
Microsoft Small Basic

An introduction to Programming

Chapter 1

An Introduction

Small Basic and Programming
Computer Programming is defined as the process of creating computer software using programming

languages. Just like we speak and understand English or Spanish or French, computers can understand

programs written in certain languages. These are called programming languages. In the beginning there

were just a few programming languages and they were really easy to learn and comprehend. But as

computers and software became more and more sophisticated, programming languages evolved fast,

gathering more complex concepts along the way. As a result most modern programming languages and

their concepts are pretty challenging to grasp by a beginner. This fact has started discouraging people

from learning or attempting computer programming.

Small Basic is a programming language that is designed to make programming extremely easy,

approachable and fun for beginnersΦ {Ƴŀƭƭ .ŀǎƛŎΩǎ ƛƴǘŜƴǘƛƻƴ ƛǎ ǘƻ ōǊƛƴƎ Řƻǿƴ ǘƘŜ ōŀǊǊƛŜǊ ŀƴŘ ǎŜǊǾŜ as a

stepping stone to the amazing world of computer programming.

The Small Basic Environment
Let us start with a quick introduction to the Small Basic Environment. When you first launch SmallBasic,

you will see a window that looks like the following figure.

Figure 1 - The Small Basic Environment

¢Ƙƛǎ ƛǎ ǘƘŜ {Ƴŀƭƭ .ŀǎƛŎ 9ƴǾƛǊƻƴƳŜƴǘΣ ǿƘŜǊŜ ǿŜΩƭƭ ǿǊƛǘŜ ŀƴŘ Ǌǳƴ ƻǳr Small Basic programs. This

environment has several distinct elements which are identified by numbers.

The Editor, identified by [1] is where we will write our Small Basic programs. When you open a sample

program or a previously saved program, it will show up on this editor. You can then modify it and save if

for later use.

You can also open and work with more than one program at one time. Each program you are working

with will be displayed in a separate editor. The editor that contains the program you are currently

working with is called the active editor.

The Toolbar, identified by [2] is used to issue commands either to the active editor or the environment.

²ŜΩƭƭ ƭŜŀǊƴ ŀōƻǳǘ ǘƘŜ ǾŀǊƛƻǳǎ ŎƻƳƳŀƴŘǎ ƛƴ ǘƘŜ ǘƻƻƭōŀǊ ŀǎ ǿŜ ƎƻΦ

The Surface, identified by [3] is the place where all the editor windows go.

Our First Program
Now that you are familiar with the Small Basic Environment, we will go ahead and start programming in

it. [ƛƪŜ ǿŜ Ƨǳǎǘ ƴƻǘŜŘ ŀōƻǾŜΣ ǘƘŜ ŜŘƛǘƻǊ ƛǎ ǘƘŜ ǇƭŀŎŜ ǿƘŜǊŜ ǿŜ ǿǊƛǘŜ ƻǳǊ ǇǊƻƎǊŀƳǎΦ {ƻ ƭŜǘΩǎ Ǝƻ ŀƘŜŀŘ ŀƴŘ

type the following line in the editor.

Text Window.WriteLine("Hello World")

This is our first Small Basic program. And if you have typed it correctly, you should see something

similar to the figure below.

Figure 2 - First Program

Now that we have typed ƻǳǊ ƴŜǿ ǇǊƻƎǊŀƳΣ ƭŜǘΩǎ Ǝƻ ŀƘŜŀŘ ŀƴŘ Ǌǳƴ ƛǘ ǘƻ ǎŜŜ ǿƘŀǘ ƘŀǇǇŜƴǎΦ We can run

our program either by clicking on the Run button on the toolbar or by using the shortcut key, F5 on the

keyboard. If everything goes well, our program should run with the result as shown below.

Figure 3 - First Program Output

Congratulations! You have just written and run

the first Small Basic program. A very small and

simple program, but nevertheless a big step

towards becoming a real computer programmer!

