

1

Classified as Microsoft Confidential

Microsoft Azure IoT Reference Architecture

V ersion 2.1

Would you like to provide feedback or do you have an idea or suggestion based on your experience with IoT?

We would love to hear from you! Please email AzureIoTRefArcVoice@microsoft.com

9/26/2018

mailto:AzureIoTRefArcVoice@microsoft.com

2

Contents

1. Overview .. 3

1.1 Architecture Overview ... 4

1.2 Core Subsystems .. 4

1.3 Optional Subsystems .. 5

1.4 Cross-Cutting IoT application needs .. 6

2. Foundational principles and concepts ... 8

2.1 Principles .. 8

2.2 Data concepts .. 8

3. Architecture Subsystem Details ... 11

3.1 Devices, Device Connectivity, Field Gateway (Edge Devices), Cloud Gateway .. 11

3.2 Device identity store .. 16

3.3 Topology and entity store .. 17

3.4 Device provisioning .. 20

3.5 Storage ... 21

3.6 Data flow and stream processing .. 26

3.7 Solution User Interface .. 31

3.8 Monitoring and Logging ... 33

3.9 Business System Integration and Backend Application Processing ... 42

3.10 Machine Learning (At-rest data analytics) ... 45

4. Solution design considerations ... 46

5. Appendix .. 65

5.1 Terminology ... 65

5.2 References ... 67

5.3 SaaS, PaaS, and IaaS Guidance ... 69

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of

the date of this publication. Because Microsoft must respond to changing market conditions, it should not be

interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any

information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR

STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

© 2018 Microsoft. All rights reserved. This document is for informational purposes only. Microsoft makes no warranties,
express or implied, with respect to the information presented here

3

1. Overview

Connected sensors, devices, and intelligent operations can transform businesses and enable new growth opportunities

with Microsoft Azure Internet of Things (IoT) services.

The purpose of the document is to provide an overview of the recommended architecture and implementation

technology choices for how to build Azure IoT solutions. This architecture describes terminology, technology principles,

common configuration environments, and composition of Azure IoT services, physical devices, and Intelligent Edge

Devices. The primary targets of this document are architects, system designers, developers, and other IoT technical

decision makers who are building IoT solutions. Building, running, and maintaining IoT Solutions is a significant effort

and we recommend customers evaluate IoT Central1, Microsoft’s IoT SaaS offering, when determining how to build a

solution. See Appendix 5.3 SaaS, PaaS, and IaaS Guidance for guidance on use of IoT Central.

IoT applications can be described as Things (or devices), sending data or events that are used to generate Insights, which

are used to generate Actions to help improve a business or process. An example is an engine (a thing), sending pressure

and temperature data that is used to evaluate whether the engine is performing as expected (an insight), which is used

to proactively prioritize the maintenance schedule for the engine (an action). This document focuses on how to build an

IoT solution, however it is important to be cognizant of the end goal of the architecture: taking action on business

insights we find through gathering data from assets.

The document contains four sections: 1) an overview - containing the overall recommended architecture for IoT

solutions (divided into subsystems), a brief introduction to IoT application subsystems, default technology

recommendations per subsystem, and a discussion of cross-cutting concerns for IoT applications, 2) foundational

concepts and principles - concepts and principles central to building scalable IoT applications are described in this

section, 3) subsystem details - for each subsystem a subsection is dedicated to describing the subsystem responsibilities

and technology alternatives for implementation, and 4) solution design considerations - a section describing

implementation considerations of the architecture for solutions and industry verticals.

This document is a living document and will be updated as the cloud and technology landscape evolve. The document

will track technology changes and provide up to date recommendations for Azure IoT solution architectures and

technology best practices.

Every organization has unique skills and experience and every IoT application has unique needs and considerations. The

reference architecture and technology choices recommended in this document should be modified as needed for each.

Technology recommendations per subsystem were generated using consistent criteria. Some criteria are common

across all subsystems and technology alternatives; e.g. security, simplicity, performance, scale, and cost are critical no

matter the subsystem or technology. Some criteria however are unique to a particular subsystem; e.g. query capabilities

1 https://azure.microsoft.com/en-us/services/iot-central/

https://azure.microsoft.com/en-us/services/iot-central/

4

for warm storage solutions. The criteria used to evaluate technical recommendations are described in the subsystems

detail section.

1.1 Architecture Overview

The architecture we recommend for IoT solutions is cloud native, microservice, and serverless based. The IoT solution

subsystems should be built as discrete services that are independently deployable, and able to scale independently.

These attributes enable greater scale, more flexibility in updating individual subsystems, and provide the flexibility to

choose appropriate technology on a per subsystem basis. It is critical to have the ability to monitor individual

subsystems as well as the IoT application as a whole. We recommend subsystems communicate over REST/HTTPS using

JSON (as it is human readable) though binary protocols should be used for high performance needs. The architecture

also supports a hybrid cloud and edge compute strategy; i.e. some data processing is expected to happen on premise.

We recommend use of an orchestrator (e.g. Azure Kubernetes Services - AKS or Service Fabric) to scale individual

subsystems horizontally or PaaS services (e.g. Azure App Services) that offer built-in horizontal scale capabilities.

1.2 Core Subsystems

At the core an IoT application consists of the following subsystems: 1) devices (and/or on premise edge gateways) that

have the ability to securely register with the cloud, and connectivity options for sending and receiving data with the

cloud, 2) a cloud gateway service, or hub, to securely accept that data and provide device management capabilities, 3)

stream processors that consume that data, integrate with business processes, and place the data into storage, and 4) a

user interface to visualize telemetry data and facilitate device management. Following, these subsystems are briefly

described with prescriptive technology recommendations. Sections covering these subsystems in depth are in section 3

of this document.

The Cloud Gateway provides a cloud hub for secure connectivity, telemetry and event ingestion and device management

(including command and control) capabilities. We recommend using the Azure IoT Hub service as the cloud gateway.

The IoT Hub offers built-in secure connectivity, telemetry and event ingestion, and bi-directional communication with

5

devices including device management with command and control capabilities. In addition, the IoT Hub offers an entity

store that can be used to store device metadata.

For registering and connecting large sets of Devices we recommend using the Azure IoT Hub Device Provisioning Service

(DPS). DPS allows assignment and registration of devices to specific Azure IoT Hub endpoints at scale. We recommend

use of the Azure IoT Hub SDKs to enable secure device connectivity and sending telemetry data to the cloud.

Stream processing processes large streams of data records and evaluates rules for those streams. For stream processing

we recommend using Azure Stream Analytics for IoT applications that require complex rule processing at scale. For

simple rules processing we recommend Azure IoT Hub Routes used with Azure Functions.

Business process integration facilitates executing actions based on insights garnered from device telemetry data during

stream processing. Integration could include storage of informational messages, alarms, sending email or SMS,

integration with CRM, and more. We recommend using Azure Functions and Logic Apps for business process

integration.

Storage can be divided into warm path (data that is required to be available for reporting and visualization immediately

from devices), and cold path (data that is stored longer term and used for batch processing). We recommend using

Azure Cosmos DB for warm path storage and Azure Blob Storage for cold storage. For applications with time series

specific reporting needs we recommend using Azure Time Series Insights.

The user interface for an IoT application can be delivered on a wide array of device types, in native applications, and

browsers. The needs across IoT systems for UI and reporting are diverse and we recommend using Power BI, TSI

Explorer, native applications, and custom web UI applications.

The Azure IoT Remote Monitoring2 and Connected Factory3 Solution Accelerators are open source offerings provide end

to end examples showcasing use of Azure technologies with the bulk of the above described technology

recommendations, allowing interested parties to get started quickly.

1.3 Optional Subsystems

In addition to the core subsystems many IoT applications will include subsystems for: 5) intelligent edge devices which

allow aggregation or transformation of telemetry data and on premise processing, 6) cloud telemetry data

transformation which allows restructuring, combination, or transformation of telemetry data sent from devices, 7)

machine learning which allows predictive algorithms to be executed over historical telemetry data, enabling scenarios

such as predictive maintenance, and 8) user management which allows splitting of functionality amongst different roles

and users.

2 https://azure.microsoft.com/blog/getting-started-with-the-new-azure-iot-suite-remote-monitoring-preconfigured-solution
3 https://github.com/Azure/azure-iot-connected-factory

https://azure.microsoft.com/blog/getting-started-with-the-new-azure-iot-suite-remote-monitoring-preconfigured-solution
https://github.com/Azure/azure-iot-connected-factory

6

Intelligent Edge Devices serve an active role in managing access and information flow. They may assist in device

provisioning, data filtering, batching and aggregation, buffering of data, protocol translation, event rules processing, and

more. We recommend Azure IoT Edge4 be used for these on-premise needs. Azure IoT Edge also offers an extensible

model for enabling custom functionality through Edge modules.

Data transformation involves manipulation or aggregation of the telemetry stream either before or after it is received

by the cloud gateway service (the IoT Hub). Manipulation can include protocol transformation (e.g. converting binary

streamed data to JSON), combining data points, and more. For translation of telemetry data before it has been received

by the IoT Hub we recommend using the protocol gateway. For translation of data after it has been received by the IoT

Hub we recommend using IoT Hub integration with Azure Functions.

The machine learning (ML) subsystem enables systems to learn from data and experiences and to act without being

explicitly programmed. Scenarios such as predictive maintenance are enabled through ML. We recommend using Azure

Machine Learning for Machine Learning needs.

The user management subsystem allows specification of different capabilities for users and groups to perform actions

on devices (e.g. command and control such as upgrading firmware for a device) and capabilities for users in applications.

It is further discussed as part of cross-cutting security requirements below.

1.4 Cross-Cutting IoT application needs

There are multiple cross-cutting needs for IoT applications that are critical for success including: 8) security

requirements; including user management and auditing, device connectivity, in-transit telemetry, and at rest security, 9)

logging and monitoring for an IoT cloud application is critical for determining health and for troubleshooting failures

4 https://azure.microsoft.com/en-us/services/iot-edge/

https://azure.microsoft.com/en-us/services/iot-edge/

7

both for individual subsystems and the application as a whole, and 10) high availability and disaster recovery which is

used to rapidly recover from systemic failures.

Security is a critical consideration in each of the subsystems. Protecting IoT solutions requires secure provisioning of

devices, secure connectivity between devices, edge devices, and the cloud, secure access to the backend solutions, and

secure data protection in the cloud during processing and storage (encryption at rest). As stated previously, we

recommend using Azure IoT Hub which offers a fully-managed service that enables reliable and secure bi-directional

communication between IoT devices and Azure services such as Azure Machine Learning and Azure Stream Analytics by

using per-device security credentials and access control. For storage technologies we recommend using Azure Cosmos

DB for warm path storage and Azure Blob Storage for cold storage both of which support encryption at rest. For user

management, such as authenticating user credentials, authorization of user UI capabilities, reporting and management

tools users have access to, and auditing application activities we recommend Azure Active Directory. Azure Active

Directory supports the widely used OAuth2 authorization protocol, OpenID Connect authentication layer, and provides

audit log records of system activities.

Logging and monitoring for IoT application is critical determining system uptime and troubleshooting failures. We

recommend using Azure Operations Management Suite (OMS), Application Map, and App Insights for operations

monitoring, logging, and troubleshooting.

High availability and disaster recovery (HA/DR) focuses on ensuring an IoT system is always available, including from

failures resulting from disasters. The technology used in IoT subsystems have different failover and cross-region support

characteristics. For IoT applications this can result in requiring hosting of duplicate services and duplicating application

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub
https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/studio/what-is-machine-learning
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction

8

data across regions depending on acceptable failover downtime and data loss. See the High Availability and Disaster

Recovery section under Solution Considerations for a discussion on HA/DR.

2. Foundational principles and concepts

2.1 Principles

The reference architecture allows assembling secure, complex solutions supporting extreme scale, yet allowing for

flexibility with regard to solution scenarios. This motivates the following guiding principles across the different areas of

the architecture.

Heterogeneity. This reference architecture must accommodate for a variety of scenarios, environments, devices,

processing patterns, and standards. It should be able to handle vast hardware and software heterogeneity.

Security5. Because IoT solutions represent a powerful connection between the digital and physical worlds, building

secure systems is a necessary foundation for building safe systems. This reference model contemplates security and

privacy measures across all areas, including device and user identity, authentication and authorization, data protection

for data at rest and data in motion, as well as strategies for data attestation.

Hyper-scale deployments. The proposed architecture supports millions of connected devices. It will allow proof of

concepts and pilot projects that start with a small number of devices to be scaled-out to hyper-scale dimensions.

Flexibility. The heterogeneous needs of the IoT market necessitate open-ended composition of services and

components. The reference architecture is built upon a principle of composability to allow creation of an IoT solution by

combining a number of building blocks and enables the usage of various first-party or third-party technologies for the

individual conceptual components. A number of extension points allow for integration with existing systems and

applications. A high-scale, event-driven architecture with brokered communication is the backbone for a loosely coupled

composition of services and processing modules.

2.2 Data concepts

Understanding data concepts is a critical first step for building device-centric data collection, analysis, and control

systems. The role of device and data models, data streams, and encoding are detailed in the following sections.

2.3 Device and data models

Information models describing the devices, their attributes and associated data schema are key for implementing

solution business logic and processing.

There are many different device modeling efforts underway across different industries, and this reference architecture

takes a neutral stance in order to support these ongoing modeling and schematization efforts.

For example, in the case of an Industrial IoT scenario, the data semantics and structure may be based on the OPC UA

information modeling framework.6 Other implementations such as home automation and automotive applications may

use entirely different industry-specific modeling and schema standards.

The architecture adopts a fundamental abstraction of data streams, where device and data models are not required to

flow, route, or store information in the core platform components. At the solution layer, structured data will be guarded

5 https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture#threat-modeling-the-azure-iot-reference-architecture
6 https://opcfoundation.org

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture#threat-modeling-the-azure-iot-reference-architecture
https://opcfoundation.org/
https://opcfoundation.org/

9

by data models and schema whenever it is produced or consumed by the components. Developers have the option of

using schemas for device-client development, backend analytics, or specific processing logic as required by the solution.

2.4 Data records and streams

IoT solutions are designed considering the fundamental aspect of devices periodically transmitting data records, which

are represented, analyzed and stored as multiple and continuous data streams. Messages, events, telemetry, alerts and

ingestion are terms commonly used when describing IoT data streams.

Data records are usually timestamped, sorted by time and associated to at least one source. For instance, a telemetry

record can contain the time of the measurement and the time when the data is received, and can be associated to the

name of the device where the measurement is taken, to the gateway where the telemetry is collected, the hub where

the telemetry is ingested, etc.

Ingestion is the process of uploading data records into storage, through a gateway such as Azure IoT Edge and Azure IoT

Hub. Data records can be ingested one at a time or in bulk. The content of the streams can be real time data or past

traffic replayed.

Messages and events are interchangeable terms used when referring to the data records generated by connected

devices. The term telemetry is used specifically for messages carrying data reported by device sensors, e.g. the current

temperature sent from a temperature sensor on a device. Telemetry records can carry one or multiple data points, for

example a device with one humidity and one temperature sensor might send the humidity and temperature

measurements in the same message or in separate messages.

Devices can have multiple sensors installed and may send records with measurements reported by all sensors or only

values that have changed since the last telemetry was sent, for example to reduce the amount of transferred data. The

value of a data point in a telemetry record becomes the last known state. When sending only differential records,

devices occasionally may also send a full snapshot of all sensor values (called a key frame), for consistency and

synchronization purposes.

Telemetry records are usually analyzed, locally or in the cloud, against a set of rules. A different type of data record can

be generated as a result, commonly referred as an alert.

Data records format

Data records do not have a prescribed format. The assumption for each data stream is that all records use compatible

structure and semantics. The format chosen by device manufacturers and IoT solutions depends on multiple factors, like

the software running on devices, capacity of the CPUs, bandwidth, security, etc. We recommend IoT solutions adopt the

JSON format, due to its readability and relatively low space required, however there are several binary formats, such as

Avro, that can improve performance and reduce cost.

In order to simplify deserialization, non-breaking changes and segregation of streams by version should be allowed. A best

practice is for IoT solutions to include metadata in each record, e.g. using message properties, specifying format and

version. With a versioning model in place, solution developers can appropriately resolve potential conflicts of record fields

in terms of semantics or type; e.g. if a specific device firmware changes and thereafter the device sends data records in a

different format versioning will allow the solution developer to disambiguate between data streams.

The Azure IoT platform services are payload agnostic and do not require any particular field to be present in a message.

Message completeness and compatibility is a responsibility of devices and solutions developers.

10

2.5 Device interaction

The reference model adopts the principles of the Service Assisted Communication7 approach for establishing trustworthy

bidirectional communication with devices that are potentially deployed in untrusted physical space. The following

principles apply:

• Devices do not accept unsolicited network connections. All connections and routes are established in an

outbound-only fashion.

• Devices generally only connect to or establish routes to well-known service gateways that they are peered with.

In case they need to feed information to or receive commands from a multitude of services, devices are peered

with a gateway that takes care of routing information downstream and ensures that commands are only

accepted from authorized parties before routing them to the device.

• The communication path between device and service or device and gateway is secured at the transport and

application protocol layers, mutually authenticating the device to the service or gateway and vice versa. Device

applications do not trust the link-layer network.

• System-level authorization and authentication should be based on per-device identities, and access credentials

and permissions should be near-instantly revocable in case of device abuse.

• Bidirectional communication for devices that are connected sporadically due to power or connectivity concerns

may be facilitated through holding commands and notifications to the devices until they connect to pick those

up.

• Application payload data may be separately secured for protected transit through gateways to a particular

service.

Note: A common pattern for informing power-constrained devices of important commands while disconnected is

through the use of an out-of-band communication channel, such as cellular network protocols and services. For

example, an SMS message can be used to “wake up” a device and instruct it to establish an outbound network

connection to its “home” gateway. Once connected, the device will receive the commands and messages.

2.6 Communication protocols

There are many communication protocols available for device scenarios today and the number is growing. Choosing

from among those for use with hyper-scale systems in order to ensure secure operations, while providing the

capabilities and assurances promised by the chosen protocols, requires significant expertise in building out distributed

systems. Yet, there is a vast number of existing devices for which protocol choices have already been made and these

devices must be integrated into solutions.

This reference model discusses preferred communication protocol choices, explains potential trade-offs with these

choices, and also explicitly allows for custom protocol extensibility, adaptation, and local processing at the field gateway

(IoT Edge), a cloud-based protocol gateway, or during stream processing.

Please note that the communication protocol defines how payloads are moved and carries metadata about the payload

that can be used for dispatching/routing and decoding, but commonly does not define the payload shape or format. For

example, the communication may be enabled by the AMQP protocol, but the data encoding may be Apache Avro, or

JSON, or AMQP’s native encoding.

7 http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx

http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx

11

3. Architecture Subsystem Details

In this section each architectural subsystem is discussed in detail including the purpose of the subsystem, technology

options for implementation, and recommended implementation choices.

3.1 Devices, Device Connectivity, Field Gateway (Edge Devices), Cloud Gateway

Devices can be connected directly or indirectly via a field gateway (IoT edge device). Both devices and field gateways

may implement edge intelligence capabilities. This enables aggregation and reduction of raw telemetry data before

transport to the backend, and local decision-making capabilities on the edge.

Following is a conceptual representation of the different device connectivity options for IoT solutions. The numbers in

the figure correspond to four key connectivity patterns, defined as follows:

1. Direct device connectivity to the cloud gateway: For IP capable devices that can establish secure connections via

the Internet.

2. Connectivity via a field gateway (IoT Edge Device): For devices using industry specific standards (such as

Constrained Application Protocol [CoAP8] or OPC UA), short-range communication technologies (such as

Bluetooth or ZigBee), as well as for resource-constrained devices not capable of hosting a TLS/SSL stack, or

devices not exposed to the Internet. This option is also useful when aggregation of streams and data is executed

on a field gateway before transferring to the cloud.

8 http://en.wikipedia.org/wiki/Constrained_Application_Protocol

http://en.wikipedia.org/wiki/Constrained_Application_Protocol
http://en.wikipedia.org/wiki/Constrained_Application_Protocol

12

3. Connectivity via a custom cloud gateway: For devices that require protocol translation or some form of custom

processing before reaching the cloud gateway communication endpoint.

4. Connectivity via a field gateway and a custom cloud gateway: Similar to the previous pattern, field gateway

scenarios might require some protocol adaption or customizations on the cloud side and therefore can choose

to connect to a custom gateway running in the cloud. Some scenarios require integration of field and cloud

gateways using isolated network tunnels, either using VPN technology or using an application-level relay service.

Conceptual representation of device connectivity

Direct device-to-device communication enables local network control activities and information flow, or collaborative

operations where multiple devices perform coordinated actions. Purely local interactions are outside the scope of this

architecture and covered by industry standards such as AllJoyn, UPnP/DLNA, and others.

It is important to understand the terminology and key components used to describe device connectivity in the Azure IoT

reference architecture. The following sections provide more detailed descriptions.

Devices

Heterogeneous device support. The goal is to enable secure, efficient, and robust communication between nearly any

kind of device and a cloud gateway. This can be done both directly and through gateways.

