
Create mobile apps with
HTML5, JavaScript and Visual Studio
DevExtreme Mobile is a single page application (SPA) framework for your next
Windows Phone, iOS and Android application, ready for online publication or
packaged as a store-ready native app using Apache Cordova (PhoneGap). With
DevExtreme, you can target today’s most popular mobile devices with a single
codebase and create interactive solutions that will amaze.

Get started today…

・ Leverage your existing Visual Studio expertise.
・ Build a real app, not just a web page.
・ Deliver a native UI and experience on all supported devices.
・ Use over 30 built-in touch optimized widgets.

devexpress.com/mobile
Learn more and download your free trial

All trademarks or registered trademarks are property of their respective owners.

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2013 VOL 28 NO 12

Exploring
Entity Framework 6............20

1213msdn_CoverTip.indd 1 11/8/13 12:13 PM

www.devexpress.com/mobile

1213msdn_CoverTip.indd 2 11/8/13 11:34 AM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2013 VOL 28 NO 12

Entity Framework 6: The Ninja Edition
Julie Lerman. 20

CORS Support in ASP.NET Web API 2
Brock Allen . 30

Cross-Browser, Coded UI Testing
with Visual Studio 2013
Damian Zapart . 40

An Introduction to Model-Based Testing
and Spec Explorer
Yiming Cao and Sergio Mera . 48

Freedom of Information Act Data
at Your Fingertips
Vishwas Lele . 54

Rendering PDF Content in
Windows Store Apps
Sridhar Poduri ..62

COLUMNS
WINDOWS AZURE INSIDER
Meet the Demands of Modern
Gaming with Windows Azure
Bruno Terkaly and
Ricardo Villalobos, page 6

TEST RUN
Radial Basis Function
Network Training
James McCaffrey, page 12

THE WORKING
PROGRAMMER
Getting Started with Oak:
A Different Approach
Ted Neward, page 66

MODERN APPS
Everything You Need to
Know About the WinJS
ListView Control
Rachel Appel, page 70

DIRECTX FACTOR
Character Outline
Geometries Gone Wild
Charles Petzold, page 74

DON’T GET ME STARTED
Original Sin?
David Platt, page 80

Exploring
Entity Framework 6............20

Desktop

Native
Mobile

Download Your Free Trial
infragistics.com/enterprise-READY

Deliver high performance, scalable
and stylable touch-enabled

enterprise applications in the
platform of your choice.

Develop rich, device-specific user experience for
iOS, Android, and Windows Phone, as well as

mobile cross-platform apps with Mono-Touch.

Untitled-6 2 5/1/13 2:31 PM

www.infragistics.com/enterprise-READY

Cross-
Device

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

UX
Prototyping

Build standards-based, touch-enabled
HTML5 & jQuery experiences for desktop,
tablet, and mobile delivery, including multi-
device targeting with frameworks such as
PhoneGap and MVC.

Explore design ideas through rapid, user-centered
wireframing, prototyping, and evaluation before
investing a single line of code.

Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-6 3 5/1/13 2:32 PM

www.infragistics.com/enterprise-READY

"lightning fast" Redmond Magazine

"covers all data sources" eWeek

"results in less than a second"
 InfoWorld

hundreds more reviews and developer
case studies at www.dtsearch.com

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

Instantly Search
Terabytes of Text

®

Ask about fully-functional evaluations

25+ fielded and full-text search types

dtSearch’s own document filters
support “Office,” PDF, HTML, XML, ZIP,
emails (with nested attachments), and
many other file types

Supports databases as well as static
and dynamic websites

Highlights hits in all of the above

APIs for .NET, Java, C++, SQL, etc.

64-bit and 32-bit; Win and Linux

dtSearch products:
Desktop with Spider Web with Spider
Network with Spider Engine for Win & .NET
Publish (portable media) Engine for Linux
Document filters also available for separate
licensing

Printed in the USA

magazineDECEMBER 2013 VOLUME 28 NUMBER 12

MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
KENT SHARKEY Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
David Seymour Director, Print & Online Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Jane Long, Merit Direct. Phone: 913-
685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

http://www.dtsearch.com
http://www.dtSearch.com
mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com

Untitled-1 1 10/4/13 11:40 AM

www.leadtools.com

msdn magazine4

Th ere’s a reason that Julie Lerman’s Data Points column is consistently
among the most widely read in MSDN Magazine. In addition to
being a whip-smart programmer with a keen sense for what devel-
opers need, Lerman covers that most core and enduring aspect of
programming—managing data. Development platforms come and
go, but the challenges of wrangling data always remain.

Which is why this month’s issue of MSDN Magazine leads off
with a feature on Entity Framework 6, the latest version of the
Microsoft -founded, object-relational mapping (ORM) framework.
Lerman took a break from her usual column-writing schedule to
pen the feature, titled “Entity Framework 6: The Ninja Edition”
(p. 20). As Lerman points out in the article, Entity Framework 6
represents a major step forward from Entity Framework 5, boasting
improved performance, reduced complexity and features that
allow for more advanced development scenarios.

Notably, the latest version of Entity Framework was developed
under an open source development model and has been decoupled
from the long release cycles of the Microsoft .NET Framework. As
Lerman reports, the Entity Framework APIs have been extracted
from the .NET Framework, allowing timely updates and enabling
compatibility with both .NET Framework 4 and 4.5. Microsoft also
disentangled the Entity Framework 6 Designer from Visual Studio,
casting it as a Visual Studio extension that the Entity Framework

team is able to update independently of Visual Studio updates. You
can fi nd the project hosted on CodePlex at entityframework.codeplex.com.

“I think one of the most important things about EF6 [Entity
Framework 6] is the fact that it’s now completely open source,”
Lerman says, noting the contributions of developers like Unai
Zorrilla, whose AddRange and RemoveRange APIs streamline the
addition and removal of multiple entities in Entity Framework 6.

Many developers are familiar with the major features of Entity
Framework 6, such as support for asynchronous querying and
saving, and support for stored procedure mapping in Code First
models. But Lerman says a host of smaller, less-publicized changes
can really impact development. Two examples she points out are
the ability to combine calls in a shared DbTransaction and the
ability to reuse opened database connections.

“Some bigger features are getting a lot of airplay. But there are so
many other smaller ones that may not be used by as many developers
but will have a big impact for those who do use them,” Lerman says.

While Entity Framework 6 has delivered many improvements,
Lerman says she’s looking forward to a few capabilities that didn’t
make it into the latest version of the framework. Key among them
is better tooling for reverse engineering to Code First classes and
DbContext, which Lerman says will make it easier to start with
an existing database and create constrained models used with
Domain-Driven Design (DDD) architectural patterns.

I asked Lerman to tell me why a developer wouldn’t want to consider
moving up to the latest version of Entity Framework. She was direct.

“As long as the Entity Framework provider you’re using has been
updated to be compatible for EF6, I can’t think of one. Even if you’re
using .NET 4, EF4, EntityObject and ObjectContext, other than
some namespace changes, you really don’t change any code. You
can move to EF6 and benefi t from the faster view generation, and
even take advantage of some of the new features like reusing open
DbConnections,” she explains. However, she cautions that devel-
opers should do some testing before jumping into that scenario.

Th ere’s a whole lot to like in Entity Framework 6, and Lerman’s
feature on the new ORM tool is well worth a read for those hoping
to take advantage of it.

In Praise of Entity Framework 6

© 2013 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEDITOR’S NOTE
-
r

“Some bigger features are
getting a lot of airplay. But there
are so many other smaller ones

that may not be used by as many
developers but will have a big

impact for those who do use them.”

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://entityframework.codeplex.com

Untitled-2 1 9/5/13 4:50 PM

www.OnTimeNow.com/MSDN
www.OnTimeNow.com
www.axosoft.com
www.axosoft.com

msdn magazine6

Online, mobile and social games have taken the world by storm,
with staggering numbers relating to concurrent players, time spent
playing and downloaded applications. Just recently, Facebook
shared that one third of its global users (260 million out of 750
million) actively play games on its desktop and mobile sites. Th is
is just one indicator of the particular challenges game developers
and publishing companies have to face—challenges that include
users playing the same game on multiple platforms and devices,
players expecting to receive instant notifi cations when the status
of their time-based game has changed, games going from startup
to viral in a matter of days, and trying to reach audiences in
multiple locations around the world.

Th ankfully, the public cloud off ers a number of alternatives to deal
with these situations, allowing you to concentrate on developing your
game applications, and not on how to provision the infrastructure
to support authentication, computing, data or media requirements.
In this article, we’ll explore how to solve these and other common
scenarios using the latest Windows Azure services and components.

Figure 1 shows a typical architecture for supporting multiplayer
games for mobile clients in the cloud, either for turn-based or
real-time scenarios. Th e diff erent components are assigned to the
most common tasks required to build a gaming back end, intro-
ducing the concept of an orchestrator or proxy, which acts as the
gateway or traffic controller for all the client interactions with
multiple services.

In the following paragraphs, we’ll take a closer look at each of
these components.

Multiplayer Game Servers (Infrastructure as
a Service Virtual Machines)
Multiplayer game servers are usually based on open source or
licensed frameworks, acting as the authoritative source of events for
the clients connected to them and providing information about
other players who have joined the same server via low-latency

calls. Th ese frameworks require stateful interactions with clients,
as well as access to local storage, making virtual machines (VMs)
in Windows Azure the perfect choice for this component. Some
examples of these game server frameworks are pomelo (bit.ly/1i9heBe),
Marauroa (bit.ly/am9MOi) and Photon Server (exitgames.com).

To deploy any of these frameworks to VMs, you can create
instances from the Windows Azure image gallery in the manage-
ment portal (bit.ly/197eXED), or directly create custom VM images
as VHD (Hyper-V) fi les (bit.ly/PQso1a).

Keep in mind that implementing a game server can turn into
a complex process requiring you to come up with solutions for
network-lag compensation and for properly using communication
protocols (such as TCP or UDP) to optimize communication with
the clients.

Gaming Orchestrator or Proxy
(Platform as a Service Cloud Services)
Th e heart of the solution is the gaming orchestrator or proxy, which
provides multiple services, including the following:

1. Authentication: Validating credentials sent by the clients
before players can connect to the game servers.

2. Matchmaking: Assigning players with similar preferences
to the same game server. Th e decision could also be driven
by location, to minimize latency.

3. Data proxy: Serving in-game requests from the game servers
or the clients; interacting with the external storage; and
sending back data such as historical scores, profi le infor-
mation, preferences, or credit balance.

4. Provisioning: Increasing or decreasing the number of
VMs, using a scale-out approach based on the number
of connected players.

Meet the Demands of Modern Gaming
with Windows Azure

This article describes the Windows Azure Cache Service, which is in preview.
Information is subject to change.

WINDOWS AZURE INSIDER
BRUNO TERKALY AND

RICARDO VILLALOBOS

BUILD A FREE DEV/TEST SANDBOX IN THE CLOUD

MSDN subscribers can quickly spin up a dev/test environment on
Windows Azure at no cost. Get up to $150 in credits each month!

aka.ms/msdnmag

Multiplayer game servers are
usually based on open source or
licensed frameworks, acting as

the authoritative source of events
for the clients connected to them.

www.aka.ms/msdnmag
www.bit.ly/1i9heBe
www.bit.ly/am9MOi
www.exitgames.com
www.bit.ly/197eXED
www.bit.ly/PQso1a

Untitled-2 1 9/3/13 11:21 AM

www.telerik.com

msdn magazine8 Windows Azure Insider

5. Notifi cations: Interacting with the notifi cation service to
inform players of the status of the game when they’re not
online. Th is should support multiple platforms (Windows,
Android, iOS) and device types.

6. Delegation: Orchestrating the interaction with external
services, including but not limited to sending e-mail mes-
sages, processing payments, and logging game information.

Windows Azure Cloud Services is the perfect candidate for the
gaming orchestrator, which must be able to handle stateless requests,
as well as easily scale out based on the number of client and game
server requests. Moreover, thanks to the benefi ts off ered by virtual
networks in Windows Azure, Cloud Services can directly commu-
nicate with the game servers hosted in VMs, adding an extra layer of
security to the architecture by not having to use external endpoints.
Cloud Services can be created and deployed from diff erent IDEs,
including Visual Studio for .NET development or Eclipse for Java.
More information about creating Cloud Services can be found at
bit.ly/19MYq5A. If you want to connect VMs and Cloud Services using
virtual networks, the tutorial at bit.ly/GYcG5t can help.

Th e responsibilities just discussed can be handled by a single
cluster of Web or worker roles, or split into many Cloud Services,
depending on the number of concurrent users and complexity of
the online game. One of the benefi ts Windows Azure provides is
multiple deployment models, including Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS). Th e key decision factor is the
number of soft ware layers delegated to the cloud vendor—in this
case, Microsoft . More information about choosing the right cloud
deployment and execution model can be found at bit.ly/153kRXM.

Now we’ll explore how the orchestrator can perform these respon-
sibilities using other components in the Windows Azure platform.

Authentication (Windows Azure
Active Directory Access Control Service)
Th e fi rst step a mobile client takes to access a multiplayer platform
is trying to authenticate against the server using a set of credentials.
In modern gaming, it’s important to support validation from mul-
tiple identity providers, keeping in mind that users have diff erent
preferences when it comes to online security. Some might feel more
comfortable using social network credentials, such as Facebook,
Yahoo! or Twitter. Others might prefer authentication provided
by the game itself, based on a framework such as Active Directory.

Th e Windows Azure access control service (ACS) off ers a simple way
to perform this authentication. It supports integration with Windows
Identity Foundation; provides out-of-the-box compatibility with
Windows Live ID (a Microsoft account), Google, Yahoo! and
Facebook; enables scenarios based on OAuth 2.0, WS-Trust and
WS-Federation protocols; and recognizes JSON Web Token (JWT),
SAML 1.1, SAML 2.0 and Simple Web Token (SWT) token formats.

In this case, the game client obtains a security token issued by
ACS in order to log on to the game server via the gaming proxy.
Th is token contains a set of claims about the user’s identity. ACS
does not issue a token unless the user fi rst proves a valid identity
by presenting a security token from another trusted issuer or
identity provider that has authenticated the user. Th is process is
illustrated in Figure 2.

Matchmaking
In multiplayer video games, the process of assigning gamers to the
appropriate game server based on their preferences or location is
called matchmaking. Once the game client has been authenticated,
the gaming proxy will return a list of game servers matching the
player’s preferences, based on his IP address, along with additional
security credentials in case they’re needed by the game server
itself. Th e logic behind the assignment is usually based on a list
of recommended servers in each datacenter that’s stored in some
type of caching mechanism. Th e reason caching is recommended
for this is performance: avoiding round-trips to primary storage
improves the gamer experience significantly. Windows Azure
off ers a new cache service (currently in preview) that can be accessed
across multiple services and clients. Th is new service is a distributed,
in-memory, scalable solution that enables you to build highly
responsive applications by providing super-fast access to data. It’s
extremely easy to access from .NET applications using the corre-
sponding SDK. Detailed instructions can be found at bit.ly/15IltBt.
Th e matchmaking process will return the appropriate IP address
of the game server to which the game client should connect.

Figure 1 Software Architecture for Real-Time, Multiplayer
Games for Mobile Clients

Authentication
(Access Control Service)

Notification
(Notification Hubs)

Other Services
(Commerce, SMTP)

Mobile Devices

Logs/Analytics
(HDInsight)

Game Data
(Windows Azure Storage)Gaming Orchestrator/Proxy

(PaaS Cloud Services)

Multiplayer Game Servers
(IaaS Virtual Machines)

In modern gaming, it’s important
to support validation from
multiple identity providers,

keeping in mind that users have
different preferences when it

comes to online security.

www.bit.ly/19MYq5A
www.bit.ly/153kRXM
www.bit.ly/GYcG5t
www.bit.ly/15IltBt

Untitled-3 1 3/1/13 11:00 AM

www.melissaData.com

msdn magazine10 Windows Azure Insider

When a game session has been fi nalized (in the form of a match,
combat, or simply by the gamer logging out of the game), players
can stay on the same server or be redirected back to the match-
making process, in order to locate a diff erent server in case their
preferences have changed.

Data Proxy (Windows Azure Storage)
For players already connected to the appropriate game server based
on their preferences, requests about game configuration, store
balance or any other user-related data are routed through the game
orchestrator/proxy, which usually exposes an API with the most
common operations against a data repository. Th ere are two main
decisions to make for this: the storage mechanism for the user and
game information, and the framework for exposing services that
can be accessed by the game servers.

Windows Azure off ers multiple options for storing information,
which we’ve described in previous articles. Depending on the num-
ber and complexity of the queries, the structure of the data, and the
level of customization required, you can choose from traditional

relational repositories such as Windows Azure SQL Database or
NoSQL approaches such as Windows Azure table storage (bit.ly/YrYcQP).

Regardless of the repository selection, services in front of
this information should be exposed in a RESTful manner, using
frameworks such as Windows Communication Foundation (WCF)
or the recently released ASP.NET Web API (asp.net/web-api). Th ese
frameworks can be deployed to cloud services or VMs.

Windows Azure also off ers a turnkey service that combines the
power of a relational database in the cloud with a robust and fl exible
REST API. It’s called Windows Azure Mobile Services, and it’s an easy
way to accelerate the development of this piece of the gaming archi-
tecture, with easy-to-follow wizards and auto-scaling capabilities.
More information about this service can be found in our November
2012 column, “Windows Azure Mobile Services: A Robust Back End
for Your Device Applications” (msdn.microsoft.com/magazine/jj721590), or
on the offi cial Windows Azure page (bit.ly/188Llcg).

Provisioning
Th e game orchestrator/proxy can also act as the provisioning or
auto-scaling engine for adding or removing game servers as they’re
needed. However, note that Windows Azure now off ers auto-scaling
capabilities for all of the diff erent deployment models, including
VMs, Cloud Services, and Web sites.

Notifi cations
Gamers using mobile devices rely on receiving notifi cations when
they’re offl ine, particularly for turn-based or time-based games that
require keeping virtual properties or items up-to-date (a concept
that was made extremely common by games such as FarmVille).
You face two main problems when sending notifi cations to mobile
gamers: having to reach out to players using diff erent platforms on
their mobile devices, and building and maintaining an infrastruc-
ture capable of reaching millions of users. Th ankfully, Windows
Azure offers a service called Notification Hubs, which supplies
a common API to send push notifi cations to a variety of mobile
platforms, including Windows Store, Windows Phone, iOS and
Android. At the same time, the push notifications are sent to
millions of users within minutes, not hours. Figure 3 shows a code
snippet in C# that sends a simple notifi cation to both Windows
Store and iOS applications using multiple categories.

private static async void SendNotificationAsync()
{
 NotificationHubClient hub = NotificationHubClient.
CreateClientFromConnectionString(
 "<connection string with full access>", "<hub name>");
 var categories = new string[] { "World", "Politics", "Business",
 "Technology", "Science", "Sports"};
 foreach (var category in categories) {
 var toast = @"<toast><visual><binding template ="
 "ToastText02""><text id=""1"">" + "Breaking " + category +
 " News!" + "</text></binding></visual></toast>";
 await hub.SendWindowsNativeNotificationAsync(toast, category);
 var alert = "{\"aps\":{\"alert\":\"Breaking "+ category +" News!\"}}";
 await hub.SendAppleNativeNotificationAsync(alert, category);
 }
}

Figure 3 Sending Notifi cations to Windows Store and
iOS Applications Using Windows Azure Notifi cation Hubs

Figure 2 The Authentication Process Using Windows Azure
Access Control Service

2. Redirect to Identity Provider

9. Send ACS Token to Relying Party

11. Return Resource Representation

6. Send Token to ACS

8. Redirect to Relying Party with ACS Token

1. Request Resource

2. Redirect to Identity Provider

9. Send ACS Token to Relying Party

11. Return Resource Representation

10. Validate
ACS Token

6. Send Token to ACS

8. Redirect to Relying Party with ACS Token

7. Validate Token,
Run Rules Engine
and Issue Token

3. Log In

5. Redirect to ACS

4. Authenticate
and Issue Token

Client Identity Provider ACS Relying Party

Windows Azure also offers a
turnkey service that combines

the power of a relational
database in the cloud with a
robust and fl exible REST API.

www.bit.ly/YrYcQP
http://asp.net/web-api
http://msdn.microsoft.com/magazine/jj721590
www.bit.ly/188Llcg

11December 2013msdnmagazine.com

Delegation of Responsibilities
to Other Services (SMTP, Commerce)
Th e game orchestrator/proxy should also act as the gateway for
accessing other services, such as engines for sending massive e-mail
messages via SMTP, or processing game images in real time. Th e
Windows Azure Store lets you quickly discover, purchase and
provision applications from other Microsoft partners. Th ese ser-
vices can be combined with Windows Azure components to build
complex games or add features that are not natively supported by
the cloud platform. More information about
the Windows Azure Store and a catalog of
developer services can be found at bit.ly/1carBrd.

Game Analytics and Big Data
Collecting, analyzing and reporting data gath-
ered from game servers is crucial to fi nding
bottlenecks, improving in-game performance
and, for monetization and advertising pur-
poses, determining areas where gamers spend
their time. Windows Azure lets you use a
MapReduce approach, called HDInsight, as a
service, which allows the simple, straightfor-
ward installation of Hadoop clusters. Using
Hive, or even familiar tools such as Microsoft
Offi ce, you can create rich reports and charts.
More information about this component can
be found in our September 2013 column,
“Hadoop and HDInsight: Big Data in Windows
Azure” (msdn.microsoft.com/magazine/dn385705).

Wrapping Up
We’ve only scratched the surface on how
to create rich and scalable solutions for the
mobile game industry by combining multiple
components of the Windows Azure plat-
form, to meet the demands and requirements
created by social networks and the massive
number of players that are attracted to these
applications. Th e public cloud off ers a fl exible
pay-as-you-go model, which enables compa-
nies of all sizes to compete in this space.

BRUNO TERKALY is a developer evangelist for Microsoft .
His depth of knowledge comes from years of experience
in the fi eld, writing code using a multitude of platforms,
languages, frameworks, SDKs, libraries and APIs.
He spends time writing code, blogging and giving live
presentations on building cloud-based applications,
specifi cally using the Windows Azure platform. You
can read his blog at blogs.msdn.com/b/brunoterkaly.

RICARDO VILLALOBOS is a seasoned soft ware architect with
more than 15 years of experience designing and creating
applications for companies in multiple industries. Hold-
ing diff erent technical certifi cations, as well as a master’s
degree in business administration from the University of
Dallas, he works as a cloud architect in the DPE Globally

Engaged Partners team for Microsoft , helping companies worldwide to implement
solutions in Windows Azure. You can read his blog at blog.ricardovillalobos.com.

Terkaly and Villalobos jointly present at large industry conferences. They
encourage readers of Windows Azure Insider to contact them for availability.
Terkaly can be reached at bterkaly@microsoft .com and Villalobos can be reached
at Ricardo.Villalobos@microsoft .com.

THANKS to the following technical expert for reviewing this article:
Kevin Ashley (Microsoft)

http://www.softfluent.com/forms/msdn-q4-special-offer
http://www.softfluent.com
http://www.softfluent.com
mailto:info@softfluent.com
www.bit.ly/1carBrd
http://msdn.microsoft.com/magazine/dn385705
http://blogs.msdn.com/b/brunoterkaly
http://blog.ricardovillalobos.com
mailto:Ricardo.Villalobos@microsoft.com
www.msdnmagazine.com

msdn magazine12

A radial basis function (RBF) network is a soft ware system that
can classify data and make predictions. RBF networks have some
superfi cial similarities to neural networks, but are actually quite
diff erent. An RBF network accepts one or more numeric inputs
and generates one or more numeric outputs. Th e output values
are determined by the input values, plus a set of parameters called
the RBF centroids, a set called the RBF widths, a set called the RBF
weights and a set called the RBF biases.

For simplicity of terminology, the combination of RBF weights
and bias values are sometimes collectively referred to as the weights.
Th e context in which the term weights is used usually makes the
meaning clear. For more information, see my article, “Radial
Basis Function Networks for Programmers” in the October issue
of MSDN Magazine (msdn.microsoft.com/magazine/dn451445).

When using an RBF network for classifi cation and prediction,
the challenge is to fi nd a set of values for the centroids, widths,
weights and biases so that computed outputs best match a set of
known outputs. Th is is called training the RBF network. Although
researchers have studied RBF networks since their introduction
in 1988, there’s not much practical guidance that explains how to
implement RBF network training. This article will present and
describe a complete demo RBF network.

Take a look at the demo program in Figure 1. Th e program creates
an RBF model that predicts the species of an iris fl ower (“setosa,”
“versicolor” or “virginica”) from four numeric values for the fl ower’s
sepal length and width, and petal length and width. The demo
program’s data source consists of 30 items that are a subset of a well-
known 150-item benchmark set called Fisher’s Iris data. Th e 30 data
items have been preprocessed. Th e four numeric x-values have been
normalized so that values less than zero mean shorter-than-average
length or width, and values greater than zero mean longer-than-av-
erage length or width. Th e y-value for species has been encoded as
(0,0,1), (0,1,0), or (1,0,0) for setosa, versicolor, and virginica, respectively.

Th e demo splits the 30-item data set into a 24-item set to be used
for training. Th ere’s also a holdout six-item set for testing/evaluation
of the resulting RBF model. It instantiates an RBF network with four
input nodes (one for each input data value), fi ve hidden processing
nodes and three output nodes (one for each output data value).
Determining the best number of hidden nodes is mostly a matter
of trial and error. Th e choice of fi ve in the demo was arbitrary.

In Figure 1 you can see that training an RBF network consists of
three phases. Th e fi rst phase determines the centroids. You can think
of centroids as representative x-values selected from the training
data. An RBF network requires one centroid for every hidden node,
so the demo needs fi ve centroids. Th e training algorithm selects the
x-values from training data items [9], [19], [21], [20] and [4]. In other
words, the fi rst centroid is (-0.362, -2.019, 0.074, 0.112).

Th e second phase of training determines widths. You can think
of widths as values that describe the distance between the centroids.
An RBF network requires one width for every hidden node. Th e
demo computes a single common width with the value 3.3318 for
all fi ve hidden nodes, rather than computing fi ve separate widths.

Th e third phase of training determines the RBF weights and bias
values. You can think of weights and bias values as numeric constants.
If an RBF network has NI number of input nodes, NH number of
hidden nodes, and NO number of output nodes, then the network
requires (NH * NO) weight values and NO bias values. So, because
the demo RBF network has a 4-5-3 architecture, it needs 5 * 3 = 15
weights plus three biases, for a total of 18 weights and bias values.
The demo program uses particle swarm optimization (PSO) to
determine the 18 weights and biases.

Aft er you’ve trained the demo RBF network using the 24-item
training data set, you feed the six-item test data set into the network.
In this example, the RBF network correctly predicts the species of
fi ve out of the six test items, for a classifi cation accuracy of 0.8333.

Th is article assumes you have advanced programming skills with
C# and a basic familiarity with the radial basis function network
input-process-output mechanism. I discussed that mechanism in
my October column. Th e source code for the demo program is too
long to present in its entirety in this article, but the complete code
download is available at archive.msdn.microsoft.com/mag201312TestRun.

Overall Program Structure
To create the demo program, I launched Visual Studio 2012 and
created a C# console application named RadialNetworkTrain. Th e
demo has no signifi cant .NET dependencies so any version of Visual
Studio should work. Aft er the template code loaded, in the Solution
Explorer window I renamed fi le Program.cs to the more descriptive
RadialTrainProgram.cs and Visual Studio automatically renamed
associated class Program. At the top of the source code, I deleted
all unnecessary references to .NET namespaces, leaving just the
reference to the System namespace.

Th e overall program structure, with some WriteLine statements
removed and a few minor edits, is presented in Figure 2. In addition

Radial Basis Function Network Training

TEST RUN JAMES MCCAFFREY

Code download available at archive.msdn.microsoft.com/mag201312TestRun.

http://archive.msdn.microsoft.com/mag201312TestRun
http://msdn.microsoft.com/magazine/dn451445
http://archive.msdn.microsoft.com/mag201312TestRun

13December 2013msdnmagazine.com

to the program class that houses the Main method, the demo has a
RadialNetwork class that encapsulates RBF network creation and
training, a Particle class that defi nes a particle object for use with
the RBF training algorithm that determines weights and bias values,
and a Helpers class that contains utility display methods.

Class RadialNetwork isn’t quite as complex as the program
structure suggests because most of the class methods are helpers.
Method Train performs the three-phase training process by calling
helpers DoCentroids, DoWidths, and DoWeights. Private methods
AvgAbsDist and DistinctIndices are helpers for DoCentroids.
Method DoWeights uses private method Shuffl e to process train-
ing data items in a diff erent order each time through the iterative
particle swarm optimization algorithm.

