

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2010934433

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editors: Roger LeBlanc and John Pierce
Editorial Production: MPS Limited, a Macmillan Company
Technical Reviewer: Todd Meister; Technical Review Services provided

by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X17-13257

 iii

Table of Contents
Introduction . vii

Part I Moving from Microsoft Visual Studio 2003 to
Visual Studio 2010

 1 From 2003 to 2010: Business Logic and Data 3
Application Architecture . 3
Plan My Night Data in Microsoft Visual Studio 2003 . 5
Data with the Entity Framework in Visual Studio 2010 6

EF: Importing an Existing Database . 7
EF: Model First . 16
POCO Templates . 22

Putting It All Together . 27
Getting Data from the Database . 27
Getting Data from the Bing Maps Web Services 32
Parallel Programming . 35
AppFabric Caching . 36

Summary . 38

 2 From 2003 to 2010: Designing the Look and Feel 39
Introducing the PlanMyNight .Web Project . 39

Running the Project . 42
Creating the Account Controller . 43

Implementing the Functionality . 44
Creating the Account View . 59
Using the Designer View to Create a Web Form . 66
Extending the Application with MEF . 74

Print Itinerary Add-in Explained . 77
Summary . 79

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

iv Table of Contents

 3 From 2003 to 2010: Debugging an Application 81
Visual Studio 2010 Debugging Features . 81

Managing Your Debugging Session . 82
New Threads Window . 100

Summary . 101

 4 From 2003 to 2010: Deploying an Application 103
Visual Studio 2010 Web Deployment Packages . 103

Visual Studio 2010 and Web Deployment Packages 104
Summary . 113

Part II Moving from Microsoft Visual Studio 2005 to
Visual Studio 2010

 5 From 2005 to 2010: Business Logic and Data 117
Application Architecture . 117
Plan My Night Data in Microsoft Visual Studio 2005 119
Data with the Entity Framework in Visual Studio 2010 121

EF: Importing an Existing Database . 122
EF: Model First . 131
POCO Templates . 138

Putting It All Together . 142
Getting Data from the Database . 142
Getting Data from the Bing Maps Web Services 146
Parallel Programming . 149
AppFabric Caching . 150

Summary . 152

 6 From 2005 to 2010: Designing the Look and Feel 153
Introducing the PlanMyNight .Web Project . 153

Running the Project . 156
Creating the Account Controller . 157

Implementing the Functionality . 158
Creating the Account View . 173
Using the Designer View to Create a Web Form . 180
Extending the Application with MEF . 188

Print Itinerary Add-in Explained . 190
Summary . 193

 7 From 2005 to 2010: Debugging an Application 195
Visual Studio 2010 Debugging Features . 195

 Table of Contents v

Managing Your Debugging Session . 196
New Threads Window . 213

Summary . 214

Part III Moving from Microsoft Visual Studio 2008 to
Visual Studio 2010

 8 From 2008 to 2010: Business Logic and Data 217
Application Architecture . 217
Plan My Night Data in Microsoft Visual Studio 2008 219
Data with the Entity Framework in Visual Studio 2010 222

EF: Importing an Existing Database . 222
EF: Model First . 232
POCO Templates . 239

Putting It All Together . 243
Getting Data from the Database . 243
Parallel Programming . 247
AppFabric Caching . 248

Summary . 250

 9 From 2008 to 2010: Designing the Look and Feel 251
Introducing the PlanMyNight .Web Project . 251

Running the Project . 254
Creating the Account Controller . 255

Implementing the Functionality . 256
Creating the Account View . 270
Using the Designer View to Create a Web Form . 278
Extending the Application with MEF . 286

Print Itinerary Add-in Explained . 288
Summary . 291

 10 From 2008 to 2010: Debugging an Application 293
Visual Studio 2010 Debugging Features . 293

Managing Your Debugging Session . 294
New Threads Window . 311

Summary . 312

Index . 315

About the Authors . 321

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 vii

Introduction
Every time we get close to a new release of Microsoft Visual Studio, we can feel the
excitement in the developer community. This release of Visual Studio is certainly no different,
but at the same time we can feel a different vibe. In November 2009, at the Microsoft
Professional Developer Conference in Los Angeles, participants had the chance to get their
hands on the latest beta of this Visual Studio incarnation. The developer community started
to see how different this release is compared to any of its predecessors. This might sound
familiar, but Visual Studio 2010 constitutes, in our opinion, a big leap and is a true game
changer in that it has been designed and developed from the core out.

Looking at posts in the MSDN forums and many other popular developer communities also
reveals that many of you—professional developers—are still working in previous versions of
Visual Studio. This book will show you how to move to Visual Studio 2010 and try to explain
why it’s a great time to make this move.

Who Is This Book For?
This book is for professional developers who are working with previous versions of Visual
Studio and are looking to make the move to Visual Studio 2010 Professional.

What Is the Book About?
The book is not a language primer, language reference, or single-technology book. It’s a
book that will help professional developers move from previous versions of Visual Studio
(starting with 2003 and moving on up). It will cover the features of Visual Studio 2010
through a sample application. It will go through a lot of the exciting new language features
and new versions of the most popular technologies without focusing on the technologies
themselves. It will instead put the emphasis on how you get to those new tools and features
from Visual Studio 2010. If you are expecting this book to thoroughly cover the new Entity
Framework or ASP.NET MVC 2, this is not the book for you. If you want to read a book where
the focus is on Visual Studio 2010 and on the reasons for moving to Visual Studio 2010, this is
the book for you.

viii Introduction

How Will This Book Help Me Move to
Visual Studio 2010?

This book will try to answer that question by using a practical approach and by going
through the new features and characteristics of Visual Studio 2010 from your point of view—
that is, from the view of someone using Visual Studio 2005, for example. To be consistent for
all points of view and to cover the same topics from all points of view, we decided to build
and use a real application that covers many areas of the product rather than show you many
disjointed little samples. This application is named Plan My Night, and we’ll describe it in
detail in this Introduction.

To help as many developers as we can, we decided to divide this book into three parts:

■ Part I is for developers moving from Visual Studio 2003

■ Part II is for developers moving from Visual Studio 2005

■ Part III is for developers moving from Visual Studio 2008

Each part will help developers understand how to use Visual Studio 2010 to create many
different types of applications and unlock their creativity independently of the version they
are using today. This book will focus on Visual Studio, but we’ll also cover many language
features that make the move even more interesting.

Each part will follow a similar approach and will include these chapters:

■ “Business Logic and Data”

■ “Designing the Look and Feel”

■ “Debugging the Application”

For example, Part I, “Moving from Microsoft Visual Studio 2003 to Visual Studio 2010,”
includes a chapter called “From 2003 to 2010: Debugging the Application.” Likewise, Part II,
“Moving from Microsoft Visual Studio 2005 to Visual Studio 2010,” includes a chapter called
“From 2005 to 2010: Debugging the Application.”

Designing the Look and Feel
These chapters will focus on comparing how the creation of the user interface has evolved
through the versions of Visual Studio. They pay attention to the design surface, code editor,
tools, and various controls, as well as compare UI validation methods. These chapters also
tackle the topic of application extensibility.

 Introduction ix

Business Logic and Data
These chapters tackle how the application is structured and demonstrate the evolution
of the tools and language features available to manage data. They describe the different
application layers. They also show how the middle tier is created across versions and how the
application will manage caching the data, as well as how to manage getting data in and from
the database.

Debugging the Application
These chapters showcase the evolution of all developer aids and debugger tools, as well as
compare the different ways to improve the performance of an application. They also discuss
the important task of unit-testing your code.

Deploying Plan My Night
Part I, for developers using Visual Studio 2003, also includes one extra chapter, “From 2003
to 2010: Deploying an Application.” This chapter goes through the different ways to package,
deploy, and deliver your application to your end users. The topic of updating and sending
new bits to your customers is also discussed. We feel that Parts II and III, for developers
using Visual Studio 2005 and Visual Studio 2008, respectively, didn’t require a chapter on
deployment.

What Is Plan My Night?
Plan My Night (PMN) is an application that is self-describing, but just to make sure we’re on
the same page, here’s the elevator pitch about PMN:

Plan My Night is designed and developed to help its users plan and manage their
evening activities. It allows the user to create events, search for activities and
venues, gather information about the activities and the venues, and finally share or
produce information about them.

x Introduction

As the saying goes, a picture is worth a thousand words, so take a look at the Plan My Night
user interface in Figure I-1.

FIGURE I-1 PMN’s user interface

In its Visual Studio 2010 version, Plan My Night is built with ASP.NET MVC 2.0 using jQuery
and Ajax for UI validation and animation. It uses the Managed Extensibility Framework (MEF)
for extending the capabilities of the application by building plug-ins: for sharing to social
networks, printing, e-mailing, and so on. We have used the Entity Framework to create the
data layer and the Windows Server AppFabric (formerly known as codename “Velocity”) to
cache data in memory sent to and obtained from the Microsoft SQL Server 2008 database.

We figure that three pictures are better than one, so take a look at Figure I-2 for a diagram
displaying the different parts and how they interact with each other and at Figure I-3 to see
the different technologies used in building Plan My Night.

 Introduction xi

FIGURE I-2 Plan My Night components and interactions

FIGURE I-3 PMN 1.0 and the different technologies used in building it

xii Introduction

Why Should You Move to Visual Studio 2010?
There are numerous reasons to move to Visual Studio 2010 Professional, and before we dive
into the book parts to examine them, we thought it would be good to list a few from a high-
level perspective (presented without any priority ordering):

■ Built-in tools for Windows 7, including multitouch and “ribbon” UI components.

■ Rich, new editor with built-in Windows Presentation Foundation (WPF) that you can
highly customize to suit how you work. Look at Figure I-4 for a sneak peek.

■ Multimonitor support.

■ New Quick Search, which helps to find relevant results just by quickly typing the first
few letters of any method, class, or property.

■ Great support for developing and deploying Microsoft Office 2010, SharePoint 2010,
and Windows Azure applications.

■ Multicore development support that allows you to parallelize your applications, and a
new specialized debugger to help you track the tasks and threads.

■ Improvements to the ASP.NET AJAX framework, core JavaScript IntelliSense support,
and the inclusion in Visual Studio 2010 of jQuery, the open-source library for DOM
interactions.

■ Multitargeting/multiframework support. Read Scott Guthrie’s blog post to get an
understanding of this great feature: http://weblogs.asp.net/scottgu/archive/2009/08/27/
multi-targeting-support-vs-2010-and-net-4-series.aspx.

■ Support for developing WPF and Silverlight applications with enhanced drag-
and-drop support and data binding. This includes great new enhancements to the
designers, enabling a higher fidelity in rendering your controls, which in turn enables
you to discover bugs in rendering before they happen at run time (which is a great
improvement from previous versions of Visual Studio). New WPF and Silverlight tools
will help you to navigate the visual tree and inspect objects in your rich WPF and
Silverlight applications.

■ Great support for Team Foundation Server (TFS) 2010 (and previous versions) using
Team Explorer. This enables you to use the data and reports that are automatically
collected by Visual Studio 2010 and track and analyze the health of your projects with
the integrated reports, as well as keep your bugs and tasks up to date.

 Introduction xiii

■ Integrated support for test-driven development. Automatic test stub generation and a
rich unit test framework are two nice test features that developers can take advantage
of for creating and executing unit tests. Visual Studio 2010 has great extensibility
points that will enable you to also use common third-party or open-source unit test
frameworks directly within Visual Studio 2010.

FIGURE I-4 Visual Studio new WPF code editor

This is just a short list of all the new features of Visual Studio 2010 Professional; you’ll
experience some of them firsthand in this book. You can get the complete list of new
features by reading the information presented in the following two locations: http://msdn.
microsoft.com/en-us/library/dd547188(VS.100).aspx and http://msdn.microsoft.com/en-us/
library/bb386063(VS.100).aspx.

But the most important reason for many developers and enterprises to make the move is to
be able to concentrate on the real problems they’re facing rather than spending their time
interpreting code. You’ll see that with Visual Studio 2010 you can solve those problems faster.
Visual Studio 2010 provides you with new, powerful design surfaces and powerful tools that
help you write less code, write it faster, and deliver it with higher quality.

xiv Introduction

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at Oreilly.com:

 1. Go to http://microsoftpress.oreilly.com.

 2. In the Search box, enter the book’s ISBN or title.

 3. Select your book from the search results.

 4. On your book’s catalog page, under the cover image, you’ll see a list of links.

 5. Click View/Submit Errata.

You’ll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

 1

Part I

Moving from Microsoft
Visual Studio 2003 to
Visual Studio 2010
Authors Patrice Pelland, Ken Haines, and Pascal Pare

In this part:
From 2003 to 2010: Business Logic and Data (Pascal) . 3
From 2003 to 2010: Designing the Look and Feel (Ken) . 39
From 2003 to 2010: Debugging an Application (Patrice) . 81
From 2003 to 2010: Deploying an Application (Patrice) 103

Moving to Microsoft Visual Studio 2010

 3

Chapter 1

From 2003 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

■ Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model-First approach

■ Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

■ Get data from Web services

■ Learn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity”)

Application Architecture
The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let’s have a look at the high-level block model of the data model for the application, which is
shown in Figure 1-1.

4 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code con-
straints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let’s identify the contract interfaces for the major components of the PMN application:

■ IItinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

■ IActivitiesRepository allows us to search for activities (using Bing Maps Web services).

■ ICachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 1-2 shows the tables used by the PMN application.

 Chapter 1 From 2003 to 2010: Business Logic and Data 5

FIGURE 1-2 PlanMyNight database schema

Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 1-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that we can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2003
It would be straightforward to create the Plan My Night application in Visual Studio 2003
because it offers all the required tools to help you code the application. However, some of the
technologies used back then required you to write a lot more code to achieve the same goals.

In Visual Studio 2003, you could create the required data layer using ADO.NET DataSet or
DataReader to access your database. (See Figure 1-3.) This solution offers you great flexibility
because you have complete control over access to the database. On the other hand, it also
has some drawbacks:

■ You need to know the SQL syntax.

■ All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

6 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

■ You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

■ You have to manage the relations between tables yourself.

FIGURE 1-3 ADO.NET Insert query

In the next sections of this chapter, you’ll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

Data with the Entity Framework in Visual Studio 2010
The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to busi-
ness requirement of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

See Also The MSDN Data Developer Center offers a lot of resources about the ADO.NET Entity
Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.

You’ll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

 Chapter 1 From 2003 to 2010: Business Logic and Data 7

EF: Importing an Existing Database
You’ll start with an existing solution that already defines the main projects of the PMN appli-
cation. If you installed the companion content at the default location, you’ll find the solution
at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 1\Code\ExistingDatabase. Double-click the PlanMyNight.sln file.

This solution includes all the projects in the following list, as shown in Figure 1-4:

■ PlanMyNight.Data: Application data layer

■ PlanMyNight.Contracts: Entities and contracts

■ PlanMyNight.Bing: Bing Maps services

■ PlanMyNight.Web: Presentation layer

■ PlanMyNight.AppFabricCaching: AppFabric caching

FIGURE 1-4 PlanMyNight solution

The EF allows you to easily import an existing database. Let’s walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 1-5.

8 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-5 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You’ll generate the model from an existing database. Select Generate From Database and
then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 1\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 1-6.)

FIGURE 1-6 EDM Wizard database connection

 Chapter 1 From 2003 to 2010: Business Logic and Data 9

Leave the other fields in the form as is for now, and click Next.

Note You’ll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveItinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 1-7.

FIGURE 1-7 EDM Wizard: Choose Your Database Objects page

Click Finish to generate your EDM.

Fixing the Generated Data Model
You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

The PMN application requires only the navigation property ItineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You’ll also
need to rename the ItineraryActivities navigation property to Activities. Refer to Figure 1-8
for the updated model.

10 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-8 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCode1 because the table itself is already named ZipCode and the name has to be unique.
Let’s fix the property name by double-clicking it. Change the name to Code, as shown in
Figure 1-9.

FIGURE 1-9 ZipCode entity

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you’ll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view ′dbo.UserProfile′ does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you’ll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

 Chapter 1 From 2003 to 2010: Business Logic and Data 11

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With.
Choose XML (Text) Editor from the Open With dialog as shown in Figure 1-10. Click OK to
open the XML file associated with your model.

FIGURE 1-10 Open PlanMyNight.edmx in the XML Editor

Note You’ll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName, and make
the UserName property not nullable. Refer to Listing 1-1 to see the updated entity type.

LISTING 1-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
 <Key>
 <PropertyRef Name="UserName"/>
 </Key>
 <Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
 <Property Name="FullName" Type="varchar" MaxLength="500" />
 <Property Name="City" Type="varchar" MaxLength="500" />
 <Property Name="State" Type="varchar" MaxLength="500" />
 <Property Name="PreferredActivityTypeId" Type="int" />
</EntityType>

12 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

If you close the XML file and try to open the EDM Designer, you’ll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type ‘UserProfile’ has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define
an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the
XML code shown in Listing 1-2.

LISTING 1-2 UserProfile EntitySet XML Definition

 <EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"

 store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
 <DefiningQuery>
 SELECT
 [UserProfile].[UserName] AS [UserName],
 [UserProfile].[FullName] AS [FullName],
 [UserProfile].[City] AS [City],
 [UserProfile].[State] AS [State],
 [UserProfile].[PreferredActivityTypeId] as [PreferredActivityTypeId]
 FROM [dbo].[UserProfile] AS [UserProfile]
 </DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 1-11 shows the UserProfile view
in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

 Chapter 1 From 2003 to 2010: Business Logic and Data 13

FIGURE 1-11 Model Browser with the UserProfile view

Now that the view is available in the store metadata, you add the UserProfile entity and map
it to the UserProfile view. Right-click in the background of the EDM Designer, select Add,
and then choose Entity. You’ll see the dialog shown in Figure 1-12.

FIGURE 1-12 Add Entity dialog

14 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Complete the dialog as shown in Figure 1-12, and click OK to generate the entity.

You need to add the remaining properties: City, State, and PreferredActivityTypeId. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the
 property is added, set the Type, Max Length, and Unicode field values. Table 1-1 shows
the expected values for each of the fields.

TABLE 1-1  UserProfile Entity Properties

Name Type Max Length Unicode
FullName String 500 False

City String 500 False

State String 500 False

PreferredActivityTypeId Int32 NA NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 1-13.

FIGURE 1-13 Table Mapping menu item

Then select the UserProfile view from the drop-down box as shown in Figure 1-14. Ensure
that all the columns are correctly mapped to the entity properties. The UserProfile view of
our store is now accessible from the code through the UserProfile entity.

FIGURE 1-14 UserProfile mapping details

 Chapter 1 From 2003 to 2010: Business Logic and Data 15

Stored Procedure and Function Imports
The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveItinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveItineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 1-15. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

FIGURE 1-15 Add Function Import dialog

The RetrieveItinerariesWithinArea function import was added to the Model Browser as shown
in Figure 1-16.

16 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-16 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First
In the prior section, you saw how to use the EF designer to generate the model by importing
an existing database. The EF designer in Visual Studio 2010 also supports the ability to gener-
ate the Data Definition Language (DDL) file that will allow you to create a database based on
your entity model. In this section, you’ll use a new solution to learn how to generate a data-
base script from a model.

You can start from an empty model by selecting the Empty Model option from the Entity
Data Model Wizard. (See Figure 1-17.)

 Chapter 1 From 2003 to 2010: Business Logic and Data 17

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

FIGURE 1-17 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 1\Code\ModelFirst by double-clicking the PlanMyNight.sln file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 1-2.

The Entity Model designer lets you easily add an entity to your data model. Let’s add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 1-18. Rename the entity as ZipCode. Rename the Id property as Code,
and change its type to String.

18 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-18 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown
in Table 1-2.

TABLE 1-2 ZipCode Entity Properties

Name Type Fixed Length Max Length Unicode
Code String False 5 False

City String False 150 False

State String False 150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 1-19.)

 Chapter 1 From 2003 to 2010: Business Logic and Data 19

FIGURE 1-19 Add Association dialog for FK_ItineraryCommentItinerary

Set the association name to FK_ItineraryCommentItinerary, and then select the entity
and the multiplicity for each end, as shown in Figure 1-19. After the association is created,
 double-click the association line to set the Referential Constraint as shown in Figure 1-20.

FIGURE 1-20 Association Referential Constraint dialog

20 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Add the association between the ItineraryRating and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. Set the association name to
FK_ItineraryItineraryRating and then select the entity and the multiplicity for each end as
in the previous step, except set the first end to ItineraryRating. Double-click on the associa-
tion line, and set the Referential Constraint as shown in Figure 1-20. Note that the Dependent
field will read ItineraryRating instead of ItineraryComment.

Create a new association between the ItineraryActivity and Itinerary entities. For the
FK_ItineraryItineraryActivity association, you also want to create a navigation property
and name it Activities, as shown in Figure 1-21. After the association is created, set the
Referential Constraint for this association by double-clicking on the association line.

FIGURE 1-21 Add Association dialog for FK_ItineraryActivityItinerary

Generating the Database Script from the Model
Your data model is now complete, but there is no mapping or store associated with it. The EF
designer offers you the possibility of generating a database script from our model.

Right-click on the designer surface, and choose Generate Database From Model as shown in
Figure 1-22.

 Chapter 1 From 2003 to 2010: Business Logic and Data 21

FIGURE 1-22 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connec-
tion information to translate the model types to the database type and to generate a DDL
script targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 1\Code\ModelFirst\Data\
PlanMyNight.mdf. (See Figure 1-23.)

FIGURE 1-23 Generate a script database connection

22 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After your connection is configured, click Next to get to the final page of the wizard as
shown in Figure 1-24. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file
is added to your project. The DDL script will generate the primary and foreign key constraints
for your model.

FIGURE 1-24 Generated T-SQL file

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates
The EDM Designer uses T4 templates to generate the code for the entities. So far, we have
let the designer create the entities using the default templates. You can take a look at the
code generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.
edmx. The generated entities are based on the EntityObject type and decorated with
 attributes to allow the EF to manage them at run time.

 Chapter 1 From 2003 to 2010: Business Logic and Data 23

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about code generation in Visual Studio 2010, visit Code Generation and
Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 1-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO .NET POCO Entity Generator
Let’s re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 1\Code\ExistingDatabase\PlanMyNight.sln file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 1-25, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

FIGURE 1-25 Add New Item dialog

24 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 1-26. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

FIGURE 1-26 Added templates

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 1-3
shows the POCO version of the ZipCode class.

LISTING 1-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
 public partial class ZipCode
 {
 #region Primitive Properties
 public virtual string Code
 {
 get;
 set;
 }
 public virtual string City
 {
 get;
 set;
 }
 public virtual string State
 {
 get;
 set;
 }
 #endregion
 }
}

 Chapter 1 From 2003 to 2010: Business Logic and Data 25

Tip Partial classes were added to C# 2.0. They allow splitting the implementation of a class over
multiple files, where each file can contain one or more members and the files are combined
when the application is compiled. Partial classes are really useful if you need to add code to
automatically generated classes because the code is added outside of the generated file and it
will not be overridden if the class is regenerated.

Tip C# 3.0 introduced a new feature called automatic properties. The backing field is created at
compile time if the compiler finds empty get or set blocks.

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you’ll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project
We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2003 Even though it was possible to write add-ins in Visual Studio 2003 to
generate code based on a database, it was not easy and you had to maintain these tools. The
EF uses T4 templates to generate both the database schema and the code. These templates can
 easily be customized to your needs.

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-
click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.
Contracts project, and select Paste. The result is shown in Figure 1-27.

26 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 1-27 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the
EDMX file.

Open the PlanMyNight.tt template, and locate the following line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data
project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated when you save the template.

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities
namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;
using System.Data.Objects;
using System.Data.EntityClient;
using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

 Chapter 1 From 2003 to 2010: Business Logic and Data 27

Putting It All Together
Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you’ll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you’ll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 3.

Getting Data from the Database
At the beginning of this chapter, we decided to group the operations on the Itinerary entity
in the IItinerariesRepository repository interface. Some of these operations are

■ Searching for Itinerary by Activity

■ Searching for Itinerary by ZipCode

■ Searching for Itinerary by Radius

■ Adding a new Itinerary

Let’s take a look at the corresponding methods in the IItinerariesRepository interface:

■ SearchByActivity allows searching for itineraries by activity and returning a page of
data.

■ SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

■ SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

■ Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 1\Code\Final by double-clicking the PlanMyNight.sln file.

28 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
IItinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Note LINQ stands for Language Integrated Query and was introduced in the .NET Framework
3.5. It adds native data-querying capability to the .NET Framework so that you don’t have to
worry about learning or maintaining custom SQL queries. LINQ allows you to use strongly typed
objects, and Visual Studio IntelliSense lets you select the properties or methods that are in the
current context as shown in Figure 1-28. To learn more about LINQ, visit the .NET Framework
Developer Center (http://msdn.microsoft.com/en-us/netframework/aa904594.aspx).

FIGURE 1-28 IntelliSense support for LINQ queries

Navigate to the SearchByActivity function definition. This method must return a set of
i tineraries where the IsPublic flag is set to true and where one of their activities has the same
activityId that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Visual Studio 2003 Implementing each method to retrieve the itinerary in Visual Studio 2003
would have required writing tailored SQL. With the EF and LINQ, any query becomes trivial and
changes can be easily implemented at the code level!

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 1-4.
Add the highlighted code to the SearchByActivity method body.

 Chapter 1 From 2003 to 2010: Business Logic and Data 29

Visual Studio 2003 Generics were added to version 2.0 of the C# language and the common
language runtime (CLR). Generics introduce the concept of type parameters, which make it
 possible to design classes and methods that defer the specification of types until the class or
method is declared. They are often used with a collection, where the type parameter is used as a
placeholder for the type of objects that it stores.

PMN uses generics to store results of different types. With Visual Studio 2003, you could have
written such a class by using an ArrayList:

public class PagingResult

{

 private ArrayList items;

 ...

 public PagingResult(Array items)

 {

 this.items = new ArrayList(items);

 }

 ...

 public ArrayList Items

 {

 get { return this.items; }

 }

}

To use this class in your code, you always have to know the type of objects it contains and
 evaluate the cost or risk of runtime casts or boxing operations. Using a generic type parameter T,
you can write a type-safe class so that the compiler will prevent any invalid use at build time:

public class PagingResult<T>

{

 public PagingResult(IEnumerable<T> items)

 {

 this.Items = new List<T>(items);

 }

 ...

 public ICollection<T> Items { get; }

}

To learn more about generics, visit Generics in the .NET Framework (http://msdn.microsoft.com/
en-us/library/ms172192.aspx).

30 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

LISTING 1-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.ActivityId == activityId)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query,
int page, int pageSize)
{
 int rowCount = rowCount = query.Count();
 if (pageSize > 0)
 {
 query = query.Skip((page - 1) * pageSize)
 .Take(pageSize);
 }
 var result = new PagingResult<Itinerary>(query.ToArray())
 {
 PageSize = pageSize,
 CurrentPage = page,
 TotalItems = rowCount
 };
 return result;
}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing IQueryable instead of IEnumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it
also adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy
to implement as shown in Listing 1-5. Add the highlighted code to the SearchByZipCode
 method body.

 Chapter 1 From 2003 to 2010: Business Logic and Data 31

LISTING 1-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeId, string zip,
 int pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.TypeId == activityTypeId &&
t.Zip == zip)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

The SearchByRadius function calls the RetrieveItinerariesWithinArea import function that
was mapped to a stored procedure. It then loads the activities for each itinerary found. You
can copy the highlighted code in Listing 1-6 to the SearchByRadius method body in the
ItinerariesRepository.cs file.

LISTING 1-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeId,
 double longitude, double latitude, double radius, int pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 // Stored Procedure with output parameter
 var totalOutput = new ObjectParameter("total", typeof(int));
 var items = ctx.RetrieveItinerariesWithinArea(activityTypeId, latitude,
 longitude, radius, pageSize, pageNumber, totalOutput).ToArray();

 foreach (var item in items)
 {
 item.Activities.ToList().AddRange(this.Retrieve(item.Id).Activities);
 }

 int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

 return new PagingResult<Itinerary>(items)

32 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 {
 TotalItems = total,
 PageSize = pageSize,
 CurrentPage = pageNumber
 };
 }
}

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 1-7 to the Add method body.

LISTING 1-7 Add Implementation

public void Add(Itinerary itinerary)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.Itineraries.AddObject(itinerary);
 ctx.SaveChanges();
 }
}

There you have it! You have completed the ItinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the ItinerariesRepository implementation should all succeed.

Getting Data from the Bing Maps Web Services
PMN relies on the Bing Maps services to allow the user to search for activities to add to
her itineraries. To get a Bing Maps Key to use in the PMN application, you need to create a
Bing Maps Developer Account. You can create a free developer account on the Bing Maps
Account Center (https://www.bingmapsportal.com/).

See Also Microsoft Bing Maps Web services is a set of programmable Simple Object Access
Protocol (SOAP) services that allow you to match addresses to the map, search for points of
interest, integrate maps and imagery, return driving directions, and incorporate other location
intelligence into your Web application. You can learn more about these services by visiting the site
for the Bing Maps Web Services SDK (http://msdn.microsoft.com/en-us/library/cc980922.aspx).

Visual Studio 2003 In Visual Studio 2003, if you had to add a reference to a Web service , you
would have selected the Add Web Service Reference from the contextual menu to bring up the
Add Web Reference dialog and then added a reference to a Web service to your project. (See
Figure 1-29.)

 Chapter 1 From 2003 to 2010: Business Logic and Data 33

FIGURE 1-29 Visual Studio 2003 Add Web Reference dialog

Introduced in the .NET Framework 3.0, the Windows Communication Foundation (WCF)
 services brought the ASMX Web services and other communication technologies into
a unified programming model.

Visual Studio 2010 provides tools for working with WCF services. You can bring up the
new Add Service Reference dialog by right-clicking on a project node and selecting Add
Service Reference as shown in Figure 1-30. In this dialog, you first need to specify the
 service metadata address in the Address field and then click Go to view the available service
 endpoints. You can then specify a namespace for the generated code and click OK to add
the proxy to your project.

FIGURE 1-30 Add Service Reference dialog

34 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Tip Click the Discover button to look for WCF services in the current solution.

See Also Click the Advanced button to access the Service Reference Settings dialog. This
dialog lets you tweak the configuration of the WCF service proxy. You can add the .NET
Framework 2.0 style reference by clicking the Add Web Service button. To learn more about
these settings, visit the MSDN - Configure Service Reference Dialog Box (http://msdn.
microsoft.com/en-us/library/bb514724(VS.100).aspx).

The generated WCF proxy can be used in the same way you used the ASMX-style proxy, as
shown in Listing 1-8.

LISTING 1-8 Using a Web Service Proxy

public BingCoordinate GeocodeAddress(ActivityAddress address, string token)
{
 ...
 Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeResponse geocodeResponse
= null;
 // Make the geocode request
 using (var geocodeService = new
Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeServiceClient())
 {
 try
 {
 geocodeResponse = geocodeService.Geocode(geocodeRequest);
 geocodeService.Close();
 }
 catch
 {
 geocodeService.Abort();
 }
 }

 if (geocodeResponse != null && geocodeResponse.Results != null && geocodeResponse.
Results.Length > 0)
 {
 var location = geocodeResponse.Results[0].Locations[0];
 return new BingCoordinate { Latitude = (float)location.Latitude, Longitude =
(float)location.Longitude };
 }

 return default(BingCoordinate);
}

 Chapter 1 From 2003 to 2010: Business Logic and Data 35

Parallel Programming
With the advances in multicore computing, it is becoming more and more important
for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it’s
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary as shown in Listing 1-9. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 1-9 Activity Sequential Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 foreach (var item in itinerary.Activities.Where(i =>i.Activity == null))
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 }
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you, as seen in Listing 1-10.

LISTING 1-10 Activity Parallel Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 Parallel.ForEach(itinerary.Activities.Where(i => i.Activity == null),
 item =>
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 });
}

36 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching
PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce the usage of resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 1-31 shows the architecture for
an application implementing a caching solution at the front-end server.

FIGURE 1-31 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if
the cache is distributed across multiple computers as shown in Figure 1-32. The API provides

 Chapter 1 From 2003 to 2010: Business Logic and Data 37

simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

FIGURE 1-32 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows
Server AppFabric caching. A complete walkthrough describing how to add
Windows Server AppFabric caching to PMN is available here: PMN: Adding
Caching using Velocity (http://channel9.msdn.com/learn/courses/VS2010/ASPNET/
EnhancingAspNetMvcPlanMyNight/Exercise-1-Adding-Caching-using-Velocity/).

38 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Summary
In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

 39

Chapter 2

From 2003 to 2010: Designing the
Look and Feel

After reading this chapter, you will be able to

■ Create an ASP.NET MVC controller that interacts with the data model

■ Create an ASP.NET MVC view that displays data from the controller and validates user
input

■ Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2003 included
features such as automatic input validation and mobile controls (plus many others) to help
developers create efficient applications that were easy to manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we’ll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We’ll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the cor-
rect solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 2\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project
The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be accus-
tomed to when developing an ASP.NET Web Forms application in Visual Studio 2003. Some
items in the project (as seen in Figure 2-1) will look familiar (such as Global.asax), but others
are completely new, and some of the structure is required by the ASP.NET MVC framework.

40 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 2-1 PlanMyNight.Web project view

Here are the items required by ASP.NET MVC:

■ Areas This folder is used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

■ Controllers During request processing, the ASP.NET MVC framework looks for con-
trollers in this folder to handle the request.

■ Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvc.

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This fea-
ture allows for a base web.config file to be created but then to have build-specific web.config
files override the settings of the base at build, deployment, and run times. These files appear
under the base web.config file, as seen in Figure 2-2.

http://asp.net/mvc

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 41

FIGURE 2-2 A web.config file with build-specific files expanded

Visual Studio 2003 When working on a project in Visual Studio 2003, do you recall need-
ing to remember not to overwrite the web.config file with your debug settings? Or needing to
remember to update web.config when it was published for a retail build with the correct set-
tings? This is no longer an issue in Visual Studio 2010. The settings in the web.Release.config file
will be used during release builds to override the values in web.config, and the same goes for the
web.Debug.config in debug builds.

Other sections of the project include the following:

■ Content A collection of folders containing images, scripts, and style files

■ Helpers Includes miscellaneous classes, containing a number of extension methods,
that add functionality to types used in the project

■ Infrastructure Contains items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example: caching and controller factories)

■ ViewModels Contains data entities filled out by controller classes and used by views
to display data

42 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Running the Project
If you compile and run the project, you should see a screen similar to Figure 2-3.