Target devices. The devices in focus are line-of-business assets, from simple temperature sensors to complex factory

production lines with hundreds of components with sensors inside them.

13

The purpose for these devices will dictate their technical design as well as the amount of resources needed for their

production and scheduled lifetime operation. The combination of these two factors will define the available operational

energy and physical footprint, and thus available storage, compute, and security capabilities. The reference architecture

is generally neutral toward the runtime, platform, operating system, and performed function of the device.

Field gateway (Edge Devices)

A field gateway, or edge device, is a specialized device-appliance or general-purpose software that acts as a

communication enabler and, potentially, as a local device control system and device data processing hub. A field

gateway can perform local processing and control functions for devices and can filter or aggregate device telemetry and

thus reduce the amount of data being transferred to the cloud backend.

A field gateway’s scope includes the field gateway itself and all devices that are attached to it. As the name implies, field

gateways act outside dedicated data processing facilities and are usually collocated with devices.

A field gateway is different from a mere traffic router in that field gateways can have an active role in managing access

and information flow, i.e. they are “intelligent” devices. Field gateways may assist in device provisioning, data filtering,

batching and aggregation, buffering of data, protocol translation, and event rules processing. We recommend Azure IoT

Edge9 be used for Field Gateways in IoT solutions; Azure IoT Edge acts as an intelligent edge and facilitates on premise

implementation of routing, protocol translation, machine learning, artificial intelligence, stream processing, and more.

Azure IoT Edge offers an extensible model for enabling custom functionality through Edge modules.

Cloud gateway

A cloud gateway enables remote communication to and from devices or edge devices, which potentially reside at several

different sites. A cloud gateway will either be reachable over the public Internet, or a network virtualization overlay

(VPN), or private network connections into Azure datacenters, to insulate the cloud gateway and all of its attached

devices or edge devices from other network traffic.

It generally manages all aspects of communication, including transport-protocol-level connection management,

protection of the communication path, device authentication, and authorization toward the system. It enforces

connection and throughput quotas, and collects data used for billing, diagnostics, and other monitoring tasks. The data

flow from the device though the cloud gateway is executed through one or multiple application-level messaging

protocols.

In order to support event-driven architectures a cloud gateway typically offers a brokered communication model.

Telemetry and other messages from devices are input into the cloud and the message exchange is brokered by the

gateway. Data is durably buffered, which not only decouples the sender from the receiver, but also enables multiple

consumers of the data. Traffic from the service backend to devices (such as notifications and commands) is commonly

implemented through an “inbox” pattern. Even when a device is offline, messages sent to it will be durably persisted in a

store or queue (representing the inbox for a device) and delivered once the device connects. Due to possible time-

delayed consumption of events, providing a time-to-live (TTL) value is important, especially for time-sensitive

commands, such as "open car or home door" or "start car or machine." The inbox pattern will store the messages in the

durable store for the given TTL duration, after which the messages will expire.

9 https://azure.microsoft.com/en-us/services/iot-edge/

https://azure.microsoft.com/en-us/services/iot-edge/

14

Brokering the communication through the described patterns allows decoupling the edge from the cloud components

with respect to run-time dependencies, speed of processing, and behavior contracts. It also enables the composability of

publishers and consumers as needed to build efficient, high-scale, event-driven solutions.

Technology options

Azure IoT Hub. Azure IoT Hub is a high-scale service enabling secure bidirectional communication from a variety of

devices. Azure IoT Hub connects millions of devices and supports high-volume telemetry ingestion to a cloud backend as

well as command and control traffic to devices. Azure IoT Hub supports multiple consumers for cloud ingestion as well as

the inbox pattern for devices. Azure IoT Hub provides support for the AMQP 1.0 with optional WebSocket10 support,

MQTT 3.1.111, and native HTTP 1.1 over TLS protocols.

Azure Event Hubs. Azure Event Hubs is a high-scale ingestion-only service for collecting telemetry data from concurrent

sources at very high throughput rates. Event Hubs could also be used in IoT scenarios, in addition to IoT Hub, for

secondary telemetry streams (that is, non-device telemetry), or collecting data from other system sources (such as

weather feeds or social streams). Event Hubs doesn’t offer per-device identity or command and control capabilities, so it

might be suited only for additional data streams that could be correlated with device telemetry on the backend, but not

as a primary gateway for connecting devices. Azure Event Hubs provides support for the AMQP 1.0 with optional

WebSocket support, and native HTTPS protocols.

Support for additional protocols beyond AMQP, MQTT and HTTP can be implemented using a protocol gateway

adaptation model. CoAP is an example of a protocol that can use this model.

Custom cloud gateway

A custom cloud gateway enables protocol adaptation and/or some form of custom processing before reaching the cloud

gateway communication endpoints. This can include the respective protocol implementation required by devices (or

field gateways) while forwarding messages to the cloud gateway for further processing and transmitting command and

control messages from the cloud gateway back to the devices. In addition, custom processing such as message

transformations or compression/decompression can also be implemented as part of a custom gateway. However, this

needs to be evaluated carefully because, in general, it’s beneficial to ingest the data to the cloud gateway as fast as

possible and then perform transformations on the cloud backend decoupled from the ingestion.

Custom gateways help connect a variety of devices with custom or proprietary requirements and normalize the edge

traffic on the cloud end. Solution-specific custom gateways will commonly act as a pass-through facility and can

implement a custom authentication or rely on the authentication and authorization capabilities of the cloud gateway.

Note custom gateways can be deployed on the edge as well. In some cases, there might be
multiple gateways between a device and the cloud gateway.

Technology options

Custom gateways are typically built and operated to fulfill specific solution requirements. They may lean on shared

open-source code that is built in collaboration with a system integrator (SI) or independent software vendor (ISV)

community.

10 http://en.wikipedia.org/wiki/WebSocket
11 http://mqtt.org

http://en.wikipedia.org/wiki/WebSockets
http://en.wikipedia.org/wiki/WebSockets
http://mqtt.org/
http://mqtt.org/

15

Azure IoT protocol gateway. Azure IoT protocol gateway is an open-source framework for custom gateways and

protocol adaptation. The Azure IoT protocol gateway facilitates high-scale, bidirectional communications between

devices and Azure IoT Hub. It includes a protocol adapter for MQTT that showcases the techniques for implementing

custom protocols and enables customizations of the MQTT protocol behavior, if required. The protocol gateway also

allows for additional processing such as custom authentication, message transformations, compression/decompression,

or encryption/decryption.

IoT client

Cloud-communication with devices or edge devices must occur through secure channels to the cloud gateway endpoints

(or cloud-hosted custom gateways).

In addition to a secure communication channel, the device usually needs to deliver telemetry data to the cloud gateway

and allow for receiving messages and executing actions or dispatching those to appropriate handlers in the client. As

stated earlier, all device and gateway connections should be established in an outbound only fashion.

There are three key patterns for client connectivity being used in IoT systems:

• Direct connectivity from the device app/software layer

• Connectivity through agents

• Using client components integrated in the app/software layer of the device or gateway

Direct connectivity. In this case the communication to a cloud gateway endpoint is natively coded in the device or field

gateway software layer using the desired protocols. This requires knowledge of the required protocols and message

exchange patterns but provides full control over the implementation including the format of the data on the wire.

Agents. An agent is a software component installed on a device or field gateway that performs actions on behalf of

another program or managing component. In the IoT space agents are typically controlled and act for components

running on the cloud backend. For example, in the case of a command sent to a device, the agent will receive the

command and can execute it directly on the device.

Agents could be proprietary agents, specifically written for a particular software solution, or standard-based agents

implementing particular standards such as OMA LWM2M. In both cases it’s convenient for device developers to

integrate and rely on the encapsulated capabilities of the agents; however, there are some limitations. Typically, agents

represent a closed system, constrained to the capabilities provided by the agent for a set of supported platforms.

Portability to other platforms or customizations and extensions beyond the provided functionality are typically not

possible.

Client components. Client components provide a set of capabilities that can be integrated in the software code running

on the device to simplify the connectivity to a backend. They are typically provided as libraries or SDKs that can be linked

or compiled into the software layer of the device. For example, if a cloud backend sends a command to a device, the

client components will simplify receiving the command, though the execution will be performed in the scope of the

app/software layer.

Compared to agents, client components require integration effort into the device software, but they provide the

greatest flexibility for extensibility and portability.

16

Technology options

Azure IoT device SDKs. The Azure IoT device SDKs represent a set of client components that can be used on devices or

gateways to simplify the connectivity to Azure IoT Hub. The device SDKs can be used to implement an IoT Client that

facilitates the connectivity to the cloud. They provide a consistent client development experience across platforms and

help abstract the complexity of distributed systems messaging from device developers. These libraries enable the

connectivity of a heterogeneous range of devices and field gateways to an Azure based IoT solution. They simplify

common connectivity tasks by abstracting details of the underlying protocols and message processing patterns. The

libraries can be used directly in a device application or to create a separate agent running on the device that establishes

connectivity with the cloud gateway and facilitates the communication between the device and the IoT solution

backend.

The Azure IoT device SDKs are an open-source framework that is aligned with the Azure IoT platform capabilities. While

these libraries simplify the connectivity to Azure IoT Hub, they are optional and not required if device developers choose

to connect to the IoT Hub endpoints using existing frameworks and supported protocol standards.

3.2 Device identity store

Device identity authority. The device identity store is the authority for all device identity information. It also stores and

allows for validation of cryptographic secrets for the purposes of device client authentication. The identity store typically

does not provide any indexing or search facility beyond direct lookup by the device identifier; that functional role is

taken on by another store that keeps the application specific domain model (see next section for details). These stores

are primarily separated for security reasons; lookups on devices should not allow disclosing cryptographic material.

Further, limiting the identity store to a minimal set of system-controlled attributes helps to provide fast and responsive

operations, while on the other hand the schema of the domain model store is determined by the solution requirements.

The cloud gateway relies on the information in the identity store for the purposes of device authentication and

management. The identity store could be contained in the cloud gateway, or alternatively the cloud gateway could use

separate device identities externally.

Provisioning. Device provisioning uses the identity store to create identities for new devices in the scope of the system

or to remove devices from the system. Devices can also be enabled or disabled. When they are disabled, they cannot

connect to the system, but all access rules, keys, and metadata stay in place.

Changes on the device identity store should be made through Provisioning, described in section 3.4.

Technology options

We recommend using the Azure IoT Hub which includes a built-in device identity store that is the authority for registered

devices and provides per-device security credentials.

When a custom cloud gateway is used, it can also rely on the IoT Hub identity store and its authentication and

authorization capabilities. In case there are specific solution requirements that necessitate a custom implementation of

the identity store, it will be a separate component that will primarily enforce identifier uniqueness, store all required

security keys for the device, and will potentially hold an “enabled/disabled” status. If it includes transmitted

passphrases, those should be stored in the form of salted hashes. Please keep in mind that a custom implementation of

the identity store needs to be secured appropriately, because it stores credential information.

The identity store should only permit access to privileged parts of the system as necessary; custom gateways will look up

the required authentication material from this store.

17

If not using Azure IoT Hub, external implementations can be realized with Azure Cosmos DB, Azure Tables, Azure SQL

Database, or third-party solutions:

• Azure Cosmos DB: In Azure Cosmos DB,12 each device is represented by a document. The system-level device

identifier directly corresponds to the “id” of the document. All further properties are held alongside the “id” in

the document.

• Azure Tables: In Azure Tables, the identity store maps to a table. Each device is represented by a row. The

system-level device identifier is held in a combination of PartitionKey and RowKey, which together provide

uniqueness. All further properties are held in columns; complex data can be stored as JSON, if needed. The

concrete split of the identifier information across those fields is application specific and should follow the scale

guidance for the service.13

• SQL Database: In SQL, the identity store also maps to a table and each device is represented by a row. The

system-level device identifier is held in a clustered index primary key column. All further properties are stored in

columns; complex data or data requiring extensibility can be stored as JSON, if needed.

• Third-party options: Third-party solutions available through the Azure Marketplace or directly deployed on

Azure compute nodes can be used as well. For example, in Cassandra, each device can be represented by a row

in a column family. The store will be partitioned and indexed for fast access as needed.

3.3 Topology and entity store

Device and application model. Device and application models are foundational for building application business logic.

Examples include the ability to define and configure business rules, perform search for a subset of devices or application

entities, build User Interface and dashboards, and to ensure consistency across different components of the solution and

other backend systems.

Device models often describe:

• The schema for metadata about the device including characteristics and/or capabilities of a device. Metadata

schema and values change rarely.

Examples of device metadata are device type, make, model, serial number, capacity, etc.

• Data schemas for data emitted by the device, which define the telemetry attributes along with their data types

and allowed ranges.

For example, an environmental monitoring device will emit temperature, defined as attribute name: temp, data

type: decimal, measurement unit: Fahrenheit, and data range [10 – 110], and humidity defined as attribute

name: humidity, data type: decimal, measurement unit: percent, data range [0-100].

• Schemas for configuration parameters controlling device behaviors.

For example, some of the behavior of an environmental monitoring device can be control by parameters such as

sampling frequency, telemetry transmission interval, and operations mode.

• Operations and parameters for the control actions a device can perform.

For example, a device with connected actuator can expose remote operations such as turn left(degrees),

turn_right(degrees), and flash_warning_light(number_of_times).

• Device topologies representing a domain model, such as rich relationships between devices and other entities,

and semantic connections for business operating context.

12 https://azure.microsoft.com/services/cosmos-db
13 http://msdn.microsoft.com/library/azure/hh508997.aspx

https://azure.microsoft.com/services/cosmos-db
http://msdn.microsoft.com/library/azure/hh508997.aspx
http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx

18

For example, a building management system may use a domain model including entities such as campus (or

building complex), building, floor, room, resource, device, and sensor. The topology model defines the entity

attributes (such as properties, operations, etc.) as well as the relationships between the entities.

The complexity of the application model highly depends on the domain specific requirements. In some cases, a

hierarchical topology model will be used (e.g. for modeling campus/building/floor/room/resources and devices for a

building management system), while in other cases a graph topology might be more appropriate (e.g. a transportation

logistics company operating a fleet might require more flexible relationships, having for example one vehicle be

associated with multiple fleet groups, and with often dynamically changing relationships.

Devices are represented as nodes in the overall application topology. In many solutions the entities of interest from a

business perspective are not the same as the devices itself. The primary asset of a company can be a machine or product

that has one or more devices embedded. In the case of a building management solution, the building and room entities

are the ones that will have a plenty of application and business logic associated with them, while the devices provide

supporting functionality for monitoring, and remote control. In a fleet management solution, a connected vehicle for

example, has multiple devices associated with it and a subset of those devices help with the communication to and from

the vehicle. The application business logic is primarily focused on vehicle and group of vehicles, while the devices

represent important support functions for the operation of the vehicles.

Definition and function. The topology and entity store is a database that contains application entities and relationships

among the entities. It also contains device metadata and attributes for provisioned devices (represented by device entity

in the overall topology).

The topology and entity store contain a “run-time” representation of the application model. The Azure IoT reference

architecture does not impose any particular entity or device model, schema, or structure for device metadata. It

assumes that those are defined for the specific IoT solution at “design time”, i.e. during development or dynamically

during configuration of the system through appropriate modeling tools. It is possible to define an own application model

or select some vertical industry standard model.

During provisioning, each device is registered with a metadata record (instance of the device entity) in the topology and

entity store, which can contain structured and/or unstructured metadata, based on the defined model (at design time).

Device identity registry versus topology and entity store. While the device identity store only contains system-

controlled attributes and cryptographic material, the topology and entity store have a full representation of a device,

including its relation to other entities, such as products, assets, or machines. The record in the identity store determines

whether a device is registered and can authenticate with the system. For security reasons, it’s a good practice to keep

the security related info separate from the device entity. The entity store must not store any key or other cryptographic

information related to the device.

The device identity store represents the authoritative list of device identities (primarily for authentication purposes). The

topology and entity store in contrast, has the full set of device metadata (device attributes, properties, operations, etc.)

among relations to other application entities, required for the application to perform its business functions. This store is

the one used for device discovery, as well as discovery of other application entities and provides reach indexing and

powerful search capabilities.

The topology and entity store is the authoritative store for entities and their relationships for the IoT solution, ensuring

consistent view across the system. For technical reasons, projections of the contained information can be stored or

cached in other components for fast access. However, the source of truth for the entities and their relations is this store.

19

Changes to it might need to be synchronized or propagated to other components as needed. For example, some device

metadata attributes might be necessary in the IoT Hub device twin for device management orchestration. In this case,

changes of those attributes of the device entity need to be applied to the IoT Hub device twin. Vice versa, if an attribute

value is changed on the device twin (coming from a device), this change will be propagated to the device entity in the

topology and entity store. In other cases, specific advanced analytics tasks might need a copy of the device reference

data in a specific storage component or format.

Metadata. The distinction between metadata describing the device itself and operational data reflecting the state of the

device or its operating environment is important because it directly impacts how the device information can be used,

cached, and distributed throughout the system. Metadata is typically slow-changing data, while the operational data is

expected to be fast-changing.

For example, the geo-position of a traffic-light pole is metadata, but the current geo-position of a vehicle is considered

operational data. The vehicle’s identification number, model, and make will be metadata. Discovery of all traffic lights on

a particular stretch of a road can be performed as a query against the topology and entity store, while finding all vehicles

currently driving on a particular stretch of a road would be an analysis task over operational data. The metadata in the

topology and entity store can help as reference data for finding all vehicles of a particular model on the road, however.

Technology options

The topology and entity store providing descriptive information about entities and devices should provide rich or

freeform index capabilities with the goal of providing fast lookups.

The registry store can be implemented on top of one of the following technologies:

• Azure Cosmos DB: Azure Cosmos DB is a fully managed graph database and allows modeling of IoT devices,

entities and their topology as a graph. In Azure Cosmos DB, each device can be represented by a document. The

system-level device identifier directly corresponds to the “id” of the document. All further properties are held

alongside the “id.” Cosmos DB is well suited for the topology and entity store function because it accepts

arbitrarily structured data and automatically creates indexes (unless disabled for specific attributes). This allows

for fast and flexible lookups14 across the registered devices and other entities. It also allows for easy navigation

of the topology using the Cosmos DB Graph API.

• Azure SQL Database: In SQL, each device can be represented by a row in a table. The system-level device

identifier is held in a clustered index primary key column. All further properties are stored in columns; complex

data or data needing extensibility can be stored as JSON or XML, if needed. Based on query patterns the

appropriate columns will need to be indexed. Other application entities can be represented by SQL tables.

Relations between the entities can be expressed using SQL Database relational database functionality.

• Third-party options: In addition to managed Azure services, third-party data services available through the

Azure Marketplace or directly deployed on Azure compute nodes can be used as well. In this case the actual

schema depends on the product used, but the structure is going to be similar to the one used for Azure Cosmos

DB or Azure SQL Database. Partitioning and indexing will be applied as needed for fast access based on the

appropriate device or entity properties. For example, for representing devices in Apache Cassandra database15,

14 https://docs.microsoft.com/azure/cosmos-db/documentdb-sql-query
15 http://cassandra.apache.org

https://docs.microsoft.com/azure/cosmos-db/documentdb-sql-query
http://cassandra.apache.org/
http://cassandra.apache.org/

20

Cassandra’s column family could have the device identifier as partition key and could define additional indexes

on other properties of the device.

3.4 Device provisioning

Definition. Provisioning represents the step of the device life cycle when a device is to be made known to the system.

The Provisioning API is the common external interface for how changes are made to the internal components of the

backend, specifically the device identity store and the topology and entity store. It provides an abstract interface with

common gestures, and there is an implementation of that abstract interface for the device identity and topology and

entity stores. The implementation can be extended to include other components and systems.

Device provisioning is typically initiated at the backend, by registering devices in the system before they become

operational. In some cases, this may happen during manufacturing of the devices (including burning in device identity

and credentials required to connect to the IoT backend). In other cases, the provisioning may be performed immediately

before the device is turned on for usage, for example during device installation. The first time a device is trying to

establish a connection to the backend, additional steps might be performed to finalize its configuration (or to

“bootstrap” it) for usage.

Provisioning workflow. A solution’s provisioning workflow takes care of processing individual and bulk requests for

registering new devices and updating or removing existing devices. It will also handle the activation, and potentially the

temporary access suspension and eventual access resumption. This may also include interactions with external systems

such as a mobile operator’s M2M API to enable or disable SIMs, or with business systems such as billing, support, or

customer relationship management solutions. The provisioning workflow ensures, that the device is registered with all

backend systems that need to know about its identity and additional metadata attributes as needed.

Bootstrapping workflow. When a device wants to connect to the backend system for the first time, additional steps may

be executed to finalize its configuration. This might include configuration or software updates to be applied before first

usage of the device. During the bootstrapping step, the device might be assigned to a new “home” endpoint with new

credentials for it. This is particularly important for multitenant systems or globally distributed deployments. Information

about who is going to use the device (which tenant) or where the device is going to be used (geo location) impacts the

decision of where to “home” the device (i.e. which cloud gateway will be responsible for connectivity with the device). In

many cases, the provisioning component is implemented as a “global” service that delegates the registration of devices

into regional deployments, as well as orchestrated devices to their “home” endpoints during bootstrapping. In this case,

the global service can implement a higher-level workflow for provisioning, using the same or similar external interfaces

as the regional components, and delegate operations to the regional provisioning components as appropriate.