Th e heart of the demo is fairly simple. First, the normalized and
encoded data is set up:

double[][] allData = new double[30][];
allData[0] = new double[] { -0.784, 1.255, -1.332, -1.306, 0, 0, 1 };
allData[1] = new double[] { -0.995, -0.109, -1.332, -1.306, 0, 0, 1 };
// Etc.
allData[28] = new double[] { 0.904, -1.473, 1.047, 0.756, 1, 0, 0 };
allData[29] = new double[] { 1.431, 1.528, 1.209, 1.659, 1, 0, 0 };

Here the data is hardcoded for simplicity. In most scenarios your
data will be stored in a text fi le or a SQL table. Next, the data is split
into training and test subsets:

double[][] trainData = null;
double[][] testData = null;
int seed = 8;
GetTrainTest(allData, seed, out trainData, out testData);

Th e RBF network is instantiated:
int numInput = 4;
int numHidden = 5;
int numOutput = 3;
 RadialNetwork rn = new RadialNetwork(numInput,
 numHidden, numOutput);

As mentioned in the previous section, the
optimal number of hidden processing nodes must
be determined essentially by trial and error. Th e
network is trained:

int maxIterations = 100;
double[] bestWeights = rn.Train(trainData, maxIterations);

And, fi nally, the resulting model is evaluated:
rn.SetWeights(bestWeights);
double acc = rn.Accuracy(testData);
 Console.WriteLine("Classification accuracy = " + acc.
ToString("F4"));

The bestWeights array holds the RBF weights
and bias values as determined by the Train method.
Method SetWeights loads these weights and bias
values. You don’t need to have the centroids and
widths explicitly loaded because these values were
set by method Train.

Radial Basis Function Network
Input-Process-Output
To understand the RBF network training process,
you need to understand the RBF network input-
process-output mechanism. Th e diagram in Figure 3
shows how the demo RBF network computes the
outputs for test data item [1] = (0.482, 0.709, 0.452,
0.498) after the network has been trained. The
input x-values are passed to each hidden node.
Each hidden node computes its local output using
its own centroid and width.

For example, the top-most hidden node’s centroid
is (-0.362, -2.019, 0.074, 0.112) and its width is 3.3318.
Th e local outputs from each hidden node are then
used to determine preliminary output values by
computing a weighted sum of inputs, plus a bias
value. For example, if hOutput[0] represents the
local output of hidden node 0, then the preliminary
output for the topmost output node is (hOutput[0]
* w[0][0]) + (hOutput[1] * w[1][0]) + (hOutput[2]
* w[2][0]) + (hOutput[3] * w[3][0]) + (hOutput[4]
* w[4][0]) + bias[0] = -12.7999.Figure 1 A Radial Basis Function Network Demo Program

www.msdnmagazine.com

msdn magazine14 Test Run

Aft er the three preliminary output values have been computed,
they’re converted to fi nal output values using a soft max function.
Th e idea is to modify the preliminary output values so the fi nal
output values are all between 0.0 and 1.0, and sum to 1.0. Th is lets
the output values be loosely interpreted as probabilities.

In Figure 3, the final outputs are (0.2897, 0.6865, 0.0237).
Because the middle node has the highest value, it’s interpreted as a
1, and the other two values are interpreted as 0, giving an inferred
output of (0, 1, 0). Recall the test data is (0.482, 0.709, 0.452, 0.498,
0.000, 1.000, 0.000), where the fi rst four values are inputs and the
last three values are the target values, so the RBF network makes
a correct prediction of the species (Iris versicolor in this case).
Th e question now is: Where did the values for the RBF network’s
centroids, widths, weights and biases come from?

Determining RBF Network Centroids
Th e Train method of the RadialNetwork class is essentially a wrap-
per around three helper methods that do all the actual work:

public double[] Train(double[][] trainData, int maxIterations)
{
 DoCentroids(trainData);
 DoWidths(this.centroids);
 double[] bestWeights = DoWeights(trainData, maxIterations);
 return bestWeights;
}

Method DoCentroids determines representative input x-values.
There are many possibilities here. One common approach is to
use a k-means or k-medoids clustering algorithm that iteratively
assigns and reassigns data items so similar data items are grouped
together. When finished, each cluster will have a representative
data member. You can use these as RBF centroids.

A diff erent approach is to extract the x-values from randomly
selected training data items. Th is is simple, but has the risk that bad
centroids may be selected by chance.

The demo program uses what might be termed a lightweight
clustering approach suggested by this pseudocode:

initialize maxDistance
intialize bestIndices
loop
 select numHidden random indices into train data
 compute an estimated distance between selected data items
 if estimated distance > maxDistance then
 set maxDistance = curr distance
 set bestIndices = curr indices
 end if
end loop
fetch the x-values in train data at bestIndices
store x-values into RBF centroids

Th e idea is best illustrated by example. Suppose the training data
consists of the 24 items shown in Figure 1. Further suppose that the
fi rst time through the processing loop the four randomly selected
indices are [0], [1], [2] and [3]. Th ese correspond to:

 0: (1.537, -0.382, 1.317, 0.756)
 1: (-0.468, 2.346, -1.170, -1.048)
 2: (1.115, 0.164, 0.560, 0.370)
 3: (1.220, 0.436, 0.452, 0.241)

Th ese are candidate centroids. Th e idea is to get representative
x-values, which means you don’t want values that are close together.
So, you compute some measure of distance between these candidate
centroids. Here, there are many possible approaches. The demo
estimates an average distance between all possible pairs of candidate
centroids by computing an average distance between adjacent pairs

of candidates, instead of computing an average distance between all
possible pairs. For this example, it computes the distances between
candidates [0] and [1], between [1] and [2], and between [2] and [3].

A common approach to computing a distance is to use Euclidean
distance, which is the square root of the sum of squared diff erences
between values. (Note: The demo RBF network uses a Gaussian
kernel, which uses Euclidean distance to compute hidden node
local output values.) However, the demo program uses a variation of
Manhattan distance, where distance is an average of the diff erence
of absolute values. So, the distance between candidates [0] and [1] is:

d = abs(1.537 - (-0.468)) + . . . + abs(0.756 - (-1.048)) / 4
 = 2.256

Th e process of generating a set of candidate centroids and comput-
ing an estimated average distance for the set of candidates is repeated
a specifi ed number of times, and the set of candidates with the greatest
estimated average distance is selected as the RBF centroid set.

Notice that determining RBF network centroids can be con-
sidered an unsupervised training technique because the target
values (such as 0, 1, 0) in the training data aren’t needed or used.
This means centroids can be determined quickly. Also, RBF
network widths, weights, and bias values can—in theory at least—
be computed much more quickly than the roughly equivalent
neural network weights and bias values. Th is gives RBF networks a
potential advantage over neural networks (but, as you’ll see, there’s
more to the story).

During the process of determining RBF network centroids,
determining the candidate indices is an interesting subproblem. Th e
demo program uses a clever algorithm called reservoir sampling.
Th e idea is to pick the fi rst possible n indices, then probabilistically
replace the initial indices with the remaining possible indices:

private int[] DistinctIndices(int n, int range)
{
 // Reservoir sampling. assumes rnd exists
 int[] result = new int[n];
 for (int i = 0; i < n; ++i)
 result[i] = i;

 for (int t = n; t < range; ++t) {
 int m = rnd.Next(0, t + 1);
 if (m < n) result[m] = t;
 }
 return result;
}

Although the method is short, it’s subtle. Alternatives include
using a brute-force approach where random indices are generated
and then checked to see if there are any duplicates.

Determining RBF Network Widths
The RBF network input-process-output mechanism requires a
width value for each hidden node. Th ere are many possibilities for
determining the width values. Th e simplest approach, and the one
used by the demo program, is to compute one common width,
which all hidden processing nodes can use. Research in this area
tends to be hazy and conclusions are sometimes contradictory. Th e
demo program computes a common width as the average Euclidean
distance between all possible pairs of centroids. In pseudocode:

sumOfDists = 0.0
for each pair of centroids
 accumulate Euclidean distance between curr pair
end loop
return accumulated sumOfDists / number of pairs

15December 2013msdnmagazine.com

Based on my experience, the eff ectiveness of RBF networks is
extremely sensitive to the values used for hidden node widths.
Research shows a width that’s too small tends to over-fi t the training
data, leading to poor classifi cation accuracy. A width that’s too large
tends to under-fi t the data, which also leads to poor classifi cation.
If you experiment with the demo code by manually setting the
values of the RBF network widths, you can see this eff ect in action.

Besides using the average distance between centroids, davg, for
a common hidden nodes width value, research also suggests using
(2 * davg), or (davg / sqrt(2 * numHidden)), and many other values.
And instead of using a common width, there are many possibili-
ties for computing diff erent width values for each hidden node. In
my opinion, the high sensitivity of RBF networks to width values,
along with the related lack of convincing research results on how
to best compute width values, are the major disadvantages of
using RBF networks compared to alternatives such as neural
networks and support vector machines.

Determining RBF Network Weights and Biases
Aft er determining centroids and widths, the fi nal step in training
an RBF network is determining the values for the weights and

biases. Th eoretically, you can compute RBF network weights easily
and quickly because, loosely speaking, there are n equations with
n unknown values. So, standard numerical techniques can, in
theory, be used to solve for the weight values.

Unfortunately, in practice, using standard techniques runs into
many practical problems. For example, many standard techniques
for solving systems of equations involve the use of matrix inver-
sion. Matrix inversion can fail for many reasons.

Rather than use a deterministic but possibly brittle numerical
technique to solve for RBF network weights exactly, the demo
program uses particle swarm optimization to estimate the best
values. PSO is a meta-heuristic based on coordinated group
behavior, such as fl ocks of birds or schools of fi sh. In PSO, a par-
ticle has a position that represents a potential solution (the best
set of weight values in this case). Each particle has a velocity that
determines the particle’s next position.

In PSO, a set of particles is created. In each simulated time
tick, each particle moves to a new position based on the particle’s
current position and velocity, the best-known historical position
of the particle, and the best-known historical position of any of the
particles. Here’s PSO in high-level pseudocode:

Figure 2 Overall RBF Network Demo Program Structure

using System;
namespace RadialNetworkTrain
{
 class RadialTrainProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin radial basis function (RBF) network
 training demo");
 double[][] allData = new double[30][];
 allData[0] = new double[] { -0.784, 1.255, -1.332, -1.306, 0, 0, 1 };
 allData[1] = new double[] { -0.995, -0.109, -1.332, -1.306, 0, 0, 1 };
 // Etc.
 allData[28] = new double[] { 0.904, -1.473, 1.047, 0.756, 1, 0, 0 };
 allData[29] = new double[] { 1.431, 1.528, 1.209, 1.659, 1, 0, 0 };

 Console.WriteLine("First four and last line of normalized, encoded
 input data:");
 Helpers.ShowMatrix(allData, 4, 3, true, true);

 double[][] trainData = null;
 double[][] testData = null;
 int seed = 8; // Gives a good demo
 GetTrainTest(allData, seed, out trainData, out testData);
 Helpers.ShowMatrix(trainData, trainData.Length, 3, true, false);
 Helpers.ShowMatrix(testData, testData.Length, 3, true, false);

 int numInput = 4;
 int numHidden = 5;
 int numOutput = 3;
 RadialNetwork rn = new RadialNetwork(numInput, numHidden, numOutput);

 Console.WriteLine("Beginning RBF training");
 int maxIterations = 100; // Max for PSO
 double[] bestWeights = rn.Train(trainData, maxIterations);

 Console.WriteLine("Evaluating RBF accuracy on the test data");
 rn.SetWeights(bestWeights);

 double acc = rn.Accuracy(testData);
 Console.WriteLine("Classification accuracy = " + acc.ToString("F4"));

 Console.WriteLine("End RBF network training demo");
 }

 static void GetTrainTest(double[][] allData, int seed,
 out double[][] trainData, out double[][] testData) { . . }
 }

 public class RadialNetwork
 {
 private static Random rnd = null;
 private int numInput;
 private int numHidden;
 private int numOutput;
 private double[] inputs;
 private double[][] centroids;
 private double[] widths;
 private double[][] hoWeights;
 private double[] oBiases;
 private double[] outputs;

 public RadialNetwork(int numInput, int numHidden, int numOutput) { . . }
 private static double[][] MakeMatrix(int rows, int cols) { . . }

 public void SetWeights(double[] weights) { . . }
 public double[] GetWeights() { . . }

 private double MeanSquaredError(double[][] trainData,
 double[] weights) { . . }
 public double Accuracy(double[][] testData) { . . }
 private static int MaxIndex(double[] vector) { . . }

 public double[] ComputeOutputs(double[] xValues) { . . }
 private static double[] Softmax(double[] rawOutputs) { . . }

 public double[] Train(double[][] trainData, int maxIterations) { . . }
 private void DoCentroids(double[][] trainData) { . . }
 private static double AvgAbsDist(double[] v1, double[] v2,
 int numTerms) { . . }
 private int[] DistinctIndices(int n, int range) { . . }
 private void DoWidths(double[][] centroids) { . . }
 private double[] DoWeights(double[][] trainData, int maxIterations) { . . }
 private static double EuclideanDist(double[] v1, double[] v2,
 int numTerms) { . . }
 private static void Shuffle(int[] sequence) { . . }
 }

 public class Particle
 {
 // Implementation here
 }

 public class Helpers
 {
 // Implementation here
 }
}

www.msdnmagazine.com

Test Run

 1&1 Search Engine Optimization
 Listing in business directories
 Facebook® credits
 1&1 Newsletter Tool

MARKETING SUCCESS

 Over 140 popular apps (WordPress,
Joomla!™, TYPO3 and many more...)
App Expert Support

1&1 APP CENTER

 Premium software, including:
Adobe® Dreamweaver® CS5.5
and NetObjects Fusion® 2013

 1&1 Mobile Website Builder
 PHP 5.4, Perl, Python, Ruby

POWERFUL TOOLS

 Maximum Availability (Georedundancy)
 300 Gbit/s network connection
 2GB RAM GUARANTEED
 1&1 CDN powered by CloudFlare

STATE-OF-THE-ART TECHNOLOGY

 Included Domains:
.com, .net, .org, .info, .biz
 Linux or Windows operating system
Unlimited Power: webspace, traffi c,
mail accounts, SQL databases

ALL INCLUSIVE

FLEXIBILITY & SUPPORT
FOR YOUR WEB HOSTING PROJECTS

1and1.com

®

set number of particles
set maxIterations
initialize all particles to random positions
loop maxIterations times
 for each particle
 update curr particle's velocity
 use new velocity to compute new position
 compute error for new position
 check if new particle best position
 check if new best position for all
particles
 end for
end loop
return best position found by any particle

PSO is a fascinating topic in its own right. You
can learn more about it by reading my August
2011 article, “Particle Swarm Optimization”
(msdn.microsoft.com/magazine/hh335067). PSO
requires the specifi cation of several free param-
eters, including weight constants that control
the relative infl uence of a particle’s current
position, best historical position and best
global historical position. PSO also requires
specifying the number of particles, the max-
imum number of iterations and, optionally,
an error threshold for early algorithm exit.
You can experiment with these factors using
the demo code.

In addition to PSO and traditional numer-
ical techniques, there are many alternatives
for fi nding RBF network weights, including
simple gradient descent, and real-valued
genetic algorithms. Although the theory of
RBF networks has been studied fairly exten-
sively, there are relatively few convincing

research results on the comparative eff ective-
ness of diff erent training techniques.

Wrapping Up
Th e demo program code along with the expla-
nation presented here should give you a solid
foundation for investigating RBF networks.
Although RBF networks are well-known in
the research community, they don’t seem to
be used very oft en in the soft ware developer
community compared to alternatives such as
neural network classifi ers, naive Bayes clas-
sifi ers, and logistic regression. One possible
reason for this could be the scarcity of prac-
tical implementation examples. Another
possible reason is the uncertainty surrounding
fundamental RBF network factors, especially
those related to the computation of RBF net-
work widths. In my opinion, there’s no solid
research evidence to answer the question of
whether RBF networks are more eff ective, less
eff ective, or roughly equivalent to alternative
machine-learning techniques.

DR. JAMES MCCAFFREY works for Microsoft Research in
Redmond, Wash. He has worked on several Microsoft
products including Internet Explorer and Bing. He can
be reached at jammc@microsoft .com.

THANKS to the following technical expert for reviewing
this article: Kirk Olynyk (Microsoft Research)

Figure 3 Radial Basis Function Network Architecture

(Most hidden-to-output
weight values omitted
for clarity)

Input

0.48 0.70 0.45 0.49

X0 X1 X2 X3

Output

b0 = -9.70

-12.7999

0.2897 0

b1 = -7.35

-12.7999

0.6865 1

b2 = -4.85

-15.3023

0.0237 0

W00 = -10.00

W10 = -3.63

W20 = 9.99

W 30 =
 -10.00

W 40
 = 4.

17

C0 = (-0.36 -2.01 0.07 0.11)
0 = 3.33

C1 = (-1.20 0.43 -1.38 -1.30)
1 = 3.33

C2 = (0.48 0.70 1.15 -1.65)
2 = 3.33

C3 = (-0.99 -0.10 -1.33 -1.30)
3 = 3.33

C4 = (1.85 -0.10 1.47 1.14)
4 = 3.33

www.1and1.com
mailto:jammc@microsoft.com
http://msdn.microsoft.com/magazine/hh335067

$1.99/month*

COMPLETE PACKAGES
FOR PROFESSIONALS

STARTING AT

HOSTINGNE
W

Guaranteed Performance
Daily Backup

PHP 5.4

Web analyticsGeo-redundancy
> 300 Gbit/s network connection

CDN
NetObjects Fusion® 2013

Adobe® Dreamweaver® CS5.5 included

Mobile Website Builder

Over 140 apps
Drupal™, WordPress, Joomla!™, TYPO3, Magento® and many more…

Free mode or safe mode

MySQL

Newsletter Tool

SEO

Call 1 (877) 461-2631
or buy online

TRIAL
30 DAY MONEY
BACK GUARANTEE

MONTH
FLEXIBLE PAYMENT
OPTIONS

CALL
SPEAK WITH AN
EXPERT 24/7

1and1.com

®

* 1&1 Web Hosting packages come with a 30 day money back guarantee, no minimum contract term, and no setup fee. Price refl ects 36 month pre-payment option for 1&1 Basic
package. Price goes to regular $5.99 per month price after 36 months. Some features listed only available with package upgrade or as add-on options. See website for full details.

Untitled-4 1 10/15/13 1:07 PM

www.1and1.com

Untitled-2 2 11/1/13 10:27 AM

www.aspose.com

Untitled-2 3 11/1/13 10:28 AM

www.aspose.com

msdn magazine20

With the latest major release of Entity Framework,
EF6, the Microsoft object-relational mapping (ORM) tool has
reached new heights of “ninja-ness.” It’s no longer the country cousin
to long-established .NET ORM tools. EF is all grown up, and it’s
winning over former die-hards.

Entity Framework has evolved through the choppy waters of its
infancy, where it began as a tool focused on database developers—and
inspired the wrath of agile developers within the .NET community.
It learned how to get out of the way of application development
and shift ed to a Plain Old CLR Objects (POCOs) model, enabling
testing and domain-focused soft ware development without disen-
franchising data-focused developers. It addressed performance
issues and numerous concerns about the quality of generated code,
and won over many database administrators (DBAs) along the way.

Beginning with EF 4.1, Microsoft recognized the complexity EF
required and simplifi ed access to its functionality by introducing
the DbContext API. At the same time, because not everyone wants
to use a designer or generated code, it provided the ability to build
models with your own code. Along the way, there was another
signifi cant change that wasn’t about features, syntax, code or perfor-
mance. Th e EF team became more transparent and interactive with
its community of users, and it began to provide feature releases more
fl uently rather than binding them to the Microsoft .NET Framework.
Th is led to two advances aft er EF5 was released in 2012. First, all of the
Entity Framework APIs were extracted from the .NET Framework
and combined with the out-of-band feature APIs on which the team
was also working. Second, the entire development eff ort moved

to an open source model. EF6 has been developed publicly on
entityframework.codeplex.com. Not only can you see what the team is
doing via meeting notes, check-ins, and downloadable nightly
builds, but you can also contribute source to EF6 (though with
complete oversight by the EF team).

Keep in mind that EF6 is an evolution, not a revolution. Almost
everything you already know about EF stays the same, such as
how you build Entity Framework models and how you use EF in
your applications. EF6 advances the ORM, but doesn’t change
how it fundamentally works. If you’ve invested in learning EF, that
investment continues to pay off . EF6 doesn’t come without some
breaking changes—but these are limited to some namespace alter-
ations that are easy enough to deal with if you’re prepared. I’ll point
you to resources for guidance at the end of this article.

I think of EF6 features in a few categories:
1. Features that come for free: Th ese are capabilities that are

part of the core. You don’t even have to know they’re there
to benefit from them, much less learn any new coding.
Th is group includes features such as performance gains
brought by a rewritten view-generation engine and query
compilation modifi cations, stability granted by the ability
of DbContext to use an already open connection, and a
changed database setting for SQL Server databases created
by Entity Framework.

2. Level-setting features: A major enhancement is that
Code First now supports mapping to Stored Procedures,
something that has been supported by models created in
the designer. Th is feature has gotten a lot of coverage in
Channel 9 videos (such as the one at bit.ly/16wL8fz) and in
a detailed spec on the CodePlex site, so I won’t repeat the
information in this article.

3. Another change is more interesting. As I mentioned, with
EF6, the EF APIs have been extracted from the .NET
Framework; they’re now completely encapsulated in the
NuGet package. Th is means that certain features intro-
duced with EF5—such as enum and spatial data support
and improved performance—are no longer dependent

E N T IT Y F R AMEW OR K 6

Entity Framework 6:
The Ninja Edition
Julie Lerman

This article discusses:
• The move of Entity Framework away from .NET

• Performance improvements and stability

• New “ninja” features

• Contributions from the community

Technologies discussed:
Entity Framework 6, Microsoft .NET Framework

http://entityframework.codeplex.com
www.bit.ly/16wL8fz

21December 2013msdnmagazine.com

on .NET 4.5. So if you’re using .NET 4with EF6, you can
fi nally benefi t from those features.
 I’d also include the EF Designer in this category. It has

been moved out of Visual Studio as of the 2013 edition, and
instead provided as an extension to Visual Studio. For EF6,
having the designer as an extension is a huge bonus. Going
forward, the team will be able to add features directly to
the designer, including those that are currently provided
in the Entity Framework Power Tools. Separating the
designer from Visual Studio allowed Microsoft to ship EF6
tooling for Visual Studio 2012 as well as Visual Studio 2013.

4. Ninja features: Th ese are features you’ve craved ever since
you got past the basic EF sample applications. Th ere are
many such features in EF6: support for asynchronous
queries and saves, the return of custom Code First conven-
tions, more extensibility using the new DbConfi guration
type (which relies on the low-level EF6 IDbDependency-
Resolver), support for mocking in unit tests, confi gurable
retries on spotty connections, and even more. You don’t
need to be a certifi ed ninja to use these features—but you’ll
certainly feel like one when you do!

I also want to highlight a special category: EF6 contributions that
came from community members. Unai Zorrilla added DbSet.Add-
Range and RemoveRange, the ability to customize pluralization and
the handy DbChangeTracker.HasChanges method. He’s also working
on other cool features for a future iteration of EF. Erik Jensen, a SQL
Server Compact (SQLCE) MVP, contributed SQLCeFunctions,
which are similar to the SqlFunctions for using SQL Server func-
tions in LINQ to Entities queries. Th e greatly improved speed of
EF view generation—most dramatic for large, complex models—
was driven by Alireza Haghshenas and a CodePlex member named
VSavenkov. It’s also possible now to defi ne custom migration oper-
ations, thanks to Iñaki Elcoro, aka iceclow on CodePlex. (Rowan
Miller of the EF team wrote some blog posts about this feature; the
fi rst is at bit.ly/ZBU0w1.) A full list of contributors can be found in the
team blog post, “EF6 RTM Available,” at bit.ly/1gmDE6D.

In this article, I’ll drill into some of the less-publicized topics
and point you to existing resources to learn more about the others.

A Version History page on the MSDN Data Developer Center
(bit.ly/1gCT0nz) lists all of the features, each with a sentence or two of
detail and some with links to more information.

It Just Works:
Performance Improvements and Stability
Performance is the bane of many a soft ware project and there has
been plenty of criticism of the performance of Entity Framework
since its inception. However, each iteration of EF has brought vast
improvements in this area.

One of the biggest drags on performance is the startup time
involved with the fi rst use of a context in an application process. You
can do a lot to improve that startup time, though. Hopefully you’ve
already learned these tricks from my own writing or other resources,
such as the MSDN doc on performance considerations at bit.ly/3D6AiC.

A startup step that oft en hampers performance is the view gener-
ation of mapping views, where EF creates the relevant SQL to

query against each of the entity sets in the model. Th ese views get
leveraged as your app runs so that for certain queries, EF doesn’t
have to work out the SQL on the fly. View generation happens
whether you created your model with the EF Designer or with
Code First. You can pre-generate these views and compile them
into the application to save time.

For large, complex models, view generation was especially
time-consuming. This process has been revamped for EF6,
improving the speed dramatically, whether you pre-generate the
views or let this happen at run time. Note that there was a bug in
the EF 6.0.0 release that hindered this feature, but it was corrected
in EF 6.0.1, which was released on the same day and is (at the time
of writing) the default package that you’ll get via NuGet. Addition-
ally, the way EF uses those generated views at run time has been
enhanced, improving query execution time. View generation on small
or simple models was never an issue. But plenty of organizations
have models with hundreds of entities that also include inheritance,
relationships and other complications. Th ose organizations will
benefi t greatly from this change.

On another performance note, see the guidance about using Ngen
against the Entity Framework assembly in the announcement blog
post for the release of EF6 at bit.ly/1gmDE6D.

Faster LINQ Contains Compilation Th e EF team continues
to tweak how queries are created, and one change the team has
highlighted is how queries using LINQ Contains are compiled. To
be clear, it’s the performance of the compilation process that has
improved. Th e generated SQL hasn’t changed, so the execution of
the query in the database isn’t aff ected.

SQL Server Database Creation One of the stability improve-
ments in EF6 is related to database creation. Both the Model First
and Code First workflows can create a database for you. If that
database is SQL Server, EF is now aligned with a “best practice” for
SQL Server databases, which is to confi gure the database’s READ_
COMMITTED_SNAPSHOT setting to ON. Th is means that, by
default, the database will create a snapshot of itself every time a
change is made. Queries will be performed on the snapshot while
updates are performed on the actual database. I wrote about this fea-
ture in a recent blog post, “What’s that Read_Committed_Snapshot
Transaction Support for EF6 About Anyway?” at bit.ly/14FDpZI.

Reuse Open Connections Finally, a frustrating limitation has been
removed: EF6 lets you execute context calls on an open DbConnection.
In the past, if you explicitly opened a connection before executing the
EF command that used that connection, or you attempted to reuse a
connection that had already been opened by another context call, an
exception would be thrown with the message “Entity Connection can
only be constructed with a closed DbConnection.” Now, EF6 is more
than happy to let you reuse an already open connection.

Ninja Enhancements
Async Support I explored a handful of new features—Async
querying, SaveChanges and custom conventions—in “Playing
with the EF6 Alpha,” in my March 2013 Data Points column
(msdn.microsoft.com/magazine/jj991973).

Async support brings the .NET 4.5 Await and Async pattern to
the LINQ query execution methods for EF, giving you FirstAsync,

www.bit.ly/ZBU0w1
www.bit.ly/1gmDE6D
www.bit.ly/1gCT0nz
www.bit.ly/3D6AiC
www.bit.ly/1gmDE6D
www.bit.ly/14FDpZI
http://msdn.microsoft.com/magazine/jj991973
www.msdnmagazine.com

msdn magazine22 Entity Framework 6

FirstOrDefaultAsync, SingleAsync, SingleOrDefaultAsync,
ToListAsync, ForEachAsync and more. To see the full list, check
System.Data.Entity.QueryableExtensions. DbSet gained FindAsync
and DbContext gained SaveChangesAsync. Since that article,
not much has changed, so you can take a look at it to get more
details. In addition, Microsoft created some walk-throughs and an
interesting detailed specifi cation, which you can get to from the
version history page I mentioned earlier.

Custom Code Conventions I also wrote about custom Code
First conventions in that article—another ninja feature, for sure.
Th e EF team worked on this for the initial release of Code First,
but it was holding up the release and the team was forced to set it
aside—to the disappointment of many developers.

Suppose you have a common mapping you want to apply as a
general rule to your entities or properties. Now you can defi ne it as a
convention rather than having to specify the mapping individually
for each entity or property in your model, and it will be applied
across the board. For example, if you want each string property
to be represented in your database as 50 characters, instead of
whatever default your database provider uses, you can specify
this rule as a convention. Th e conventions leverage the Code First
Fluent API, so building conventions should feel familiar if you’ve
confi gured mappings this way:

modelBuilder.Properties<String>().Configure(p => p.HasMaxLength(50))

Now, every string in this model will be mapped to a database
column of 50 characters. As with the Fluent or annotations con-
fi gurations, you can specify conventions for properties or entities,
and control inheritance mappings. Affecting relationships via
convention is a less common and more complex task handled by
model-based conventions. For more information, see bit.ly/1gAqcMq.
You can also use a convention as a data annotation. There’s a
hierarchy for executing conventions when Code First is building
its model. By default, built-in conventions run fi rst and custom
conventions run aft erward. But you can force a custom convention
to precede a built-in convention. Check out “Custom Code First
Conventions” at bit.ly/14dg0CP for examples.

Connection Resiliency If a connection is dropped while EF
is attempting to execute a query or save changes, you now have the
ability to tell EF to retry. Th ough dropped connections can be a
problem on corporate intranets, connection resiliency has proven
to be quite useful in helping apps that connect to the cloud. Th e
retries can be confi gured using IDbConnectionStrategy. Th e SQL
Server provider included with EF specifies a default:SqlServer-
ExecutionStrategy, which has an error message suggesting that you
tune the strategy for exceptions thrown by transient connections.

Another, SqlAzureExecutionStrategy, is tuned for connections to
Windows Azure SQL Database.