FIGURE 2-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all works,
but if you attempt to save the itinerary you are working on, or if you log in with Windows Live
ID, the application will return a 404 Not Found error screen (as shown in Figure 2-4).

FIGURE 2-4 Error screen returned when logging in to the Plan My Night application

You get this error because currently the project does not include an account controller to
handle these requests.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 43

Creating the Account Controller
The AccountController class provides some critical functionality to the companion Plan My
Night application:

■ It handles signing users in and out of the application (via Windows Live ID).

■ It provides actions for displaying and updating user profile information.

To create a new ASP .NET MVC controller:

 1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

 2. Open the Add submenu, and select the Controller item.

 3. Fill in the name of the controller as AccountController.

Note Leave the Add Action Methods For Create, Update And Details Scenarios check box blank.
Selecting the box inserts some “starter” action methods, but because you will not be using the
default methods, there is no reason to create them.

44 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{

 public class AccountController : Controller
 {
 //
 // GET: /Account/

 public ActionResult Index()
 {
 return View();
 }

 }
}

Visual Studio 2003 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2003, is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it’s a key aspect of ASP.NET MVC.

Implementing the Functionality
To communicate with any of the data layers and services (the Model), you’ll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using System.IO;
using Microsoft.Samples.PlanMyNight.Data;
using Microsoft.Samples.PlanMyNight.Entities;
using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using System.Collections.Specialized;
using WindowsLiveId;

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 45

Now, let’s add the instance fields. These fields are interfaces to the various section of your
Model:

public class AccountController : Controller
{
 private readonly IWindowsLiveLogin windowsLogin;
 private readonly IMembershipService membershipService;
 private readonly IFormsAuthentication formsAuthentication;
 private readonly IReferenceRepository referenceRepository;
 private readonly IActivitiesRepository activitiesRepository;
.
.
.

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the Model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

■ IWindowsLiveLogin Provides functionality for interacting with the Windows Live ID
service.

■ IMembershipService Provide user profile information and authorization methods. In
your companion application, it is an abstraction of the ASP.NET Membership Service.

■ IFormsAuthentication Provides for ASP.NET Forms Authentication abstraction.

■ IReferenceRepository Provides reference resources, such as lists of states and other
model-specific information.

■ IActivitiesRepository An interface for retrieving and updating activity information.

You’ll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

public AccountController() :
 this(
 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())
{
}

46 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

public AccountController(
 IMembershipService membershipService,
 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
{
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
 }

Authenticating the User
The first real functionality you’ll implement in this controller is that of signing in and out of
the application. Most of the methods that you’ll implement later require authentication, so
this is a good place to start.

The companion application uses a few technologies together at the same time to give the
user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LiveID action
you’ll implement next.

Start by creating the following method, in the AccountController class:

public ActionResult LiveId()
{
 return Redirect("~/");
}

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing into Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you’ll use a switch to branch the logic depending on the value
of the parameter.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 47

Add the following to the LiveId method above the return statement:

string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);
}

See Also Full documentation of the Windows Live ID system can be found on the http://dev.
live.com/ Web site.

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live ID
cookies (the ones that remember your login name, but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for
the user. However, before that, you must pass the data that Windows Live ID sent you
to your Windows Live ID interface so that it can validate the information and give you a
WindowsLiveLogin.User object:

 default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

48 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

At this point in the case for logging in, either liveIdUser will be a reference to an
 authenticated WindowsLiveLogin.User object or it will be null. With this in mind, you can
add your next section of the code, which takes action when the liveIdUser value is not null:

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;

The call to the ValidateUser method on the IMembershipService reference allows the applica-
tion to check whether the user has been to this site before and whether there will be a profile
for the user. Because the user is authenticated with Windows Live ID, you are using the user’s
ID value (which is a GUID) as both the user name and password to the ASP.NET Membership
Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed in to ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 49

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>
…
<profile enabled="true">
 <properties>
 <add name="FullName" type="string" />
 <add name="State" type="string" />
 <add name="City" type="string" />
 <add name="PreferredActivityTypeId" type="int" />
 </properties>

 <providers>
 <clear />
 <add name="AspNetSqlProfileProvider"
type="System.Web.Profile.SqlProfileProvider,
 System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
</profile>
…
</system.web>

At this point, the LiveID method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an ASP.
NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()
{
string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);

default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {

50 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
}
 return Redirect("~/");
}

Of course, the user has to be able to get to the Windows Live ID login page in the first place
before logging in. Currently in the Plan My Night application, there is a Windows Live ID log-
in button. However, there are cases where the application will want the user to be redirected
to the login page from code. To cover this scenario, you need to add a small method called
Login to your controller:

public ActionResult Login(string returnUrl)
{
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);
 return Redirect(redirect);
}

This method simply retrieves the login URL for Windows Live and redirects the user to
that location. This also satisfies a configuration value in your web.config file for ASP.NET

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 51

Forms Authentication in that any request requiring authentication will be redirected to this
method:

<authentication mode="Forms">
 <forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User
Now with the authentication methods defined, which satisfies your first goal for this
 controller—signing users in and out in the application—you can move on to retrieving
data for the current user.

The Index method, which is the default method for the controller based on the URL map-
ping configuration in Global.asax, will be where you retrieve the current user’s data and
return a view displaying that data. The Index method that was initially created when the
AccountController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);

 return View("Index", model);
}

Visual Studio 2003 Attributes such as [Authorize()] might not have been in common use in
Visual Studio 2003; however, ASP.NET MVC makes use of them often. Attributes allow for meta-
data to be defined about the target they decorate. This allows for the information to be exam-
ined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which Http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You’ve added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

52 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find a
suitable source, the value will be null. This behavior can cause problems for value types that can-
not be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a
view model object for the view to use. The call to GetReturnUrl is an example of an exten-
sion method defined in the PlanMyNight.Infrastructure project. It’s not a member of the
Controller class, but in the development environment it makes for much more readable code.
(See Figure 2-5.)

FIGURE 2-5 Example of extension methods in MvcExtensions.cs

Visual Studio 2003 In .NET Framework 1.1, which Visual Studio 2003 used, extension meth-
ods did not exist. Rather than calling this.GetReturnUrl() and also having the method appear in
IntelliSense for this object, you would have to type MvcExtensions.GetReturnUrl(this), pass-
ing in the controller as a parameter. Extension methods certainly make the code more readable
and do not require the developer to know the static class the extension method exists under. For
IntelliSense to work, the name space does need to be listed in the using clauses.

InjectStatesAndActivityTypes is a method you need to implement. It gathers data from the
reference repository for names of states and the activity repository. It makes two collections

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 53

of SelectListItem (an HTML class for MVC): one for the list of states, and the other for the list
of different activity types available in the application. It also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null && o.Id ==
 profile.PreferredActivityTypeId)
 }).ToList();

 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null && o.Abbreviation ==
 profile.State)
 }).ToList();

 states.Insert(0, new SelectListItem {
 Text = "Any state",
 Value = string.Empty
 });

 model.PreferredActivityTypes = types;
 model.States = states;
}

Visual Studio 2003 In Visual Studio 2003, the InjectStatesAndActivities method takes lon-
ger to implement because a developer cannot use the LINQ extensions (the call to Select) and
Lambda expressions, which are a form of anonymous delegate that the Select method applies to
each member of the collection being enumerated. Instead, the developer would have to write
out his own loop and enumerate each item manually.

Updating the Profile Data
Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,
you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]
[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)
{

54 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }

 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess", "Account", new { returnUrl =
 returnUrl });
 }
}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view’s input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a System.
ComponentModel.DataAnnotations.Required attribute. During Model Binding, the MVC
framework evaluates DataAnnotation attributes and marks the ModelState as valid only when
all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2003 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-
ate view. In Visual Studio 2003, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

When the ModelState is valid, the profile is updated in the membership service and a
JSON result is returned for AJAX requests with the success data, or in the case of “normal”

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 55

requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)
{
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),
 ReturnUrl = returnUrl
 };
 return View(model);
}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the profile
update process.

Now that you’ve reached the end of the Account controller implementation, you should have
a class that resembles the following listing:

 using System;
 using System.Collections.Specialized;
 using System.IO;
 using System.Linq;
 using System.Web;
 using System.Web.Mvc;
 using Microsoft.Samples.PlanMyNight.Data;
 using Microsoft.Samples.PlanMyNight.Entities;
 using Microsoft.Samples.PlanMyNight.Infrastructure;
 using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
 using Microsoft.Samples.PlanMyNight.Web.ViewModels;
 using WindowsLiveId;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{
 [HandleErrorWithContentType()]
 [OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
 public class AccountController : Controller
 {
 private readonly IWindowsLiveLogin windowsLogin;
 private readonly IMembershipService membershipService;
 private readonly IFormsAuthentication formsAuthentication;
 private readonly IReferenceRepository referenceRepository;
 private readonly IActivitiesRepository activitiesRepository;

 public AccountController() :
 this(
 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())

56 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 {
 }

 public AccountController(IMembershipService membershipService,
 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
 {
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
 }

 public ActionResult LiveId()
 {
 string action = Request.QueryString["action"];
 switch (action)
 {
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");
 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);
 default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);
 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(
 userId, userId, string.Empty);
 var profile =

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 57

 this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl =
 returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
 }
 return Redirect("~/");
 }

 public ActionResult Login(string returnUrl)
 {
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);
 return Redirect(redirect);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Get)]
 public ActionResult Index(string returnUrl)
 {
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);
 return View("Index", model);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Post)]
 [ValidateAntiForgeryToken()]
 public ActionResult Update(UserProfile profile)
 {
 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ?

58 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }
 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult {
 JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new {
 Update = true,
 Profile = profile,
 ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess",
 "Account", new { returnUrl = returnUrl });
 }
 }
 public ActionResult UpdateSuccess(string returnUrl)
 {
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),
 ReturnUrl = returnUrl
 };
 return View(model);
 }

 private void InjectStatesAndActivityTypes(ProfileViewModel model)
 {
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes()
 .Select(o => new SelectListItem { Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null &&
 o.Id == profile.PreferredActivityTypeId) })
 .ToList();
 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null &&
 o.Abbreviation == profile.State) })
 .ToList();
 states.Insert(0,
 new SelectListItem { Text = "Any state",
 Value = string.Empty });
 model.PreferredActivityTypes = types;
 model.States = states;
 }
 }
}

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 59

Creating the Account View
In the previous section, you created a controller with functionality that allows a user to
update her information and view it. In this section, you’re going to walk through the Visual
Studio 2010 features that enable you to create the views that display this functionality to the
user.

To create the Index view for the Account controller:

 1. Navigate to the Views folder in the PlanMyNight.Web project.

 2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

 3. Name the new folder Account.

 4. Click the right mouse button on the new Account folder, expand the Add submenu,
and select View.

 5. Fill out the Add View dialog box as shown here:

60 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 6. Click Add. You should see an HTML page with some <asp:Content> controls in the
markup:

You might notice that it doesn’t look much different from what you are used to see-
ing in Visual Studio 2003. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view
engine, so there will be some commonality between MVC and Web Forms pages. The
primary differences at this point are that the page class derives from System.Web.Mvc.
ViewPage<ProfileViewModel> and there is no code-behind file. MVC does not use code-
behind files, like ASP.NET Web Forms does, to enforce a strict separation of concerns. MVC
pages are generally edited in markup view; the designer view is primarily for ASP.NET Web
Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
 <% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
 "http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
 <% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 61

 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/MicrosoftMvcJQueryValidation.js"), "pmn"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>
 <%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content setup, you can look at the main content of the view:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <% Html.EnableClientValidation(); %>
 <% using (Html.BeginForm("Update", "Account")) %>
 <% { %>
 <%=Html.AntiForgeryToken()%>
 <div class="items">
 <fieldset>
 <p>
 <label for="FullName">Name:</label>
 <%=Html.EditorFor(m => m.Profile.FullName)%>
 <%=Html.ValidationMessage("Profile.FullName",
 new { @class = "field-validation-error-wrapper" })%>
 </p>
 <p>
 <label for="State">State:</label>
 <%=Html.DropDownListFor(m => m.Profile.State, Model.States)%>
 </p>
 <p>
 <label for="City">City:</label>
 <%=Html.EditorFor(m => m.Profile.City, Model.Profile.City)%>
 </p>
 <p>
 <label for="PreferredActivityTypeId">Preferred activity:</label>
 <%=Html.DropDownListFor(m =>
 m.Profile.PreferredActivityTypeId,
 Model.PreferredActivityTypes)%>
 </p>
 </fieldset>
 <div class="submit">
 <%=Html.Hidden("returnUrl", Model.ReturnUrl)%>
 <%=Html.SubmitButton("submit", "Update")%>
 </div>
 </div>
 <div class="toolbox"></div>
 <% } %>
 </div>
</div>
</asp:Content>

62 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Aside from some inline code, this looks to be fairly normal HTML markup. We’re going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

Visual Studio 2003 In Visual Studio 2003, it was more commonplace to use server-side con-
trols to display data and other display-time logic. However, because ASP.NET MVC view pages do
not have a code-behind file, server-side logic executed in the view at render time must be done
in the same file with the markup. ASP.NET Web Forms controls can still be used. Our example
makes use of the <asp:Content> control. However, the functionality of ASP.NET Web Forms con-
trols is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmlHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version
of this extension class (HtmlHelper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

■ Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

■ Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

■ Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor’s browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

■ Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

■ Html.DropDownListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

■ Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 63

■ Html.Hidden places a hidden field in the form, with the name and value that is
passed in.

■ Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

 To create the UpdateSuccess view:

 1. Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

 2. Click the right mouse button on the Account folder.

 3. Open the Add submenu, and click View.

 4. Fill out the Add View dialog box so that it looks like this:

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

64 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <div class="items">
 <p>Your profile has been successfully updated.</p>
 <h3>» <a href="<%=Html.AttributeEncode(Model.ReturnUrl ??
 Url.Content("~/"))%>">Continue</h3>
 </div>
 <div class="toolbox"></div>
 </div>
</div>
</asp:Content>

To see the views created, you must perform an edit to the Site.Master file (located in the
Views/Shared folder from the Web project’s root). Line 33 of the file is commented out, and
the comment tags should be removed so that it matches the following example:

<%=Html.ActionLink<AccountController>(c => c.Index(null), "My Profile")%>

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 2-6, and sign in to Windows Live ID.

FIGURE 2-6 Plan My Night default screen

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 65

After you’ve signed in, you should be redirected to the Index view of the Account controller
you created, shown in Figure 2-7.

FIGURE 2-7 Profile settings screen returned from the Index method of the Account controller

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,
try to save the form without filling in the Full Name field. You should get a result that looks
like Figure 2-8.

FIGURE 2-8 Example of failed validation during Model Binding checks

66 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Because you enabled client-side validation, there was no post back. To see the server-side
validation work, you would have to edit the Index.aspx file in the Account folder and com-
ment out the call to Html.EnableClientValidation. The tight integration and support of AJAX
and other JavaScript in MVC applications allows for server-side operations such as validation
to be moved to the client side much more easily than they were previously.

Visual Studio 2003 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like it is in ASP.NET Web Forms 1.0. In Visual Studio 2003, a
developer would have to make sure to set the UniqueID of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the
ID was unique. However, it was always an extra layer of complexity added to the interaction
between ASP.NET 1.0 Web Forms controls and JavaScript. In MVC, this transformation does not
happen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted
that ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control
basis, if the developer so wishes.

With the completed Account controller and related views, you have filled in the missing
“core” functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.
ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we’ll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form
Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected con-
dition, it returns an error screen like that shown in Figure 2-9.

FIGURE 2-9 Example of an error screen in the Plan My Night application

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 67

Currently, a user who sees this screen really has only the option of trying his action again or
using the navigation links along the top area of the application. (Of course, that might also
cause another error.) Adding an option for the user to provide feedback allows the develop-
ers to gain information about the situation that might not be apparent by using the standard
exception message and stack trace. To show a different way to create a user interface com-
ponent for Plan My Night, the error feedback page is going to be created as an ASP.NET Web
Form using primarily the Designer view in Visual Studio. Before you can begin designing the
form, you need to create a base form file to work from.

To create a new Web form:

 1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse
button), open the Add submenu, and select New Item.

 2. In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

 3. The dialog screen to associate a master page with this Web form will appear. On the
Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

68 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It’s a good idea to pin the control toolbox open on the screen because you’ll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 69

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

Visual Studio 2003 A much-needed update to the Web Forms designer surface from Visual
Studio 2003 is the application of CSS. This allows the developer to see in real-time how the style
changes are applied, without having to run the application. When viewed in Visual Studio 2003,
the designer for the search.aspx page will appear similar to Figure 2-10.

FIGURE 2-10 Designer view of an ASP.NET Web page in Visual Studio 2003

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel:

<h2>Error Feedback</h2>

70 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > form. This will create a server-side form tag
for you to insert Web controls into. Inside the form tag, place a div tag with the class attri-
bute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the textbox and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should
have something like Figure 2-11 in the Design view.

FIGURE 2-11 Current state of ErrorFeedback.aspx in the Design view

Add another text box, and label it in a similar manner as the first, but set the ID of the text
box to EmailAddress and the label value to Email Address: (making sure to include the
colon). Repeat the process a third time, setting the TextBox ID and label value to Comments.
There should now be three labels and three single-line TextBox controls in the Design view.
The Comments control needs multiline input, so open its property page and set TextMode to
Multiline, Rows to 5, and Columns to 40. This should create a much wider text box in which
the user can enter comments.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 71

Use the Insert Snippet feature again, after the Comments text box, and insert a “div with
class” tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button’s Text property to Send Feedback.

The designer should show something similar to what you see in Figure 2-12, and at this point
you have a page that will submit a form.

FIGURE 2-12 The ErrorFeedback.aspx form with a complete field set

However, it does not perform any validation on the data being submitted. To do this, you’ll
take advantage of some of the validation controls present in ASP.NET. You’ll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you’ll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It’s a drop-down list of controls on the page.) Also, set the CssClass to
field-validation-error. This changes the display of the error to a red triangle used elsewhere

72 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

in the application. Finally, change the Error Message property to Name is Required. (See
Figure 2-13.)

FIGURE 2-13 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}

The error message for this validator should say something like “Must enter a valid e-mail
address.”

 The form is complete. To see it in the application, you need to add the option of provid-
ing feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user if she wants to try her action again and where you’ll put the option
for sending the feedback. After the question text in the same paragraph, add the following
markup:

or send feedback?

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 73

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you’ll have to cause an error in your application.

To cause an error in the Plan My Night application:

 1. Start the application.

 2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

 3. Because it is highly unlikely such an itinerary ID exists in the database, an error screen
will be shown.

 4. With the error screen visible, click the link to go to the feedback form. Try to submit the
form with invalid data.

74 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page.IsValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page.IsValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)
 {
 if (this.IsPostBack && this.IsValid)
 {
 this.Response.Redirect("/", true);
 }
 }

This really isn’t very useful to the user, but our goal in this section was to work with the
designer to create an ASP.NET Web Form. This added a new interface to the PlanMyNight.
Web project, but what if you wanted to add new functionality to the application in a more
modular sense, such as some degree of functionality that can be added or removed without
having to compile the main application project. This is where an extensibility framework like
the Managed Extensibility Framework (MEF) can show the benefits it brings.

Extending the Application with MEF
A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is the
Managed Extensibility Framework (MEF). The Managed Extensibility Framework provides
developers with a simple (yet powerful) mechanism to allow their applications to be extend-
ed by third parties after the application has been shipped. Even within the same application,
MEF allows developers to create applications that completely isolate components, allow-
ing them to be managed or changed independently. It uses a resolution container to map
components that provide a particular function (exporters) and components that require that
functionality (importers), without the two concrete components having to know about each
other directly. Resolutions are done on a contract basis only, which easily allows components
to be interchanged or introduced to an application with very little overhead.

See Also MEF’s community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com.

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 75

The companion Plan My Night application has been designed with extendibility in mind, and
it has three “add-in” module projects in the solution, under the Addins solution folder. (See
Figure 2-14.)

FIGURE 2-14 The Plan My Night application add-ins

PlanMyNight.Addins.EmailItinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.PrintItinerary provides a printer-friendly view
of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of
these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the UI is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found
in the same folder as the PlanMyNight.sln file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will con-
tain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to

76 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

the interface for Plan My Night, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 2-15.)

FIGURE 2-15 Location of the e-mail add-in in the UI

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 2-16.)

FIGURE 2-16 Location of the social-sharing add-in in the UI

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 77

Visual Studio 2003 Visual Studio 2003 does not have anything that compares to MEF. To
support plug-ins, a developer would have to either write the plug-in framework from scratch or
purchase a commercial package. Either of the two options led to proprietary solutions an exter-
nal developer would have to understand in order to create a component for them. Adding MEF
to the .NET Framework helps to cut down the entry barriers to producing extendible applications
and the plug-in modules for them.

Print Itinerary Add-in Explained
To demonstrate how these plug-ins wire into the application, let’s have a look at the
PrintIntinerary.Addin project. When you expand the project you should see something like
the structure shown in Figure 2-17.

FIGURE 2-17 Structure of the PrintItinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That’s because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintItineraryController.cs file in the Controller folder, you can see it is similar in
structure to the controller you created earlier in this chapter (and similar to any of the other
controllers in the Web application). However, some key differences set it apart from the con-
trollers that are compiled in the primary PlanMyNight.Web application.

78 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Focusing on the class definition, you’ll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an IController under the contract name of PrintItinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

Further into the PrintItineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
 serviceFactory.GetItineraryContainerInstance(),
 serviceFactory.GetItinerariesRepositoryInstance(),
 serviceFactory.GetActivitiesRepositoryInstance())
 {
 }

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintItineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())
{
 foreach (var route in routes)
 {
 RouteTable.Routes.Add(route);
 }
}

 Chapter 2 From 2003 to 2010: Designing the Look and Feel 79

The controllerFactory, which was initialized with a MEF container containing path information
to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be the control-
ler factory for the lifetime of the application. This allows controllers imported via MEF to be
usable anywhere in the application. The routes these plug-ins respond to are then retrieved
from the MEF container and registered into the MVC routing table.

The ItineraryContextualActionsExport.cs file exports information to create the link
to this plug-in, as well as metadata for displaying it. This information is used in the
ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin links and toolboxes
var addinBoxes = new List<RouteValueDictionary>();
var addinLinks = new List<ExtensionLink>();

addinBoxes.AddRange(AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange(AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary
In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we’ll explore how debugging applications has been improved in Visual Studio 2010.

 81

Chapter 3

From 2003 to 2010: Debugging
an Application

After reading this chapter on debugging, you will be able to

■ Use the new debugger features of Microsoft Visual Studio 2010

■ Create unit tests and execute them in Visual Studio 2010

■ Compare what was available to you or see what was different for you as a developer in
Visual Studio 2003

As we were writing this book, we realized how much the debugging tools and developer aids
have evolved over the last three versions of Visual Studio. Focusing on debugging an applica-
tion and writing unit tests just increases the opportunities we have to work with Visual Studio
2010.

Visual Studio 2010 Debugging Features
In this chapter, you’ll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you’ll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 3\Code. Double-click the
PlanMyNight.sln file.

First, before diving into the debugging session itself, you’ll need to set up a few things:

 1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

 2. To get ready for the next steps, in the PlanMyNight.Web solution open the
Global.asax.cs file by clicking the triangle beside the Global.asax folder and then
 double-clicking the Global.asax.cs file as shown in Figure 3-1.

82 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 3-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session
Using the Plan My Night application, you’ll examine how a developer can manage and share
breakpoints. And with the use of new breakpoint enhancements, you’ll learn how to inspect
the different data elements in the application in a much faster and more efficient way. You’ll
also look at new minidumps and the addition of a new intermediate language (IL) inter-
preter that allows you to evaluate managed code properties and functions during minidump
debugging.

New Breakpoint Enhancements
At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk
you through some ways to manage and share breakpoints:

 1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 3-2 to see this in action.

FIGURE 3-2 Creating a breakpoint

 Chapter 3 From 2003 to 2010: Debugging an Application 83

 2. Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the following keyboard shortcut: Ctrl+D+B.

Visual Studio 2003 Here is an area where there’s a night-and-day difference between
Visual Studio 2003 and Visual Studio 2010. Thankfully, the ease of debugging in Visual
Studio 2010 is not comparable to the pain developers experienced in Visual Studio 2003.

Debugging Web applications in Visual Studio 2003 required you to complete a series of
careful tasks to be successful. For instance, you had to enable debugging in a few different
places in the Configuration Manager; you had to configure IIS carefully to avoid getting
the dreaded Temporary ASP.NET Files Access Denied security exception. Basically, it was
not developer friendly; it required lots of configuration and still there was no guarantee
of success. Many articles were written to help solve the intricacies of debugging an
ASP.NET Web application with Internet Information Services (IIS) 5 and 6 and Visual Studio
2003. A good reference that you might have consulted a few times is this one: http://msdn.
microsoft.com/en-us/library/aa290100(VS.71).aspx. Many of those blogs or articles were
just there to allow professional developers to debug on their workstations. Doing some
research in online forums revealed how much folks like you were struggling for years
through dozens of tough Web application debugging situations. For instance, debugging
an ASP.NET application along with a few Web services was quite a challenge to set up.

The creation of the personal Web server (also known as “Cassini”) improved things tremen-
dously, but a few enhancements in Visual Studio 2010 make it easier to modify the neces-
sary configuration files, modify project settings, and deploy to IIS. These improvements
help developers write good code and and spend less time trying to debug it. You’ll find
that it definitely feels different to debug in Visual Studio 2010—you’ll find it refreshing
and easier.

You should now see the Breakpoints window as shown in Figure 3-3.

FIGURE 3-3 Breakpoints window

84 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 3. In the same method, add three more breakpoints so that the editor and the
Breakpoints window look like those shown in Figure 3-4.

FIGURE 3-4 Code editor and Breakpoints window with three new breakpoints

Visual Studio 2003 As a reader and a professional developer who used Visual Studio
2003 often, you probably noticed a series of new buttons as well as new fields in the
Breakpoints window in this exercise. As a reminder, take a look at Figure 3-5 for a quick
comparison of what it looks like in Visual Studio 2003.

FIGURE 3-5 Visual Studio 2003 Breakpoints window

 4. Notice that the Labels column is now available to help you index and search break-
points. It is a really nice and useful feature that Visual Studio 2010 brings to the table.
To use this feature, you simply right-click on a breakpoint in the Breakpoints window

 Chapter 3 From 2003 to 2010: Debugging an Application 85

and select Edit Labels or use the keyboard shortcut Alt+F9, L. Take a look at Figure 3-6
as a reference.

FIGURE 3-6 Edit Labels option

 5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which
is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and
type a label name of Url. When you are done, click OK. You should see a window that
looks like Figure 3-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations.

FIGURE 3-7 Adding labels that show up in the Breakpoints window

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks just outlined.

86 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Note You’ll see that when adding labels to a new breakpoint you can choose any of
the existing labels you have already entered. You’ll find these in the Or Choose Among
Existing Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in
Figure 3-7.

 6. Using any of the ways you just learned, add labels for each of the breakpoints and
make sure your Breakpoints window looks like Figure 3-8 after you’re done.

FIGURE 3-8 Breakpoints window with all labels entered

When you have a lot of code and you are in the midst of a debugging session, it would
be great to be able to filter the displayed list of breakpoints. That’s exactly what the
new Search feature in Visual Studio 2010 allows you to do.

 7. To see the Search feature in action, just type url in the search text box and you’ll see
the list of breakpoint is filtered down to breakpoints containing url in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2003, the two people needed to sit near each other, send one another screen shots,
or send one another line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We’ll see how to do that next.

 8. In the Breakpoints window, click the Export button to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

 9. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching The

Current Search Criteria button or by selecting all the breakpoints and clicking the

Delete The Selected Breakpoints button . The only purpose of deleting them is to
simulate two developers sharing them or one developer sharing breakpoints between
two machines.

 Chapter 3 From 2003 to 2010: Debugging an Application 87

 10. You’ll now import your breakpoints by clicking the Import button and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Visual Studio 2003 Putting breakpoints in client-side code (JavaScript) and stopping and
tracing was not really friendly. As a developer, you had to place a debugger (or stop in VBScript)
statement in your client-side code and then trace into the code. But there was no IntelliSense
support for client-side code. In Visual Studio 2010, you get great support for JavaScript as well as
for the latest jQuery iteration. It was already good in Visual Studio 2008, but the integration in
Visual Studio 2010 is faster and you don’t have to do anything to get it.

Inspecting the Data
When you are debugging your applications, you know how much time one can spend
 stepping into the code and inspecting the content of variables, arguments, and so forth.
Maybe you can remember when you were learning to write code, a while ago, when
 debuggers weren’t a reality or when they were really rudimentary. Do you remember (maybe
not—you might not be as old as we are) how many printf or WriteLn statements you had to
write to inspect the content of different data elements.

Visual Studio 2010 From the days of Visual Studio 2003, there already was a big improve-
ment from the days of writing to the console with all kinds of statements because we had a real
debugger with new functionalities. New data visualizers allowed you to see XML as a well-formed
XML snippet and not as a long string. Furthermore, with those data visualizers, you could view
arrays in a more useful way, with the list of elements and their indices, and you accomplished
that by simply hovering your mouse over the object. Take a look at Figure 3-9 for an example.

FIGURE 3-9 Collection view versus an array view in the debugger in Visual Studio 2010 and in Visual
Studio 2003

88 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Visual Studio 2003 In Visual Studio 2003, there was no other way to do data visualizations
apart from Watch, Locals, and Quick Watch or some of the more rudimentary ways described
earlier. You couldn’t hover over a field in an array to get its content. If you had XML or format-
ted text in a string, you couldn’t read it in any meaningful way other than opening Notepad or
another file in Visual Studio and pasting the content of a string to see the formatted content of a
variable.

Although those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that make DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.
Having the ability to put them on a second monitor can make your life a lot easier while
debugging because it keeps the data that always needs to be in context right there on the
second monitor. The following steps demonstrate how to use these features:

 1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the
source code var authority and var pathAndQuery, respectively.

 2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the
word url and click on the pushpin as seen in Figure 3-10.

FIGURE 3-10 The new DataTip pushpin feature

 3. To the right of the line of code, you should see the pinned DataTip (as seen in
Figure 3-11 on the left). If you hover your mouse over the DataTip, you’ll get the
DataTip management bar (as seen in Figure 3-11 on the right).

FIGURE 3-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the
DataTip is pinned. The pushpin should look like this: . Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

 Chapter 3 From 2003 to 2010: Debugging an Application 89

Note If you click on the double arrow pointing down in the DataTip management bar,
you can insert a comment for this DataTip, as shown in Figure 3-12. You can also remove
the DataTip altogether by clicking the X button in the DataTip management bar.

FIGURE 3-12 Inserting a comment for a DataTip

 4. One nice feature of the new DataTip is that you can insert any expression to be evalu-
ated right there in your debugging session. For instance, right-click on the DataTip
name, in this case on url, select Add Expression, type authority, and then add another
one like this: (authority != null). You’ll see that the expressions are evaluated immedi-
ately and will continue to be evaluated for the rest of the debugging session every time
your debugger stops on those breakpoints. At this point in the debugging session, the
expression should evaluate to null and false, respectively.

 5. Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context.
Take a look at Figure 3-13 to see this in action.

FIGURE 3-13 The url pinned DataTip with the two evaluated expressions

 6. Although it is nice to be able to have a mini-watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on the
source code being debugged. Keep in mind that you can move the DataTip window
anywhere you want in the code editor by simply dragging it. Take a look at Figure 3-14
for an example.

FIGURE 3-14 Move the pinned DataTip away from the source code

90 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 7. Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You’ll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 3-15 for an example.

FIGURE 3-15 Unpinned DataTip over Solution Explorer and the Windows desktop

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 3-16. You can retry to have the debugger evaluate the value of an element by

 clicking on this button: . However, if that element has no meaning in this context, it’s
possible that nothing happens.

FIGURE 3-16 DataTip window with out-of-context items

Note You’ll get an error message if you try to pin outside the editor, as seen in
Figure 3-17.

FIGURE 3-17 Error message that appears when trying to pin a DataTip outside the code editor

 Chapter 3 From 2003 to 2010: Debugging an Application 91

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you’ll see that you can also pin a child ele-
ment, as seen in Figure 3-18.

FIGURE 3-18 Pinned child element within the url DataTip

 8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already
there and re-pin the DataTip window. Then stop the debugging session by clicking the

Stop Debugging button in the debug toolbar () or by pressing Shift+F5. Now if you
hover your mouse over the blue pushpin in the breakpoint gutter, you’ll see the values
from the last debug session which is a nice enhancement over the watch window. Take
a look at Figure 3-19 for what you should see.

FIGURE 3-19 Values from the last debug session for a pinned DataTip

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

92 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Using the Minidump Debugger
Many times in real-world situations, you’ll have access to a minidump from your product
 support team. Apart from their bug descriptions and repro steps, it might be the only thing
you have to help debug a customer application. Visual Studio 2010 adds a few enhancements
to the minidump debugging experience.

Visual Studio 2003 In Visual Studio 2003, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge of the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let’s see the new enhancements to the minidump debugger. First you need to create a crash
from which you’ll be able to generate a minidump file:

 1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word “Default.”

 2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

 3. Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let’s go through the steps of
 creating the minidump file and debugging it. Take a look at Figure 3-20 to see what
you should see at this point.

FIGURE 3-20 The unhandled exception you should expect

 Chapter 3 From 2003 to 2010: Debugging an Application 93

 4. It is time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As as seen in Figure 3-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the excep-
tion was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file
name proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note
that it might take some time to create the file because the minidump file size will be
close to 300 MB.

FIGURE 3-21 Saving the minidump file

 5. Stop Debugging by pressing Shift+F5 or the Stop Debugging button.

 6. Next, go to the File menu and close your solution.

 7. In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 3-22 shows what you should see.) Before you start to debug, you’ll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

94 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 3-22 Minidump summary page

 8. To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

 9. You should see almost immediately a first-chance exception like the one shown in
Figure 3-23. In this case, it tells you what the bug is; however, this won’t always be the
case. Continue by clicking the Break button.

