

[bookmark: _GoBack]

Hands-On Lab
Working with the Unified Communications Managed API 4.0

Lab version: 		1.0
Last updated:		7/14/2012

[image:]
1.
Contents
Overview	3
System Requirements	3
Exercise 1: Creating an Application Endpoint 	4
Task 1 – Create a New Trusted Application	4
Task 2 – Create a New Trusted Application Endpoint	5
Exercise 2: Writing Asynchronous UCMA Code with the Async CTP	7
Task 1 – Open the Visual Studio Solution	7
Task 2 – Use the Visual Studio Async CTP to Write Asynchronous UCMA Code	7
Task 3 – Exercise 2 Verification	9
Exercise 3: Building Workflow Solutions with UCMA Core	11
Task 1 – Open the Visual Studio Solution	11
Task 2 – Build the UCMA Workflow	12
Task 3 – Exercise 3 Verification	14
Summary	15

Overview
Lab Time: 1 Hour
Lab Folder: C:\%Lync15TK%\Labs\3\Source\Before
The After folder contains the completed lab exercises.
Lab Overview: The Unified Communications Managed API 4.0 SDK provides a managed API for developing server-side communications solutions for Microsoft Lync such as personal virtual assistants, automatic call distributors, and communications-enabled business processes. Users can interact with these applications by placing a call to them via the PSTN, or by starting an audio or instant message conversation in Microsoft Lync with the contact associated with the application.
The lab solution you will build will use the UCMA 4.0 SDK to demonstrate the following.
How to provision an application using the Lync Server PowerShell cmdlets.
How to provision an application endpoint using the Lync Server PowerShell cmdlets.
How to write asynchronous code using the Visual Studio Async CTP.
How to build a simple workflow using UCMA.

[bookmark: _Toc254694360][bookmark: _Toc319326411][bookmark: _Toc157870738]System Requirements
You must have the following items to complete this lab:
Microsoft Visual Studio 2010
Microsoft Visual Studio 2010 Async CTP (Version 3)
Unified Communications Managed API 4.0 SDK
The application port assigned for your use; Lync will be configured to listen for your UCMA application on this port.

Exercise 1: Creating an Application Endpoint
[bookmark: _Toc254694362][bookmark: _Toc319326413]Task 1 – Create a New Trusted Application
In this task, you will create a new trusted UCMA application using the Lync PowerShell cmdlets.
Launch the Lync Server Management Shell from the Start menu.
Run the following command to create a new UCMA application, make sure to replace the values in < … > with the correct values for the parameters.
PowerShell
New-CSTrustedApplication -ApplicationId <ApplicationId>
-TrustedApplicationPoolFqdn <TrustedApplicationPoolFqdn> -Port <Port>
ApplicationId: “LabApp” + the value of LocalSIPPort, e.g. LabApp10600.
If you are performing this exercise in your own development environment, LocalSIPPort represents an available port that Lync will listen on for the new UCMA application.
TrustedApplicationPoolFqdn: the fully qualified domain name of the application server in the Microsoft Lync Server topology that this application will be provisioned on, e.g. w15-ts.contoso.com.
Port: the port assigned for your use in the lab.
[image:]
Figure 1
Create a Lync Trusted Application
Record the value displayed for the ApplicationId property.
As prompted by the output of the previous PowerShell script, run the Enable-CsTopology PowerShell command to commit the changes.
PowerShell
Enable-CsTopology
Run the following command to verify that the UCMA application was created successfully, and to retrieve its details.
The value for <Identity> is the value of TrustedApplicationPoolFqdn + “/” + the value of ApplicationName, e.g. w15-ts.contoso.com/urn:application:labapp10600
PowerShell
Get-CSTrustedApplication –Identity <Identity>
[image:]
Figure 2
Verify that the Trusted Application was created successfully