Now, tƘŜǊŜΩǎ Ƨǳǎǘ ƻƴŜ ƳƻǊŜ ŘŜǘŀƛƭ ǘƻ ŎƻǾŜǊ ōŜŦƻǊŜ

we go on to create bigger programs. We have to

understand what just happened ς what exactly

did we tell the computer and how did the

computer know what to do? In the next chapter,

ǿŜΩƭƭ ŀƴŀƭȅȊŜ ǘƘŜ ǇǊƻƎǊŀƳ ǿŜ Ƨǳǎǘ ǿǊƻǘŜΣ ǎƻ ǿŜ

can gain that understanding.

As you typed your first program, you might

have noticed that a popup appeared with a list

of items (Figure 4ύΦ ¢Ƙƛǎ ƛǎ ŎŀƭƭŜŘ άƛƴǘŜƭƭƛǎŜƴǎŜέ

and it helps you type your program faster. You

can traverse that list by pressing the Up/Down

arrow keys, and when you find something you

want, you can hit the Enter key to insert the

selected item in your program.

Figure 4 - Intellisense

Saving our program
If you want to close Small Basic and come back later to work on the program you just typed, you can

ǎŀǾŜ ǘƘŜ ǇǊƻƎǊŀƳΦ Lǘ ƛǎ ƛƴ ŦŀŎǘ ŀ ƎƻƻŘ ǇǊŀŎǘƛŎŜ ǘƻ ǎŀǾŜ ǇǊƻƎǊŀƳǎ ŦǊƻƳ ǘƛƳŜ ǘƻ ǘƛƳŜΣ ǎƻ ǘƘŀǘ ȅƻǳ ŘƻƴΩǘ ƭƻǎŜ

information in the event of an accidental shutdown or a power failure. You can save the current

ǇǊƻƎǊŀƳ ōȅ ŜƛǘƘŜǊ ŎƭƛŎƪƛƴƎ ƻƴ ǘƘŜ άǎŀǾŜέ ƛŎƻƴ ƻƴ ǘƘŜ ǘƻƻƭōŀǊ ƻǊ ōȅ ǳǎƛƴƎ ǘƘŜ ǎƘƻǊǘŎǳǘ ά/ǘǊƭҌ{έ όǇǊŜǎǎ ǘƘŜ

S key while holding down the Ctrl key).

Chapter 2

Understanding Our First Program

What really is a co mputer program?
A program is a set of instructions for the computer. These instructions tell the computer precisely what

to do, and the computer always follows these instructions. Just like people, computers can only follow

instructions if specified in a language they can understand. These are called programming languages.

There are very many languages that the computer can understand and Small Basic is one.

Imagine a conversation happening between you and your friend. You and your friends would use words,

organized as sentences to convey information back and forth. Similarly, programming languages contain

collections of words that can be organized into sentences that convey information to the computer.

And programs are basically sets of sentences (sometimes just a few and sometimes many thousands)

that together make sense to both the

programmer and the computer alike.

Small Basic Program s
A typical Small Basic program consists of a bunch

of statements. Every line of the program

represents a statement and every statement is an

instruction for the computer. When we ask the computer to execute a Small Basic program, it takes the

program and reads the first statement. It understands what weΩǊŜ ǘǊȅƛƴƎ ǘƻ ǎŀȅ ŀƴŘ ǘƘen executes our

instructionΦ hƴŎŜ ƛǘΩǎ ŘƻƴŜ ŜȄŜŎǳǘƛƴƎ ƻǳǊ ŦƛǊǎǘ statement, it comes back to the program and reads and

executes the second line. It continues to do so until it reaches the end of the program. That is when our

program finishes.

There are many languages that the computer

can understand. Java, C++, Python, VB, etc. are

all powerful modern computer languages that

are used to develop simple to complex software

programs.

Back to Our First Program
Here is the first program we wrote:

Text Window.WriteLine("Hello World")

This is a very simple program that consists of one statement. That statement tells the computer to write

a line of text which is Hello World, into the Text Window.