Technology options

We recommend using the Azure IoT Hub Device Provisioning Service16 (DPS) for device provisioning. DPS is a global

provisioning service that supports registration and configuration (i.e. bootstrapping) of devices across multiple IoT Hubs.

DPS simplifies the automation of device provisioning into the device identity store (part of IoT Hub), while providing

flexibility to control the distribution of devices. DPS offers an API for backend systems for the device registration, as well

as API for the device configuration (bootstrapping). DPS can be used in the provisioning workflow to automate the

distribution of devices across IoT Hubs, alongside with other steps for registering devices in other backend components

and systems (such as the topology and entity store, or a 3rd party provider system). For globally distributed deployments,

each of these steps might require registration with a global or regional system.

16 https://azure.microsoft.com/roadmap/azure-iot-hub-device-provisioning

https://azure.microsoft.com/roadmap/azure-iot-hub-device-provisioning

21

Azure API Apps17 can be used for the implementation of the external provisioning API. API Apps provides a platform for

building, hosting, and distributing APIs in the cloud and on-premises. API Apps integrates seamlessly with Azure Logic

Apps,18 which can be used for the implementation of an overarching provisioning workflow across the IoT solution

components and external business systems.

The provisioning interface is a simple set of gestures for managing the device life cycle. The provisioning interface (API)

should be implemented as the primary API over the device identity and topology and entity registry stores and

optionally other internal solution components if required. It is not only used from the solution UI (for example, the

device administration portal), but can also serves as the interface for higher-level workflows that can also interact with

external systems, such as a mobile operator’s M2M API for managing SIM cards or a backend business system for

activating a billing for a service.

Security keys can be generated outside of the API and passed in as parameters or can be created and assigned by the

service as part of the provisioning API call.

Generating a security token can be performed in the Provisioning API using the required signing key. The token issued to

a device will be limited in scope to a particular endpoint (for example, a device endpoint in the case of IoT Hub or Event

Hub publisher policy). The data returned by the Register and ResetCredentials operation contains the required security

tokens that must be transferred to the devices. Alternatively, security tokens could be generated on the device or

externally and passed to the devices.

For custom gateways, the required credentials can be generated externally and passed into the API for storage, or the

API can be extended to create the keys.

3.5 Storage

Definition. IoT solutions can generate significant amounts of data depending on how many devices are in the solution,

how often they send data, and the size of payload in the data records sent from devices. Data is often time series data

and is required to be stored where it can be used in visualization and reporting as well as later accessed for additional

processing. It is common to have data split into “warm” and "cold" data stores. The warm data store holds recent data

that needs to be accessed with low latency. Data stored in cold storage is typically historical data. Most often the cold

storage database solution chosen will be cheaper in cost but offer fewer query and reporting features than the warm

database solution.

A common implementation for storage is to keep a recent range (e.g. the last day, week, or month) of telemetry data in

warm storage and to store historical data in cold storage. With this implementation, the application has access to the

most recent data and can quickly observe recent telemetry data and trends. Retrieving historical information for devices

can be accomplished using cold storage, generally with higher latency than if the data were in warm storage. For general

purpose scenarios we recommend Azure Cosmos DB for warm storage and Azure Blob Storage for cold storage. If the

solution requires frequent queries that involve aggregation across many events and across many devices we recommend

Time Series Insights for warm storage. See below for a detailed description of warm and cold storage and a deep dive

into the technology evaluation performed for storage technology in each category.

Warm Storage

A warm storage database stores device state for a pre-determined recent interval and may also store an easily

accessible last known state per device. This data must be available in the database quickly (ideally within a matter of

17 https://azure.microsoft.com/documentation/articles/app-service-api-apps-why-best-platform
18 https://azure.microsoft.com/documentation/articles/app-service-logic-what-are-logic-apps

https://azure.microsoft.com/documentation/articles/app-service-api-apps-why-best-platform
https://azure.microsoft.com/documentation/articles/app-service-logic-what-are-logic-apps

22

seconds from when the data is ingested into the cloud gateway from the device) and easily queried for simple scenarios

such as visualizing current device sensor values or visualizing values over a recent timeframe. Common query patterns

include: data for a device for a recent date and time range, aggregated data for one or many devices, and the last

known value for a telemetry point for a specific device. The data stored in the warm database may be raw data,

aggregated data, or both. See Section 3.6 - Data flow and stream processing for information on streaming processing.

If a solution has a high rate of ingestion (on the order of many hundreds of thousands or millions of messages per

second), a specialized high ingestion database may be required. The recommendations for high ingestion databases are

forthcoming.

Evaluation Criteria

Warm storage solutions were evaluated based on the following criteria. These criteria will not apply for every IoT

solution but were designed to be most generally applicable across IoT solutions.

1. Security. The solution offers mature and robust features such as encryption at rest, authentication and

authorization, and network security.

2. Simplicity. The solution is well documented and has a well-defined architecture. Development tasks are

documented, supported by software development kits (“SDKs”), and are testable in a local development

environment. Deployment and operational tasks are supported by documentation, tools, and user interfaces.

3. Performance. Reading and writing to the database is fast and scales to many concurrent reads and writes. Query

performance is also fast.

4. Scalability. The database supports storing gigabytes to terabytes of data. Scaling out does not require downtime.

The ideal solution automatically adapts cost and computing power to the load provided.

5. Query Capability. The database has the query capabilities necessary for the overall solution.

6. Price. The database is affordable for both storage capacity and throughput needs.

Technology options

Azure Services vs. Third Party Options

All Azure Services are secure and make setup and maintenance of the service simple. In addition to Azure services, third

party, self-managed options hosted in Azure can be used for storage as well; e.g. Cassandra. Due to increased complexity

and the higher developer operations costs (leading to a higher total cost of ownership) of self-managed services, we

recommend using a managed service over a self-managed service. A self-managed service requires planning for storage

and compute needs, and an operations team to manage the resources. It should be noted however that self-managed

services offer great flexibility and control making them potentially suitable for your scenario.

General Purpose

Recommended: Azure Cosmos DB. We recommend Azure Cosmos DB as a general purpose warm storage solution.

Azure Cosmos DB is a secure, highly scalable (no limits on data storage or throughput), low latency NoSQL database. It is

best for datasets that can benefit from flexible, schema-agnostic, automatic indexing, and rich query interfaces. Azure

Cosmos DB has 5 API types and data models—SQL, MongoDB, Graph, Table and Cassandra, which provide the flexibility

to choose a data model based on the data needs of the solution. Cosmos DB allows multi-region read and write and

supports manual failover in addition to automatic failover. In addition, Cosmos DB allows the user to set a time-to-live

(TTL) on their data, which makes expiring old data automatic. Pricing is based on storage used and Request Units

https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies
https://docs.microsoft.com/en-us/azure/cosmos-db/indexing-policies

23

provisioned19. Cosmos DB is best for scenarios that do not require queries involving aggregation over large sets of data

across many devices, as those queries require more Request Units than a basic query such as the last event for a device.

Azure SQL DB. Azure SQL DB is best for datasets that require relational storage and query capabilities. Azure SQL DB also

provides advanced features for data management, protection and security, and business continuity. Pricing is based on a

combination of storage provisioned and Database Transaction Units or elastic Database Transaction Units provisioned20.

Manual scaling to increase storage space has no downtime. SQL DB also has built in replication and automatic region

failover to ensure data is not lost in an outage. We recommend Azure Cosmos DB over Azure SQL DB due to the

requirement of relational storage, the need to manually scale the database, and the limits on scale and throughput for

write ingest.

Azure Time Series Insights (TSI). Azure TSI is an analytics, storage and visualization service for time series data, providing

capabilities including SQL-like filtering and aggregation, alleviating the need for user-defined functions. All data in Azure

TSI is stored in-memory and in SSDs, which ensures data is quickly ready for interactive analytics. Azure TSI also provides

visualizations such as overlays of different time series, dashboard comparisons, accessible tabular views, and heat maps.

Azure TSI provides a data explorer to visualize and query data as well as REST Query APIs. Further, it exposes a JavaScript

controls library that enables embedding time series charts into custom applications. Azure TSI is suited for solutions that

need visualization services built in and do not need to report on data immediately (TSI has an approximate latency for

querying data records of 30-60 seconds). TSI is well suited for solutions that need to query aggregates over large sets of

data, as TSI allows any number of users to conduct an unlimited number of queries for no extra cost. Today, TSI has a

maximum retention of 400 days and a maximum storage limit of 3 TB, so a solution using TSI will need to use a cold

storage database (likely swapping data into TSI for querying as needed) as well if the customer needs a larger amount of

storage or longer retention. TSI is our recommendation for time series data storage and analytics

Third Party: Apache Cassandra. Apache Cassandra is a linearly scalable, highly available NoSQL database and can span

clusters across geographical regions. It uses the CQL query language, which is modeled after SQL. It offers

authentication, encryption and firewall capabilities, as well as data replication. In addition, it performs well in write-

heavy scenarios (it can achieve over 1 million writes per second21), which makes it a good fit for an IoT solution that has

a high level of telemetry ingestion.

Comparison Grid—General Purpose

 Azure Cosmos DB22 Azure SQL DB23 Apache Cassandra

Security

Simplicity

Encryption at

Rest

Yes Yes Yes

Authentication Master keys, Active

Directory integration

SQL Authentication, Azure

Active Directory

Authentication

JMX usernames and

passwords, role-based

access

Supports

Firewalls

Yes Yes Yes

Data Model Multi-Model Relational Wide column

19 https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
20 https://azure.microsoft.com/en-us/pricing/details/sql-database/
21 https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
22 https://azure.microsoft.com/en-us/services/cosmos-db/
23 https://azure.microsoft.com/en-us/services/sql-database/

https://docs.microsoft.com/en-us/azure/time-series-insights/tutorial-explore-js-client-lib
https://docs.microsoft.com/en-us/azure/time-series-insights/tutorial-explore-js-client-lib
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

24

Developer SDKs .NET, Java, Node.js,

Python for all APIs.

.NET, Java, Node.js,

Python, Ruby, and more

.NET, C/C++, Java, Node.js,

PHP, Python and more

Perf/

Scalability

Query

Capability

Price

Availability 99.99% SLA 99.99% SLA Highly available—no single

point of failure

Regional

Availability

30+ Azure regions 30+ Azure regions N/A

Data

Replication

Automatic local

replication.

Georeplication

available.

Automatic local

replication.

Georeplication

available.

Can enable replication with

more nodes.

Disaster

Recovery

Automatic failover. Automatic failover. Need to configure. Can

spread cluster across

multiple regions.

Data Limits None Max 4 TB None

Throughput

Limits

None Max 4000

DTUs/eDTUs24 per

database/Elastic Pool

None

Single Write

Performance

< 1 second < 1 second < 1 second

Single Read

Performance

< 1 second < 1 second < 1 second

Single Simple

Query

Performance25

< 1 second < 1 second < 1 second

Aggregate

Query

Performance26

> 1 second27 1 second > 1 second28

Query

Language(s)

SQL

(previously DocumentDB),

MongoDB, Table,

Cassandra, Graph

(Apache TinkerPop,

Gremlin)

T-SQL CQL

Pricing Model Storage usage and RU

provisioned. Can scale

RUs up or down as

needed.

Storage and

DTU/eDTU provisioned.

Dependent on setup

24 https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
25 Ex: Select data for a single device for the last minute
26 Ex. Return percentiles for device data for the last hour (assuming 3600 data points, calculating P25, P50, P75, P90, P99)
27 Aggregate functions are not natively supported in Cosmos DB. A user-defined function would be required.
28 Functions such as sum are supported in SQL, but percentiles and more complex calculations are not. A user-defined function would be required.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu

25

Cold Storage

Instead of keeping all data in a warm data store with low latency, high throughput, and full query capabilities, data can

be split into warm and cold storage paths. This can provide lower storage costs while still preserving historical data. A

cold storage database holds data that is not needed as quickly and/or frequently as warm storage, but still may be

necessary to access in the future for reporting, analysis, machine learning use, etc.

Evaluation Criteria

Cold storage solutions were evaluated based on the following criteria. These criteria will not apply for every

solution but were designed to be the most generally applicable for an IoT solution.

1. Security. The solution offers mature and robust features such as encryption at rest, authentication and

authorization, and network security.

2. Simplicity. The solution is well documented and has a well-defined architecture. Development tasks are

documented, supported by software development kits (“SDKs”), and to some degree testable in a local

development workstation. Deployment and operational tasks are supported by documentation, tools, and

user interfaces.

3. Scalability. The database supports storing a large amount of data. Scaling out does not require downtime.

The database has very long (on the order of years) or unlimited retention. The ideal solution automatically

adapts cost and computing power to the load provided.

4. Price. The database is affordable for large amounts of data.

Technology Options

The best cold storage database for a solution is highly dependent on what purpose the database will serve. The two data

storage solutions below are designed for high scale at a low price, but each has strengths for different scenarios. We

recommend Azure Blob Storage for the general case, as it is cheaper than Azure Data Lake, especially in terms of write

requests, is currently available in more regions, and has better disaster recovery. However, if the solution requires cold

storage data analytics (with Hadoop, Azure Data Analytics, etc.), or requires querying with U-SQL, Data Lake is designed

with that scenario in mind and may be the better choice.

Recommended: Azure Blob Storage. Azure Blob Storage is a simple, inexpensive file storage database. Blobs can be used

to store raw device data. Using page blobs instead of block or append blobs should be considered depending on

frequency of write operations29. Azure blob storage has full security capabilities, local or geo-redundant storage options,

and is available in all Azure regions. It is highly scalable—the maximum storage limit is 500 TB and the maximum request

rate per account is 20,000 requests per second30.

Azure Data Lake. Azure Data Lake is a distributed data store that can persist large amounts of relational and

nonrelational data without transformation or schema definition. It is a good choice for a storage database if big data

analytics and/or unlimited storage are required. It is slightly more expensive than Azure Blob Storage (specifically in

terms of write operations), but it is optimized for big data analytics workloads. The database can be accessed from

Hadoop via WebHDFS-compatible REST APIs or using the U-SQL language. It has locally redundant storage and is

available in some US Azure regions as well as North Europe. We recommend Blob Storage over Data Lake due to the

slight premium in price, the smaller regional availability, and the lack of geo-redundant storage.

29 https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction

30 https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#storage-limits

26

Comparison Grid

 Azure Blob Storage31 Azure Data Lake32

Security

Simplicity

Encryption at

Rest

Yes Yes

Authentication Shared Secrets, HMAC Azure Active Directory, OAuth 2.0

Supports

Firewalls

Yes Yes

Auditing Yes Yes

Data Model Object store with flat namespace Hierarchical File System

API REST API over HTTPS/HTTP REST API Over HTTPS, U-SQL

Server-side API Azure Blob Storage REST API WebHDFS-compatible REST API

Developer SDKS .NET, Java, Python, Node.js, C++, Ruby,

PHP, Go, Android, iOS

.NET, Java, Python, Node.js

Availability Between 99.9-99.99% SLA for read

(depending on replication), 99.9% SLA for

writes

99.9% SLA for read/write

Regional

Availability

All Azure Regions East US 2, Central US, North Europe

Data

Replication

Locally redundant by default. Can also be

read-only geo-redundant

Locally Redundant

Disaster

Recovery

If have geo-replicated data: Can read

from secondary in case of outage and will

failover data in case of emergency.

Can handle transient hardware failures. It

is recommended to copy data to secondary

region manually in case of regional failure.

Scalability Data Limits 500 TB None

Throughput

Limits

20,000 requests/second None

Price Pricing Model Data Usage and Request Count33 Data Usage and Request Count34

High Ingestion

Section Forthcoming

3.6 Data flow and stream processing

As data is ingested to the IoT backend, it is important to understand how the flow of data processing may vary.

Depending on scenarios and applications, data records can flow through different stages, combined in different order,

and often processed by concurrent parallel tasks.

These stages can be classified in four categories: storage, routing, analysis and action/display:

• Storage includes in-memory caches, temporary queues and permanent archives.

31 https://azure.microsoft.com/en-us/services/storage/blobs/
32 https://azure.microsoft.com/en-us/services/data-lake-store/
33 https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
34 https://azure.microsoft.com/en-us/pricing/details/data-lake-store/

https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/services/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/

27

• Routing allows dispatching of data records to one or more storage endpoints, analysis processes, and actions.

• Analysis is used to run input data records through a set of conditions and can produce different output data

records. For instance, input telemetry encoded in Avro may return output telemetry encoded in JSON format.

• Original input data records and analysis output records are typically stored and available to display, and may

trigger actions such as emails, instant messages, incident tickets, CRM tasks, device commands, etc.

These processes can be combined in simple graphs, for instance to display raw telemetry received in real time, or more

complex graphs executing multiple and advanced tasks, for example updating dashboards, triggering alarms, and

starting business integration processes, etc.

For example, the following graph represents a simple scenario in which devices send telemetry records which are

temporarily stored in Azure IoT Hub, and then are immediately displayed on graph on screen for visualization:

The following graph represents another common scenario, in which devices send telemetry, store it short term in Azure

IoT Hub, shortly after analyzing the data to detect anomalies, then trigger actions such as an email, SMS text, instant

message, etc.:

IoT architectures can also consist of multiple ingestion points. For instance, some telemetry storage and/or analysis may

occur on premise, within devices and field/edge gateways; or protocol translations may be required to connect

constrained devices to the cloud. While the resulting graph is more complex, the logical building blocks are the same:

Recommended data flow

This reference architecture assumes that a business runs multiple concurrent stream processors, either by partitioning

the ingested stream, or by forwarding data records to multiple pipelines. We recommend partitioning be based on

message properties (e.g. device ID, device location, payload format, etc.) to avoid payload de-serialization before routing

but the document includes solutions capable of routing based on the content of JSON messages.

The following graph, also known as Lambda architecture, shows the recommended flow of device-to-cloud messages

and events in an IoT solution. Data Records flow through two distinct paths:

1. A fast process that archives and displays incoming messages, and also analyzes these records generating short-

term critical information and actions, such as alarms.

28

2. A slow processing pipeline executing complex analysis, for example combining data from multiple sources and

over a longer period of time (e.g. hours or days), and generating new information such as reports, machine

learning models, etc.

In the lambda architecture, the fast data flow is constrained by latency requirements, so there is a limit on the

complexity of the analysis possible. Often, this requires a tradeoff of some level of accuracy in favor of data and analysis

that is ready as quickly as possible. For example, averaging functions and trend analysis can be executed only on a

limited amount of data, typically in the order of few seconds.

Data flowing into the slow path, on the other hand, is not subject to the same latency requirements, and allows for high

accuracy computation across large data sets, which can be very time intensive. It is also notable that slow path analysis

results can be leveraged by fast path analytics; e.g. a solution might need to compute a running revenue average over a

week of data and provide that average for use as reference data to fast path computations.

Technology options

There are several Azure and third-party services that can be used and combined to build a reliable and scalable IoT

architecture, however, when choosing which service to deploy, some aspects should be considered first:

• Stateless vs stateful: where possible, a solution should implement stateless processors, to reduce operational

cost and increase availability. On the other hand, stateful processing allows for richer analysis, and is often

required to implement higher level features.

• Static vs dynamic rules: if analysis rules do not change and do not reference external data that changes, it is

possible to choose simpler technologies at a lower cost. In scenarios where more flexibility is required to

support variable load, frequent changes to stream processing logic, and mutable external reference data

available technologies are more complex and expensive to deploy.

The document presents two options, one to address simple scenarios with stateless processors and fairly static rules,

and one complex scenarios, e.g. stateful processors with dynamic analysis logic and reference data.

29

The following solutions are presented with the assumption that Azure managed services increase the overall system

security and reduce the cost of setup and maintenance. On the other hand, solutions developers can create

heterogeneous systems, combining managed services with proprietary, third-party or open source components, such as

Spark and Cassandra through leveraging other Azure offers like Azure Virtual Machines, Azure Container Services, and

Azure HDInsight.

Stateless stream processing

The following architecture provides a solution for fast and scalable real-time analysis of ingested data records, in

scenarios where only stateless analysis is required, using a small set of simple logic rules. Also included is a slower path,

allowing execution of more complex analysis, for instance machine learning jobs, without the speed limitations of the

fast path.

This architecture is recommended for scenarios where the input data records are serialized in JSON, and processing rules

take in input one message at a time, without considering historic data. The architecture leverages the ability to define

conditions on the payload (#5) in Azure IoT Hub, in order to forward only specific messages and trigger actions in

services connected via Logic Apps (#8).

One Azure IoT Hub route is also used to forward all the telemetry (#1) to an Azure function (#3) that can transform it into

a different format, e.g. joining external information, and store it to Azure Cosmos DB (#4) for warm storage

consumption, e.g. display on a dashboard.

Another Azure IoT Hub route (#10) is used to copy all the incoming data records into Azure Storage Blobs (#11) for cold

storage, where it can be archived indefinitely at low cost, and is easily accessible for batch processing, such as Azure

Machine Learning data science tasks (#12).

