);

[bookmark: _Toc324164917]Task 6 – Leaving a Persistent Chat Room and Shutting Down the Persistent Chat Endpoint
In this task, you will leave the chat room session and then shut down the endpoint.
Navigate to TODO: 4.3.9.
 Add the following code after the TODO: 4.3.9 comment. This code leaves the session and shuts down the endpoint.
C#
_chatRoomSession.BeginLeave(ar =>
{
	try
	{
		_chatRoomSession.EndLeave(ar);
	}
	catch (RealTimeException ex)
	{
		Console.WriteLine(ex);
	}

	_persistentChatEndpoint.BeginTerminate(terminateAsyncResult =>
	{
		try
		{
			_persistentChatEndpoint.EndTerminate(terminateAsyncResult);

			Console.WriteLine("Persistent Chat endpoint terminated.");

			TerminateEndpoint();
		}
		catch (RealTimeException ex)
		{
			Console.WriteLine(ex);
		}
	}, null);
 }, null);

[bookmark: _Toc324164918]Task 7 – Run the Application
In this task, you will verify that all the previous steps have resulted in a working test application.
Press [Crtl]+[F5] to run the application.
You can see in the console the new room being created, an addin associated with it, and the bot begin to send messages to the room.
[image:]
Figure 1
Create Persistent Chat room and start sending messages
Switch over to the Lync client and observe that you have an invitation to join the newly created Persistent Chat room.
[image:]
Figure 2
The Invitation to Join the Room
Double-click on the new room to open it. You should see some messages in the chat pane along with your addin inhabiting the right pane.
[image:]
Figure 3
The messages in the room and the associated addin
Press [Enter] to shut down the application.

Summary
In the first exercise this lab, you used the Microsoft Lync Managed API to subscribe and unsubscribe to events for both the Lync client and Persistent Chat Rooms, you also learned how to send and filter message contents. In the second exercise in this lab you learned how to create a Persistent Chat Room add-in that retrieves a history of messages in the room. In the third exercise you learned how to create and utilize Persistent Chat endpoints to create chat rooms and send messages via bots.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.PNG

image9.PNG

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.PNG

image18.PNG

image19.png

image20.png

image21.PNG

image22.PNG

image23.PNG

image24.png