 It ƭƛǘŜǊŀƭƭȅ ǘǊŀƴǎƭŀǘŜǎ ƛƴ ǘƘŜ ŎƻƳǇǳǘŜǊΩǎ ƳƛƴŘ ǘƻΥ

Write Hello World

You might have already noticed that the statement can in turn be split into smaller segments much like

sentences can be split into words. In the first statement we have 3 distinct segments:

a) TextWindow

b) WriteLine

c) άIŜƭƭƻ ²ƻǊƭŘέ

The dot, parentheses and the quotes are all punctuations that have to be placed at appropriate

positions in the statement, for the computer to understand our intent.

You might remember the black window that appeared when we ran our first program. That black

window is called the TextWindow or sometimes referred to as the Console. That is where the result of

this program goes. TextWindow, in our program, is called an object. There are a number of such

objects available for us to use in our programs. We can perform several different operations on these

objects. ²ŜΩǾŜ ŀƭǊŜŀŘȅ ǳǎŜŘ theWriteLine operation in our program. You might also have noticed that

the WriteLine operation is followed by Hello

World inside quotes. This text is passed as input

to the WriteLine operation, which it then prints

out to the user. This is called an input to the

operation. Some operations take one or more

inputs ǿƘƛƭŜ ƻǘƘŜǊǎ ŘƻƴΩǘ ǘŀƪŜ ŀƴȅΦ

Our Second Program
Now that you have understood our ŦƛǊǎǘ ǇǊƻƎǊŀƳΣ ƭŜǘΩǎ Ǝƻ ŀƘŜŀŘ ŀƴŘ make it fancier by adding some

colors.

Text Window.ForegroundColor = "Yellow"

Text Window.WriteLine("Hello World")

Punctuations such as quotes, spaces and

parenthesis are very important in a computer

program. Based on their position and count,

they can change the meaning of what is being

expressed.

Figure 5 - Adding Colors

²ƘŜƴ ȅƻǳ Ǌǳƴ ǘƘŜ ŀōƻǾŜ ǇǊƻƎǊŀƳΣ ȅƻǳΩƭƭ ƴƻǘƛŎŜ ǘƘŀǘ ƛǘ ǇǊƛƴǘǎ ƻǳǘ ǘƘŜ ǎŀƳŜ άIŜƭƭƻ ²ƻǊƭŘέ ǇƘǊŀǎŜ ƛƴǎƛŘŜ

TextWindow, but this time it prints it out in yellow instead of the gray that it did earlier.

Figure 6 - Hello World in Yellow

Notice the new statement we added to our original program. It uses a new word, ForegroundColor

which we equated to a value of ά¸ŜƭƭƻǿΦέ This ƳŜŀƴǎ ǿŜΩǾŜ assigned ά¸Ŝƭƭƻǿέ ǘƻ ForegroundColor.

Now, the difference between ForegroundColor and the operation WriteLine is that ForegroundColor did

not take any inputs nor did it need any parenthesis. Instead it was followed by an equals to symbol and

a word. We define ForegroundColor as a Property of TextWindow. Here is a list of values that are valid

for the ForegroundColor property. Try ǊŜǇƭŀŎƛƴƎ ά¸Ŝƭƭƻǿέ ǿƛǘƘ one of these and see the results ς ŘƻƴΩǘ

forget the quotes, they are required punctuations.

Black

Blue

Cyan

Gray

Green

Magenta

Red

White

Yellow

DarkBlue

DarkCyan

DarkGray

DarkGreen

DarkMagenta

DarkRed

DarkYellow

Chapter 3

Introducing Variables

Using Variables in our program
²ƻǳƭŘƴΩǘ ƛǘ ōŜ ƴƛŎŜ ƛŦ ƻǳǊ ǇǊƻƎǊŀƳ Ŏŀƴ ŀŎǘǳŀƭƭȅ ǎŀȅ άIŜƭƭƻέ ǿƛǘƘ ǘƘŜ ǳǎŜǊǎ ƴŀƳŜ ƛƴǎǘŜŀŘ ƻŦ ǎŀȅƛƴƎ ǘƘŜ