FIGURE 3-23 First-chance exception

 10. You should see a green line indicating which instruction caused the exception. If you
look at the source code, you’ll see in your Autos window that the controllerExport vari-
able is null, and just before that we specified that if the variable was null we wanted
to have an HttpException thrown if the file to load was not found. In this case, the file
to look for is Default.aspx, as you can see in the Locals window in the controllerName
variable. You can glance at many other variables, objects, and so forth in the Locals
and Autos windows containing the current context. Here, you have only one call that

 Chapter 3 From 2003 to 2010: Debugging an Application 95

belongs to your code, so the call stack indicates that the code before and after is exter-
nal to your process. If you had a deeper chain of calls in your code, you could step back
and forth in the code and look at the variables. Figure 3-24 shows a summary view of
all that.

FIGURE 3-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

 11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
 renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations
This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you’ll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http://go.microsoft.com/fwlink/?LinkId=125889.

Creating Unit Tests
Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as UI Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions like Visual Studio 2010 Premium and

96 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http://msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2003 With Visual Studio 2003, your options to create unit tests and execute
them were limited to third-party tools and frameworks like nUnit and other commercial products
created by Microsoft partners.

In this part of the chapter, we’ll simply show you how to add a unit test for a class you’ll find
in the Plan My Night application. We won’t spend time defining what a unit test is or what it
should contain; rather, we’ll show you within Visual Studio 2010 how to add tests and execute
them.

You’ll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

 1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click on the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 3-25 to make sure you are at the right place.

FIGURE 3-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

 2. In the code editor, you can add unit tests in two different ways. You can right-click on
a class name or on a method name and select Create Unit Tests. You can also go to the
Test menu and select New Test. We’ll explore the first way of creating unit tests. This

 Chapter 3 From 2003 to 2010: Debugging an Application 97

way Visual Studio automatically generates some source code for you. Right-click the
GetFriendlyTime method, and select Create Unit Tests. Figure 3-26 shows what it
looks like.

FIGURE 3-26 Contextual menu to create unit tests from by right-clicking on a class name

 3. After selecting Create Unit Tests, you’ll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn’t have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 3-27 shows what you
should be seeing.

FIGURE 3-27 Selecting the method you want to create a unit test against

98 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

 4. After you click OK, the dialog switches to a test-case generation mode and displays a
progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

 5. Remove the method and its attributes because you’ll create three new test cases for
that method. Remove the following code:

/// <summary>
///A test for GetFriendlyTime
///</summary>
// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page
(for example,// http://.../Default.aspx). This is necessary for the unit test to be
executed on the web server,// whether you are testing a page, web service, or a WCF
service.
[TestMethod()]
[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("C:\\Users\\Patrice\\Documents\\Chapter 3\\code\\
PlanMyNight.Web", "/")]
[UrlToTest("http://localhost:48580/")]
public void GetFriendlyTimeTest()
{
 int totalMinutes = 0; // TODO: Initialize to an appropriate value
 string expected = string.Empty; // TODO: Initialize to an appropriate value
 string actual;
 actual = TimeHelper.GetFriendlyTime(totalMinutes);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive("Verify the correctness of this test method.");
}

 6. Add the three simple test cases validating three key scenarios used by PlanMyNight. To
do that, insert the following source code right below the method attributes that were
left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
 Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}

[TestMethod]
public void LessThan60MinutesReturnsValueInMinutes()
{
 Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));
}

[TestMethod()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{
 Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));
}

 Chapter 3 From 2003 to 2010: Debugging an Application 99

 7. In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like
Figure 3-28 where you are done.

FIGURE 3-28 TimeHelperTest.cs in its Helpers folder

 8. It is time to execute your newly created tests. To execute only your newly created
tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select
Test In Current Context or accomplish the same thing using the keyboard shortcut
CTRL+R, T. Look at Figure 3-29 for a reference.

FIGURE 3-29 Test execution menu

 9. Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 3-30) appear at the bottom of your editor with the test
results.

FIGURE 3-30 Test Results window for your newly created tests

100 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you’ll execute only this test case. However, if you click outside the test class, you
could end up executing every test case, which is the equivalent of choosing All Tests In Solution.

New Threads Window
The emegence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the diffi-
culty of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and
selecting Windows And Threads while debugging an application. Take a look at Figure 3-31
to see the Threads window as it appears while debugging Plan My Night.

FIGURE 3-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular
effects. You can debug both managed code and unmanaged code. If your application uses
thread, you’ll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2003 In Visual Studio 2003, the Thread window was rudimentary. It enabled you
to suspend or switch to a thread. It was tough to know more about those threads because you
didn’t have any more information from within Visual Studio 2003. There was no filtering, call-
stack searching and expansion, and grouping. The columns were in a fixed order. Back then, the
notion of multiple cores existed but wasn’t as much in use as it is today. Furthermore, developing
for multicore CPUs wasn’t facilitated by the .NET Framework in any way like it is today with .NET
4.0 and libraries like PLINQ.

 Chapter 3 From 2003 to 2010: Debugging an Application 101

Summary
In this chapter, you learned how to manage your debugging sessions by using new break-
point enhancements and employing new data-inspection and data-visualization techniques.
You also learned how to use the new minidump debugger and tools to help you solve real
customer problems from the field. The chapter also showed you how to raise the quality of
your code by writing unit tests and how Visual Studio 2010 Professional can help you do this.
Multicore machines are now the norm, and so are multithreaded applications. Therefore, the
fact that Visual Studio 2010 Professional has specific debugger tools for finding issues in
multithreaded applications is great news.

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2003. The exercises in this chapter scratched the surface of how
you’ll save time and money by moving to this new debugging environment and showed that
Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It repre-
sents a huge leap in productivity for developers. The gap between Visual Studio 2003 and
Visual Studio 2010 in terms of debugging is less severe than in earlier versions. The quantity
of information provided by the debugger, the way to visualize the information, and the ease
of use and configuration of the projects are the biggest changes that help you be more pro-
ductive. You’ll also see in the next chapter how easy it is to deploy Web applications, their
databases, IIS settings, and all of their configurations.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http://msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager.IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http://msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

 103

Chapter 4

From 2003 to 2010: Deploying
an Application

After reading this chapter on deployment techniques, you will be able to

■ Deploy a Web application and an SQL database using Web Deployment Packages

■ Deploy a Web application using One-Click Publish

Deploying a Web application is never easy—it should be, but it never is. Whether you are
trying to deploy to your monthly paid host company or to a datacenter, you usually have to
push the files to some location using FTP, using another custom upload tool, or packaging
them in a .zip file. Then someone—either you or a system engineer—has to perform other
configuration steps so that your users can hit your Web application successfully. This chapter
will bring you the latest and greatest (and easiest) ways to deploy your Web application, and
it will show you how to do so while having more control and going through fewer manual
steps. It will also offer you comparisons with all three previous versions of Microsoft Visual
Studio.

Visual Studio 2010 Web Deployment Packages
In this chapter, you’ll deploy your application using Web Deployment Packages. You’ll also
see some of the pain points of doing this that were present in previous versions of Visual
Studio. We’ll take the examples mentioned in this chapter’s introduction and go through the
different steps one had to go through to deploy the application. Then we’ll compare how it
is done in each version of Visual Studio from 2003 all the way up to 2010. If you installed the
companion content at the default location, you’ll find the modified Plan My Night application
at the following location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 4\Code. Double-click the PlanMyNight.sln file.

Let’s start with the example of deploying to a monthly paid shared hosting company. Here
are the big steps one would have to take to deploy a Web application in such a scenario:

 1. Get the files that are needed for your application to your Web hosting company
using FTP or their custom control panel upload tool. If you want only the files needed
to execute, you need to sort them out and know exactly which ones you need and
 transfer only those files.

 2. After the files are copied, you have to go to the control panel and make sure all the
files are in the right place and then go through the configuration of your application

104 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

for various Internet Information Services (IIS) settings. Depending on the host company,
you might have to create an application in IIS, select the application pool and its type,
and so forth.

 3. If your application has a SQL database, you then have to create it, and perhaps
 populate some domain tables by executing SQL scripts.

 4. You might also have to create some security settings for SQL and your application in
general.

 5. Finally, you’ll probably have to modify your web.config to match some of the servers
and modify some database-related configuration options such as your connection
strings.

Similarly, in an enterprise you often have to deploy to datacenters and on servers for which
you won’t likely have access to physically or even remotely with remote desktop. In most
enterprises, you won’t even have a chance to talk to the engineers doing the deployments
because often it happens during off-peak hours and in other time zones. And the only thing
they have is the reliability of your scripts and your deployment documentation. This means
your deployment scripts must be bulletproof and your deployment documentation needs
to be thorough—because it will be tested by other engineers with little or no knowledge of
your project—so that nothing is assumed.

With any deployment technologies, the ideal situation is to come up with the deployment
packages as you develop your product. If you wait until after the code is completed, it is
extremely hard to do a good job and your work is a lot more error prone. Here is where
Visual Studio 2010 and the Web Deployment Tool come in handy.

Visual Studio 2010 and Web Deployment Packages
Using the Plan My Night application and Visual Studio 2010, you’ll examine how as a
 developer you can deploy your Web application and get it to a state where you can deploy
it with confidence. Using the tools, you’ll be able to test it and refine it using IIS on your
machine and then deploy it to your shared hosting service. In an enterprise, you do this and
then add the deployment package creation in your MSBuild or TFSBuild processes.

What Was Available Before Visual Studio 2010
In Visual Studio 2003, your options to deploy Web applications without buying a specialized
tool were roughly limited to the following three:

 1. Using the command xcopy for deployment, also known simply as XCOPY deployment.

 2. Using the Copy Project option in Visual Studio 2003.

 3. Using the Visual Studio 2003 Web Setup Project option.

 Chapter 4 From 2003 to 2010: Deploying an Application 105

Options 1 and 2 were useful for simple deployment, but when things got more complicated
the only options were either option 3 or using a product like InstallShield.

Option 1 was basically a process of manually copying the necessary files using the command
xcopy and then doing the rest of the configuration either through batch files, your favorite
scripting language, or manually.

Option 2 involved doing something similar to option 1, except that you had fewer decisions
to make as to which files were going to your server and how they would get there. You
could use the FrontPage extensions or a file share, and you could choose to just use the files
needed to run the application or all the files in the project or folder in which your application
was residing. You still had to configure similarly to option 1.

Option 3 enabled you to create an MSI and configure pretty much everything for your Web
application, but it didn’t give you lots of control over IIS settings, SQL databases, and other
things that most Web applications use. And on top of that, it wasn’t as easy and reliable as
one would like.

Look at Figures 4-1, 4-2, and 4-3 for the three most common methods to deploy a Web
application in Visual Studio 2003. Figure 4-1 shows the first option listed.

FIGURE 4-1 The XCOPY deployment screen

106 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Figure 4-2 illustrates option 2, the Copy Project method.

FIGURE 4-2 The Copy Project dialog box

And finally, option 3, the creation of a Web Setup Project, is shown in Figure 4-3.

FIGURE 4-3 The New Project dialog box, showing the Web Setup Project option

In Visual Studio 2005 and 2008, new notions regarding Web applications started to emerge.
Starting in the Visual Studio 2005 era, a Web application could be created in two different

 Chapter 4 From 2003 to 2010: Deploying an Application 107

ways. It could be created as a Web site directly in the file system—on disk and without a
project file—or as a Web Application Project, like many other normal project types.

Note The Web Application Project became part of Visual Studio 2005 as an add-on a few
months after the product shipped. People requested that Microsoft have both options: a Web
site on disk and a Web Application Project similar to the proven project template that had
shipped in Visual Studio 2003. Those projects are easier to manage in an enterprise environment
and can be easily integrated with MSBuild.

The Web Deployment Project was created as an add-on in Visual Studio 2005 and 2008.
The feature set is pretty much the same in both versions except that the Visual Studio 2008
 version had many bug fixes and improvements.

The Web Deployment Project doesn’t alter the Web site or the Web Application Project.
Instead, it takes one as input and creates an entirely different project. In fact, it never touches
the original source code, but rather it creates a new project with the necessary files based on
the configuration options you selected. The Web Deployment Project is only a project file
and nothing else. With a few dialogs, it enables you, the developer, to specify how and where
you want to deploy your application.

At build time, it then mainly uses two utilities to turn those options into a Web site match-
ing your selections. Those two command-line tools are called aspnet_compiler and aspnet_
merge. In a nutshell, the first one compiles your projects composing your Web application
and the other one merges their output and copies the files either to a folder or to a virtual
folder in IIS.

You can have one deployment configuration per regular configuration (debug and release)
and any custom configuration you might create. Figure 4-4 shows the beginning of the Web
Deployment Project creation.

FIGURE 4-4 Add Web Deployment Project dialog

108 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

Now let’s look in Visual Studio 2008 at the Web Deployment Project properties. Figure 4-5
gives you an overall sense of what it can help you with.

FIGURE 4-5 Web Deployment Project property page

Because it is a normal project file with MSBuild directives, you can modify “pre” and “post”
build steps as well as run additional scripts. To do that, you have to edit the project file and
modify the appropriate MSBuild targets. Finally, look at Figure 4-6 for a fragment for the
PlanMyNight Web Deployment Project project file in Visual Studio 2008.

FIGURE 4-6 Web Deployment package project file source

 Chapter 4 From 2003 to 2010: Deploying an Application 109

It might not be apparent, but even though the Web Deployment Project was a huge
improvement over what was in Visual Studio 2003, it was still not easy enough, not inclu-
sive of all needs, and not powerful enough. It was a good step. Here is where the new Web
Deployment Packages, the new Web Application deployment project, and Visual Studio 2010
come to the rescue.

What Are Web Deployment Packages?
A Web deployment package is a compressed (.zip) file that contains all the necessary files
and metadata to set up your application in IIS, copy the application files to their destination,
configure the different applications in IIS, and set up related resources such as localization
resources, certificates, registry settings, installing assemblies in the GAC, and, finally, setting
up databases.

Those packages are then installed on the destination server using the msdeploy tool. You can
read the latest news about the msdeploy tool here: http://blogs.iis.net/msdeploy/default.aspx.
A good analogy to this type of solution is what MSIs and the Windows installer are for the
client desktop.

Note InstallShield and the Wix Toolset are two other great solutions. They both have pros and
cons, and they both can work with other types of applications. The msdeploy tool is simply more
specialized and therefore a bit easier to work with. As of the writing of this chapter (May 2010),
Wix 3.5 is not out yet and a change in plans potentially is taking the custom action for IIS 7 out of
that release. If it does ship, it will be no earlier than July 2010. (To follow what is going on in the
Wix world, read Rob Mensching’s blog: http://robmensching.com/blog/.) Therefore, the Wix tool-
set is not an option I would recommend just yet, unless you are installing on IIS 6. InstallShield is
out already, supports Visual Studio 2010, and can definitely create good packages to deploy Web
applications; however, it isn’t free.

In Visual Studio 2010, you create your packages by creating settings in the Package/Publish
Web tab of the project properties page. Those settings allow you to specify what you put
into a deployment package. Let’s see this in action.

 1. Make sure you have the PlanMyNight solution opened. Then right-click on the
PlanMyNight.Web project, and select Package/Publish Settings. Let’s look at Figure 4-7
to make sure you are at the right place.

110 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

FIGURE 4-7 The Package/Publish Settings option

 2. Now let’s take a look at Figure 4-8 to look at the content of that tab and select the
same settings for the PlanMyNight.Web application you have opened.

FIGURE 4-8 The Package/Publish Web tab

 Chapter 4 From 2003 to 2010: Deploying an Application 111

 3. Similarly, in the Package/Publish SQL tab you can find the settings related to creating a
package for your database. Click on the Package/Publish SQL tab, or click on the Open
Settings link in the Package/Publish Web tab.

 4. Click the Import From Web.Config button, and then copy the same string from the
source connection string to the destination connection string. Make sure your SQL
 settings look like Figure 4-9. Save the file.

FIGURE 4-9 The Package/Publish SQL tab

 5. Now it’s time to build the package. Right-click on the project name, and select Build
Deployment Package. The build process for the application will start. When it is
 completed, the output will become the input to the package’s creation. If all goes well,
the package should be created at the location you specified in the package settings.

 6. The package folder should contain the package .zip file, a command file that invokes
Web Deploy to make it easier to install the package from the command line, a
SetParameters.xml file containing all the parameters passed to Web Deploy, and a
SourceManifest.xml containing the parameters Visual Studio 2010 used to create the
package.

You have just created the package using Visual Studio 2010, but packages can also be
 created by using MSBuild at the command line or MSBuild using Windows PowerShell or
TFSBuild. Now if you have access to the server, you can take this package and the command
file and deploy it. But if the server is a shared hosting company or another datacenter, you
have to publish it differently. And here is where One-Click Publish can help.

112 Part I Moving from Microsoft Visual Studio 2003 to Visual Studio 2010

One-Click Publish
One-Click Publish is a Visual Studio 2010 tool that allows you to deploy a package based on
various technologies. Most importantly, it can use Web Deploy to publish the package you
created in the previous steps. It can also use FTP and FrontPage Extension. Let’s see what
the Publish Profile looks like. To do so, right-click on the PlanMyNight.Web Web project and
select Publish. You should see the dialog shown in Figure 4-10, which displays the Publish
Profile information.

FIGURE 4-10 Publish Profile dialog

If you publish to a shared hosting company and have Web Deploy installed on its
servers, the hosting company will give you the service URL to use—something like
https:<sharedhost>:8172/MsDeploy.axd. Or you put the name of the server if it was on your
intranet. Finally, the site/application corresponds to the IISWebSiteName/IISWebApplication.
The bottom part of the dialog shown in Figure 4-10 is used to enter credentials, if needed,
for your Web hosting company or your intranet.

 Chapter 4 From 2003 to 2010: Deploying an Application 113

Note To try it, you just have to delete your database, delete your IIS Web application and
 settings, and then publish using this tool.

You can do a lot more than use what the UI gives you access to. Integrating your deploy-
ment in your TFSBuild or MSBuild allows you to change many things at different steps of the
process.

The options offered out of the box have been discussed here in this chapter. Of course, Visual
Studio 2010 has many more ways to deploy other types of applications.

Summary
In this chapter, we reviewed many ways to deploy Web applications. You saw how to do it in
the previous three versions of Visual Studio. You learned that you have a lot more control of
the process and that it’s a lot easier in Visual Studio 2010. Web Deploy is a new technology
that allows Web developers to become really proficient at preparing and deploying com-
plex installations and databases in an easy and extensible manner. As you witnessed in these
short examples, you can deploy your software in a confident and timely manner. It is a great
improvement over the XCOPY deployment most of us had to work with in the early days of
ASP.NET.

Finally, remember to keep abreast of all the changes in the msdeploy technologies by follow-
ing the teams’ blog at http://blogs.iis.net/msdeploy/default.aspx. The Wix Toolset is also well
integrated into Visual Studio and is therefore another excellent alternative.

 115

Part II

Moving from Microsoft
Visual Studio 2005 to
Visual Studio 2010
Authors Patrice Pelland, Ken Haines, and Pascal Pare

In this part:
From 2005 to 2010: Business Logic and Data (Pascal) . 117
From 2005 to 2010: Designing the Look and Feel (Ken) 153
From 2005 to 2010: Debugging an Application (Patrice) 195

Moving to Microsoft Visual Studio 2010

 117

Chapter 5

From 2005 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

■ Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model-First approach

■ Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

■ Get data from Web services

■ Learn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity”)

Application Architecture
The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let’s have a look at the high-level block model of the data model for the application, which
is shown in Figure 5-1.

118 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 5-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code
 constraints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let’s identify the contract interfaces for the major components of the PMN application:

■ IItinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

■ IActivitiesRepository allows us to search for activities (using Bing Maps Web services).

■ ICachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 5-2 shows the tables used by the PMN application.

 Chapter 5 From 2005 to 2010: Business Logic and Data 119

FIGURE 5-2 PlanMyNight database schema

Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 5-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that you can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2005
It would be straightforward to create the Plan My Night application in Visual Studio 2005
because it offers all the required tools to help you to code the application. However, some of
the technologies used back then required you to write a lot more code to achieve the same
goals.

Let’s take a look at how you could create the required data layer in Visual Studio 2005. One
approach would have been to write the data layer using ADO.NET DataSet or DataReader

120 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

directly. (See Figure 5-3.) This solution offers you great flexibility because you have complete
control over access to the database. On the other hand, it also has some drawbacks:

■ You need to know the SQL syntax.

■ All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

■ You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

■ You have to manage the relations between tables yourself.

FIGURE 5-3 ADO.NET Insert query

Another approach would be to use the DataSet designer available in Visual Studio 2005.
Starting from a database with the PMN tables, you could use the TableAdapter Configuration
Wizard to import the database tables as shown in Figure 5-4. The generated code offers you
a typed DataSet. One of the benefits is type checking at design time, which gives you the
advantage of statement completion. There are still some pain points with this approach:

■ You still need to know the SQL syntax, although you have access to the query builder
directly from the DataSet designer.

■ You still need to write specialized SQL queries to match each of the requirements of
your data contracts.

■ You have no control of the generated classes. For example, changing the DataSet to
add or remove a query for a table will rebuild the generated TableAdapter classes and
might change the index used for a query. This makes it difficult to write predictable
code using these generated items.

 Chapter 5 From 2005 to 2010: Business Logic and Data 121

■ The generated classes associated with the tables are persistence aware, so you will have
to create another set of simple entities and copy the data from one to the other. This
means more processing and memory usage.

FIGURE 5-4 DataSet designer in Visual Studio 2005

In the next sections of this chapter, you’ll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

Data with the Entity Framework in Visual Studio 2010
The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to the
business requirements of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

See Also The MSDN Data Developer Center offers a lot of resources about the ADO.NET Entity
Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.

You’ll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

122 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

EF: Importing an Existing Database
You’ll start with an existing solution that already defines the main projects of the PMN appli-
cation. If you installed the companion content at the default location, you’ll find the solution
at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 5\Code\ExistingDatabase. Double-click the PlanMyNight.sln file.

This solution includes all the projects in the following list, as shown in Figure 5-5:

■ PlanMyNight.Data: Application data layer

■ PlanMyNight.Contracts: Entities and contracts

■ PlanMyNight.Bing: Bing Maps services

■ PlanMyNight.Web: Presentation layer

■ PlanMyNight.AppFabricCaching: AppFabric caching

FIGURE 5-5 PlanMyNight solution

The EF allows you to easily import an existing database. Let’s walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 5-6.

 Chapter 5 From 2005 to 2010: Business Logic and Data 123

FIGURE 5-6 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You’ll generate the model from an existing database. Select Generate From Database and
then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 5\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 5-7.)

FIGURE 5-7 EDM Wizard database connection

124 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Leave the other fields in the form as is for now and click Next.

Note You’ll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveItinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 5-8.

FIGURE 5-8 EDM Wizard, Choose Your Database Objects page

Click Finish to generate your EDM.

Fixing the Generated Data Model
You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

 Chapter 5 From 2005 to 2010: Business Logic and Data 125

The PMN application requires only the navigation property ItineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You’ll also
need to rename the ItineraryActivities navigation property to Activities. Refer to Figure 5-9
for the updated model.

FIGURE 5-9 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCode1 because the table itself is already named ZipCode and the name has to be unique.
Let’s fix the property name by double-clicking it. Change the name to Code, as shown in
Figure 5-10.

FIGURE 5-10 ZipCode entity

126 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you’ll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view ‘dbo.UserProfile’ does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you’ll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With.
Choose XML (Text) Editor from the Open With dialog as shown in Figure 5-11. Click OK to
open the XML file associated with your model.

FIGURE 5-11 Open PlanMyNight.edmx in the XML Editor

Note You’ll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName, and make
the UserName property not nullable. Refer to Listing 5-1 to see the updated entity type.

 Chapter 5 From 2005 to 2010: Business Logic and Data 127

LISTING 5-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
 <Key>
 <PropertyRef Name="UserName"/>
 </Key>
 <Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
 <Property Name="FullName" Type="varchar" MaxLength="500" />
 <Property Name="City" Type="varchar" MaxLength="500" />
 <Property Name="State" Type="varchar" MaxLength="500" />
 <Property Name="PreferredActivityTypeId" Type="int" />
</EntityType>

If you close the XML file and try to open the EDM Designer, you’ll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type ‘UserProfile’ has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define
an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the
XML code shown in Listing 5-2.

LISTING 5-2 UserProfile EntitySet XML Definition

 <EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"
 store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
 <DefiningQuery>
 SELECT
 [UserProfile].[UserName] AS [UserName],
 [UserProfile].[FullName] AS [FullName],
 [UserProfile].[City] AS [City],
 [UserProfile].[State] AS [State],
 [UserProfile].[PreferredActivityTypeId] as [PreferredActivityTypeId]
 FROM [dbo].[UserProfile] AS [UserProfile]
 </DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 5-12 shows the UserProfile
view in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

128 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 5-12 Model Browser with the UserProfile view

Now that the view is available in the store metadata, you add the UserProfile entity and map
it to the UserProfile view. Right-click in the background of the EDM Designer, select Add, and
then choose Entity. You’ll see the dialog shown in Figure 5-13.

FIGURE 5-13 Add Entity dialog

 Chapter 5 From 2005 to 2010: Business Logic and Data 129

Complete the dialog as shown in Figure 5-13, and click OK to generate the entity.

You need to add the remaining properties: City, State, and PreferredActivityTypeId. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the
property is added, set the Type, Max Length, and Unicode field values. Table 5-1 shows the
expected values for each of the fields.

TABLE 5-1  UserProfile Entity Properties

Name Type Max Length Unicode
FullName String 500 False

City String 500 False

State String 500 False

PreferredActivityTypeId Int32 NA NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 5-14.

FIGURE 5-14 Table Mapping menu item

Then select the UserProfile view from the drop-down box as shown in Figure 5-15. Ensure
that all the columns are correctly mapped to the entity properties. The UserProfile view
of our store is now accessible from the code through the UserProfile entity.

FIGURE 5-15 UserProfile mapping details

130 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Stored Procedure and Function Imports
The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveItinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveItineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 5-16. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

FIGURE 5-16 Add Function Import dialog

 Chapter 5 From 2005 to 2010: Business Logic and Data 131

The RetrieveItinerariesWithinArea function import was added to the Model Browser as shown
in Figure 5-17.

FIGURE 5-17 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First
In the prior section, you saw how to use the EF designer to generate the model by import-
ing an existing database. The EF designer in Visual Studio 2010 also supports the ability
to generate the Data Definition Language (DDL) file that will allow you to create a data-
base based on your entity model. In this section, you’ll use a new solution to learn how to
 generate a database script from a model.

132 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

You can start from an empty model by selecting the Empty model option from the Entity
Data Model Wizard. (See Figure 5-18.)

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

FIGURE 5-18 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 5\Code\ModelFirst by double-clicking the PlanMyNight.sln file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 5-2.

 Chapter 5 From 2005 to 2010: Business Logic and Data 133

The Entity Model designer lets you easily add an entity to your data model. Let’s add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 5-19. Rename the entity as ZipCode. Rename the Id property as Code,
and change its type to String.

FIGURE 5-19 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown
in Table 5-2.

TABLE 5-2 ZipCode Entity Properties

Name Type Fixed Length Max Length Unicode
Code String False 5 False

City String False 150 False

State String False 150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 5-20.)

134 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 5-20 Add Association dialog for FK_ItineraryCommentItinerary

Set the association name to FK_ItineraryCommentItinerary and then select the entity
and the multiplicity for each end, as shown in Figure 5-20. After the association is created,
 double-click the association line to set the Referential Constraint as shown in Figure 5-21.

FIGURE 5-21 Association Referential Constraint dialog

 Chapter 5 From 2005 to 2010: Business Logic and Data 135

Add the association between the ItineraryRating and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. Set the association name to
FK_ItineraryItineraryRating and then select the entity and the multiplicity for each end as
in the previous step, except set the first end to ItineraryRating. Double-click on the associa-
tion line, and set the Referential Constraint as shown in Figure 5-21. Note that the Dependent
field will read ItineraryRating instead of ItineraryComment.

Create a new association between the ItineraryActivity and Itinerary entities. For the
FK_ItineraryItineraryActivity association, you also want to create a navigation property
and name it Activities, as shown in Figure 5-22. After the association is created, set the
Referential Constraint for this association by double-clicking on the association line.

FIGURE 5-22 Add Association dialog for FK_ItineraryActivityItinerary

Generating the Database Script from the Model
Your data model is now completed, but there is no mapping or store associated with it. The
EF designer offers the possibility of generating a database script from our model.

136 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Right-click on the designer surface, and choose Generate Database From Model as shown in
Figure 5-23.

FIGURE 5-23 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connection
information to translate the model types to the database type and to generate a DDL script
targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 5\Code\ModelFirst\Data\
PlanMyNight.mdf. (See Figure 5-24.)

 Chapter 5 From 2005 to 2010: Business Logic and Data 137

FIGURE 5-24 Generate a script database connection

After your connection is configured, click Next to get to the final page of the wizard, as
shown in Figure 5-25. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file
is added to your project. The DDL script will generate the primary and foreign key constraints
for your model.

FIGURE 5-25 Generated T-SQL file

138 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates
The EDM Designer uses T4 templates to generate the code for the entities. So far, we have let
the designer create the entities using the default templates. You can take a look at the code
generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.edmx.
The generated entities are based on the EntityObject type and decorated with attributes to
allow the EF to manage them at run time.

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about the code generation in Visual Studio 2010, visit Code Generation
and Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 5-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO .NET POCO Entity Generator
Let’s re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 5\Code\ExistingDatabase\PlanMyNight.sln file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 5-26, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

 Chapter 5 From 2005 to 2010: Business Logic and Data 139

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

FIGURE 5-26 Add New Item dialog

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 5-27. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

FIGURE 5-27 Added templates

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 5-3
shows the POCO version of the ZipCode class.

140 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

LISTING 5-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
 public partial class ZipCode
 {
 #region Primitive Properties
 public virtual string Code
 {
 get;
 set;
 }
 public virtual string City
 {
 get;
 set;
 }
 public virtual string State
 {
 get;
 set;
 }
 #endregion
 }
}

Tip C# 3.0 introduced a new feature called automatic properties. The backing field is created at
compile time if the compiler finds empty get or set blocks.

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you’ll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project
We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2005 Even though it was possible to extend the XSD processing with code-
generator tools, it was not easy and you had to maintain these tools. The EF uses T4 templates to
generate both the database schema and the code. These templates can easily be customized to
your needs.

 Chapter 5 From 2005 to 2010: Business Logic and Data 141

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-
click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.
Contracts project, and select Paste. The result is shown in Figure 5-28.

FIGURE 5-28 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the
EDMX file.

Open the PlanMyNight.tt template and locate the following line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data
project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated when you save the template.

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities

142 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;
using System.Data.Objects;
using System.Data.EntityClient;
using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

Putting It All Together
Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you’ll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you’ll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 7.

Getting Data from the Database
At the beginning of this chapter, we decided to group the operations on the Itinerary entity
into the IItinerariesRepository repository interface. Some of these operations are

■ Searching for Itinerary by Activity

■ Searching for Itinerary by ZipCode

■ Searching for Itinerary by Radius

■ Adding a new Itinerary

Let’s take a look at the corresponding methods in the IItinerariesRepository interface:

■ SearchByActivity allows searching for itineraries by activity and returning a page of
data.

■ SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

 Chapter 5 From 2005 to 2010: Business Logic and Data 143

■ SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

■ Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 5\Code\Final by double-clicking the PlanMyNight.sln file.

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
IItinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Note LINQ stands for Language Integrated Query and was introduced in the .NET Framework 3.5.
It adds native data querying capability to the .NET Framework so that you don’t have to worry
about learning or maintaining custom SQL queries. LINQ allows you to use strongly typed objects,
and the Visual Studio IntelliSense lets you select the properties or methods that are in the current
context as shown in Figure 5-29. To learn more about LINQ, visit the .NET Framework Developer
Center (http://msdn.microsoft.com/en-us/netframework/aa904594.aspx).

FIGURE 5-29 IntelliSense support for LINQ queries

Navigate to the SearchByActivity function definition. This method must return a set of itin-
eraries where the IsPublic flag is set to true and where one of their activities has the same
activityId that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Visual Studio 2005 Implementing each method to retrieve the itinerary in Visual Studio 2005
would have required writing tailored SQL. With the EF and LINQ, any query becomes trivial and
changes can be easily implemented at the code level!

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 5-4.
Add the highlighted code to the SearchByActivity method body.

144 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

LISTING 5-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.ActivityId == activityId)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query, int
page, int pageSize)
{
 int rowCount = rowCount = query.Count();
 if (pageSize > 0)
 {
 query = query.Skip((page - 1) * pageSize)
 .Take(pageSize);
 }
 var result = new PagingResult<Itinerary>(query.ToArray())
 {
 PageSize = pageSize,
 CurrentPage = page,
 TotalItems = rowCount
 };
 return result;
}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing IQueryable instead of IEnumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it also
adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy to imple-
ment, as shown in Listing 5-5. Add the highlighted code to the SearchByZipCode method
body.

 Chapter 5 From 2005 to 2010: Business Logic and Data 145

LISTING 5-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeId, string zip, int
pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.TypeId == activityTypeId &&
t.Zip == zip)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

The SearchByRadius function calls the RetrieveItinerariesWithinArea import function that
was mapped to a stored procedure. It then loads the activities for each itinerary found. You
can copy the highlighted code in Listing 5-6 to the SearchByRadius method body in the
ItinerariesRepository.cs file.

LISTING 5-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeId,
 double longitude, double latitude, double radius,
 int pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 // Stored Procedure with output parameter
 var totalOutput = new ObjectParameter("total", typeof(int));
 var items = ctx.RetrieveItinerariesWithinArea(activityTypeId,
 latitude, longitude, radius, pageSize, pageNumber, totalOutput).ToArray();

 foreach (var item in items)
 {
 item.Activities.ToList().AddRange(this.Retrieve(item.Id).Activities);
 }

 int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

 return new PagingResult<Itinerary>(items)
 {
 TotalItems = total,

146 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 PageSize = pageSize,
 CurrentPage = pageNumber
 };
 }
}

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 5-7 to the Add method body.

LISTING 5-7 Add Implementation

public void Add(Itinerary itinerary)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.Itineraries.AddObject(itinerary);
 ctx.SaveChanges();
 }
}

There you have it! You have completed the ItinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the ItinerariesRepository implementation should all succeed.

Getting Data from the Bing Maps Web Services
PMN relies on the Bing Maps services to allow the user to search for activities to add to
her itineraries. To get a Bing Maps Key to use in the PMN application, you need to create a
Bing Maps Developer Account. You can create a free developer account on the Bing Maps
Account Center.

