

[bookmark: _GoBack]

Hands-On Lab
Application Sharing in the Lync Managed API

Lab version: 		1.0
Last updated:		7/13/2012

[image:]
1.
Contents
Overview	3
Exercise 1: Sharing an Application Screen in a Conversation 	3
Task 1 – Beginning the Exercise	3
Task 2 – Getting the Application Sharing Modality	4
Task 3 – Setting up Event Handlers for the Modality Events	4
Task 4 – Getting and Sharing an Application	6
Task 5 – Handling Requests for Screen Control	10
Task 6 – Granting and Revoking Screen Control	11
Summary	13

Overview
Lab Time: 45 minutes
Lab Folder: C:\%Lync15TK%\Labs\2\Source\Before
Note: The After folder contains the completed lab exercises.
Lab Overview: The Microsoft Lync Managed API provides the functionality to create and modify application screen sharing sessions in a conversation without using the default Lync client.
In this lab solution, you will use the Lync Managed API to do the following:
Set up event handlers for screen share events.
Find shareable applications.
Share the screen of an application into a conversation.
End a screen share.
Handle screen control requests.

[bookmark: _Toc157870738]System Requirements: You must have the following items to complete this lab:
Microsoft Visual Studio 2010
Microsoft Lync
Microsoft Lync SDK
Two accounts (referred to as the primary and secondary lab users in this document), provisioned for the Microsoft Lync Server, that are able to successfully sign in to Lync.

Exercise 1: Sharing an Application Screen in a Conversation
[bookmark: _Toc252824103][bookmark: _Toc252824785][bookmark: _Toc273001608][bookmark: _Toc319333124][bookmark: _Toc254694364]Task 1 – Beginning the Exercise
In this task, you will open the project and configure it to run with your accounts.
1. Navigate to Start >> All Programs >> Microsoft Visual Studio 2010.
2. Click on the Microsoft Visual Studio 2010 icon to start Visual Studio 2010.
3. Select File >> Open Project.
4. Navigate to the folder C:\%Lync15TK%\Labs\2\Source\Before.
5. Open the LyncApplicationSharing solution.
6. In Solution Explorer, open the App.config file of the LyncApplicationSharing project.
7. Change the SecondaryLabUserId value to your secondary lab account.
8. Select View >> Task List and select Comments from the menu.
9. Start a remote desktop session and sign in to Lync with the secondary lab user Id.
10. Return to the primary lab user’s session and sign in to Lync with the primary lab user Id.
11. Open MainWindow.xaml.cs in the Visual Studio 2010 solution explorer.

[bookmark: _Toc319333125][bookmark: _Toc317542395]Task 2 – Getting the Application Sharing Modality
In this task, you will get the application sharing modality from a started conversation. The application sharing modality is where you can interact with screen sharing.
In the Task List, navigate to TODO 2.1.1.
Add the following code after the TODO 2.1.1 comment.
This gets the application sharing modality from the created conversation.
C#
_localModality = (ApplicationSharingModality)_conversation.Modalities
 [ModalityTypes.ApplicationSharing];

In the Task List, navigate to TODO 2.1.2.
Add the following code after the TODO 2.1.2 comment.
This gets the application sharing modality of the second person in the conversation, which you will use later in the exercise to facilitate screen sharing between the two users.
C#
_remoteModality = (ApplicationSharingModality)p.Modalities
 [ModalityTypes.ApplicationSharing];

[bookmark: _Toc319333126]Task 3 – Setting up Event Handlers for the Modality Events
In this task, you will attach event handlers to the events of the saved modalities. Properly handling these events in your application give you valuable information on the screen sharing state, such as when a user requests screen control or the types of actions that are valid in the screen share’s current state.
In the Task List, navigate to TODO 2.1.3.
Add the following code after the TODO 2.1.3 comment.
This sets up the event handlers for events related to the conversation’s application sharing.
C#
_localModality.LocalSharedResourcesChanged += OnLocalSharedResources_Changed
_localModality.ParticipationStateChanged += OnParticipationState_Changed;
_localModality.ControllerChanged += OnController_Changed;
_localModality.ControlRequestReceived += OnControlRequest_Received;
_localModality.ModalityStateChanged += OnModalityState_Changed;
_localModality.ActionAvailabilityChanged += OnActionAvailability_Changed;

In the Task List, navigate to TODO 2.1.4.
Add the following code after the TODO 2.1.4 comment.
This sets up the event handlers for events related the remote user’s application sharing.
C#
_remoteModality.ActionAvailabilityChanged += OnActionAvailability_Changed;
_remoteModality.ParticipationStateChanged += OnParticipationState_Changed;

Press [Crtl] + [F5] to run the application.
[image:]
Figure 1
Application Sharing sample application
Press the Start Conversation button.
Observe the logged events in the application’s log list. The ActionAvailabilityChanged event fires and lists the actions available to the secondary lab user. In this case, all they can do is “Connect” by accepting the sharing invitation.
[image:]
Figure 3
Events raised when sharing your desktop
Press the End Conversation button to close the conversation.
Close the application.