ƎŜƴŜǊƛŎ άIŜƭƭƻ ²ƻǊƭŘΚέ Lƴ ƻǊŘŜǊ ǘƻ Řƻ ǘƘŀǘ ǿŜ Ƴǳǎǘ ŦƛǊǎǘ ŀǎƪ ǘƘŜ ǳǎŜǊ ŦƻǊ ƘƛǎκƘŜǊ ƴŀƳŜ ŀƴŘ ǘƘŜƴ ǎǘƻǊŜ ƛǘ

ǎƻƳŜǿƘŜǊŜ ŀƴŘ ǘƘŜƴ ǇǊƛƴǘ ƻǳǘ άIŜƭƭƻέ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ ƴŀƳŜΦ [ŜǘΩǎ ǎŜŜ Ƙƻǿ ǿe can do that:

Text Window.Write("Enter your Name: ")

name = Text Window.Read()

Text Window.WriteLine("Hello " + name)

²ƘŜƴ ȅƻǳ ǘȅǇŜ ŀƴŘ ŜȄŜŎǳǘŜ ǘƘƛǎ ǇǊƻƎǊŀƳΣ ȅƻǳΩƭƭ ǎŜŜ ŀƴ ƻǳǘǇǳǘ ƭƛƪŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎΥ

Figure 7 - Ask the user's name

AƴŘ ǿƘŜƴ ȅƻǳ ǘȅǇŜ ƛƴ ȅƻǳǊ ƴŀƳŜ ŀƴŘ Ƙƛǘ 9b¢9wΣ ȅƻǳΩƭƭ ǎŜŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƻǳǘǇǳǘΥ

Figure 8 - A Warm Hello

bƻǿΣ ƛŦ ȅƻǳ Ǌǳƴ ǘƘŜ ǇǊƻƎǊŀƳ ŀƎŀƛƴΣ ȅƻǳΩƭƭ ōŜ ŀǎƪŜŘ ǘƘŜ ǎŀƳŜ ǉǳŜǎǘƛƻƴ ŀƎŀƛƴΦ ¸ƻǳ Ŏŀƴ ǘȅǇŜ ƛƴ ŀ ŘƛŦŦŜǊŜƴǘ

name and the computer will say Hello with that name.

Analysis of the program
In the program you just ran, the line that might have caught your attention is this:

name = Text Window.Read()

Read() looks just like WriteLine(), but with no inputs. It is an operation and basically it tells the computer

to wait for the user to type in something and hit the ENTER key. Once the user hits the ENTER key, it

takes what the user has typed and returns it to the program. The interesting point is that whatever the

user had typed is now stored in a variable called name. A variable is defined as a place where you can

store values temporarily and use them later. In the line above, name was used to store the name of the

user.

The next line is also interesting:

Text Window.WriteLine("Hello " + na me)

This is the place where we use the value stored in

our variable, name. We take the value in name

ŀƴŘ ŀǇǇŜƴŘ ƛǘ ǘƻ άIŜƭƭƻέ ŀƴŘ ǿǊƛǘŜ ƛǘ ǘƻ ǘƘŜ

TextWindow.

Once a variable is set, you can reuse it any

number of times. For example, you can do the

following:

TextWindow.Write("Enter your Name: ")

name = TextWindow.Read()

TextWindow.Write("Hello " + name + ". ")

TextWindow.WriteLine("How are you doing " + name + "?")

!ƴŘ ȅƻǳΩƭƭ ǎŜŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƻǳǘǇǳǘΥ

Write, just like WriteLine is another operation

on ConsoleWindow. Write allows you to write

something to the ConsoleWindow but allows

succeeding text to be on the same line as the

current text.

Figure 9 - Reusing a Variable

Rules for naming Variables
±ŀǊƛŀōƭŜǎ ƘŀǾŜ ƴŀƳŜǎ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ǘƘŜƳ ŀƴŘ ǘƘŀǘΩǎ Ƙƻǿ ȅƻǳ ƛŘŜƴǘƛŦȅ ǘƘŜƳΦ ¢ƘŜǊŜ ŀǊŜ ŎŜǊǘŀƛƴ ǎƛƳǇƭŜ

rules and some really good guidelines for naming these variables. They are:

1. The name should start with a letter and should not collide with any of the keywords like if, for,

then, etc.