The simplest way to specify a strategy is with the new
DbConfi guration class, which makes it easy to confi gure how a
particular database provider should behave. Th e following tells EF
to use SQLAzureExecutionStrategy for SqlClient:

SetExecutionStrategy (SqlProviderServices.ProviderInvariantName,
 () => new SqlAzureExecutionStrategy());

Not only are the connection strategies confi gurable, but you can
also create your own as well as suspend them programmatically as
needed. EF team member Miller shows you how to suspend in his
blog post at bit.ly/14gPM1y.

I tested SqlAzureExecutionStrategy using a trick suggested by
another EF team member, Glenn Condron. To trigger the partic-
ular transient connection fault error codes that this strategy looks
for, I used the new EF6 command interception feature to throw a
transient connection error. Th en I ran a test whose output showed
that when I set the execution strategy, the query was retried fi ve
times aft er the initial failure. Th ere’s a great comment on my blog
post about this feature from a developer who says his company is
already witnessing the benefi ts of this feature (bit.ly/HaqMA0).

There’s also an interesting algorithm that ensures retries on
diff erent threads don’t all execute at the same time.

Share DbTransactions and DbConnections I hope you’re
aware by now that EF always uses a DbTransaction by default for
calls made to the database. For example, when calling SaveChanges,
a DbTransaction is created before the fi rst command is sent to the
database. EF then sends all necessary insert, update and delete
commands to the database, and fi nally commits the transaction.
If one command fails, all of the previously executed commands
are rolled back.

You’ve always had the ability to override that default behavior
by spinning up a TransactionScope to wrap the EF call and any
other calls (not necessarily database- or EF-related) that need to
be in the same transaction. An addition to EF6 now lets a single
DbTransaction be responsible for multiple database calls. Note that
you’ll still need to use a TransactionScope if you want to include
non-database logic within the transaction or distributed transac-
tions for calls to diff erent databases.

The key to sharing DbTransactions with EF6 is a new
BeginTransaction method that returns a reference to the current
DbTransaction and a UseTransaction method.

Th is code demonstrates the default behavior:
//code to create two new casinos, "casino1" & "casino2"
var context = new CasinoSlotsModel();
context.Casinos.AddRange(new[] { casino1, casino2 });
context.SaveChanges();
context.Database.ExecuteSqlCommand
 ("Update Casino.Casinos set rating= " + (int) casino.Rating)

My profiler shows a transaction being used around each
context call—one to SaveChanges, which triggered two inserts,
and one to ExecuteSqlCommand, which triggered the update—
as shown in Figure 1.

Now I’ll modify the code to share a transaction, wrapping
the SaveChanges and ExecuteSqlCommand calls. I’ll use the new
DbContext.Database.BeginTransaction to explicitly instantiate a
System.Data.Entity.DbContextTransaction, and open a connection
if necessary (keep in mind that there’s a similar command with

Figure 1 Commands from Separate Context Calls Wrapped in
Their Own Transactions

www.bit.ly/1gAqcMq
www.bit.ly/14dg0CP
www.bit.ly/14gPM1y
www.bit.ly/HaqMA0

Untitled-1 1 11/26/12 3:02 PM

www.xceed.com

msdn magazine24 Entity Framework 6

DbContext.Database.Connection, but that returns a System.Data.Com -
mon.DbTransaction, which can’t be shared by the EF commands):

using (var tx = context.Database.BeginTransaction()) {
 try {
 context.SaveChanges();
 context.Database.ExecuteSqlCommand
 ("Update Casino.Casinos set rating= " + (int) casino.Rating);
 tx.Commit();
 }
 catch (Exception) {
 tx.Rollback();
 }
}

You can see in Figure 2 that all of the commands are wrapped
in the same transaction.

Th ere’s another new feature called UseTransaction. You can spin
up a DbTransaction and then use it for ADO.NET calls and, with
DbContext.Database.UseTransaction, execute EF calls even from
separate context instances within the same transaction. You can
see an example of this at bit.ly/1aEMIuX.

It’s also possible to explicitly reuse an open connection, because
EF can now create an EntityConnection (something the ObjectCon-
text does in the background) with an already opened connection.
Also, a context won’t close a connection that it didn’t open itself. I
wrote a simple test in which I open a context’s connection before
executing a call from the context:

[TestMethod]
public void ContextCanCreateEntityConnectionWithOpenConnection()
{
 using (var context = new CasinoSlotsModel())
 {
 context.Database.Connection.Open();
 Assert.IsNotNull(context.Casinos.ToList());
 }
}

When executing the ToList call, the DbContext will create an
ObjectContext instance that in turn will create an EntityConnection.
It then uses the EntityConnection to open the DbConnection and
closes the DbConnection when the call is complete with all results
returned. Running this in EF5 causes an exception (“EntityConnec-
tion can only be constructed with a closed DbConnection”), but
it succeeds in EF6 because of the change in behavior. Th is change
will allow you to reuse connections in scenarios where you want
to have more control over the state of connection. Th e specs sug-
gest scenarios “such as sharing a connection between components
where you cannot guarantee the state of the connection.”

AddRange and RemoveRange As mentioned earlier, AddRange
and RemoveRange are contributions from community member
Zorrilla. Each method takes as its parameter an enumerable
of a single entity type. In the first code sample in the sharing
DbTransactions section, I used AddRange when I passed in an
array of Casino instances:

context.Casinos.AddRange(new[] { casino1, casino2 });

Th ese methods execute much faster than adding or removing a
single object at a time because, by default, Entity Framework calls
DetectChanges in each Add and Remove method. With the Range
methods, you can handle multiple objects while DetectChanges is
called only once, improving performance dramatically. I’ve tested
this using five, 50, 500, 5,000 and even 50,000 objects and, at
least in my scenario, there’s no limit to the size of the array—and
it’s impressively fast! Keep in mind that this improvement is only

relevant in getting the context to act on the objects, and has no
bearing on SaveChanges. Calling SaveChanges still executes
just one database command at a time. So while you can quickly
add 50,000 objects into a context, you’ll still get 50,000 insert
commands executed individually when you call SaveChanges—
probably not something you want to do in a real system.

On the fl ip side of this, there were long discussions about imple-
menting support for bulk operations without requiring objects to
be tracked by EF (bit.ly/16tMHw4), and for batch operations to enable
sending multiple commands together in a single call to the database
(bit.ly/PegT17). Neither feature made it into the initial EF6 release, but
both are important and slated for a future release.

Less Interference with Your Coding Style In .NET, it’s pos-
sible to override the System.Object.Equals method to defi ne your
system’s rules for equality. Entity Framework, however, has its own
way of determining the equality of tracked entities, and this relies on
identity. If you’ve overwritten Equals (and the GetHashCode method
that Equals is dependent upon), you can trip up the change-tracking
behavior of Entity Framework. Petar Paar demonstrates this
problem very clearly in his blog post at bit.ly/GJcohQ. To correct this
problem, EF6 now uses its own Equals and GetHashCode logic to
perform change-tracking tasks, ignoring any custom Equals and
GetHashCode logic you may have written. However, you can still
make explicit calls to your own custom methods in your domain
logic. Th is way, the two approaches can live in harmony.

If you’re focused on graphs and aggregates, you may want to
nest types within other types. But the Code First model builder
wasn’t able to discover nested types to create entities or complex
types in a model. Figure 3 shows an example of nested type:
Address. I’ll use Address only in the Casino type, so I’ve nested it
in the Casino class. I’ve also created Address as a Domain-Driven
Design (DDD) value object because it doesn’t need its own identity.
(See my October 2013 Data Points column, “Coding for Domain-
Driven Design: Tips for Data-Focused Devs, Part 3,” at msdn.microsoft.com/
magazine/dn451438 for more about DDD value objects.)

I used the EF Power Tools to get a visual representation of
the model, and in Figure 4, I show the resulting Casino entity
rendered when using EF5 and EF6. EF5 didn’t recognize the nested
type and didn’t include Address or the dependent properties
(PhysicalAddress and MailingAddress) in the model. But EF6 was
able to detect the nested type, and you can see the Address fi elds
were represented in the model.

Th e same under-the-covers changes that enable the nested types
also solve another problem. Th is is the problem raised by having
multiple types with the same names under diff erent namespaces
in the same project. Previously, when EF read the metadata from
the EDMX and looked for the matching type in the assembly, it
didn’t pay attention to namespaces.

Figure 2 Commands from All Context Calls in a Single Transaction

www.bit.ly/1aEMIuX
www.bit.ly/16tMHw4
www.bit.ly/GJcohQ
http://msdn.microsoft.com/magazine/dn451438
http://msdn.microsoft.com/magazine/dn451438

We want to extend our deepest thanks and appreciation to all our loyal
customers who took the time to vote for their favorite DevExpress products
in this year’s Visual Studio Magazine Reader’s Choice Awards.

Thank You!

All trademarks or registered trademarks are property of their respective owners.

Learn more and download your free trial

devexpress.com/try

Untitled-1 1 11/8/13 10:45 AM

www.devexpress.com/try

msdn magazine26 Entity Framework 6

A common scenario where this caused issues was including
non-EF representations of entities in the same project as the model
that contained the entities. So I might have this code-generated
PokerTable class from my model:

namespace CasinoEntities
{
 public partial class PokerTable
 {
 public int Id { get; set; }
 public string Description { get; set; }
 public string SerialNo { get; set; }
 }
}

I might also have this DTO class that’s not part of my model but
is in the same project:

namespace Casino.DataTransferObjects
{
 public class PokerTable
 {
 public int Id { get; set; }
 public string Description { get; set; }
 public string SerialNo { get; set; }
 }
}

When the project targets EF5, you’ll see the following error when
building the project:

 Th e mapping of CLR type to EDM type is ambiguous because
multiple CLR types match the EDM type ‘PokerTable.’
Previously found CLR type ‘MyDtos.PokerTable,’ newly found
CLR type ‘EDMXModel.DTOs.PokerTable.’

You’ll see this error at design time with an EDMX. With Code
First, if you had the same scenario—two matching classes with
the same name but diff erent namespaces, and one of those classes
in the model—you’d see the problem at run time when the model
builder begins interpreting the Code First model.

Th is problem has long been a source of frustration. I’ve read that
message and asked my computer: “Do you not see the diff erent
namespaces? Hello?” I also have a collection of e-mails from friends,
clients and other developers who have experienced this problem.

EF6 will now recognize the namespaces and allow this scenario.
You can read more about the internals that enabled these two
changes in the blog post by Arthur Vickers at bit.ly/Wi1rZA.

Move Context Confi guration into Code Th ere are a number
of settings you can apply in your app.confi g or web.confi g fi les to
defi ne how your context should work. For example, you can specify
a database initialization or migration or a default database provider.
My method of adding these has oft en been copying and pasting
because the settings are too hard to remember and involve a lot of
strings. Now, with EF6, you can declare many context confi gura-
tions in code using the DbConfi guration class. I played with this
in the March Data Points column, but encountered a bug caused
by a race condition, which I reported and has since been fi xed.
So I’ll revisit DbConfigurations (also referred to as code-based
confi guration) now. Note that there’s plenty of room for confusion
when talking about confi guration mappings for Code First versus
DbConfi guration settings versus DbMigrationConfi gurations for
defi ning how database migration will work when you change your
model. DbConfi guration is targeted at DbContext settings.

DbConfi guration depends on another super-ninja, low-level
feature of EF6: support for dependency resolution, similar to the
IDependencyResolver used in ASP.NET MVC and Web API.
Dependency resolution allows you to use the Service Locator
pattern with the Inversion of Control (IoC) pattern in your code,
allowing EF6 to choose from a hierarchy of available objects that
implement a common interface. In this case the root interface
is IDbDependencyResolver. While EF6 includes a number of
DbConfi gurations that allow it to discover and place precedence
on the context settings, it’s possible to leverage dependency reso-
lution to add new features to EF as well. I’ll stick to showing some
of the confi gurations and point you to the feature spec at bit.ly/QKtvCr
for more details about the IDbDependencyResolver.

You can use DbConfi guration to specify familiar context rules
as well as settings that are new to EF6. Figure 5 shows a sample
confi guration class that includes a host of diff erent settings EF will
use in place of its default behaviors. Notice the settings are placed
in the class constructor.

SetDefaultConnectionFactory supplants the DefaultConnection-
Factory tag you may already be using in your config file in the
entityframework section. SetDatabaseInitializer replaces specifying
an initializer or migration configuration in your config file or at
application startup. I show two examples, though one is commented
out. SetExecutionStrategy lets you specify what to do if your
connection drops in the middle of EF queries or other execution com-
mands. SetPluralizationService exposes another new feature of EF6:
the ability to create custom pluralizations. I’ll explain more in a bit.

Th ere are a slew of other ways to aff ect the context with these
built-in dependency resolvers. Th e MSDN document, “IDbDepen-
dencyResolver Services” (bit.ly/13Aojso), lists all of the resolvers that
are available with DbConfi guration. Dependency resolution is also
used to help provider writers solve certain issues when they need to
inject rules and logic into how the context interacts with the provider.

Query and Command Interception I failed to mention
CustomDbConfi guration’s use of AddInterceptor. DbConfi guration
lets you do more than shove in IDbDependencyResolvers. Another
new feature of EF6 is the ability to intercept queries and commands.
When intercepting queries and commands, you now have access
to the generated SQL that’s about to be sent to the database and

public class Casino()
{
 //...other Casino properties & logic

 public Address PhysicalAddress { get; set; }
 public Address MailingAddress { get; set; }

 public class Address:ValueObject<Address>
 {
 protected Address(){ }
 public Address(string streetOrPoBox, string city,
 string state,string postalCode)
 { City = city;
 State = state;
 PostalCode = postalCode;
 StreetOrPoBox = streetOrPoBox; }

 public string StreetOrPoBox { get; private set; }
 public string City { get; private set; }
 public string State { get; private set; }
 public string PostalCode { get; private set; }
 }
}

Figure 3 My Casino Class with a Nested Address Type

www.bit.ly/Wi1rZA
www.bit.ly/13Aojso
www.bit.ly/QKtvCr

DevExpress .NET controls, frameworks and libraries were built with you in mind. Built for those who
demand the highest quality and expect the best performance… for those who require reliable tools
engineered to meet today’s needs and address tomorrow’s requirements.

Experience the DevExpress Difference today and download your free 30-day trial and
let’s build great apps, together.

Windows. Web. Mobile.
Your next great app starts here.

Learn more and download your free trial

devexpress.com/try
All trademarks or registered trademarks are property of their respective owners.

Untitled-1 1 11/8/13 10:45 AM

www.devexpress.com/try

msdn magazine28 Entity Framework 6

results that are coming back from those
commands. You can use this information to
log the SQL commands or even modify them
and tell EF to use the updated commands.
Although I enjoyed playing with this feature,
I’ll save some space by pointing you to Part 3
of Arthur Vickers’ three-part blog series on
it: “EF6 SQL Logging – Part 3: Interception
building blocks” (bit.ly/19om5du), which has
links back to Part 1 (“Simple Logging”) and
Part 2 (“Changing the content/formatting”).

Customize EF Pluralization Before
talking about the ability to customize EF
pluralization, I want to be sure you under-
stand its default behavior. EF uses its internal
pluralization service for three tasks:

1. In Database First, it ensures that entities have a singularized
name. So if your database table is named People, it will
become Person in the model.

2. In the EF Designer for Database or Model First, it creates
pluralized EntitySet names (the basis of DbSets) based
on the Entity name. For example, the service will be sure
that the EntitySet name for the Person entity is People. It
doesn’t just use the table name if you created the model
using Database First.

3. In Code First, where you explicitly name the DbSets, EF
uses the service to infer table names. If you’re starting with
a class named Person, convention will assume that your
database table is named People.

Th e service doesn’t work like spelling dictionaries, where you
can provide a textual list of custom spellings. Instead it uses inter-
nal rules. Aside from the occasional anomaly (I had fun with the
entity name Rhinoceros early on), the biggest problem with the
service is that the rules are based on English.

For EF6, Zorrilla created the IPluralizationService interface so
you can add your own logic. Once you’ve created a custom service,
you can plug it in with DbConfi guration as shown earlier.

Currently this customization will only work with the third case in
the previous list: when Code First is inferring the table names. As of the
initial EF6 release, the customization can’t be applied to the designer.

Th ere are two ways to use the service. You can start with a base
service—either the EnglishPluralizationService in EF or one that
someone else already built—and then override the Singularize or

Pluralize methods to add your own rules.
Additionally you can specify a pair of words
in a CustomPluralizationEntry class and
attach the class to an existing service. Zorrilla
demonstrates the CustomPluralizationEntry
in his blog post (bit.ly/161JrD6).

Look for a future Data Points column in
which I’ll show an example of adding rules
(not just word pairs) for pluralization, with
a demonstration of the eff ect on Code First
database mappings.

More Code First Goodies
Th ere are a handful of new features targeting Code
First that I haven’t covered yet—specifi cally, Code

First migrations. For reasons of space, I’ll highlight them here and follow
up with a more in-depth look in the January 2014 Data Points column:

• Ability to create migration scripts that can check to see
which have been run already so you can fi x up a database
from any migration point.

• More control over the Migrations_History table to account
for diff erent database providers.

• Ability to specify default schema for database mapping
instead of always defaulting to dbo.

• Ability of migrations to handle diff erent DbContexts that
target the same database.

• Ability of ModelBuilder to add multiple EntityTypeConfi g-
urations at once rather than using one line of code for each.

Go Get Ninja!
In my opinion, the most important thing to remember about EF6 is
that it adds great features to what already exists in EF. If you’re moving
projects from EF5 to EF6, you should be aware of some namespace
changes. Th e team has detailed guidance for making this move at
bit.ly/17eCB4U. Other than that, you should feel confi dent about using
EF6, which is now the current stable version of Entity Framework
that’s distributed through NuGet. Even if you don’t intend to use
any of the ninja features right away, remember that you’ll still ben-
efi t from increased performance as described earlier in this article.
I’m most excited about the ninja features, though, and grateful to
the developers from the community who’ve added to EF6 as well.

EF will continue to evolve. While the fi rst release of EF6 was
timed to coincide with the release of Visual Studio 2013, EF 6.1
and versions beyond that are already in the works. You can follow
their progress on the CodePlex site.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman and see
her Pluralsight courses at juliel.me/PS-Videos.

THANKS to the following technical expert for reviewing this article:
Rowan Miller (Microsoft)

Figure 4 Unlike EF5, EF6 Sees the
Nested Address Type and Includes
the Dependent Properties

public class CustomDbConfiguration : DbConfiguration
{
 public CustomDbConfiguration()
 {
 SetDefaultConnectionFactory(new LocalDbConnectionFactory("v11.0"));
 SetDatabaseInitializer
 (new MigrateDatabaseToLatestVersion<CasinoSlotsModel, Configuration>());
 //SetDatabaseInitializer(new MyInitializer());
 SetExecutionStrategy("System.Data.SqlClient",
 () => new SqlAzureExecutionStrategy());
 AddInterceptor(new NLogEfCommandInterceptor());
 SetPluralizationService(new CustomPluralizationService());
 }
}

Figure 5 Sample Confi guration Class

www.bit.ly/19om5du
www.bit.ly/161JrD6
www.bit.ly/17eCB4U
www.twitter.com/julielerman
http://juliel.me/PS-Videos

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicPDF.com

msdn magazine30

Cross-origin resource sharing (CORS) is a World Wide
Web Consortium (W3C) specification (commonly considered
part of HTML5) that lets JavaScript overcome the same-origin
policy security restriction imposed by browsers. Th e same-origin
policy means that your JavaScript can only make AJAX calls back
to the same origin of the containing Web page (where “origin” is
defi ned as the combination of host name, protocol and port num-
ber). For example, JavaScript on a Web page from http://foo.com
can’t make AJAX calls to http://bar.com (or to http://www.foo.com,
https://foo.com or http://foo.com:999, for that matter).

CORS relaxes this restriction by letting servers indicate which
origins are allowed to call them. CORS is enforced by browsers but
must be implemented on the server, and the most recent release
of ASP.NET Web API 2 has full CORS support. With Web API 2,
you can confi gure policy to allow JavaScript clients from a diff er-
ent origin to access your APIs.

CORS Basics
To use the new CORS features in Web API, it’s helpful to understand
the details of CORS itself, because the Web API implementation is true
to the specifi cation. Th ese details might seem pedantic now, but they’ll

be useful later to understand the available settings in Web API—and
when you’re debugging CORS they’ll help you fi x problems faster.

Th e general mechanics of CORS are such that when JavaScript
is attempting to make a cross-origin AJAX call the browser will
“ask” the server if this is allowed by sending headers in the HTTP
request (for example, Origin). Th e server indicates what’s allowed
by returning HTTP headers in the response (for example,
Access-Control-Allow-Origin). Th is permission check is done for
each distinct URL the client invokes, which means diff erent URLs
can have diff erent permissions.

In addition to the origin, CORS lets a server indicate which
HTTP methods are allowed, which HTTP request headers a client
can send, which HTTP response headers a client can read, and if
the browser is allowed to automatically send or receive credentials
(cookies or authorization headers). Additional request and response
headers indicate which of these features are allowed. Th ese headers
are summarized in Figure 1 (note that some of the features have
no header sent in the request—only the response).

Browsers can ask the server for these permissions in two diff erent
ways: simple CORS requests and prefl ight CORS requests.

Simple CORS Requests Here’s an example of a simple CORS request:
POST http://localhost/WebApiCorsServer/Resources/ HTTP/1.1
Host: localhost
Accept: */*
Origin: http://localhost:55912
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

value1=foo&value2=5

And the response:
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: http://localhost:55912
Content-Length: 27

{"Value1":"foo","Value2":5}

A S P. N E T WEB AP I

CORS Support in
ASP.NET Web API 2
Brock Allen

This article discusses:
• Understanding the details of cross-origin resource sharing (CORS)

• Using the basic CORS framework

• Different approaches to developing a dynamic CORS policy

• Techniques to debug failed cross-origin AJAX calls

Technologies discussed:
ASP.NET Web API 2, JavaScript

31December 2013msdnmagazine.com

Th e request is a cross-origin request from
http://localhost:55912 to http://localhost, and
the browser adds an Origin HTTP header in
the request to indicate the calling origin to the
server. The server responds with an Access-
Control-Allow-Origin response header indi-
cating that this origin is allowed. Th e browser
enforces the server’s policy, and the JavaScript
will receive its normal success callback.

Th e server can either respond with the exact
origin value from the request or a value of “*” indicating any origin
is allowed. If the server hadn’t allowed the calling origin, then the
Access-Control-Allow-Origin header would simply be absent and
the calling JavaScript’s error callback would be invoked.

Note that with a simple CORS request the call on the server is
still invoked. Th is can be surprising if you’re still learning about
CORS, but this behavior is no diff erent from a scenario where the
browser had constructed a <form> element and made a normal
POST request. CORS doesn’t prevent the call from being invoked
on the server; rather, it prevents the calling JavaScript from
receiving the results. If you want to prevent the caller from invoking
the server, then you’d implement some sort of authorization in
your server code (possibly with the [Authorize] authorization
fi lter attribute).

The preceding example is known as a simple CORS request
because the type of AJAX call from the client was either a GET or
a POST; the Content-Type was one of application/x-www-form-
urlencoded, multipart/form-data, or text/plain; and there were
no additional request headers sent. If the AJAX call was another
HTTP method, the Content-Type was some other value or the
client wanted to send additional request headers, then the request
would be considered a prefl ight request. Th e mechanics of prefl ight
requests are slightly diff erent.

Prefl ight CORS Requests If an AJAX call isn’t a simple request,
then it requires a prefl ight CORS request, which is simply an addi-
tional HTTP request to the server to obtain permission. Th is prefl ight
request is made automatically by the browser and uses the OPTIONS
HTTP method. If the server responds successfully to the prefl ight
request and grants permission, then the browser will perform the
actual AJAX call the JavaScript is attempting to make.

If performance is a concern (and when isn’t it?), then the outcome
of this prefl ight request can be cached by the browser by including
the Access-Control-Max-Age header in the prefl ight response. Th e
value contains the number of seconds for which the permissions
can be cached.

Here’s an example of a prefl ight CORS request:
OPTIONS http://localhost/WebApiCorsServer/Resources/1 HTTP/1.1
Host: localhost
Access-Control-Request-Method: PUT
Origin: http://localhost:55912
Access-Control-Request-Headers: content-type
Accept: */*

And the prefl ight response:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://localhost:55912
Access-Control-Allow-Methods: PUT
Access-Control-Allow-Headers: content-type
Access-Control-Max-Age: 600

Here’s the actual AJAX request:
PUT http://localhost/WebApiCorsServer/Resources/1 HTTP/1.1
Host: localhost
Content-Length: 27
Accept: application/json, text/javascript, */*; q=0.01
Origin: http://localhost:55912
Content-Type: application/json

{"value1":"foo","value2":5}

And the AJAX response:
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: http://localhost:55912
Content-Length: 27

{"Value1":"foo","Value2":5}

Notice in this example a preflight CORS request is triggered
because the HTTP method is PUT and the client needs to send
the Content-Type header to indicate that the request contains
application/json. In the prefl ight request (in addition to Origin) the
Access-Control-Request-Method and Access-Control-Request-Headers
request headers are used to ask for permission for the type of HTTP
method and the additional header the client wishes to send.

Th e server granted permission (and set a prefl ight cache duration)
and then the browser allowed the actual AJAX call. If the server
didn’t grant permission to any of the requested features, then the
corresponding response header would’ve been absent, the AJAX
call wouldn’t have been made and the JavaScript error callback
would’ve been invoked instead.

Th e preceding HTTP requests and responses were made using
Firefox. If you were to use Internet Explorer, then you’d notice
an additional Accept header being requested. If you were to use
Chrome, you’d see both Accept and Origin additionally requested.
Interestingly, you won’t see Accept or Origin in the Access-Control-
Allow-Headers, as the specifi cation says they’re implied and can
be omitted (which Web API does). It’s a point of debate if Origin
and Accept actually need to be requested, but given how these
browsers work today, your Web API CORS policy will most likely
need to include them. It’s unfortunate that browser vendors don’t
seem to be consistent in their reading of the specifi cation.

Permission/Feature Request Header Response Header
Origin Origin Access-Control-Allow-Origin
HTTP method Access-Control-Request-Method Access-Control-Allow-Method
Request headers Access-Control-Request-Headers Access-Control-Allow-Headers
Response headers Access-Control-Expose-Headers
Credentials Access-Control-Allow-Credentials
Cache prefl ight response Access-Control-Max-Age

Figure 1 CORS HTTP Headers

With Web API 2, you can
confi gure policy to allow

JavaScript clients from a different
origin to access your APIs.

www.msdnmagazine.com

msdn magazine32 ASP.NET Web API

Response Headers It’s easy to give a client permission to access
response headers using the Access-Control-Expose-Headers
response header. Here’s an example of an HTTP response that allows
the calling JavaScript to access the custom response header “bar”:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Access-Control-Allow-Origin: http://localhost:55912
Access-Control-Expose-Headers: bar
bar: a bar value
Content-Length: 27

{"Value1":"foo","Value2":5}

The JavaScript client can simply use the XMLHttpRequest
getResponseHeader function to read the value. Here’s an example
using jQuery:

$.ajax({
 url: "http://localhost/WebApiCorsServer/Resources/1",
 // other settings omitted
}).done(function (data, status, xhr) {
 var bar = xhr.getResponseHeader("bar");
 alert(bar);
});

Credentials and Authentication Possibly the most confusing
aspect of CORS has to do with credentials and authentication.
Generally, authentication with Web APIs can be done either with
a cookie or with an Authorization header (there are other ways,
but these two are the most common). In normal browser activity, if
one of these has been previously established, then the browser will
implicitly pass these values to the server on subsequent requests.
With cross-origin AJAX, though, this implicit passing of the values
must be explicitly requested in JavaScript (via the withCredentials
fl ag on the XMLHttpRequest) and must be explicitly allowed in
the server’s CORS policy (via the Access-Control-Allow-Credentials
response header).

Here’s an example of a JavaScript client setting the withCredentials
fl ag with jQuery:

$.ajax({
 url: "http://localhost/WebApiCorsServer/Resources/1",
 xhrFields: {
 withCredentials: true
 }
 // Other settings omitted
});

Th e withCredentials fl ag does two things: If the server issues
a cookie, the browser can accept it; if the browser has a cookie, it
can send it to the server.

Here’s an example of the HTTP response allowing credentials:
HTTP/1.1 200 OK
Set-Cookie: foo=1379020091825
Access-Control-Allow-Origin: http://localhost:55912
Access-Control-Allow-Credentials: true

Th e Access-Control-Allow-Credentials response header does two
things: If the response has a cookie, the browser can accept it; and if the
browser sent a cookie on the request, the JavaScript client can receive
the results of the call. In other words, if the client sets withCredentials,

then the client will only see a success callback in the JavaScript if
the server (in the response) allows credentials. If withCredentials
was set and the server doesn’t allow credentials, the client won’t get
access to the results and the client error callback will be invoked.

Th e same set of rules and behaviors apply if the Authorization
header is used instead of cookies (for example, when using Basic
or Integrated Windows authentication). An interesting note
about using credentials and the Authorization header: Th e server
doesn’t have to explicitly grant the Authorization header in the
Access-Control-Allow-Headers CORS response header.