See Also Microsoft Bing Maps Web services is a set of programmable Simple Object Access
Protocol (SOAP) services that allow you to match addresses to the map, search for points of
interest, integrate maps and imagery, return driving directions, and incorporate other location
intelligence into your Web application. You can learn more about these services by visiting the
site for the Bing Maps Web Services SDK (http://msdn.microsoft.com/en-us/library/cc980922.
aspx).

Visual Studio 2005 In Visual Studio 2005, if you had to add a reference to a Web service you
would have selected the Add Web Service Reference from the contextual menu to bring up the
Add Web Reference dialog and then added a reference to a Web service to your project. (See
Figure 5-30.)

 Chapter 5 From 2005 to 2010: Business Logic and Data 147

FIGURE 5-30 Visual Studio 2005 Add Web Reference dialog

Introduced in the .NET Framework 3.0, the Windows Communication Foundation (WCF) ser-
vices brought the ASMX Web services and other communication technologies into a unified
programming model.

Visual Studio 2010 provides tools for working with WCF services. You can bring up the new
Add Service Reference dialog by right-clicking on a project node and selecting Add Service
Reference as shown in Figure 5-31. In this dialog, you first need to specify the service meta-
data address in the Address field and then click Go to view the available service endpoints.
You can then specify a namespace for the generated code in the Namespace text box and
then click OK to add the proxy to your project.

FIGURE 5-31 Add Service Reference dialog

148 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Tip Click the Discover button to look for WCF services in the current solution.

See Also Click the Advanced button to access the Service Reference Settings dialog. This
dialog lets you tweak the configuration of the WCF service proxy. You can add the .NET
Framework 2.0 style reference by clicking the Add Web Service button. To learn more about
these settings, visit MSDN - Configure Service Reference Dialog Box (http://msdn.microsoft.
com/en-us/library/bb514724(VS.100).aspx).

The generated WCF proxy can be used in the same way you used the ASMX-style proxy, as
shown in Listing 5-8.

LISTING 5-8 Using a Web Service Proxy

public BingCoordinate GeocodeAddress(ActivityAddress address, string token)
{
 ...
 Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeResponse geocodeResponse
= null;
 // Make the geocode request
 using (var geocodeService = new
Microsoft.Samples.PlanMyNight.Bing.VEGeocodingService.GeocodeServiceClient())
 {
 try
 {
 geocodeResponse = geocodeService.Geocode(geocodeRequest);
 geocodeService.Close();
 }
 catch
 {
 geocodeService.Abort();
 }
 }

 if (geocodeResponse != null && geocodeResponse.Results != null && geocodeResponse.
Results.Length > 0)
 {
 var location = geocodeResponse.Results[0].Locations[0];
 return new BingCoordinate { Latitude = (float)location.Latitude, Longitude =
(float)location.Longitude };
 }

 return default(BingCoordinate);
}

 Chapter 5 From 2005 to 2010: Business Logic and Data 149

Parallel Programming
With the advances in multicore computing, it is becoming more and more important
for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it’s
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary, as shown in Listing 5-9. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 5-9 Activity Sequential Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 foreach (var item in itinerary.Activities.Where(i =>i.Activity == null))
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 }
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you, as seen in Listing 5-10.

LISTING 5-10 Activity Parallel Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 Parallel.ForEach(itinerary.Activities.Where(i =>i.Activity == null),
 item =>
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 });
}

150 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching
PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce usage of the resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 5-32 shows the architecture for
an application implementing a caching solution at the front-end server.

FIGURE 5-32 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if

 Chapter 5 From 2005 to 2010: Business Logic and Data 151

the cache is distributed across multiple computers, as shown in Figure 5-33. The API provides
simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

FIGURE 5-33 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows Server
AppFabric caching. A complete walkthrough describing how to add Windows Server
AppFabric caching to PMN is available here: PMN: Adding Caching using Velocity (http://
channel9.msdn.com/learn/courses/VS2010/ASPNET/EnhancingAspNetMvcPlanMyNight/
Exercise-1-Adding-Caching-using-Velocity/).

152 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Summary
In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
 database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

 153

Chapter 6

From 2005 to 2010: Designing
the Look and Feel

After reading this chapter, you will be able to

■ Create an ASP.NET MVC controller that interacts with the data model

■ Create an ASP.NET MVC view that displays data from the controller and validates user
input

■ Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2005 and .NET
Framework 2.0 included things such as more efficient view state, partial classes, and generic
types (plus many others) to help developers create efficient applications that were easy to
manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we’ll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We’ll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the
 correct solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 6\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project
The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be accus-
tomed to when developing an ASP.NET Web Forms application in Visual Studio 2005. Some

154 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

items in the project (as seen in Figure 6-1) will look familiar (such as Global.asax), but others
are completely new, and some of the structure is required by the ASP.NET MVC framework.

FIGURE 6-1 PlanMyNight.Web project view

Here are the items required by ASP.NET MVC:

■ Areas This folder is used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

■ Controllers During request processing, the ASP.NET MVC framework looks for con-
trollers in this folder to handle the request.

■ Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvc.

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This fea-
ture allows for a base web.config file to be created but then to have build-specific web.config

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 155

files override the settings of the base at build, deployment, and run times. These files appear
under the base web.config file, as seen in Figure 6-2.

FIGURE 6-2 A web.config file with build-specific files expanded

Visual Studio 2005 When working on a project in Visual Studio 2005, do you recall needing to
remember not to overwrite the web.config file with your debug settings? Or needing to remem-
ber to update web.config when it was published for a retail build with the correct settings?
This is no longer an issue in Visual Studio 2010. The settings in the web.Release.config file will
be used during release builds to override the values in web.config, and the same goes for
web.Debug.config in debug builds.

Other sections of the project include the following:

■ Content A collection of folders containing images, scripts, and style files

■ Helpers Includes miscellaneous classes, containing a number of extension methods,
that add functionality to types used in the project

■ Infrastructure Contains items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example, caching and controller factories)

■ ViewModels Contains data entities filled out by controller classes and used by views
to display data

156 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Running the Project
If you compile and run the project, you should see a screen similar to Figure 6-3.

FIGURE 6-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all work,
but if you attempt to save the itinerary you are working on, or if you log in with Windows
Live ID, the application will return a 404 Not Found error screen (as shown in Figure 6-4).

FIGURE 6-4 Error screen returned when logging in to the Plan My Night application

You get this error message because currently the project does not include an account
 controller to handle these requests.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 157

Creating the Account Controller
The AccountController class provides some critical functionality to the companion Plan My
Night application:

■ It handles signing users in and out of the application (via Windows Live ID).

■ It provides actions for displaying and updating user profile information.

To create a new ASP .NET MVC controller:

 1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

 2. Open the Add submenu, and select the Controller item.

 3. Fill in the name of the controller as AccountController.

Note Leave the Add Action Methods For Create, Update, And Delete Scenarios check box blank.
Selecting the box inserts some “starter” action methods, but because you will not be using the
default methods, there is no reason to create them.

158 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{

public class AccountController : Controller
 {
 //
 // GET: /Account/

 public ActionResult Index()
 {
 return View();
 }
}

Visual Studio 2005 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2005 is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it’s a key aspect of ASP.NET MVC.

Implementing the Functionality
To communicate with any of the data layers and services (the Model), you’ll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using System.IO;
using Microsoft.Samples.PlanMyNight.Data;
using Microsoft.Samples.PlanMyNight.Entities;
using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using System.Collections.Specialized;
using WindowsLiveId;

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 159

Now, let’s add the instance fields. These fields are interfaces to the various sections of your
Model:

public class AccountController : Controller
{
 private readonlyI WindowsLiveLogin windowsLogin;
 private readonlyI MembershipService membershipService;
 private readonlyI FormsAuthentication formsAuthentication;
 private readonlyI ReferenceRepository referenceRepository;
 private readonlyI ActivitiesRepository activitiesRepository;
.
.
.

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the Model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

■ IWindowsLiveLogin Provides functionality for interacting with the Windows Live ID
service.

■ IMembershipService Provides user profile information and authorization methods. In
your companion application, it is an abstraction of the ASP.NET Membership Service.

■ IFormsAuthentication Provides for ASP.NET Forms Authentication abstraction.

■ IReferenceRepository Provides reference resources, such as lists of states and other
model-specific information.

■ IActivitiesRepository An interface for retrieving and updating activity information.

You’ll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

public AccountController() :
 this(
 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())
{
}

publicAccountController(
 IMembershipService membershipService,

160 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
{
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
}

Authenticating the User
The first real functionality you’ll implement in this controller is that of signing in and out of
the application. Most of the methods you’ll implement later require authentication, so this is
a good place to start.

The companion application uses a few technologies together at the same time to give
the user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LiveID action
you’ll implement next.

Start by creating the following method in the AccountController class:

public ActionResult LiveId()
{
 return Redirect("~/");
}

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing in to Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you’ll use a switch to branch the logic depending on the value
of the parameter.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 161

Add the following to the LiveId method above the return statement:

string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);
}

See also Full documentation of the Windows Live ID system can be found on the http://dev.
live.com/ Web site.

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live ID
cookies (the ones that remember your login name but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for
the user. However, before that, you must pass the data that Windows Live ID sent you
to your Windows Live ID interface so that it can validate the information and give you a
WindowsLiveLogin.User object:

default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

162 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

At this point in the case for logging in, either liveIdUser will be a reference to an authenti-
cated WindowsLiveLogin.User object or it will be null. With this in mind, you can add your
next section of the code, which takes action when the liveIdUser value is not null:

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;

The call to the ValidateUser method on the IMembershipService reference allows the
 application to check whether the user has been to this site before and whether there will be
a profile for the user. Because the user is authenticated with Windows Live ID, you are using
the user’s ID value (which is a GUID) as both the user name and password to the ASP.NET
Membership Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed in to ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 163

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>
…
<profile enabled="true">
 <properties>
 <add name="FullName" type="string" />
 <add name="State" type="string" />
 <add name="City" type="string" />
 <add name="PreferredActivityTypeId" type="int" />
 </properties>

 <providers>
 <clear />
 <add name="AspNetSqlProfileProvider"
type="System.Web.Profile.SqlProfileProvider,
 System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
</profile>
…
</system.web>

At this point, the LiveID method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an
ASP.NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()
{
string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);

default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else

164 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
}
 return Redirect(“~/”);
}

Of course, the user has to be able to get to the Windows Live ID login page in the first place
before logging in. Currently in the Plan My Night application, there is a Windows Live ID
login button. However, there are cases where the application will want the user to be redi-
rected to the login page from code. To cover this scenario, you need to add a small method
called Login to your controller:

public ActionResult Login(string returnUrl)
{
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);
 return Redirect(redirect);
}

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 165

This method simply retrieves the login URL for Windows Live and redirects the user to that
location. This also satisfies a configuration value in your web.config file for ASP.NET Forms
Authentication in that any request requiring authentication will be redirected to this method:

<authentication mode="Forms">
 <forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User
Now with the authentication methods defined, which satisfies your first goal for this
 controller—signing users in and out in the application—you can move on to retrieving data
for the current user.

The Index method, which is the default method for the controller based on the URL map-
ping configuration in Global.asax, will be where you retrieve the current user’s data and
return a view displaying that data. The Index method that was initially created when the
AccountController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);

 return View("Index", model);
}

Visual Studio 2005 Attributes, such as [Authorize()], might not have been in common use
in Visual Studio 2005; however, ASP.NET MVC makes use of them often. Attributes allow for
 metadata to be defined about the target they decorate. This allows for the information to be
examined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which Http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You’ve added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

166 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find
a suitable source, the value will be null. This behavior can cause problems for value types that
 cannot be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a
view model object for the view to use. The call to GetReturnUrl is an example of an exten-
sion method defined in the PlanMyNight.Infrastructure project. It’s not a member of the
Controller class, but in the development environment it makes for much more readable code.
(See Figure 6-5.)

FIGURE 6-5 Example of extension methods in MvcExtensions.cs

Visual Studio 2005 In .NET Framework 2.0, which Visual Studio 2005 used, extension meth-
ods did not exist. Rather than calling this.GetReturnUrl() and also having the method appear in
IntelliSense for this object, you would have to type MvcExtensions.GetReturnUrl(this), pass-
ing in the controller as a parameter. Extension methods certainly make the code more readable
and do not require the developer to know the static class the extension method exists under. For
IntelliSense to work, the namespace needs to be listed in the using clauses.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 167

InjectStatesAndActivityTypes is a method you need to implement. It gathers data from the
reference repository for names of states and the activity repository. It makes two collections
of SelectListItem (an HTML class for MVC): one for the list of states, and the other for the list
of different activity types available in the application. It also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null && o.Id ==
 profile.PreferredActivityTypeId)
 }).ToList();

 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null && o.Abbreviation ==
 profile.State)
 }).ToList();

 states.Insert(0, new SelectListItem {
 Text = "Any state",
 Value = string.Empty
 });

 model.PreferredActivityTypes = types;
 model.States = states;
}

Visual Studio 2005 In Visual Studio 2005, the InjectStatesAndActivities method takes longer
to implement because a developer cannot use the LINQ extensions (the call to Select) and
Lambda expressions, which are a form of anonymous delegate that the Select method applies to
each member of the collection being enumerated. Instead, the developer would have to write
out his own loop and enumerate each item manually.

Updating the Profile Data
Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,

168 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]
[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)
{
 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }

 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess", "Account", new { returnUrl =
 returnUrl });
 }
}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view’s input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a
System.ComponentModel.DataAnnotations.Required attribute. During Model Binding, the
MVC framework evaluates DataAnnotation attributes and marks the ModelState as valid
only when all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2005 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-
ate view. In Visual Studio 2005, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 169

When the ModelState is valid, the profile is updated in the membership service and a
JSON result is returned for AJAX requests with the success data, or in the case of “normal”
requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)
{
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),
 ReturnUrl = returnUrl
 };
 return View(model);
}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the
profile update process.

Now that you’ve reached the end of the Account controller implementation, you should
have a class that resembles the following listing:

 using System;
 using System.Collections.Specialized;
 using System.IO;
 using System.Linq;
 using System.Web;
 using System.Web.Mvc;
 using Microsoft.Samples.PlanMyNight.Data;
 using Microsoft.Samples.PlanMyNight.Entities;
 using Microsoft.Samples.PlanMyNight.Infrastructure;
 using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
 using Microsoft.Samples.PlanMyNight.Web.ViewModels;
 using WindowsLiveId;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{

 [HandleErrorWithContentType()]
 [OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
 public class AccountController : Controller
 {
 private readonly IWindowsLiveLogin windowsLogin;
 private readonly IMembershipService membershipService;
 private readonly IFormsAuthentication formsAuthentication;
 private readonly IReferenceRepository referenceRepository;
 private readonly IActivitiesRepository activitiesRepository;

 public AccountController() :
 this(

170 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())
 {
 }

 public AccountController(IMembershipService membershipService,
 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
 {
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
 }

 public ActionResult LiveId()
 {
 string action = Request.QueryString["action"];
 switch (action)
 {
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");
 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);
 default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);
 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 171

 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(
 userId, userId, string.Empty);
 var profile =
 this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl =
 returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
 }
 return Redirect("~/");
 }

 public ActionResult Login(string returnUrl)
 {
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);
 return Redirect(redirect);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Get)]
 public ActionResult Index(string returnUrl)
 {
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);
 return View("Index", model);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Post)]
 [ValidateAntiForgeryToken()]

172 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 public ActionResult Update(UserProfile profile)
 {
 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ?
 new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }
 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult {
 JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new {
 Update = true,
 Profile = profile,
 ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess",
 "Account", new { returnUrl = returnUrl });
 }
 }
 public ActionResult UpdateSuccess(string returnUrl)
 {
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),
 ReturnUrl = returnUrl
 };
 return View(model);
 }

 private void InjectStatesAndActivityTypes(ProfileViewModel model)
 {
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes()
 .Select(o => new SelectListItem { Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null &&
 o.Id == profile.PreferredActivityTypeId) })
 .ToList();
 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null &&
 o.Abbreviation == profile.State) })
 .ToList();

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 173

 states.Insert(0,
 new SelectListItem { Text = "Any state",
 Value = string.Empty });
 model.PreferredActivityTypes = types;
 model.States = states;
 }
 }
}

Creating the Account View
In the previous section, you created a controller with functionality that allows a user to update
her information and view it. In this section, you’re going to walk through the Visual Studio
2010 features that enable you to create the views that display this functionality to the user.

To create the Index view for the Account controller:

 1. Navigate to the Views folder in the PlanMyNight.Web project.

 2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

 3. Name the new folder Account.

 4. Click the right mouse button on the new Account folder, expand the Add submenu,
and select View.

 5. Fill out the Add View dialog box as shown here:

174 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 6. Click OK. You should see an HTML page with some <asp:Content> controls in the
markup:

You might notice that it doesn’t look much different from what you are used to seeing in Visual
Studio 2005. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view engine, so there
will be some commonality between MVC and Web Forms pages. The primary differences at
this point are that the page class derives from System.Web.Mvc.ViewPage<ProfileViewModel>
and there is no code-behind file. MVC does not use code-behind files, like ASP.NET Web Forms
does, to enforce a strict separation of concerns. MVC pages are generally edited in markup
view; the designer view is primarily for ASP.NET Web Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
 <% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
 "http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
<% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/MicrosoftMvcJQueryValidation.js"), "pmn"); %>

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 175

 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>
 <%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content set up, you can look at the main content of the view:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <% Html.EnableClientValidation(); %>
 <% using (Html.BeginForm("Update", "Account")) %>
 <% { %>
 <%=Html.AntiForgeryToken()%>
 <div class="items">
 <fieldset>
 <p>
 <label for="FullName">Name:</label>
 <%=Html.EditorFor(m => m.Profile.FullName)%>
 <%=Html.ValidationMessage("Profile.FullName",
 new { @class = "field-validation-error-wrapper" })%>
 </p>
 <p>
 <label for="State">State:</label>
 <%=Html.DropDownListFor(m => m.Profile.State, Model.States)%>
 </p>
 <p>
 <label for="City">City:</label>
 <%=Html.EditorFor(m => m.Profile.City, Model.Profile.City)%>
 </p>
 <p>
 <label for="PreferredActivityTypeId">Preferred activity:</label>
 <%=Html.DropDownListFor(m =>
 m.Profile.PreferredActivityTypeId,
 Model.PreferredActivityTypes)%>
 </p>
 </fieldset>
 <div class="submit">
 <%=Html.Hidden("returnUrl", Model.ReturnUrl)%>
 <%=Html.SubmitButton("submit", "Update")%>
 </div>
 </div>
 <div class="toolbox"></div>
 <% } %>
 </div>
</div>
</asp:Content>

Aside from some inline code, this looks to be fairly normal HTML markup. We’re going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

176 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Visual Studio 2005 In Visual Studio 2005, it was more commonplace to use server-side con-
trols to display data, and other display-time logic. However, because ASP.NET MVC view pages
do not have a code-behind file, server-side logic executed in the view at render time must be
done in the same file with the markup. ASP.NET Web Forms controls can still be used. Our exam-
ple makes use of the <asp:Content> control. However, the functionality of ASP.NET Web Forms
controls is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmlHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version
of this extension class (HtmlHelper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

■ Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

■ Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

■ Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor’s browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

■ Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

■ Html.DropDownListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

■ Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

■ Html.Hidden places a hidden field in the form, with the name and value that is passed in.

■ Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 177

To create the UpdateSuccess view:

 1. Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

 2. Click the right mouse button on the Account folder.

 3. Open the Add submenu, and click View.

 4. Fill out the Add View dialog box so that it looks like this:

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <div class="items">
 <p>Your profile has been successfully updated.</p>
 <h3>» <a href="<%=Html.AttributeEncode(Model.ReturnUrl ??
 Url.Content("~/"))%>">Continue</h3>
 </div>
 <div class="toolbox"></div>
 </div>
</div>
</asp:Content>

178 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

To see the views created, you must perform an edit to the Site.Master file (located in the
Views/Shared folder from the Web project’s root). Line 33 of the file is commented out, and
the comment tags should be removed so that it matches the following example:

<%=Html.ActionLink<AccountController>(c =>c.Index(null), "My Profile")%>

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 6-6, and sign in to Windows Live ID.

FIGURE 6-6 Plan My Night default screen

After you’ve signed in, you should be redirected to the Index view of the Account controller
you created, shown in Figure 6-7.

FIGURE 6-7 Profile settings screen returned from the Index method of the Account controller

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 179

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,
try to save the form without filling in the Full Name field. You should get a result that looks
like Figure 6-8.

FIGURE 6-8 Example of failed validation during Model Binding checks

Because you enabled client-side validation, there was no post back. To see the server-side
validation work, you would have to edit the Index.aspx file in the Account folder and com-
ment out the call to Html.EnableClientValidation. The tight integration and support of AJAX
and other JavaScript in MVC applications allows for server-side operations such as validation
to be moved to the client side much more easily than they were previously.

Visual Studio 2005 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like it is in ASP.NET Web Forms 2.0. In Visual Studio 2005, a
developer would have to make sure to set the UniqueID of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the
ID was unique. However, it was always an extra layer of complexity added to the interaction
between ASP.NET 2.0 Web Forms controls and JavaScript. In MVC, this transformation does not
happen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted
that ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control
basis, if the developer so wishes.

180 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

With the completed Account controller and related views, you have filled in the missing
“core” functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.
ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we’ll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form
Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected con-
dition, it returns an error screen like that shown in Figure 6-9.

FIGURE 6-9 Example of an error screen in the Plan My Night application

Currently, a user who sees this screen really has only the option of trying his action again or
using the navigation links along the top area of the application. (Of course, that might also
cause another error.) Adding an option for the user to provide feedback allows the develop-
ers to gain information about the situation that might not be apparent by using the standard
exception message and stack trace. To show a different way to create a user interface com-
ponent for Plan My Night, the error feedback page is going to be created as an ASP.NET Web
Form using primarily the Designer view in Visual Studio. Before you can begin designing the
form, you need to create a base form file to work from.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 181

To create a new Web form:

 1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse
button), open the Add submenu, and select New Item.

 2. In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

 3. The dialog screen to associate a master page with this Web form will appear. On the
Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

182 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It’s a good idea to pin the control toolbox open on the screen because you’ll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 183

Visual Studio 2005 A much-needed update to the Web Forms designer surface from Visual
Studio 2005 is the application of CSS. This allows the developer to see in real-time how the style
changes are applied, without having to run the application. When viewed in Visual Studio 2005,
the designer for the search.aspx page will appear similar to Figure 6-10.

FIGURE 6-10 Designer view of an ASP.NET Web page in Visual Studio 2005

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel:

<h2>Error Feedback</h2>

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > formr. This will create a server-side form
tag for you to insert Web controls into. Inside the form tag, place a div tag with the class
 attribute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the text box, and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should
have something like Figure 6-11 in the Design view.

184 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 6-11 Current state of ErrorFeedback.aspx in the Design view

Add another text box and label it in a similar manner as the first, but set the ID of the text box to
EmailAddress and the label value to Email Address: (making sure to include the colon). Repeat
the process a third time, setting the TextBox ID and label value to Comments. There should now
be three labels and three single-line TextBox controls in the Design view. The Comments control
needs multiline input, so open its property page and set TextMode to Multiline, Rows to 5, and
Columns to 40. This should create a much wider text box in which the user can enter comments.

Use the Insert Snippet feature again, after the Comments text box, and insert a “div with
class” tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button’s Text property to Send Feedback.

The designer should show something similar to what you see in Figure 6-12, and at this point
you have a page that will submit a form.

FIGURE 6-12 The ErrorFeedback.aspx form with a complete field set

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 185

However, it does not perform any validation on the data being submitted. To do this, you’ll
take advantage of some of the validation controls present in ASP.NET. You’ll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you’ll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It’s a drop-down list of controls on the page.) Also, set the CssClass to
field-validation-error. This changes the display of the error to a red triangle used elsewhere
in the application. Finally, change the Error Message property to Name is Required. (See
Figure 6-13.)

FIGURE 6-13 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}

186 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The error message for this validator should say something like “Must enter a valid e-mail
address.”

The form is complete. To see it in the application, you need to add the option of provid-
ing feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user if she wants to try her action again and where you’ll put the option
for sending the feedback. After the question text in the same paragraph, add the following
markup:

or send feedback?

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you’ll have to cause an error in your application.

To cause an error in the Plan My Night application:

 1. Start the application.

 2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

 3. Because it is highly unlikely such an itinerary ID exists in the database, an error screen
will be shown.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 187

 4. With the error screen visible, click the link to go to the feedback form. Try to submit the
form with invalid data.

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page.IsValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page.IsValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)
 {
 if (this.IsPostBack && this.IsValid)
 {
 this.Response.Redirect("/", true);
 }
 }

This really isn’t very useful to the user, but our goal in this section was to work with the
designer to create an ASP.NET Web Form. This added a new interface to the PlanMyNight
.Web project, but what if you wanted to add new functionality to the application in a more
modular sense, such as some degree of functionality that can be added or removed without
having to compile the main application project. This is where an extensibility framework like
the Managed Extensibility Framework (MEF) can show the benefits it brings.

188 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Extending the Application with MEF
A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is the
Managed Extensibility Framework (MEF). The Managed Extensibility Framework pro-
vides developers with a simple (yet powerful) mechanism to allow their applications to be
extended by third parties after the application has been shipped. Even within the same appli-
cation, MEF allows developers to create applications that completely isolate components,
allowing them to be managed or changed independently. It uses a resolution container to
map components that provide a particular function (exporters) and components that require
that functionality (importers), without the two concrete components having to know about
each other directly. Resolutions are done on a contract basis only, which easily allows compo-
nents to be interchanged or introduced to an application with very little overhead.

See Also MEF’s community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com.

The companion Plan My Night application has been designed with extendibility in mind, and
it has three “add-in” module projects in the solution, under the Addins solution folder. (See
Figure 6-14.)

FIGURE 6-14 The Plan My Night application add-ins

PlanMyNight.Addins.EmailItinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.PrintItinerary provides a printer-friendly view
of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 189

these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the UI is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found
in the same folder as the PlanMyNight.sln file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will con-
tain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to
the interface for PlanMyNight, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 6-15.)

FIGURE 6-15 Location of the e-mail add-in in the UI

190 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 6-16.)

FIGURE 6-16 Location of the social-sharing add-in in the UI

Visual Studio 2005 Visual Studio 2005 does not have anything that compares to MEF. To sup-
port plug-ins, a developer would have to either write the plug-in framework from scratch or pur-
chase a commercial package. Either of the two options led to proprietary solutions an external
developer would have to understand in order to create a component for them. Adding MEF to
the .NET Framework helps to cut down the entry barriers to producing extendible applications
and the plug-in modules for them.

Print Itinerary Add-in Explained
To demonstrate how these plug-ins wire into the application, let’s have a look at the
PrintItinerary.Addin project. When you expand the project, you should see something like
the structure shown in Figure 6-17.

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 191

FIGURE 6-17 Structure of the PrintItinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That’s because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintItineraryController.cs file in the Controller folder, you can see it is similar in
structure to the controller you created earlier in this chapter (and similar to any of the other
controllers in the Web application). However, some key differences set it apart from the con-
trollers that are compiled in the primary PlanMyNight.Web application.

Focusing on the class definition, you’ll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an IController under the contract name of PrintItinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

192 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Further into the PrintItineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
 serviceFactory.GetItineraryContainerInstance(),
 serviceFactory.GetItinerariesRepositoryInstance(),
 serviceFactory.GetActivitiesRepositoryInstance())
 {
 }

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintItineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())
{
 foreach (var route in routes)
 {
 RouteTable.Routes.Add(route);
 }
}

The controllerFactory, which was initialized with an MEF container containing path informa-
tion to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be the
controller factory for the lifetime of the application. This allows controllers imported via MEF
to be usable anywhere in the application. The routes these plug-ins respond to are then
retrieved from the MEF container and registered in the MVC routing table.

The ItineraryContextualActionsExport.cs file exports information to create the link
to this plug-in, as well as metadata for displaying it. This information is used in the

 Chapter 6 From 2005 to 2010: Designing the Look and Feel 193

ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin links and toolboxes
var addinBoxes = new List<RouteValueDictionary>();
var addinLinks = new List<ExtensionLink>();

addinBoxes.AddRange(AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange(AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary
In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we’ll explore how debugging applications has been improved in Visual Studio 2010.

 195

Chapter 7

From 2005 to 2010: Debugging
an Application

After reading this chapter, you will be able to

■ Use the new debugger features of Microsoft Visual Studio 2010

■ Create unit tests and execute them in Visual Studio 2010

■ Compare what was available to you as a developer in Visual Studio 2005

As we were writing this book, we realized how much the debugging tools and developer
aids have evolved over the last three versions of Visual Studio. Focusing on debugging an
 application and writing unit tests just increases the opportunities we have to work with Visual
Studio 2010.

Visual Studio 2010 Debugging Features
In this chapter, you’ll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you’ll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 7\Code. Double-click the
PlanMyNight.sln file.

First, before diving into the debugging session itself, you’ll need to set up a few things:

 1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

 2. To get ready for the next steps, in the PlanMyNight.Web solution open the Global.asax.cs
file by clicking the triangle beside the Global.asax folder and then double-clicking the
Global.asax.cs file, as shown in Figure 7-1:

196 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 7-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session
Using the Plan My Night application, you’ll examine how a developer can manage and share
breakpoints. And with the use of new breakpoint enhancements, you’ll learn how to inspect
the different data elements in the application in a much faster and more efficient way. You’ll
also look at new minidumps and the addition of a new intermediate language (IL) inter-
preter that allows you to evaluate managed code properties and functions during minidump
debugging.

New Breakpoint Enhancements
At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk
you through some ways to manage and share breakpoints:

 1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 7-2 to see this in action:

 Chapter 7 From 2005 to 2010: Debugging an Application 197

FIGURE 7-2 Creating a breakpoint

 2. Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the keyboard shortcut: Ctrl+D+B.

You should now see the Breakpoints window as shown in Figure 7-3:

FIGURE 7-3 Breakpoints window

 3. In the same method, add three more breakpoints so that the editor and the
Breakpoints window look like those shown in Figure 7-4:

FIGURE 7-4 Code editor and Breakpoints window with three new breakpoints

198 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Visual Studio 2005 As a reader and a professional developer who used Visual Studio 2005
often, you probably noticed a series of new buttons as well as new fields in the Breakpoints win-
dow in this exercise. As a reminder, take a look at Figure 7-5 for a quick comparison of what it
looks like in Visual Studio 2005.

FIGURE 7-5 Visual Studio 2005 Breakpoints window

 4. Notice that the Labels column is now available to help you index and to search break-
points. It is a really nice and useful feature that Visual Studio 2010 brings to the table. To
use this feature, you simply right-click on a breakpoint in the Breakpoints window and
select Edit Labels or use the keyboard shortcut Alt+F9, L, as shown in Figure 7-6:

FIGURE 7-6 Edit Labels option

 5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which
is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and
type a label name of url. When you are done, click OK. You should see a window that

 Chapter 7 From 2005 to 2010: Debugging an Application 199

looks like Figure 7-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations:

FIGURE 7-7 Adding labels that show up in the Breakpoints window

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks I just outlined.

Note You’ll see that when adding labels to a new breakpoint you can choose any of the
existing labels you have already entered. You’ll find these in the Or Choose Among Existing
Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in the pre-
ceding figure.

 6. Using any of the ways you just learned, add labels for each of the breakpoints, and
make sure your Breakpoints window looks like Figure 7-8 after you’re done.

FIGURE 7-8 Breakpoints window with all labels entered

200 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

When you have a lot of code and are in the midst of a debugging session, it would be
great to be able to filter the displayed list of breakpoints. That’s exactly what the new
Search feature in Visual Studio 2010 allows you to do.

 7. To see the Search feature in action, just type url in the search text box and you’ll see
the list of breakpoints is filtered down to breakpoints containing url in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2005, the two people needed to sit near each other, send one another screen shots, or
send one another the line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We’ll see how to do that next.

 8. In the Breakpoints window, click the Export button to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

 9. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching

The Current Search Criteria button or by selecting all the breakpoints and click-

ing the Delete The Selected Breakpoints button . The only purpose of deleting
them is to simulate two developers sharing them or one developer sharing breakpoints
between two machines.

 10. You’ll now import your breakpoints by clicking the Import button and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Inspecting the Data
When you are debugging your applications, you know how much time one can spend step-
ping into the code and inspecting the content of variables, arguments, and so forth. Maybe
you can remember when you were learning to write code, a while ago, when debuggers
weren’t a reality or when they were really rudimentary. Do you remember (maybe not—you
might not be as old as we are) how many printf or WriteLn statements you had to write to
inspect the content of different data elements?

 Chapter 7 From 2005 to 2010: Debugging an Application 201

Visual Studio 2005 In Visual Studio 2005, things were already a big improvement from the
days of writing all kinds of statements to the console, because Visual Studio had a real debug-
ger with new functionalities. New data visualizers allowed you to see XML as a well-formed XML
snippet and not as a long string. Furthermore, with those data visualizers, you could view arrays
in a more useful way, with the list of elements and their indices, and you accomplished that by
simply hovering your mouse over the object. Take a look at Figure 7-9 for an example:

FIGURE 7-9 Collection view versus an array view in the debugger in Visual Studio 2010 and in Visual
Studio 2005

Although those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that make DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.
Having the ability to put DataTips on a second monitor can make your life a lot easier while
debugging, because it keeps the data that always needs to be in context right there on the
second monitor. The following steps demonstrate how to use these features:

 1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the
source code var authority and var pathAndQuery, respectively.

 2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the
word url and click on the pushpin, as seen in Figure 7-10:

FIGURE 7-10 The new DataTip pushpin feature

202 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 3. To the right of the line of code, you should see the pinned DataTip (as seen in the fol-
lowing figure on the left). If you hover your mouse over the DataTip, you’ll get the
DataTip management bar (as seen in Figure 7-11 on the right):

FIGURE 7-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the
DataTip is pinned. The pushpin should look like this: . Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

Note If you click the double arrow pointing down in the DataTip management bar, you
can insert a comment for this DataTip, as shown in Figure 7-12. You can also remove the
DataTip altogether by clicking the X button in the DataTip management bar.