30

Benefits of the architecture:

1. High availability due to geographic redundancy and quick disaster recovery features of the Azure services.

2. Low cost: most of the components automatically scale, adapting to variable work load, minimizing the cost

whenever there is no data to process.

3. Minimal operational costs, because all the components are managed Azure services.

4. Flexibility: Azure Functions and Azure Cosmos DB allow transformation of ingested data to any desired schema,

supporting multiple access patterns and APIs like MongoDB, Cassandra and Graph APIs.

5. Actions and Business Integration: A wide choice of integrations are available via Logic Apps and Azure ML.

When to use this architecture:

1. Input data records are serialized in JSON format.

2. A small number of rules are required. Currently Azure IoT Hub supports up to 100 routes.

3. Data records can be analyzed one at a time; i.e. there is no need to aggregate data over multiple data points

(e.g. averaging) or data streams (e.g. merging data from multiple devices).

Stateful stream processing

The following architecture describes a fast, flexible and scalable solution for stateful real-time analysis of ingested data

records in multiple formats, with the ability to reference external data, without the limitations of the previous

architecture, at the expense of a greater operational cost.

The architecture includes the same slow path seen in the previous architecture for use with machine learning and other

complex analysis not possible in the fast path.

31

The architecture is similar to the solution recommended for stateless processing only the analysis path is replaced with

Azure Stream Analytics (ASA) (#5).

ASA is designed for hyper-scale analysis and routing of data records, in a stateful fashion, with the ability to apply

complex queries over time periods and multiple streams. Queries are defined using a SQL-like language that allows

transformations and computations. The service tolerates late (up to 21 days) and out-of-order (up to one hour) events,

when processing by application time35, in which case the output is therefore delayed by the time difference.

ASA also guarantees exactly once delivery to the supported destinations, with few documented36 exceptions that may

generate duplicates. The query language allows optimized performance analysis via parallelization, and by breaking

queries into steps.

ASA also supports data records in Avro format, a compact binary format used to reduce latency and bandwidth cost.

In addition to ASA performing stream processing, in this architecture one Azure IoT Hub route is used to forward all

telemetry (#1) to an Azure function (#3) that can transform it into a different format, e.g. joining external information,

and store it to Cosmos DB (#4) for consumption, e.g. display on a dashboard.

A separate Azure IoT Hub route (#10) is used to copy all incoming data records into Azure Storage Blobs (#11), where it

can be archived indefinitely at low cost, and is easily accessible for batch processing, such as Azure Machine Learning

data science tasks (#12).

Benefits of the architecture:

1. High availability due to geographic redundancy and quick disaster recovery features of Azure services.

2. Minimal operational costs, because all the components are managed Azure services.

3. Azure Stream Analytics ability to execute complex analysis at scale, for instance use of tumbling/sliding/hopping

windows, stream aggregations, and external data source joins.

4. Flexibility: Azure Functions and Cosmos DB allow transformation of ingested data to any desired schema,

supporting multiple access patterns and APIs like MongoDB, Cassandra and Graph APIs.

5. Actions and Business Integration: A wide choice of integrations are available via Logic Apps and Azure ML.

6. Performance: Support for binary data streams, in order to reduce latency.

When to implement this architecture:

1. Input data records require complex analysis, such as time windows, streams aggregation, or joins with external

data sources, which is not possible with the stateless architecture.

2. The processing logic consists of several rules or logic units, which might grow in time.

3. Input telemetry is serialized in a binary format like Avro.

3.7 Solution User Interface

The solution user interface (UI) typically includes a website and reporting, but can also include web services and a mobile

or desktop app.

35 https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
36 https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics
https://msdn.microsoft.com/azure/stream-analytics/reference/event-delivery-guarantees-azure-stream-analytics

32

The solution UI can provide access to and visualization of device data and analysis results, discovery of devices through

the registry, command and control capabilities, and provisioning workflows. In many cases end users will be notified of

alerts, alarm conditions, or necessary actions that need to be taken through push notifications.

The solution UI can also provide or integrate with live and interactive dashboards, which are a suitable form of

visualizations for IoT scenarios with a large population of devices.

IoT solutions often include geo-location and geo-aware services and the UI will need to provide appropriate controls and

capabilities.

As stated in beginning of this document, security is critical and the solution UI that provides control over the system and

devices needs to be secured appropriately with access control differentiated by user roles and depending on

authorization.

Technology options

Azure App Service is a managed platform with powerful capabilities for building web and mobile apps for many

platforms and mobile devices. Web Apps and Mobile Apps allow developers to build web and mobile apps using

languages like .NET, Java, NodeJS, PHP, or Python. In addition, Azure API Apps allows easy exposure and management of

APIs, which can be accessed by mobile or web clients.

Azure Time Series Insights (TSI) includes a time series data-optimized user interface including charting, a heat map, a

perspective view for comparing visualizations, and Business Intelligence statistics associated with the underlying data.

TSI also offers a JavaScript control library which facilitates integration of visualization of data stored in TSI in custom

applications.

The TSI JavaScript control library enables developers with existing applications to embed charts for visualization of their

IoT data. If a user would like to create a new application, starting with the Azure IoT Solution Accelerators (Remote

Monitoring or Connected Factory) is the recommended approach. These open source reference architecture

implementations use the TSI JavaScript control library for visualizations out of the box and alleviate the need to build a

custom Web App from scratch. Note these Solution Accelerators are end to end, production-ready examples of IoT

solutions; i.e. they include implementations for stream processing, storage, etc.

Azure Notification Hubs enables sending of push notifications to personal mobile devices (smartphones and tablets). It

supports iOS, Android, Windows, and Kindle platforms, while abstracting the details of the different platform

notification systems (PNS). With a single API call, a notification can target an individual user or an audience segment with

a large number of users.

In addition to the traditional UI, dashboards are very important in IoT scenarios because they provide a natural way for

aggregated views and help visualize a vast number of devices. Power BI is a cloud-based service that provides an easy

way to create rich, interactive dashboards for visualizations and analysis. Power BI also offers live dashboards, which

allow users to monitor changes in the data and indicators. Power BI includes native apps for desktop and mobile devices.

Another suitable technology for IoT visualizations is Azure Maps.37 The Azure Maps APIs includes map controls and

services that can be used to incorporate Azure Maps in applications and websites. In addition to interactive and static

37 https://azure.microsoft.com/en-us/services/azure-maps/

https://azure.microsoft.com/en-us/services/azure-maps/
http://www.bing.com/maps

33

maps, the APIs provide access to geospatial features such as geocoding, route and traffic data, and spatial data sources

that can be used to store and query data that has a spatial component, such as device locations.

Web and mobile apps can be integrated with Azure Active Directory (AAD) for authentication and authorization control.

The apps will rely on the management of user identities in AAD and can provide role-based access control for application

functionality. In many cases there will be logical associations between IoT devices and users (or between groups of

devices and groups of users). For example, a device can be owned by someone, used by someone else, and installed or

repaired by another user. Similar examples can be true for groups of devices and users. Permissions and role-based

access control can be managed as part of an association matrix between device identities (maintained in the device

identity store) and user identities managed by AAD. The specific design of this matrix, granularity of permissions, and

level of control will depend on the specific solution requirements. This matrix can be implemented on top of the device

registry or can use a separate store using different technology. For example, the device registry can be implemented

using Cosmos DB, while the association and permission matrix can be built using a relational SQL database. Please note

that this topic is discussed in this section because user authentication and authorization is surfaced as part of the UX;

however, the actual implementation will be spread across multiple underlying components, including the device registry

and the app backend, discussed in the next section.

3.8 Monitoring and Logging

IoT solution logging and monitoring systems are used to determine whether the solution is functioning as expected and

to help troubleshoot what is wrong with the solution. Monitoring and logging systems aid in answering the following

operational questions:

• Are devices or systems in an error condition?

• Are devices or systems correctly configured?

• Are devices or systems generating accurate data?

• Are systems meeting the expectations of both the business and end customers?

Monitoring and logging systems assist with answering these questions, and when the answer is “no”, they surface

relevant information for operations teams to help mitigate problems.

IoT solutions logging and monitoring systems are often more complicated than those of standard line-of-business

applications. The complexity arises from the fact that IoT solutions span:

• Physical sensors interacting with an environment.

• Applications on the intelligent edge performing data shaping, protocol translation, etc.

• Infrastructure components such as on-premise gateways, firewalls and switches.

• Ingestion and messaging services.

• Persistence mechanisms.

• Insight and reporting applications.

• Subsystems that operate and scale independently in the cloud.

34

A further component of IoT solution complexity arises from the fact that there are a diverse set of stakeholders,

including:

A monitoring and logging solution can include numerous specialty software applications and libraries targeted at each

subsystem of the IoT solution. Logging and monitoring tools are typically comprised of the following four components:

• System performance and timeline visualization tools –for monitoring the system and for basic troubleshooting.

• Buffered data ingestion –to buffer log data (which can be verbose).

• Persistence store –to store log data.

• Search and query capabilities –to view log data for use in detailed troubleshooting.

Large scale IoT solutions can be composed of many smaller subsystems. It is often reasonable to deploy multiple

instances of logging and monitoring components for each of these systems, with higher level instances aggregating data

and analyses from the lower level systems. For example, in the Remote Monitoring solution accelerator multiple

subsystems (IoT Hub, Cosmos Db, Azure Stream Analytics, custom microservices, and more) are used to provide operator

capabilities for IoT devices. Logging for the subsystems is done at an individual level, and then can be aggregated to

provide an end to end view of the solution.

Resiliency and redundancy must be considered when designing logging and monitoring systems. Increased logging and

monitoring performance can be gained by co-locating a solution alongside systems; however, the strategy comes with

the risk of systemic outage38 and incurs the risk of the logging/monitoring system negatively affecting performance and

scale of the core IoT solution itself. Early assessment of the monitored system ‘risk of failure’ will ensure the

development of robust solutions.39

Monitoring & Visualization

Monitoring systems provide insights into the health, security, and stability, and performance of an IoT solution. At a high

level, monitoring systems provide a quick view of whether the end to end solution is functioning as expected.

Monitoring systems can also provide a more detailed view, recording component configuration changes and providing

extracted logging data that can surface potential security vulnerabilities, enhance the incident management process40,

and help the owner of the system troubleshoot problems. Comprehensive monitoring solutions include the ability to

query information for specific subsystems or aggregating across multiple subsystems.

Monitoring system development should begin by defining healthy operation, regulatory compliance, and audit

requirements. Metrics collected may include:

38 https://medium.com/@adrianco/who-monitors-the-monitoring-systems-715a333f97fc
39 https://turbonomic.com/blog/on-technology/thinking-like-an-architect-understanding-failure-domains/
40 https://www.axelos.com/news/blogs/september-2014/service-monitoring-strategic-opportunity

External Stakeholders

Suppliers & Partners

Customers

Compliance and Audit Specialists

Internal Stakeholders

IT & Operations

Security Teams

Field Technicians & Service Personnel

Application Developers

Data Scientists

Business Teams & Executives

https://medium.com/@adrianco/who-monitors-the-monitoring-systems-715a333f97fc
https://turbonomic.com/blog/on-technology/thinking-like-an-architect-understanding-failure-domains/
https://www.axelos.com/news/blogs/september-2014/service-monitoring-strategic-opportunity

35

• Physical devices, edge devices, and infrastructure components reporting configuration changes; e.g. open network

ports, patches, services, and users (for audit & compliance), along with general operational parameters such as

power consumption, CPU, memory, and disk usage.

• Applications reporting configuration changes, security audit logs, request rates, response times, error rates, and

garbage collection statistics for managed languages.

• Databases, persistence stores and caches reporting query and write performance, schema changes, security audit

log, locks or deadlocks, index performance, CPU, memory and disk usage.

• Managed services (IaaS, PaaS, SaaS and FaaS) reporting health metrics and configuration changes that impact

dependent system health and performance.

Care should be taken to balance the performance cost of collecting and storing metrics against the value of the insights

provided.

Strategies for collecting metrics are often complicated by the enhanced security contexts specific to IoT solutions.

Applications on devices can be sandboxed from the host operating system which inhibits collecting device metrics

through the applications deployed to them, requiring additional software solutions to facilitate collection. Additional

system security design pressures arise from audit and compliance requirements. SaaS, PaaS and IaaS monitoring

components often come with certifications41 that will narrow audit scopes for meeting regulatory compliance

requirements.

Visualization of monitoring metrics alert stakeholders to system instabilities and facilitate incident response.

Visualization should be customized to stakeholder roles and provide extensibility to accommodate solution growth and

maturation. Data presented to operators should be limited to high-impact, actionable metrics that can be linked to

system state changes, while providing the ability to deep dive into specific problems as needed. Visualization timelines

should present correlated data, such as deployments, configuration changes or previous incidents. The added context of

this correlated data enhances decision making and expedites response time.

Tracing Telemetry

Tracing telemetry allows an operator to follow the journey of a piece of telemetry from creation through the system.

Tracing is important for debugging and troubleshooting. For IoT solutions that leverage Azure IoT Hub and the Azure

Device SDKs, tracing datagrams can be originated, ad hoc, as Cloud-to-Device42 messages and included in the telemetry

stream. Tracing IDs and message flags allow tracing datagrams to flow through the system’s processing chain while

offering operational insights along the way.

In IoT solutions where only differential telemetry (e.g. only refrigeration temperature changes) is transmitted to the

ingestion service, a similar approach for tracing messages can also be leveraged to build heartbeat circuits43. Heartbeat

circuits are used to ensure that devices with low messaging rates are still active, infrequently used messaging

connections remain alive, and to indicate forward progress during long running tasks. Heartbeat telemetry can be

leveraged for building performance visualizations, Service Level Agreement (SLA) reports, and can be folded into an IoT

solution’s monitoring tool chain.

41 https://azure.microsoft.com/overview/trusted-cloud
42 Send cloud-to-device messages from IoT Hub (https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-messages-c2d)
43 https://docs.microsoft.com/system-center/scom/manage-agent-heartbeat-overview

https://azure.microsoft.com/overview/trusted-cloud
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-messages-c2d
https://docs.microsoft.com/system-center/scom/manage-agent-heartbeat-overview

36

Logging

Logging systems are integral in understanding what actions or activities a solution has performed, failures that have

occurred, and can provide help in fixing those failures. Logs can be analyzed to help understand and remedy error

conditions, enhance performance characteristics, and ensure compliance with governing rule and regulations.

Text based and structured are two primary models for logging information.44 Text based logging is typically implemented

for debugging purposes during application development and provides developers with a narrative style recording of

application behavior. Structured logging builds upon the text-based approach by adding situational context and

metadata to the narrative log information with the intention that the logs will be parsed. In structured logging

approaches, properties become first class citizens formatted as key/value pairs, or with a fixed schema, to enhance

search and query capabilities.

Text log example:

2017-12-18T08:15:30 [INFO] - ClientAuthed, dev/opcpub, 35f634d7

2017-12-18T08:15:30 [INFO] - New device connection for device dev/opcpub

2017-12-18T08:15:30 [INFO] - Bind device proxy for device dev/opcpub

2017-12-18T08:15:30 [INFO] - Binding message channel for device dev/opcpub

Structured log example:

{“@t”:”2017-12-18T08:15:30”,”@l”:”info”,“deviceId”:”opcpub”,”@m”:” ClientAuthed, 35f634d7.”}

{“@t”:”2017-12-18T08:15:30”,”@l”:”info”,“deviceId”:”opcpub”,”@m”:” New device connection.”}

{“@t”:”2017-12-18T08:15:30”,”@l”:”info,“deviceId”:”opcpub”,”@m”:” Bind device proxy.”}

{“@t”:”2017-12-18T08:15:30”,”@l”:”info”,“deviceId”:”opcpub”,”@m”:” Binding message channel.”}

Though plain text logging is lower impact on upfront development costs, it is more challenging for a machine to

parse/read. We recommend structured logging be used, as collected information is both machine parsable and human

readable.

Evaluation Criteria

Monitoring

Monitoring & Visualization solutions were evaluated with the following criteria. While these criteria may not apply to

every IoT solution, they were selected as the most generally applicable.

1. Complete Solution: Solution offers buffered data ingestion, easily integrated data persistence, search and query

capabilities, and a suite of easily navigable visualizations. The monitoring solution should offer Application

Performance Monitoring (APM) capabilities, an alerting and notification rule system, extensibility for issue tracking

system integration, and potentially a feedback loop that enables solution autoscaling.

2. Security: The monitoring and associated visualization systems offers mature and robust security options such as

Transport Layer Security (TLS) for communications, integrated authorization and authentication for resources, and

data encryption at rest.

3. Visualization: Solutions offer a suite of prebuilt visualizations, facilitate the building of custom visualizations and offer

search and query of data. Access to underlying data sources and generated dashboards are protected by

authorization and authentication mechanisms.

44 https://www.thoughtworks.com/radar/techniques/structured-logging

https://www.thoughtworks.com/radar/techniques/structured-logging

37

4. Configuration & Machine Monitoring: Solutions have the capacity to scan and monitor for machine changes in ports,

packages, services, users, etc. Application or service level configurations are monitored and checked for consistency

across deployments or clusters of machines. The solution works across Windows and Linux operating systems.45

5. Alerting: Solutions have an integrated rules engine that maps to either an integrated alerting and notification system

or provides easily configurable hooks to third-party notification and ticketing systems.

6. Compliance: Solution should meet compliance specifications for deployments that require auditing.

7. Service Model: The solution is offered for self-hosting or as a SaaS solution with an SLA.

8. Scale: Additionally, the monitoring system should easily scale with IoT solution growth.

Technology Options

The following monitoring and visualization solutions were evaluated. Operations Management Suite is the

recommended solution for Azure IoT solutions.

Operations Management Suite (Recommended)

Operations Management Suite (OMS) is the recommended monitoring and visualization solution. OMS provides an

operations management toolchain for IoT solutions (cloud and on-premise). Machine logs, services and applications,

regardless of deployment location, can push log messages directly into OMS using OMS built-in connectors or via its Data

Collector API.46 OMS provides custom log parsing to facilitate decomposition of events and records into individual fields

for indexing and search.47

Monitoring log search is available via the OMS Log Search feature, or the customizable Analytics service, which integrates

with OMS and provides advanced visualization options.

Alerting is supported via Alert Rules. Alerts are defined using a query that monitors events happening within a specified

time range. Threshold values, frequency options, and alert suppression are available to avoid alert flooding. The alerting

engine supports integration via Webhook: this enables OMS to send messages with messaging solutions such as

Microsoft Teams or Slack. An alert dashboard is also available to provide an overall view of active alerts.48

OMS data retention policies are configurable, and all activities performed on the Log Analytics service are logged and can

be audited.49

Elastic Stack (Elasticsearch, Logstash, Kibana and Beats)

Collectively, the Elastic Stack facilitates the ingestion, parsing and visualization of data. The Elastic Stack is available

through an array of deployment options including self-hosted, in a public or private cloud, or through the Azure

Marketplace. The Elastic stack is highly customizable with a broad community that contributes actively to both the core

components and add-on solutions. Elastic provides a library of success stories across industries and use cases50.

Built upon the mature Apache Lucene library, the Elasticsearch component provides search engine capabilities and

analytics over collected data. It is designed for performance and for scale, distributing shards across nodes and

automatically detecting failures to rebalance data. One of the challenges with Elasticsearch is querying data across the

45 https://www.upguard.com/product/core#Features
46 https://docs.microsoft.com/azure/log-analytics/log-analytics-data-collector-api
47 https://docs.microsoft.com/azure/log-analytics/log-analytics-data-sources-custom-logs
48 https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-alerts
49 https://docs.microsoft.com/azure/log-analytics/log-analytics-data-security
50 https://www.elastic.co/use-cases

https://www.upguard.com/product/core#Features
https://docs.microsoft.com/azure/log-analytics/log-analytics-data-collector-api
https://docs.microsoft.com/azure/log-analytics/log-analytics-data-sources-custom-logs
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-alerts
https://docs.microsoft.com/azure/log-analytics/log-analytics-data-security
https://www.elastic.co/use-cases

38

indexed sources, so it is important to join the data as it is indexed51. Ingestion and parsing of logs via Logstash will be

discussed further in the Logging section below.

Kibana is a data visualization tool which supports basic charts and graphs, geospatial features, and time series.

Dashboards can be embedded in applications, shared, or exported to various formats.

Just as monitoring is intended to assert the health of the system, it is important to know that the monitoring solution

itself remains healthy52. The Elastic Stack X-Pack add-on is core to solving this problem, as well as role-based access

control down to the document field level, transport encryption, integrated audit log, alerting and automated report

distributions. X-Pack allows sending data into a separate cluster so that monitoring is available when the production

nodes have failed.

Splunk

Splunk is a general-purpose, real-time data analysis platform with a powerful extensibility model, offered in both hosted

and self-hosted configurations. Splunk supports an array of input data formats53 and has the capability to collect

telemetry and logs from machines using agentless scanning or with the Universal Forwarder54 agent. Ingested raw data

is transformed into time-series events and subsequently indexed for search and query. Splunk’s Common Information

Model (CIM)55 helps to normalize data to match a shared semantic model, which acts as a search-time schema over

indexed data. Splunk’s Search Processing Language (SPL)56 combines SQL with data piping capabilities to query, enrich

and transform (into the CIM) indexed data. SPL facilitates data visualization, machine learning and anomaly detection

and trend analysis.