Note that with the Access-Control-Allow-Credentials CORS
response header, if the server issues this header, then the wildcard
value of “*” can’t be used for Access-Control-Allow-Origin. Instead
the CORS specifi cation requires the explicit origin to be used. Th e
Web API framework handles all of this for you, but I mention it
here because you might notice this behavior while debugging.

Th ere’s an interesting twist to this discussion of credentials and
authentication. Th e description up to this point has been for the sce-
nario where the browser is implicitly sending credentials. It’s possible
for a JavaScript client to explicitly send credentials (again, typically
via the Authorization header). If this is the case, then none of the
aforementioned rules or behaviors related to credentials applies.

For this scenario, the client would explicitly set the Authorization
header on the request and wouldn’t need to set withCredentials
on the XMLHttpRequest. Th is header would trigger a prefl ight
request and the server would need to allow the Authorization
header with the Access-Control-Allow-Headers CORS response
header. Also, the server wouldn’t need to issue the Access-Control-
Allow-Credentials CORS response header.

public class ResourcesController : ApiController
{
 [EnableCors("http://localhost:55912", // Origin
 null, // Request headers
 "GET", // HTTP methods
 "bar", // Response headers
 SupportsCredentials=true // Allow credentials
)]
 public HttpResponseMessage Get(int id)
 {
 var resp = Request.CreateResponse(HttpStatusCode.NoContent);
 resp.Headers.Add("bar", "a bar value");
 return resp;
 }

 [EnableCors("http://localhost:55912", // Origin
 "Accept, Origin, Content-Type", // Request headers
 "PUT", // HTTP methods
 PreflightMaxAge=600 // Preflight cache duration
)]
 public HttpResponseMessage Put(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 [EnableCors("http://localhost:55912", // Origin
 "Accept, Origin, Content-Type", // Request headers
 "POST", // HTTP methods
 PreflightMaxAge=600 // Preflight cache duration
)]
 public HttpResponseMessage Post(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }
}

Figure 2 Applying the EnableCors Attribute to Action Methods

Possibly the most confusing
aspect of CORS has to do with
credentials and authentication.

Untitled-5 1 9/25/13 12:03 PM

www.componentsource.com/products/gdpicture-net/

msdn magazine34 ASP.NET Web API

Here’s what that client code would look like to explicitly set the
Authorization header:

$.ajax({
 url: "http://localhost/WebApiCorsServer/Resources/1",
 headers: {
 "Authorization": "Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3Mi..."
 }
 // Other settings omitted
});

Here’s the prefl ight request:
OPTIONS http://localhost/WebApiCorsServer/Resources/1 HTTP/1.1
Host: localhost
Access-Control-Request-Method: GET
Origin: http://localhost:55912
Access-Control-Request-Headers: authorization
Accept: */*

Here’s the prefl ight response:
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: authorization

Explicitly setting a token value in the Authorization header is a safer
approach to authentication because you avoid the possibility of cross-
site request forgery (CSRF) attacks. You can see this approach in the
new Single-Page Application (SPA) templates in Visual Studio 2013.

Now that you’ve seen the basics of CORS at the HTTP level,
I’ll show you how to use the new CORS framework to emit these
headers from Web API.

CORS Support in Web API 2
Th e CORS support in Web API is a full framework for allowing an
application to defi ne the permissions for CORS requests. Th e frame-
work revolves around the concept of a policy that lets you specify the
CORS features to be allowed for any given request into the application.

First, in order to get the CORS framework, you must reference
the CORS libraries from your Web API application (they’re not
referenced by default from any of the Web API templates in Visual
Studio 2013). Th e Web API CORS framework is available via NuGet
as the Microsoft .AspNet.WebApi.Cors package. If you’re not using
NuGet, it’s also available as part of Visual Studio 2013, and you’ll
need to reference two assemblies: System.Web.Http.Cors.dll and
System.Web.Cors.dll (on my machine these are located in C:\Program
Files (x86)\Microsoft ASP.NET\ASP.NET Web Stack 5\Packages).

Next, to express the policy, Web API provides a custom attribute
class called EnableCorsAttribute. Th is class contains properties for

the allowed origins, HTTP methods, request headers, response
headers and whether credentials are allowed (which model all of
the details of the CORS specifi cation discussed earlier).

Finally, in order for the Web API CORS framework to process
CORS requests and emit the appropriate CORS response headers,
it must look at every request into the application. Web API has
an extensibility point for such interception via message handlers.
Appropriately, the Web API CORS framework implements a
message handler called CorsMessageHandler. For CORS requests,
it will consult the policy expressed in the attribute for the method
being invoked and emit the appropriate CORS response headers.

EnableCorsAttribute Th e EnableCorsAttribute class is how an
application can express its CORS policy. Th e EnableCorsAttribute
class has an overloaded constructor that can accept either three or
four parameters. Th e parameters (in order) are:

1. List of origins allowed
2. List of request headers allowed
3. List of HTTP methods allowed
4. List of response headers allowed (optional)

There’s also a property for allowing credentials (Supports-
Credentials) and another for specifying the prefl ight cache duration
value (Prefl ightMaxAge).

Figure 2 shows an example of applying the EnableCors attribute
to individual methods on a controller. Th e values being used for
the various CORS policy settings should match the CORS requests
and responses that were shown in the prior examples.

Notice each of the constructor parameters is a string. Multiple
values are indicated by specifying a comma-separated list (as is
specifi ed for the allowed request headers in Figure 2). If you wish
to allow all origins, request headers or HTTP methods, you can use
a “*” as the value (you must still be explicit for response headers).

In addition to applying the EnableCors attribute at the method
level, you can also apply it at the class level or globally to the appli-
cation. Th e level at which the attribute is applied confi gures CORS
for all requests at that level and below in your Web API code. So, for
example, if applied at the method level, the policy will only apply
to requests for that action, whereas if applied at the class level, the
policy will be for all requests to that controller. Finally, if applied
globally, the policy will be for all requests.

Following is another example of applying the attribute at the
class level. Th e settings used in this example are quite permissive
because the wildcard is used for the allowed origins, request headers
and HTTP methods:

[EnableCors("*", "*", "*")]
public class ResourcesController : ApiController
{
 public HttpResponseMessage Put(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 public HttpResponseMessage Post(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }
}

If there’s a policy at multiple locations, the “closest” attribute
is used and the others are ignored (so the precedence is method,
then class, then global). If you’ve applied the policy at a higher level

[EnableCors("*", "*", "PUT, POST")]
public class ResourcesController : ApiController
{
 public HttpResponseMessage Put(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 public HttpResponseMessage Post(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 // CORS not allowed because DELETE is not in the method list above
 public HttpResponseMessage Delete(int id)
 {
 return Request.CreateResponse(HttpStatusCode.NoContent);
 }
}

Figure 3 Using Explicit Values for HTTP Methods

(888) 850-9911
Sales Hotline - US & Canada:

/update/2013/12

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2013 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, Project plans, emails, barcodes, OCR, and document
management in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fl y and extracting text from PDF fi les

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

GdPicture.NET from $4,600.56
All-in-one AnyCPU document-imaging and PDF toolkit for .NET and ActiveX.

• Document viewing, processing, printing, scanning, OMR, OCR, Barcode Recognition

• Annotate image and PDF within your Windows & Web applications

• Read, write and convert vector & raster images in more than 90 formats, including PDF

• Color detection engine for image and PDF compression

• 100% royalty-free and world leading Imaging SDK

NEW VERSION

BEST SELLER ComponentOne Studio Enterprise 2013 v2 from $1,315.60
.NET Tools for the Professional Developer: Windows, HTML5/Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• Visual Studio 2013 and Windows 8.1 support

• 40+ UI widgets built with HTML5, jQuery, CSS3, and SVG

• New TouchToolkit for touch enabling WinForms apps

• Royalty-free deployment and distribution

BEST SELLER

Untitled-5 1 10/28/13 4:14 PM

http://www.componentsource.com

msdn magazine36 ASP.NET Web API

but then wish to exclude a request at a lower level, you can use
another attribute class called DisableCorsAttribute. Th is attribute,
in essence, is a policy with no permissions allowed.

If you have other methods on the controller where you don’t
want to allow CORS, you can use one of two options. First, you
can be explicit in the HTTP method list, as shown in Figure 3. Or
you can leave the wildcard, but exclude the Delete method with
the DisableCors attribute, as shown in Figure 4.

CorsMessageHandler The CorsMessageHandler must be
enabled for the CORS framework to perform its job of intercepting
requests to evaluate the CORS policy and emit the CORS response
headers. Enabling the message handler is typically done in
the application’s Web API configuration class by invoking the
EnableCors extension method:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 // Other configuration omitted

 config.EnableCors();
 }
}

If you wish to provide a global CORS policy, you can pass an
instance of the EnableCorsAttribute class as a parameter to the
EnableCors method. For example, the following code would con-
fi gure a permissive CORS policy globally within the application:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 // Other configuration omitted

 config.EnableCors(new EnableCorsAttribute("*", "*", "*"));
 }
}

As with any message handler, the CorsMessageHandler can
alternatively be registered per-route rather than globally.

So that’s it for the basic, “out of the box” CORS framework in
ASP.NET Web API 2. One nice thing about the framework is that
it’s extensible for more dynamic scenarios, which I’ll look at next.

Customizing Policy
It should be obvious from the earlier examples that the list of origins
(if the wildcard isn’t being used) is a static list compiled into the Web
API code. While this might work during development or for specifi c
scenarios, it isn’t suffi cient if the list of origins (or other permissions)
needs to be determined dynamically (say, from a database).

Fortunately, the CORS framework in Web API is extensible
such that supporting a dynamic list of origins is easy. In fact, the
framework is so fl exible that there are two general approaches for
customizing the generation of policy.

Custom CORS Policy Attribute One approach to enable a
dynamic CORS policy is to develop a custom attribute class that
can generate the policy from some data source. This custom
attribute class can be used instead of the EnableCorsAttribute class
provided by Web API. Th is approach is simple and retains the fi ne-
grained feel of being able to apply an attribute on specifi c classes
and methods (and not apply it on others), as needed.

To implement this approach, you simply build a custom attri-
bute similar to the existing EnableCorsAttribute class. Th e main

focus is the ICorsPolicyProvider interface, which is responsible
for creating an instance of a CorsPolicy for any given request.
Figure 5 contains an example.

Th e CorsPolicy class has all the properties to express the CORS
permissions to grant. Th e values used here are just an example, but
presumably they could be populated dynamically from a database
query (or from any other source).

Custom Policy Provider Factory Th e second general approach
to building a dynamic CORS policy is to create a custom policy
provider factory. Th is is the piece of the CORS framework that
obtains the policy provider for the current request. Th e default
implementation from Web API uses the custom attributes to
discover the policy provider (as you saw earlier, the attribute class

[EnableCors("*", "*", "*")]
public class ResourcesController : ApiController
{
 public HttpResponseMessage Put(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 public HttpResponseMessage Post(Resource data)
 {
 return Request.CreateResponse(HttpStatusCode.OK, data);
 }

 // CORS not allowed because of the [DisableCors] attribute
 [DisableCors]
 public HttpResponseMessage Delete(int id)
 {
 return Request.CreateResponse(HttpStatusCode.NoContent);
 }
}

Figure 4 Using the DisableCors Attribute

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
 AllowMultiple = false)]
public class EnableCorsForPaidCustomersAttribute :
 Attribute, ICorsPolicyProvider
{
 public async Task<CorsPolicy> GetCorsPolicyAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 var corsRequestContext = request.GetCorsRequestContext();
 var originRequested = corsRequestContext.Origin;
 if (await IsOriginFromAPaidCustomer(originRequested))
 {
 // Grant CORS request
 var policy = new CorsPolicy
 {
 AllowAnyHeader = true,
 AllowAnyMethod = true,
 };
 policy.Origins.Add(originRequested);
 return policy;
 }
 else
 {
 // Reject CORS request
 return null;
 }
 }

 private async Task<bool> IsOriginFromAPaidCustomer(
 string originRequested)
 {
 // Do database look up here to determine if origin should be allowed
 return true;
 }
}

Figure 5 A Custom CORS Policy Attribute

Untitled-1 1 10/7/13 11:07 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=2886

msdn magazine38 ASP.NET Web API

itself was the policy provider). This is another pluggable piece
of the CORS framework, and you’d implement your own policy
provider factory if you wanted to use an approach for policy other
than custom attributes.

The attribute-based approach described earlier provides an
implicit association from a request to a policy. A custom policy
provider factory approach is diff erent from the attribute approach
because it requires your implementation to provide the logic
to match the incoming request to a policy. This approach is
more coarse-grained, as it’s essentially a centralized approach for
obtaining a CORS policy.

Figure 6 shows an example of what a custom policy provider
factory might look like. The main focus in this example is the

implementation of the ICorsPolicyProviderFactory interface and
its GetCorsPolicyProvider method.

Th e main diff erence in this approach is that it’s entirely up to
the implementation to determine the policy from the incoming
request. In Figure 6, the controller and origin could be used to
query a database for the policy values. Again, this approach is the
most fl exible, but it potentially requires more work to determine
the policy from the request.

To use the custom policy provider factory, you must register it
with Web API via the SetCorsPolicyProviderFactory extension
method in the Web API confi guration:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 // Other configuration omitted

 config.EnableCors();
 config.SetCorsPolicyProviderFactory(
 new DynamicPolicyProviderFactory());
 }
}

Debugging CORS
A few techniques come to mind to debug CORS if (and when) your
cross-origin AJAX calls aren’t working.

Client Side One approach to debugging is to simply use your
HTTP debugger of choice (for example, Fiddler) and inspect all
HTTP requests. Armed with the knowledge gleaned earlier about
the details of the CORS specification, you can usually sort out
why a particular AJAX request isn’t being granted permission by
inspecting the CORS HTTP headers (or lack thereof).

Another approach is to use your browser’s F12 developer tools.
Th e console window in modern browsers provides a useful error
message when an AJAX calls fails due to CORS.

Server Side Th e CORS framework itself provides detailed trace
messages using the tracing facilities of Web API. As long as an
ITraceWriter is registered with Web API, the CORS framework
will emit messages with information about the policy provider
selected, the policy used, and the CORS HTTP headers emitted.
For more information on Web API tracing, consult the Web API
documentation on MSDN.

A Highly Requested Feature
CORS has been a highly requested feature for some time now,
and fi nally it’s built in to Web API. Th is article focuses heavily on
the details of CORS itself, but that knowledge is crucial in imple-
menting and debugging CORS. Armed with this knowledge, you
should be able to easily utilize the CORS support in Web API to
allow cross-origin calls in your applications.

BROCK ALLEN is a consultant specializing in the Microsoft .NET Framework, Web
development and Web-based security. He’s also an instructor for the training company
DevelopMentor, associate consultant for thinktecture GmbH & Co. KG, a contributor
to thinktecture open source projects and a contributor to the ASP.NET platform. You
can reach him at his Web site, brockallen.com, or e-mail him at brockallen@gmail.com.

THANKS to the following technical expert for reviewing this article:
Yao Huan Lin (Microsoft)

public class DynamicPolicyProviderFactory : ICorsPolicyProviderFactory
{
 public ICorsPolicyProvider GetCorsPolicyProvider(
 HttpRequestMessage request)
 {
 var route = request.GetRouteData();
 var controller = (string)route.Values["controller"];
 var corsRequestContext = request.GetCorsRequestContext();
 var originRequested = corsRequestContext.Origin;

 var policy = GetPolicyForControllerAndOrigin(
 controller, originRequested);
 return new CustomPolicyProvider(policy);
 }

 private CorsPolicy GetPolicyForControllerAndOrigin(
 string controller, string originRequested)
 {
 // Do database lookup to determine if the controller is allowed for
 // the origin and create CorsPolicy if it is (otherwise return null)
 var policy = new CorsPolicy();
 policy.Origins.Add(originRequested);
 policy.Methods.Add("GET");
 return policy;
 }
}

public class CustomPolicyProvider : ICorsPolicyProvider
{
 CorsPolicy policy;
 public CustomPolicyProvider(CorsPolicy policy)
 {
 this.policy = policy;
 }

 public Task<CorsPolicy> GetCorsPolicyAsync(
 HttpRequestMessage request, CancellationToken cancellationToken)
 {
 return Task.FromResult(this.policy);
 }
}

Figure 6 A Custom Policy Provider Factory

ASP.NET Web API is an open source framework and is part of a
larger set of open source frameworks collectively called the ASP.NET
Web Stack, which also includes MVC, Web Pages and others.

These frameworks are used to build the ASP.NET platform and
are curated by the ASP.NET team at Microsoft. As curator of an
open source platform, the ASP.NET team welcomes community
contributions, and the cross-origin resource sharing (CORS)
implementation in Web API is one such contribution.

It was originally developed by Brock Allen as part of the
thinktecture IdentityModel security library (thinktecture.github.io).

Community Contributions in Action

mailto:brockallen@gmail.com
http://thinktecture.github.io
www.brockallen.com

Untitled-1 1 10/7/13 11:07 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=2885

msdn magazine40

Web-based solutions have become popular in the past
few years because they provide easy access to users all around the
world. Users also like them because of their convenience. Users
don’t need to install a separate application; with browsers alone
they can connect to their accounts from any device connected to
the Internet. However, for both soft ware developers and testers, the
fact that a user can choose any Web browser presents a problem—
you must test a solution against multiple browsers. In this article,
I’ll demonstrate how this problem might be resolved in a simple
way by creating coded UI test cases that will execute against any
modern browser, using only C#.

The New Visual Studio
A few years ago, when Visual Studio 2010 was released, one of its
most interesting features was the ability to test the UI of Web-based
solutions. However, at the time, there were some limitations of using
this technology; for example, the only Web browser supported was
Internet Explorer. Moreover, testing the UI relied on recording user
actions on the Web site and then replaying them to simulate real user
actions, which many developers found unacceptable.

Th e new Visual Studio 2013, available as a release candidate (RC),
brings a host of improvements in many diff erent areas, ranging
from new IDE features to an extended test framework (a long list
of changes in the RC version is available at bit.ly/1bBryTZ). From my
perspective, two new features are particularly interesting. First, you
can now test the UI of not only Internet Explorer (including Internet
Explorer 11) but also all other modern browsers, such as Google
Chrome and Mozilla Firefox. Second, and even more crucial from a
test development point of view, is what Microsoft calls “confi gurable
properties for coded UI tests on the browser.” Basically, this new
functionality defines a set of search criteria for UI elements. I’ll
describe these features in more detail later in this article.

System Under Test
Th ose two new features are what I’ll use to create cross-browser, fully
coded UI tests. For my system under test (SUT), I want a public,
well-known, Web-based application, so I chose Facebook. I want to
cover two basic user scenarios. Th e fi rst scenario is a positive test case
that will display a profi le page aft er successful login. Th e second is a

V IS UA L ST UD IO 20 1 3

Cross-Browser,
Coded UI Testing with
Visual Studio 2013
Damian Zapart

This article uses Visual Studio 2013 Release Candidate. Information
is subject to change.

This article discusses:
• New testing features in Visual Studio 2013

• Creating a new Coded UI Project

• Finding and extracting HTML controls from a Web page

• Working with multiple browsers

• Testing a user scenario

Technologies discussed:
Visual Studio 2013, C#

Code download available at:
archive.msdn.microsoft.com/mag201312Testing

http://archive.msdn.microsoft.com/mag201312Testing
www.bit.ly/1bBryTZ

41December 2013msdnmagazine.com

negative test case in which I enter invalid user credentials and try to
log in. In this case, I expect some error message in the user response.

Th ere are a few challenges I’ll need to resolve. First, the correct
browser needs to be launched (based on the test confi guration), and it
must be able to provide access to a specifi c URL. Second, during run
time, a specifi c control element must be extracted from the HTML
document to provide input for the simulated user. Wherever needed,
values must be entered for the control and the correct buttons clicked
to submit an HTML form to the server. Th e code should also be able
to handle a response from the server, validate it and, fi nally, close the
browser when the test cases are fi nished (in the test’s cleanup method).

Before Coding
Before I start coding I need to prepare my environment, which is
pretty straightforward. First I need to download Visual Studio 2013
RC from bit.ly/137Sg3U. By default, Visual Studio 2013 RC lets you
create coded UI tests just for Internet Explorer, but that’s not what
I’m interested in; I want to create tests for all modern browsers. Of
course, there will be no compilation errors as long as I indicate in

my code that the tests should run
against browsers other than Internet
Explorer, but an unhandled excep-
tion will be thrown during run time.
Later on I’ll show how to change the
browser as well. To avoid problems
during coding, I need to download
and install a Visual Studio extension
called “Selenium components for
Coded UI Cross-Browser Testing”
(bit.ly/Sd7Pgw), which will let me exe-
cute tests on any browser installed
on my machine.

Jump into the Code
With everything in place I can
now demonstrate how to create
a new Coded UI Project. Open
Visual Studio 2013 and click on

File | New Project | Templates | Visual C# | Tests | Coded UI Test
Project. Enter the project name and press OK to see the new solution,
as shown in Figure 1.

Th e solution is essentially divided into three strongly connected
groups, as shown in Figure 2. The first group contains a Pages
namespace, which includes the BasePage class, from which
Profi lePage and LoginPage derive. Th ese classes expose properties
and logic for operating on the page currently displayed in the
browser. Such an approach helps split the test case implementations
from browser-specifi c operations such as searching for a control by
Id. Th e test cases operate directly on the properties and functions
exposed by the page classes.

In the second group I put all extensions (UIControlExtensions),
selectors (SearchSelector) and browser-related common classes
(BrowserFactory, Browser). This subset of objects stores the
implementation logic of the HTML elements search engine (which
I’ll describe shortly). I also added my own browser-related objects,
which help in running test cases against the correct Web browser.
Th e last group contains the test fi le (FacebookUITests) with the

implementations of the test cases.
Th ose test cases never operate on
the browser directly; instead, they
use the panel classes.

An important part of my proj-
ect is the HTML controls search
engine, so my fi rst step is to create
a static class called UIControl-
Extensions, which contains the
implementation logic for fi nding
and extracting specific controls
from the currently opened Web
browser page. To make the coding
easier—and to be able to reuse it
later in the project—I don’t want to
have to initialize instances of this
class every time I need to use it, so

Figure 1 Creating a New Coded UI Test Project

Figure 2 Coded UI Test Solution Diagram

FacebookCodedUITestProject.dll

FacebookCodedUITestProject

BrowserFactory

Browser

FacebookUITests SearchSelector

UIControlExtensions

FindById FindFirstByCssClass

FindAllTypeText

FacebookCodedUITestProject.Pages

ProfilePage LoginPage

BasePage

www.bit.ly/137Sg3U
www.bit.ly/Sd7Pgw
www.msdnmagazine.com

msdn magazine42 Visual Studio 2013

later be transformed, using refl ection, to the PropertyExpression-
Collection class (bit.ly/18lvmnd). Next, that property collection can
be used as a fi lter to extract just the small subset of HTML controls
that match the given criteria. Later, the generated property collection
is assigned to the SearchProperties property (bit.ly/16C20iS) of
the generic object, which lets it call the Exists property and
FindMatchingControls function. Keep in mind that Coded UI
Test Framework algorithms won’t search for specifi c controls on
the whole page by default, and will process all children and sub-
children only on the extended UITestControl. Th is helps improve
the performance of the test cases because search criteria can be
applied to just a small subset of the HTML document; for example,
to all children of some DIV container, as shown in Figure 3.

I’ve implemented the core of the search control engine, but the
function FindAll<T> requires a lot of code and knowledge to get
it working properly—you have to specify the search parameters,
check whether an item exists, and so on. Th at’s why I decided to
make it private and expose two other functions instead:

public static T FindById<T>(this UITestControl control, string
controlId) where T : HtmlControl, new()
public static T FindFirstByCssClass<T>(this UITestControl control,
string className, bool contains = true) where T : HtmlControl, new()

private static ReadOnlyCollection<T> FindAll<T>(this UITestControl
control, SearchSelector selectorDefinition) where T : HtmlControl, new()
{
 var result = new List<T>();
 T selectorElement = new T { Container = control };
 selectorElement.SearchProperties.AddRange(
 selectorDefinition.ToPropertyCollection());

 if (!selectorElement.Exists)
 {
 Trace.WriteLine(string.Format(
 "Html {0} element doesn't exist for given selector {1}.",
 typeof(T).Name, selectorDefinition),"UI CodedTest");
 return result.AsReadOnly();
 }

 return selectorElement
 .FindMatchingControls()
 .Select(c => (T)c).ToList().AsReadOnly();
 }
}

Figure 3 Searching for HTML Controls

public static T Launch<T>(
 Browser browser = Browser.IE,
 bool clearCookies = true,
 bool maximized = true)
 where T : BasePage, new()
{
 T page = new T();

 var url = page.PageUrl;
 if (url == null)
 {
 throw new InvalidOperationException("Unable to find URL for requested page.");
 }

 var pathToBrowserExe = FacebookCodedUITestProject
 .BrowserFactory.GetBrowserExePath(browser);

 // Setting the currect browser for the test.
 BrowserWindow.CurrentBrowser = GetBrowser(browser);
 var window = BrowserWindow.Launch(page.ConstructUrl());
 page.BrowserWindow = window;

 if (window == null)
 {
 var errorMessage = string.Format(
 "Unable to run browser under the path: {0}", pathToBrowserExe);
 throw new InvalidOperationException(errorMessage);
 }

 page.Body = (window.CurrentDocumentWindow.GetChildren()[0] as
 UITestControl) as HtmlControl;

 if (clearCookies)
 {
 BrowserWindow.ClearCookies();
 }

 window.Maximized = maximized;

 if (!page.IsValidPageDisplayed())
 {
 throw new InvalidOperationException("Invalid page is displayed.");
 }

 return page;
}
 }

Figure 5 The Launch Function

I’m going to implement it as an extension method that will extend the
built-in UITestControl type. Additionally, any extension functions
I implement will be generic. Th ey must derive from HtmlControl
(the base class for all UI controls in the Coded UI Test Framework)
and must contain a default parameter-less constructor. I want this
function to be generic because I intend to search only for specifi c
control types (see the list of available HTML types at bit.ly/1aiB5eW).

I’ll pass search criteria to my function via the selectorDefi nition
parameter, of SearchSelector type. The SearchSelector class is a
simple type, but it’s still very useful. It exposes a number of proper-
ties, such as ID or Class, which can be set from another function and

public abstract class BasePage : UITestControl
{
 protected const string BaseURL = "https://www.facebook.com/";

 /// <summary>
 /// Gets URL address of the current page.
 /// </summary>
 public Uri PageUrl{get; protected set;}

 /// <summary>
 /// Store the root control for the page.
 /// </summary>
 protected UITestControl Body;

 /// <summary>
 /// Gets current browser window.
 /// </summary>
 protected BrowserWindow BrowserWindow { get; set; }

 /// <summary>
 /// Default constructor.
 /// </summary>
 public BasePage()
 {
 this.ConstructUrl();
 }
 /// <summary>
 /// Builds derived page URL based on the BaseURL and specific page URL.
 /// </summary>
 /// <returns>A specific URL for the page.</returns>
 protected abstract Uri ConstructUrl();

 /// <summary>
 /// Verifies derived page is displayed correctly.
 /// </summary>
 /// <returns>True if validation conditions passed.</returns>
 public abstract bool IsValidPageDisplayed();
}

Figure 4 The BasePage Class

www.bit.ly/1aiB5eW
www.bit.ly/18lvmnd
www.bit.ly/16C20iS

43December 2013msdnmagazine.com

Th ese generic methods are much more useful because they’re
“single purpose” and reduce varying dimensions of expected
input to simple types. Under the hood, both functions call the
FindAll<T> function and operate on its result, but the implemen-
tation is hidden inside their bodies.

Working with Any Browser
I’ve already put some eff ort into fi nding and retrieving controls,
but to test whether my functions are implemented correctly I
need to get a Web browser working, which means it needs to be
launched. Launching a particular browser is as easy as any other
browser-related operation. As I mentioned earlier, I want to place
all browser-related operations inside page-related classes. However,
launching the browser is not a part of testing—it’s a prerequisite.
Motivated by soft ware development best practices, I decided to
create a BasePage class, shown in Figure 4, to store common
operations for all derived page classes (including launching a
browser) without any redundancy.

Th e static, generic Launch<T> function is also a part of the Base-
Page class. Inside the function body, a new instance of the specifi c page
type (derived from BasePage) is initialized based on the parameter-
less default constructor. Later in the code, the target Web browser
is set based on the value of the browser parameter (“ie” for Internet
Explorer, “chrome” for Google Chrome and so on). Th is assignment
specifi es the browser against which the current test will be executed.
Th e next step is to navigate to some URL in the selected browser.
Th is is handled by BrowserWindow.Launch(page.ConstructUrl()),
where the ConstructUrl function is a specific function for each
derived page. Aft er launching the browser window and navigating
to the specifi c URL, I store the HTML body inside the BasePage
property and optionally maximize the browser window (this is
desirable because the page controls might overlap and automated UI
actions could fail). I then clear the cookies, because each test should
be independent. Finally, in the Launch function shown in Figure 5,
I want to check whether the currently displayed page is the correct
one, so I call IsValidPageDisplayed, which will execute in the context
of the generic page. Th is function
fi nds all required HTML controls
(login, password, submit button)
and validates they exist on the page.

Web browsers evolve continu-
ously and you may not realize
when this happens. Sometimes this
means certain features aren’t avail-
able in the new browser version,
which in turn causes some tests to
fail, even if they were passed previ-
ously. Th at’s why it’s important to
disable automatic browser updates
and wait until the new version is
supported by the Selenium compo-
nents for Coded UI Cross-Browser
Testing. Otherwise, unexpected
exceptions might occur during run
time, as shown in Figure 6.