2. A name can contain any combination of letters, digits and underscores.

3. It is useful to name variables meaningfully ς since variables can be as long as you want, use

variable names to describe their intent.

Playing with Numbers
²ŜΩǾŜ Ƨǳǎǘ ǎŜŜƴ Ƙƻǿ ȅƻǳ Ŏŀƴ ǳǎŜ ǾŀǊƛŀōƭŜǎ ǘƻ store the name of the user. In the next few programs,

ǿŜΩƭƭ ǎŜŜ Ƙƻǿ ǿŜ Ŏŀƴ ǎǘƻǊŜ ŀƴŘ ƳŀƴƛǇǳƭŀǘŜ ƴǳƳōŜǊǎ ƛƴ ǾŀǊƛŀōƭŜǎΦ [ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ\ a really simple

program:

number1 = 10

number2 = 2 0

number3 = number1 + number2

Text Window.WriteLine(number3)

²ƘŜƴ ȅƻǳ Ǌǳƴ ǘƘƛǎ ǇǊƻƎǊŀƳ ȅƻǳΩƭƭ ƎŜǘ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŀǎ ƻǳǘǇǳǘΥ

Figure 10 - Adding Two Numbers

Lƴ ǘƘŜ ŦƛǊǎǘ ƭƛƴŜ ƻŦ ǘƘŜ ǇǊƻƎǊŀƳΣ ȅƻǳΩǊŜ ŀǎǎƛƎƴƛƴƎ

the variable number1 with a value of 10. And in

ǘƘŜ ǎŜŎƻƴŘ ƭƛƴŜΣ ȅƻǳΩǊŜ ŀǎǎƛƎƴƛƴƎ ǘƘŜ variable

number2 with a value of 20. In the third line,

ȅƻǳΩǊŜ ŀŘŘƛƴƎ number1 and number2 and then

Notice that the numbers doƴΩǘ ƘŀǾŜ ǉǳƻǘŜǎ

around them. For numbers, quotes are not

ƴŜŎŜǎǎŀǊȅΦ ¸ƻǳ ƴŜŜŘ ǉǳƻǘŜǎ ƻƴƭȅ ǿƘŜƴ ȅƻǳΩǊŜ

using text.

assigning the result of that to number3. So, in this case, number3 will have a value of 30. And that is

what we printed out to the TextWindow.

bƻǿΣ ƭŜǘΩǎ ƳƻŘƛŦȅ ǘƘŀǘ ǇǊƻƎram slightly and see the results:

number1 = 10

number2 = 20

number3 = number1 * number2

Text Window.WriteLine(number3)

The program above will multiply number1 with number2 and store the result in number3. And you can

see in the result of that program below:

Figure 11 - Multiplying Two Numbers

Similarly, you can subtract or divide numbers. Here is the subtraction:

 number3 = number1 - number2

!ƴŘ ǘƘŜ ǎȅƳōƻƭ ŦƻǊ ŘƛǾƛǎƛƻƴ ƛǎ ΨκΩΦ ¢ƘŜ ǇǊƻƎŀƳ ǿƛƭƭ ƭƻƻƪ ƭƛƪŜΥ

number3 = number1 / number2

And the result of this division would be:

Figure 12 - Dividing Two Numbers

A Simple Temperature Converter

CƻǊ ǘƘŜ ƴŜȄǘ ǇǊƻƎǊŀƳ ǿŜΩƭƭ ǳǎŜ ǘƘŜ ŦƻǊƳǳƭŀ ᴈ
ᴌ

 to convert Fahrenheit temperatures to Celsius

temperatures.