[bookmark: _Toc319333127]Task 4 – Getting and Sharing an Application
In this task, you will get the list of resources that you are able to share, and use the Lync API to start a sharing session.
In the Task List, navigate to TODO 2.1.5.
Add the following code after the TODO 2.1.5 comment.
This gets the list of resources that Lync can share and displays them in the application.
C#
for (int i = 0; i < _localModality.ShareableResources.Count; i++)
{
 listResources.Items.Add(_localModality.ShareableResources[i]);
}
Press [Ctrl] + [F5] to run the application.
Press the Start Conversation button.
Note that the Resources list box displays a list of resources that you can incorporate into a sharing session.
[image:]
Figure 4
Shareable Resources
Press the End Conversation button and close the application.
In the Task List, navigate to TODO 2.1.6.
Add the following code after the TODO 2.1.6 comment.
After checking if the Connect modality action is available, use BeginShareResources to share the selected resource.
C#
if (_localModality.CanInvoke(ModalityAction.Connect))
{
 _localModality.BeginShareResources(new List<SharingResource>(){resource},
 (ar) =>
 {
 try
 {
 _localModality.EndShareResources(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndShareResources: {0}", ex.Message));
 }
 }, null);
}

In the Task List, navigate to TODO 2.1.7.
Add the following code after the TODO 2.1.7 comment.
This disconnects the shared resource after checking that disconnecting is a valid option at this time.
C#
if (_localModality.CanInvoke(ModalityAction.Disconnect))
{
 _localModality.BeginDisconnect(ModalityDisconnectReason.None, (ar) =>
 {
 try
 {
 _localModality.EndDisconnect(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndDisconnect: {0}", ex.Message));
 }
 }, null);
}

Press [Ctrl] + [F5] to run the application.
Press the Start Conversation button.
Select a resource from the list that you want to share and press the Share button.
[image:]
Switch to the secondary lab user’s remote desktop session and accept the sharing invitation.
Figure 5
Share a resource
[image:]
Figure 6
Secondary lab user accepting a sharing request
Press the End Share button and observe the termination of the screen share session on the Lync client. Observe the events that are raised during the sharing session.
[image:]
Figure 7
Events raised during sharing session
Press the End Conversation button and close the application.

[bookmark: _Toc319333128]Task 5 – Handling Requests for Screen Control
In this task, you will handle requests for screen control from a remote user. Your application could use this to automatically accept or decline requests for specific users in certain scenarios.
In the Task List, navigate to TODO 2.1.8.
Add the following code after the TODO 2.1.8 comment.
This accepts a sharing request from the remote modality after checking that accepting a request is a valid option at this time.
C#
if (_remoteModality.CanInvoke(ModalityAction.AcceptSharingControlRequest))
{
 _remoteModality.BeginAcceptControlRequest((ar) =>
 {
 try
 {
 _remoteModality.EndAcceptControlRequest(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndAcceptControlRequest: {0}",
 ex.Message));
 }
 }, null);
}

In the Task List, navigate to TODO 2.1.9.
Add the following code after the TODO 2.1.9 comment.
This declines a sharing request from the remote modality after checking that declining a request is a valid option at this time.
C#
if (_remoteModality.CanInvoke(ModalityAction.DeclineSharingControlRequest))
{
 _remoteModality.BeginDeclineControlRequest((ar) =>
 {
 try
 {
 _remoteModality.EndDeclineControlRequest(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndDeclineControlRequest: {0}",
 ex.Message));
 }
 }, null);
}

Repeat the previous steps to launch the application and start a sharing session with the secondary lab user.
In the secondary lab user’s session, request control of the screen using the Lync client.
[image:]
Figure 8
Request control
Observe that the Accept Request and Decline Request buttons are now enabled in the application.
Press the Decline Request button to see the request rejected or press the Accept Request button to give the secondary user control.
[image:]
Figure 9
Accept or Decline a sharing request from the remote user
Press the End Conversation button and close the application.