Testing, Testing, Testing
Finally, I’ll write some logic for my tests. As I mentioned earlier, I want
to test two basic user scenarios. Th e fi rst is a positive login process (a
second negative test case is available in the project source code, which
you can fi nd at archive.msdn.microsoft.com/mag201312Testing). To get this
test running, I must create a specifi c page class that derives from the
BasePage, as shown in Figure 7. Inside my new class, in private fi elds,
I place all the constant values (controls, Ids and CSS class names) and
create dedicated methods that use those constants to extract specifi c
UI elements from the current page. I also create a function called
TypeCredentialAndClickLogin(string login, string password) that
fully encapsulates the login operation. At run time, it fi nds all required
controls, simulates the typing in of values passed as parameters, and
then presses the Login button by clicking the left mouse button.

Aft er I create the required components, I can build a test case.
Th is test function will validate that the login operation completes
successfully. At the beginning of the test case, I launch the Login
page using the Launch<T> static function. I pass all required
values into the login and password input fields, then click the
Login button. When the operation finishes, I validate that the
newly displayed panel is a Profi le page:

[TestMethod]
public void FacebookValidLogin()
{
 var loginPage = BasePage.Launch<LoginPage>();
 loginPage.TypeCredentialAndClickLogin(fbLogin, fbPassword);

 var profilePage = loginPage.InitializePage<ProfilePage>();
 Assert.IsTrue(profilePage.IsValidPageDisplayed(),
 "Profile page is not displayed.");
}

While searching for a control with a specifi c CSS class, I noticed
that in the Coded UI Test Framework a complication might arise. In
HTML, controls can have more than one class name in the class attri-
bute, and this of course aff ects the framework I’m working with. If, for
example, my current Web site contains a DIV element with attribute
class “A B C” and I use the SearchSelector.Class property to fi nd all
controls with CSS class “B,” I might not get any result—because “A B C”
is not equal to “B.” To deal with this, I introduce the star “*” notation,

Figure 6 An Exception After a Web Browser Update

http://archive.msdn.microsoft.com/mag201312Testing
www.msdnmagazine.com

msdn magazine44 Visual Studio 2013

which changes class expectation from “equals” to “contains.” So, to
get this example working, I need to change class “B” to class “*B.”

What If …
Sometimes tests fail and you have to ask why. In many cases,
reviewing the test log is all that’s needed to answer this question—
but not always. In the Coded UI Test Framework, a new feature
provides extra information on demand.

Assume the test failed because a page diff erent than expected
was displayed. In the logs, I see that some required control was not
found. Th is is good information, but it doesn’t give the full answer.
With the new feature, however, I can capture the currently displayed
screen. To use that feature, I just have to add the capture and a way
to save it in the test cleanup method, as shown in Figure 8. Now I
get detailed information for any test that fails.

Wrapping Up
In this article I showed how quick and easy it is to start using the
new Coded UI Test Framework in Visual Studio 2013 RC. Of
course, I described only the basic use of this technology, including
managing diff erent browsers, and supporting a variety of opera-
tions to fi nd, retrieve and manipulate HTML controls. Th ere are
many more great features worth exploring.

DAMIAN ZAPART is a .NET developer with more than seven years of experience.
He focuses mainly on Web-based technologies. He’s a programming geek inter-
ested in cutting-edge technologies, design patterns and testing. Visit his blog at
bit.ly/18BV7Qx to read more about him.

THANKS to the following Microsoft technical experts for reviewing this article:
Bilal A. Durrani and Evren Önem

[TestCleanup]
public void TestCleanup()
{
 if (this.TestContext.CurrentTestOutcome != null &&
 this.TestContext.CurrentTestOutcome.ToString() == "Failed")
{
 try
 {
 var img = BrowserWindow.Desktop.CaptureImage();
 var pathToSave = System.IO.Path.Combine(
 this.TestContext.TestResultsDirectory,
 string.Format("{0}.jpg", this.TestContext.TestName));
 var bitmap = new Bitmap(img);
 bitmap.Save(pathToSave);
 }
 catch
 {
 this.TestContext.WriteLine("Unable to capture or save screen.");
 }
 }
}

Figure 8 The Test Cleanup Method

Figure 7 The Login Page

public class LoginPage : BasePage
 {
 private const string LoginButtonId = "u_0_1";
 private const string LoginTextBoxId = "email";
 private const string PasswordTextBoxId = "pass";
 private const string LoginFormId = "loginform";
 private const string ErrorMessageDivClass = "login_error_box";
 private const string Page = "login.php";

 /// <summary>
 /// Builds URL for the page.
 /// </summary>
 /// <returns>Uri of the specific page.</returns>
 protected override Uri ConstructUrl()
 {
 this.PageUrl = new Uri(string.Format("{0}/{1}", BasePage.BaseURL,
 LoginPage.Page));
 return this.PageUrl;
 }

 /// <summary>
 /// Validate that the correct page is displayed.
 /// </summary>
 public override bool IsValidPageDisplayed()
 {
 return this.Body.FindById<HtmlDiv>(LoginTextBoxId) != null;
 }

 /// <summary>
 /// Gets the login button from the page.
 /// </summary>
 public HtmlInputButton LoginButton
 {
 get
 {
 return this.Body.FindById<HtmlInputButton>(LoginButtonId);
 }
 }

 /// <summary>
 /// Gets the login textbox from the page.
 /// </summary>
 public HtmlEdit LoginTextBox
 {

 get
 {
 return this.Body.FindById<HtmlEdit>(LoginTextBoxId);
 }
 }

 /// <summary>
 /// Gets the password textbox from the page.
 /// </summary>
 public HtmlEdit PasswordTextBox
 {
 get
 {
 return this.Body.FindById<HtmlEdit>(PasswordTextBoxId);
 }
 }

 /// <summary>
 /// Gets the error dialog window - when login failed.
 /// </summary>
 public HtmlControl ErrorDialog
 {
 get
 {
 return this.Body.FindFirstByCssClass<HtmlControl>("*login_error_box ");
 }
 }

 /// <summary>
 /// Types login and password into input fields and clicks the Login button.
 /// </summary>
 public void TypeCredentialAndClickLogin(string login, string password)
 {
 var loginButton = this.LoginButton;
 var emailInput = this.LoginTextBox;
 var passwordInput = this.PasswordTextBox;

 emailInput.TypeText(login);
 passwordInput.TypeText(password);

 Mouse.Click(loginButton, System.Windows.Forms.MouseButtons.Left);
 }
 }

www.bit.ly/18BV7Qx

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

2014 Dates Announced
Much like outer space, the .NET development platform is
ever-changing and constantly evolving. Visual Studio Live! exists
to help guide you through this universe, featuring code- lled
days, networking nights and independent education.
Whether you are a .NET developer, software architect or
a designer, Visual Studio Live!’s multi-track events include
focused, cutting-edge education on the .NET platform.

The Developer World is always
expanding; new technologies
emerge, current ones evolve and
demands on your time grow. Live!
360 Dev offers comprehensive
training on the most relevant
technologies in your world today.

Visual Studio Live! Las Vegas
Part of Live! 360 Dev

Visual Studio Live!
Chicago

March 10 – 14
Planet Hollywood

Las Vegas, NV

May 5 – 8
Chicago Hilton
Chicago, IL

Untitled-2 2 11/5/13 2:47 PM

www.vslive.com
www.live360events.com

CONNECT WITH VISUAL STUDIO LIVE!
twitter: @VSLive
facebook.com/VSLiveEvents
linkedin.com – Join the Visual Studio Live group

WHERE WILL YOU LAUNCH
YOUR TRAINING?

Visual Studio Live!
Redmond
August 18 – 22
Microsoft
Conference Center
Redmond, WA

WW

ve!
Visual Studio Live! Orlando

Part of Live! 360
November 17 – 21

Loews Royal Pacifi c
Resort, Orlando, FL

Live! 360 is a unique
conference, created for
the IT and Developer
worlds to come together
to explore leading edge
technologies and conquer
current ones.

live360events.com
vslive.com

Untitled-2 3 11/5/13 2:48 PM

www.vslive.com
www.live360events.com
www.live360events.com
www.vslive.com
https://twitter.com/VSLive
https://www.facebook.com/VSLiveEvents
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

msdn magazine48

Producing high-quality software demands a signifi cant
eff ort in testing, which is probably one of the most expensive and
intensive parts of the soft ware development process. Th ere have been
many approaches for improving testing reliability and eff ectiveness,
from the simplest functional black-box tests to heavyweight methods
involving theorem provers and formal requirement specifi cations.
Nevertheless, testing doesn’t always include the necessary level of
thoroughness, and discipline and methodology are oft en absent.

Microsoft has been successfully applying model-based testing
(MBT) to its internal development process for more than a decade
now. MBT has proven a successful technique for a variety of
internal and external soft ware products. Its adoption has steadily
increased over the years. Relatively speaking, it has been well received
in the testing community, particularly when compared with other
methodologies living on the “formal” side of the testing spectrum.

Spec Explorer is a Microsoft MBT tool that extends Visual Studio,
providing a highly integrated development environment for creating
behavioral models, plus a graphical analysis tool for checking
the validity of those models and generating test cases from them.

We believe this tool was the tipping point that facilitated the
application of MBT as an eff ective technique in the IT industry,
mitigating the natural learning curve and providing a state-of-the-
art authoring environment.

In this article we provide a general overview of the main concepts
behind MBT and Spec Explorer, presenting Spec Explorer via a
case study to showcase its main features. We also want this article to
serve as a collection of practical rules of thumb for understanding
when to consider MBT as a quality assurance methodology for a
specifi c testing problem. You shouldn’t blindly use MBT in every
testing scenario. Many times another technique (like traditional
testing) might be better a choice.

What Makes a Testable Model in Spec Explorer?
Even though diff erent MBT tools off er diff erent functionality and
sometimes have slight conceptual discrepancies, there’s general
agreement about the meaning of “doing MBT.” Model-based test-
ing is about automatically generating test procedures from models.

Models are usually manually authored and include system
requirements and expected behavior. In the case of Spec Explorer,
test cases are automatically generated from a state-oriented model.
Th ey include both test sequences and the test oracle. Test sequences,
inferred from the model, are responsible for driving the system
under test (SUT) to reach diff erent states. Th e test oracle tracks the
evolution of the SUT and determines if it conforms to the behavior
specifi ed by the model, emitting a verdict.

Th e model is one of the main pieces in a Spec Explorer project.
It’s specifi ed in a construct called model programs. You can write
model programs in any .NET language (such as C#). Th ey consist
of a set of rules that interact with a defi ned state. Model programs

MODE L-BASED T EST ING

An Introduction to
Model-Based Testing
and Spec Explorer
 Yiming Cao and Sergio Mera

This article discusses:
• What model-based testing is all about

• How to create models using Spec Explorer with Visual Studio

• Using a chat system as an example to explore
model-based testing

• Advantages and disadvantages of model-based testing

Technologies discussed:
Visual Studio, Spec Explorer

49December 2013msdnmagazine.com

are combined with a scripting language called Cord, the second
key piece in a Spec Explorer project. This permits specifying
behavioral descriptions that confi gure how the model is explored
and tested. Th e combination of the model program and the Cord
script creates a testable model for the SUT.

Of course, the third important piece in the Spec Explorer project is
the SUT. It isn’t mandatory to provide this to Spec Explorer to gener-
ate the test code (which is the Spec Explorer default mode), because
the generated code is inferred directly from the testable model, with-
out any interaction with the SUT. You can execute test cases “offl ine,”

decoupled from model evaluation and test-case generation stages.
However, if the SUT is provided, Spec Explorer can validate that the
bindings from the model to the implementation are well-defi ned.

Case Study: A Chat System
Let’s take a look at one example to show how you can build a
testable model in Spec Explorer. Th e SUT in this case is going to
be a simple chat system with a single chat room where users can
log on and log off . When a user is logged on, he can request the list
of the logged-on users and send broadcast messages to all users.
Th e chat server always acknowledges the requests. Requests and
responses behave asynchronously, meaning they can be intermin-
gled. As expected in a chat system, though, multiple messages sent
from one user are received in order.

One of the advantages of using MBT is that, by enforcing the
need to formalize the behavioral model, you can get a lot of feed-
back for the requirements. Ambiguity, contradictions and lack of
context can surface at early stages. So it’s important to be precise
and formalize the system requirements, like so:

R1. Users must receive a response for a logon request.
R2. Users must receive a response for a logoff request.
R3. Users must receive a response for a list request.
R4. List response must contain the list of logged-on users.
R5. All logged-on users must receive a broadcast message.
R6. Messages from one sender must be received in order.

Spec Explorer projects use actions to describe interaction with
the SUT from the test-system standpoint. Th ese actions can be call
actions, representing a stimulus from the test system to the SUT;
return actions, capturing the response from the SUT (if any); and
event actions, representing autonomous messages sent from the
SUT. Call/return actions are blocking operations, so they’re repre-
sented by a single method in the SUT. Th ese are the default action
declarations, whereas the “event” keyword is used to declare an
event action. Figure 1 shows what this looks like in the chat system.

With the actions declared, the next step is to defi ne the system
behavior. For this example, the model is described using C#.
System state is modeled with class fi elds, and state transitions are
modeled with rule methods. Rule methods determine the steps
you can take from the current state in the model program, and
how state is updated for each step.

Because this chat system essentially consists of the interaction
between users and the system, the model’s state is just a collection
of users with their states (see Figure 2).

As you can see, defining a model’s state isn’t much different
from defi ning a normal C# class. Rule methods are C# methods
for describing in what state an action can be activated. When that
happens, it also describes what kind of update is applied to the
model’s state. Here, a “LogonRequest” serves as an example to
illustrate how to write a rule method:

[Rule]
static void LogonRequest(int userId)
{
 Condition.IsTrue(!users.ContainsKey(userId));
 User user = new User();
 user.state = UserState.WaitingForLogon;
 user.waitingForDelivery = new MapContainer<int, Sequence<string>>();
 users[userId] = user;
}

// Cord code
config ChatConfig
{
 action void LogonRequest(int user);
 action event void LogonResponse(int user);

 action void LogoffRequest(int user);
 action event void LogoffResponse(int user);

 action void ListRequest(int user);
 action event void ListResponse(int user, Set<int> userList);

 action void BroadcastRequest(int senderUser, string message);
 action void BroadcastAck(int receiverUser, int senderUser, string message);

 // ...
}

Figure 1 Action Declarations

/// <summary>
/// A model of the MS-CHAT sample.
/// </summary>
public static class Model
{
 /// <summary>
 /// State of the user.
 /// </summary>
 enum UserState
 {
 WaitingForLogon,
 LoggedOn,
 WaitingForList,
 WatingForLogoff,
 }

 /// <summary>
 /// A class representing a user
 /// </summary>
 partial class User
 {
 /// <summary>
 /// The state in which the user currently is.
 /// </summary>
 internal UserState state;

 /// <summary>
 /// The broadcast messages that are waiting for delivery to this user.
 /// This is a map indexed by the user who broadcasted the message,
 /// mapping into a sequence of broadcast messages from this same user.
 /// </summary>
 internal MapContainer<int, Sequence<string>> waitingForDelivery =
 new MapContainer<int,Sequence<string>>();

 }

 /// <summary>
 /// A mapping from logged-on users to their associated data.
 /// </summary>
 static MapContainer<int, User> users = new MapContainer<int,User>();
 // ...
 }

Figure 2 The Model’s State

www.msdnmagazine.com

msdn magazine50 Model-Based Testing

Th is method describes the activation condition and update rule
for the action “LogonRequest,” which was previously declared in
Cord code. Th is rule essentially says:

• Th e LogonRequest action can be performed when the input
userId doesn’t yet exist in the current user set. “Condition.Is-
True” is an API provided by Spec Explorer for specifying
an enabling condition.

• When this condition is met, a new user object is created
with its state properly initialized. It’s then added to the
global users collection. Th is is the “update” part of the rule.

At this point, the majority of the modeling work is fi nished.
Now let’s defi ne some “machines” so we can explore the system’s
behavior and get some visualization. In Spec Explorer, machines
are units of exploration. A machine has a name and an associated
behavior defi ned in the Cord language. You can also compose one
machine with others to form more complex behavior. Let’s look at
a few example machines for the chat model:

machine ModelProgram() : Actions
{
 construct model program from Actions where scope = "Chat.Model"
}

The first machine we define is a so-called “model program”
machine. It uses the “construct model program” directive to tell
Spec Explorer to explore the entire behavior of the model based
on rule methods found in the Chat.Model namespace:

machine BroadcastOrderedScenario() : Actions
{
 (LogonRequest({1..2}); LogonResponse){2};
 BroadcastRequest(1, "1a");
 BroadcastRequest(1, "1b");
 (BroadcastAck)*
}

Th e second machine is a “scenario,” a pattern of actions defi ned
in a regular-expression-like way. Scenarios are usually composed
with a “model program” machine in order to slice the full behavior,
as in the following:

machine BroadcastOrderedSlice() : Actions
{
 BroadcastOrderedScenario || ModelProgram
}

Th e “||” operator creates a “synchronized parallel composition”
between the two participating machines. Th e resulting behavior
will contain only the steps that can be synchronized on both
machines (by “synchronized” we mean have the same action with
the same argument list). Exploring this machine results in the
graph shown in Figure 3.

As you can see from the graph in Figure 3, the composed
behavior complies with both the scenario machine and the model
program. Th is is a powerful technique for getting a simpler subset
of a complex behavior. Also, when your system has infi nite state
space (as in the case of the chat system), slicing the full behavior
can generate a fi nite subset more suitable for testing purposes.

Let’s analyze the diff erent entities in this graph. Circle states are
controllable states. Th ey’re states where stimuli are provided to the
SUT. Diamond states are observable states. Th ey’re states where
one or more events are expected from the SUT. Th e test oracle (the
expected result of testing) is already encoded in the graph with
event steps and their arguments. States with multiple outgoing
event steps are called non-deterministic states, because the event
the SUT provides at execution time isn’t determined at modeling

time. Observe that the exploration graph in Figure 3 contains
several non-deterministic states: S19, S20, S22 and so forth.

Th e explored graph is useful for understanding the system, but
it’s not yet suitable for testing because it isn’t in “test normal” form.
We say a behavior is in test normal form if it doesn’t contain any
state that has more than one outgoing call-return step. In the
graph in Figure 3, you can see that S0 obviously violates this rule.
To convert such behavior into test normal form, you can simply
create a new machine using the test cases construction:

machine TestSuite() : Actions where TestEnabled = true
{
 construct test cases where AllowUndeterminedCoverage = true
 for BroadcastOrderedSlice
}

This construct generates a new behavior by traversing the
original behavior and generating traces in test normal form. Th e
traversal criterion is edge coverage. Each step in the original
behavior is covered at least once. Th e graph in Figure 4 shows the
behavior aft er such traversal.

To achieve test normal form, states with multiple call-return
steps are split into one per step. Event steps are never split and are
always fully preserved, because events are the choices that the SUT
can make at runtime. Test cases must be prepared to deal with any
possible choice.

Spec Explorer can generate test suite code from a test normal form
behavior. Th e default form of generated test code is a Visual Studio
unit test. You can directly execute such a test suite with the Visual
Studio test tools, or with the mstest.exe command-line tool. Th e
generated test code is human readable and can be easily debugged:

#region Test Starting in S0
[Microsoft.VisualStudio.TestTools.UnitTesting.TestMethodAttribute()]
public void TestSuiteS0() {
 this.Manager.BeginTest("TestSuiteS0");
 this.Manager.Comment("reaching state \'S0\'");
 this.Manager.Comment("executing step \'call LogonRequest(2)\'");
 Chat.Adapter.ChatAdapter.LogonRequest(2);
 this.Manager.Comment("reaching state \'S1\'");
 this.Manager.Comment("checking step \'return LogonRequest\'");
 this.Manager.Comment("reaching state \'S4\'");
 // ...
 }

Th e test-code generator is highly customizable and can be con-
fi gured to generate test cases that target diff erent test frameworks,
such as NUnit.

Th e full Chat model is included in the Spec Explorer installer.

When Does MBT Pay Off?
Th ere are pros and cons when using model-based testing. Th e most
obvious advantage is that aft er the testable model is completed,
you can generate test cases by pushing a button. Moreover, the fact
that a model has to be formalized up front enables early detection
of requirement inconsistencies and helps teams to be in accord in
terms of expected behavior. Note that when writing manual test
cases, the “model” is also there, but it’s not formalized and lives in
the head of the tester. MBT forces the test team to clearly commu-
nicate its expectations in terms of system behavior and write them
down using a well-defi ned structure.

Another clear advantage is that project maintenance is lower.
Changes in system behavior or newly added features can be
refl ected by updating the model, which is usually much simpler
than changing manual test cases, one by one. Identifying only the

Untitled-2 1 9/5/13 11:05 AM

www.nevron.com

msdn magazine52 Model-Based Testing

test cases that need to be changed is sometimes a time-consuming
task. Consider as well that model authoring is independent of the
implementation or the actual testing. That means that different
members of a team can work on diff erent tasks concurrently.

On the downside, a mindset adjustment is oft en required. Th is
is probably one of the major challenges of this technique. On
top of the well-known problem that people in the IT industry
don’t have time to try out new tools, the learning curve for using
this technique isn’t negligible. Depending on the team, applying
MBT might require some process changes as well, which can also
generate some push back.

The other disadvantage is that you have to do more work in
advance, so it takes more time to see the fi rst test case being gener-
ated, compared with using traditional, manually written test cases.
Additionally, the complexity of the testing project needs to be great
enough to justify the investment.

Luckily, there are some rules of thumb we believe help identify
when MBT really pays off . Having an infi nite set of system states
with requirements you can cover in diff erent ways is a fi rst sign.
A reactive or distributed system, or a system with asynchronous

or non-deterministic interactions is
another. Also, methods that have many
complex parameters can point in the
MBT direction.

When these conditions are met, MBT
can make a big diff erence and save sig-
nifi cant testing eff ort. An example of this
is Microsoft Blueline, a project where
hundreds of protocols were verifi ed as
part of the Windows protocol compli-
ance initiative. In this project, we used
Spec Explorer to verify the technical
accuracy of protocol documentation
with respect to the actual protocol
behavior. Th is was a gigantic eff ort and
Microsoft spent around 250 person- years
in testing. Microsoft Research validated
a statistical study that showed using

MBT saved Microsoft 50 person-years of tester work, or around 40
percent of the eff ort compared with a traditional testing approach.

Model-based testing is a powerful technique that adds a systematic
methodology to traditional techniques. Spec Explorer is a mature tool
that leverages the MBT concepts in a highly integrated, state-of-the-art
development environment as a free Visual Studio Power Tool.

YIMING CAO is a senior development lead for the Microsoft Interop and Tools team
and works on the Protocol Engineering Framework (including Microsoft Message
Analyzer) and Spec Explorer. Before joining Microsoft he worked for IBM Corp. on
its enterprise collaboration suite, and then joined a startup company working on
media-streaming technologies.

SERGIO MERA is a senior program manager for the Microsoft Interop and Tools team
and works on the Protocol Engineering Framework (including Microsoft Message
Analyzer) and Spec Explorer. Before joining Microsoft he was a researcher and
lecturer for the Computer Science Department at the University of Buenos Aires
and worked on modal logics and automated theorem proving.

THANKS to the following technical expert for reviewing this article:
Nico Kicillof (Microsoft)

Figure 3 Composing Two Machines

Figure 4 Generating New Behavior

Alexsys Team®

Free Trial and Single User FreePack™
available at Alexcorp.com

Alexsys Team® Features Include:

Untitled-1 1 7/15/13 10:18 AM

www.alexcorp.com

msdn magazine54

The Freedom of Information Act (FOIA) gives U.S.
citizens access to government data to help educate themselves and
make more informed decisions. Th e process of getting this data,
however, can be complex and daunting. In this article, I’ll walk
through the building of a Windows Store app, called MyFOIA, that
lets users more easily get this information, share it with others and
even get automatic updates on FOIA requests.

What Is the FOIA?
Th e FOIA grants citizens the right to request information from
any government agency. Th e agency is then required to provide
the citizen with any pertinent, non-classified information. This
law is designed to increase governmental transparency. How-
ever, the request process doesn’t allow for easy access to an
agency’s information.

Most agencies off er frequently requested information on their
Web sites. For information that doesn’t appear there, a person must
make an FOIA request. Th is process oft en requires the citizen to
submit a written request by postal mail or e-mail, outlining in as
much detail as possible the information the person wants and the
desired format in which it should be provided. Th e request must
be compliant with certain specifi c format guidelines, which vary

from agency to agency. Th e typical return time on an FOIA request
can be at least one month. Th ese factors raise the need for a tool
that can improve access to this type of government information.

In a system of government designed by the people, for the
people, the FOIA helps citizens access information that previously
would’ve been available only to federal agencies.

Th e law has helped citizens uncover results from unpublished
studies, previously withheld videos and unreported breaches of
regulations, all of which wouldn’t have been otherwise available
to the public. See “Th e FOIA in Action” in this article for details
about some real examples.

Challenges of the FOIA
Th e FOIA can be a powerful tool for analyzing and extracting useful
conclusions from government data. However, the process is long and
complicated. Under the current system, the citizen must fi rst fi gure
out—as specifi cally as possible—what he’s looking for. Sometimes the
data a citizen wants is locked in an agency-specifi c portal.

To combat this problem, there have been some multi-agency
databases created, such as FOIAonline (1.usa.gov/O0s4zu). Here, the
citizen has two options: search the frequently requested FOIA data
or make an offi cial FOIA request. Th e offi cial FOIA request requires
divulging personal information to create an account, in addition
to submitting a detailed letter of description outlining the request.

Depending on the agency, the requester may also be required to
submit a fee. Th is process can be arduous and relies on the citizen
actively seeking the information from the agency by means of a
request, rather than having the data widely available at the person’s
fi ngertips. A user can’t receive notifi cation upon any updates to the
data in the system, and there’s no easy way for people to share or
discuss this information by means of social media.

WIN DOWS STOR E APPS

Freedom of
Information Act Data
at Your Fingertips
Vishwas Lele

Code download available at github.com/AppliedIS/Foia.

This article is from MSDN Magazine’s special coverage of application development in the government sector.
Read more articles like this in the Special Government Issue (msdn.microsoft.com/magazine/dn463800) of MSDN Magazine.

GET HELP BUILDING YOUR WINDOWS STORE APP!

Receive the tools, help and support you need to develop your Windows
Store apps.

bit.ly/XLjOrx

http://github.com/AppliedIS/Foia
www.bit.ly/XLjOrx
http://1.usa.gov/O0s4zu
http://msdn.microsoft.com/magazine/dn463800

55December 2013msdnmagazine.com

Enter the MyFOIA App
I decided it would be useful to build a Windows
Store app to make FOIA-related information
more accessible. Users would be able to easily
access FOIA data by searching for existing FOIA
requests and creating new ones. Furthermore,
a user would be notifi ed of any updates to an
FOIA request she wanted to follow. Finally,
the app would make it easy to share interesting
tidbits related to FOIA data over social media,
thereby encouraging others to get involved.

I’ll now briefl y review the functionality
provided by the app.

Home Page Figure 1 depicts the Home
page of the MyFOIA app. Users can search
for requests, make a new request (as a guest)
and generate reports. Th e app bar also allows
for navigation controls and enables users to
tweet selected text from within the app.

Search Page Figure 2 depicts the Search page of the MyFOIA
app. Users can search for requests, appeals and records released in
response to FOIA requests. In this example, the user is searching
through the U.S. Environmental Protection Agency’s (EPA) FOIA
records for the search term “CO2.”

Search Results Figure 3 depicts the search results page.
Results of the search placed earlier (in Figure 2) are displayed
on the screen. Notice the column at the right with the heading of
Notify. Clicking on one or more checkboxes allows users to receive
notifi cations if there’s an update related to the request.

Select and Share Page Figure 4 depicts the “select and share”
page that lets users select interesting tidbits from responses and
share them over Twitter. Notice the browser window with the
Twitter page alongside the MyFOIA app.

High-Level Architecture
Figure 5 depicts the high-level architecture of the MyFOIA app,
which was built using JavaScript and HTML. It relies on the Windows
8.1 WebView control to host content from the FOIAonline site,
thereby making available the core FOIAonline functionality (create,
search and report on responses). Th e app also extends functionality
provided by the FOIAonline Web site by “injecting” JavaScript into
the WebView-hosted content. For example, it lets users track FOIA
responses. If there’s an update to an FOIA response, all devices that
have registered to receive updates will receive push notifi cations.
Th e MyFOIA app also extends the look and feel of the FOIAonline
Web site to match a native Windows Store app. This includes
enabling “pinch and zoom,” relying on an app bar for navigation,
applying necessary styling to make the app touch-friendly and
sharing text with other Windows Store apps.

Figure 1 The MyFOIA App Home Page

Transparency of government data plays a vital role in keeping
U.S. citizens informed of the activities of government agencies
and involved in the governing process. The FOIA makes this data
available, but requesting and receiving this information can be a
daunting and cumbersome experience. This article details the
development of a Windows Store app that improves on the
current processes for working with FOIA requests.

IT Brief:
This article can serve as an example for government agencies of how
to improve the process of fulfi lling the FOIA mandate. As an alternative
to developing completely new solutions, it shows how emerging
technologies can augment and improve current systems. Important
considerations include the following:

• Government agencies are required to comply with FOIA requests.
• Current processes for fulfi lling requests vary from agency to agency.
• Filing and tracking FOIA requests can be diffi cult for citizens, but

the process can be standardized and improved.
• Using new technology such as Windows Store apps can help

standardize and enhance the process.