Splunk is often deployed for audit and regulatory compliance solutions, as it supports a wide range of monitoring and

reporting utilities for financial services, healthcare and public-sector organizations. Splunk also benefits IoT workloads

through integrated predictive maintenance, customizable alert and notifications, and device performance management.

Comparison Grid

 Operations

Management Suite

(OMS)

Elastic Stack Splunk

(Hosted)

Solution

Components

Buffered Ingestion Yes Yes Yes

Integrated

Persistence

Yes Yes Yes

Search & Query Yes Yes Yes

Visualization Yes Yes Yes

Security System Update

Assessment

Yes No Yes

Antimalware Yes Possible Yes

Encrypted

Communications

Yes Possible Yes

Data Encryption at

Rest

Yes Via encrypted

filesystem

Yes

51 https://www.opsview.com/resources/elasticsearch/blog/using-elk-stack-business-intelligence
52 https://medium.com/@adrianco/who-monitors-the-monitoring-systems-715a333f97fc
53 http://dev.splunk.com/view/dev-guide/SP-CAAAE3A
54 https://docs.splunk.com/Documentation/Forwarder/7.1.0/Forwarder/Abouttheuniversalforwarder
55 http://docs.splunk.com/Documentation/CIM/4.10.0/User/Overview
56 https://docs.splunk.com/Documentation/Splunk/7.1.0/SearchReference/UnderstandingSPLsyntax

https://www.opsview.com/resources/elasticsearch/blog/using-elk-stack-business-intelligence
https://medium.com/@adrianco/who-monitors-the-monitoring-systems-715a333f97fc
http://dev.splunk.com/view/dev-guide/SP-CAAAE3A
https://docs.splunk.com/Documentation/Forwarder/7.1.0/Forwarder/Abouttheuniversalforwarder
http://docs.splunk.com/Documentation/CIM/4.10.0/User/Overview
https://docs.splunk.com/Documentation/Splunk/7.1.0/SearchReference/UnderstandingSPLsyntax

39

Visualization Interleaved System

Events

Yes Yes Yes

Heat Mapping Customizable Yes Yes

Data Cubing &

Slicing via

Integrated Query

Language

Yes Yes Yes

Configuration &

Machine

Monitoring

Remote Machine

Scanning

Yes Manual Yes

Change Tracking Yes Manual Yes

Event Push for Data

Correlation

Yes Yes Yes

Alerting Integrated

Notifications

Yes Yes Yes

3rd Party

Extensibility

Yes Yes Yes

Service Model Reliability/SLA Yes No Yes

SaaS Yes Optional Yes

Self-hosted No Yes Yes

Scalability Yes Yes Yes

Logging

Logging solutions were evaluated with the following criteria. While these criteria may not apply to every IoT solution,

they were selected as the most generally applicable.

1. Security: The logging system offers mature and robust security options such as TLS for communications,

integrated authorization and authentication for resources, and data encryption at rest.

2. Programming Model: The logging system offers in and out of process operational models, uses a structured

logging approach, has well documented and easy to use APIs or libraries.

3. Storage & Persistence: The logging system offers the flexibility to leverage multiple persistence stores/output

mechanisms that are capable of being altered at runtime. This flexibility addresses the logging needs for distinct

phases of application development: development, QA, integration, staging and production. The solution should

also offer the capability to auto-expire or push to cold storage old log information.

4. Search & Query: The logging system supports search and query mechanisms to sift through log information by

origin or time slice.

5. Buffered Ingestion: The logging system offers asynchronous log submission and a buffered ingestion layer.

6. Visualization: The logging system offers a limited amount of visualization of logging metrics such as rates of

ingestion, storage consumption, etc. Visualization is not a required component.

7. Service Model: The solution is offered for self-hosting or as SaaS with an SLA.

8. The logging system should scale with IoT solution growth.

Technology Options

The following logging solutions were evaluated. Application Insights and Serilog are the recommended solutions for

Azure IoT solutions.

40

Serilog/SerilogJ (Recommended as the in-application logging framework)

Serilog(J) is the recommended diagnostic logging library for IoT solutions with a focus on structured logging. Serilog has

broad OSS community support, is easily configurable, and supports an extensive range of “sinks”, which allow developers

to easily adjust how and where logging information is sent.57 Serilog includes the concept of log data enrichment,

whereby developers can extend log events by folding in crosscutting information such as environment or process

information.58 Serilog can be used as a basic logging solution for custom code in any subsystem.

Application Insights (Recommended for cloud log and metrics data ingest and persistence)

Application Insights is an extensible Application Performance Monitoring (APM) service.59 Application insights is the

recommended APM solution as it provides integrated anomaly detection, eases application performance and metrics

collection, and offers easy integration with DevOps and SDLC (Software Development Life Cycle) toolchains. Developers

can instrument their software using the Serilog Application Insights Sink.

It is important to note that as of the publication of this document, Application Insights does not yet provide data

encryption at rest for hot-path data, though all cold data is stored encrypted.

log4J/log4Net

The Apache Software Foundation’s log4J™ (henceforth, log4*) logging framework is a popular Java logging library and its

architecture has been ported to 12 different languages, including to .NET-based runtimes.60 The text-based logging

framework implements the notion of hierarchical loggers, which facilitate granularity of control for logging statements.

The log4* architecture works well for component-based application development61 and the extensible configuration

capabilities support the modification of logging granularity at runtime.

Elastic Stack (Elasticsearch, Logstash Kibana, and Beats)

The Elastic Stack is a collection of tools composed of four OSS products:

• Elasticsearch, a distributed search and analytics engine62

• Logstash, a tool for collecting, parsing and storing logs63

• Kibana, a data visualization and exploration tool for logging, time-series and APM use cases64

• Beats, agents which send metrics, logs, heartbeats, packets, or other custom data into Elasticsearch or Logstash65

Searching, analyzing, and visualizing data via Elasticsearch and Kibana was previously discussed in the Monitoring section.

Logstash and Beats are components of the Elastic Stack which support transfer of data into the Elastic system.

Logstash is the ingestion and processing pipeline for data, supporting at-least-once delivery via a persistent queue. Data

can come from any number of sources to be transformed and stored in any number of sinks. There is a library of

provided filters which can be leveraged in the transformation pipeline to perform tasks such as: parsing either structured

57 https://github.com/serilog/serilog/wiki/Provided-Sinks
58 https://github.com/serilog/serilog/wiki/Enrichment
59 https://docs.microsoft.com/azure/application-insights/app-insights-overview
60 Marrs, Tom, and Davis, Scott. “JBoss at Work.” O’Reilly, 2005. “Appendix B: Logging and JBoss”, pp.254
61 https://logging.apache.org/log4net/release/features.html#Hierarchical-logging-architecture
62 https://www.elastic.co/products/elasticsearch
63 https://www.elastic.co/products/logstash
64 https://aws.amazon.com/elasticsearch-service/kibana
65 https://www.elastic.co/products/beats

https://github.com/serilog/serilog/wiki/Provided-Sinks
https://github.com/serilog/serilog/wiki/Enrichment
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://logging.apache.org/log4net/release/features.html#Hierarchical-logging-architecture
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://aws.amazon.com/elasticsearch-service/kibana
https://www.elastic.co/products/beats

41

or unstructured data, aggregate events, mutate fields, and throttle events66. Over 200 plugins are available to create

custom pipelines, and if a plugin is missing, it can be built and contributed67.

Beats is the latest addition to the Elastic Stack68. Each single-purpose agent runs across production nodes to perform

lightweight collection and shipping of relevant data into Elasticsearch or Logstash. Elastic provides Beats for log files,

metrics, network data, event logs, audit data, and heartbeats. There is also a repository of community Beats to which

developers may continue to contribute69.

While the Elastic Stack features its own comprehensive set of data ingestion APIs, the tool set can be paired with sinks for

Serilog(J) or log4j(net) that enhance toolchain performance and increase developer productivity. Self-hosted Elastic

Stack deployments will require additional investment in operations, maintenance and security that hosted solutions will

not.

Comparison Grid

 Serilog/

SerilogJ

log4J/ log4Net AppInsights Elastic Stack

Security Secure

Communications

 Yes Optional

Encryption at

Rest

Via encrypted

file system

Via encrypted

file system

Q2/2018 Via encrypted

file system

Integrated

Authorization &

Authentication

 Yes No

Programming

Model

In/Out of Process In process In process In process API – In process

Text Based No Yes No No

Structured Yes Workaround Yes Yes

Storage &

Persistence

File based Yes Yes No No

Relational Optional Sink Optional Sink No No

Columnar Optional Sink Optional Sink Yes No

Key-Value Optional Sink Optional Sink No No

Document Optional Sink Optional Sink No Yes

Cold

storage/archiving

Manual

w/Rolling File

Appender

Manual

w/Rolling File

Appender

Continuous

export70

Yes71

Buffered

Ingestion

Queuing In Memory In Memory Integrated Integrated

Throttling 32K events/sec

averaged over

1 min72

Index merge

limitations

Scalable Service

Tiers

 Yes In SaaS model

66 https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
67 https://www.elastic.co/guide/en/logstash/current/contributing-to-logstash.html
68 https://www.elastic.co/elk-stack
69 https://www.elastic.co/guide/en/beats/libbeat/current/community-beats.html
70 https://docs.microsoft.com/azure/application-insights/app-insights-data-retention-privacy#how-long-is-the-data-kept
71 https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
72 https://docs.microsoft.com/azure/application-insights/app-insights-pricing#data-rate

https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
https://www.elastic.co/guide/en/logstash/current/contributing-to-logstash.html
https://www.elastic.co/elk-stack
https://www.elastic.co/guide/en/beats/libbeat/current/community-beats.html
https://docs.microsoft.com/azure/application-insights/app-insights-data-retention-privacy#how-long-is-the-data-kept
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html
https://docs.microsoft.com/azure/application-insights/app-insights-pricing#data-rate

42

Visualization Data Correlation Yes Yes

Customizable

Dashboards &

Drill-down

 Yes Yes

Service

Model

Reliability/SLA Yes Yes (SaaS

Deployment)

SaaS Yes Optional

Self-hosted No Yes

Pricing Model Consumption Compute &

Consumption

based

Logging and Monitoring Architecture

The following simplified logging and monitoring architecture shows examples of typical IoT solution components and

how they leverage the recommended technologies detailed above.

3.9 Business System Integration and Backend Application Processing

IoT applications can integrate with technology systems across an organization. Devices, groups of devices, business rules

and actions, and access and associations between devices and users are controlled. Important parts of the application

backend are the “custom” control logic of the solution, device discovery and visualization, device state management and

command execution, as well as device management which controls device life cycle, enables distribution of

configuration and software updates, and allows remote control of devices. Business integration is often driven from

backend processing systems; i.e. the integration of the IoT environment into downstream business systems such as CRM,

ERP, and line-of-business (LOB) applications.

43

Application backend processing

Unlike traditional business systems, the business logic of an IoT solution might be spread across different components of

the system. Solution device management will commonly use compute nodes, whereas the analytics portion of the

solution will be largely implemented directly inside the respective analytics systems.

In some cases, simple solutions may not have independently deployed and managed “business logic” application

backend, but the core logic may exist as rule expressions hosted inside stream processing, some of the analytics

capabilities, and/or as part of the business workflows and connector components.

Technology options

There are several implementation options for the backend logic. As mentioned above, some of the logic will be

implemented in the event processors and analytics components of the system. Implementation choices for those

components were covered in their respective sections. This section focuses specifically on the business logic backend.

Programming techniques that don’t support hyper-scale. Many of the architectural patterns and programming

techniques that have been popular for the past decades are applicable to IoT solutions but might face scalability

challenges at large number of devices. Hence, for large IoT deployments, these models should only be used with

stateless app backends running on scalable compute nodes. Scaling out a stateful application layer represents a difficult

problem with traditional architectures. In those cases, scale appropriate compute models such as actor frameworks or

batch processing can be used, as described in the next sections.

Actor frameworks. Actor frameworks represent a well-suited compute model for IoT scenarios. The actor programming

model fits well where there are a high number of “independent” units with a specific behavior and independent local

data/state. The actor framework provides a good abstraction model for devices that need to communicate with backend

services. A (physical) device can be modeled as an actor with defined behavior and local state that will run on the

backend. The actor becomes a virtual representation of the physical device. An actor can represent a stateful

computation unit that manages its own state. Unlike traditional programming techniques, where an instance of an

object is created, and the state needs to be loaded from outside, a stateful actor has immediately intrinsic state. With a

1:1 relationship between a device and backend “code,” the actual implementation becomes easier and developers can

focus on the specific behavior that is required to manage a single type of device.

In addition, actor models provide a way to create hierarchies of actors, in order to represent relationships among

devices or group of devices. For instance, it is easy to model all the sensors in a building as a hierarchy of actors: a

building can be an actor that is composed of a set of floor actors, a floor actor is defined as a set of room actors, and

each room actor can control a set of sensors in that room. This way, it is easy to write complex rules and logic that

iterate the actor hierarchy. Each element of the hierarchy provides the right behavior and state required to act or

aggregate information at the higher level.

An actor can process messages from devices, perform computations, and send commands or notifications to devices

when certain conditions are met on the backend. From an abstraction perspective, developers can focus on the code

that is required to manage one device, which results in a simple programming model. Most actor frameworks use a

message-based architecture, and communication with and among actors is managed by the framework. Actors are

invoked only when one or more messages are available and need to be processed; that is, the actor is activated by the

framework when there is work to be performed. There is no need to have any “worker role” type of component in the

architecture that needs to stay alive to check if there is work to be done. The actor framework scheduler is responsible

to schedule actors for execution with the goal of optimizing resource utilization. In the context of this architecture, an

44

actor can be activated when a device event is received, or from the backend, based on events coming from business

logic and rules, or a line-of-business system.

There are several actor frameworks available and developers can choose the one that best fits their programming

background and scenario requirements. The following paragraphs introduce three popular actor frameworks: Azure

Service Fabric Reliable Actors, Akka, and Akka.NET.

Azure Service Fabric Reliable Actors

Azure Service Fabric73 enables developers to build and manage scalable and reliable applications composed of

microservices running at very high density on a shared pool of machines, commonly referred to as a Service Fabric

cluster. It provides a sophisticated runtime for building distributed, scalable, stateless and stateful microservices and

comprehensive application management capabilities for provisioning, deploying, monitoring, upgrading/patching, and

deleting deployed applications. Stateful services in Service Fabric offer the benefits of having fully replicated local data

that can be used directly by the service without the need for relying on external tools such as cache systems or storage.

Service Fabric provides the Reliable Actors programming model. It is an actor-based programming model that uses the

strength of the Service Fabric runtime infrastructure to provide a scalable and reliable model that developers with an

object-oriented programming background will find very familiar. The Reliable Actors programming model is very similar

to Orleans, and developers that are familiar with Orleans can easily migrate to Reliable Actors or can keep using the

Orleans runtime.

In addition to the Reliable Actors, Service Fabric also provides a lower level programming model Reliable Services74 that

has different tradeoffs between simplicity and flexibility in terms of concurrency, partitioning, and communication75.

With this model Reliable Collections76 can be used to store and manage device state.

Akka

Akka77 is a well-known Actor programming model that runs on a Java virtual machine (JVM). It is developed using the

Scala programming language but provides Java APIs as well. Akka-based backend applications can be hosted in Azure

and can use Azure IoT services, while enabling a familiar programming model for developers that are already using Java

or Scala as their language of choice.

Akka.NET

Akka.NET78 is a port of the Akka programming model to the .NET runtime and supports both C# and F#. Along with Akka,

it provides a way for developers to use the Akka programming model but run the code on top of the .NET runtime.

Azure Batch

Batch processing is well suited for workloads that require running a high number of automated tasks, such as performing

regular (such as monthly or quarterly) processing, or risk calculations. Azure Batch79 is a cloud-scale job scheduling and

compute management service that enables users to run highly parallelizable compute workloads. The Azure Batch

scheduler can be used to dispatch and monitor the execution of workloads across large-scale compute clusters. It takes

care of starting a pool of compute virtual machines, installing processing jobs and staging data, running the jobs,

73 https://azure.microsoft.com/services/service-fabric
74 https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction
75 https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework
76 https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections
77 http://akka.io
78 http://getakka.net
79 https://azure.microsoft.com/services/batch

http://azure.microsoft.com/en-us/campaigns/service-fabric/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-introduction/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-choose-framework/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
https://azure.microsoft.com/documentation/articles/service-fabric-reliable-services-reliable-collections/
http://akka.io/
http://akka.io/
http://getakka.net/
http://getakka.net/
https://azure.microsoft.com/en-us/services/batch/

45

identifying failures, and re-queuing work as needed. It also automatically scales down the pool of resources as work

completes.

Business systems integration

The business integration layer is responsible for the integration of the IoT environment into downstream business

systems such as CRM, ERP, and line-of-business (LOB) applications. Typical examples include service billing, customer

support, dealers and service stations, replacement parts supply, third-party data sources, operator profiles and shift

plans, time and job tracking, and more.

The IoT solution ties into existing line-of-business applications and standard software solutions through business

connectors or EAI/B2B gateway capabilities. End users in B2B or B2C scenarios will interact with the device data and

special-purpose IoT devices through this layer. In many cases the end users will use personal mobile devices to access

the functionality. Those personal mobile devices are conceptually different than the IoT devices, although in some cases

there will be association or mapping between the end user’s mobile device and IoT devices. For example, in a home

automation scenario, a mobile phone might act as field gateway, connecting to IoT devices and facilitating the

communication for those. From an authorization perspective the associations between end users, personal mobile

devices, and IoT devices will be managed by the IoT solution backend.

Technology options

Azure Logic Apps provide a reliable way to automate business processes. The service supports long-running process

orchestrations across different systems hosted in Azure, on-premises, or in third-party clouds. Logic Apps allow users to

automate business process execution and workflow via an easy-to-use visual designer. The workflows start from a

trigger and execute a series of steps, each invoking connectors or APIs, while taking care of authentication,

checkpointing, and durable execution. There is a very rich set of available connectors to a number of first-party and

third-party systems, such as database, messaging, storage, ERP, and CRM systems, as well as support for EAI and EDI

services and advanced integration capabilities.

For API integration, Azure API Management provides a comprehensive platform for exposing and managing APIs that

includes end-to-end management capabilities such as: security and protection, usage plans and quotas, policies for

transforming payloads, as well as analytics, monitoring, and alerts.

Integration at the data layer can be enabled by Azure Data Factory, which provides an orchestration layer for building

data pipelines for transformation and movement of data. Data Factory works across on-premises and cloud

environments to read, transform, and publish data. It allows users to visualize the lineage and dependencies between

data pipelines and monitor data pipeline health.

3.10 Machine Learning (At-rest data analytics)

At-rest data analytics is performed over the collected device telemetry data, and often this data is blended with other

enterprise data or secondary sources of telemetry from other systems or organizations. Analyzing and predicting device

operational data and behavior, based on device telemetry correlated with ambient parameters and telemetry, is a

powerful pattern.

There are a significant number of scenarios for when, why, and how to analyze data after it is at rest, and this reference

architecture document does not aim to provide an in-depth explanation of these options or of at-rest data analytics. IoT

scenarios and the general-purpose guidance for these capabilities directly applies to IoT solutions but is not limited to

that. Advanced analytics and big data solutions can be used in these cases.

46

Technology options

For data scientists acquainted with the algorithmic foundation, Azure Machine Learning provides a hosted machine

learning capability. It offers ease of use with straightforward integration into solutions using a generated web service

interface.

With HDInsight, the Azure platform provides a hosted implementation of the Apache Hadoop80 platform, providing

Apache Hive,81 Apache Mahout,82 MapReduce,83 Pig,84 and Apache Storm85 as analysis capabilities.

Power BI enables the creation of models, KPIs, and their visualization through interactive dashboards. It provides a

powerful analytics solution for monitoring the performance of processes or operations and can help to identify trends

and discover valuable insights.

Other options include Apache Spark, which can be used to run big data jobs, but also provides modules for graph

analysis and machine learning.

4. Solution design considerations

Device intelligence

Connected devices aim to form intelligent systems. A key question is how intelligent devices should be versus how

intelligent the system as a whole should be. The answer will be different based on the specific device purpose, design,

available computing resources, and power; however, there a set of common trade-offs for IoT systems to consider.

Designing a device happens at the beginning of its life cycle. Design failures at this stage can be impossible or very costly

to correct after the device is manufactured, though some device behavior can be changed through firmware/software

updates or through a configuration change. Software changes are much easier than changing or replacing hardware, so

designing remote software update capabilities for devices is helpful.

Even if a device has software update capabilities, managing updates of potentially millions of edge components is far

more complex than updating a centralized solution backend. In general, more intelligence on the edge equates to

potentially more software updates of edge components at higher frequencies, while more intelligence on the solution’s

backend means the maintenance can be performed in a centralized fashion. Without question, having more intelligence

on the backend will most likely increase the dependency of edge components, although when designed properly they

should be able to perform autonomously even without online connection to the backend.