FIGURE 7-12 Inserting a comment for a DataTip

 4. One nice feature of the new DataTip is that you can insert any expression to be evalu-
ated right there in your debugging session. For instance, right-click on the DataTip
name, in this case url, select Add Expression, type authority, and then add another one
like this: (authority != null). You’ll see that the expressions are evaluated immediately
and will continue to be evaluated for the rest of the debugging session every time
your debugger stops on those breakpoints. At this point in the debugging session, the
expression should evaluate to null and false, respectively.

 5. Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context,
as shown in Figure 7-13:

FIGURE 7-13 The url pinned DataTip with the two evaluated expressions

 Chapter 7 From 2005 to 2010: Debugging an Application 203

 6. Although it is nice to be able to have a mini–watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on the
source code being debugged. Keep in mind that you can move the DataTip win-
dow anywhere you want in the code editor by simply dragging it, as illustrated in
Figure 7-14:

FIGURE 7-14 Move the pinned DataTip away from the source code

 7. Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You’ll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 7-15 for an example:

FIGURE 7-15 Unpinned DataTip over Solution Explorer and the Windows desktop

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 7-16. You can retry to have the debugger evaluate the value of an element by click-

ing on this button: . However, if that element has no meaning in this context, it’s pos-
sible that nothing happens.

FIGURE 7-16 DataTip window with out-of-context items

204 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Note You’ll get an error message if you try to pin outside the editor, as seen in
Figure 7-17:

FIGURE 7-17 Error message that appears when trying to pin a DataTip outside the code editor

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you’ll see that you can also pin a child
 element, as seen in Figure 7-18:

FIGURE 7-18 Pinned child element within the url DataTip

 8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already
there and re-pin the DataTip window. Then stop the debugging session by clicking the

Stop Debugging button in the debug toolbar () or by pressing Shift+F5. Now if
you hover your mouse over the blue pushpin in the breakpoint gutter, you’ll see the
values from the last debug session, which is a nice enhancement to the watch window.
Take a look at Figure 7-19 for what you should see:

FIGURE 7-19 Values from the last debug session for a pinned DataTip

 Chapter 7 From 2005 to 2010: Debugging an Application 205

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

Using the Minidump Debugger
Many times in real-world situations, you’ll have access to a minidump from your product sup-
port team. Apart from their bug descriptions and repro steps, it might be the only thing you
have to help debug a customer application. Visual Studio 2010 adds a few enhancements to
the minidump debugging experience.

Visual Studio 2005 In Visual Studio 2005, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge of the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let’s see the new enhancements to the minidump debugger. First you need to create a crash
from which you’ll be able to generate a minidump file:

 1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word “Default.”

 2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

 3. Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let’s go through the steps of
creating the minidump file and debugging it. Figure 7-20 shows what you should see at
this point:

FIGURE 7-20 The unhandled exception you should expect

206 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 4. It is time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As, as seen in Figure 7-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the excep-
tion was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file
name proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note
that it might take some time to create the file because the minidump file size will be
close to 300 MB.

FIGURE 7-21 Saving the minidump file

 5. Stop Debugging by pressing Shift+F5 or the Stop Debugging button.

 6. Next, go to the File menu and close your solution.

 7. In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 7-22 shows what you should see.) Before you start to debug, you’ll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

 Chapter 7 From 2005 to 2010: Debugging an Application 207

FIGURE 7-22 Minidump summary page

 8. To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

 9. You should see almost immediately a first-chance exception like the one shown in
Figure 7-23. In this case, it tells you what the bug is; however, this won’t always be the
case. Continue by clicking the Break button.

FIGURE 7-23 First-chance exception

 10. You should see a green line indicating which instruction caused the exception If you
look at the source code, you’ll see in your Autos window that the controllerExport
variable is null, and that just before that we specified that if the variable was null
we wanted to have an HttpException thrown if the file to load was not found. In this
case, the file to look for is Default.aspx, as you can see in the Locals window in the
 controllerName variable. You can glance at many other variables, objects, and so forth
in the Locals and Autos windows containing the current context. Here, you have only

208 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

one call that belongs to your code, so the call stack indicates that the code before and
after is external to your process. If you had a deeper chain of calls in your code, you
could step back and forth in the code and look at the variables. Figure 7-24 shows a
summary view of all that:

FIGURE 7-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

 11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations
This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you’ll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http://go.microsoft.com/fwlink/?LinkId=125889.

Creating Unit Tests
Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as UI Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions, like Visual Studio 2010 Premium and

 Chapter 7 From 2005 to 2010: Debugging an Application 209

Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http://msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2005 With Visual Studio 2005, you had to own either Visual Studio 2005 Team
System or Visual Studio 2005 Team Test to have the ability to create and execute tests out of the
box within Visual Studio 2005. Another option back then was to go with a third-party option like
Nunit.

In this part of the chapter, we’ll show you how to add a unit test for a class you’ll find in the
Plan My Night application. We won’t spend time defining what a unit test is or what it should
contain; rather, we’ll show you within Visual Studio 2010 how to add tests and execute them.

You’ll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

 1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click on the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 7-25 to make sure you are at the right place:

FIGURE 7-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

 2. In the code editor, you can add unit tests in two different ways. You can right-click on
a class name or on a method name and select Create Unit Tests. You can also go to the
Test menu and select New Test. We’ll explore the first way of creating unit tests. This
way Visual Studio automatically generates some source code for you. Right-click on the
GetFriendlyTime method, and select Create Unit Tests. Figure 7-26 shows what it looks
like:

210 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

FIGURE 7-26 Contextual menu to create unit tests from by right-clicking on a class name

 3. After selecting Create Unit Tests, you’ll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn’t have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 7-27 shows what you
should be seeing:

FIGURE 7-27 Selecting the method you want to create a unit test against

 4. After you click OK, the dialog switches to a test-case generation mode and displays a
progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

 Chapter 7 From 2005 to 2010: Debugging an Application 211

 5. Remove the method and its attributes because you’ll create three new test cases for
that method. Remove the following code:

/// <summary>
///A test for GetFriendlyTime
///</summary>
// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page (for
// example, http://.../Default.aspx). This is necessary for the unit test to be
// executed on the web server,
// whether you are testing a page, web service, or a WCF service.
[TestMethod()]
[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("C:\\Users\\Patrice\\Documents\\Chapter 7\\code\\
PlanMyNight.Web", "/")]
[UrlToTest("http://localhost:48580/")]
public void GetFriendlyTimeTest()
{
 int totalMinutes = 0; // TODO: Initialize to an appropriate value
 string expected = string.Empty; // TODO: Initialize to an appropriate value
 string actual;
 actual = TimeHelper.GetFriendlyTime(totalMinutes);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive("Verify the correctness of this test method.");
}

 6. Add the three simple test cases validating three key scenarios used by Plan My Night.
To do that, insert the following source code right below the method attributes that
were left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
 Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}

[TestMethod]
public void LessThan60MinutesReturnsValueInMinutes()
{
 Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));
}

[TestMethod()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{
 Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));
}

212 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

 7. In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like
Figure 7-28 when you are done:

FIGURE 7-28 TimeHelperTest.cs in its Helpers folder

 8. It is time to execute your newly created tests. To execute only your newly created
tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select
Test In Current Context or accomplish the same thing using the keyboard shortcut
CTRL+R, T. Look at Figure 7-29 for a reference:

FIGURE 7-29 Test execution menu

 9. Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 7-30) appear at the bottom of your editor with the test
results.

FIGURE 7-30 Test Results window for your newly created tests

 Chapter 7 From 2005 to 2010: Debugging an Application 213

More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you’ll execute only this test case. However, if you click outside the test class,
you could end up executing every test case, which is the equivalent of choosing All Tests In
Solution.

New Threads Window
The emergence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the diffi-
culty of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and
selecting Windows And Threads while debugging an application. Take a look at Figure 7-31
to see the Threads window as it appears while debugging Plan My Night.

FIGURE 7-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular
effects. You can debug both managed code and unmanaged code. If your application uses
threads, you’ll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2005 In Visual Studio 2005, you had to uses many tools not integrated into
Visual Studio or third-party tools. And in most cases, you still had to rely on your instinct and
experience to find concurrency bugs.

214 Part II Moving from Microsoft Visual Studio 2005 to Visual Studio 2010

Summary
In this chapter, you learned how to manage your debugging sessions by using new break-
point enhancements and employing new data-inspection and data-visualization techniques.
You also learned how to use the new minidump debugger and tools to help you solve real
customer problems from the field. The chapter also showed you how to raise the quality of
your code by writing unit tests and how Visual Studio 2010 Professional can help you do this.
Multicore machines are now the norm, and so are multithreaded applications. Therefore,
the fact that Visual Studio 2010 Professional has specific debugger tools for finding issues in
 multithreaded applications is great news.

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2005. The exercises in the chapter scratched the surface of how
you’ll save time and money by moving to this new debugging environment and showed that
Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It repre-
sents a huge leap in productivity for developers.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http://msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager. IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http://msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

 215

Part III

Moving from Microsoft
Visual Studio 2008 to
Visual Studio 2010
Authors Patrice Pelland, Ken Haines, and Pascal Pare

In this part:
From 2008 to 2010: Business Logic and Data (Pascal) . 217
From 2008 to 2010: Designing the Look and Feel (Ken) 251
From 2008 to 2010: Debugging an Application (Patrice) 293

Moving to Microsoft Visual Studio 2010

 217

Chapter 8

From 2008 to 2010: Business
Logic and Data

After reading this chapter, you will be able to

■ Use the Entity Framework (EF) to build a data access layer using an existing database or
with the Model First approach

■ Generate entity types from the Entity Data Model (EDM) Designer using the ADO.NET
Entity Framework POCO templates

■ Learn about data caching using the Microsoft Windows Server AppFabric (formerly
known by the codename “Velocity”)

Application Architecture
The Plan My Night (PMN) application allows the user to manage his itinerary activities and
share them with others. The data is stored in a Microsoft SQL Server database. Activities are
gathered from searches to the Bing Maps Web services.

Let’s have a look at the high-level block model of the data model for the application, which is
shown in Figure 8-1.

218 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 8-1 Plan My Night application architecture diagram

Defining contracts and entity classes that are cleared of any persistence-related code con-
straints allows us to put them in an assembly that has no persistence-aware code. This
approach ensures a clean separation between the Presentation and Data layers.

Let’s identify the contract interfaces for the major components of the PMN application:

■ IItinerariesRepository is the interface to our data store (a Microsoft SQL Server
database).

■ IActivitiesRepository allows us to search for activities (using Bing Maps Web services).

■ ICachingProvider provides us with our data-caching interface (ASP.NET caching or
Windows Server AppFabric caching).

Note This is not an exhaustive list of the contracts implemented in the PMN application.

PMN stores the user’s itineraries into an SQL database. Other users will be able to comment
and rate each other’s itineraries. Figure 8-2 shows the tables used by the PMN application.

 Chapter 8 From 2008 to 2010: Business Logic and Data 219

FIGURE 8-2 PlanMyNight database schema

Important The Plan My Night application uses the ASP.NET Membership feature to provide
secure credential storage for the users. The user store tables are not shown in Figure 8-2. You can
learn more about this feature on MSDN: ASP.NET 4 - Introduction to Membership (http://msdn.
microsoft.com/en-us/library/yh26yfzy(VS.100).aspx).

Note The ZipCode table is used as a reference repository to provide a list of available Zip Codes
and cities so that you can provide autocomplete functionality when the user is entering a search
query in the application.

Plan My Night Data in Microsoft Visual Studio 2008
It would be straightforward to create the Plan My Night application in Visual Studio 2008
because it offers all the required tools to help you to code the application. However, some of
the technologies used back then required you to write a lot more code to achieve the same
goals.

Let’s take a look at how you could create the required data layer in Visual Studio 2008. One
approach would have been to write the data layer using ADO.NET DataSet or DataReader

220 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

directly. (See Figure 8-3.) This solution offers you great flexibility because you have complete
control over access to the database. On the other hand, it also has some drawbacks:

■ You need to know the SQL syntax.

■ All queries are specialized. A change in requirement or in the tables will force you to
update the queries affected by these changes.

■ You need to map the properties of your entity classes using the column name, which is
a tedious and error-prone process.

■ You have to manage the relations between tables yourself.

FIGURE 8-3 ADO.NET Insert query

Another approach would be to use the DataSet designer available in Visual Studio 2008.
Starting from a database with the PMN tables, you could use the TableAdapter Configuration
Wizard to import the database tables as shown in Figure 8-4. The generated code offers you
a typed DataSet. One of the benefits is type checking at design time, which gives you the
advantage of statement completion. There are still some pain points with this approach:

■ You still need to know the SQL syntax although you have access to the query builder
directly from the DataSet designer.

■ You still need to write specialized SQL queries to match each of the requirements of
your data contracts.

■ You have no control of the generated classes. For example, changing the DataSet to
add or remove a query for a table will rebuild the generated TableAdapter classes and
might change the index used for a query. This makes it difficult to write predictable
code using these generated items.

 Chapter 8 From 2008 to 2010: Business Logic and Data 221

■ The generated classes associated with the tables are persistence aware, so you will have
to create another set of simple entities and copy the data from one to the other. This
means more processing and memory usage.

FIGURE 8-4 DataSet designer in Visual Studio 2008

Another technology available in Visual Studio 2008 was LINQ to SQL (L2S). With the Object
Relational Designer for L2S, it was easy to add the required database tables. This approach
gives you access to strongly typed objects and to LINQ to create the queries required to
access your data, so you do not have to explicitly know the SQL syntax. This approach also
has its limits:

■ LINQ to SQL works only with SQL Server databases.

■ You have limited control over the created entities, and you cannot easily update them if
your database schema changes.

■ The generated entities are persistence aware.

Note As of .NET 4.0, Microsoft recommends the Entity Framework as the data access solution
for LINQ to relational scenarios.

In the next sections of this chapter, you’ll explore some of the new features of Visual Studio
2010 that will help you create the PMN data layer with less code, give you more control of
the generated code, and allow you to easily maintain and expand it.

222 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Data with the Entity Framework in Visual Studio 2010
The ADO.NET Entity Framework (EF) allows you to easily create the data access layer for an
application by abstracting the data from the database and exposing a model closer to the
business requirements of the application. The EF has been considerably enhanced in the .NET
Framework 4 release.

You’ll use the PlanMyNight project as an example of how to build an application using some
of the features of the EF. The next two sections demonstrate two different approaches to
generating the data model of PMN. In the first one, you let the EF generate the Entity Data
Model (EDM) from an existing database. In the second part, you use a Model First approach,
where you first create the entities from the EF designer and generate the Data Definition
Language (DDL) scripts to create a database that can store your EDM.

Visual Studio 2008 The first version of the Entity Framework was released with Visual Studio
2008 Service Pack 1. The second version of the EF included in the .NET Framework 4.0 offers
many new features to help you build your data applications. Some of these new enhancements
include the following:

■ T4 code-generation templates that you can customize to your needs

■ The possibility to define your own POCOs (Plain Old CLR Objects) to ensure that your
 entities are decoupled from the persistence technology

■ Model-First development, where you create a model for your entities and let Visual Studio
2010 create your database

■ Code-only support so that you can use the Entity Framework using POCO entities and
without an EDMX file

■ Lazy loading for related entities so that they are loaded only from the database when
required

■ Self-tracking entities that have the ability to record their own changes on the client and
send these changes so that they can be applied to the database store

In the next sections, you’ll explore some of these new features.

See Also The MSDN Data Developer Center also offers a lot of resources about the ADO.NET
Entity Framework (http://msdn.microsoft.com/en-us/data/aa937723.aspx) in .NET 4.

EF: Importing an Existing Database
You’ll start with an existing solution that already defines the main projects of the PMN
 application. If you installed the companion content at the default location, you’ll find the

 Chapter 8 From 2008 to 2010: Business Logic and Data 223

solution at this location: %userprofile%\Documents\Microsoft Press\Moving to Visual Studio
2010\Chapter 8\Code\ExistingDatabase. Double-click the PlanMyNight.sln file.

This solution includes all the projects in the following list, as shown in Figure 8-5:

■ PlanMyNight.Data: Application data layer

■ PlanMyNight.Contracts: Entities and contracts

■ PlanMyNight.Bing: Bing Maps services

■ PlanMyNight.Web: Presentation layer

■ PlanMyNight.AppFabricCaching: AppFabric caching

FIGURE 8-5 PlanMyNight solution

The EF allows you to easily import an existing database. Let’s walk through this process.

The first step is to add an EDM to the PlanMyNight.Data project. Right-click the
PlanMyNight.Data project, select Add, and then choose New Item. Select the ADO.NET Entity
Data Model item, and change its name to PlanMyNight.edmx, as shown in Figure 8-6.

224 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 8-6 Add New Item dialog with ADO.NET Entity Data Model selected

The first dialog of the Entity Data Model Wizard allows you to choose the model content.
You’ll generate the model from an existing database. Select Generate From Database and
then click Next.

You need to connect to an existing database file. Click New Connection. Select Microsoft
SQL Server Database File from the Choose Data Source dialog, and click Continue. Select
the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 8\
ExistingDatabase\PlanMyNight.Web\App_Data\PlanMyNight.mdf file. (See Figure 8-7.)

FIGURE 8-7 EDM Wizard database connection

 Chapter 8 From 2008 to 2010: Business Logic and Data 225

Leave the other fields in the form as is for now and click Next.

Note You’ll get a warning stating that the local data file is not in the current project. Click No to
close the dialog because you do not want to copy the database file to the current project.

From the Choose Your Database Objects dialog, select the Itinerary, ItineraryActivities,
ItineraryComment, ItineraryRating, and ZipCode tables and the UserProfile view. Select the
RetrieveItinerariesWithinArea stored procedure. Change the Model Namespace value to
Entities as shown in Figure 8-8.

FIGURE 8-8 EDM Wizard: Choose Your Database Objects page

Click Finish to generate your EDM.

Visual Studio 2008 In the first version of the EF, the names associated with EntityType,
EntitySet, and NavigationProperty were often wrong when you created a model from the
 database because it was using the database table name to generate them. You probably do not
want to create an instance of the ItineraryActivities entity. Instead, you probably want the name
to be singularized to ItineraryActivity. The Pluralize Or Singularize Generated Object Names
check box shown in Figure 8-8 allows you to control whether pluralization or singularization
should be attempted.

226 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Fixing the Generated Data Model
You now have a model representing a set of entities matching your database. The wizard has
generated all the navigation properties associated with the foreign keys from the database.

The PMN application requires only the navigation property ItineraryActivities from the
Itinerary table, so you can go ahead and delete all the other navigation properties. You’ll also
need to rename the ItineraryActivities navigation property to Activities. Refer to Figure 8-9
for the updated model.

FIGURE 8-9 Model imported from the PlanMyNight database

Notice that one of the properties of the ZipCode entity has been generated with the name
ZipCode1 because the table itself is already named ZipCode and the name has to be unique.
Let’s fix the property name by double-clicking it. Change the name to Code, as shown in
Figure 8-10.

FIGURE 8-10 ZipCode entity

 Chapter 8 From 2008 to 2010: Business Logic and Data 227

Build the solution by pressing Ctrl+Shift+B. When looking at the output window, you’ll notice
two messages from the generated EDM. You can discard the first one because the Location
column is not required in PMN. The second message reads as follows:

The table/view ‘dbo.UserProfile‘ does not have a primary key defined and no valid
primary key could be inferred. This table/view has been excluded. To use the entity,
you will need to review your schema, add the correct keys, and uncomment it.

When looking at the UserProfile view, you’ll notice it does not explicitly define a primary key
even though the UserName column is unique.

You need to modify the EDM manually to fix the UserProfile view mapping so that you can
access the UserProfile data from the application.

From the project explorer, right-click the PlanMyNight.edmx file and then select Open With
Choose XML (Text) Editor from the Open With dialog as shown in Figure 8-11. Click OK to
open the XML file associated with your model.

FIGURE 8-11 Open PlanMyNight.edmx in the XML Editor

Note You’ll get a warning stating that the PlanMyNight.edmx file is already open. Click Yes to
close it.

The generated code was commented out by the code-generation tool because there was no
primary key defined. To be able to use the UserProfile view from the designer, you need to
uncomment the UserProfile entity type and add the Key tag to it. Search for UserProfile in
the file. Uncomment the entity type, add a Key tag and set its name to UserName and make
the UserName property not nullable. Refer to Listing 8-1 to see the updated entity type.

228 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

LISTING 8-1 UserProfile Entity Type XML Definition

<EntityType Name="UserProfile">
 <Key>
 <PropertyRef Name="UserName"/>
 </Key>
 <Property Name="UserName" Type="uniqueidentifier" Nullable="false" />
 <Property Name="FullName" Type="varchar" MaxLength="500" />
 <Property Name="City" Type="varchar" MaxLength="500" />
 <Property Name="State" Type="varchar" MaxLength="500" />
 <Property Name="PreferredActivityTypeId" Type="int" />
</EntityType>

If you close the XML file and try to open the EDM Designer, you’ll get the following error
message in the designer: “The Entity Data Model Designer is unable to display the file you
requested. You can edit the model using the XML Editor.”

There is a warning in the Error List pane that can give you a little more insight into what this
error is all about:

Error 11002: Entity type ‘UserProfile’ has no entity set.

You need to define an entity set for the UserProfile type so that it can map the entity type to
the store schema. Open the PlanMyNight.edmx file in the XML editor so that you can define
an entity set for UserProfile. At the top of the file, just above the Itinerary entity set, add the
XML code shown in Listing 8-2.

LISTING 8-2 UserProfile EntitySet XML Definition

 <EntitySet Name="UserProfile" EntityType="Entities.Store.UserProfile"
 store:Type="Views" store:Schema="dbo" store:Name="UserProfile">
 <DefiningQuery>
 SELECT
 [UserProfile].[UserName] AS [UserName],
 [UserProfile].[FullName] AS [FullName],
 [UserProfile].[City] AS [City],
 [UserProfile].[State] AS [State],
 [UserProfile].[PreferredActivityTypeId] as [PreferredActivityTypeId]
 FROM [dbo].[UserProfile] AS [UserProfile]
 </DefiningQuery>
</EntitySet>

Save the EDM XML file, and reopen the EDM Designer. Figure 8-12 shows the UserProfile
view in the Entities.Store section of the Model Browser.

Tip You can open the Model Browser from the View menu by clicking Other Windows and
selecting the Entity Data Model Browser item.

 Chapter 8 From 2008 to 2010: Business Logic and Data 229

FIGURE 8-12 Model Browser with the UserProfile view

Now that the view is available in the store metadata, you add the UserProfile entity and map
it to the UserProfile view. Right-click in the background of the EDM Designer, select Add, and
then choose Entity. You’ll see the dialog shown in Figure 8-13.

FIGURE 8-13 Add Entity dialog

230 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Complete the dialog as shown in Figure 8-13, and click OK to generate the entity.

You need to add the remaining properties: City, State, and PreferredActivityTypeId. To do
so, right-click the UserProfile entity, select Add, and then select Scalar Property. After the
property is added, set the Type, Max Length, and Unicode field values. Table 8-1 shows the
expected values for each of the fields.

TABLE 8-1  UserProfile Entity Properties

Name Type Max Length Unicode
FullName String 500 False

City String 500 False

State String 500 False

PreferredActivityTypeId Int32 NA NA

Now that you have created the UserProfile entity, you need to map it to the UserProfile view.
Right-click the UserProfile entity, and select Table Mapping as shown in Figure 8-14.

FIGURE 8-14 Table Mapping menu item

Then select the UserProfile view from the drop-down box as shown in Figure 8-15. Ensure
that all the columns are correctly mapped to the entity properties. The UserProfile view of
our store is now accessible from the code through the UserProfile entity.

FIGURE 8-15 UserProfile mapping details

 Chapter 8 From 2008 to 2010: Business Logic and Data 231

Stored Procedure and Function Imports
The Entity Data Model Wizard has created an entry in the storage model for the
RetrieveItinerariesWithinArea stored procedure you selected in the last step of the wizard.
You need to create a corresponding entry to the conceptual model by adding a Function
Import entry.

From the Model Browser, open the Stored Procedures folder in the Entities.Store section.
Right-click RetrieveItineraryWithinArea, and then select Add Function Import. The Add
Function Import dialog appears as shown in Figure 8-16. Specify the return type by selecting
Entities and then select the Itinerary item from the drop-down box. Click OK.

FIGURE 8-16 Add Function Import dialog

232 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The RetrieveItinerariesWithinArea function import was added to the Model Browser as shown
in Figure 8-17.

FIGURE 8-17 Function Imports in the Model Browser

You can now validate the EDM by right-clicking on the design surface and selecting Validate.
There should be no error or warning.

EF: Model First
In the prior section, you saw how to use the EF designer to generate the model by importing
an existing database. The EF designer in Visual Studio 2010 also supports the ability to
 generate the Data Definition Language (DDL) file that will allow you to create a data-
base based on your entity model. In this section, you’ll use a new solution to learn how to
 generate a database script from a model.

 Chapter 8 From 2008 to 2010: Business Logic and Data 233

You can start from an empty model by selecting the Empty model option from the Entity
Data Model Wizard. (See Figure 8-18.)

Note To get the wizard, right-click the PlanMyNight.Data project, select Add, and then choose
New Item. Select the ADO.NET Entity Data Model item.

FIGURE 8-18 EDM Wizard: Empty model

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 8\Code\ModelFirst by double-clicking the PlanMyNight.sln file.

The PlanMyNight.Data project from this solution already contains an EDM file named
PlanMyNight.edmx with some entities already created. These entities match the data schema
you saw in Figure 8-2.

The Entity Model designer lets you easily add an entity to your data model. Let’s add the
missing ZipCode entity to the model. From the toolbox, drag an Entity item into the designer,
as shown in Figure 8-19. Rename the entity as ZipCode. Rename the Id property as Code,
and change its type to String.

234 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 8-19 Entity Model designer

You need to add the City and State properties to the entity. Right-click the ZipCode entity,
select Add, and then choose Scalar Property. Ensure that each property has the values shown
in Table 8-2.

TABLE 8-2 ZipCode Entity Properties

Name Type Fixed Length Max Length Unicode
Code String False 5 False

City String False 150 False

State String False 150 False

Add the relations between the ItineraryComment and Itinerary entities. Right-click the
designer background, select Add, and then choose Association. (See Figure 8-20.)

 Chapter 8 From 2008 to 2010: Business Logic and Data 235

FIGURE 8-20 Add Association dialog for FK_ItineraryCommentItinerary

Visual Studio 2008 Foreign key associations are now included in the .NET 4.0 version of
the Entity Framework. This allows you to have Foreign properties on your entities. Foreign Key
Associations is now the default type of association, but the Independent Associations supported
in .NET 3.5 are still available.

Set the association name to FK_ItineraryCommentItinerary, and then select the entity
and the multiplicity for each end, as shown in Figure 8-20. After the association is created,
 double-click the association line to set the Referential Constraint as shown in Figure 8-21.

FIGURE 8-21 Association Referential Constraint dialog

236 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Add the association between the ItineraryRating and Itinerary entities. Right-click the designer
background, select Add, and then choose Association. Set the association name to FK_
ItineraryItineraryRating and then select the entity and the multiplicity for each end as in the
previous step, except set the first end to ItineraryRating. Double-click on the association line,
and set the Referential Constraint as shown in Figure 8-21. Note that the Dependent field will read
ItineraryRating instead of ItineraryComment. Create a new association between the ItineraryActivity
and Itinerary entities. For the FK_ItineraryItineraryActivity association, you want to also create a
 navigation property and name it Activities, as shown in Figure 8-22. After the association is c reated,
set the Referential Constraint for this association by double-clicking on the association line.

FIGURE 8-22 Add Association dialog for FK_ItineraryActivityItinerary

Generating the Database Script from the Model
Your data model is now completed but there is no mapping or store associated with it. The
EF designer offers the possibility of generating a database script from our model.

 Chapter 8 From 2008 to 2010: Business Logic and Data 237

Right-click on the designer surface, and choose Generate Database From Model as shown in
Figure 8-23.

FIGURE 8-23 Generate Database From Model menu item

The Generate Database Wizard requires a data connection. The wizard uses the connection
information to translate the model types to the database type and to generate a DDL script
targeting this database.

Select New Connection, select Microsoft SQL Server Database File from the Choose Data
Source dialog, and click Continue. Select the database file located at %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 8\Code\ModelFirst\Data\
PlanMyNight.mdf. (See Figure 8-24.)

238 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 8-24 Generate a script database connection

After your connection is configured, click Next to get to the final page of the wizard, as
shown in Figure 8-25. When you click Finish, the generated T-SQL PlanMyNight.edmx.sql file
is added to your project. The DDL script will generate the primary and foreign key constraints
for your model.

FIGURE 8-25 Generated T-SQL file

 Chapter 8 From 2008 to 2010: Business Logic and Data 239

The EDM is also updated to ensure your newly created store is mapped to the entities. You
can now use the generated DDL script to add the tables to the database. Also, you now have
a data layer that exposes strongly typed entities that you can use in your application.

Important Generating the complete PMN database would require adding the remaining
tables, stored procedures, and triggers used by the application. Instead of performing all these
operations, we will go back to the solution we had at the end of the “EF: Importing an Existing
Database” section.

POCO Templates
The EDM Designer uses T4 templates to generate the code for the entities. So far, we have let
the designer create the entities using the default templates. You can take a look at the code
generated by opening the PlanMyNight.Designer.cs file associated with PlanMyNight.edmx.
The generated entities are based on the EntityObject type and decorated with attributes to
allow the EF to manage them at run time.

Note T4 stands for Text Template Transformation Toolkit. T4 support in Visual Studio 2010 allows
you to easily create your own templates and generate any type of text file (Web, resource, or
source). To learn more about the code generation in Visual Studio 2010, visit Code Generation
and Text Templates (http://msdn.microsoft.com/en-us/library/bb126445(VS.100).aspx).

The EF also supports POCO entity types. POCO classes are simple objects with no attributes
or base class related to the framework. (Listing 8-3, in the next section, shows the POCO
class for the ZipCode entity.) The EF uses the names of the types and the properties of these
objects to map them to the model at run time.

Note POCO stands for Plain-Old CLR Objects.

ADO .NET POCO Entity Generator
Let’s re-open the %userprofile%\Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 8\Code\ExistingDatabase\PlanMyNight.sln file.

Open the PlanMyNight.edmx file, right-click on the design surface, and choose Add Code
Generation Item. This opens a dialog like the one shown in Figure 8-26, where you can select
the template you want to use. Select the ADO.NET POCO Entity Generator template, and
name it PlanMyNight.tt. Then click the Add button.

240 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Note You might get a security warning about running this text template. Click OK to close the
dialog because the source for this template is trusted.

FIGURE 8-26 Add New Item dialog

Two files, PlanMyNight.tt and PlanMyNight.Context.tt, have been added to your project, as
shown in Figure 8-27. These files replace the default code-generation template, and the code
is no longer generated in the PlanMyNight.Designer.cs file.

FIGURE 8-27 Added templates

 Chapter 8 From 2008 to 2010: Business Logic and Data 241

The PlanMyNight.tt template produces a class file for each entity in the model. Listing 8-3
shows the POCO version of the ZipCode class.

LISTING 8-3 POCO Version of the ZipCode Class

namespace Microsoft.Samples.PlanMyNight.Data
{
 public partial class ZipCode
 {
 #region Primitive Properties
 public virtual string Code
 {
 get;
 set;
 }
 public virtual string City
 {
 get;
 set;
 }
 public virtual string State
 {
 get;
 set;
 }
 #endregion
 }
}

The other file, PlanMyNight.Context.cs, generates the ObjectContext object for the
PlanMyNight.edmx model. This is the object you’ll use to interact with the database.

Tip The POCO templates will automatically update the generated classes to reflect the changes
to your model when you save the .edmx file.

Moving the Entity Classes to the Contracts Project
We have designed the PMN application architecture to ensure that the presentation layer
was persistence ignorant by moving the contracts and entity classes to an assembly that has
no reference to the storage.

Visual Studio 2008 Even though it was possible to extend the XSD processing with code-
generator tools, it was not easy and you had to maintain these tools. The EF uses T4 templates to
generate both the database schema and the code. These templates can easily be customized to
your needs.

242 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The ADO.NET POCO templates split the generation of the entity classes into a separate tem-
plate, allowing you to easily move these entities to a different project.

You are going to move the PlanMyNight.tt file to the PlanMyNight.Contracts project. Right-
click the PlanMyNight.tt file, and select Cut. Right-click the Entities folder in the PlanMyNight.
Contracts project, and select Paste. The result is shown in Figure 8-28.

FIGURE 8-28 POCO template moved to the Contracts project

The PlanMyNight.tt template relies on the metadata from the EDM model to generate the
entity type’s code. You need to fix the relative path used by the template to access the
EDMX file.

Open the PlanMyNight.tt template and locate the following line:

string inputFile = @"PlanMyNight.edmx";

Fix the file location so that it points to the PlanMyNight.edmx file in the PlanMyNight.Data
project:

string inputFile = @"..\..\PlanMyNight.Data\PlanMyNight.edmx";

The entity classes are regenerated when you save the template.

 Chapter 8 From 2008 to 2010: Business Logic and Data 243

You also need to update the PlanMyNight.Context.tt template in the PlanMyNight.Contracts
project because the entity classes are now in the Microsoft.Samples.PlanMyNight.Entities
namespace instead of the Microsoft.Samples.PlanMyNight.Data namespace. Open the
PlanMyNight.Context.tt file, and update the using section to include the new namespace:

using System;
using System.Data.Objects;
using System.Data.EntityClient;
using Microsoft.Samples.PlanMyNight.Entities;

Build the solution by pressing Ctrl+Shift+B. The project should now compile successfully.

Putting It All Together
Now that you have created the generic code layer to interact with your SQL database, you
are ready to start implementing the functionalities specific to the PMN application. In the
upcoming sections, you’ll walk through this process, briefly look at getting the data from the
Bing Maps services, and get a quick introduction to the Microsoft Windows Server AppFabric
Caching feature used in PMN.

There is a lot of plumbing pieces of code required to get this all together. To simplify the
process, you’ll use an updated solution where the contracts, entities, and most of the con-
necting pieces to the Bing Maps services have been coded. The solution will also include the
PlanMyNight.Data.Test project to help you validate the code from the PlanMyNight.Data
project.

Note Testing in Visual Studio 2010 will be covered in Chapter 10.