FƛǊǎǘΣ ǿŜΩƭƭ ƎŜǘ ǘƘŜ ǘŜƳǇŜǊŀǘǳǊŜ ƛƴ CŀƘǊŜƴƘŜƛǘ ŦǊƻƳ ǘƘŜ ǳǎŜǊ ŀƴŘ ǎǘƻǊŜ ƛǘ ƛƴ ŀ ǾŀǊƛŀōƭŜΦ ¢ƘŜǊŜΩǎ ŀ ǎǇŜŎƛŀƭ

operation that lets us read numbers from the user and that is TextWindow.ReadNumber.

Text Window.Write("Enter temperature in Fahrenheit: ")

fahr = Text Window.ReadNumber()

Once we have the Fahrenheit temperature stored in a variable, we can convert it to Celsius like this:

cels ius = 5 * (fahr - 32) / 9

The parentheses tell the computer to calculate the fahr ς 32 part first and then process the rest. Now

all we have to do is print the result out to the user. Putting it all together, we get this program:

Text Window.Write("Enter temperature in Fahrenheit: ")

fahr = Text Window.ReadNumber()

celsius = 5 * (fahr - 32) / 9

Text Window.WriteLine("Temperature i n Cel sius is " + celsius)

And the result of this program would be:

Figure 13 - Temperature Conversion

Chapter 4

Conditions and Branching

DƻƛƴƎ ōŀŎƪ ǘƻ ƻǳǊ ŦƛǊǎǘ ǇǊƻƎǊŀƳΣ ǿƻǳƭŘƴΩǘ ƛǘ ōŜ cool that instead of saying the general Hello World, we

could say Good Morning World, or Good Evening World depending on the time of the day? For our next

ǇǊƻƎǊŀƳΣ ǿŜΩƭƭ ƳŀƪŜ ǘƘŜ ŎƻƳǇǳǘŜǊ ǎŀȅ Good Morning World if the time is earlier than 12PM; and Good

Evening if the time is later than 12PM.

If (Clock.Hour < 12) Then

 Text Window.WriteLine("Good Morning World")

EndIf

I f (Clock.Hour >= 12) Then

 Text Window.WriteLine("Good Evening World")

EndIf

5ŜǇŜƴŘƛƴƎ ƻƴ ǿƘŜƴ ȅƻǳ Ǌǳƴ ǘƘŜ ǇǊƻƎǊŀƳ ȅƻǳΩƭƭ ǎŜŜ ŜƛǘƘŜǊ ƻŦ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƻǳǘǇǳǘǎΥ

Figure 14 - Good Morning World

Figure 15 - Good Evening World

[ŜǘΩǎ ŀƴŀƭȅȊŜ ǘƘŜ ŦƛǊǎǘ ǘƘǊŜŜ ƭƛƴŜǎ ƻŦ ǘƘŜ ǇǊƻƎǊŀƳΦ ¸ƻǳΩŘ ƘŀǾŜ ŀƭǊŜŀŘȅ ŦƛƎǳǊŜŘ out that this line tells the

computer that if the Clock.Hour is lesser than 12,

ǇǊƛƴǘ ƻǳǘ άDƻƻŘ aƻǊƴƛƴƎ ²ƻǊƭŘΦέ ¢ƘŜ ǿƻǊŘǎ If,

Then and EndIf are special words that are

understood by the computer when the program is

run. The word If is always followed by a condition,

which in this case is (Clock.Hour < 12). Remember

that the parentheses are necessary for the

computer to understand your intentions. The

condition is followed by then and the actual operation to execute. And after the operation comes EndIf.

This tells the computer that the conditional execution is over.

Between the then and the EndIf, there could be more than one operation and the computer will execute

them all if the condition is valid. For example, you could write something like this:

If (Clock.Hour < 12) Then

 Text Window.Write("Good Morning. ")

 Text Window.WriteLine("How was breakfast?")

EndIf

Else
In the program at the start of this chapter, you might have noticed that the second condition is kind of

redundant. The Clock.Hour value ŎƻǳƭŘ ŜƛǘƘŜǊ ōŜ ƭŜǎǎ ǘƘŀƴ мн ƻǊ ƴƻǘΦ ²Ŝ ŘƛŘƴΩǘ ǊŜŀƭƭȅ ƘŀǾŜ ǘƻ Řƻ ǘƘŜ

second check. At times like this, we can shorten the two if..then..endif statements to be just one by

using a new word, else.