Regardless of the functional capabilities of the devices, centralizing the security of the software operations in the

backend typically allows for better security controls across the entire system (especially when devices are in an

untrusted zone).

During the lifetime of an IoT solution, multiple device types of different generations and versions will potentially be

connected to the system. Even if an IoT solution starts with one device type, heterogeneity of the deployed device

population should be expected. With increased heterogeneity the maintenance of the edge components is expected to

80 http://hadoop.apache.org
81 http://hive.apache.org
82 http://mahout.apache.org
83 http://en.wikipedia.org/wiki/MapReduce
84 http://en.wikipedia.org/wiki/Pig_(programming_tool)
85 http://storm.incubator.apache.org

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://storm.incubator.apache.org/
http://storm.incubator.apache.org/

47

increase significantly, while maintenance of the backend software shouldn’t be impacted to the same extent.

Maintaining simple, stable interfaces between the device and the backend will help in the long run.

In general, changes are gradually easier when moving from device hardware, to device/edge software, to the cloud

backend. For this reason, it’s always a good practice to start designing in this sequence—that is, to design for devices

first. The available power on the device, computing resources, as well as the choice of communication technology will

affect how and when devices communicate with the service. In many cases certain processing will need to happen on

the edge, such as when guaranteed response times are needed, or to perform filtering of data sent to the backend.

Having less intelligence on the devices may increase the dependency on the cloud backend but helps improve the agility

of the system and reduces maintenance and operations cost.

These trade-offs should be considered in the specific context and business requirements of an IoT solution and may vary

from scenario to scenario.

Device telemetry

The type and frequency of telemetry data to be collected are fundamental aspects of an IoT solution. This decision

process should be driven by the business requirements. Before deciding what information to collect, the business

motivation and goals—such as transforming a business model toward a service provider, adding new services, improving

customer engagement, or optimizing operations and maintenance—should be clarified. The requirements about what

telemetry is needed should be derived from the business goals.

There is a key trade-off between the volume of data collected and its cost. Data that is not collected cannot be analyzed,

but you pay for collected data in terms of performance and cost. Trying to collect as much data as possible doesn’t

always guarantee that the right business questions can be answered when needed. Also, collecting too much or

unnecessary data makes it more difficult to differentiate useful information from “noise,” and also impacts the

operations and management cost. In many cases, understanding the value of the collected data might be an iterative

process.

One possible strategy is to program the devices to emit different granularity of telemetry data and then control that

level from the cloud as needed. A configuration change command can then be used to instruct the device to change the

collection profile and to start transmitting different levels of telemetry data.

In addition, different categories of data can be treated differently. Devices might split the data for hot-path processing—

being sent in real time to the cloud—and cold telemetry, which can be collected locally and transferred on a delayed

basis. For example, a device using network-condition detection can send hot-path data across a mobile network and

transfer cold telemetry data after a Wi-Fi or wired connection is established.

In the case of complex devices containing multiple subcomponents (such as industrial equipment devices), the device

telemetry most likely will need to be processed for each subcomponent separately (and treated logically as a separate

device by the solution). As described previously, those telemetry streams can be segregated by using a protocol header

property (such as “stream_id”) to allow for differentiation and appropriate processing on the backend.

Another aspect to consider is how data will be correlated between devices, device topologies, components, and systems.

The telemetry flow should contain appropriate attributes to enable linking the information on the backend for holistic

insights across the entire system.

48

Edge connectivity

Different topologies for direct or indirect device connectivity were discussed previously. When using Azure IoT Hub as

the cloud gateway, the edge connectivity options are shown in Figure 1.

Figure 1 - Edge connectivity with IoT Hub

In addition to the topology, a number of other aspects need to be designed for the solution, as described in the following

sections.

Transport protocol

In the context of this architecture the focus of transport and messaging protocols is on IP-based communication

between devices (including those acting as field gateways) and cloud gateways. Peer-to-peer and local network

communication standards, link-layer protocols, and physical data transfer (wire, radio) are out of scope.

Note: There are additional efforts related to local network communications—Microsoft engagement

with the AllSeen Alliance, which develops the AllJoyn standard (covering local network interaction

of devices with an optional cloud gateway)—and for Industrial IoT scenarios— Microsoft
engagement with the OPC Foundation around the OPC Unified Architecture (OPC UA). Both of these

standards cover local network discovery and device interaction.

49

Physical and link layer considerations. While guidance on physical transfer, link layer, and local network technology

choices and usage are out of scope for this document, it is important to understand the potential impact of their usage

on the communication at and above the transport layer. The underlying communication technology will impact not only

the quality of service but will also dictate the frequency and communication patterns used by devices.

Networks built on radio and power-line technology are susceptible to interference and other signal quality issues, which

can cause data frame and packet corruption and loss. Battery-operated devices will optimize the send/receive patterns

for lower power consumption, and often will use radio on-demand, which means that devices will not be reachable at all

times. Mobile operator networks (such as GSM, 3G, 4G) compensate for many of the effects of radio-based

technologies, but higher packet latencies and packet loss are nevertheless common. With domestic roaming, whereby

devices are allowed to roam across different operator networks, devices may quite frequently switch connections and IP

addresses. A moving vehicle may switch between base stations every couple of minutes, depending on the reach of the

particular frequency band.

These examples provide context for the common need to design the device communication patterns based on the

underlying communication technology. A device can detect which type of connectivity is used (network condition

detection) and switch the communication mode. For example, large binary transfers can be performed over Wi-Fi or a

wired connection, while on a cellular or radio network the device will implement a reduced communication profile.

Another common pattern for implementing the service-assisted communication principles described in section 2.5

Device interaction for power-constrained or battery-operated devices that are not always reachable, is to use an out-of-

band communication channel (such as mobile carrier SMS) to “wake up” a device and instruct it to establish an

outbound network connection to its “home” gateway, when time-critical commands need to be transmitted.

Virtual private network (VPN) technology allows for integrating and isolating a network, creating a single address space

functionally equivalent to a local network, while in reality spanning multiple underlying networks. It provides

mechanisms to securely join and participate in an isolated network but does not secure the traffic inside the network.

Without further components like per-endpoint firewalls, it intentionally does not limit how the participants of the virtual

network can communicate with each other. In scenarios where devices participating in a VPN are in physical control of

users or potentially unknown intruders, the virtual network environment must be considered as hostile as the Internet

environment.

VPNs can provide stable addressing for devices; but even with fixed assignment of addresses to each device inside a VPN

context, the addresses are only useful when the device is actively connected. More commonly, devices will be assigned a

dynamic address in a VPN, via DHCP, and will then be registered in DNS for discovery. This model is common for

information devices, but typically causes significant management burden for individual IoT devices, especially when

devices are mobile and frequently drop connections. VPN has significant network transfer volume and computation

overhead for establishing and reestablishing connections, as well as for all communications. Hence, it’s more

appropriate for use with (field) gateways and powerful devices.

While a VPN is a recommended technology choice for integrating existing datacenter assets into Azure IoT solutions, it is

not recommended for integrating mobile or wirelessly connected devices, or an exceptionally large numbers of devices,

into the Azure cloud. In industrial automation and other environments with stable and reliable connectivity, where

relatively few devices (dozens, not hundreds) or environments need to be attached into the cloud, using network

50

integration into Azure should be considered: Azure VPN,86 ExpressRoute87. For higher bandwidth, reliability, and lower

latency needs ExpressRoute should be considered.

Field gateways (edge devices) at the edge of a production network should have separate access paths for the two

environments. The edge device should broker information exchange between both environments at the application

level, through a messaging application protocol. The gateway can be joined into an Azure point-to-site or site-to-site

VPN,88 and will then also be addressable and accessible from within the cloud solution. On the cloud side, the VPN and

on-site endpoints must be integrated through a custom cloud gateway solution hosted in Cloud Services or an Azure VM.

Note: As of this writing, the Azure platform supports IPv4 externally (and the guidance in this
document assumes IPv4 as a foundation) but is not dependent on it and will translate directly

toward IPv6 once it is available for Microsoft Azure networks and network edges. The IPv4 address

space is reachable from within the IPv6 address space using a number of transition mechanisms.89

Transport protocol options. This document discusses the two most widely used transport level protocols: TCP and UDP.

Other protocols at that level, like SCTP (IETF RFC4960) or Multipath TCP (IETF experimental RFC6824), or high-bandwidth

applications of UDP (such as UDT) may play a role in select custom cloud gateway applications for special scenarios or

existing protocol support but are out of scope for this document.

TCP (IETF RFC79390) provides stream integrity, stream order, and flow control between two network endpoints and is the

default transport option for all scenarios except those called out in the UDP section.

UDP (IETF RFC76891) is a simple datagram (frame of bytes) transport model as a thin layer over IP and has minimal

overhead. Therefore, it is a popular candidate for constrained device applications. UDP does not deal with packet order

or packet loss and does not have a feedback-based flow control scheme. These are desirable properties for scenarios

where a signal needs to be transmitted with very minimal end-to-end latency, where loss is acceptable, and where order

of the signal components can be reconstituted at the receiver side when necessary.

Audio and video signals are often organized in stream container formats (such as MPEG transport stream) that can be

transferred via UDP or any other unidirectional transport method with potential data loss.

UDP routes should be secured in accordance with the overlaid application protocol’s rules, most commonly using DTLS

(IETF RFC634792). For applications where it is not acceptable to incur loss of data for sustained periods of time, and

where latency is not the highest priority, TCP-based communication should generally be preferred outside local network

applications. Inside local networks, UDP can be a helpful option to limit the compute and memory footprint for

extremely constrained devices and is a viable choice in combination with the CoAP protocol discussed in the next

section.

86 http://azure.microsoft.com/services/virtual-network
87 http://azure.microsoft.com/services/expressroute
88 https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
89 http://en.wikipedia.org/wiki/IPv6_transition_mechanisms
90 http://tools.ietf.org/html/rfc793
91 http://tools.ietf.org/html/rfc768
92 http://tools.ietf.org/html/rfc6347

http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/expressroute/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
http://en.wikipedia.org/wiki/IPv6_transition_mechanisms
http://en.wikipedia.org/wiki/IPv6_transition_mechanisms
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc6347
http://tools.ietf.org/html/rfc6347

51

Devices and services that actively listen for UDP packets are prone to flooding attacks, which includes the DTLS

handshake. In those scenarios additional protection, such as isolated network tunnels in a trusted network relationship,

should be applied.

Messaging protocol

Hypertext Transfer Protocol (HTTPS). HTTP (IETF RFC7230, RFC7231, RFC7232, RFC7233, RFC7234, RFC7235) is the core

protocol of the web, optimized for request/response interactions. HTTP is secured using TLS with the binding defined in

IETF RFC2818 (HTTPS). The HTTP 1.1 protocol is purely text-based and simple. The designated HTTP/2 successor protocol

is more concise, supports all HTTP 1.1 capabilities, and provides quite sophisticated framing and connection

management solutions allowing for multiplexing and for modeling bidirectional data flow. HTTP/2 implementations must

support TLS 1.2 protection.

HTTP in the context of this document generally refers to HTTPS, that is, HTTP 1.1 + TLS 1.2 (RFC7230ff + RFC2818).

HTTP/2 has very useful features for IoT scenarios and its use and adoption in the IoT space should be monitored. HTTP/2

is not the focus of this conversation.

The HTTP connection management model is optimized around relatively short client and server interactions. The

interaction pattern supported by HTTP is a request/response model with responses correlated to requests by stream

order. There are a number of techniques for modelling additional interaction patterns, such as notifications, or

asynchronous message delivery over HTTP, such as “long polling.”

HTTPS can be considered a good option for scenarios where devices send data to the cloud gateway occasionally and as

single messages or multi-record “uploads,” and where low-latency, bidirectional communication is not required.

“Occasionally” means that the device sends data infrequently enough that maintaining an ongoing connection between

the device and cloud gateway is not economical or technically feasible.

Secure, high-throughput event flow into an Azure-based solution using HTTPS is natively supported on Azure IoT Hub

and Event Hubs. A device can receive commands or other information using periodical HTTPS lookups on a defined IoT

Hub endpoint. If the device needs to receive remote commands with minimal latency instantly, a persistent bidirectional

connection with a readily available network route to the device is required.

Advanced Message Queueing Protocol (AMQP). AMQP 1.0 (ISO/IEC 19464:2014, OASIS93) is a robust, connection-

oriented, bidirectional, multiplexing message transfer protocol with inherent, compact data encoding. It provides

optimizations for continuously connected devices, high-throughput communication, and has integrated flow control to

protect sender and receiver from “overloading” each other.

Libraries for AMQP 1.0 are available for a number of languages and runtimes, across numerous operating systems.

AMQP 1.0 is a good choice for scenarios where devices keep a long-lived connection, communicate with the cloud

gateway on an ongoing basis, and potentially transfer large amounts of data.

WebSocket protocol. The WebSocket protocol (IETF RFC645594) is a bidirectional layer over TCP with negotiation over

HTTP/HTTPS. It allows for sharing (multiplexing) the HTTP/HTTPS infrastructure and ports with other protocols that run

over TCP, even though those protocols and their implementations require explicit support for WebSockets.

93 http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
94 http://tools.ietf.org/html/rfc6455

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://tools.ietf.org/html/rfc6455

52

The most common use case scenarios for WebSocket are enabling bidirectional communication in HTTP/HTML web

contexts and tunneling other application protocols such as AMQP 1.0 through HTTP/HTTPS infrastructure and ports. The

AMQP 1.0 protocol has explicit binding for the WebSocket protocol for purposes of firewall traversal through

HTTP/HTTPS infrastructure. All direct applications of the WebSocket protocol, like flowing frames of one of the

aforementioned data encodings directly over WebSocket frames, are considered custom protocols because they do not

have a standardized way for addressing or metadata framing that AMQP or other messaging protocols provide.

MQ Telemetry Transport (MQTT). MQTT 3.1.1 (ISO/IEC 20922, OASIS MQTT 3.1.195) is a lightweight client-server

transfer protocol for messages. MQTT is attractive for constrained devices, because it is extremely dense with a very

small footprint on the device, and for message frames (and respectively network bandwidth).

One design trade-off to be noted is that MQTT uses a very compact header format, but has no support for message

metadata, such as a custom content-type header, requiring out-of-band agreements between the sender and receiver.

There are a few MQTT features that represent a challenge when used in large-scale distributed, high-availability IoT

infrastructures. In a multi-node messaging system, the QoS2 “exactly once” delivery assurance would require a fully

consistent system (across multiple nodes) at all times. While this is technically possible, such an implementation would

be highly complex and will impact the latency and availability of the entire system (for more details refer to the CAP

theorem96). Hence, the usage of QoS2 is not recommended for large IoT deployments. Common alternatives to exactly

once delivery are deduplication at the receiver, or the use of idempotent operations. For example, for systems that are

modeled to exchange state changes, “at least once” semantics is sufficient, because receiving the same state more than

once will lead to the same result (assuming message delivery order is preserved, which is commonly the case, including

when using MQTT).

Another challenge represents the usage of “retain” messages. This imposes unbounded state management requirements

on the server (for duration and number of messages), which conflicts with resource governance requirements in high-

scale systems and provides potential denial-of-service attack vectors through forced resource exhaustion. Appropriate

authorization models could be considered and applied to mitigate those risks.

If MQTT is a candidate in a particular scenario for its footprint advantages, the recommendation is to constrain the usage

to QoS 0 “at most once delivery” or QoS 1 “at least once delivery,” and avoid the usage of the “retain” feature.

Constrained Application Protocol (CoAP). The Constrained Application Protocol (CoAP, IETF RFC725297) is a datagram-

based protocol that can be implemented over UDP or any other datagram transport, including GSM short-message

service (SMS). CoAP is a very compact reformulation of the principles and methods of HTTP over a datagram transport.

The Open Mobile Alliance’s (OMA) Lightweight M2M protocol (LWM2M) layers on top of CoAP (see the Management

protocol section below for more details on OMA LWM2M).

The advantage of CoAP is its compactness compared to HTTP and other protocols. Because it is datagram based, there is

also no immediate need to set up or maintain a connection or any state that spans multiple datagrams—until security is

added in the form of DTLS, which introduces node affinity for the security context and which has properties of a

connection. Supporting UDP-based protocols and DTLS is not trivial in conjunction with cloud gateways, because all

communicating parties are easily susceptible to flooding attacks when traffic is admitted from across the open network

95 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
96 http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
97 http://tools.ietf.org/html/rfc7252

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://tools.ietf.org/html/rfc7252
http://tools.ietf.org/html/rfc7252

53

(and large solutions can easily become a target for such attacks). Furthermore, packet loss on congested routes can be

significant. TCP and TLS should be considered more robust for long-haul transfers.

For supporting LWM2M/CoAP on mobile carrier networks or to connect to field devices, the CoAP traffic can be isolated

and reliably virtualized over VPN or ExpressRoute, either to a VPN gateway at the site where the devices reside or to the

mobile carrier’s “private APNs.” (Note: CoAP is shown in Figure 1 as being implemented over a VPN tunnel between a

field gateway and a custom cloud gateway.)

OPC Unified Architecture (OPC UA). The Open Platform Communications (OPC) Foundation’s Unified Architecture (OPC

UA) includes a data model, security and a set of transport protocol mappings. An OPC UA server is an addressable entity

that needs to be connected to in order to obtain data. An OPC UA field gateway can read data from an OPC server over a

local network and forward it to the cloud gateway through a TLS-protected path using OPC UA PubSub, a JSON payload

over MQTT or AMQP, like our open-source OPC Publisher. For individual machines, it’s also possible to use our OPC

Proxy, to securely “bridge” the communication between an OPC UA server on the factory network and a, OPC UA client

embedded in a web app in the Azure cloud, without opening the factory firewall.

Security

Trustworthy and secure communication. All information received from and sent to a device must be trustworthy if

anything depends on that information. Trustworthy communication means that information is of verifiable origin,

correct, unaltered, timely, and cannot be abused by unauthorized parties in any fashion.

Even telemetry from a simple sensor that reports a room’s temperature every five minutes should not be left unsecured.

If any control system reacts to this input, or draws any other conclusions from it, the device and the communication

paths from and to it must be trustworthy.

Many IoT devices, such as inexpensive sensors or common consumer or industry goods enriched with digital service

capabilities, will be optimized for cost, which commonly results in trading compute power and memory for cost savings.

However, this also means trading away cryptographic capability and, more generally, resilience against potential attacks.

Unless a device can support the following key cryptographic capabilities, its use should be constrained to local networks

and all internetwork communication should be facilitated through a field gateway:

• Data encryption with a provably secure, publicly analyzed, and broadly implemented symmetric-key encryption

algorithm, such as AES with at least 128-bit key length.

• Digital signature with a provably secure, publicly analyzed, and broadly implemented symmetric-key signature

algorithm, such as SHA-2 with at least 128-bit key length.

• Support for either TLS 1.2 (IETF RFC524698) for TCP or other stream-based communication paths or DTLS 1.2

(IETF RFC6347) for datagram-based communication paths. TLS-typical support of X.509 certificate handling is

optional and can be replaced by the more compute-efficient and wire-efficient pre-shared key mode for TLS

(“TLS/PSK,” IETF RFC427999), which can be implemented with support for the aforementioned AES and SHA-2

algorithms.

• Updateable key-store and per-device keys. Each device must have unique key material or tokens that identify it

toward the system. The devices should be able to store the key securely on the device (for example, using a

secure key-store). The device should be able to update the keys or tokens periodically, or reactively in

98 http://tools.ietf.org/html/rfc5246
99 http://tools.ietf.org/html/rfc4279

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4279
http://tools.ietf.org/html/rfc4279

54

emergency situations in case of system breach. Key update might occur over the air or through some other

means, but updateability is required.

• The firmware and application software on the device must allow for updates to enable the repair of discovered

security vulnerabilities.

As a foundational principle, all cloud communication with devices or field gateways must occur through secure channels

when the devices talk directly to endpoints provided by Microsoft Azure platform services.

If (legacy) devices must use insecure or nonstandard and proprietary communication paths into the cloud system, they

should be connected through a separately hosted custom protocol gateway or a local field gateway.

There are and will be many cases where access control for devices on local networks has been solely realized through

network-level access control, and all admitted members of the network can communicate freely without any, or with

naïve, authentication and authorization. Devices existing in such networks must communicate via a field gateway at the

edge of the insecure network.

Physical tamper proofing and safety

Sensors and devices can and must often be placed in public areas, where anyone may potentially have physical access to

them. Also, tampering with the device is not just the act of manipulating the device hardware or software. A digitally

trustworthy sensor may be tricked into reporting misleading data by dismounting and relocating it. Or an attacker could

impact the environment around the device, creating misleading physical conditions in the immediate proximity of the

device, pushing the overall system into an erroneous reaction. A lit lighter held near a smoke or temperature sensor

might, for instance, trick a digital building control system into flooding a hotel hallway with the sprinkler system.

IoT introduces a new dimension of security because IoT devices are used in a broad range of personal, commercial, and

industrial applications, and not only does the threat landscape differ between the respective scenario environments, it

also differs depending on the condition of the device related to its environment. For example, a vehicle in motion has a

different threat landscape than a vehicle idling in front of a traffic light, and yet another from a parked vehicle. Securing

the digital components of the vehicle is therefore much more complex than securing a “classic” software application—

and this applies to many IoT scenarios in a similar fashion.