Getting Data from the Database
At the beginning of this chapter, we decided to group the operations on the Itinerary entity
in the IItinerariesRepository repository interface. Some of these operations are

■ Searching for Itinerary by Activity

■ Searching for Itinerary by ZipCode

■ Searching for Itinerary by Radius

■ Adding a new Itinerary

244 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Let’s take a look at the corresponding methods in the IItinerariesRepository interface:

■ SearchByActivity allows searching for itineraries by activity and returning a page of
data.

■ SearchByZipCode allows searching for itineraries by Zip Code and returning a page of
data.

■ SearchByRadius allows searching for itineraries from a specific location and returning a
page of data.

■ Add allows you to add an itinerary to the database.

Open the PMN solution at %userprofile%\Documents\Microsoft Press\Moving to Visual
Studio 2010\Chapter 8\Code\Final by double-clicking the PlanMyNight.sln file.

Select the PlanMyNight.Data project, and open the ItinerariesRepository.cs file. This is the
IItinerariesRepository interface implementation. Using the PlanMyNightEntities Object
Context you generated earlier, you can write LINQ queries against your model, and the EF
will translate these queries to native T-SQL that will be executed against the database.

Navigate to the SearchByActivity function definition. This method must return a set of itin-
eraries where the IsPublic flag is set to true and where one of their activities has the same
activityId that was passed in the argument to the function. You also need to order the result
itinerary list by the rating field.

Using standard LINQ operators, you can implement SearchByActivity as shown in Listing 8-4.
Add the highlighted code to the SearchByActivity method body.

LISTING 8-4 SearchByActivity Implementation

public PagingResult<Itinerary> SearchByActivity(string activityId, int pageSize, int
pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.ActivityId == activityId)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

 Chapter 8 From 2008 to 2010: Business Logic and Data 245

Note The resulting paging is implemented in the PageResults method:

private static PagingResult<Itinerary> PageResults(IQueryable<Itinerary> query, int
page, int pageSize)
{
 int rowCount = rowCount = query.Count();
 if (pageSize > 0)
 {
 query = query.Skip((page - 1) * pageSize)
 .Take(pageSize);
 }
 var result = new PagingResult<Itinerary>(query.ToArray())
 {
 PageSize = pageSize,
 CurrentPage = page,
 TotalItems = rowCount
 };
 return result;
}

IQueryable<Itinerary> is passed to this function so that it can add the paging to the base query
composition. Passing IQueryable instead of IEnumerable ensures that the T-SQL created for the
query against the repository will be generated only when query.ToArray is called.

The SearchByZipCode function method is similar to the SearchByActivity method, but it
also adds a filter on the Zip Code of the activity. Here again, LINQ support makes it easy
to implement, as shown in Listing 8-5. Add the highlighted code to the SearchByZipCode
method body.

LISTING 8-5 SearchByZipCode Implementation

public PagingResult<Itinerary> SearchByZipCode(int activityTypeId, string zip, int
pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 var query = from itinerary in ctx.Itineraries.Include("Activities")
 where itinerary.Activities.Any(t => t.TypeId == activityTypeId &&
t.Zip == zip)
 && itinerary.IsPublic
 orderby itinerary.Rating
 select itinerary;

 return PageResults(query, pageNumber, pageSize);
 }
}

246 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The SearchByRadius function calls the RetrieveItinerariesWithinArea import function that
was mapped to a stored procedure. It then loads the activities for each itinerary found. You
can copy the highlighted code in Listing 8-6 to the SearchByRadius method body in the
ItinerariesRepository.cs file.

LISTING 8-6 SearchByRadius Implementation

public PagingResult<Itinerary> SearchByRadius(int activityTypeId,
 double longitude, double latitude, double radius,
 int pageSize, int pageNumber)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.ContextOptions.ProxyCreationEnabled = false;

 // Stored Procedure with output parameter
 var totalOutput = new ObjectParameter("total", typeof(int));
 var items = ctx.RetrieveItinerariesWithinArea(activityTypeId, latitude, longitude,
radius, pageSize, pageNumber, totalOutput).ToArray();

 foreach (var item in items)
 {
 item.Activities.ToList().AddRange(this.Retrieve(item.Id).Activities);
 }

 int total = totalOutput.Value == DBNull.Value ? 0 : (int)totalOutput.Value;

 return new PagingResult<Itinerary>(items)
 {
 TotalItems = total,
 PageSize = pageSize,
 CurrentPage = pageNumber
 };
 }
}

The Add method allows you to add Itinerary to the data store. Implementing this function-
ality becomes trivial because your contract and context object use the same entity object.
Copy and paste the highlighted code in Listing 8-7 to the Add method body.

LISTING 8-7 Add Implementation

public void Add(Itinerary itinerary)
{
 using (var ctx = new PlanMyNightEntities())
 {
 ctx.Itineraries.AddObject(itinerary);
 ctx.SaveChanges();
 }
}

 Chapter 8 From 2008 to 2010: Business Logic and Data 247

There you have it! You have completed the ItinerariesRepository implementation using the
context object generated using the EF designer. Run all the tests in the solution by pressing
Ctrl+R, A. The tests related to the ItinerariesRepository implementation should all succeed.

Parallel Programming
With the advances in multicore computing, it is becoming more and more important
for developers to be able to write parallel applications. Visual Studio 2010 and the .NET
Framework 4.0 provide new ways to express concurrency in applications. The Task Parallel
Library (TPL) is now part of the Base Class Library (BCL) for the .NET Framework. This means
that every .NET application can now access the TPL without adding any assembly reference.

PMN stores only the Bing Activity ID for each ItineraryActivity to the database. When it’s
time to retrieve the entire Bing Activity object, a function that iterates through each of the
ItineraryActivity instances for the current Itinerary is used to populate the Bing Activity entity
from the Bing Maps Web services.

One way of performing this operation is to sequentially call the service for each activity in the
Itinerary as shown in Listing 8-8. This function waits for each call to RetrieveActivity to com-
plete before making another call, which has the effect of making its execution time linear.

LISTING 8-8 Activity Sequential Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 foreach (var item in itinerary.Activities.Where(i => i.Activity == null))
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 }
}

In the past, if you wanted to parallelize this task, you had to use threads and then hand off
work to them. With the TPL, all you have to do now is use a Parallel.ForEach that will take
care of the threading for you as seen in Listing 8-9.

LISTING 8-9 Activity Parallel Retrieval

public void PopulateItineraryActivities(Itinerary itinerary)
{
 Parallel.ForEach(itinerary.Activities.Where(i => i.Activity == null),
 item =>
 {
 item.Activity = this.RetrieveActivity(item.ActivityId);
 });
}

248 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

See Also The .NET Framework 4.0 now includes the Parallel LINQ libraries (in System.Core.
dll). PLINQ introduces the .AsParallel extension to perform parallel operations in LINQ queries.
You can also easily enforce the treatment of a data source as if it was ordered by using the
.AsOrdered extensions. Some new thread-safe collections have also been added in the System.
Collections.Concurrent namespace. You can learn more about these new features from Parallel
Computing on MSDN (http://msdn.microsoft.com/en-us/concurrency/default.aspx).

AppFabric Caching
PMN is a data-driven application that gets its data from the application database and the
Bing Maps Web services. One of the challenges you might face when building a Web applica-
tion is managing the needs of a large number of users, including performance and response
time. The operations that use the data store and the services used to search for activities can
increase the usage of server resources dramatically for items that are shared across many
users. For example, many users have access to the public itineraries, so displaying these will
generate numerous calls to the database for the same items. Implementing caching at the
Web tier will help reduce usage of the resources at the data store and help mitigate latency
for recurring searches to the Bing Maps Web services. Figure 8-29 shows the architecture for
an application implementing a caching solution at the front-end server.

FIGURE 8-29 Typical Web application architecture

Using this approach reduces the pressure on the data layer, but the caching is still coupled
to a specific server serving the request. Each Web tier server will have its own cache, but you
can still end up with an uneven distribution of the processing to these servers.

Windows Server AppFabric caching offers a distributed, in-memory cache platform. The
AppFabric client library allows the application to access the cache as a unified view event if

 Chapter 8 From 2008 to 2010: Business Logic and Data 249

the cache is distributed across multiple computers, as shown in Figure 8-30. The API provides
simple get and set methods to retrieve and store any serializable common language runtime
(CLR) objects easily. The AppFabric cache allows you to add a cache computer on demand,
thus making it possible to scale in a manner that is transparent to the client. Another benefit
is that the cache can also share copies of the data across the cluster, thereby protecting data
against failure.

FIGURE 8-30 Web application using Windows Server AppFabric caching

See Also Windows Server AppFabric caching is available as a set of extensions to the .NET
Framework 4.0. For more information about how to get, install, and configure Windows
Server AppFabric, please visit Windows Server AppFabric (http://msdn.microsoft.com/en-us/
windowsserver/ee695849.aspx).

See Also PMN can be configured to use either ASP.NET caching or Windows Server
AppFabric caching. A complete walkthrough describing how to add Windows Server
AppFabric caching to PMN is available here: PMN: Adding Caching using Velocity (http://
channel9.msdn.com/learn/courses/VS2010/ASPNET/EnhancingAspNetMvcPlanMyNight/
Exercise-1-Adding-Caching-using-Velocity/).

250 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Summary
In this chapter, you used a few of the new Visual Studio 2010 features to structure the data
layer of the Plan My Night application using the Entity Framework version 4.0 to access a
database. You also were introduced to automated entity generation using the ADO.NET
Entity Framework POCO templates and to the Windows Server AppFabric caching extensions.

In the next chapter, you will explore how the ASP.NET MVC framework and the Managed
Extensibility Framework can help you build great Web applications.

 251

Chapter 9

From 2008 to 2010: Designing
the Look and Feel

After reading this chapter, you will be able to

■ Create an ASP.NET MVC controller that interacts with the data model

■ Create an ASP.NET MVC view that displays data from the controller and validates user
input

■ Extend the application with an external plug-in using the Managed Extensibility
Framework

Web application development in Microsoft Visual Studio has certainly made significant
improvements over the years since ASP.NET 1.0 was released. Visual Studio 2008 introduced
official support for AJAX-enabled Web pages, Language Integrated Query (LINQ), plus
many other improvements to help developers create efficient applications that were easy to
manage.

The spirit of improvement to assist developers in creating world-class applications is very
much alive in Visual Studio 2010. In this chapter, we’ll explore some of the new features as we
add functionality to the Plan My Night companion application.

Note The companion application is an ASP.NET MVC 2 project, but a Web developer has a
choice in Visual Studio 2010 to use this new form of ASP.NET application or the more traditional
ASP.NET (referred to in the community as Web Forms for distinction). ASP.NET 4.0 has many
improvements to help developers and is still a very viable approach to creating Web applications.

We’ll be using a modified version of the companion application’s solution to work our way
through this chapter. If you installed the companion content in the default location, the
correct solution can be found at Documents\Microsoft Press\Moving to Visual Studio 2010\
Chapter 9\ in a folder called UserInterface-Start.

Introducing the PlanMyNight.Web Project

Note ASP.NET MVC 1.0 Framework is available as an extension to Visual Studio 2008; however,
this chapter was written in the context of the user having a default installation of Visual Studio
2008, which only had support for ASP.NET Web Forms 3.5 projects.

252 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The user interface portion of Plan My Night in Visual Studio 2010 was developed as an
ASP.NET MVC application, the layout of which differs from what a developer might be
accustomed to when developing an ASP.NET Web Forms application in Visual Studio 2008.
Some items in the project (as seen in Figure 9-1) will look familiar (such as Global.asax),
but others are completely new, and some of the structure is required by the ASP.NET MVC
framework.

FIGURE 9-1 PlanMyNight.Web project view

Here are the items required by ASP.NET MVC:

■ Areas This folder is used by the ASP.NET MVC framework to organize large Web
applications into smaller components, without using separate solutions or projects. This
feature is not used in the Plan My Night application but is called out because this folder
is created by the MVC project template.

■ Controllers During request processing, the ASP.NET MVC framework looks for
controllers in this folder to handle the request.

■ Views The Views folder is actually a structure of folders. The layer immediately inside
the Views folder is named for each of the classes found in the Controllers folder, plus a
Shared folder. The Shared subfolder is for common views, partial views, master pages,
and anything else that will be available to all controllers.

See Also More information about ASP.NET MVC components, as well as how its request
processing differs from ASP.NET Web Forms, can be found at http://asp.net/mvc.

http://asp.net/mvc

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 253

In most cases, the web.config file is the last file in a project’s root folder. However, it has
received a much-needed update in Visual Studio 2010: Web.config Transformation. This
feature allows for a base web.config file to be created but then to have build-specific web.
config files override the settings of the base at build, deployment, and run times. These files
appear under the base web.config file, as seen in Figure 9-2.

FIGURE 9-2 A web.config file with build-specific files expanded

Visual Studio 2008 When working on a project in Visual Studio 2008, do you recall needing to
remember not to overwrite the web.config file with your debug settings? Or needing to remem-
ber to update web.config when it was published for a retail build with the correct settings? This
is no longer an issue in Visual Studio 2010. The settings in the web.Release.config.retail file will
be used during release builds to override the values in web.config, and the same goes for
web.Debug.config. in debug builds.

Other sections of the project include the following:

■ Content A collection of folders containing images, scripts, and style files

■ Helpers Includes miscellaneous classes, containing a number of extension methods,
that add functionality to types used in the project

■ Infrastructure Contains items related to dealing with the lower level infrastructure of
ASP.NET MVC (for example, caching and controller factories)

■ ViewModels Contains data entities filled out by controller classes and used by views
to display data

254 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Running the Project
If you compile and run the project, you should see a screen similar to Figure 9-3.

FIGURE 9-3 Default page of the Plan My Night application

The searching functionality and the ability to organize an initial list of itinerary items all work,
but if you attempt to save the itinerary you are working on, or if you log in with Windows
Live ID, the application will return a 404 Not Found error screen (as shown in Figure 9-4).

FIGURE 9-4 Error screen returned when logging into the Plan My Night application

You get this error message because currently the project does not include an account
controller to handle these requests.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 255

Creating the Account Controller
The AccountController class provides some critical functionality to the companion Plan My
Night application:

■ It handles signing users in and out of the application (via Windows Live ID).

■ It provides actions for displaying and updating user profile information.

To create a new ASP .NET MVC controller:

 1. Use Solution Explorer to navigate to the Controllers folder in the PlanMyNight.Web
project, and click the right mouse button.

 2. Open the Add submenu and select the Controller item.

 3. Fill in the name of the controller as AccountController.

Note Leave the Add Action Methods For Create, Update And Details Scenarios check box blank.
Selecting the box inserts some "starter" action methods, but because you will not be using the
default methods, there is no reason to create them.

After you click the Add button in the Add Controller dialog box, you should have a basic
AccountController class open, with a single Index method in its body:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

256 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

using System.Web.Mvc;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{
 public class AccountController : Controller
 {
 //
 // GET: /Account/

 public ActionResult Index()
 {
 return View();
 }
 }
}

Visual Studio 2008 A difference to be noted from developing ASP.NET Web Forms applica-
tions in Visual Studio 2008 is that ASP.NET MVC applications do not have a companion code-
behind file for each of their .aspx files. Controllers like the one you are currently creating perform
the logic required to process input and prepare output. This approach allows for a clear separa-
tion of display and business logic, and it’s a key aspect of ASP.NET MVC.

Implementing the Functionality
To communicate with any of the data layers and services (the Model), you’ll need to add
some instance fields and initialize them. Before that, you need to add some namespaces to
your using block:

using System.IO;
using Microsoft.Samples.PlanMyNight.Data;
using Microsoft.Samples.PlanMyNight.Entities;
using Microsoft.Samples.PlanMyNight.Infrastructure;
using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;
using Microsoft.Samples.PlanMyNight.Web.ViewModels;
using System.Collections.Specialized;
using WindowsLiveId;

Now, let’s add the instance fields. These fields are interfaces to the various sections of your
Model:

public class AccountController : Controller
{
 private readonly IWindowsLiveLogin windowsLogin;
 private readonly IMembershipService membershipService;
 private readonly IFormsAuthentication formsAuthentication;
 private readonly IReferenceRepository referenceRepository;
 private readonly IActivitiesRepository activitiesRepository;
.
.
.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 257

Note Using interfaces to interact with all external dependencies allows for better portability of
the code to various platforms. Also, during testing, dependencies can be mimicked much easier
when using interfaces, making for more efficient isolation of a specific component.

As mentioned, these fields represent parts of the model this controller will interact with to
meet its functional needs. Here are the general descriptions for each of the interfaces:

■ IWindowsLiveLogin Defines a functionality contract for interacting with the Windows
Live ID service.

■ IMembershipService Defines user profile information and authorization methods. In
your companion application, it is an abstraction of the ASP.NET Membership Service.

■ IFormsAuthentication Defines functionality for interacting with ASP.NET Forms
Authentication abstraction.

■ IReferenceRespository Defines reference resources, such as lists of states and other
model-specific information.

■ IActivitiesRespository An interface for retrieving and updating activity information.

You’ll add two constructors to this class: one for general run-time use, which uses the
ServiceFactory class to get references to the needed interfaces, and one to enable tests to
inject specific instances of the interfaces to use.

public AccountController() :
 this(
 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())
{
}
public AccountController(
 IMembershipService membershipService,
 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
{
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
 }

258 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Authenticating the User
The first real functionality you’ll implement in this controller is that of signing in and out of
the application. Most of the methods you’ll implement later require authentication, so this is
a good place to start.

The companion application uses a few technologies together at the same time to give the
user a smooth authentication experience: Windows Live ID, ASP.NET Forms Authentication,
and ASP.NET Membership Services. These three technologies are used in the LiveID action
you’ll implement next.

Start by creating the following method, in the AccountController class:

public ActionResult LiveId()
{
 return Redirect(" ~/");
}

This method will be the primary action invoked when interacting with the Windows Live ID
services. Right now, if it is invoked, it will just redirect the user to the root of the application.

Note The call to Redirect returns RedirectResult, and although this example uses a string to
define the target of the redirection, various overloads can be used for different situations.

A few different types of actions can be taken when Windows Live ID returns a user to your
application. The user can be signing into Windows Live ID, signing out, or clearing the
Windows Live ID cookies. Windows Live ID uses a query string parameter called action on the
URL when it returns a user, so you’ll use a switch to branch the logic depending on the value
of the parameter.

Add the following to the LiveId method above the return statement:

string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);
}

See Also Full documentation of the Windows Live ID system can be found on the
http://dev.live.com/ Web site.

http://dev.live.com/

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 259

The code you just added handles the two sign-out actions for Windows Live ID. In both cases,
you use the IFormsAuthentication interface to remove the ASP.NET Forms Authentication
cookie so that any future http requests (until the user signs in again) will not be considered
authenticated. In the second case, you went one step further to clear the Windows Live ID
cookies (the ones that remember your login name but not your password).

Handling the sign-in scenario requires a bit more code because you have to check whether
the authenticating user is in your Membership Database and, if not, create a profile for
the user. However, before that, you must pass the data that Windows Live ID sent you
to your Windows Live ID interface so that it can validate the information and give you a
WindowsLiveLogin.User object:

 default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

At this point in the case for logging in, either liveIdUser will be a reference to an
authenticated WindowsLiveLogin.User object or it will be null. With this in mind, you can add
your next section of the code, which takes action when the liveIdUser value is not null:

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }
 else
 {

260 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;

The call to the ValidateUser method on the IMembershipService reference allows the
application to check whether the user has been to this site before and whether there will be
a profile for the user. Because the user is authenticated with Windows Live ID, you are using
the user’s ID value (which is a GUID) as both the user name and password to the ASP.NET
Membership Service.

If the user does not have a user record with the application, you create one by calling the
CreateUser method and then also create a user settings profile via CreateProfile. The profile is
filled with some defaults and saved back to its store, and the user is redirected to the primary
input page so that he can update the information.

Note Controller.RedirectToAction determines which URL to create based on the combination of
input parameters. In this case, you want to redirect the user to the Index action of this controller,
as well as pass the current return URL value.

The other action that takes place in this code is that the user is signed into ASP.NET Forms
authentication so that a cookie will be created, providing identity information on future
requests that require authentication.

The settings profile is managed by ASP.NET Membership Services as well and is declared in
the web.config file of the application:

<system.web>
…
<profile enabled="true">
 <properties>
 <add name="FullName" type="string" />
 <add name="State" type="string" />
 <add name="City" type="string" />
 <add name="PreferredActivityTypeId" type="int" />
 </properties>

 <providers>
 <clear />
 <add name="AspNetSqlProfileProvider"
type="System.Web.Profile.SqlProfileProvider,
 System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="ApplicationServices"
 applicationName="/" />
 </providers>
</profile>
…
</system.web>

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 261

At this point, the LiveID method is complete and should look like the following code. The
application can now take authentication information from Windows Live ID, prepare an
ASP.NET MembershipService profile, and create an ASP.NET Forms Authentication ticket.

public ActionResult LiveId()
{
string action = Request.QueryString["action"];
switch (action)
{
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");

 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);
 return new FileStreamResult(new MemoryStream(content), type);

default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);

 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(userId, userId, string.Empty);
 var profile = this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);

 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl = returnUrl });
 }

262 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
}
 return Redirect("~/");
}

Of course, the user has to be able to get to the Windows Live ID login page in the first
place before logging in. Currently in the Plan My Night application, there is a Windows
Live ID login button. However, there are cases where the application will want the user to
be redirected to the login page from code. To cover this scenario, you need to add a small
method called Login to your controller:

public ActionResult Login(string returnUrl)
{
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);
 return Redirect(redirect);
}

This method simply retrieves the login URL for Windows Live and redirects the user to that
location. This also satisfies a configuration value in your web.config file for ASP.NET Forms
Authentication in that any request requiring authentication will be redirected to this method:

<authentication mode="Forms">
 <forms loginUrl="~/Account/Login" name="XAUTH" timeout="2880" path="~/" />
</authentication>

Retrieving the Profile for the Current User
Now with the authentication methods defined, which satisfies your first goal for this
controller—signing users in and out in the application—you can move on to retrieving
data for the current user.

The Index method, which is the default method for the controller based on the URL
mapping configuration in Global.asax, will be where you retrieve the current user’s data and

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 263

return a view displaying that data. The Index method that was initially created when the
AccoutController class was created should be replaced with the following:

[Authorize()]
[AcceptVerbs(HttpVerbs.Get)]
public ActionResult Index(string returnUrl)
{
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);

 return View("Index", model);
}

Visual Studio 2008 Attributes, such as [Authorize()], might not have been in common use
in Visual Studio 2008; however, ASP.NET MVC makes use of them often. Attributes allow for
 metadata to be defined about the target they decorate. This allows for the information to be
examined at run time (via reflection) and for action to be taken if deemed necessary.

The Authorize attribute is very handy because it declares that this method can be invoked
only for http requests that are already authenticated. If a request is not authenticated, it will
be redirected to the ASP.NET Forms Authentication configured login target, which you just
finished setting up. The AcceptVerbs attribute also restricts how this method can be invoked,
by specifying which http verbs can be used. In this case, you are restricting this method to
HTTP GET verb requests. You’ve added a string parameter, returnUrl, to the method signature
so that when the user is finished viewing or updating her information, she can be returned to
what she was looking at previously.

Note This highlights a part of the ASP.NET MVC framework called Model Binding, details of
which are beyond the scope of this book. However, you should know that it attempts to find a
source for returnUrl (a form field, routing table data, or query string parameter with the same
name) and binds it to this value when invoking the method. If the Model Binder cannot find
a suitable source, the value will be null. This behavior can cause problems for value types that
 cannot be null, because it will throw an InvalidOperationException.

The main portion of this method is straightforward: it takes the return of the
GetCurrentProfile method on the ASP.NET Membership Service interface and sets up a view
model object for the view to use. The call to GetReturnUrl is an example of an extension
method defined in the PlanMyNight.Infrastructure project. It’s not a member of the

264 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Controller class, but in the development environment it makes for much more readable code.
(See Figure 9-5.)

FIGURE 9-5 Example of extension methods in MvcExtensions.cs

InjectStatesAndActivityTypes is a method you need to implement in the AccountController
class. It gathers data from the reference repository for names of states and the activity
repository. It makes two collections of SelectListItem (an HTML class for MVC): one for the list
of states, and the other for the list of different activity types available in the application. It
also sets the respective value.

private void InjectStatesAndActivityTypes(ProfileViewModel model)
{
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null && o.Id ==
 profile.PreferredActivityTypeId)
 }).ToList();

 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null && o.Abbreviation ==
 profile.State)
 }).ToList();

 states.Insert(0, new SelectListItem {

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 265

 Text = "Any state",
 Value = string.Empty
 });

 model.PreferredActivityTypes = types;
 model.States = states;
}

Updating the Profile Data
Having completed the infrastructure needed to retrieve data for the current profile, you can
move on to updating the data in the model from a form submission by the user. After this,
you can create your view pages and see how all this ties together. The Update method is
simple; however, it does introduce some new features not seen yet:

[Authorize()]
[AcceptVerbs(HttpVerbs.Post)]
[ValidateAntiForgeryToken()]
public ActionResult Update(UserProfile profile)
{
 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ? new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }

 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult { JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new { Update = true, Profile = profile, ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess", "Account", new { returnUrl =
 returnUrl });
 }
}

The ValidateAntiForgeryToken attribute ensures that the form has not been tampered with.
To use this feature, you need to add an AntiForgeryToken to your view’s input form. The
check on the ModelState to see whether it is valid is your first look at input validation. This is
a look at the server-side validation, and ASP.NET MVC offers an easy-to-use feature to make
sure that incoming data meets some rules. The UserProfile object that is created for input to
this method, via MVC Model Binding, has had one of its properties decorated with a

266 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

System.ComponentModel.DataAnnotations.Required attribute. During Model Binding, the
MVC framework evaluates DataAnnotation attributes and marks the ModelState as valid only
when all of the rules pass.

In the case where the ModelState is not valid, the user is redirected to the Index method
where the ModelState will be used in the display of the input form. Or, if the request was an
AJAX call, a JsonResult is returned with the ModelState data attached to it.

Visual Studio 2008 Because in ASP.NET MVC requests are routed through controllers rather
than pages, the same URL can handle a number of requests and respond with the appropri-
ate view. In Visual Studio 2008, a developer would have to create two different URLs and call a
method in a third class to perform the functionality.

When the ModelState is valid, the profile is updated in the membership service and a
JSON result is returned for AJAX requests with the success data, or in the case of "normal"
requests, the user is redirected to the UpdateSuccess action on the Account controller. The
UpdateSuccess method is the final method you need to implement to finish off this controller:

public ActionResult UpdateSuccess(string returnUrl)
{
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),
 ReturnUrl = returnUrl
 };
 return View(model);
}

The method is used to return a success view to the browser, display some of the updated
data, and provide a link to return the user to where she was when she started the profile
update process.

Now that you’ve reached the end of the Account controller implementation, you should have
a class that resembles the following listing:

 using System;
 using System.Collections.Specialized;
 using System.IO;
 using System.Linq;
 using System.Web;
 using System.Web.Mvc;
 using Microsoft.Samples.PlanMyNight.Data;
 using Microsoft.Samples.PlanMyNight.Entities;
 using Microsoft.Samples.PlanMyNight.Infrastructure;
 using Microsoft.Samples.PlanMyNight.Infrastructure.Mvc;

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 267

 using Microsoft.Samples.PlanMyNight.Web.ViewModels;
 using WindowsLiveId;

namespace Microsoft.Samples.PlanMyNight.Web.Controllers
{
 [HandleErrorWithContentType()]
 [OutputCache(NoStore = true, Duration = 0, VaryByParam = "*")]
 public class AccountController : Controller
 {
 private readonly IWindowsLiveLogin windowsLogin;
 private readonly IMembershipService membershipService;
 private readonly IFormsAuthentication formsAuthentication;
 private readonly IReferenceRepository referenceRepository;
 private readonly IActivitiesRepository activitiesRepository;

 public AccountController() :
 this(
 new ServiceFactory().GetMembershipService(),
 new WindowsLiveLogin(true),
 new FormsAuthenticationService(),
 new ServiceFactory().GetReferenceRepositoryInstance(),
 new ServiceFactory().GetActivitiesRepositoryInstance())
 {
 }

 public AccountController(IMembershipService membershipService,
 IWindowsLiveLogin windowsLogin,
 IFormsAuthentication formsAuthentication,
 IReferenceRepository referenceRepository,
 IActivitiesRepository activitiesRepository)
 {
 this.membershipService = membershipService;
 this.windowsLogin = windowsLogin;
 this.formsAuthentication = formsAuthentication;
 this.referenceRepository = referenceRepository;
 this.activitiesRepository = activitiesRepository;
 }

 public ActionResult LiveId()
 {
 string action = Request.QueryString["action"];
 switch (action)
 {
 case "logout":
 this.formsAuthentication.SignOut();
 return Redirect("~/");
 case "clearcookie":
 this.formsAuthentication.SignOut();
 string type;
 byte[] content;
 this.windowsLogin.GetClearCookieResponse(out type, out content);

268 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 return new FileStreamResult(new MemoryStream(content), type);
 default:
 // login
 NameValueCollection tokenContext;
 if ((Request.HttpMethod ?? "GET").ToUpperInvariant() == "POST")
 {
 tokenContext = Request.Form;
 }
 else
 {
 tokenContext = new NameValueCollection(Request.QueryString);
 tokenContext["stoken"] =
 System.Web.HttpUtility.UrlEncode(tokenContext["stoken"]);
 }

 var liveIdUser = this.windowsLogin.ProcessLogin(tokenContext);
 if (liveIdUser != null)
 {
 var returnUrl = liveIdUser.Context;
 var userId = new Guid(liveIdUser.Id).ToString();
 if (!this.membershipService.ValidateUser(userId, userId))
 {
 this.formsAuthentication.SignIn(userId, false);
 this.membershipService.CreateUser(
 userId, userId, string.Empty);
 var profile =
 this.membershipService.CreateProfile(userId);
 profile.FullName = "New User";
 profile.State = string.Empty;
 profile.City = string.Empty;
 profile.PreferredActivityTypeId = 0;
 this.membershipService.UpdateProfile(profile);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = null;
 return RedirectToAction("Index", new { returnUrl =
 returnUrl });
 }
 else
 {
 this.formsAuthentication.SignIn(userId, false);
 if (string.IsNullOrEmpty(returnUrl)) returnUrl = "~/";
 return Redirect(returnUrl);
 }
 }
 break;
 }
 return Redirect("~/");
 }

 public ActionResult Login(string returnUrl)
 {
 var redirect = HttpContext.Request.Browser.IsMobileDevice ?
 this.windowsLogin.GetMobileLoginUrl(returnUrl) :
 this.windowsLogin.GetLoginUrl(returnUrl);

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 269

 return Redirect(redirect);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Get)]
 public ActionResult Index(string returnUrl)
 {
 var profile = this.membershipService.GetCurrentProfile();
 var model = new ProfileViewModel
 {
 Profile = profile,
 ReturnUrl = returnUrl ?? this.GetReturnUrl()
 };

 this.InjectStatesAndActivityTypes(model);
 return View("Index", model);
 }

 [Authorize()]
 [AcceptVerbs(HttpVerbs.Post)]
 [ValidateAntiForgeryToken()]
 public ActionResult Update(UserProfile profile)
 {
 var returnUrl = Request.Form["returnUrl"];
 if (!ModelState.IsValid)
 {
 // validation error
 return this.IsAjaxCall() ?
 new JsonResult { JsonRequestBehavior =
 JsonRequestBehavior.AllowGet, Data = ModelState }
 : this.Index(returnUrl);
 }
 this.membershipService.UpdateProfile(profile);
 if (this.IsAjaxCall())
 {
 return new JsonResult {
 JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = new {
 Update = true,
 Profile = profile,
 ReturnUrl = returnUrl } };
 }
 else
 {
 return RedirectToAction("UpdateSuccess",
 "Account", new { returnUrl = returnUrl });
 }
 }
 public ActionResult UpdateSuccess(string returnUrl)
 {
 var model = new ProfileViewModel
 {
 Profile = this.membershipService.GetCurrentProfile(),

270 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 ReturnUrl = returnUrl
 };
 return View(model);
 }

 private void InjectStatesAndActivityTypes(ProfileViewModel model)
 {
 var profile = model.Profile;
 var types = this.activitiesRepository.RetrieveActivityTypes()
 .Select(o => new SelectListItem { Text = o.Name,
 Value = o.Id.ToString(),
 Selected = (profile != null &&
 o.Id == profile.PreferredActivityTypeId) })
 .ToList();
 types.Insert(0, new SelectListItem { Text = "Select...", Value = "0" });
 var states = this.referenceRepository.RetrieveStates().Select(
 o => new SelectListItem {
 Text = o.Name,
 Value = o.Abbreviation,
 Selected = (profile != null &&
 o.Abbreviation == profile.State) })
 .ToList();
 states.Insert(0,
 new SelectListItem { Text = "Any state",
 Value = string.Empty });
 model.PreferredActivityTypes = types;
 model.States = states;
 }
 }
}

Creating the Account View
In the previous section, you created a controller with functionality that allows a user to
update her information and view it. In this section you’re going to walk through the Visual
Studio 2010 features that enable you to create the views that display this functionality to
the user.

To create the Index view for the Account controller:

 1. Navigate to the Views folder in the PlanMyNight.Web project.

 2. Click the right mouse button on the Views folder, expand the Add submenu, and select
New Folder.

 3. Name the new folder Account.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 271

 4. Click the right mouse button on the new Account folder, expand the Add submenu,
and select View.

 5. Fill out the Add View dialog box as shown here:

 6. Click Add. You should see an HTML page with some <asp:Content> controls in the
markup:

272 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

You might notice that it doesn’t look much different from what you are used to seeing
in Visual Studio 2008. By default, ASP.NET MVC 2 uses the ASP.NET Web Forms view
engine, so there will be some commonality between MVC and Web Forms pages. The
primary differences at this point are that the page class derives from System.Web.Mvc.
ViewPage<ProfileViewModel> and there is no code-behind file. MVC does not use code-
behind files, like ASP.NET Web Forms does, to enforce a strict separation of concerns. MVC
pages are generally edited in markup view; the designer view is primarily for ASP.NET Web
Forms applications.