[bookmark: _Toc319333129]Task 6 – Granting and Revoking Screen Control
In this task, you will be able to grant control of the screen to a remote user without them request it - you can also take back control of the screen. This is useful in your applications if you need to grant and revoke control without user intervention.
In the Task List, navigate to TODO 2.1.10.
Add the following code after the TODO 2.1.10 comment.
This gives control of the screen to a remote user after checking that giving control to that user is a valid option at this time.
C#
if (_remoteModality.CanInvoke(ModalityAction.GrantSharingControl))
{
 _remoteModality.BeginGrantControl((ar) =>
 {
 try
 {
 _remoteModality.EndGrantControl(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndGrantControl: {0}", ex.Message));
 }
 }, null);
}

In the Task List, navigate to TODO 2.1.11.
Add the following code after the TODO 2.1.11 comment.
This returns control of the screen share from the remote user to the local user after checking that revoking control from that user is a valid option at this time. Note that this method is used to get back control after either granting control or accepting a control request.

C#
if (_remoteModality.CanInvoke(ModalityAction.RevokeSharingControl))
{
 _remoteModality.BeginRevokeControl((ar) =>
 {
 try
 {
 _remoteModality.EndRevokeControl(ar);
 }
 catch (Exception ex)
 {
 Log(string.Format("Error at EndRevokeControl: {0}", ex.Message));
 }
 }, "RevokeControl");
}

Repeat the previous steps to launch the application and start a sharing session with the secondary lab user.
Press the Grant Control button to grant control to the secondary lab user.
Observe that the primary lab user’s Lync client shows that the secondary user has control.
[image:]
Figure 10
The secondary lab user in control of the sharing session
Press the Revoke Control button and observe that control has been taken away from the secondary user and given back to the local user.
[image:]
Figure 11
Grant or Revoke control
Press the End Conversation button and close the application.

Summary
In this lab, you used the Lync API to build a simple application that interacts with Lync screen sharing. You saw the ease of which you can share an application screen and change the controller of the screen.

image1.png
SAvAL,

developer & platform evangelism

image2.PNG
Application Sharing

Resources

Share

Respond

Accept Request Decline Request

Screen

Grant Control Revoke Control

image3.PNG
R

Events

2/21/2012 155355 PM Conversation state changed to Active.
2/21/2012 1:53:54 PM Action Reject s unavailable for Chrs Ashton.
2/21/2012 155354 PM Action Accept is unavailable for Chris Ashton,
2/21/2012 155354 PM Action Disconnect is unavailable for Chris Ashton.
2/21/2012 155354 PM Action Connect is available for Chris Ashton.

image4.PNG
Resources

Primary Monitor
LyncApplicationSharing (Running) - Microsoft
MainWindow

image5.PNG
Share

image6.PNG
& chiis Ashton

Chris Ashton avalase
WAL CLERK

=
TUESDAY, FEBRUARY 21, 2012
CHRIS ASHTON 138:11PM
+ Lync Wave 15 lab starting.
=
Last message received on 2/21/2012 at 1:38 PM,
AS

@O ®@ ®b » -

image7.PNG
Events

2/24/2012 24114 PM Mogality state changed to Connected
2/24/2012 2:41:13 PM Action Connect is available for George Durz

2/24/2012 2:41:13 PM Mogality state changed to Joining

2/24/2012 24113 PM Participation state changed to Viewing for Chris Ashton.
2/24/2012 2:41:13 PM Action GrantSharingControl is available for Chris Ashton.
2/24/2012 241,08 PM Participation state changed to Sharing for George Durz
2/24/2012 241,08 PM Local resources changed event called.

2/24/2012 241,08 PM Moality state changed to Connecting

2/24/2012 241,08 PM Action Disconnect is available for George Durzi.
2/24/2012 241,08 PM Action Reject s unavailable for George Durzi
2/24/2012 2:41.08 PM Action Accept is unavalable for George Durzi
2/24/2012 2:41.08 PM Action Connect is unavailable for George Durzi
2/24/2012 241,08 PM Action Reject s unavailable for George Durzi
2/24/2012 2:41.08 PM Action Accept is unavalable for George Durz
2/24/2012 2:41.08 PM Action Disconnect is unavailable for George Durzi
2/24/2012 2:41.08 PM Action Connect is available for George Durz

2/24/2012 2:41:02 PM Conversation state changed to Active.

2/24/2012 241.02 PM Action Reject s unavailable for George Durzi,
2/24/2012 2:41:02 PM Action Accept is unavalable for George Durzi
2/24/2012 2:41:02 PM Action Disconnect is unavailable for George Durz
2/24/2012 2:41.02 PM Action Connect s available for George Durzi

image8.PNG
REQUEST CONTROL

image9.PNG
Respond

Accept Request Decline Request

image10.PNG
® Chris Ashion is in control,

- 8 x

X STOP SHARING

image11.PNG
Screen

Grant Control