Dev Brief:
Developers might not always have the time or resources to completely
rebuild current systems. This article shows how to use modern
technologies, such as the new and improved WebView control in
Windows 8.1, to interact with and improve existing systems. In this
case, an app works with an existing FOIA-related Web site and adds
the following capabilities:

• Users can be notifi ed if there’s a change to an FOIA request in which
they were interested and following.

• Users can easily share FOIA-related data over social media.
• Users can interact with the app smoothly via a variety of input

sources, including touch, pen, mouse and keyboard.

More Information:
• FOIAonline Web site: 1.usa.gov/O0s4zu
• Windows 8.1 WebView control sample: bit.ly/19zxAPb
• Windows Azure Mobile Services: bit.ly/Op5Vdi
• FOIA in the News - 2004-2006 (The National Security Archive):

bit.ly/1ad5Tfd
• Freedom of Information Act Web site: foia.gov

Debrief: The Freedom of Information Act (FOIA)

http://1.usa.gov/O0s4zu
www.bit.ly/19zxAPb
www.bit.ly/Op5Vdi
www.bit.ly/1ad5Tfd
www.foia.gov
www.msdnmagazine.com

msdn magazine56 Windows Store Apps

Th e other key piece of functionality off ered by the MyFOIA app
is the notifi cation capability. Users can register to receive notifi ca-
tions whenever a given FOIA response is updated. Th is notifi cation
capability is built using Windows Azure Mobile Services (WAMS),
which enables back-end capabilities for apps, including:

• Simple provisioning and management of tables where apps
can store data.

• Integration with the notifi cation hub to deliver push notifi cations.
• Client libraries for various devices, including JavaScript libraries.
• Th e ability to add script-based server logic, including

scheduler capabilities.
Each device, at app activation time, requests a push notifi cation

channel from the Notifi cation Client Platform. In turn, the Notifi cation
Client Platform asks Windows Push Notifi cation Services (WNS) to
create a notifi cation channel and return it to the device. Subsequently,
when the user enables tracking on a given FOIA response, the
MyFOIA app registers the device with the Windows Azure notifi -
cation hub. In the background, the WAMS scheduler periodically

looks for updates to all registered FOIA
responses. If the scheduler discovers an
update, a push notifi cation is sent to all
devices via the notifi cation hub.

Implementation Details
The first challenge in developing the
app was that the FOIAonline Web site
doesn’t currently support an API for
app developers. Fortunately, Microsoft
has released an updated version of the
WebView control as part of Windows
8.1 that lets me host an FOIAonline Web
page within a Windows Store app built
with native HTML and JavaScript (the
earlier version of the WebView control
in Windows 8 was accessible only from
apps built with XAML and C#).

You’re probably thinking this uses
some sort of an iframe-based approach. Not quite. Th e WebView
control off ers several advantages over an iframe-based approach.
Also, some sites simply disallow their content to be loaded within
an iframe.

In simple terms, the new WebView control allows an HTML
app to host HTML content. Consider the following HTML and
JavaScript snippets used to create the WebView control:

<x-ms-webview id="foiaWebview"></x-ms-webview>
var foiaWebview = document.createElement("x-ms-webview");

 Note that x-ms-webview follows vendor-specific extension
syntax, because WebView is a Microsoft -specifi c control. Once
you’ve created the WebView control, you can load the HTML
content as a new document using the navigateToString method:

x-ms-webview.navigateToString(stringHTMLContent);

So far the functionality looks similar to that provided by an
iframe, but there are signifi cant diff erences:

• Th e WebView control is integrated into the display tree
along with other controls on the HTML page, so you can

apply styling just as with other controls
on the page. Th is means you can also
overlay other controls on top of the
WebView control.
• Th e WebView control off ers a set of

navigation events that provides the
app with an insight into the loading of
content. Apps can register for events
such as MSWebViewNavigation-
Starting, MSWebViewContent -
Loading, MSWebViewContent-
Loaded and MSWebViewNavigation-
Completed, and take appropriate
action. In addition, the WebView
control also periodically (every 500 ms)
fi res a LongRunningScriptDetected
event that lets the app halt a poten-
tially errant script.

Figure 2 The MyFOIA App Search Page

Figure 3 The MyFOIA App Search Results Page

57December 2013msdnmagazine.com

• The WebView control can take advantage of Internet
Explorer SmartScreen fi ltering to block “phishing” attacks.
Th e app can be notifi ed of malicious content and navigate
away from the page.

• Th e WebView control comes with built-in functionality
that’s commonly needed by apps hosting Web content. Th is
includes checking for the existence of “next” and “previous”
links and navigating accordingly, capturing screenshots
of the Web content being displayed, and remembering a
user’s selection.

• For functionality that isn’t built-in, the WebView control
provides a generic scheme for the app to communicate with
the WebView control via the InvokeScriptAsync method and
ScriptNotify event. As the name suggests, InvokeScriptNotify
provides—as an asynchronous action—the ability to exe-
cute a script from within the currently loaded HTML
inside the WebView control. Analogously, the HTML page
within a WebView can raise a ScriptNotify event within the
app. As you can imagine, a number of security checks are
imposed in order to prevent externally hosted, malicious
Web content from hijacking the app. For example, only
the Web sites registered in the app package manifest are
allowed to raise events within an app.

• Functionality such as pinch and zoom and phone-number
detection works out of the box with the WebView control.
Although you can certainly achieve similar behavior using
iframes, it would require a bunch of custom Java Script
and CSS.

Now that you’re armed with knowledge of how the WebView
control works, I’ll discuss how the MyFOIA app uses the WebView
control. Th e start page of the MyFOIA app is default.html, as defi ned
in the app package manifest. Th e default.html page simply hosts
the WebView control, along with the WinJS.UI.AppBar control.
When the app is activated, the app.onactivated event (defi ned in
default.js) gets invoked. Inside its event handler, you register for the events
discussed previously, including MSWebViewNavigationStarting,

MSWebViewDOMContentLoaded and
MSWebViewScriptNotify. Finally, you
navigate to the foiaHome.html page. Th is
is a page bundled with the app package,
which is why you’ll need an ms-appx-web
prefi xed URL to access it, like this:

var homePageUri = "ms-appx-web:///foiaHome.html";

If you look at the contents of this page,
it looks similar to the homepage of the
FOIAonline site. I bundled this page as
part of the app for two reasons. First, I
needed a fast, responsive, touch-friendly
home screen that stretched to fi t the
entire on-screen real estate. Second, I
wanted to limit the app to the functional-
ity available to guest users only. Bundling
a copy of the homepage allowed me
to remove the functionality related to
registered users. Specifi cally, the MyFOIA

app has no functionality to solicit user credentials.
Figure 6 depicts the homepage of the FOIAonline site. Compare

and contrast it to the MyFOIA app Home page (Figure 1) and you’ll
notice that several items (annotated in red on Figure 6) have been
removed in order to provide a more fl uid UI experience.

Th e next challenge I ran into was enabling some sort of push noti-
fi cation capability that notifi es users of updates to an FOIA response
in which they were interested. However, no such push notifi cation
capability exists within the FOIAonline Web site. Fortunately, the
InvokeScriptAsync and ScriptNotify methods discussed earlier
let me “inject” the push notifi cation capability within the existing
Web page. Refer to Figure 3 and you’ll notice the additional Notify
column. Th is column doesn’t exist on the FOIAonline Web site.

I’ll explain how I was able to add this additional column. Once
DOM content is loaded inside the WebView control, it will fi re the
foiaWebview_onDOMContentLoaded event (recall that I regis-
tered for it inside the app-activated event). Th is lets the MyFOIA
app modify the behavior of the hosted content by injecting a
custom script that adds the Notify column to the existing HTML.
Th is code creates a dependence on the underlying Web site. As a
result, the MyFOIA app can break if the underlying Web site is
modifi ed. In the absence of an API, the WebView control off ers
the only option to extend the functionality off ered by the Web site.

Figure 4 The MyFOIA App Select and Share Page

Figure 5 The High-Level Architecture of the MyFOIA App

FOIAonline Web Site

MyFOIA App

Tag “EPA-HQ-2012-001212”

Tag “EPA-HQ-2012-001212”

TagE “PA-RI-2013-002685”

Notification
Hub

Scheduler

Windows Azure
Mobile Services

WebViewWebView Control

www.msdnmagazine.com

msdn magazine58 Windows Store Apps

In Figure 7, you can see that along with adding the Notify
column, I pass in the “eval” script function, along with a script
argument, to the webviewControl.invokeScriptAsync method.

Upon successfully completing this, the custom script is exe-
cuted within the loaded HTML page. Note that within the script
snippet, passed in as an argument, I include a call to method
window.external.notify. So when the user selects one of the check-
boxes, an foiaWebview_onScriptNotify event is fi red within the

MyFOIA app. Figure 8 depicts how this
event is handled by the app. I invoke the
WAMS method called getTable to obtain
a reference to a specifi c table. Using the
table object, I add a new record con-
tain ing the number of the FOIA request
being tracked and the Uri of the request.

Once the record is successfully inserted,
I also register the channel and tracking
numbers with the notifi cation hub. Th e
newly inserted record is then picked up
by a custom script fi red periodically by
the WAMS scheduler. Th e custom script
checks for updates to the FOIA request
using the Uri column. If there are any
updates, it sends out notifi cations using
the notifi cation hub. Th e benefi t of using
the notifi cation hub is it scales easily to
a large number of recipients without the

need for re-architecting the MyFOIA app. Also, the notifi cations
are based on tags. Tags are a way to register MyFOIA app user pref-
erences. In concrete terms, tags in the MyFOIA app are tracking
numbers of the FOIA requests that a user is interested in tagging.
You can register one or more tags. Th e notifi cation hub then uses
tags to route the notifi cations.

Th e fi nal challenge was related to adding social media capabilities
to the app. I thought it would be interesting to share “tidbits” from

Figure 6 The FOIAonline Home Page

script += "function notifyClick(checkboxControl) {";
script += "var notifyData = '';";
script += "if (checkboxControl.checked) {";
script += " notifyData = 'add';";
script += "}";
script += "else {";
script += " notifyData = 'delete';";
script += "}";
script += "window.external.notify(notifyData + '|' + ";
script += " $(checkboxControl).attr('data-number') + '|' + ";
script += " $(checkboxControl).attr('data-uri'));";
script += "}";

script += "var header = $('#curElem thead tr');";
script += "$(header[0]).find('th:last').after('";
script += " <th class=\"detail\">";
script += " Notify";
script += " </th>');";

script += "var rows = $('#curElem tbody tr');";
script += "for (var i = 0; i < rows.length; i++) {";
script += " var reqNumber = $(rows[i]).find('td:first a').text();";
script += " var reqUri = $(rows[i]).find('td:first a').attr('href');";
script +=
 "reqUri = 'https://foiaonline.regulations.gov/foia/action/public/view/' +";
script +=
 "(reqUri.indexOf('request') != -1 ? \"request?\" : \"record?\") + ";
script += " reqUri.substring(reqUri.indexOf('objectId'));";
script += " $(rows[i]).find('td:last').after('";
script += " <td><input type=\"checkbox\" class=\"notifyCheckbox\" ";
script += " name=\"notify\" value=\"notify\" ";
script += " data-number=\"' + reqNumber + '\" data-uri=\"' + reqUri + '\" ";
script += " onclick=\"notifyClick(this);\" /></td>');";
script += "}";

var scriptOperation =
 webviewControl.invokeScriptAsync("eval", new Array(script));

Figure 7 Script Function to be Executed from the Currently
Loaded HTML

function foiaWebview_onScriptNotify(eventArgs) {
 msgControl.innerText = "Updating Request...";

 var scriptNotifyDataArr = eventArgs.value.split("|");
 var operation = scriptNotifyDataArr[0];
 var reqNumber = scriptNotifyDataArr[1];
 var reqUri = scriptNotifyDataArr[2];

 var requestTable = foiaMobileServiceClient.getTable("Request");

 var tablePromise;

 if (operation == "add") {
 requestTable.insert({
 DeviceId: deviceId,
 TrackingNumber: reqNumber,
 RequestUri: reqUri
 }).done(function () {
 updateRegistration();
 });
 }
 // Code elided for clarity
 }
}

function updateRegistration() {
 var channelOperation =
 pushNotifications.PushNotificationChannelManager.
 createPushNotificationChannelForApplicationAsync();

 channelOperation.then(function (newChannel) {
 channel = newChannel.uri;
 return requestTable.where({ DeviceId: deviceId }).read();
 }).then(function (requests) {
 if (requests.length > 0) {
 var trackingNumArray = getTrackingNumbers(requests);

 return hub.registerApplicationAsync(channel, trackingNumArray);
 }
 // Code elided for clarity

Figure 8 The onScriptNotify Event Handler

Reuse MS Word documents
as your reporting templates

Royalty-free WYSIWYG
template designer

Easy database connections and
master-detail nested blocks

Powerful and dynamic
2D/3D charting support

Create encrypted and print-ready
Adobe PDF and PDF/A

1D/2D barcode support including
QRCode, IntelligentMail, EAN

Creating a report is as
easy as writing a letter

www.textcontrol.com/reporting
txtextcontrol US: +1 855-533-TEXT

EU: +49 421 427 067-10

Rich Text Editing Spell CheckingReporting Barcodes

Untitled-2 1 9/5/13 10:30 AM

http://www.textcontrol.com/reporting
https://twitter.com/txtextcontrol
https://www.facebook.com/txtextcontrol
https://plus.google.com/+textcontrol/posts
http://www.youtube.com/txtextcontrol

msdn magazine60 Windows Store Apps

FOIA requests and responses over social media tools such as Twitter.
Once again, the FOIAonline Web site doesn’t currently support
such a capability. Th e challenge in implementing such a capability
is that users would be selecting text within the hosted HTML page.
How does the app capture the selected text? Fortunately, as shown
in Figure 9, the WebView control off ers a method called capture-
SelectedContentToDataPackageAsync that captures the selected
text and passes it to the loadTwitter method. Th e loadTwitter method
in turn uses the Windows.System.Launcher.launchUriAsync

method to launch the default app associated with the URI. It’s
also interesting to note the use of the Windows.UI.ViewManage-
ment.ViewSizePreference option, introduced in Windows 8.1, to
defi ne app view size preference. Th is lets me launch the browser
app alongside the MyFOIA app, as shown in Figure 4.

Stay in the Know
The FOIA is a law that gives citizens the right to access infor-
mation from the federal government. It’s oft en described as the
law that keeps citizens in the know about their government. Th e
MyFOIA Windows Store app is designed to make the FOIA data
easily accessible. Th e MyFOIA app is built using WebView control
and WAMS. Th e WebView control makes it possible to not only take
advantage of the existing FOIAonline Web site but also enhance
it. WAMS makes it possible for the users to be notifi ed of updates
to an FOIA response in which they're interested.

Th e MyFOIA app is a work in progress, but I’ve posted the code
at github.com/AppliedIS/Foia for you to review.

Finally, I’d like to thank Pamela Steger for help with this article
and Sajad Deyargaroo for help with the development of the
MyFOIA app.

VISHWAS LELE is the CTO at Applied Information Sciences Inc. He is respon-
sible for assisting organizations in envisioning, designing and implementing
enterprise solutions. Lele also serves as the Microsoft regional director for the
Washington, D.C., area and is a Windows Azure MVP. You can reach him on
Twitter at twitter.com/vlele.

THANKS to the following Microsoft technical experts for reviewing this article:
Kraig Brockschmidt, Kevin Hill and Jake Sabulsky.

function mainAppBar_onTweet(eventArgs) {
 msgControl.innerText = "Loading...";
 var captureOperation =
 webviewControl.captureSelectedContentToDataPackageAsync();

 captureOperation.oncomplete = function (completeEvent) {
 var res = completeEvent.target.result;

 if (res) {
 var dataPackage = res.getView();

 dataPackage.getTextAsync().done(function (capturedText) {
 loadTwitter(capturedText);
 });
 }
 else {
 loadTwitter("");
 }
 };
 captureOperation.start();
}
function loadTwitter(tweet) {
 var url = new Windows.Foundation.Uri(
 "https://twitter.com/share?url=https://foiaonline.regulations. "+
 "gov/foia/action/public/home&text=" + tweet);

 var options = new Windows.System.LauncherOptions();
 options.desiredRemainingView =
 Windows.UI.ViewManagement.ViewSizePreference.useMore;

 Windows.System.Launcher.launchUriAsync(url, options).done(
 function (data) {msgControl.innerText = "";
 });
}

Figure 9 Capturing Selected Text and Sharing It with Twitter

The following news articles were made possible by
use of the FOIA:
• “A Breach of Truth,” Chattanooga Times Free Press (Tennessee),

March 4, 2006 This article describes how the FOIA allowed the
release of a video that shows a briefi ng conducted for President
George W. Bush by Michael Brown, director of the Federal
Emergency Management Agency (FEMA). In the video, experts
express fears that a hurricane could fl ood New Orleans with a
resulting high death toll, to which President Bush responds “we
are fully prepared.”

• “Feds fault Chiron for lax cleanup of fl u shot plant,” San
Francisco Chronicle, June 21, 2006 Chiron Corp., a British
pharmaceutical company, owned a Liverpool plant that
produced 50 percent of the infl uenza vaccine used by the United
States. This article describes how, in 2005, information released
under the FOIA led to the discovery that this Chiron plant didn’t
meet Food and Drug Administration (FDA) regulations. In 2004,
the FDA recalled and destroyed the plant’s entire production
run, leading to a fl u vaccine shortage in the winter of that year.
The information disclosed showed that Chiron’s vaccines were
eventually cleared by October 2005, which led to concern for
U.S. citizens awaiting the vaccine.

• “On Range, deadly illness went unreported; Mesothelioma
strikes years after victims’ exposure to asbestos,” Star Tribune
(Minneapolis, Minn.), Aug. 21, 2005 This article describes how
the Mine Safety and Health Administration (MSHA) requested
records under the FOIA that exposed a loophole in report require-
ments that let LTV Steel Mining Co. forego reporting a trend of
mesothelioma and other debilitating asbestos-related illnesses
among workers in its Minnesota taconite mines dating from 1980.
Because mesothelioma usually doesn’t appear for more than 20
years after exposure to asbestos, LTV didn’t report illnesses and
deaths among its retirees, (it is required to do so for its active
workers). Because of this loophole, there was no action taken to
improve safety of other workers at the mine. The failure to
report lung disease cases among mine workers was discovered
from examination of the documents requested, after reporters
spoke with families of affected workers in the Iron Range region.
In addition, the MSHA also discovered that the maximum
penalty for companies that failed to report an illness was $60.

The exposure of breaches of regulations, suppressed health studies
and other information publicized by these articles demonstrates
the importance the FOIA plays in keeping citizens informed about
the data obtained by federal agencies. By granting the capability
for citizens to make requests of any and all information from
government agencies, the FOIA provides citizens with the same
access to government information.

The FOIA in Action

www.github.com/AppliedIS/Foia
www.twitter.com/vlele

www.alachisoft.com 1-925-236-3830

Extreme Performance Linear Scalability

Download a FREE trial!

100% Java100% .NET

Remove data storage performance bottlenecks and scale your applications to extreme transaction processing
(XTP). Cache data in memory and reduce expensive database trips. NCache scales linearly by letting you add
inexpensive cache servers at runtime. JvCache is 100% Java implementation of NCache.

Enterprise Distributed Cache
Extremely fast & linearly scalable with 100% uptime

Mirrored, Replicated, Partitioned, and Client Cache

NHibernate & Entity Framework Level-2 Cache

ASP.NET Optimization in Web Farms
ASP.NET Session State storage

ASP.NET View State cache

ASP.NET Output Cache provider

ASP.NET JavaScript merge/minify

Runtime Data Sharing
Powerful event notifications for pub/sub data sharing

For .NET & Java Apps

Untitled-3 1 10/31/13 10:54 AM

http://www.alachisoft.com

msdn magazine62

PDF as a document storage and archiving format is well
established in today’s world. Documents such as books, technical
manuals, user guides, reports and more are stored in PDF format. It
lets a document be consumed from multiple platforms as long as a
supported PDF viewer is available. While viewing PDF documents
is largely a nonissue, supporting the rendering of PDF content
remains a challenge, especially for Windows Store app developers.
With Windows 8.1, Microsoft introduced new APIs that ease the
process of rendering PDF content in Windows Store apps.

In this article, I’ll look at the diff erent ways to do this rendering. First,
I’ll focus on the APIs that are part of the Windows Runtime (WinRT)
and are accessible to you via JavaScript, C#, Visual Basic .NET and
C++. Th en I’ll focus on the native APIs that let C++ developers render
PDF content directly on a DirectX-based drawing surface.

The Windows Runtime APIs for PDF Rendering
Th e Windows Runtime for Windows 8.1 includes a new namespace,
Windows.Data.Pdf, which contains the new runtime classes and
structures that support PDF rendering in Windows Store apps.
In this section, I’ll discuss the various classes that make up the
Windows.Data.Pdf namespace, used for opening PDF documents,
handling password protection, rendering documents, customizing
the rendering process and more.

Opening PDF Documents Opening a PDF document program-
matically is as easy as calling the static method LoadFromFileAsync
from the PdfDocument runtime class. Th is class is the initial entry
point for working with PDF documents. Th e LoadFromFileAsync
method accepts a StorageFile object and begins the process of load-
ing the PdfDocument. Loading a PDF document can sometimes
take a long time, so the API returns an asynchronous operation.
When the asynchronous operation has completed, you have a valid
instance of the PdfDocument object, as shown here:

// Obtain a StorageFile object by prompting the user to select a .pdf file
FileOpenPicker openPicker = new FileOpenPicker();
openPicker.ViewMode = PickerViewMode.List;
openPicker.SuggestedStartLocation = PickerLocationId.DocumentsLibrary;
openPicker.FileTypeFilter.Add(".pdf");
StorageFile pdfFile = await openPicker.PickSingleFileAsync();

// Load a PdfDocument from the selected file
create_task(PdfDocument::LoadFromFileAsync(pdfFile)).then(
 [this](PdfDocument^ pdfDoc)
{
 // Handle opened Pdf document here.
});

In addition to the LoadFromFileAsync method, the PdfDocument
class also contains a helper static method to create a PdfDocument
instance from a stream object. If you already hold a reference to a PDF

WIN DOWS 8 . 1

Rendering PDF Content
in Windows Store Apps
Sridhar Poduri

This article discusses:
• Using Windows Runtime APIs to render PDF documents in

Windows Store apps

• Opening documents

• Handling password-protected documents

• Customizing rendering

• Using native APIs to render documents on a DirectX surface

Technologies discussed:
Windows Runtime, Windows 8.1, Windows Store Apps

Code download available at:
archive.msdn.microsoft.com/mag201312PDF

http://archive.msdn.microsoft.com/mag201312PDF

63December 2013msdnmagazine.com

document as a RandomAccessStream instance, you can simply pass
the stream object to the LoadFromStreamAsync method. Depending
on your scenario, you can choose to use either the LoadFromFileAsync
or LoadFromStreamAsync methods to create a PdfDocument
object instance. Once you have a valid PdfDocument instance, you
can access individual pages in the document.

Handling Password-Protected PDF Documents PDF docu-
ments are used to store a wide variety of information, such as
credit- card statements or other confi dential data. Some publishers
don’t want users to have unrestricted access to these types of docu-
ments and protect them with passwords. Access is granted only to
applications whose binaries contain the password. Th e LoadFrom-
FileAsync and LoadFromStreamAsync methods of the PdfDocument
runtime class contain overloaded versions of the methods that
accept a password via a String parameter:

// Load a PdfDocument that's protected by a password
// Load a PdfDocument from the selected file
create_task(PdfDocument::LoadFromFileAsync(
 pdfFile, "password")).then([this](PdfDocument^ pdfDoc)
{
 Handle opened Pdf document here.
});

If you attempt to load a password-protected document without
specifying a password, the LoadFromFileAsync and LoadFrom-
StreamAsync methods will throw an exception.

Accessing the Pages in a PDF Document Aft er you create an
instance of a PdfDocument object, the Count property will return
the number of pages in the PDF document. You can simply iterate
from 0 to the “Count – 1” range to get access to individual PDF pages.
Each page is of type PdfPage runtime class. Th e PdfPage runtime
class has a method named PreparePageAsync that begins the process
of preparing a PDF page for rendering. Page preparation involves
parsing and loading the page, initializing Direct2D resources for

proper handling of graphic paths and shapes, initializing DirectWrite
for handling the correct set of fonts for rendering text and so on. If
you don’t call PreparePageAsync before beginning to render PDF
pages, the render process calls PreparePageAsync for you implicitly.
However, you should call PreparePageAsync and have the pages
ready for rendering rather than let the rendering process prepare the
page. Preparing the page ahead of the actual rendering saves time in
the actual rendering process and is a nice optimization technique.

Figure 1 The PDF App UI

void MainPage::Button_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ args)
{
 m_streamVec->Clear();

 FileOpenPicker^ openPicker = ref new FileOpenPicker();
 openPicker->SuggestedStartLocation = PickerLocationId::DocumentsLibrary;
 openPicker->ViewMode = PickerViewMode::List;
 openPicker->FileTypeFilter->Clear();
 openPicker->FileTypeFilter->Append(L".pdf");

 create_task(openPicker->PickSingleFileAsync())
 .then([this](StorageFile^ pdfFile)
 {
 m_ImagefileName = pdfFile->Name;
 create_task(PdfDocument::LoadFromFileAsync(pdfFile))
 .then([this](PdfDocument^ pdfDoc)
 {
 auto page = pdfDoc->GetPage(0);
 auto stream = ref new InMemoryRandomAccessStream();
 IAsyncAction^ action = page->RenderToStreamAsync(stream);
 auto actionTask = create_task(action);
 actionTask.then([this, stream, page]()
 {
 String^ img_name = m_ImagefileName + ".png";
 task<StorageFolder^> writeFolder(
 KnownFolders::PicturesLibrary->GetFolderAsync("Output"));
 writeFolder
 .then([this, img_name, stream, page](StorageFolder^ outputFolder)
 {
 task<StorageFile^> file(
 outputFolder->CreateFileAsync(img_name,
 CreationCollisionOption::ReplaceExisting));

 file.then([this, stream, page](StorageFile^ file1) {
 task<IRandomAccessStream^> writeStream(
 file1->OpenAsync(FileAccessMode::ReadWrite));
 writeStream.then(
 [this, stream, page](IRandomAccessStream^ fileStream) {
 IAsyncOperationWithProgress<unsigned long long,
 unsigned long long>^ progress
 = RandomAccessStream::CopyAndCloseAsync(
 stream->GetInputStreamAt(0),
 fileStream->GetOutputStreamAt(0));
 auto copyTask = create_task(progress);
 copyTask.then(
 [this, stream, page, fileStream](
 unsigned long long bytesWritten) {
 stream->Seek(0);
 auto bmp = ref new BitmapImage();
 bmp->SetSource(fileStream);
 auto page1 = ref new PdfPageAsImage();
 page1->PdfPageImage = bmp;
 m_streamVec->Append(page1);
 pageView->ItemsSource = ImageCollection;
 delete stream;
 delete page;
 });
 });
 });
 });
 });
 });
 });
}

Figure 2 The Button_Click Event Handler
to Open and Render a PDF Document

With Windows 8.1, Microsoft
introduced new APIs that ease
the process of rendering PDF

content in Windows Store apps.

www.msdnmagazine.com

msdn magazine64 Windows 8.1

Rendering the PDF Pages Once the PdfPage objects are
prepared, they can be rendered. Th e Rendering API encodes the
PdfPage as an image and writes the image data to a stream supplied
by the developer. Th e stream can then either be set as the source
for an Image control in the application UI or be used to write the
data to disk for use later on.

Th e rendering happens once you call the RenderToStreamAsync
method of the PdfPage runtime class. Th e RenderToStreamAsync
method accepts an instance of an IRandomAccessStream or one of
its derived types and writes the encoded data to the stream.

Customizing the Page Rendering The default rendering
process involves encoding the PdfPage as a PNG image at the
actual dimensions of the PDF page in the document. You can
change the default encoding from PNG to either BMP or JPEG,
although I strongly recommended that you use PNG encoding for
rendering content on-screen because it’s lossless and also doesn’t
generate large bitmaps. However, if you want to generate images
from the PDF pages and store them to disk for access later, you
should consider using JPEG encoding because it generates smaller
image fi les with an acceptable resolution. You can also specify the
SourceRect and DestinationWidth to render only a portion of a
PDF page—for example, in response to a zoom-in operation. You
can also check for rendering in high-contrast mode by using the
Boolean fl ag IsHighContrastEnabled and setting this fl ag to true.
You can create an instance of the PdfPageRenderOptions structure
and pass it to the overloaded version of the RenderToStreamAsync
method of the PdfPage class.

The Client Code A simple app demonstrates how easy it is to use
these APIs to render PDF content. My sample app (PdfAPISample
in the accompanying code download) contains a MainPage with
two Button controls, as shown in Figure 1.

Th e click event handlers for both buttons will prompt the user to
select a PDF document and render the fi rst page. Th e event handler
for the “Render PDF w/Options” button will use the overloaded
RenderToStreamAsync method and change the page background color.

Th e Button_Click event handler is listed in Figure 2.