[bookmark: _Toc254694363][bookmark: _Toc319326414]Task 2 – Create a New Trusted Application Endpoint
In this task, you will create a UCMA application endpoint using the Lync PowerShell cmdlets.
Run the following command to create a new trusted UCMA application endpoint, make sure to replace the values in < … > with the correct values for the parameters.
PowerShell
New-CSTrustedApplicationEndpoint -ApplicationId <ApplicationId>
-TrustedApplicationPoolFqdn <TrustedApplicationPoolFqdn>
-SipAddress <SipAddress>
-DisplayName <DisplayName>
ApplicationId: The Id of the UCMA application recorded in the previous task, e.g. urn:application:labapp10600
TrustedApplicationPoolFqdn: The same value as in the previous task, e.g. w15-ts.contoso.com.
SipAddress: The SIP URI of the Microsoft Lync contact associated with the application endpoint.
In the Lync 15 lab, use the following naming convention: “sip:LabContact” + the value of LocalSIPPort + “@contoso.com”, e.g. sip:LabContact10600@contoso.com
DisplayName: A friendly display name for the Microsoft Lync contact associated with the application endpoint, e.g. Lab Contact 10600.
[image:]
Figure 3
Create a Trusted Application Endpoint
Run the following command to verify that the application endpoint was created successfully and retrieve its details, where Identity is the SIP address of your lab contact, e.g. : sip:LabContact10600@contoso.com.
PowerShell
Get-CSTrustedApplicationEndpoint –Identity <Identity>
[bookmark: _Toc254694364][image:]
Figure 4
Verify that the Trusted Application Endpoint was created successfully

Exercise 2: Writing Asynchronous UCMA Code with the Async CTP
[bookmark: _Toc319326416]Task 1 – Open the Visual Studio Solution
In this task, you will open the project and configure it to run with your parameter values.
0. Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
1. Click on the Microsoft Visual Studio 2010 icon to start Visual Studio 2010.
2. Select File >> Open Project.
3. Navigate to the folder C:\%Lync15TK%\Labs\3\Source\Before.
4. Open the UCMA solution.
5. In Solution Explorer, right-click the UCMAAsyncCTP project and select Set as Startup Project.
6. In Solution Explorer, open the App.config file.
7. Change the ApplicationId to the application id assigned to you, e.g. (urn:application:LabApp10600).
8. Change the ApplicationName to the application name assigned to you, e.g. (LabApp10600).
9. Change the ApplicationEndpointURI to the URI of trusted application endpoint that you created in the previous exercise, e.g. (sip:LabContact10600@fabrikam.com).
10. Change PrimaryLabUserId to the SIP address of your primary lab account.
11. Select View >> Task List and select Comments from the menu.
[bookmark: _Toc319326417]Task 2 – Use the Visual Studio Async CTP to Write Asynchronous UCMA Code
In this task, you will use the Visual Studio Async CTP to write streamlined asynchronous UCMA code that starts an application and sends an instant message.
0. In the Task List, navigate to TODO: 3.1.1.
0. Add the following code after the TODO: 3.1.1 comment.
This snippet starts a simple UCMA application that starts a Collaboration Platform, establishes an Application Endpoint, and sends an instant message to the primary lab account.
C#
var asyncSample = new UCMAAsyncSample();
asyncSample.Start();
0. In the Task List, navigate to TODO: 3.1.2.
0. Add the following code after the TODO: 3.1.2 comment.
The await keyword marks the call as asynchronous, so you no longer need to call the “Begin” method of an asynchronous function and handle the asynchronous callback and call the “End” method.
The code will run as if you are writing it synchronously, only moving into the next line when the asynchronous operation has completed.
C#
await _platform.StartUpAsync();
0. In the Task List, navigate to TODO: 3.1.3.
0. Add the following code after the TODO: 3.1.3 comment.
System.Threading.Tasks.Task represents an asynchronous operation. Use the FromAsync factory method to create a Task that represents a pair of Begin and End methods that conform to the asynchronous programming pattern.
In this case, you are creating an Extension method that wraps the BeginStartup and EndStartup methods of the CollaborationPlatform class into a Task object.
C#
public static Task StartUpAsync(this CollaborationPlatform platform)
{
	if (platform == null)
	{
		throw new ArgumentNullException();
	}

	return Task.Factory.FromAsync(platform.BeginStartup,
 platform.EndStartup, null);
}
0. In the Task List, navigate to TODO: 3.1.4.
0. Add the following code after the TODO: 3.1.4 comment.
After creating a new Conversation on the application endpoint, and a new InstantMessagingCall on the conversation, call the EstablishAsync Extension method on the instant messaging call to establish an instant message call with the primary lab user.
C#
await imCall.EstablishAsync(_primaryLabUserId, null);
0. In the Task List, navigate to TODO: 3.1.5.
0. Add the following code after the TODO: 3.1.5 comment.
Create an Extension method on the Call class that accepts the SIP URI of the contact to send the instant message to, and any options to set when establishing the call.
The method returns an object of type CallMessageData, representing the data in the message.
The FromAsync factory method accepts parameters for the BeginEstablish and EndEstablish methods of the Call class, the SIP URI of the contact to send the message to, any call establish options, and the state of the asynchronous operation.
When calling Call.EstablishAsync, the code appears to execute synchronously, not moving on until the EndEstablish callback has executed. From the developer’s point of view, you used a single line of code to call an asynchronous operation and handle the callback.
C#
public static Task<CallMessageData> EstablishAsync(this Call call, string destinationUri, CallEstablishOptions options)
{
	if (call == null)
	{
		throw new ArgumentNullException();
	}