As the IoT space blurs digital and physical concerns, it also blurs security with safety. Suddenly, security threats become

safety threats. If something “goes wrong” with automated or remote controllable devices—from physical defects to

control logic defects to willful unauthorized intrusion and manipulation—production lots may be destroyed, buildings

may be looted or burned down, and people may be injured or die. That is a different class of damage than someone

maxing out a stolen credit card limit. The security bar for commands that make things move, and also for sensor data

that eventually results in commands that cause things to move, must be higher than in any e-commerce or banking

scenario.

Even though clearly beyond the control of a cloud-based system, it is therefore strongly recommended that the device

design incorporates features which defend against physical manipulation attempts to help ensure the security integrity

and trustworthiness of the overall system.

Some exemplary measures that can be taken to improve the security of the physical device are:

55

• Choosing microcontrollers/microprocessors or auxiliary hardware that provide secure storage and use of

cryptographic key material, such as trusted platform module (TPM)100 integration.

• Secure boot loader and secure software loading, anchored in the TPM.

• Using sensors to detect intrusion attempts and attempts to manipulate the device environment with alerting

and potentially “digital self-destruction” of the device.

Data encoding

There is a large and growing number of data encoding formats available. The optimal data encoding choice differs from

use-case to use-case and is sometimes even constrained by factors like how much space is available for extra footprint

on a device.

XML and JSON are ubiquitous on the server and on many client platforms. Both enjoy very broad library or platform-

inherent support but have very significant wire footprint due to their text-based nature.

CSV is simple, interoperable, and compact (for text), but it’s structurally constrained to rows of simple value columns—

which, however, is very often enough for time-series data.

BSON and MessagePack are efficient binary encodings that lean on the JSON model but have great encoding size

advantages. Both require their own libraries and have some distinctive choices like lack of first-class array support in the

case of BSON.

Google’s Protocol Buffers (“Protobuf”) and Apache Thrift yield very small encoding sizes but require distribution of an

external schema (or even code) to all potential consumers, which represents challenges in systems of nontrivial

composition complexity with multiple readers/consumers.

Apache Avro is generally as efficient—or more efficient—than the prior options and also natively supports layered-on

compression. With Avro, the schema is embedded as a preamble for a set of records. This preamble requirement puts

Avro at a disadvantage compared to MessagePack or BSON for small or highly structured payloads with minimal

structural repetition.

Data layout

Just as important as the encoding is the data layout, which can also have major impact on the encoded data size. A naïve

JSON encoding approach where telemetry data is sent in the form of an array of objects, whereby each object carries

explicit properties for all values, has enormously greater metadata overhead than a data layout mimicking CSV with a

shared list of headers followed by an array carrying the row data.

The data layout convention defines how the structure of the data is constrained within the scope of the solution, so that

data can be handled across the entire system, including devices, backend processing, analytics, and user interface. All

those components will need to rely on a common model/schema.

An important principle in event-driven systems is that the data unit handled and processed in the context of a model is a

record. A message, a storage block, or a document may contain one or multiple data records (or “events”). A sequence

of records may span multiple messages or storage units.

100 http://www.trustedcomputinggroup.org/developers/trusted_platform_module

http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module

56

The row/column structure of CSV provides a natural set of constraints for the layout and allows for a not-explicitly

bounded list of rows (each equating to a record), with a not-explicitly bounded set of columns, whereby each column

value is of primitive type.

For the map/array/value structural model supported by the JSON, Avro, AMQP, and MessagePack data encodings, there

are the following common layout options: single record, record sequence, or record sequence with metadata preamble

that, similar to CSV, contains a header describing columns, followed by the rows representing the record sequence.

The following matrix may help in choosing an appropriate encoding. In the layout column, “flat” refers to records that

consist solely of primitive data types. “Complex” refers to data where records are structured beyond primitive types.

Layout JSON CSV Avro AMQP MsgPack

Single-Record, Flat Data ++ + - +++ +++

Single-Record, Complex Data ++ n/a - +++ +++

Record Sequence, Flat Data + ++ +++ + +

Record Sequence, Complex Data + n/a +++ ++ ++

Record Sequence w/ Metadata

Preamble

++ +++ +++ +++ +++

Table 1 Comparison of data layout encodings

Legend: (-) poor; (+) good; (++) better; (+++) best

Edge processing

In many application scenarios, especially those where devices communicate with their cloud backend systems via

metered networks, it is not desirable to send raw sensor readings or status information across the communication link

to the cloud because of the associated cost and load put on the cloud-system, when very many unprocessed data

streams must be handled in parallel.

Often, IoT solutions specifically require evaluation of signal data streams, with video and audio covering particular signal

shapes and spectrums, by application of digital signal processing algorithms or pattern matching or discovery, so it is

required to treat these kinds of signals in a first-class fashion.

A temperature sensor provides periodic readings, maybe at 1 Hz, that manifest in a number per reading. A vibration

sensor on a ventilation fan helping with determining equipment health in an industrial environment provides periodic

readings, maybe at 500 Hz, that manifest in a number per reading. An audio sensor—a microphone—provides periodic

readings that manifest in a number per reading, but at 44 kHz. A video sensor provides periodic readings that manifest in

a very large matrix per reading and it does so at 60 Hz or 50 Hz.

All these signals benefit from preprocessing and compression before transfer and depending on the kind of signal there

may already be broadly accepted and applied industry standards for how to encode, encapsulate, and carry the signals.

If this is the case, like the MPEG standards for audio and video signal compression and encoding, they should be

preferred, and passed through all parts of the system that are not equipped to interpret them unchanged.

57

The most trivial aggregation that can be applied to any time-series is to group several point-in-time records into a single

record for either a particular period where the reading has remained stable, or for a fixed period by providing the

average or median for the readings.

Furthermore, many devices are quite capable of pre-analyzing the raw data and using local compute capability, should it

be generally preferred over sending large amounts of data across a metered network.

In many cases devices can use network condition detection and apply different pre-analysis, aggregation, and

compression algorithms based on the type of connectivity used. For example, if the raw data is needed for later at-rest

analysis, hybrid models can be used, where data that is required instantly and in near real time is transferred through

the mobile network and the raw data is held locally and transferred at a later point in time over wired (or Wi-Fi)

connection.

The edge processing is typically coupled with appropriate components on the backend that are responsible for

interpreting the received data before downstream processing. For example, compressed data needs to be

decompressed, and encodings need to be decoded appropriately. In many cases, this is done in the stream processor,

reading data from the cloud gateway. If there are multiple consumers of the data, one stream processor can be

dedicated to interpreting the incoming data (such as decompressing or deserializing) and to output the transformed data

to an internal flow buffer (such as Azure Event Hub). This way, it will act as the primary source of incoming traffic for all

other event stream processors.

In some situations, this type of processing can be done in a custom gateway, before reaching the ingestion point of the

cloud gateway. The Azure IoT protocol gateway showcases how this type of custom processing can be implemented

using a concept of a processing pipeline, where different modules can be plugged in to perform specialized processing

before passing the data to the next one.

Management protocol

There is an evolving set of device management protocols in the industry. The use of predefined device models enables

efficient use of network, processing, and power resources on IoT devices. OMA LWM2M (or Lightweight M2M) is a

standard defined by the Open Mobile Alliance that uses a compact resource model and interactions between device and

server in order to support very constrained devices. OMA LWM2M provides a transport binding with CoAP for

constrained devices.

Other device management protocols, including OMA DM, TR-069, and CoMI define device models and interactions with

devices. OMA DM, used in mobile device management and some IoT implementations, uses XML (defined by SyncML) to

enable device management and therefore is more verbose than OMA LWM2M. TR-069 is a technical specification

published by the Broadband Forum that uses a bidirectional SOAP/HTTP-based protocol to manage devices. In addition

to the high number of device management standards, a number of custom device management protocols exist where

device vendors have needed to provide system capabilities between devices and servers/services. Different layers of

those device management protocols would impact implementations of this reference architecture. For example, an

implementation of OMA LWM2M in the context of this reference architecture will have implications on the device IoT

client, provisioning API, gateway(s), event processor, and device registry components.

Device management

The IoT device landscape is vastly heterogeneous considering the variety of hardware options, environments, operating

systems and programing languages, and means of communications between device and services. The use of device

management protocols provides an abstraction simplifying this complexity by defining a protocol, from the lower

58

transport layer to the higher application layer, such that a service can provide the necessary information to a device to

ensure the health of that device.

Service providers and enterprises need to enroll and discover, enable connectivity, remotely configure, and update

software on devices in a way that is specified by defined policies and business processes. For example, depending on the

industry, there will be vastly differing policies for the circumstances under which devices can be remotely configured and

changed, with approval chains, regulatory auditing requirements, presence of physical safeguards, and more.

Every IoT system can provide a set of device management capabilities in order to ensure the health of devices and

related business processes. The notion of a device registry is critical to enabling device management capabilities on

remote devices and enabling a service-side interface for cloud applications to use the capabilities provided by remote

devices. The following is a list of device management capabilities that may be enabled by the IoT system:

1. Device provisioning and discovery

2. Device access management

3. Remote control

4. Remote administration and monitoring

5. Remote configuration

6. Remote firmware and software update

Device provisioning and discovery.

Most IoT device life cycles show that devices are manufactured and deployed to a variety of locations worldwide. The

deployment location may not be known at the time of manufacturing; therefore, it may be important to enable a

multiphase bootstrap process where devices are manufactured with the knowledge of a bootstrap service, which later

provides connectivity details. When the device is deployed, the organization deploying the device provides further

information, including device location and any other required information to the bootstrap service. The bootstrap

service is configured to respond with the cloud gateway that will be used for this device. The device may need to repeat

the provisioning process, for example in the scenario where device ownership changes.

In order to enable cloud applications to perform device management activities, the device may describe itself to the

cloud when it creates a session with the cloud gateway. There are three core concepts related to how a device is

described to the system:

 • Self-defined device model

A device engineer (or developer using a device simulator) uses the self-defined device model through the

process of iterating on the capabilities of the device as they build the device. A device engineer could start by

creating a device that has few properties and supported commands and later add more. Similarly, that device

engineer may have many devices, each of which provides unique capabilities; using the self-defined model, the

device engineer is not required to register the structure of the device model.

 • Predefined device model

A production IoT deployment that operates under network and power/processing constraints greatly benefits

from a predefined device model where minimal use of the device’s processing and power consumption are

used. Similarly, minimal network traffic enables devices to transmit through heterogeneous networks (Wi-Fi,

2G/3G/4G, BLE, Sat, etc.) especially when using limited and expensive infrastructure (such as a satellite). When

implementing a predefined device model, a device engineer might send device information encoded in one or

59

two bytes that serve as a key into the predefined device model. The brevity of this approach results in

efficiencies of one to two orders of magnitude compared to the self-defined device model.

 • Predefined master model

The device model and metadata related to the device are stored and maintained on the cloud side, but the

device will remain unaware of those. This pattern is especially useful in brownfield scenarios where the device

firmware cannot be modified, or the device should not store metadata.

Device access management. Devices (potentially managed by multiple parties) may enforce control of their own

properties and commands, including create, read, and write access rights for device properties and execute rights for

device commands. Depending on the IoT application, multiple authority levels may need to exist in order to control

access to device resources appropriately.

Remote control. In IT scenarios, remote control is often used to assist remote users or remotely configure remote

servers. In IoT scenarios, most devices do not have engaged users, therefore remote control is a scenario that enables

remote configuration and diagnostics. Remote control can be implemented using two different models:

 • Interactive connection

In order to enable remote control through a direct connection to a device (for example, SSH on Linux or Remote

Desktop on Windows) you need to create a connection to the device. Given the security risk of exposing a device

to the open Internet, it’s recommended to use a relay service (such as Azure Service Bus relay service) to enable

the connection and traffic to/from the device. Because a relay connection is an outbound connection from the

device, it helps limit the attack surface of open TCP ports on the device.

 • Device command

Remote control through device command uses the existing connection and communications channel established

between the device and Azure IoT Hub. In order to enable device command-based remote control, the following

requirements need to be implemented:

 The IoT backend is aware of device commands available on the device. This is usually defined as

part of the device model.

 The software that runs on the device needs to implement the remote-control commands. These

device commands should follow a request (from the IoT backend to the device) and a response

(from the device to the IoT backend) pattern.

The IoT service backend can keep record of historical response messages from device commands for auditing purposes.

Updates to device state are made through device commands. Changes to the device metadata and state need to be

pushed to the device registry and state stores, respectively. Updating the device state can be forced by a request from

the IoT backend to the device, or the device can automatically update the backend upon recognizing a change in state.

Automatic updating of the backend from the device should be done sparingly because it may generate network traffic

and increase usage of the device processor and available power.

Remote administration and monitoring. Because most IoT devices do not have a direct user after deployment in a

solution, remote administration is the experience where administrators can monitor the state of their devices and

remotely update the state or configuration of devices through the use of device commands.

The health of devices can be determined by monitoring the data they are sending to the backend. This may include both

operational data and metadata.

60

Remote configuration. Remotely changing a device’s configuration is a requirement for several stages in a device’s life

cycle: provisioning, diagnostics, or integration with business processes.

Remote firmware and software update. Software defects can be security vulnerabilities, which makes the update of

firmware or software to fix defects or deliver new functionality a critical capability of every IoT system. Remotely

updating firmware and software on a device is an example of a distributed, long-running process that usually involves

business processes. For example, updating the firmware on a device that controls a high-powered fuel pump may

require steps in adjacent systems for rerouting fuel while the update is performed and verified.

Devices that support firmware and software updates are defined through the device model (or through a device type

that is associated with a device model). Device updates are initiated at the IoT backend and devices are informed at an

appropriate time through a device command. When a device explicitly supports remote update of firmware or software,

the IoT backend should deliver the update commands based on defined business processes and policies. Upon receiving

the device command to update, the device needs to download the update package, deploy the update package, reboot

to the newly deployed (in the case of firmware update) or start the new software package, and verify that the new

firmware or software is running as expected. Throughout this multistep process, the device should inform the IoT

backend of the updated state of the device as it progresses through the multiple steps.

Delivering the update package can be done through a storage service like Azure Storage or through a CDN. Verifying the

integrity of the downloaded package is important to ensure that the package originated from the expected source.

After completing a firmware update, the device must be able to verify and identify a good state. If the device does not

successfully enter that good state, the software on the device should initiate a rollback to a known good state. The

known good state could be the last known good state or a device firmware image known as a “golden state” stored in a

storage partition.

High Availability and Disaster Recovery (HA/DR) Deployment topologies

IoT assets and devices commonly form distributed environments. They can be stationary or moving, dispersed or

collocated and sometimes associated with local sites. Based on solution requirements, the devices might connect to a

single centralized or distributed backend deployment.

The are several cloud backend deployment topologies and options for distribution of work across the different sites:

• Single-site. This is the simplest model and, in this case, the cloud gateway(s) and all device-related stores are

collocated in a single datacenter region, while leaning on the high availability of the services used and on the

platform-inherent support for disaster recovery. Because of its simplicity, this topology is often the starting point

for most solutions.

• Regional failover. In a regional failover model, the solution backend will be running primarily in one datacenter

location as in the single-site model, but the solution’s cloud gateway and backend will be deployed in an

additional datacenter region for failover purposes, in case the cloud gateway in the primary datacenter suffers

an outage or the network connectivity from the device to the primary datacenter is somehow interrupted. The

devices will need to use a secondary service endpoint whenever the primary gateway cannot be reached. With a

cross-region failover capability, the solution availability can be improved beyond the high availability of a single

region. Disaster recovery and geo-failover concepts will be covered more deeply later in this section.

• Multisite. In the multisite topology, the solution runs concurrently and largely independently in multiple sites,

but it is conceptually a single solution. Multiple sites can be collocated in the same datacenter regions to form

“scale units” for which the entire data processing pillar can be stress-tested to maximum capacity, and then

61

more capacity can be added safely by adding further scale units. Sites of the system may also be located across

different datacenter regions for a variety of reasons, including proximity for reduced latency to the devices or

policy concerns around data location. Each of these sites may also have a regional failover site. In the multisite

model, devices are registered and thus “homed” in one of the sites.

• Multisite with roaming. In this variant of the multisite model, devices are homed in one of the sites (scale units)

but may connect to the closest datacenter location based on some form of proximity estimation. The collected

information is routed to the “home” site of the device.

• Multisite, multihome. In this variant, the device may roam across sites and captured data is stored across the

various sites the device connects to and can be collected and consolidated as required.

This list of topologies is not exhaustive but helps to illustrate key patterns and trade-offs when planning an IoT

deployment. Sometimes a certain topology can be applied to a subset of services and components, while other parts of

the solution might use different deployment topology based on the specific solution requirements.

From a device perspective there are three possibilities of how a device or field gateway communicates with the service

backend: to a single “home” endpoint, to a primary or secondary endpoint (for geo-failover), or to a set of endpoints in

the multisite, multi-home scenario. The configuration of those endpoints can be static (for example, set on the device

during provisioning) or managed as dynamic device configuration using commands from the solution backend.

There is also an additional option for devices using a token service. If a device cannot reach the destination endpoint, it

can contact the token service to acquire a new endpoint and the appropriate token for it. This mechanism provides for

dynamic reactive redirection of devices if needed (in contrast to proactive changes of a predefined configuration held on

the device). It can be applied in addition to managing the endpoint configuration on devices. The token service can

intelligently manage the map of sites, but can also be reconfigured for, as an example, maintenance purposes.

Apart from managing the endpoints that devices use to connect, Domain Naming System (DNS) entries and related

services such as Azure Traffic Manager can be used for redirection of traffic to the desired backend endpoints. It is

important to note that this technique depends on the ability of devices to use DNS and that its accuracy is driven by the

Time-to-Live (TTL) value of the DNS host entries kept in local DNS caches.

Cross-region availability

Applications running in Azure benefit from the high availability (HA) of the underlying services provided by Azure. For

many Azure services and solutions, high availability is provided by using redundancies at the Azure region level. In

addition, Azure offers a number of features that help to build solutions with disaster recovery (DR) capabilities or cross-

region availability if required. Solutions need to be designed and prepared to take advantage of those features in order

to provide global, cross-region high availability to devices or users. The article “Azure Business Continuity Technical

Guidance”101 describes built-in Azure features for business continuity and DR. The paper “Disaster Recovery and High

Availability for Azure Applications”102 provides architecture guidance on strategies for Azure applications to achieve

HA/DR.

Because cloud solutions are composed of multiple services, it is important to consider what is necessary to achieve

HA/DR for the individual services or components of the solution, instead of thinking about one approach for the entire

solution. Before deciding on techniques to be applied, it is important to define the requirements and expected

availability for the subservices/components of the solution. Typically, subcomponents will have different requirements

101 https://msdn.microsoft.com/library/azure/hh873027.aspx
102 https://msdn.microsoft.com/library/azure/dn251004.aspx

https://msdn.microsoft.com/library/azure/hh873027.aspx
https://msdn.microsoft.com/library/azure/dn251004.aspx
https://msdn.microsoft.com/library/azure/dn251004.aspx

62

for availability, scalability, performance, and consistency. For example, device telemetry, commands to devices, backend

analytics, LOB system transactions, and end-user UI will all have different availability, latency, and consistency targets.

Even different telemetry streams or command types will have different requirements (for example, a telemetry stream

for the infotainment system of a vehicle has different processing requirements than telemetry coming from the engine).

In case of a disaster, some components can be operated in degraded mode, or some of them might not even be required

for a certain period of time. The disaster recovery techniques need to be designed for each category/type of service or

function of the system individually, based on the specific requirements. There is always a trade-off between availability,

other system requirements (including per-CAP theorem103), and the cost of implementation and operations.

A major factor for geo-distributed topologies to consider is where state is stored and if services perform stateless or

stateful processing. Stateless processing can be redirected (or failed over) to another scale unit, site, or region by

ensuring the appropriate services (such as compute nodes, websites) are provisioned there. These can be actively

running all the time, be available but not active (that is, in standby mode), or can be provisioned on demand as part of a

disaster recovery procedure. Stateful services, however, represent a bigger challenge because, in addition to the service

runtime, state and data need to be replicated and synchronized. Dependent on the consistency level required, state and

data can be replicated synchronously or asynchronously where eventual consistency is sufficient. In some cases, data

might not need to be replicated to each site if it’s sufficient to collect and consolidate the data to a centralized location

at a later point. This dependents on the amount of data and specific solution needs.

With the proposed IoT reference architecture, the relevant state is kept in the following components and an appropriate

technique for state replication should be defined for each category:

• Device identity store. The device identities and the associated security material need to be known at each site

to which a device is expected to establish a connection. This includes secondary sites for failover or any other

site a device can connect to in multisite scenarios. Typically, identities are slowly changing data managed

through the provisioning workflow. The provisioning API provides a good abstraction layer that encapsulates the

provisioning operations and is a natural place to extend and manage cross-site identities as needed. For

example, when a new device is created, the identity record can be immediately written to a secondary site. For

standby or on-demand deployed DR sites, it might be also sufficient to perform a regular export/import of the

primary into the secondary store. The time interval between exports will define the recovery point objective.