The Native APIs for PDF Rendering
Th e WinRT APIs allow easy integration of PDF content in Windows
Store apps and are meant to be accessible from all WinRT-supported
languages by creating an image fi le or stream from each page in a

PDF document. However, certain classes of Windows Store apps
have a requirement to render PDF content directly on-screen.
Such apps are usually written using native C++ and utilize XAML
or DirectX. For these apps, Windows 8.1 also includes native APIs
for rendering PDF content on a DirectX surface.

The native APIs for PDF rendering are present in the win-
dows.data.pdf.interop.h header fi le and require linking with the win-
dows.data.pdf.lib static library. Th ese APIs are available exclusively for
C++ developers who want to render PDF content directly on-screen.

PdfCreateRenderer Th e PdfCreateRenderer function is the entry
point for the native API. It accepts an instance of an IDXGIDevice as
input and returns an instance of an IPdfRendererNative interface. Th e
IDXGIDevice input parameter can be obtained from either a XAML
SurfaceImageSource, a VirtualSurfaceImageSource or a XAML
SwapChainBackgroundPanel. You might know these are the interop
types that XAML supports for mixing DirectX content in a XAML
framework. Calling the PdfCreateRenderer function is easy. Make
sure to include windows.data.pdf.interop.h and link against the
windows.data.pdf.lib static library. Obtain an instance of an IDX-
GIDevice from the underlying D3DDevice instance. Pass the IDX-
GIDevice instance to the PdfCreateRenderer function. If the function
succeeds, it returns a valid instance of an IPdfRendererNative interface:

ComPtr<IDXGIDevice> dxgiDevice;
d3dDevice.As(&dxgiDevice)
ComPtr<IPdfRendererNative> pdfRenderer;
PdfCreateRenderer(dxgiDevice.Get(), &pdfRenderer)

The IPdfRendererNative Interface Th e IPdfRendererNative
interface is the only interface supported in the native API. The
interface contains two helper methods: RenderPageToSurface and
RenderPageToDeviceContext.

RenderPageToSurface is the correct method to use when
rendering PDF content to either a XAML SurfaceImageSource or
VirtualSurfaceImageSource. Th e RenderPageToSurface method
takes a PdfPage as an input parameter along with an instance of
DXGISurface to which to draw the content, an off set on the device
to draw and an optional PDF_RENDER_PARAMS structure. As
you examine the RenderPageToSurface method, you might be
surprised to see the PdfPage input being of type IUnknown. How do
you get a PdfPage of type IUnknown? It turns out that with the WinRT
API, once you get a valid PdfPage instance from a PdfDocument
object, you can use safe_cast to cast a PdfPage to IUnknown.

When you use either the SurfaceImageSource or VirtualSurface-
ImageSource interop types, calling BeginDraw returns an off set into
the atlas that the XAML framework provides your application to

The default rendering process
involves encoding the PdfPage
as a PNG image at the actual

dimensions of the PDF page in
the document.

Figure 3 Native PDF API App UI

65December 2013msdnmagazine.com

draw content. You should pass that off set to RenderPageToSurface
to ensure that drawing happens at the correct position.

Th e RenderPageToDeviceContext is the correct method to use when
rendering PDF content to a XAML SwapChainBackgroundPanel. Th e
RenderPageToDeviceContext takes a PdfPage as an input parameter
along with an instance of ID2D1DeviceContext to which to draw
the content and an optional PDF_RENDER_PARAMS structure.

In addition to drawing directly on-screen, the rendering can also
be customized by using the PDF_RENDER_PARAMS structure.
Both the RenderPageToSurface and RenderPageToDeviceContext
accept an instance of PDF_RENDER_PARAMS. The options
provided in PDF_RENDER_PARAMS are similar to the WinRT
PDFPageRenderOptions structure. Note that neither of the native
APIs are asynchronous methods. Th e rendering happens directly
on-screen without incurring the cost of encoding and decoding.

Again, a simple app demonstrates how to use these APIs to
render PDF content. Th is sample app (DxPdfApp in the accom-
panying code download) contains a MainPage with one button
control, as shown in Figure 3.

Th e code to open a document and access a PDF page remains
the same between the WinRT API and the native API. Th e major
change is in the rendering process. While the WinRT APIs encode
the PDF page as an image and write the image file to disk, the
native APIs use a DirectX-based renderer to draw the PDF content
on-screen, as shown in Figure 4.

Learn More
I discussed the WinRT PDF API in Windows 8.1 that lets you
incorporate PDF content in Windows Store apps. I also discussed
the diff erences between using the WinRT API or the C++/DirectX
API, and the benefi ts of each approach. Finally, I provided a set of
recommendations on which API should be used under certain
scenarios. For more information on the PDF APIs in Windows 8.1,
check out the documentation and PDF viewer showcase sample
on MSDN at bit.ly/1bD72TO.

SRIDHAR PODURI is a program manager at Microsoft. A C++ aficionado and
author of the book, “Modern C++ and Windows Store Apps” (Sridhar Poduri, 2013),
he blogs regularly about C++ and the Windows Runtime at sridharpoduri.com.

THANKS to the following technical expert for reviewing this article:
Subramanian Iyer (Microsoft)

void PageImageSource::RenderPageRect(RECT rect)
{
 m_spRenderTask = m_spRenderTask.then([this, rect]() -> VSISData {
 VSISData vsisData;
 if (!is_task_cancellation_requested())
 {
 HRESULT hr = m_vsisNative->BeginDraw(
 rect,
 &(vsisData.dxgiSurface),
 &(vsisData.offset));
 if (SUCCEEDED(hr))
 {
 vsisData.fContinue = true;
 }
 else
 {
 vsisData.fContinue = false;
 }
 }
 else
 {
 cancel_current_task();
 }
 return vsisData;
 }, m_cts.get_token(), task_continuation_context::use_current())
 .then([this, rect](task<VSISData> beginDrawTask) -> VSISData {
 VSISData vsisData;
 try
 {
 vsisData = beginDrawTask.get();
 if ((m_pdfPage != nullptr) && vsisData.fContinue)
 {
 ComPtr<IPdfRendererNative> pdfRendererNative;
 m_renderer->GetPdfNativeRenderer(&pdfRendererNative);

 Windows::Foundation::Size pageSize = m_pdfPage->Size;
 float scale = min(static_cast<float>(
 m_width) / pageSize.Width,
 static_cast<float>(m_height) / pageSize.Height);

 IUnknown* pdfPageUnknown = (IUnknown*)
 reinterpret_cast<IUnknown*>(m_pdfPage);

 auto params = PdfRenderParams(D2D1::RectF((rect.left / scale),
 (rect.top / scale),
 (rect.right / scale),
 (rect.bottom / scale)),
 rect.right - rect.left,
 rect.bottom - rect.top,
 D2D1::ColorF(D2D1::ColorF::White),
 FALSE
);
 pdfRendererNative->RenderPageToSurface(
 pdfPageUnknown,
 vsisData.dxgiSurface.Get(),
 vsisData.offset, ¶ms);
 }
 }
 catch (task_canceled&)
 {

 }
 return vsisData;
 }, cancellation_token::none(), task_continuation_context::use_arbitrary())
 .then([this](task<VSISData> drawTask) {
 VSISData vsisData;
 try
 {
 vsisData = drawTask.get();
 if (vsisData.fContinue)
 m_vsisNative->EndDraw();
 }
 catch (task_canceled&)
 {

 }
 }, cancellation_token::none(), task_continuation_context::use_current());
}
}

Figure 4 The RenderPageRect Method
Drawing PDF Content On-Screen

While the WinRT APIs encode
the PDF page as an image and
write the image fi le to disk, the

native APIs use a DirectX-based
renderer to draw the PDF

content on-screen.

www.bit.ly/1bD72TO
www.sridharpoduri.com
www.msdnmagazine.com

msdn magazine66

As I discussed last time, the Oak project is a Web
framework that incorporates dynamic aspects
and approaches common to more dynamic-
language-based frameworks (such as Ruby on
Rails or any of the various MVC Web frameworks
in Node.js, such as Express or Tower). Because
it’s based on the Microsoft .NET Framework and
uses dynamic and Dynamic Language Runtime
(DLR) parts of C#, Oak takes quite a diff erent
approach to developing Web applications from
those used by the traditional ASP.NET MVC
developer. For that reason, as you discovered
last time, getting the necessary bits to do Oak
development is a little more sophisticated than
just pulling it down via NuGet.

Assuming that you’ve read the previous
column (msdn.microsoft.com/magazine/dn451446),
downloaded the bits, installed them, kicked off
the continuous build sidekick and gotten the initial build running
on your machine (in IIS Express, on port 3000, as you recall), it’s
time to start working on developing in Oak.

Firing Up
If it isn’t running on your box, do a “rake” and “rake server” from
a command prompt, just to make sure that
everything is kosher. Th en launch “sidekick” (if
it isn’t already running), and open a browser to
localhost:3000, as shown in Figure 1.

As the resulting tutorial implies, there’s a sort
of breadcrumbs-style walkthrough to learn Oak.
Before I get into it, though, take a quick look at
the project structure, shown in Figure 2.

Th e seed project consists of two projects: the
ASP.NET MVC project and the project with the
tests for the solution. Th e MVC project is a tradi-
tional ASP.NET MVC app, with the added “Oak”
folder containing the source fi les making up the
Oak parts of the project. Th is makes it absolutely
trivial to step through the Oak parts of the code
during debugging, and, in the spirit of all open
source projects, also enables local modifi cations
if and when necessary. Currently, the project has
no models, three controllers and just a couple of

views. More important, because there’s not much by way of code here,
the fi rst request to the endpoint yields an error that no “Index.cshtml”
(or similar) view exists. Th e Oak bootstrapper suggests two steps. First,
you need to create two new types: Blog and Blogs, a collection of Blog
instances. Calling the class “Blogs” gives you easy, convention-based
access to the Blogs table in the database:

public class Blogs : DynamicRepository
{
}

// This is a dynamic entity that represents the blog
public class Blog : DynamicModel
{
 public Blog() { }

 public Blog(object dto) : base(dto) { }
}

Second, the HomeController needs some
changes to be able to respond to diff erent HTTP
requests sent, as shown in Figure 3.

Much of this will be familiar to ASP.NET devel-
opers. What’s strikingly diff erent is that everything
is typed as the C# dynamic type, not as Blog or
Blogs instances. Th e Blog type itself has no fi elds or
properties. Th e Blogs type—an aggregation of Blog
instances—similarly has no code declared on it to
insert, remove, list, replace or do any of the other
operations commonly associated with collections.

Getting Started with Oak:
A Different Approach

THE WORKING PROGRAMMER TED NEWARD

Figure 1 Oak Project Help Window

Figure 2 Oak Project Structure in
Visual Studio Solution Explorer

http://msdn.microsoft.com/magazine/dn451446

SpreadsheetGear

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

SpreadsheetGear

SpreadsheetGear 2012
Now Available

WPF and Silverlight controls,

to XPS, improved

2012 support and more.

Excel Reporting for ASP.NET,
WinForms, WPF and Silverlight

Forms, WPF or Silverlight

Free
30 Day

Trial

Performance Spreadsheet Components

Excel Compatible Windows Forms,
WPF and Silverlight Controls

Forms, WPF and

Excel Dashboards, Calculations,
Charting and More

charts, and models in Excel
or the SpreadsheetGear

NEW!

www.SpreadsheetGear.com

Untitled-3 1 11/30/12 11:25 AM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine68 The Working Programmer

A lot of this power comes from the dynamic-based Gemini
library, a core part of the Oak project (and the subject of my
August 2013 column, “Going Dynamic with the Gemini Library,”
at msdn.microsoft.com/magazine/dn342877). Blog extends the Dynamic-
Model base class, which essentially means you can program against
it without having to defi ne the model up front. Any fi eld you refer-
ence on any given Blog instance will be there, even if you’ve never
referenced it before. Th is is the power of dynamic programming.
Similarly, Blogs is a DynamicRepository. As such, it already knows
how to store and manipulate DynamicModel objects.

Even more interesting is that right out of the box, Oak knows
how to store Blog instances to a SQL table (named, not surprisingly,
“Blogs”). Not only will it create the database schema on fi rst use, but it
can “seed” the database with any startup data the system might need.

When you construct a Blog instance, it takes a dynamic object as
a parameter. Th e base class constructor knows how to walk through
any of the dynamically defi ned fi elds/properties on that object.
Similarly, the Blogs instance will also know how to iterate through
all dynamically defi ned fi elds/properties of a Blog instance. It will
store them to the database (on the call to blog.Insert). It also knows
how to retrieve a Blog instance from the database via the BlogId
fi eld. All of this is powered by the code in Figure 3; no additional
model code is necessary—at least, not yet. (Th ere are other things
you’ll want there, but for now, it all just works.)

By the way, if you’re wondering what the @ operator is, remember
params is actually a reserved
word in C#. In order to use it as
an acceptable parameter name,
you have to prefi x it with @ to tell
the C# compiler to not treat it as
a keyword.

Having modifi ed HomeCon-
troller.cs, the next step is to create
an acceptable view, Index.cshtml,
in a Home folder under the Views
folder. Th is will display the results
of the controller’s work, as shown
in Figure 4.

On the surface, the view isn’t
just another ASP.NET view. Again,
the dynamic nature of the system
comes into play. No Blog instance
has defined a Name field on the
Blog type, yet when the form at

public class HomeController : Controller
{
 // Initialize the blog
 Blogs blogs = new Blogs();

 public ActionResult Index()
 {
 // Return all blogs from the database
 ViewBag.Blogs = blogs.All();
 return View();
 }

 // Controller action to save a blog
 [HttpPost]
 public ActionResult Index(dynamic @params)
 {
 dynamic blog = new Blog(@params);

Figure 3 Responding to Different HTTP Requests

@{
 ViewBag.Title = "Index";
}

<h2>Hello World</h2>
<div>
If this page came up successfully, you're doing well! Go ahead and create
a blog (try to create blogs with duplicate names).
</div>

@using (Html.BeginForm())
{
 @Html.TextBox("Name")
 <input type="submit" value="create" />
}

@foreach (var blog in ViewBag.Blogs)
{
 <div>
 <pre>@blog</pre>

 <div>
 Almost there, you have comments listing; let's try to add one.
 </div>

 </div>
}

Figure 4 Creating the View

Figure 5 A Growl Notifi cation Showing the Build Succeeded

Even more interesting is that
right out of the box, Oak knows
how to store Blog instances to

a SQL table.

http://msdn.microsoft.com/magazine/dn342877

69December 2013msdnmagazine.com

the top of the view is submitted, a “name=...” parameter will be
passed in to the HomeController. Th is controller will then pass on
that name/value pair in the @params variable used to initialize a
Blog instance. Without any additional work on your part, the Blog
instance now has a Name fi eld/property on it.

Continuous Continuousness
By the way, if you’re playing the home version of this game and
you saved these fi les, you’ll see something interesting happened
(see Figure 5).

First of all, a notifi cation popped up in the lower-right corner.
Th is is Growl at work. It’s giving you the green-light notifi cation
that the build kicked off by the sidekick app you launched earlier
has succeeded. If it fails for some reason, the graphic on the left
of the notification window will be red, and the console output
will display in the notifi cation. Second, if you look in the console
window in which sidekick is running, it will be apparent what
happened. Th e fi lesystem watcher in the Blog directory registered
that a source fi le changed (because you saved it). Th e sidekick took
that as a cue to rebuild the project.

Assuming the fi les are saved and the code was correct, hitting
localhost:3000 again yields the new result, shown in Figure 6.

This time, Oak is trying to connect to a running SQL Server
instance in order to fetch any data from that table (the Blog table).
Th is is Oak automatically trying to manage the object-relation
mapping (ORM) parts of the project on your behalf, and I’ll get
further into that next time.

A Different Style
As you can see, using Oak defi nitely involves a diff erent style of
developing. At no point did you have to do anything more com-
plicated in Visual Studio than open a fi le, change its contents and
save the new version—and add a new fi le to the project. At no point

did you ever kick off a build, run it from within
Visual Studio, or open Server Explorer to create
tables or kick off SQL Server scripts.

All those things are still available to you, should
the need arise. Again, Oak is just a layer (and a
fairly thin one at that) on top of the traditional
ASP.NET stack. However, this layer permits a
degree of rapid development and productivity
similar to other more dynamic environments,
without losing the things you like from the
statically typed world.

There’s more to do with Oak, but that will
remain a subject for future discussion.

Happy coding!

TED NEWARD is the principal of Neward & Associates LLC.
He has written more than 100 articles and authored and
coauthored a dozen books, including “Professional F# 2.0”
(Wrox, 2010). He’s an F# MVP and speaks at conferences
around the world. He consults and mentors regularly—
reach him at ted@tedneward.com if you’re interested in
having him come work with your team, or read his blog at
blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Amir Rajan (Oak project creator)

Figure 6 Oak Cannot Make Bricks Without Clay

Add powerful diagramming
capabilities to your applications in
less time than you ever imagined
with GoDiagram Components.

The first and still the best. We
were the first to create diagram
controls for .NET and we continue
to lead the industry.

A cross-platform JavaScript
library for desktops, tablets,
and phones.

Fully customizable interactive
diagram components save
countless hours of programming
enabling you to build applications
in a fraction of the time.

For HTML 5 Canvas, .NET, WPF and Silverlight
Specializing in diagramming products for programmers for 15 years!

New! GoJS for
HTML 5 Canvas.

Powerful, flexible, and easy to use.
Find out for yourself with our FREE Trial Download

with full support at: www.godiagram.com

mailto:ted@tedneward.com
http://www.godiagram.com
http://blogs.tedneward.com
www.msdnmagazine.com

msdn magazine70

You have data. Lots of data. You need to present this data in such a
way that users can eff ortlessly access and make sense of it while in
your app. Apps expose their data in the form of news articles, recipes,
sports scores, fi nancial charts and more, all parading in various-sized
compartments across the screen and trying to attract the attention of
the consumer. Th e vast majority of apps on the market today present
data in a grid or list format because it makes sense, as small to mid-
size grids with data are easy for humans to consume, search and fi lter.
From enterprise apps to personal apps to whatever the app may be,
grids are the scaff olding that props up data for quick visual skimming.

In Windows Store apps, you can set up this structure for data
presentation by using the ListView control. If you’re new to
Windows Store app development, you can get up to speed by
reading my February 2013 article, “Create Windows Store Apps with
HTML5 and JavaScript” (msdn.microsoft.com/magazine/jj891058) and my
July 2013 article, “Mastering Controls and Settings in Windows Store
Apps Built with JavaScript” (msdn.microsoft.com/magazine/dn296546).

ListView Control Basics
Available in both HTML and XAML, the ListView is the control
du jour for presenting data in a grid or list format. In Windows
Library for JavaScript (WinJS) apps (the focus of this article),
you can use the ListView control by setting the data-win-control
attribute on a host <div> element to “WinJS.UI.ListView,” like so:

<div id="listView" data-win-control= "WinJS.UI.ListView"></div>

Th e <div> that hosts the ListView contains no child elements.
However, it does contain basic configuration information in an
attribute named data-win-options. Data-win-options lets you
set any property of the ListView control using a declarative
syntax in the HTML page. To use the ListView properly, you’ll need
to apply the following characteristics to it:

• Th e group and item templates for the ListView.
• Th e group and item data sources of the ListView.
• Whether the ListView uses a grid or list layout

(the default is grid).
You should also specify whether the ListView’s item selection mode

is single or multiple (the default is multiple). A basic ListView with
the layout and selectionMode properties set in the data-win-options
attribute looks like this:

<div id="listView" data-win-control= "WinJS.UI.ListView" data-win-options=
 "{ selectionMode: 'single', layout : {type: WinJS.UI.GridLayout} }" ></div>

Though the preceding code defines a ListView, the ListView
doesn’t work all by itself. It needs the help of the WinJS.Binding.List
object. Th e List object binds arrays fi lled with objects to the HTML
elements defined in the item and group templates. This means
that the List object defi nes the data to display while the template
defi nes how to display it.

Create ListView Templates
Once you have the <div> for the ListView set up, you can move on
to creating the templates for it. Th e ListView depends on HTML
templates to display data that’s readable to the user. Luckily,
the Grid, Split and Hub (the Hub is available in Windows 8.1)
Windows Store app templates contain everything you need to pres-
ent data in a grid or list format, including sample data, predefi ned
ListView controls and predefined CSS classes. You can modify
these templates or go ahead and create your own if you’d like. Note,
however, that if you create your own templates, you should adhere
to the principles of modern UI design and implement the Windows
8 silhouette as described in the Dev Center for Windows Store
apps at bit.ly/IkosnL. Th is is done for you when you use the built-in
Visual Studio templates.

Th e ListView requires an item template, and if you’re grouping
data, then it needs a header template as well. Th e parent elements
of the item and group templates are simple <div> elements with
the data-win-control attribute set to “WinJS.Binding.Template.”

Th e header template should contain links for each group that,
when clicked, take the user to a page that lists items belonging to that

Everything You Need to Know About the
WinJS ListView Control

MODERN APPS RACHEL APPEL

This article discusses a prerelease version of Windows 8.1.
All related information is subject to change.

<div class="headertemplate" data-win-control="WinJS.Binding.Template">
 <button class="group-header win-type-x-large win-type-interactive"
 data-win-bind="groupKey: key" onclick="Application.navigator.pageControl
 .navigateToGroup(event.srcElement.groupKey)" role="link" tabindex="-1"
 type="button">
 <span class="group-title win-type-ellipsis" data-win-bind=
 "textContent: title">

 </button>
</div>
<div class="itemtemplate" data-win-control="WinJS.Binding.Template">
 <div class="item">
 <img class="item-image" src="#" data-win-bind=
 "src: backgroundImage; alt: title" />
 <div class="item-overlay">
 <h4 class="item-title" data-win-bind="textContent: title"></h4>
 <h6 class="item-subtitle win-type-ellipsis" data-win-bind=
 "textContent: subtitle"></h6>
 </div>
 </div>
</div>

Figure 1 The Header and Item Templates for the ListView Control

http://msdn.microsoft.com/magazine/jj891058
http://msdn.microsoft.com/magazine/dn296546
www.bit.ly/IkosnL

71December 2013msdnmagazine.com

group. Th is is an example of a rather common master/detail navi-
gation pattern. In Figure 1, the <div> classed as “headertemplate”
contains a <button> element bound to the group’s key. When the
user taps or clicks the button, she moves to a page revealing the
members of that group.

Th e item template in Figure 1 consists of <div> tags that enclose
an image and two text fi elds. Much of today’s data found in modern
apps is graphic, so there’s an element inside the item template.
Th e sample data fi lls this element with an image that’s just a solid gray
color. Figure 2 depicts the default ListView from the Grid Layout.

Aft er coding the item and group templates, it’s time to hook
them up to some data.

Data and Data Binding with the ListView Control
JavaScript and JSON go hand in hand (JSON is JavaScript Object
Notation, aft er all), so once you’ve retrieved some JSON data, just stuff
it into an array and the Windows.Binding.List object turns it into a
usable data source for the ListView. In other words, you don’t directly
tie the ListView to an array or data source, meaning the List object
serves as an intermediary between the ListView and the data source.
Th is is because the List object transforms the data into something the
ListView knows how to use—the ListView itself only defi nes the look
and layout of the grid. Th e List object also provides methods for search-
ing, sorting, adding and deleting members of the underlying array.

Examining the \js\data.js fi le uncovers a Data namespace as well
as the arrays making up the sample data. Th e crucial takeaway is that
the two arrays blend to form a master/detail relationship. Th e group
property of each object in the sampleItems array (details) refers to
its group in the sampleGroups array (master), as shown in Figure 3.

Of course, you’ll replace the sample data with your own by
building your own arrays, accessing JSON or XML data, or per-
haps by calling a Web service. You aren't tied to using the Data
namespace and instead can defi ne your own..

Near the top of the data.js fi le is the following line of code:
var list = new WinJS.Binding.List();

This list variable is a container for an array. You can add an
array to the List by passing it into the List’s constructor method or
by using the push method:

generateSampleData().forEach(function (item) {
 list.push(item);
});

Doing this fi lls the list with the array data, and you’re
now ready to associate the list and the ListView. If you’re
sticking with the default template code, you should
perform this association when the app fi rst loads, in
the _initializeLayout function of the \js\default.js fi le,
as shown here:

listView.itemDataSource = Data.items.dataSource;
listView.groupDataSource = Data.groups.dataSource;

Of course, depending on the size of your data, the
load time may vary, so you might need to modify the
loading process. Use your best judgment about loading
data into memory, keeping in mind the importance of
performance to users.

Notice that the item and group data sources are set to
the Data.items.dataSource and Data.groups.dataSource,
respectively. Th e members named “items” and “groups”

of the Data namespace refer back to the functions that have created
the array containing the data (that is, groupedItems). The Data
namespace declaration in the \js\data.js fi le refl ects this notion and
shows other public members in the namespace for working with data:

WinJS.Namespace.define("Data", {
 items: groupedItems,
 groups: groupedItems.groups,
 getItemReference: getItemReference,
 getItemsFromGroup: getItemsFromGroup,
 resolveGroupReference: resolveGroupReference,
 resolveItemReference: resolveItemReference
});

Th e items and groups members of the Data namespace point
to the groupedItems object, which has constructed the data
properly. Everything in the Data namespace you’ve seen so far is
included in the Visual Studio project templates. If you choose to
start with a blank project, you’ll need to mold the data yourself
by creating similar data- access methods instead of relying on the
Data namespace members.

At this point, the ListView is complete with data and bindings
set up. You can bind properties of the objects in the data source to
HTML elements by using the data-win-bind attribute, as shown here:

<h4 class="item-title" data-win-bind="textContent: title"></h4>

Th e preceding line of code binds the title property to the <h4>
element as part of its text. Figure 1 and Figure 2 have more
samples of the data-win-bind attribute in action.

Now that you have the ListView and data access ready, it’s time
to move on to styling the ListView.

Style the ListView Control
Presentation is all about style. Th e WinJS libraries contain a complete
set of CSS rules with predefi ned styles you can overwrite to mold the
ListView in a variety of ways. If you’re unfamiliar with styling WinJS
controls, see my October 2013 article, “Build a Responsive and Modern
UI with CSS for WinJS Apps,” at msdn.microsoft.com/magazine/dn451447.
You can style the entire ListView by overwriting the .win-listview
CSS class. Along with styling the ListView, you can set the constit-
uent pieces of the ListView using the following class selectors:

• .win-viewport: Styles the ListView’s viewport. Th e
viewport is where the scrollbar sits.

Figure 2 The Default ListView from the Grid Template, with Heading and
Navigation Buttons Marked in Red

http://msdn.microsoft.com/magazine/dn451447
www.msdnmagazine.com

msdn magazine72 Modern Apps

• .win-surface: Styles the scrollable area of the ListView. Th is
area moves when a user scrolls.

There are two ways to style items in a ListView. You can
apply styles to the item template via the .win-item class, or you can
override the .win-container class. Keep in mind that each item in
a ListView comprises multiple HTML elements (refer to Figure 1
to view these elements). As you can see from Figure 1, the
<div> elements that make up the item template contain an .item,
.item-image, .item-overlay, .item-title and .item-subtitle class. You’ll
fi nd none of these defi ned in the system style sheets (that is, ui-light
and ui-dark), as these are for you to style.

You should be aware of a handful of gotchas involved with
styling, especially concerning when to apply margins and padding
to the ListView control. You can review all the ins and outs of
styling the ListView in the Dev Center for Windows Store apps
at bit.ly/HopfUg. Don’t forget to create styles for all the various view
states that your app might need.

Windows 8.1 includes some styling changes to the ListView
concerning child/descendant selector specifi city. Th is is because
a new node belongs to the internal tree structure of the page, so
you must update your CSS selectors to contain the .win-itembox
class selector, like this: .win-container | .win-itembox | .win-item.

Respond to View State Changes in the ListView
Responding to the new Windows 8 snap and fi lled views is import-
ant for passing the Windows Store certifi cation process. Th e snap
view, along with the full and fi lled views, is how users can arrange
multiple Windows Store apps on the screen. In Windows 8, users
may resize up to two open app windows, one in fi lled view and one
in snap view. In Windows 8.1, the maximum number of windows
increases to four and there are more options for app display. Th ese
views are called tall or narrow in Windows 8.1, and are slightly
diff erent than the snap and fi lled views of Windows 8.

Th is means you must code the ListView control to change its
format in response to changes in app view states. Th is is a process
called responsive design, and you can achieve it by using CSS

media queries. For a primer on CSS media queries, see my blog post,
“Create mobile site layouts with CSS Media Queries,” at bit.ly/1c39mDx.

Media queries shape the ListView control to fi t diff erent view
states in a way that makes sense for the varying screen sizes and
orientations that go with each view. When switching to tall views,
the ListView needs to turn into a list, as shown here:

listView.layout = new ui.ListLayout();

Later, when the user switches back to the original view state, you
must set the ListView back to a grid:

listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" });

If you want to change styling in the items in the ListView when the
screen changes, add CSS to this media query in the \css\default.css fi le:

@media screen and (-ms-view-state: snapped) {...}

You don’t need a media query for full or fi lled views, as those
use the default style sheets. However, you can use diff erent media
queries for a variety of screen sizes if needed.

ListView and Semantic Zoom
Th e reimagining of Windows in version 8 entails new ways to visual-
ize, navigate and search data. Th is means you need to think diff erently
about how to approach search. Instead of users having to type phrases
into search boxes and sift through lists of results, they can now
use semantic zoom to condense the data into digestible sections.