	return Task<CallMessageData>.Factory.FromAsync(
 call.BeginEstablish, call.EndEstablish, destinationUri,
 options, null);
}
0. In the Task List, navigate to TODO: 3.1.6.
0. Add the following code after the TODO: 3.1.6 comment.
This code calls an asynchronous operation to terminate the application endpoint and shut down the collaboration platform.
C#
asyncSample.Stop();

[bookmark: _Toc319326418]Task 3 – Exercise 2 Verification
In this task, you will run the UCMAAsyncCTP project and examine its output:
In Visual Studio 2010, press F5 to run the UCMAAsyncCTP project in Debug mode.
The console application starts and begins initializing the collaboration platform and establishing an application endpoint.
The console application then established an instant message call to the SIP URI of the primary lab user and sends them an instant message containing the text “Hello world!”.
[image:]
Figure 5
Console application starting up and sending an instant message
The primary lab user receives the instant message.
[image:]
Figure 6
Primary lab user receives an instant message from the UCMA application
The console application terminates the instant message call after sleeping for 10 seconds.
[image:]
Figure 7
The instant message call is terminated after 10 seconds
Press the Enter key to terminate the application endpoint and shutdown the collaboration platform.

Exercise 3: Building Workflow Solutions with UCMA Core
[bookmark: _Toc319326420]Task 1 – Open the Visual Studio Solution
In this task, you will open the project and configure it to run with your parameter values.
0. Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
25. Click on the Microsoft Visual Studio 2010 icon to start Visual Studio 2010.
26. Select File >> Open Project.
27. Navigate to the folder C:\%Lync15TK%\Labs\3\Source\Before.
28. Open the UCMA solution.
29. In Solution Explorer, right-click the UCMACoreWorkflow project and select Set as Startup Project.
30. In Solution Explorer, open the App.config file.
31. Change the ApplicationId to the application id assigned to you, e.g. (urn:application:LabApp10600).
32. Change the ApplicationName to the application name assigned to you, e.g. (LabApp10600).
33. Change the ApplicationEndpointURI to the URI of trusted application endpoint that you created in the previous exercise, e.g. (sip:LabContact10600@fabrikam.com).
34. Change PrimaryLabUserId to the SIP address of your primary lab account.
35. Select View >> Task List and select Comments from the menu.