For this page skeleton to become the main view for the Account controller, you should
change the title content to be more in line with the other views:

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Plan My Night - Profile
</asp:Content>

Next you need to add the client scripts you are going to use in the content placeholder for
the HtmlHeadContent:

<asp:Content ID="Content3" ContentPlaceHolderID="HtmlHeadContent" runat="server">
 <% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery-1.3.2.min.js"),
 "http://ajax.Microsoft.com/ajax/jQuery/jquery-1.3.2.min.js"); %>
 <% Ajax.RegisterClientScriptInclude(
 Url.Content("~/Content/Scripts/jquery.validate.js"),
"http://ajax.microsoft.com/ajax/jquery.validate/1.5.5/jquery.validate.min.js"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/MicrosoftMvcJQueryValidation.js"), "pmn"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.common.js"), "pmn"); %>
 <% Ajax.RegisterCombinedScriptInclude(
 Url.Content("~/Content/Scripts/ajax.profile.js"), "pmn"); %>
 <%= Ajax.RenderClientScripts() %>
</asp:Content>

This script makes use of extension methods for the System.Web.Mvc.AjaxHelper, which are
found in the PlanMyNight.Infrastructure project, under the MVC folder.

With the head content set up, you can look at the main content of the view:

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <% Html.EnableClientValidation(); %>
 <% using (Html.BeginForm("Update", "Account")) %>
 <% { %>
 <%=Html.AntiForgeryToken()%>
 <div class="items">

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 273

 <fieldset>
 <p>
 <label for="FullName">Name:</label>
 <%=Html.EditorFor(m => m.Profile.FullName)%>
 <%=Html.ValidationMessage("Profile.FullName",
 new { @class = "field-validation-error-wrapper" })%>
 </p>
 <p>
 <label for="State">State:</label>
 <%=Html.DropDownListFor(m => m.Profile.State, Model.States)%>
 </p>
 <p>
 <label for="City">City:</label>
 <%=Html.EditorFor(m => m.Profile.City, Model.Profile.City)%>
 </p>
 <p>
 <label for="PreferredActivityTypeId">Preferred activity:</label>
 <%=Html.DropDownListFor(m =>
 m.Profile.PreferredActivityTypeId,
 Model.PreferredActivityTypes)%>
 </p>
 </fieldset>
 <div class="submit">
 <%=Html.Hidden("returnUrl", Model.ReturnUrl)%>
 <%=Html.SubmitButton("submit", "Update")%>
 </div>
 </div>
 <div class="toolbox"></div>
 <% } %>
 </div>
</div>
</asp:Content>

Aside from some inline code, this looks to be fairly normal HTML markup. We’re going to
focus our attention on the inline code pieces to demonstrate the power they bring (as well as
the simplicity).

Visual Studio 2008 In Visual Studio 2008, it was more commonplace to use server-side
 controls to display data, and other display-time logic. However, because ASP.NET MVC view
pages do not have a code-behind file, server-side logic executed in the view at render time must
be done in the same file with the markup. ASP.NET Web Forms controls can still be used. Our
example makes use of the <asp:Content> control. However, the functionality of ASP.NET Web
Forms controls is generally limited because there is no code-behind file.

MVC makes a lot of use of what is known as HTML helpers. The methods contained under
System.Web.Mvc.HtmlHelper emit small, standards-compliant HTML tags for various uses.
This requires the MVC developer to type more markup than a Web Forms developer in some
cases, but the developer has more direct control over the output. The strongly typed version

274 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

of this extension class (HtmlHelper<TModel>) can be referenced in the view markup via the
ViewPage<TModel>.Html property.

These are the HTML methods used in this form, which are only a fraction of what is available
by default:

■ Html.EnableClientValidation enables data validation to be performed on the client side
based on the strongly typed ModelState dictionary.

■ Html.BeginForm places a <form> tag in the markup and closes the form at the end
of the using section. It takes various parameters for options, but the most common
parameter is the name of the action and the controller to invoke that action on. This
allows the MVC framework to generate the specific URL to target the form to at run
time, rather than having to input a string URL into the markup.

■ Html.AntiForgeryToken places a hidden field in the form with a check value that is also
stored in a cookie in the visitor’s browser and validated when the target of the form has
the ValidateAntiForgeryToken attribute. Remember that you added this attribute to the
Update method in the controller.

■ Html.EditorFor is an overloaded method that inserts a text box into the markup. This is
the strongly typed version of the Html.Editor method.

■ Html.DropDownListFor is an overloaded method that places a drop-down list into the
markup. This is the strongly typed version of the Html.DropDownList method.

■ Html.ValidationMessage is a helper that will display a validation error message when a
given key is present in the ModelState dictionary.

■ Html.Hidden places a hidden field in the form, with the name and value that is
passed in.

■ Html.SubmitButton creates a Submit button for the form.

Note With the Index view markup complete, you only need to add the view for the
UpdateSuccess action before you can see your results.

To create the UpdateSuccess view:

 1. Expand the PlanMyNight.Web project in Solution Explorer, and then expand the Views
folder.

 2. Click the right mouse button on the Account folder.

 3. Open the Add submenu, and click View.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 275

 4. Fill out the Add View dialog box so that it looks like this:

After the view page is created, fill in the title content so that it looks like this:

<asp:Content ContentPlaceHolderID="TitleContent" runat="server">Plan My Night - Profile
Updated</asp:Content>

And the placeholder for MainContent should look like this:

<asp:Content ContentPlaceHolderID="MainContent" runat="server">
<div class="panel" id="profileForm">
 <div class="innerPanel">
 <h2>My Profile</h2>
 <div class="items">
 <p>Your profile has been successfully updated.</p>
 <h3>» <a href="<%=Html.AttributeEncode(Model.ReturnUrl ??
 Url.Content("~/"))%>">Continue</h3>
 </div>
 <div class="toolbox"></div>
 </div>
</div>
</asp:Content>

To see the views created, you must perform an edit to the Site.Master file (located in the
Views/Shared folder from the Web project’s root). Line 33 of the file is commented out, and
the comment tags should be removed so that it matches the following example:

<%=Html.ActionLink<AccountController>(c => c.Index(null), "My Profile")%>

276 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

With this last view created, you can now compile and launch the application. Click the Sign In
button, as seen in the top right corner of Figure 9-6, and sign in to Windows Live ID.

FIGURE 9-6 Plan My Night default screen

After you’ve signed in, you should be redirected to the Index view of the Account controller
you created, shown in Figure 9-7.

FIGURE 9-7 Profile settings screen returned from the Index method of the Account controller

If instead you are returned to the search page, just click the My Profile link, located in the
links at the center and top of the interface. To see the new data-validation features at work,

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 277

try to save the form without filling in the Full Name field. You should get a result that looks
like Figure 9-8.

FIGURE 9-8 Example of failed validation during Model Binding checks

Because you enabled client-side validation, there was no postback. To see the server-
side validation work, you would have to edit the Index.aspx file in the Account folder and
comment out the call to Html.EnableClientValidation. The tight integration and support of
AJAX and other JavaScript in MVC applications allows for server-side operations such as
validation to be moved to the client side much more easily than they were previously.

Visual Studio 2008 In ASP.NET MVC applications, the value of the ID attribute for a particular
HTML element is not transformed, like they are in ASP.NET Web Forms 3.5. In Visual Studio 2008,
a developer would have to make sure to set the UniqueID of a control/element into a JavaScript
variable so that it could be accessed by external JavaScript. This was done to make sure the
ID was unique. However, it was always an extra layer of complexity to the interaction between
ASP.NET 3.5 Web Forms controls and JavaScript. In MVC, this transformation does not hap-
pen, but it is up to the developers to ensure uniqueness of the ID. It should also be noted that
ASP.NET 4.0 Web Forms now supports disabling the ID transformation on a per-control basis, if
the developer so wishes.

With the completed Account controller and related views, you have filled in the missing
"core" functionality of Plan My Night, while taking a brief tour of some new features in Visual
Studio 2010 and MVC 2.0 applications. But MVC is not the only choice for Web developers.

278 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

ASP.NET Web Forms has been the primary application type for ASP.NET since it was released,
and it continues to be improved upon in Visual Studio 2010. In the next section, we’ll explore
creating an ASP.NET Web Form with the Visual Designer to be used in the MVC application.

Using the Designer View to Create a Web Form
Applications will encounter an unexpected condition at some point in their lifetime of use.
The companion application is no different, and when it does encounter an unexpected
condition, it returns an error screen like that shown in Figure 9-9.

FIGURE 9-9 Example of an error screen in the Plan My Night application

Currently, a user who sees this screen really has only the option of trying his action again
or using the navigation links along the top area of the application. (Of course, that might
also cause another error.) Adding an option for the user to provide feedback allows the
developers to gain information about the situation that might not be apparent by using
the standard exception message and stack trace. To show a different way to create a user
interface component for Plan My Night, the error feedback page is going to be created as an
ASP.NET Web Form using primarily the Designer view in Visual Studio. Before you can begin
designing the form, you need to create a base form file to work from.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 279

To create a new Web form:

 1. Open the context menu on the PlanMyNight.Web project (by clicking the right mouse
button), open the Add submenu, and select New Item.

 2. In the Add New Item dialog box, select Web Form Using Master Page and call the item
ErrorFeedback.aspx in the Name field.

 3. The dialog screen to associate a master page with this Web form will appear. On the
Project Folders side, ensure that the main PlanMyNight.Web folder is selected and then
select the WebForms.Master item on the right.

280 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 4. The resulting page can be shown in the source mode (or Design view) instead of Split
view. Switch the view to Split (located at the bottom of the window, just like in previous
Visual Studio versions). When you are done, the screen should look similar to this:

Note Split view is recommended so that you can see the source the designer is generating and
to add extra markup as needed.

It’s a good idea to pin the control toolbox open on the screen because you’ll be dragging
controls and elements to the content area during this section. The toolbox, if not present
already, can be found under the View menu.

Start by dragging a div element (under the HTML group) from the toolbox into the
MainContent section of the designer. A div tab will appear, indicating that the new element
you added is the currently selected element. Open the context menu for the div, and choose
Properties (which can also be opened by pressing the F4 key). With the Properties window
open, edit the (Id) property to have a value of profileForm. (Casing is important.) Also, change
the Class property to have a value of panel. After editing the values, the size of your content
area will have changed, because CSS is applied in the Design view.

Drag another div inside the first one, and set its class property to innerPanel. In the markup
panel, add the following markup to the innerPanel:

<h2>Error Feedback</h2>

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 281

After the close of the <h2> tag, add a new line and open the context menu. Choose Insert
Snippet, and follow the click path of ASP.NET > form. This will create a server-side form
tag for you to insert Web controls into. Inside the form tag, place a div tag with the class
attribute set to items and then a fieldset tag inside the div tag.

Next drag a TextBox control (found under Standard) from the toolbox and drop it inside the
fieldset tag. Set the ID of the text box to FullName. Add a <label> tag before this control in
the markup view, set its for property to the ID of the text box, and set its value to Full Name:
(making sure to include the colon). To set the value of a <label> tag, place the text between
the <label> and </label> tags. Surround these two elements with a <p>, and you should
have something like Figure 9-10 in the Design view.

FIGURE 9-10 Current state of ErrorFeedback.aspx in the Design view

Add another text box and label it in a similar manner as the first, but set the ID of the text
box to EmailAddress and the label value to Email Address: (making sure to include the
colon). Repeat the process a third time, setting the TextBox ID and label value to Comments.
There should now be three labels and three single-line TextBox controls in the Design view.
The Comments control needs multiline input, so open its property page and set TextMode to
Multiline, Rows to 5, and Columns to 40. This should create a much wider text box in which
the user can enter comments.

Use the Insert Snippet feature again, after the Comments text box, and insert a "div with
class" tag (HTML>divc). Set the class of the div tag to submit, and drag a Button control from
the toolbox into this div. Set the Button’s Text property to Send Feedback.

282 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The designer should show something similar to what you see in Figure 9-11, and at this point
you have a page that will submit a form.

FIGURE 9-11 The ErrorFeedback.aspx form with a complete field set

However, it does not perform any validation on the data being submitted. To do this, you’ll
take advantage of some of the validation controls present in ASP.NET. You’ll make the Full
Name and Comments boxes required fields and perform a regex validation of the e-mail
address to ensure that it matches the right pattern.

Under the Validation group of the toolbox are some premade validation controls you’ll use.
Drag a RequiredFieldValidator object from the toolbox, and drop it to the right of the Full
Name text box. Open the properties for the validation control, and set the ControlToValidate
property to FullName. (It’s a combo box of controls on the page.) Also, set the CssClass to

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 283

field-validation-error. This changes the display of the error to a red triangle used elsewhere
in the application. Finally, change the Error Message property to Name is Required. (See
Figure 9-12.)

FIGURE 9-12 Validation control example

Repeat these steps for the Comments box, but substitute the ErrorMessage and
ControlToValidate property values as appropriate.

For the Email Address field, you want to make sure the user types in a valid e-mail address,
so for this field drag a RegularExpressionValidator control from the toolbox and drop it next
to the Email Address text box. The property values are similar for this control in that you set
the ControlToValidate property to EmailAddress and the CssClass property to field-validation-
error. However, with this control you define the regular expression to be applied to the input
data. This is done with the ValidationExpression property, and it should be set like this:

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}

The error message for this validator should say something like “Must enter a valid e-mail
address.”

284 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The form is complete. To see it in the application, you need to add the option of providing
feedback to a user when the user encounters an error. In Solution Explorer, navigate the
PlanMyNight.Web project tree to the Views folder and then to the Shared subfolder. Open
the Error.aspx file in the markup viewer, and go to line 35. This is the line of the error screen
where you ask the user whether she wants to try her action again and where you’ll put the
option for sending the feedback. After the question text in the same paragraph, add the
following markup:

or send feedback?

This will add an option to go to the form you just created whenever there is a general error
in the MVC application. To see your form, you’ll have to cause an error in your application.

To cause an error in the Plan My Night application:

 1. Start the application.

 2. After the default search page is up, type the following into the browser address bar:
http://www.planmynight.net:48580/Itineraries/Details/38923828.

 3. Because it is highly unlikely such an itinerary ID exists in the database, an error screen
will be shown. If you are running the application with the debugger attached, the
application will pause on an exception breakpoint. Continue the application (F5 is the
default key) to see the following screen:

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 285

 4. With the error screen visible, click the link to go to the feedback form. Try to submit the
form with invalid data.

ASP.NET uses client-side script (when the browser supports it) to perform the validation, so
no postbacks occur until the data passes. On the server side, when the server does receive
a postback, a developer can check the validation state with the Page.IsValid property in the
code-behind. However, because you used client-side validation (which is on by default), this
will always be true. The only code in the code-behind that needs to be added is to redirect
the user on a postback (and check the Page.IsValid property, in case client validation missed
something):

protected void Page_Load(object sender, EventArgs e)
 {
 if (this.IsPostBack && this.IsValid)
 {
 this.Response.Redirect("/", true);
 }
 }

This really isn’t very useful to the user, but our goal in this section was to work with
the designer to create an ASP.NET Web Form. This added a new interface to the
PlanMyNight.Web project, but what if you wanted to add new functionality to the
application in a more modular sense, such as some degree of functionality that can
be added or removed without having to compile the main application project. This is where
an extensibility framework like the Managed Extensibility Framework (MEF) can show the
benefits it brings.

286 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Extending the Application with MEF
A new technology available in Visual Studio 2010 as part of the .NET Framework 4 is
the Managed Extensibility Framework (MEF). The Managed Extensibility Framework
provides developers with a simple (yet powerful) mechanism to allow their applications
to be extended by third parties after the application has been shipped. Even within the
same application, MEF allows developers to create applications that completely isolate
components, allowing them to be managed or changed independently. It uses a resolution
container to map components that provide a particular function (exporters) and components
that require that functionality (importers), without the two concrete components having
to know about each other directly. Resolutions are done on a contract basis only, which
easily allows components to be interchanged or introduced to an application with very little
overhead.

See Also MEF’s community Web site, containing in-depth details about the architecture, can
be found at http://mef.codeplex.com.

The companion Plan My Night application has been designed with extendibility in mind, and
it has three "add-in" module projects in the solution, under the Addins solution folder. (See
Figure 9-13.)

FIGURE 9-13 The Plan My Night application add-ins

PlanMyNight.Addins.EmailItinerary adds the ability to e-mail itinerary lists to anyone the user
sees fit to receive them. PlanMyNight.Addins.PrintItinerary provides a printer-friendly view

http://mef.codeplex.com

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 287

of the itinerary. Lastly, PlanMyNight.Addins.Share adds in social-media sharing functions (so
that the user can post a link to an itinerary) as well as URL-shortening operations. None of
these projects reference the main PlanMyNight.Web application or are referenced by it. They
do have references to the PlanMyNight.Contracts and PlanMyNight.Infrastructure projects,
so they can export (and import in some cases) the correct contracts via MEF as well as use
any of the custom extensions in the infrastructure project.

Note Before doing the next step, if the Web application is not already running, launch the
PlanMyNight.Web project so that the UI is visible to you.

To add the modules to your running application, run the DeployAllAddins.bat file, found
in the same folder as the PlanMyNight.sln file. This will create new folders under the Areas
section of the PlanMyNight.Web project. These new folders, one for each plug-in, will
contain the files needed to add their functionality to the main Web application. The plug-ins
appear in the application as extra options under the current itinerary section of the search
results page and on the itinerary details page. After the batch file is finished running, go to
the interface for Plan My Night, search for an activity, and add it to the current itinerary. You
should notice some extra options under the itinerary panel other than just New and Save.
(See Figure 9-14.)

FIGURE 9-14 Location of the e-mail add-in in the UI

288 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

The social sharing options will show in the interface only after the itinerary is saved and
marked public. (See Figure 9-15.)

FIGURE 9-15 Location of the social sharing add-in in the UI

Visual Studio 2008 Visual Studio 2008 does not have anything that compares to MEF. To
 support "plug-ins," a developer would have to either write the plug-in framework from scratch
or purchase a commercial package. Either of the two options led to proprietary solutions an
 external developer would have to understand in order to create a component for them. Adding
MEF to the .NET Framework helps to cut down the entry barriers to producing extendable
 applications and the plug-in modules for them.

Print Itinerary Add-in Explained
To demonstrate how these plug-ins wire into the application, let’s have a look at the
PrintItinerary.Addin project. When you expand the project, you should see something like
the structure shown in Figure 9-16.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 289

FIGURE 9-16 Structure of the PrintItinerary project

Some of this structure is similar to the PlanMyNight.Web project (Controllers and Views).
That’s because this add-in will be placed in an MVC application as an area. If you look more
closely at the PrintItineraryController.cs file in the Controller folder, you can see it is similar
in structure to the controller you created earlier in this chapter (and similar to any of the
other controllers in the Web application). However, some key differences set it apart from the
controllers that are compiled in the primary PlanMyNight.Web application.

Focusing on the class definition, you’ll notice some extra attributes:

[Export("PrintItinerary", typeof(IController))]
[PartCreationPolicy(CreationPolicy.NonShared)]

These two attributes describe this type to the MEF resolution container. The first attribute,
Export, marks this class as providing an IController under the contract name of PrintItinerary.
The second attribute declares that this object supports only nonshared creation and cannot
be created as a shared/singleton object. Defining these two attributes are all you need to
do to have the type used by MEF. In fact, PartCreationPolicy is an optional attribute, but it
should be defined if the type cannot handle all the creation policy types.

290 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Further into the PrintItineraryController.cs file, the constructor is decorated with an
ImportingConstructor attribute:

[ImportingConstructor]
public PrintItineraryController(IServiceFactory serviceFactory) :
this(
 serviceFactory.GetItineraryContainerInstance(),
 serviceFactory.GetItinerariesRepositoryInstance(),
 serviceFactory.GetActivitiesRepositoryInstance())
 {
 }

The ImportingConstructor attribute informs MEF to provide the parameters when creating
this object. In this particular case, MEF provides an instance of IServiceFactory for this object
to use. Where the instance comes from is of no concern to the this class and really assists
with creating modular applications. For our purposes, the IServiceFactory contracted is being
exported by the ServiceFactory.cs file in the PlanMyNight.Web project.

The RouteTableConfiguration.cs file registers the URL route information that should be
directed to the PrintItineraryController. This route, and the routes of the other add-ins, are
registered in the application during the Application_Start method in the Global.asax.cs file of
PlanMyNight.Web:

// MEF Controller factory
var controllerFactory = new MefControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

// Register routes from Addins
foreach (RouteCollection routes in container.GetExportedValues<RouteCollection>())
{
 foreach (var route in routes)
 {
 RouteTable.Routes.Add(route);
 }
}

The controllerFactory, which was initialized with an MEF container containing path
information to the Areas subfolder (so that it enumerated all the plug-ins), is assigned to be
the controller factory for the lifetime of the application. This allows controllers imported via
MEF to be usable anywhere in the application. The routes these plug-ins respond to are then
retrieved from the MEF container and registered in the MVC routing table.

 Chapter 9 From 2008 to 2010: Designing the Look and Feel 291

The ItineraryContextualActionsExport.cs file exports information to create the link
to this plug-in, as well as metadata for displaying it. This information is used in the
ViewModelExtensions.cs file, in the PlanMyNight.Web project, when building a view model
for display to the user:

// get addin links and toolboxes
var addinBoxes = new List<RouteValueDictionary>();
var addinLinks = new List<ExtensionLink>();

addinBoxes.AddRange(AddinExtensions.GetActionsFor("ItineraryToolbox", model.Id == 0 ? null :
new { id = model.Id }));

addinLinks.AddRange(AddinExtensions.GetLinksFor("ItineraryLinks", model.Id == 0 ? null : new
{ id = model.Id }));

The call to AddinExtensions.GetLinksFor enumerates over exports in the MEF Export provider
and returns a collection of them to be added to the local addinLinks collection. These are
then used in the view to display more options when they are present.

Summary
In this chapter, we explored a few of the many new features and technologies found in Visual
Studio 2010 that were used to create the companion Plan My Night application. We walked
through creating a controller and its associated view and how the ASP.NET MVC framework
offers Web developers a powerful option for creating Web applications. We also explored
how using the Managed Extensibility Framework in application design can allow plug-in
modules to be developed external to the application and loaded at run time. In the next
chapter, we’ll explore how debugging applications has been improved in Visual Studio 2010.

 293

Chapter 10

From 2008 to 2010: Debugging
an Application

After reading this chapter, you will be able to

■ Use the new debugger features of Microsoft Visual Studio 2010

■ Create unit tests and execute them in Visual Studio 2010

■ Compare what was available to you or see what was different for you as a developer in
Visual Studio 2008

As we were writing this book, we realized how much the debugging tools and developer
aids have evolved over the last three versions of Visual Studio. Focusing on debugging an
 application and writing unit tests just increases the opportunities we have to work with Visual
Studio 2010.

Visual Studio 2010 Debugging Features
In this chapter, you’ll go through the different debugging features using a modified Plan
My Night application. If you installed the companion content at the default location, you’ll
find the modified Plan My Night application at the following location: %userprofile%\
Documents\Microsoft Press\Moving to Visual Studio 2010\Chapter 10 \Code. Double-click
the PlanMyNight.sln file.

First, before diving into the debugging session itself, you’ll need to set up a few things:

 1. In Solution Explorer, ensure that PlanMyNight.Web is the startup project. If the project
name is not in bold, right-click on PlanMyNight.Web and select Set As StartUp Project.

 2. To get ready for the next steps, in the PlanMyNight.Web solution open the Global.asax.cs
file by clicking the triangle beside the Global.asax folder and then double-clicking the
Global.asax.cs file, as shown in Figure 10-1.

294 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 10-1 Solution Explorer before opening the file Global.asax.cs

Managing Your Debugging Session
Using the Plan My Night application, you’ll examine how a developer can manage and
share breakpoints. And with the use of new breakpoint enhancements, you’ll learn how to
inspect the different data elements in the application in a much faster and more efficient
way. You’ll also look at new minidumps and the addition of a new intermediate language
(IL) interpreter that allows you to evaluate managed code properties and functions during
minidump debugging.

New Breakpoint Enhancements
At this point, you have the Global.ascx.cs file opened in your editor. The following steps walk
you through some ways to manage and share breakpoints:

 1. Navigate to the Application_BeginRequest(object sender, EventArgs e) method, and set a
breakpoint on the line that reads var url = HttpContext.Current.Request.Url; by clicking
in the left margin or pressing F9. Look at Figure 10-2 to see this in action.

FIGURE 10-2 Creating a breakpoint

 Chapter 10 From 2008 to 2010: Debugging an Application 295

 2. Press F5 to start the application in debug mode. You should see the developer Web
server starting in the system tray and a new browser window opening. The application
should immediately stop at the breakpoint you just created. The Breakpoints window
might not be visible even after starting the application in debug mode. If that is the
case, you can make it visible by going to the Debug menu and selecting Windows and
then Breakpoints, or you can use the following keyboard shortcut: Ctrl+D+B.

You should now see the Breakpoints window as shown in Figure 10-3.

FIGURE 10-3 Breakpoints window

 3. In the same method, add three more breakpoints so that the editor and the
Breakpoints window look like those shown in Figure 10-4.

FIGURE 10-4 Code editor and Breakpoints window with three new breakpoints

296 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Visual Studio 2008 As a reader and a professional developer who used Visual Studio
2008 often, you probably noticed a series of new buttons as well as new fields in the
Breakpoints window in this exercise. As a reminder, take a look at Figure 10-5 for a quick
comparison of what it looks like in Visual Studio 2008.

FIGURE 10-5 Visual Studio 2008 Breakpoints window

 4. Notice that the Labels column is now available to help you index and search
breakpoints. It is a really nice and useful feature that Visual Studio 2010 brings to the
table. To use this feature, you simply right-click on a breakpoint in the Breakpoints
window and select Edit Labels or use the keyboard shortcut Alt+F9, L, as shown in
Figure 10-6.

FIGURE 10-6 Edit Labels option

 5. In the Edit Breakpoint Labels window, add labels for the selected breakpoint (which
is the first one in the Breakpoints window). Type ContextRequestUrl in the Type A
New Label text box, and click Add. Repeat this operation on the next breakpoint, and

 Chapter 10 From 2008 to 2010: Debugging an Application 297

type a label name of url. When you are done, click OK. You should see a window that
looks like Figure 10-7 while you are entering them, and to the right you should see the
Breakpoints window after you are done with those two operations.

FIGURE 10-7 Adding labels that show up in the Breakpoints window

Note You can also right-click on the breakpoint in the left margin and select Edit Labels
to accomplish the same tasks just outlined.

Note You’ll see that when adding labels to a new breakpoint you can choose any of the
existing labels you have already entered. You’ll find these in the Or Choose Among Existing
Labels area, which is shown in the Edit Breakpoint Labels dialog box on the left in the pre-
ceding figure.

 6. Using any of the ways you just learned, add labels for each of the breakpoints and
make sure your Breakpoints window looks like Figure 10-8 after you’re done.

FIGURE 10-8 Breakpoints window with all labels entered

When you have a lot of code and are in the midst of a debugging session, it would be
great to be able to filter the displayed list of breakpoints. That’s exactly what the new
Search feature in Visual Studio 2010 allows you to do.

298 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 7. To see the Search feature in action, just type url in the search text box and you’ll see
the list of breakpoint is filtered down to breakpoints containing url in one of their
labels.

In a team environment where you have many developers and testers working together,
often two people at some point in time are working on the same bugs. In Visual Studio
2008, the two people needed to sit near each other, send one another screen shots, or
send one another the line numbers of where to put breakpoints to refine where they
should look while debugging a particular bug.

Important One of the great new additions to breakpoint management in Visual Studio
2010 is that you can now export breakpoints to a file and then send them to a colleague,
who can then import them into his own environment. Another scenario that this feature is
useful for is to share breakpoints between machines. We’ll see how to do that next.

 8. In the Breakpoints window, click the Export button to export your breakpoints to a
file, and then save the file on your desktop. Name the file breakexports.xml.

 9. Delete all the breakpoints either by clicking the Delete All Breakpoints Matching The

Current Search Criteria button or by selecting all the breakpoints and clicking the

Delete The Selected Breakpoints button . The only purpose of deleting them is to
simulate two developers sharing them or one developer sharing breakpoints between
two machines.

 10. You’ll now import your breakpoints by clicking the Import button and loading
them from your desktop. Notice that all your breakpoints with all of their properties are
back and loaded in your environment. For the purposes of this chapter, delete all the
breakpoints.

Visual Studio 2008 Starting in Visual Studio 2008 and continuing in Visual Studio 2010, you
are getting great support for JavaScript as well as for the latest iteration of jQuery. It was already
good in Visual Studio, but the integration in Visual Studio 2010 is faster and you don’t have to do
anything to get it.

Inspecting the Data
When you are debugging your applications, you know how much time one can spend
stepping into the code and inspecting the content of variables, arguments, and so forth.
Maybe you can remember when you were learning to write code, a while ago, when
debuggers weren’t a reality or when they were really rudimentary. Do you remember (maybe
not—you might not be as old as we are) how many printf or WriteLn statements you had to
write to inspect the content of different data elements.

 Chapter 10 From 2008 to 2010: Debugging an Application 299

Visual Studio 2008 From the days of Visual Studio 2005 and continuing into the Visual Studio
2008 era, there already was a big improvement from the days of writing to the console with all
kinds of statements. The improved conditions occurred because you had a real debugger with
new functionalities. New data visualizers allowed you to see XML as a well-formed XML snip-
pet and not as a long string. Furthermore, with those data visualizers, you could view arrays in a
more useful way, with the list of elements and their indices, and you accomplished that by simply
hovering your mouse over the object. Take a look at Figure 10-9 for an example.

FIGURE 10-9 Collection view in the debugger in Visual Studio 2008

Visual Studio 2008 In Visual Studio 2008, there were some improvements in visualizing new
types of data elements. The nicer and most noticeable improvement was the ability to view the
results of a LINQ statement by using debugger elements such as DataTips, the Locals window,
and the Watch or QuickWatch window. As you can with any other element—but it is so cool that
you can do it as well for a LINQ query—you can copy a LINQ variable and paste it into a debug-
ger window. Remember that to display the results of a query the debugger must evaluate it.
Pay attention to things like side effects or clear differences in performance as you expand some
 subnodes.

Although those DataTip data visualization techniques are still available in Visual Studio 2010,
a few great enhancements have been added that make DataTips even more useful. The
DataTip enhancements have been added in conjunction with another new feature of Visual
Studio 2010, multimonitor support. Floating DataTips can be valuable to you as a developer.
Having the ability to put them on a second monitor can make your life a lot easier while
debugging, because it keeps the data that always needs to be in context right there on the
second monitor. The following steps demonstrate how to use these features:

 1. In the Global.ascx.cs file, insert breakpoints on lines 89 and 91, lines starting with the
source code var authority and var pathAndQuery, respectively.

 2. You are now going to experiment with the new DataTip features. Start the debugger by
pressing F5. When the debugger hits the first breakpoint, move your mouse over the
word url and click on the pushpin as seen in Figure 10-10.

300 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

FIGURE 10-10 The new DataTip pushpin feature

 3. To the right of the line of code, you should see the pinned DataTip (as seen in
Figure 10-11 on the left). If you hover your mouse over the DataTip, you’ll get the
DataTip management bar (as seen in Figure 10-11 on the right):

FIGURE 10-11 On the left is the pinned DataTip, and on the right is the DataTip management bar

Note You should also see in the breakpoint gutter a blue pushpin indicating that the
DataTip is pinned. The pushpin should look like this: . Because you have a break-
point on that line, the pushpin is actually underneath it. To see the pushpin, just toggle
the breakpoint by clicking on it in the gutter. Toggle once to disable the breakpoint and
another time to get it back.

Note If you click the double arrow pointing down in the DataTip management bar, you
can insert a comment for this DataTip, as shown in Figure 10-12. You can also remove the
DataTip altogether by clicking the X button in the DataTip management bar.

FIGURE 10-12 Inserting a comment for a DataTip

 4. One nice feature of the new DataTip is that you can insert any expression to be
evaluated right there in your debugging session. For instance, right-click on the
DataTip name, in this case on url, select Add Expression, type authority, and then add
another one like this: (authority != null). You’ll see that the expressions are evaluated
immediately and will continue to be evaluated for the rest of the debugging session
every time your debugger stops on those breakpoints. At this point in the debugging
session, the expression should evaluate to null and false, respectively.

 Chapter 10 From 2008 to 2010: Debugging an Application 301

 5. Press F10 to execute the line where the debugger stopped, and look at the url DataTip
as well as both expressions. They should contain values based on the current context.
Take a look at Figure 10-13 to see this in action.

FIGURE 10-13 The url pinned DataTip with the two evaluated expressions

 6. Although it is nice to be able to have a mini–watch window where it matters—right
there where the code is executing—you can also see that it is superimposed on
the source code being debugged. Keep in mind that you can move the DataTip
window anywhere you want in the code editor by simply dragging it. Take a look at
Figure 10-14 for an example.

FIGURE 10-14 Moving the pinned DataTip away from the source code

 7. Because it is pinned, the DataTip window stays where you pinned it, so it will not be in
view if you trace into another file. But in some cases, you need the DataTip window to
be visible at all times. For instance, keeping it visible is interesting for global variables
that are always in context or for multimonitor scenarios. To move a DataTip, you have
to first unpin it by clicking the pushpin in the DataTip management bar. You’ll see that
it turns yellow. That indicates you can now move it wherever you want—for instance,
over Solution Explorer, to a second monitor, over your desktop, or to any other window.
Take a look at Figure 10-15 for an example.

FIGURE 10-15 Unpinned DataTip over Solution Explorer and the Windows desktop

302 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

Note If the DataTip is not pinned, the debugger stops in another file and method, and
the DataTip contains items that are out of context, the DataTip windows will look like
Figure 10-16. You can retry to have the debugger evaluate the value of an element by

clicking this button: . However, if that element has no meaning in this context, it’s
 possible that nothing happens.

FIGURE 10-16 Results when the DataTip is not pinned and contains out-of-context items

Note You’ll get an error message if you try to pin outside the editor, as seen in
Figure 10-17.

FIGURE 10-17 Error message that appears when trying to pin a DataTip outside the code editor

Note Your port number might be different than in the screen shots just shown. This is
normal—it is a random port used by the personal Web server included with Visual Studio.

Note You can also pin any child of a pinned item. For instance, if you look at url and
expand its content by pressing the plus sign (+), you’ll see that you can also pin a child
 element, as seen in Figure 10-18.