Semantic zoom lets the user search for things by using a pinch
gesture (or Ctrl + mouse wheel) to pan or zoom out and observe
the data in an aggregate format. For example, the Windows Start
page behaves this way by showing users all available apps when
they zoom out. Using semantic zoom in your app is easy, because
it’s just a control for WinJS:

<div data-win-control="WinJS.UI.SemanticZoom">
 <!-- The control that provides the zoomed-in view goes here. -->
 <!-- The control that provides the zoomed-out view goes here. -->
</div>

Th e SemanticZoom control is simply a wrapper for a ListView or
two, or perhaps the HTML Repeater control new to Windows 8.1.

Odds and Ends About the ListView
Don’t use the ListView as a general-purpose layout control. Use
the CSS box model for that instead. In Windows 8.1, you should
consider whether you’re better off using a ListView control or a
Repeater control. A Repeater control is better if you don’t require
a lot of functionality from the control and just need to repeat the
same HTML design multiple times. At the time of this writing,
Windows 8.1 is in preview, so there could be a few other changes
to the ListView as well as other Windows Store app API compo-
nents. For more information on Windows 8.1 API changes, see the
Dev Center documentation at bit.ly/1dYTylx.

RACHEL APPEL is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry
conferences such as Visual Studio Live!, DevConnections, MIX and more. Her
expertise lies within developing solutions that align business and technology
focusing on the Microsoft dev stack and open Web. For more about Appel, visit
her Web site at rachelappel.com.

THANKS to the following technical expert for reviewing this article:
Eric Schmidt (Microsoft)

var sampleGroups = [
 { key: "group1", title: "Group Title: 1", subtitle: "Group Subtitle: 1",
 backgroundImage: darkGray, description: groupDescription },
 { key: "group2", title: "Group Title: 2", subtitle: "Group Subtitle: 2",
 backgroundImage: lightGray, description: groupDescription },
 { key: "group3", title: "Group Title: 3", subtitle: "Group Subtitle: 3",
 backgroundImage: mediumGray, description: groupDescription }
];
var sampleItems = [
 { group: sampleGroups[0], title: "Item Title: 1",
 subtitle: "Item Subtitle: 1", description: itemDescription,
 content: itemContent, backgroundImage: lightGray },
 { group: sampleGroups[0], title: "Item Title: 2",
 subtitle: "Item Subtitle: 2", description: itemDescription,
 content: itemContent, backgroundImage: darkGray },
 { group: sampleGroups[0], title: "Item Title: 3", subtitle:
 "Item Subtitle: 3", description: itemDescription,
 content: itemContent, backgroundImage: mediumGray },
 { group: sampleGroups[1], title: "Item Title: 1", subtitle:
 "Item Subtitle: 1", description: itemDescription,
 content: itemContent, backgroundImage: darkGray },
 { group: sampleGroups[2], title: "Item Title: 2", subtitle:
 "Item Subtitle: 2", description: itemDescription,
 content: itemContent, backgroundImage: mediumGray },
];

Figure 3 Sample Data in Array Form in the Grid Project Template

www.bit.ly/HopfUg
www.bit.ly/1c39mDx
www.bit.ly/1dYTylx
www.rachelappel.com

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

msdn magazine74

Th e most signifi cant advance in digital typography on personal
computers occurred more than 20 years ago with the switch from
bitmap fonts to outline fonts. In versions of Windows prior to
Windows 3.1, onscreen text was generated from font fi les consist-
ing of tiny bitmaps of specifi c point sizes. Th ese bitmaps could be
scaled for in-between sizes, but not without a loss of fi delity.

Adobe Systems Inc. pioneered an alternative approach to
displaying computer fonts with PostScript, which defined font
characters with graphic outlines consisting of straight lines and
Bézier curves. You could scale these outlines to any dimension,
and algorithmic “hints” helped preserve fi delity at small point sizes.
As an alternative to PostScript for fonts on the personal computer
screen, Apple Inc. developed the TrueType font specification,
which Microsoft later adopted. Th at eventually evolved into today’s
common OpenType standard.

These days, we take for granted the continuous scalability of
onscreen fonts, as well as the ability to rotate or skew text using
graphical transforms. Yet it’s also possible to obtain the actual
geometries that defi ne the outlines of these font characters and use
them for unusual purposes, such as outlining text characters, or
clipping, or performing non-linear transforms.

From Font to Clipping Geometry
If you want to obtain character outline geometries in a Windows Store
application, the Windows Runtime API won’t help. You’ll have to use
DirectX. Th e GetGlyphRunOutline method of IDWriteFontFace
writes the character outlines into an IDWriteGeometrySink (which
is the same as an ID2D1Simplifi edGeometrySink) that defi nes (or
contributes to) an ID2D1PathGeometry object.

Figure 1 shows the constructor of a rendering class in a
Windows 8.1 application named ClipToText that I created from the
DirectX App (XAML) template. Th e project includes the distribut-
able Miramonte Bold font fi le, and the code shows how to convert
a glyph run to a path geometry. As usual, I’ve removed the checks
of errant HRESULT values for purposes of clarity.

Although the code in Figure 1 obtains an IDWriteFontFace object
from a privately loaded font, applications can also obtain font face
objects from fonts in font collections, including the system font
collection. Th e code in Figure 1 specifi es glyph indices explicitly cor-
responding to the text “CLIP,” but you can also derive glyph indices
from a Unicode character string using the GetGlyphIndices method.

Character Outline Geometries Gone Wild

DIRECTX FACTOR CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/mag201312DXF.

ClipToTextRenderer::ClipToTextRenderer(
 const std::shared_ptr<DeviceResources>& deviceResources) :
 m_deviceResources(deviceResources)
{
 // Get font file
 ComPtr<IDWriteFactory> factory = m_deviceResources->GetDWriteFactory();
 String^ filePath = Package::Current->InstalledLocation->Path +
 "\\Fonts\\Miramob.ttf";
 ComPtr<IDWriteFontFile> fontFile;
 factory->CreateFontFileReference(filePath->Data(), nullptr, &fontFile);

 // Get font face
 ComPtr<IDWriteFontFace> fontFace;
 factory->CreateFontFace(DWRITE_FONT_FACE_TYPE_TRUETYPE,
 1,
 fontFile.GetAddressOf(),
 0,
 DWRITE_FONT_SIMULATIONS_NONE,
 &fontFace);

 // Create path geometry and open it
 m_deviceResources->GetD2DFactory()->CreatePathGeometry(&m_clipGeometry);

 ComPtr<ID2D1GeometrySink> geometrySink;
 m_clipGeometry->Open(&geometrySink);

 // Get glyph run outline ("CLIP")
 uint16 glyphIndices [] = { 0x0026, 0x002F, 0x002C, 0x0033 };
 float emSize = 96.0f; // 72 points, arbitrary in this program

 fontFace->GetGlyphRunOutline(emSize,
 glyphIndices,
 nullptr,
 nullptr,
 ARRAYSIZE(glyphIndices),
 false,
 false,
 geometrySink.Get());

 // Don't forget to close the geometry sink!
 geometrySink->Close();

 CreateDeviceDependentResources();
}

Figure 1 Converting a Glyph Run to a Path Geometry

These days, we take for granted
the continuous scalability of
onscreen fonts, as well as the

ability to rotate or skew text using
graphical transforms.

http://archive.msdn.microsoft.com/mag201312DXF

75December 2013msdnmagazine.com

Once you’ve created an ID2D1PathGeometry object, you can
use it for fi lling (in which case the result looks just like rendered
text), drawing (which renders just the outlines), or clipping.
Figure 2 shows a Render method that scales and translates the path
geometry to defi ne a clipping region that encompasses the entire
display area. Keep in mind the path geometry has both negative
and positive coordinates. Th e (0, 0) origin of the path geometry
corresponds to the baseline at the start of the glyph run.

Th e Render method then draws a series of lines that radiate from
the center of the screen, creating the image shown in Figure 3.

Deeper into Geometry Defi nitions
Generally speaking, a path geometry is a collection of fi gures, each
of which is a collection of connected segments. Th ese segments
take the form of straight lines, quadratic and cubic Bézier curves,
and arcs (which are curves on the circumference of an ellipse). A
fi gure can be either closed, in which case the endpoint is connected
to the start point, or open.

The GetGlyphRunOutline method writes the glyph out-
lines into an IDWriteGeometrySink, which is the same as an

ID2D1Simplifi edGeometrySink. Th is in turn is the parent class to
a regular ID2D1GeometrySink. Using ID2D1Simplifi edGeometry-
Sink instead of ID2D1GeometrySink implies that the resultant
path geometry contains fi gures consisting solely of straight lines
and cubic Bézier curves—no quadratic Bézier curves and no arcs.

For font character outlines, these segments are always closed—
that is, the endpoint of the fi gure connects to the start point. Th e
path geometry created in the ClipToText program for the characters
“CLIP” consists of fi ve fi gures—one fi gure for each of the fi rst three
letters and two for the last letter to account for the inside of the
upper part of the P.

Perhaps you’d like access to the actual lines and Bézier curves
that make up the path geometry so you can manipulate them in
weird and unusual ways. At fi rst, this doesn’t seem possible. Once an
ID2D1PathGeometry object has been initialized with data, the object
is immutable, and the interface provides no way to obtain the contents.

Figure 3 The ClipToText Display

Figure 2 Clipping with a Path Geometry

bool ClipToTextRenderer::Render()
{
 if (!m_needsRedraw)
 return false;

 ID2D1DeviceContext* context = m_deviceResources->GetD2DDeviceContext();
 Windows::Foundation::Size outputBounds = m_deviceResources->GetOutputBounds();

 context->SaveDrawingState(m_stateBlock.Get());
 context->BeginDraw();
 context->Clear(ColorF(ColorF::DarkBlue));

 // Get the clip geometry bounds
 D2D_RECT_F geometryBounds;
 m_clipGeometry->GetBounds(D2D1::IdentityMatrix(), &geometryBounds);

 // Define transforms to center and scale clipping geometry
 Matrix3x2F orientationTransform =
 m_deviceResources->GetOrientationTransform2D();
 Matrix3x2F translateTransform =
 Matrix3x2F::Translation(SizeF(-geometryBounds.left, -geometryBounds.top));

 float scaleHorz = outputBounds.Width /
 (geometryBounds.right - geometryBounds.left);
 float scaleVert = outputBounds.Height /
 (geometryBounds.bottom - geometryBounds.top);
 Matrix3x2F scaleTransform = Matrix3x2F::Scale(SizeF(scaleHorz, scaleVert));

 // Set the geometry for clipping
 ComPtr<ID2D1Layer> layer;
 context->CreateLayer(&layer);

 context->PushLayer(

 LayerParameters(InfiniteRect(),
 m_clipGeometry.Get(),
 D2D1_ANTIALIAS_MODE_PER_PRIMITIVE,
 translateTransform * scaleTransform
 * orientationTransform), layer.Get());

 // Draw lines radiating from center
 translateTransform = Matrix3x2F::Translation(outputBounds.Width / 2,
 outputBounds.Height / 2);

 for (float angle = 0; angle < 360; angle += 1)
 {
 Matrix3x2F rotationTransform = Matrix3x2F::Rotation(angle);
 context->SetTransform(rotationTransform * translateTransform *
 orientationTransform);
 context->DrawLine(Point2F(0, 0),
 Point2F(outputBounds.Width / 2, outputBounds.Height / 2),
 m_whiteBrush.Get(), 2);
 }

 context->PopLayer();

 HRESULT hr = context->EndDraw();
 if (hr != D2DERR_RECREATE_TARGET)
 {
 DX::ThrowIfFailed(hr);
 }

 context->RestoreDrawingState(m_stateBlock.Get());
 m_needsRedraw = false;
 return true;
}

If you want to obtain character
outline geometries in a Windows
Store application, the Windows

Runtime API won’t help.

www.msdnmagazine.com

msdn magazine76 DirectX Factor

Th ere is a solution, though: You can write your own class that
implements the ID2D1Simplifi edGeometrySink interface, and pass
an instance of that class to the GetGlyphRunOutline method. Your
custom implementation of ID2D1Simplifi edGeometrySink must
contain methods named BeginFigure, AddLines, AddBeziers and
EndFigure (among a few others). In these methods you can save
the entire path geometry in a tree of structures you can defi ne.

Th is is what I did. Th e structures I defi ned for saving the contents
of a path geometry are shown in Figure 4. Th ese structures show how
a path geometry is a collection of path fi gure objects, and each path
fi gure is a collection of connected segments consisting of straight
lines and cubic Bézier curves.

My implementation of the ID2D1Simplifi edGeometrySink is
called InterrogableGeometrySink, so named because it contains
a method that returns the resultant geometry as a PathGeometry-
Data object. Th e most interesting parts of InterrogableGeometry-
Sink are shown in Figure 5.

Simply pass an instance of InterrogableGeometrySink to
GetGlyphRunOutline to get the PathGeometryData object that
describes the character outlines. PathGeometryData also contains
a method named GeneratePathGeometry that uses the tree of
fi gures and segments to create an ID2D1PathGeometry object you
can then use for drawing, fi lling or clipping. Th e diff erence is that
prior to calling GeneratePathGeometry, your program can modify
the points that make up the line and Bézier segments. You can even
add or remove segments or fi gures.

Th e InterrogableGeometrySink class and the supporting structures
are part of a project named RealTextEditor; by “Real” I mean you can
edit the text outlines instead of the text itself. When the program comes
up, it displays the large characters “DX.” Tap or click the screen to toggle
edit mode. In edit mode, the characters are outlined and dots appear.

Green dots mark the beginnings and ends of line segments and
Bézier segments. Red dots are Bézier control points. Control points
are connected to corresponding endpoints with red lines. You
can grab those dots with the mouse—they’re a little too small for
fi ngers—and drag them, distorting the text characters in weird
ways, as Figure 6 demonstrates.

RealTextEditor has no facility to save your custom character
geometries, but you could certainly add one. The intent of this
program isn’t really to edit font characters, but to clearly illustrate
how font characters are defi ned by a series of straight lines and Bézier
curves connected into closed fi gures—in this case three fi gures, two
for the inside and outside of the D and another for the X.

Algorithmic Manipulations
Once you have a path geometry defi nition in the form of structures
such as PathGeometryData, PathFigureData, and PathSegmentData,
you can also manipulate the individual points algorithmically,
twisting and turning characters in whatever way you please,
perhaps creating an image such as that shown in Figure 7.

struct PathSegmentData
{
 bool IsBezier;
 std::vector<D2D1_POINT_2F> Points; // for IsBezier == false
 std::vector<D2D1_BEZIER_SEGMENT> Beziers; // for IsBezier == true
};

struct PathFigureData
{
 D2D1_POINT_2F StartPoint;
 D2D1_FIGURE_BEGIN FigureBegin;
 D2D1_FIGURE_END FigureEnd;
 std::vector<PathSegmentData> Segments;
};

struct PathGeometryData
{
 D2D1_FILL_MODE FillMode;
 std::vector<PathFigureData> Figures;

 Microsoft::WRL::ComPtr<ID2D1PathGeometry>
 GeneratePathGeometry(ID2D1Factory * factory);
};

Figure 4 Structures for Saving the Contents of a Path Geometry

void InterrogableGeometrySink::BeginFigure(D2D1_POINT_2F startPoint,
 D2D1_FIGURE_BEGIN figureBegin)
{
 m_pathFigureData.StartPoint = startPoint;
 m_pathFigureData.FigureBegin = figureBegin;
 m_pathFigureData.Segments.clear();
}

void InterrogableGeometrySink::AddLines(const D2D1_POINT_2F *points,
 UINT pointsCount)
{
 PathSegmentData polyLineSegment;
 polyLineSegment.IsBezier = false;
 polyLineSegment.Points.assign(points, points + pointsCount);
 m_pathFigureData.Segments.push_back(polyLineSegment);
}

void InterrogableGeometrySink::AddBeziers(const D2D1_BEZIER_SEGMENT *beziers,
 UINT beziersCount)
{
 PathSegmentData polyBezierSegment;
 polyBezierSegment.IsBezier = true;
 polyBezierSegment.Beziers.assign(beziers, beziers + beziersCount);
 m_pathFigureData.Segments.push_back(polyBezierSegment);
}

void InterrogableGeometrySink::EndFigure(D2D1_FIGURE_END figureEnd)
{
 m_pathFigureData.FigureEnd = figureEnd;
 m_pathGeometryData.Figures.push_back(m_pathFigureData);
}

HRESULT InterrogableGeometrySink::Close()
{
 // Assume that the class accessing the geometry sink knows what it's doing
 return S_OK;
}

// Method for this implementation
PathGeometryData InterrogableGeometrySink::GetPathGeometryData()
{
 return m_pathGeometryData;
}

Figure 5 Most of the InterrogableGeometrySink Class

Generally speaking, a path
geometry is a collection of fi gures,

each of which is a collection of
connected segments.

77December 2013msdnmagazine.com

Well, not quite. Th e image shown in Figure 7 is not possible using
a PathGeometryData object generated from the Interrogable-
GeometrySink class I’ve just shown you. In many simple sans-serif
fonts, the capital H consists of 12 points connected by straight lines.
If you’re dealing solely with those points, there’s no way you can
modify them so the straight lines of the H become curves.

However, you can solve that problem with an enhanced version
of InterrogableGeometrySink called InterpolatableGeometrySink.
Whenever this new class encounters a straight line in the AddLines
method, it breaks that line into multiple smaller lines. (You can
control this feature with a constructor argument.) Th e result is a
completely malleable path geometry defi nition.

Th e OscillatingText program responsible for the image in Figure 7
actually swings the interior of the characters back and forth, much
like a hula dance. Th is algorithm is implemented in the Update
method in the rendering class. Two copies of a PathGeometryData
are retained: Th e source (identifi ed as “src”) describes the original
text outline, and the destination (“dst”) contains modifi ed points
based on the algorithm. Th e Update method concludes by calling
GeneratePathGeometry on the destination structure, and that’s
what the program displays in its Render method.

Sometimes when algorithmically altering a path geometry, you
might prefer working solely with lines rather than Bézier curves.
You can do that. You can defi ne an ID2D1PathGeometry object

Figure 8 The TripleAnimatedOutline XAML File

<Page
 x:Class="TripleAnimatedOutline.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:TripleAnimatedOutline"
 xmlns:dwritelib="using:SimpleDWriteLib">

 <Page.Resources>
 <dwritelib:TextGeometryGenerator x:Key="geometryGenerator"
 Text="Outline"
 FontFamily="Times New Roman"
 FontSize="192"
 FontStyle="Italic" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <ListBox Grid.Column="0"
 ItemsSource="{Binding Source={StaticResource geometryGenerator},
 Path=FontFamilies}"

 SelectedItem="{Binding Source={StaticResource geometryGenerator},
 Path=FontFamily,
 Mode=TwoWay}" />
 <Path Name="path"
 Grid.Column="1"
 Data="{Binding Source={StaticResource geometryGenerator}, Path=Geometry}"
 Fill="LightGray"
 StrokeThickness="6"
 StrokeDashArray="0 2"
 StrokeDashCap="Round"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Path.Stroke>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0"
 SpreadMethod="Reflect">

 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 <LinearGradientBrush.RelativeTransform>
 <TranslateTransform x:Name="brushTransform" />
 </LinearGradientBrush.RelativeTransform>
 </LinearGradientBrush>
 </Path.Stroke>

 <Path.Projection>
 <PlaneProjection x:Name="projectionTransform" />
 </Path.Projection>
 </Path>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="path"
 Storyboard.TargetProperty="StrokeDashOffset"
 EnableDependentAnimation="True"
 From="0" To="2" Duration="0:0:1"
 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="brushTransform"
 Storyboard.TargetProperty="X"
 EnableDependentAnimation="True"
 From="0" To="2" Duration="0:0:3.1"
 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="projectionTransform"
 Storyboard.TargetProperty="RotationY"
 EnableDependentAnimation="True"
 From="0" To="360" Duration="0:0:6.7"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

Figure 7 The OscillatingText Program Figure 6 Modifi ed Character Outlines in RealTextEditor

www.msdnmagazine.com

msdn magazine78 DirectX Factor

from a call to GetGlyphRunOutline, and then call Simplify on that
ID2D1PathGeometry using the D2D1_GEOMETRY_SIMPLI-
FICATION_OPTION_LINES constant and an Interpolatable-
GeometrySink instance.

From DirectX to the Windows Runtime
If you’re acquainted with the Windows Runtime API, the
PathGeometryData, PathFigureData and PathSegmentData
structures in Figure 4 probably seem very familiar. The
Windows::Xaml::UI::Media namespace contains similar classes
named PathGeometry, PathFigure and PathSegment, from which
PolyLineSegment and PolyBezierSegment derive. Th ese are the
classes you use to defi ne a path geometry in the Windows Runtime,
which you normally render using the Path element.

Of course, the similarity shouldn’t be surprising. After all,
the Windows Runtime is built on DirectX. What this similarity
implies is that you can write a class that implements ID2D1Simpli-
fi edGeometrySink to build a tree of PathGeometry, PathFigure,
PolyLineSegment and PolyBezierSegment objects. Th e resultant
PathGeometry object is directly usable by a Windows Runtime
application and can be referenced in a XAML fi le. (You could also
write an ID2D1Simplifi edGeometrySink implementation that gener-
ates a XAML representation of a PathGeometry and insert that into
a XAML fi le in any XAML-based environment, such as Silverlight.)

Th e TripleAnimatedOutline solution demonstrates this technique.
Th e solution contains a Windows Runtime Component project
named SimpleDWriteLib that contains a public ref class named
TextGeometryGenerator, which provides access to the system fonts
and generates outline geometries based on these fonts. Because

this ref class is part of a Windows Runtime Component, the public
interface consists solely of Windows Runtime types. I made that
public interface consist mostly of dependency properties so it could
be used with bindings in a XAML fi le. Th e SimpleDWriteLib proj-
ect also contains a private class named InteroperableGeometrySink
that implements the ID2D1Simplifi edGeometrySink interface and
constructs a Windows Runtime PathGeometry object.

You can then use this PathGeometry with a Path element. But
watch out: When the Windows Runtime layout engine computes
the size of a Path element for layout purposes, it only uses positive
coordinates. To make the PathGeometry easier to use in a XAML
fi le, TextGeometryGenerator defi nes a DWRITE_GLYPH_OFFSET
that modifi es coordinates based on the capHeight fi eld of the font
metrics structure. Th is serves to adjust the geometry coordinates
to begin at the top of the font characters rather than at the origin,
and to eliminate most negative coordinates.

To demonstrate the interoperability of the SimpleDWriteLib
component, the TripleAnimatedOutline application project is
written in Visual Basic. But don’t worry: I didn’t have to write
any Visual Basic code. Everything I added to this project is in the
MainPage.xaml fi le shown in Figure 8. Th e ListBox displays all the
fonts on the user’s system, and an outline geometry based on the
selected font is animated in three ways:

• Dots travel around the characters;
• A gradient brush sweeps past the text;
• A projection transform spins it around the vertical axis.

A second program also uses SimpleDWriteLib. Th is is RippleText,
a C# program that uses a CompositionTarget.Rendering event
to perform an animation in code. Similar to OscillatingText,
RippleText obtains two identical PathGeometry objects. It uses
one as an immutable source and the other as a destination whose
points are algorithmically transformed. The algorithm involves
an animated sine curve that’s applied to the vertical coordinates,
resulting in distortions such as those shown in Figure 9.

Although the examples I’ve shown here are extreme in many
ways, you certainly have the option to create subtler effects. I
suspect that much of the WordArt feature in Microsoft Word is
built around techniques involving the manipulation of character
outlines, so that might provide some inspiration.

You can also integrate these techniques into more normal text-display
code based on IDWriteTextLayout. This interface has a method
named Draw that accepts an instance of a class that implements the
IDWriteTextRenderer interface. Th at’s a class you’ll write yourself to
get access to the DWRITE_GLYPH_RUN object that describes the
text to be rendered. You can make changes to the glyph run and then
render the modifi ed version, or you can generate the character outline
geometries at that point and modify the outlines prior to rendering.

Much of the power of DirectX lies in its fl exibility and adapt-
ability to diff erent scenarios.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (Microsoft Press, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
Jim Galasyn (Microsoft)Figure 9 The RippleText Display

To demonstrate the interoperability
of the SimpleDWriteLib component,

the TripleAnimatedOutline
application project is written

in Visual Basic.

www.charlespetzold.com

HTML5+jQUERY
Any App - Any Browser - Any Platform - Any Device

Download Your Free Trial!
www.infragistics.com/igniteui-trial

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC +61 3 9982 4545
Copyright 1996-2013 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.

The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Untitled-1 1 6/3/13 10:01 AM

http://www.infragistics.com/igniteui-trial

msdn magazine80

When I want to impress a client, I take him to dinner at the Harvard
Faculty Club. It’s an excellent place, except for some of the low-life scum
it has as members. And the club has pretty much forgiven me for that
unfortunate incident with the chandelier years ago. Aft erward I take
him on a campus tour, which includes the Harvard Science Center,
where I taught for years before the school moved me to a video studio.

Th e Science Center lobby contains the historic Harvard Mark I
calculator (Figure 1), widely considered the world’s fi rst general-
purpose programmable computation machine. It operated
electro-mechanically rather than being purely electronic, with
instructions fed in via paper tape. It was dedicated in August of
1944, about a year before the end of the Second World War.

Th e interpretive signs on the display are boring, even by academic
standards, and downplay the fact that the very fi rst thing this fi rst
computer did was calculate implosions as part of the Manhattan
Project. It was only a year aft er World War II had ended that pro-
grammers working with the Mark I learned that the computer had
helped drive the design of the atomic bomb dropped on Nagasaki.

It’s hard to be indiff erent to the atomic bombing that ended the
Second World War. If you believe it to be the greatest war crime
ever committed, then this machine should be preserved as a horri-
ble reminder of technology servicing evil, as Germany to its credit
has preserved its death camps and Japan to its shame has not. On
the other hand, historian William Manchester, badly wounded as
a Marine sergeant in the invasion of Okinawa, wrote: “You think
of the lives which would have been lost in an invasion of Japan’s
home islands—a staggering number of American lives but
millions more of Japanese—and you thank God for the atomic bomb”
(“Goodbye, Darkness; A Memoir of the Pacifi c War,” Little Brown,
1979). If you agree with Manchester, then the world contains few
artifacts that have saved as many lives as this one (though Turing’s
Enigma-decrypting bombe [bit.ly/2KB0x] springs to mind), and
its display should be a shrine.

Th e current display is neither. It’s a somewhat interesting artifact
to show my fellow geeks. We chuckle about how far we’ve come:
this thing the size of a boxcar had less computing power than my
toothbrush has today. Th en my client and I go off and discuss how
he can pay me more money. (I like that part.)

Harvard is missing an astounding educational opportunity here.
I suspect that’s because Harvard doesn’t want to get into any con-
troversy, having had enough when Larry Summers was president.

Sometimes I swing by the Science Center after teaching my
evening class and just look at the Mark I and think about the bomb.

Should we have dropped it? Should we have even developed it?
I contemplate Harry Turtledove’s alternate history novel “In the
Presence of Mine Enemies” (Roc, 2004), where the Nazis got the
bomb fi rst. In the book, Turtledove describes a museum in Berlin
that contains “behind thick leaded glass, the twisted radioactive
remains of the Liberty Bell, excavated by expendable prisoners
from the ruins of Philadelphia.” Partly because of the men (and
women—Grace Hopper was this machine’s third programmer)
who ran this beast, that timeline didn’t happen. Th at suits me, and
I sleep. And yet, and yet.

J. Robert Oppenheimer was the director of the Los Alamos lab
that produced the fi rst atomic bomb. He later wrote of those times:
“In some sort of crude sense which no vulgarity, no humor, no
overstatement can quite extinguish, the physicists have known sin;
and this is a knowledge which they cannot lose.”

Late at night, when the laughing undergraduates with their
iPhones have drift ed off in search of beer and sex, the lights are
dim and the Science Center is quiet. I swear I hear the Mark I’s
relays clicking as it iterates through ghostly calculations, awaiting a
HALT instruction that will never come from operators long dead.
Am I hearing the faint echo of our industry’s own original sin?

DAVID S. PLATT teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Original Sin?

DON’T GET ME STARTED DAVID S. PLATT

Figure 1 The Harvard Mark I calculator was used in the design
of the atomic bomb dropped on Nagasaki.

www.rollthunder.com

Untitled-2 1 11/7/13 10:05 AM

http://marketdash.componentone.com/redirect.ashx?rdtl=2884

Untitled-3 1 10/31/13 11:04 AM

www.syncfusion.com/BIdashboards

	Back
	Print
	MSDN Magazine, December 2013
	Cover Tip
	Front page
	Back page

	Contents
	WINDOWS AZURE INSIDER: Meet the Demands of Modern Gaming with Windows Azure
	TEST RUN: Radial Basis Function Network Training
	Entity Framework 6: The Ninja Edition
	CORS Support in ASP.NET Web API 2
	Cross-Browser, Coded UI Testing with Visual Studio 2013
	An Introduction to Model-Based Testing and Spec Explorer
	Freedom of Information Act Data at Your Fingertips
	Rendering PDF Content in Windows Store Apps
	THE WORKING PROGRAMMER: Getting Started with Oak: A Different Approach
	MODERN APPS: Everything You Need to Know About the WinJS ListView Control
	DIRECTX FACTOR: Character Outline Geometries Gone Wild
	DON’T GET ME STARTED: Original Sin?