[bookmark: _Toc319326421]Task 2 – Build the UCMA Workflow
In this task, you will build a simple phone menu workflow using UCMA. The workflow will present the caller with two levels of menu options; the user will use the Lync client keypad to choose a menu option, and the application will repeat their choices.
0. In Visual Studio, open PhoneMenuSample.cs.
0. In the Task List, navigate to TODO: 3.2.1.
0. Add the following code after the TODO: 3.2.1 comment.
This code gets an instance of a CallController singleton class that implements functionality used by the various activities in the application.
C#
private static CallController PhoneMenuCallController = CallController.Instance;
39. Open CallController.cs.
40. The CallController class implements the singleton pattern, the application can only instantiate one instance of this class. You can get a handle to the instance of the CallController class using CallController.Instance.
41. The CallController class also exposes the following properties:
AVCall: represents a handle to the current AudioVideoCall - you will initialize this in a later step.
SpeechSynthesizer: represents a handle to a SpeechSynthesizer object that you can to synthesize text and play it to the user - you will initialize this in a later step.
ToneController: represents a handle to a ToneController object that you can use to handle DTMF tones from the user. The get accessor attaches the ToneController to the flow of the AudioVideoCall.
In the Task List, navigate to TODO: 3.2.2.
Add the following code after the TODO: 3.2.2 comment.
In the handler for the ApplicationEndpoint.OnAudioVideoCallReceived event, set the AVCall property of the PhoneMenuCallController singleton instance. You will use this to access the current AudioVideoCall from anywhere in the application. The call also starts the initial call handling activity.
C#
PhoneMenuCallController.AVCall = e.Call;
new PhoneMenuInitialCallHandler().Start();
In the Task List, navigate to TODO: 3.2.3.
Add the following code after the TODO: 3.2.3 comment.
In the Start method of the PhoneMenuInitialCallHandler class, accept the incoming AudioVideoCall.
C#
await PhoneMenuCallController.AVCall.AcceptAsync(null as
 CallAcceptOptions);
Console.WriteLine("Accepted call.");
In the Task List, navigate to TODO: 3.2.4.
Add the following code after the TODO: 3.2.4 comment.
After accepting the call, create a new SpeechSynthesisConnector and attach it to the flow of the AudioVideoCall. You will use this to play speech prompts to the user.
C#
var synthConnector = new SpeechSynthesisConnector();
PhoneMenuCallController.SpeechSynthesizer = new SpeechSynthesizer();
var format =
	new SpeechAudioFormatInfo(
		16000,
		AudioBitsPerSample.Sixteen,
		Microsoft.Speech.AudioFormat.AudioChannel.Mono);
PhoneMenuCallController.SpeechSynthesizer.SetOutputToAudioStream(
 synthConnector.Stream, format);
synthConnector.AttachFlow(PhoneMenuCallController.AVCall.Flow);
synthConnector.Start();
Console.WriteLine("Speech synthesis connector attached.");
In the Task List, navigate to TODO: 3.2.5.
Add the following code after the TODO: 3.2.5 comment.
Wire up a handler for the SpeakCompleted event of the SpeechSynthesizer exposed by the PhoneMenuCallController class. This event fires when the SpeechSynthesizer instance has completed playing a prompt to the user.
Also wire up a handler for the ToneReceived event of the ToneController exposed by the PhoneMenuCallController class. This event fires after the user presses a key on the Lync client keypad and the application receives a DTMF tone. You will add business logic to the event handler to take action based on the tone received.
C#
PhoneMenuCallController.SpeechSynthesizer.SpeakCompleted
	+= new EventHandler<SpeakCompletedEventArgs>
 (SpeechSynth_SpeakCompleted);
PhoneMenuCallController.ToneController.ToneReceived
	+= new EventHandler<ToneControllerEventArgs>
 (ToneController_ToneReceived);
Console.WriteLine("Tone controller attached.");
In the Task List, navigate to TODO: 3.2.6.
Add the following code after the TODO: 3.2.6 comment.
When playing a menu to the user, you can use the SpeechSynthesizer to convert text to speech and play it in the call. This code creates a prompt that greets the user and presents them with some options.
C#
PhoneMenuCallController.SpeechSynthesizer.SpeakAsync(
	"Thank you for calling the phone menu sample app! "
	+ "Press 1 to speak to an agent, or 2 to repeat this menu.");
In the Task List, navigate to TODO: 3.2.7.
Add the following code after the TODO: 3.2.7 comment.
In the handler for the ToneReceived event of the ToneController class, you can use the Tone property of the ToneControllerEventArgs to retrieve the tone that the user provided.
After checking if the user has selected option 1 (by checking if e.Tone == 1), this code cancels any prompts already in progress.
C#
PhoneMenuCallController.SpeechSynthesizer.SpeakAsyncCancelAll();
In the Task List, navigate to TODO: 3.2.8.
42. Add the following code after the TODO: 3.2.8 comment.
This code terminates the call.
C#
PhoneMenuCallController.AVCall.TerminateAsync();

[bookmark: _Toc319326422]Task 3 – Exercise 3 Verification
In this task, you will run the UCMACoreWorkflow project and examine its output:
In Visual Studio 2010, press F5 to run the UCMACoreWorkflow project in Debug mode.
The console application then prompts you to make an audio call to your application endpoint URI to continue.
[image:]
Figure 5
Call the Application Endpoint URI contact to continue
The application picks up the call and plays the prompt to the user.
[image:]
Figure 6
Initializing speech synthesis and tone controller after picking up call
After the application has completed playing the first menu, press 1.
 [image:]
Figure 7
Application indicating that it received tone 1
The application will now present another set of options; press 1 or 2.
The application will repeat the prompt and terminate the call.
Press the Enter key to terminate the application endpoint and shutdown the collaboration platform.

Summary
In this lab, you saw how much easier writing asynchronous UCMA code is with the Visual Studio Async CTP. The Visual Studio Async CTP allows you to write much more streamlined and readable asynchronous code. You also learned how to build a simple phone menu workflow using UCMA.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.PNG

image7.PNG

image8.PNG

image9.PNG

image10.PNG

image11.PNG