In many cases devices will be provisioned long before they effectively try to connect to an endpoint. In those

cases, eventual consistency between the identity stores is acceptable. Batch provisioning operations might be

even performed in parallel against multiple locations. Using techniques such as check pointing, and appropriate

error handling should ensure that a consistent state is established across the sites.

• Topology store. The topology store serves as an index for device discoverability, and for the majority of

scenarios, implementations can be assumed to be eventually consistent, with a well-known time-to-live for

replicated records. This means that an update of metadata may take up to this time-to-live limit to replicate. The

DNS infrastructure uses a similar strategy. It will be beneficial if at least an initial record for each device is

inserted into the device registry through the same mechanism used for the identity store (that is, the

provisioning API). Attributes and metadata changes can be replicated asynchronously through the system.

103 https://en.wikipedia.org/wiki/CAP_theorem

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem

63

In many cases the device registry contains only slowly changing data, and regular import/export might represent

a sufficient alternative to a continuous replication of entries.

• State store. Device operational data is commonly characterized as high-volume and high-velocity data. As

discussed previously, this data will be segregated in different stores based on needs and access patterns. The

need for transferring or replicating each data category should be analyzed. Raw telemetry data most likely

doesn’t need to be available on a secondary site. Aggregated data will represent a reduced data volume which

might be easier to replicate if needed.

Often, the history or previous state might not be necessary for the application backend logic. In many scenarios,

alerts, notifications, or even command and control events to devices can be applied just based on device

metadata (such as type of device, group, category) or attributes (such as state received in a telemetry message).

Once it’s decided which types of operational data will need to be replicated, one of multiple options can be

applied:

a) Use the built-in capabilities of the underlying storage service (Azure Storage104 and SQL Database,105 for

example, already provide built-in geo-replication capabilities).

b) Use a dedicated event processor that picks up the relevant information and transfers it to an Event Hub in

the remote site (this represent a special data replication channel that will need to be processed by another

event processor on the remote site and transformed into the desired storage format).

c) Use some other mechanism built as part of the application layer (for example, write operations to a remote

storage account or scheduled regular export and respective import on the remote site, which can be

performed regularly or on demand).

• Brokered messaging. The cloud gateway and other backend internal queues, topics, or Event Hubs that are used

to decouple components of the solution, durably store messages. Typically, after a message is accepted from the

cloud gateway it will be processed by the solution backend and there is no need to replicate such a message to

another site. In a case of a broker outage, the messages are still protected, but unavailable to be read. If those

messages “in-flight” are considered absolutely critical for cross-region failovers, then they might need to be

replicated to a secondary site. However, typically the messages are brokered for a very short period of time and

then consumed and transferred into one of the described persistent data stores. Protecting data in the

persistent stores is the typical strategy because the total latency of replicating messages in flight will be almost

the same as the latency for protecting the persistent data stores. Thus, protecting messages in flight typically

won’t significantly impact the RPO/RTO targets.

• Hot-path analytics state. Analytics and complex event processing engines keep in-memory state for

aggregations or over certain time periods. There is no easy way to restore the in-memory state of those engines

without a sophisticated event-replay mechanism. If critical business logic relies on this type of state, alternative

calculations based on persisted historical data might be necessary.

104 https://azure.microsoft.com/documentation/articles/storage-redundancy
105 https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity

https://azure.microsoft.com/documentation/articles/storage-redundancy
https://azure.microsoft.com/en-us/documentation/articles/storage-redundancy/
https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity
https://msdn.microsoft.com/en-us/library/hh852669.aspx

64

• Actor state. Actor state is typically backed up by durable storage that should be replicated to a remote site if

needed. In case of recovery, the actors can reload their state on the remote site.

• System configuration. Changes to the solution configuration (for example, changing threshold limits or business

rules) will need to be propagated to secondary sites as needed.

Independent of the individual design choices, in distributed computing environments, it is always a good practice to use

idempotent operations to minimize side effects not only from eventual consistent distribution of events, but also from

duplicates or out-of-order delivery of events. In addition, the application logic should be designed to tolerate potential

inconsistencies or “slightly” out-of-date state, because of the additional time it takes for the system to “heal” or based

on recovery point objectives (RPO). The following article provides more guidance on this topic: “Failsafe: Guidance for

Resilient Cloud Architectures.”106

Data protection and privacy

As IoT scenarios receive growing attention from consumer protection groups and data protection regulators of various

governments, it is expected data collection as well as remote control scenarios to be subject to increased regulation.

Solution builders must anticipate regionally differing regulation on what data collection is allowed by default, where

owners or equipment operators have a right to opt-out, or where they must opt-in for data collection even to be

permitted. They should also anticipate that any data collection and remote-control capability must allow temporal

suspension, and that owners or equipment operators may want to erase collected data for past periods. Anonymized

data collection may be an option in this context.

In spite of equipment manufacturers, insurers, leasing firms, and other corporations driving the data collection

initiatives, it is not clear whether the data collected from a vehicle is legally owned by the collecting company. Solution

builders must anticipate that regulation, varying by jurisdiction, will empower owners and equipment operators to have

full control over the usage rights and retention duration of their data.

Assuming the example of a vehicle, there are many cases where the geolocation of the vehicle at any given time may be

a very private matter that the current driver would not want to make known to anybody. That means that the

geolocation cannot appear, associated with the vehicle, as long as there is a way to correlate the driver with the vehicle,

and it also cannot appear to be associated with the driver in any permanent record.

However, the geolocation may be important and potentially acted upon should the driver get into an accident, because

harm to him/herself, potential passengers, and other third parties will likely constitute an overriding priority.

Solution builders also need to anticipate opt-in and opt-out scenarios and (potentially regulation-mandated) opt-out

actions to occur retroactively long after the data has been collected. Some data held in the system may also not be

legally owned by the collecting party and may therefore not be present in the system after an opt-out.

It is therefore recommended for non-aggregated information existing anywhere in the system to retain attestation and

link to its source and to any immediately related parties that may have entitlement to the data being erased. In order to

enforce strong segregation of data and protection of sensitive information through bulk theft, it may further be required

to encrypt information on a source-by-source basis.

It should also be anticipated that IoT systems and the collection of data might play a critical role in investigation

scenarios as well as in the analysis of accidents or other mishaps and may become grounds for litigation. Therefore,

106 https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/more-patterns-

and-guidance

https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/more-patterns-and-guidance
https://docs.microsoft.com/aspnet/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/more-patterns-and-guidance
https://msdn.microsoft.com/library/azure/jj853352.aspx

65

strong attribution including proof of authenticity that disallows repudiation of the data origin will be of high value and

likely required in regulated scenarios.

When building IoT solutions, it is important to consider compliance and certification requirements layer by layer. In

order to achieve compliance for the overall IoT solution, each underlying layer will have to fulfil specific requirements.

Typically, not all solution and platform components or services have the same requirements or fulfil the same

accreditations. For example, not all Azure services have the same certifications (for example, ISO 27001, SSAE 16) and

the solution builder should take into account which ones they need to use to allow them to achieve the intended

solution accreditations.

5. Appendix

5.1 Terminology

This section provides scoped definitions for several terms that are used throughout this document.

Devices. There are several categories of devices: personal devices, special-purpose devices, or industrial equipment to

name a few. Personal computers, phones, and tablets are primarily interactive information devices. From a systems

perspective, these information technology devices are largely acting as proxies toward people. They are “people

actuators” suggesting actions and “people sensors” collecting direct input or input related to the device use. These

devices are referred to as “personal mobile devices” in the document.

Special-purpose devices, from simple temperature sensors to complex factory production lines with thousands of

components inside them, are different. These devices are much more scoped in purpose, and even if they provide some

level of a user interface (for interactions with people), they’re largely scoped to interface with or be integrated into

assets in the physical world. They measure and report environmental circumstances, turn valves, control servos, sound

alarms, switch lights, and do many other tasks. They help doing work for which an information device is either too

generic, too expensive, too big, or too brittle. The actual purpose for these devices will dictate their technical design as

well as the amount of resources needed for their production and scheduled lifetime operation. The combination of

these two key factors will define the available operational energy, physical footprint, and thus available storage,

compute, and security capabilities. Special-purpose devices, especially industrial equipment devices, may also be

complex systems, with multiple subcomponents or subsystems in them.

These special-purpose devices, referred to as “devices,” are the primary focus for this discussion, whereas information

devices (that is, personal mobile devices) are merely playing a proxy role toward human actors in the scenarios discussed

in this document.

Device environment. The device environment is the immediate physical space around the device where physical access

and/or “local network” peer-to-peer, digital access to the device is feasible.

Local network. A “local network” is assumed to be a network that is distinct and insulated from—but potentially bridged

to—the public Internet and includes any short-range wireless radio technology that permits peer-to-peer

communication of devices. This notion of “local network” does not include network virtualization technology creating

the illusion of such a local network and it does also not include public operator networks that require any two devices to

communicate across public network space if they were to enter a peer-to-peer communication relationship.

Field gateway (Edge device). A field gateway is a specialized appliance, or some general-purpose server computer

software that acts as communication enabler and, potentially, as a device control system and device data processing

hub.

66

The field gateway’s scope includes the field gateway itself and all devices that are attached to it. As the name implies,

field gateways act outside dedicated data processing facilities and are usually location bound.

They are potentially subject to physical intrusion and might have limited operational redundancy.

A field gateway is different from a mere traffic router in that it plays an active role in managing access and information

flow, meaning it is an application-addressed entity and network connection or session terminal. NAT devices or firewalls,

in contrast, do not qualify as field gateways because they are not explicit connection or session terminals, but rather

route (or block) connections or sessions made through them.

A field gateway has two distinct surface areas. One faces the devices that are attached to it and represents an inside of a

zone, and the other faces external parties (such as a cloud gateway) and is the edge of the zone.

Cloud gateway. A cloud gateway is a system that enables remote communication from and to devices or field gateways,

potentially residing at several different sites, connecting across public network space.

The cloud gateway handles both inbound and outbound communication between devices and a cloud-based backend

system, or a federation of such systems.

In the context discussed here, “cloud” is meant to refer to a dedicated data processing system that is not bound to the

same site as the attached devices or field gateways, and where operational measures prevent targeted physical access,

but is not necessarily a “public cloud” infrastructure.

A cloud gateway may potentially be mapped into a network virtualization overlay to insulate the cloud gateway and all

of its attached devices or field gateways from any other network traffic.

The cloud gateway itself is neither a device control system nor a processing or storage facility for device data; those

facilities interface with the cloud gateway. The cloud gateway’s scope includes the cloud gateway itself along with all

field gateways and devices directly or indirectly attached to it.

A cloud gateway has two distinct surface areas. One faces the devices and field gateways that are attached to it, and the

other faces backend services and potentially external parties.

Service. In the context of this document a service is defined as any software component or module that is interfacing

with devices through a field gateway or cloud gateway for data collection and analysis, as well as for command and

control interactions. Services are mediators. They act under their own identity toward gateways and other subsystems,

store and analyze data, autonomously issue commands to devices based on data insights or schedules and expose

information and control capabilities to authorized end users.

Solution. A solution for a particular IoT scenario is a composition of system building blocks, including all user-contributed

rules, extensions, and code. It includes all data storage and analysis capabilities specific to the known scope of the

solution.

The solution interacts and integrates with other systems that exist as shared enterprise resources such as CRM or ERP

systems or other line-of-business solutions. A CRM system used as a job ticketing system for support technicians that is

specifically introduced for a predictive maintenance solution would be in the solution scope, but very often CRM systems

are already in place for customer support. In these cases, the new solution will integrate with the existing support job

ticketing system rather than introducing a new one.

67

5.2 References

To learn more about Azure IoT, visit our website.

The following Microsoft products support Azure IoT scenarios:

Azure IoT solution accelerators

Azure IoT Hub

Azure IoT Edge

Azure Storage

Azure Data Lake

Azure Cosmos DB

Azure SQL Database

Azure HDInsight

Azure Stream Analytics

Azure Service Bus

Azure Event Hubs

Azure Web Apps

Azure Mobile Apps

Azure Logic Apps

Azure Notification Hubs

Azure Machine Learning

Azure Machine Learning Studio

Power BI

Azure Active Directory

Azure Key Vault

For more references and information supporting this document, please read:

http://www.microsoft.com/en-us/server-cloud/internet-of-things.aspx
http://www.microsoft.com/en-us/server-cloud/internet-of-things.aspx
https://azure.microsoft.com/en-us/overview/iot/accelerators/
https://azure.microsoft.com/en-us/overview/iot/accelerators/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-edge/
http://azure.microsoft.com/en-us/documentation/services/storage/
http://azure.microsoft.com/en-us/documentation/services/storage/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/solutions/data-lake/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
http://azure.microsoft.com/en-us/services/sql-database/
http://azure.microsoft.com/en-us/services/sql-database/
http://azure.microsoft.com/en-us/services/hdinsight/
http://azure.microsoft.com/en-us/services/hdinsight/
http://azure.microsoft.com/en-us/services/stream-analytics/
http://azure.microsoft.com/en-us/services/stream-analytics/
http://azure.microsoft.com/en-us/documentation/services/service-bus/
http://azure.microsoft.com/en-us/documentation/services/service-bus/
http://azure.microsoft.com/en-us/services/event-hubs/
http://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/logic/
https://azure.microsoft.com/en-us/services/app-service/logic/
http://azure.microsoft.com/en-us/services/notification-hubs/
http://azure.microsoft.com/en-us/services/notification-hubs/
http://azure.microsoft.com/en-us/services/machine-learning/
http://azure.microsoft.com/en-us/services/machine-learning/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-what-is-ml-studio/
http://azure.microsoft.com/en-us/documentation/articles/machine-learning-what-is-ml-studio/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://azure.microsoft.com/en-us/services/active-directory/
https://azure.microsoft.com/en-us/services/active-directory/
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/

68

Service assisted

communication

TCP

UDP

DTLS

AMQP

AMQP Core

MQTT

CoAP

http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assistedcommunication-

for-connected-devices.aspx

http://tools.ietf.org/html/rfc793

http://tools.ietf.org/html/rfc768

http://tools.ietf.org/html/rfc6347

http://www.amqp.org

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0os.html
http://mqtt.org
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

http://en.wikipedia.org/wiki/Constrained_Application_Protocol

OPC Foundation https://opcfoundation.org

http://en.wikipedia.org/wiki/OPC_Foundation

WebSockets http://en.wikipedia.org/wiki/WebSockets

TLS

http://tools.ietf.org/html/rfc5246 http://tools.ietf.org/html/rfc4279

TPM integration

http://www.trustedcomputinggroup.org/developers/trusted_platform_module

Azure VPN

http://azure.microsoft.com/services/virtual-network

ExpressRoute

http://azure.microsoft.com/services/expressroute

VPN Gateways and

Secure Cross-

Premises

Connectivity

https://docs.microsoft.com/azure/vpn-gateway

Azure API

applications

https://azure.microsoft.com/documentation/articles/app-service-apiapps-why-best-

platform

Azure Search

https://azure.microsoft.com/documentation/articles/search-what-isazure-search

Azure Maps

https://azure.microsoft.com/en-us/services/azure-maps/

Service Fabric

https://azure.microsoft.com/services/service-fabric

http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://blogs.msdn.com/b/clemensv/archive/2014/02/10/service-assisted-communication-for-connected-devices.aspx
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc6347
http://tools.ietf.org/html/rfc6347
http://www.amqp.org/
http://www.amqp.org/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://mqtt.org/
http://mqtt.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://en.wikipedia.org/wiki/Constrained_Application_Protocol
http://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://opcfoundation.org/
https://opcfoundation.org/
http://en.wikipedia.org/wiki/OPC_Foundation
http://en.wikipedia.org/wiki/OPC_Foundation
http://en.wikipedia.org/wiki/WebSockets
http://en.wikipedia.org/wiki/WebSockets
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4279
http://tools.ietf.org/html/rfc4279
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/virtual-network/
http://azure.microsoft.com/en-us/services/expressroute/
http://azure.microsoft.com/en-us/services/expressroute/
http://azure.microsoft.com/en-us/services/expressroute/
http://www.bing.com/maps

69

Akka http://akka.io

Akka.Net http://getakka.net

Azure Batch https://azure.microsoft.com/services/batch

MapReduce http://en.wikipedia.org/wiki/MapReduce

Pig http://en.wikipedia.org/wiki/Pig_(programming_tool)

Apache Storm http://storm.incubator.apache.org

Apache HBase http://hbase.apache.org

Apache Hadoop http://hadoop.apache.org

Apache Hive http://hive.apache.org

Apache Mahout http://mahout.apache.org

CAP Theorem http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

https://en.wikipedia.org/wiki/CAP_theorem

Azure Business

Continuity Technical

Guidance

https://msdn.microsoft.com/library/azure/hh873027.aspx

HA/DR for Azure

applications

https://msdn.microsoft.com/library/azure/dn251004.aspx

Azure Storage

replication

https://azure.microsoft.com/documentation/articles/storageredundancy

Azure SQL Database

Business Continuity

https://msdn.microsoft.com/library/hh852669.aspx

Resilient Cloud

Architecture

https://msdn.microsoft.com/library/azure/jj853352.aspx

Designing a Scalable

Partitioning Strategy

for Azure Table

Storage

http://msdn.microsoft.com/library/azure/hh508997.aspx

5.3 SaaS, PaaS, and IaaS Guidance

Customers have many options for how to build their IoT solutions. Primary options customers choose from when

building their solutions are: 1) IoT Central SaaS – they leverage Azure IoT Central, the Microsoft SaaS offering,

abstracting all technical choices, allowing them to focus on their solution exclusively, 2) Azure PaaS directly - they

http://akka.io/
http://akka.io/
http://getakka.net/
https://azure.microsoft.com/en-us/services/batch/
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://storm.incubator.apache.org/
http://storm.incubator.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://msdn.microsoft.com/library/azure/hh873027.aspx
https://msdn.microsoft.com/library/azure/dn251004.aspx
https://msdn.microsoft.com/library/azure/dn251004.aspx
https://azure.microsoft.com/en-us/documentation/articles/storage-redundancy/
https://msdn.microsoft.com/en-us/library/hh852669.aspx
https://msdn.microsoft.com/library/azure/jj853352.aspx
https://msdn.microsoft.com/library/azure/jj853352.aspx
http://msdn.microsoft.com/en-us/library/azure/hh508997.aspx

70

leverage Azure PaaS components (IoT Hub, CosmosDb, RedisCache, Azure Stream Analytics, etc.) directly and

integrate those components on their own to form a solution. This is often done through use of the end to end

examples provided in Azure IoT Solution Accelerators, and 3) IaaS w/ OSS - they use OSS components (e.g. the

SMACK stack, Spark, Mesos, Akka, Cassandra, and Kafka) to bootstrap their system and host it on IaaS VMs.

Each of these options provide different levels of control, customizability/extensibility, and simplicity. These attributes

have different levels of importance for different customers; e.g. some customers need a solution that is highly

customized while others might be able to use what is “in the box” and nothing more.

We’ve rated the attributes per option as follows:

Option Control

(1-5 scale)

Customizability Simplicity

1. IoT Central SaaS – use IoT Central (our
SaaS offering) to build their solution.

1 2 5

2. Azure PaaS directly – using Solution
Accelerators, build the solution directly on
Azure IoT PaaS services (e.g. IoT Hub, IoT
Edge), leverage other Azure PaaS services
(Cosmos, ASA, etc.) as needed.

4 4 2

3. IaaS w/ OSS – build the solution on IaaS,
leverage SMACK or other OSS components

5

High level

of control

5

Customizable

1

Complex

These options are rapidly evolving; i.e. IoT Central is constantly adding new features, including better customizability

options, PaaS Solution Accelerators are changing both from a feature perspective and a developer experience

perspective, and the ability to control IaaS components are adding a large breadth of features.

Guidance

Customers need to determine whether they would best be served using our SaaS offering or building their own

solution (using either the Azure PaaS or IaaS offerings). We recommend customers start with IoT Central then, if

needed, move to a PaaS or IaaS offering because of customizability or control needs. Top level questions that can

help guide this decision are as follows:

• Does the customer have cloud development experience, and/or need something built custom for their

business?

o If the answer is “No” we recommend customers use IoT Central (SaaS).

o If the answer is “Yes” to either question – the customer should use a PaaS or IaaS option. If the

customer does not have cloud development experience, we recommend partnering with an SI or ISV

to build the custom solution.

▪ WRT the choice using PaaS or full control through IaaS, the customer should ask whether

their solution requires a high level of control and customization?

• If a high level of control or customization is not required, we recommend customers

use PaaS components, starting with Azure IoT Solution Accelerators.

71

• If a high level of control or customization is required, we recommend building on the

platform directly through IaaS.

Our overall guidance to customers is to always start with evaluating IoT Central as it provides the simplest experience

and will get most customers to market quickest. For those customers that need tighter control and have greater

customizability needs, we recommend use of Azure PaaS services through Solution Accelerators (Remote

Monitoring, Connected Factory, …), and then (in extreme customization/control cases where the customer needs to

be cloud agnostic or is OSS centric) to IaaS/OSS.