FIGURE 10-18 Pinned child element within the url DataTip

 Chapter 10 From 2008 to 2010: Debugging an Application 303

 8. Before stopping the debugger, go back to the Global.ascx.cs if you are not already
there and re-pin the DataTip window. Then stop the debugging session by clicking

the Stop Debugging button in the debug toolbar () or by pressing Shift+F5. Now
if you hover your mouse over the blue pushpin in the breakpoint gutter, you’ll see
the values from the last debug session, which is a nice enhancement over the watch
window. Take a look at Figure 10-19 for what you should see.

FIGURE 10-19 Values from the last debug session for a pinned DataTip

Note As with the breakpoints, you can export or import the DataTips by going to the Debug
menu and selecting Export DataTips or Import DataTips, respectively.

Using the Minidump Debugger
Many times in real-world situations, you’ll have access to a minidump from your product
support team. Apart from their bug descriptions and repro steps, it might be the only thing
you have to help debug a customer application. Visual Studio 2010 adds a few enhancements
to the minidump debugging experience.

Visual Studio 2008 In Visual Studio 2008, you could debug managed application or minidump
files, but you had to use an extension if your code was written in managed code. You had to use
a tool called SOS and load it in the debugger using the Immediate window. You had to attach the
debugger both in native and managed mode, and you couldn’t expect to have information in the
call stack or Locals window. You had to use commands for SOS in the Immediate window to help
you go through minidump files. With application written in native code, you used normal debug-
ging windows and tools. To read more about this or just to refresh your knowledge on the topic,
you can read the Bug Slayer column in MSDN magazine here: http://msdn.microsoft.com/en-us/
magazine/cc164138.aspx.

Let’s see the new enhancements to the minidump debugger. First you need to create a crash
from which you’ll be able to generate a minidump file:

 1. In Solution Explorer in the PlanMyNight.Web project, rename the file Default.aspx to
DefaultA.aspx. Note the A appended to the word "Default."

 2. Make sure you have no breakpoints left in your project. To do that, look in the
Breakpoints window and delete any breakpoints left there using any of the ways you
learned earlier in the chapter.

304 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 3. Press F5 to start debugging the application. Depending on your machine speed, soon
after the build process is complete you should see an unhandled exception of type
HttpException. Although the bug is simple in this case, let’s go through the steps of
creating the minidump file and debugging it. Take a look at Figure 10-20 to see what
you should see at this point.

FIGURE 10-20 The unhandled exception you should expect

 4. It is time to create the minidump file for this exception. Go to the Debug menu, and
select Save Dump As, as seen in Figure 10-21. You should see the name of the process
from which the exception was thrown. In this case, the process from which the exception
was thrown was Cassini or the Personal Web Server in Visual Studio. Keep the file name
proposed (WebDev.WebServer40.dmp), and save the file on your desktop. Note that it
might take some time to create the file because the minidump file size will be close to
300 MB.

FIGURE 10-21 Saving the minidump file

 Chapter 10 From 2008 to 2010: Debugging an Application 305

 5. Stop Debugging by pressing Shift+F5 or the Stop Debugging button.

 6. Next, go to the File menu and close your solution.

 7. In the File menu, click Open and point to the desktop to load your minidump file
named WebDev.WebServer40.dmp. Doing so opens the Minidump File Summary
page, which gives you some summary information about the bug you are trying to fix.
(Figure 10-22 shows what you should see.) Before you start to debug, you’ll get basic
information from that page such as the following: process name, process architecture,
operating system version, CLR version, modules loaded, as well as some actions you
can take from that point. From this place, you can set the paths to the symbol files.
Conveniently, the Modules list contains the version and path on disk of your module, so
finding the symbols and source code is easy. The CLR version is 4.0; therefore, you can
debug here in Visual Studio 2010.

FIGURE 10-22 Minidump summary page

 8. To start debugging, locate the Actions list on the right side of the Minidump File
Summary page and click Debug With Mixed.

306 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 9. You should see almost immediately a first-chance exception like the one shown in
Figure 10-23. In this case, it tells you what the bug is; however, this won’t always be
the case. Continue by clicking the Break button.

FIGURE 10-23 First-chance exception

 10. You should see a green line indicating which instruction caused the exception. If you
look at the source code, you’ll see in your Autos window that the controllerExport
variable is null, and just before that we specified that if the variable was null we wanted
to have an HttpException thrown if the file to load was not found. In this case, the file
to look for is Default.aspx, as you can see in the Locals window in the controllerName
variable. You can glance at many other variables, objects, and so forth in the Locals
and Autos windows containing the current context. Here, you have only one call that
belongs to your code, so the call stack indicates that the code before and after is
external to your process. If you had a deeper chain of calls in your code, you could step
back and forth in the code and look at the variables. Figure 10-24 shows a summary
view of all that.

FIGURE 10-24 Autos, Locals, and Call Stack windows, and the next instruction to execute

 Chapter 10 From 2008 to 2010: Debugging an Application 307

 11. OK, you found the bug, so stop the debugging by pressing Shift+F5 or clicking the
Stop Debugging button. Then fix the bug by reloading the PlanMyNight solution and
renaming the file back to default.aspx. Then rebuild the solution by going to the Build
menu and selecting Rebuild Solution. Then press F5, and the application should be
working again.

Web.Config Transformations
This next new feature, while small, is one that will delight many developers because it saves
them time while debugging. The feature is the Web.Config transformations that allow you to
have transform files that show the differences between the debug and release environments.
As an example, connection strings are often different from one environment to the other;
therefore, by creating transform files with the different connection strings—because ASP.NET
provides tools to change (transform) web.config files—you’ll always end up with the right
connection strings for the right environment. To learn more about how to do this, take a look
at the following article on MSDN: http://go.microsoft.com/fwlink/?LinkId=125889.

Creating Unit Tests
Most of the unit test framework and tools are unchanged in Visual Studio 2010 Professional.
It is in other versions of Visual Studio 2010 that the change in test management and test
tools is really apparent. Features such as UI Unit Tests, IntelliTrace, and Microsoft Test
Manager 2010 are available in other product versions like Visual Studio 2010 Premium and
Visual Studio 2010 Ultimate. To see which features are covered in the Application Lifecycle
Management and for more specifics, refer to the following article on MSDN: http://msdn.
microsoft.com/en-us/library/ee789810(VS.100).aspx.

Visual Studio 2008 With Visual Studio 2008 you had to own either Visual Studio 2008 Team
System or Visual Studio 2008 Team Test to have the ability to create and execute tests out of the
box within Visual Studio 2008. Another option back then was to go with a third-party option like
Nunit.

In this part of the chapter, we’ll simply show you how to add a unit test for a class you’ll
find in the Plan My Night application. We won’t spend time defining what a unit test is or
what it should contain; rather, we’ll show you within Visual Studio 2010 how to add tests and
execute them.

You’ll add unit tests to the Plan My Night application for the Print Itinerary Add-in. To create
unit tests, open the solution from the companion content folder. If you do not remember
how to do this, you can look at the first page of this chapter for instructions. After you have
the solution open, just follow these steps:

308 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 1. In Solution Explorer, expand the project PlanMyNight.Web and then expand the
Helpers folder. Then double-click the file ViewHelper.cs to open it in the code editor.
Take a look at Figure 10-25 to make sure you are at the right place.

FIGURE 10-25 The PlanMyNight.Web project and ViewHelper.cs file in Solution Explorer

 2. In the code editor, you can add unit tests in two different ways. You can right-click
on a class name or on a method name and select Create Unit Tests. You can also go
to the Test menu and select New Test. We’ll explore the first way of creating unit tests.
This way Visual Studio automatically generates some source code for you. Right-click
the GetFriendlyTime method, and select Create Unit Tests. Figure 10-26 shows what
it looks like.

FIGURE 10-26 Contextual menu to create unit tests from by right-clicking on a class name

 3. After selecting Create Unit Tests, you’ll be presented with a dialog that, by default,
shows the method you selected from that class. To select where you want to create the
unit tests, click on the drop-down combo box at the bottom of this dialog and select
PlanMyNight.Web.Tests. If you didn’t have an existing location, you would have simply
selected Create A New Visual C# Test Project from the list. Figure 10-27 shows what
you should be seeing.

 Chapter 10 From 2008 to 2010: Debugging an Application 309

FIGURE 10-27 Selecting the method you want to create a unit test against

 4. After you click OK, the dialog switches to a test-case generation mode and displays
a progress bar. After this is complete, a new file is created named TimeHelperTest.cs that
has autogenerated code stubs for you to modify.

 5. Remove the method and its attributes because you’ll create three new test cases for
that method. Remove the following code:

/// <summary>
///A test for GetFriendlyTime
///</summary>
// TODO: Ensure that the UrlToTest attribute specifies a URL to an ASP.NET page (for
// example, http://.../Default.aspx). This is necessary for the unit test to be executed
// on the web server, whether you are testing a page, web service, or a WCF service.
[TestMethod()]
[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("C:\\Users\\Patrice\\Documents\\Chapter 10\code\\
PlanMyNight.Web", "/")]
[UrlToTest("http://localhost:48580/")]
public void GetFriendlyTimeTest()
{
 int totalMinutes = 0; // TODO: Initialize to an appropriate value
 string expected = string.Empty; // TODO: Initialize to an appropriate value
 string actual;
 actual = TimeHelper.GetFriendlyTime(totalMinutes);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive("Verify the correctness of this test method.");
}

310 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

 6. Add the three simple test cases validating three key scenarios used by Plan My Night.
To do that, insert the following source code right below the method attributes that
were left behind when you deleted the block of code in step 5:

[TestMethod]
public void ZeroReturnsSlash()
{
 Assert.AreEqual("-", TimeHelper.GetFriendlyTime(0));
}

[TestMethod]
public void LessThan60MinutesReturnsValueInMinutes()
{
 Assert.AreEqual("10m", TimeHelper.GetFriendlyTime(10));
}

[TestMethod()]
public void MoreThan60MinutesReturnsValueInHoursAndMinutes()
{
 Assert.AreEqual("2h 3m", TimeHelper.GetFriendlyTime(123));
}

 7. In the PlanMyNight.Web.Tests project, create a solution folder called Helpers. Then
move your TimeHelperTests.cs file to that folder so that your project looks like
Figure 10-28 when you are done.

FIGURE 10-28 TimeHelperTest.cs in its Helpers folder

 8. It is time to execute your newly created tests. To execute only your newly created
tests, go into the code editor and place your cursor on the class named public class
TimeHelperTest. Then you can either go to the Test menu, select Run, and finally select

 Chapter 10 From 2008 to 2010: Debugging an Application 311

Test In Current Context or accomplish the same thing using the keyboard shortcut
CTRL+R, T. Look at Figure 10-29 for a reference.

FIGURE 10-29 Test execution menu

 9. Performing this action executes only your three tests. You should see the Test Results
window (shown in Figure 10-30) appear at the bottom of your editor with the test
results.

FIGURE 10-30 Test Results window for your newly created tests

More Info Depending on what you select, you might have a different behavior when you
choose the Tests In Current Context option. For instance, if you select a test method like
ZeroReturnsSlash, you’ll execute only this test case. However, if you click outside the test class,
you could end up executing every test case, which is the equivalent of choosing All Tests In
Solution.

New Threads Window
The emergence of computers with multiple cores and the fact that language features give
developers many tools to take advantage of those cores creates a new problem: the difficulty
of debugging concurrency in applications. The new Threads window enables you, the
developer, to pause threads and search the calling stack to see artifacts similar to those you
see when using the famous SysInternals Process Monitor (http://technet.microsoft.com/en-us/
sysinternals/bb896645.aspx). You can display the Threads window by going to Debug and

312 Part III Moving from Microsoft Visual Studio 2008 to Visual Studio 2010

selecting Windows And Threads while debugging an application. Take a look at Figure 10-31
to see the Threads window as it appears while debugging Plan My Night.

FIGURE 10-31 Displaying the Threads window while debugging Plan My Night

The Threads window allows you to freeze threads and then thaw them whenever you are
ready to let them continue. It can be really useful when you are trying to isolate particular
effects. You can debug both managed code and unmanaged code. If your application uses
threads, you’ll definitely love this new feature of the debugger in Visual Studio 2010.

Visual Studio 2008 In Visual Studio 2008, you finally had a thread debugger window worthy
of this name. There was no filtering, call-stack searching and expansion, and grouping. The col-
umns were in a fixed order, and you couldn’t easily get affinity masks, process names as well as
managed IDs without using a separate tool.

Summary
In this chapter, you learned how to manage your debugging sessions by using new
breakpoint enhancements and employing new data-inspection and data-visualization
techniques. You also learned how to use the new minidump debugger and tools to help you
solve real customer problems from the field. The chapter also showed you how to raise the
quality of your code by writing unit tests and how Visual Studio 2010 Professional can help
you do this. Multicore machines are now the norm, and so are multithreaded applications.
Therefore, the fact that Visual Studio 2010 Professional has specific debugger tools for
finding issues in multithreaded applications is great news.

 Chapter 10 From 2008 to 2010: Debugging an Application 313

Finally, throughout this chapter you also saw how Visual Studio 2010 Professional has raised
the bar in terms of debugging applications and has given professional developers the tools
to debug today’s feature-rich experiences. You saw that it is a clear improvement over what
was available in Visual Studio 2008. The exercises in the chapter scratched the surface of how
you’ll save time and money by moving to this new debugging environment and showed
that Visual Studio 2010 is more than a small iteration in the evolution of Visual Studio. It
represents a huge leap in productivity for developers. The gap between Visual Studio 2008
and Visual Studio 2010 in terms of debugging is less severe than in earlier versions.

The various versions of Visual Studio 2010 give you a great list of improvements related to
the debugger and testing. My personal favorites are IntelliTrace—http://msdn.microsoft.com/
en-us/library/dd264915(VS.100).aspx—which is available only in Visual Studio 2010 Ultimate
and Microsoft Test Manager. IntelliTrace enables test teams to have much better experiences
using Visual Studio 2010 and Visual Studio 2010 Team Foundation Server—http://msdn.
microsoft.com/en-us/library/bb385901(VS.100).aspx.

 315

Index

A
AcceptVerbs attribute, 51,

165, 263
account controller, 2003 to 2010

account view, creating, 59–66
ASP.NET MVC, 43–44
creating, 43–58
current user profile retrieval,

51–53
functionality implementation,

44–46
profile data, updating, 53–58
user authentication, 46–51

account controller, 2005 to 2010
account view, creating, 173–180
ASP.NET MVC, 157–158
creating, 157–173
current user profile retrieval,

165–167
functionality implementation,

158–160
profile data, updating, 167–173
user authentication, 160–165

account controller, 2008 to 2010
account view, creating, 270–278
ASP.NET MVC, 255–256
creating, 255–270
current user profile retrieval,

262–265
functionality implementation,

256–287
profile data, updating, 265–270
user authentication, 258–262

account view, creating, 59–66,
173–180, 270–278

Add method, 27, 32, 143, 146,
244, 246

Add Web Service Reference,
32–33, 146

add-in module projects, 75–77,
188–190, 286–288

ADO.NET Entity Framework (EF).
See Entity Framework

ADO.NET POCO entity generator,
23–25, 138–140, 222,
239–241

AJAX, 54, 168–169, 266
AntiForgeryToken, 54, 168, 265
AppFabric caching, 36–37, 150–151,

248–249

architecture, 3–5, 117–119,
217–219

areas folder, 40, 154, 252
ASP.NET Forms Authentication,

46–51, 160–165, 258–262
ASP.NET Membership Service,

46–51, 160–165, 258–262
ASP.NET MVC, 2003 to 2010

account controller, 43–44
caching, 37
component folders, 40–41
Model Binding, 52, 54
overview, 39
requests, 54
Web Forms versus, 44

ASP.NET MVC, 2005 to 2010
account controller, 157–158
caching, 151
component folders, 154–155
Model Binding, 166, 168
overview, 153
requests, 168
Web Forms versus, 158

ASP.NET MVC, 2008 to 2010
account controller, 255–256
caching, 249
component folders, 252–253
Model Binding, 263, 265–266
overview, 251
requests, 266
Web Forms versus, 256

ASP.NET Web Forms. See Web Forms
attributes

2003 to 2010, 51, 54, 66
2005 to 2010, 165, 168, 179
2008 to 2010, 263, 265, 277

authenticating user, 46–51,
160–165, 258–262

Authorize attribute, 51, 165, 263

B
Bing Maps Web services data,

32–34, 146–148
breakpoint enhancements, 82–87,

196–200, 294–298
business logic and data, from 2003

to 2010
AppFabric caching, 36–37
architecture, 3–5

Bing Maps Web services data,
32–34

database data retrieval, 27–32
Entity Framework data, 6–26
parallel programming, 35–36
Plan My Night data, 5–6

business logic and data, from 2005
to 2010

AppFabric caching, 150–151
architecture, 117–119
Bing Maps Web services data,

146–148
database data retrieval,

142–146
Entity Framework data, 121–142
parallel programming, 149–150
Plan My Night data, 119–121

business logic and data, from 2008
to 2010

AppFabric caching, 248–249
architecture, 217–219
database data retrieval, 243–247
Entity Framework data, 222–243
parallel programming, 247–248
Plan My Night data, 219–221

C
caching, 36–37, 150–151, 248–249
code-behind files, 60, 62, 174, 176,

272, 273
code-only support, 222
component folders, 40–41,

154–155, 252–253
content folders, 41, 155, 253
contract interface components, 4,

118, 218
contracts project, entity classes,

moving to, 25–26, 140–142,
241–243

Controller.RedirectToAction, 48,
162, 260

controllers, 40, 154, 252
Copy Project deployment method,

105–106
CreateProfile, 48, 162, 260
CreateUser method, 48, 162, 260
CSS application, 69, 183, 280
current user profile retrieval, 51–53,

165–167, 262–265

316 data inspection

D
data inspection, 87–91, 200–205,

298–303
data visualizers, 87–88, 201, 299
database, connecting to existing, 8,

123, 224
database data retrieval, 27–32,

142–146, 243–247
database scripts, 20–22, 135–138,

236–239
datacenters/servers, deploying

applications to, 104
DataTip enhancements, 88–91,

201–205, 299–303
debugging an application, from

2003 to 2010
breakpoint enhancements,

82–87
data inspection, 87–91
minidump debugger, 92–95
overview, 81–82
session management, 82–100
Threads window, 100
unit testing, 95–100
web.config transformations, 95

debugging an application, from
2005 to 2010

breakpoint enhancements,
196–200

data inspection, 200–205
minidump debugger,

205–208
overview, 195–196
session management, 196–213
Threads window, 213
unit testing, 208–213
web.config transformations, 208

debugging an application, from
2008 to 2010

breakpoint enhancements,
294–298

data inspection, 298–303
minidump debugger, 303–307
overview, 293–294
session management, 294–311
Threads window, 311–312
unit testing, 307–311
web.config transformations, 307

deploying an application, from
2003 to 2010

to enterprise datacenters/
servers, 104

to hosting company, 103–104
one-click publish, 112–113
web deployment packages,

104–111
Designer view, 66–74, 180–187,

278–285

designing application look and feel,
from 2003 to 2010

account controller, 43–58
account view, creating, 59–66
designer view, 66–74
extending application with MEF,

74–79
overview, 39
PlanMyNight.Web project, 39–42

designing application look and feel,
from 2005 to 2010

account controller, 157–173
account view, creating, 173–180
designer view, 180–187
extending application with MEF,

188–193
overview, 153
PlanMyNight.Web project,

153–156
designing application look and feel,

from 2008 to 2010
account controller, 255–270
account view, creating, 270–278
designer view, 278–285
extending application with MEF,

286–291
overview, 251
PlanMyNight.Web project, 251–254

E
enterprise datacenters/servers,

deploying applications to, 104
entity classes, moving to contracts

project, 25–26, 140–142, 241–243
Entity Data Model (EDM) Designer,

2003 to 2005
ADO.NET POCO entity generator,

23–25
existing database import model,

7–16
POCO templates, 22–23
wizard modifications, 8–9, 16–20

Entity Data Model (EDM) Designer,
2005 to 2010

ADO.NET POCO entity generator,
138–140

existing database import model,
122–131

manual modifications, 126–129
POCO templates, 138
wizard modifications, 123–124,

131–142
Entity Data Model (EDM) Designer,

2008 to 2010
ADO.NET POCO entity generator,

222, 239–241
existing database import model,

222–232

manual modifications, 227–230
POCO templates, 222, 239
wizard modifications, 224–225,

232–243
Entity Framework (EF), 2003 to 2005

data with, 6–26
existing database, importing, 7–16
Model First approach, importing,

16–26
overview, 6
PlanMyNight existing solutions, 7

Entity Framework (EF), 2005 to 2010
data with, 121–142
existing database, importing,

122–130
Model First approach, importing,

131–142
overview, 121
PlanMyNight existing solutions,

122
Entity Framework (EF), 2008

to 2010
data with, 222–243
existing database, importing,

222–232
Model First approach, importing,

222, 232–243
overview, 222
PlanMyNight existing

solutions, 223
Visual Studio 2008 and, 222

EntitySet, 127, 225, 228
EntityType, 127, 225, 228
exception handling, 66–74,

180–187, 278–285. See
also headings starting with
“debugging”

exporting breakpoints, 86, 200, 298
exporting DataTips, 91, 205, 303
extending application with MEF,

74–79, 188–193, 286–291
extension methods, 52, 166

F
filtering breakpoints, 86, 200, 297
foreign key associations, 235
function imports, 15–16, 130–131,

231–232

G
Generate Database Wizard, 21–22,

136–138, 237–239
generics, Visual Studio 2003

and, 29
GetCurrentProfile, 52, 166, 263
GetReturnUrl, 52, 166, 263

 Plain-Old CLR Objects 317

H
helpers, 41, 155, 253
hosting companies, deploying

applications to, 103–104
HTML methods, 62–63, 176,

273–274

I
IActivitiesRepository interface,

4, 45, 118, 159, 218, 257
ICachingProvider interface, 4,

118, 218
ID attribute, 66, 179, 277
IFormsAuthentication, 45,

159, 257
IItinerariesRepository interface, 4,

27, 118, 142, 218, 243
IMembershipService, 45, 159, 257
importing breakpoints, 87,

200, 298
importing data from existing

database, 2003 to 2010
fixing generated data model,

9–14
function imports, 15–16
initial process, 7–9
stored procedure, 15–16

importing data from existing
database, 2005 to 2010

fixing generated data model,
124–131

function imports, 130–131
initial process, 122–124
stored procedure, 130–131

importing data from existing
database, 2008 to 2010

fixing generated data model,
226–230

function imports, 231–232
initial process, 222–226
stored procedure, 231–232

importing DataTips, 91, 205, 303
independent key associations, 235
Index method, 51, 165, 262–263
Index view, 59–63, 173–176,

270–274
infrastructure components, 41,

155, 253
InjectStatesAndActivityTypes

method, 52–53, 167, 264–265
InstallShield, 109
instance fields, 45, 159, 256–257
interfaces

IActivitiesRepository, 4, 45,
118, 159, 218, 257

ICachingProvider, 4, 118, 218

IFormsAuthentication, 45,
159, 257

IItinerariesRepository, 4, 27, 118,
142, 218, 243

IMembershipService, 45,
159, 257

IReferenceRepository, 45,
159, 257

IWindowsLiveLogin, 45,
159, 257

IReferenceRepository, 45,
159, 257

ItineraryActivities navigation
property, 9, 124–125,
225–226

IWindowsLiveLogin, 45, 159, 257

J
jQuery, 87, 298
JsonResult, 54, 168–169, 266

L
labels, debug breakpoint feature,

84–86, 198–199, 296–297
Language Integrated Query (LINQ),

28, 143, 299
lazy loading, 222
LiveID method, 49–50, 163–164,

261–262
Login method, 50, 164, 262

M
Managed Extensibility Framework

(MEF), 74, 188, 286
minidump debugger, 92–95,

205–208, 303–307
Model Binding, 52, 54, 166, 168,

263, 265–266
Model First approach, 2003

to 2005
ADO.NET POCO entity generator,

23–25
generating database script,

20–22
initial process, 16–20
moving entity classes to contracts

project, 25–26
POCO templates, 22–23

Model First approach, 2005 to 2010
ADO.NET POCO entity generator,

138–140
generating database script,

135–138
initial process, 131–135

moving entity classes to contracts
project, 140–142

POCO templates, 138
Model First approach, 2008 to 2010

ADO.NET POCO entity generator,
222, 239–241

generating database script,
236–239

initial process, 232–236
moving entity classes to contracts

project, 241–243
POCO templates, 222, 239
Visual Studio 2008 and, 222

MSBuild, 104, 107, 108, 113
msdeploy tool, 109, 113
multicore computers, 100,

213, 311
multimonitor support for

debugging, 88, 201, 299
multithreaded applications, 100,

213, 311

N
namespaces, 44, 158, 256
naming, singular vs. plural, 225
navigation properties, 9, 20,

124–125, 135, 226, 236
NavigationProperty, 225
.NET Framework 4.0, 2003 to 2010

AppFabric caching, 37
Managed Extensibility Framework

(MEF), 74
parallel programming, 35–36
PLINQ libraries, 36, 100

.NET Framework 4.0, 2005 to 2010
AppFabric caching, 151
Managed Extensibility Framework

(MEF), 188
parallel programming, 149–150
PLINQ libraries, 150

.NET Framework 4.0, 2008 to 2010
AppFabric caching, 249
Managed Extensibility Framework

(MEF), 286
parallel programming, 247–248
PLINQ libraries, 248

O
one-click publish, 112–113

P
parallel programming, 35–36,

149–150, 247–248
Plain-Old CLR Objects. See POCO

templates

318 Plan My Night application

Plan My Night application, 2003
to 2010

add-in module projects, 75–77
AppFabric caching, 36–37
architecture, 3–5
ASP.NET caching, 37
Bing Maps Web services data,

32–34
data, 5–6
database data retrieval, 27–32
Entity Framework data, 6–26
existing projects, 7
parallel programming, 35–36
Visual Studio 2003 and, 5–6

Plan My Night application, 2005
to 2010

add-in module projects,
188–190

AppFabric caching, 150–151
architecture, 117–119
ASP.NET caching, 151
Bing Maps Web services data,

146–148
data, 119–121
database data retrieval, 142–146
Entity Framework data, 121–142
existing projects, 122
parallel programming, 149–150
Visual Studio 2005 and, 119–121

Plan My Night application, 2008
to 2010

add-in module projects, 286–288
AppFabric caching, 248–249
architecture, 217–219
ASP.NET caching, 249
data, 219–221
database data retrieval, 243–247
existing projects, 223
parallel programming, 247–248

Plan My Night application,
deploying application,
103–113

PlanMyNight.Web project, 39–42,
153–156, 251–254

PLINQ libraries, 36, 100, 150, 248
plug-ins support, 77, 190, 288
POCO templates, 22–23, 138,

222, 239
PrintIntinerary.Addin project, 77–79,

190–193, 288–291
profiles

CreateProfile, 48, 162, 260
retrieving current user data,

51–53, 165–167, 262–265
updating data, 53–58, 167–173,

265–270
UserProfile, 10–14, 126–129,

227–230

Q
query writing, 28, 143

R
requests, ASP.NET MVC, 54,

168, 266

S
SearchByActivity, 27, 28–30, 142,

143–144, 244–245
SearchByRadius, 27, 31–32, 143,

145–146, 244, 246
SearchByZipCode, 27, 30–31, 142,

144–145, 244, 245
self-tracking entities, 222
server-side controls, 62, 176, 273
SOS tool, 92, 205, 303
stored procedure, 15–16, 130–131,

231–232

T
T4 templates (Text Template

Transformation Toolkit), 22–23,
25, 138, 140, 222, 239, 241

testing, unit, 95–100, 208–213,
307–311

TFSBuild, 104, 111, 113
Threads window, 100, 213, 311–312

U
unexpected conditions, 66–74,

180–187, 278–285
unit testing, 95–100, 208–213,

307–311
Update method, 53–54, 168, 265
UpdateSuccess view, 63–66,

177–180, 274–278
user authentication, 46–51,

160–165, 258–262
user data retrieval, 51–53, 165–167,

262–265
UserProfile, 10–14, 126–129,

227–230

V
ValidateAntiForgeryToken attribute,

54, 168, 265
ValidateUser method, 48, 162, 260
ViewModels, 41, 155, 253
views, 40, 154, 252

Visual Studio 2003
Add Web Service Reference,

32–33
add-ins to generate code, 25
attributes, 51, 66
breakpoint window, 84
CSS application, 69
debugging, 83, 87, 88, 92
extension methods, 52
generics and, 29
InjectStatesAndActivityTypes

method, 52–53
jQuery, 87
Plan My Night data and, 5–6
plug-ins support, 77
query writing and, 28
requests, 54
server-side controls, 62
SOS tool, 92
unit testing, 96
Web Forms and, 44
web.config file, 40–41

Visual Studio 2005
Add Web Service Reference, 146
attributes, 165, 179
breakpoint window, 198
CSS application, 183
debugging, 198, 201, 205,

213, 312
extension methods, 166
InjectStatesAndActivityTypes

method, 167
Plan My Night application, 2005

to 2010 and, 119–121
Plan My Night data, 119–121
plug-ins support, 190
query writing and, 143
requests, 168
server-side controls, 176
SOS tool, 205
unit testing, 209
Web Forms and, 158
web.config file, 155
XSD processing, 140

Visual Studio 2008
attributes, 263, 277
breakpoint window, 296
debugging, 296, 299, 303
Entity Framework

enhancements, 222
foreign key associations, 235
jQuery, 298
LINQ debugging, 299
plug-ins support, 288
requests, 266
server-side controls, 273
singular vs. plural naming, 225
SOS tool, 303

 XSD processing 319

unit testing, 307
Web Forms and, 256
web.config file, 253
XSD processing, 241

W
WCF. See Windows Communication

Foundation (WCF)
Web Application Project, 107
web deployment packages,

104–111
Web Forms

ASP.NET MVC applications versus,
44, 158, 256

using Designer View, 66–74,
180–187, 278–285

Visual Studio 2003 and, 44
Visual Studio 2005 and, 158
Visual Studio 2008 and, 256

Web service data retrieval, 32–34,
146–148

Web Service Proxy, 34, 148
Web Setup Project deployment

method, 104–106
web.config file, 40–41, 154–155, 253
web.config transformations, 95,

208, 307
Windows Communication

Foundation (WCF), 33–34,
147–148

Windows Live ID authentication,
46–51, 160–165, 258–262

Windows Server AppFabric. See
AppFabric caching

WindowsLiveLogin.User object,
47–48, 161–162, 259–260

Wix Toolset, 109, 113

X
XCOPY deployment, 104–111
XSD processing, 140, 241

About the Authors
Ken Haines is a software development engineer at Microsoft, working in the Consumer and
Online Division. He has a passion for distributed applications in the cloud and strives to help
customers and partners find the right solution for their needs.

For the past 12 years, he has worked in various roles in a wide range of industries, including
Internet service providers, satellite telecommunications, and network monitoring and
Web analytics. Some of these jobs have taken him to extremely remote locations, such as the
Nunavut and Northwest Territories of Canada.

When not at Microsoft or developing software in his spare time, he enjoys hiking, mountain
biking, nature photography, reading, and spending time with family. He resides with his
 family in Monroe, Washington.

Pascal Paré has worked at Microsoft since 2006, where he has held positions as a software
engineer on both development and testing teams. He is currently a software development
engineer in the Consumer and Online Division.

He graduated 13 years ago from Université Laval in Québec, Canada, as a computer
 engineer. He worked as a tester and developer in different companies and in a variety of
 industries (including fiber optics test equipment, telecommunications, and medical software)
before joining Microsoft.

For leisure, he enjoys hiking, cycling, and skiing in the Pacific Northwest, as well as cooking
and traveling. His favorite pastime is to take his Lotus Elise out for a spirited drive in the back
roads around Puget Sound. He is married and currently lives in the Seattle area.

Patrice Pelland is a principal development manager at Microsoft, working in the Consumer
and Online Division. He leads a development team that is focused on innovation and
 incubation across all Microsoft consumer products. He has a passion for complex distributed
systems, for mobile development, and for helping consumers and partners around the world
get the most out of Microsoft products.

For the past 17 years, he has worked in software development as both an individual
 contributor and a manager in various industries, including Web development, developer
tools, fiber optics telecommunications, aviation, and coffee and dairy companies. He also
spent three years teaching computer science and software development at a college in
Canada.

When he is not developing software at Microsoft—and for fun in his spare time—he enjoys
spending time with family and friends having great dinners with good food and fine drinks,
traveling, cooking, reading books, reading about Porsche cars, watching hockey and football,
and training at the gym. He resides with his family in Sammamish, Washington.

	Cover
	Copyright page

	Contents
	Introduction
	Who Is This Book For?
	What Is the Book About?
	How Will This Book Help Me Move to Visual Studio 2010?
	Designing the Look and Feel
	Business Logic and Data
	Debugging the Application
	Deploying Plan My Night

	What Is Plan My Night?
	Why Should You Move to Visual Studio 2010?
	Errata and Book Support

	Part I: Moving from Microsoft Visual Studio 2003 to Visual Studio 2010
	Chapter 1: From 2003 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2003
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Getting Data from the Bing Maps Web Services
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 2: From 2003 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 3: From 2003 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Chapter 4: From 2003 to 2010: Deploying an Application
	Visual Studio 2010 Web Deployment Packages
	Visual Studio 2010 and Web Deployment Packages

	Summary

	Part II:Moving from Microsoft Visual Studio 2005 to Visual Studio 2010
	Chapter 5: From 2005 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2005
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Getting Data from the Bing Maps Web Services
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 6: From 2005 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 7: From 2005 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Part III: Moving from Microsoft Visual Studio 2008 to Visual Studio 2010
	Chapter8: From 2008 to 2010: Business Logic and Data
	Application Architecture
	Plan My Night Data in Microsoft Visual Studio 2008
	Data with the Entity Framework in Visual Studio 2010
	EF: Importing an Existing Database
	EF: Model First
	POCO Templates

	Putting It All Together
	Getting Data from the Database
	Parallel Programming
	AppFabric Caching

	Summary

	Chapter 9: From 2008 to 2010: Designing the Look and Feel
	Introducing the PlanMyNight.Web Project
	Running the Project

	Creating the Account Controller
	Implementing the Functionality

	Creating the Account View
	Using the Designer View to Create a Web Form
	Extending the Application with MEF
	Print Itinerary Add-in Explained

	Summary

	Chapter 10: From 2008 to 2010: Debugging an Application
	Visual Studio 2010 Debugging Features
	Managing Your Debugging Session
	New Threads Window

	Summary

	Index
	About the Authors