If we were to rewrite that program using else, this is how it will look:

If (Clock.Hour < 12) Then

 Text Window.WriteLine("Good Morning World")

Else

 Text Window.WriteLine("Good Evening World")

EndIf

In Small Basic, you can use the Clock object to

access the current date and time. It also

provides you a bunch of properties that allow

you to get the current Day, Month, Year, Hour,

Minutes, Seconds separately.

And this program will do exactly the same as the other one, which brings us to a very important lesson

in computer programming:

In programming, there usually are many ways of doing the same thing. Sometimes one way

makes more sense than the other way. The choice is left to the programmer. As you write more

ǇǊƻƎǊŀƳǎ ŀƴŘ ƎŜǘ ƳƻǊŜ ŜȄǇŜǊƛŜƴŎŜŘΣ ȅƻǳΩƭƭ ǎǘŀǊǘ ǘƻ ƴƻǘƛŎe these different techniques and their

advantages and disadvantages.

Indentation
In all the examples you can see how the statements between If, Else and EndIf are indented. This

indentation is not necessary. The computer will understand the program just fine without them.

IƻǿŜǾŜǊΣ ǘƘŜȅ ƘŜƭǇ ǳǎ ǎŜŜ ŀƴŘ ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ ǇǊƻƎǊŀƳ ŜŀǎƛŜǊΦ IŜƴŎŜΣ ƛǘΩǎ ǳǎǳŀƭƭȅ

considered as a good practice to indent the statements between such blocks.

Even or Odd
Now that we have the If..Then..Else..EndIf ǎǘŀǘŜƳŜƴǘ ƛƴ ƻǳǊ ōŀƎ ƻŦ ǘǊƛŎƪǎΣ ƭŜǘΩǎ ǿǊƛǘŜ ƻǳǘ ŀ ǇǊƻƎǊŀƳ ǘƘŀǘΣ

ƎƛǾŜƴ ŀ ƴǳƳōŜǊΣ ǿƛƭƭ ǎŀȅ ƛŦ ƛǘΩǎ ŜǾŜƴ ƻǊ ƻŘŘΦ

Text Window.Write("Enter a number: ")

num = Text Window.ReadNumber()

remainder = Math.Remainder(num, 2)

If (remainder = 0) Then

 Text Window.WriteLine("The number is Even")

Else

 Text Window.WriteLine("The number is Odd")

EndIf

!ƴŘ ǿƘŜƴ ȅƻǳ Ǌǳƴ ǘƘƛǎ ǇǊƻƎǊŀƳΣ ȅƻǳΩƭƭ ǎŜŜ ŀƴ ƻǳǘǇǳǘ ƭƛƪŜΥ

Figure 16 - Even or Odd

Lƴ ǘƘƛǎ ǇǊƻƎǊŀƳΣ ǿŜΩǾŜ introduced another new useful operation, Math.Remainder. And yes, as you

already might have figured out, Math.Remainder will divide the first number by the second number and

then give back the remainder.

ά

Branching
Remember, in the second chapter you learned that the computer processes a program one statement at

ŀ ǘƛƳŜΣ ƛƴ ƻǊŘŜǊ ŦǊƻƳ ǘƘŜ ǘƻǇ ǘƻ ōƻǘǘƻƳΦ IƻǿŜǾŜǊΣ ǘƘŜǊŜΩǎ ŀ ǎǇŜŎƛŀƭ ǎǘŀǘŜƳŜƴǘ ǘƘŀǘ Ŏŀƴ ƳŀƪŜ ǘƘŜ

computer jump to another statement out of order. LetΩǎ ǘŀƪŜ ŀ ƭƻƻƪ ŀǘ ǘƘŜ ƴŜȄǘ ǇǊƻƎǊŀƳΦ

i = 1

start:

Text Window.WriteLine(i)

i = i + 1

If (i < 25) Then

 Goto start

EndIf

Figure 17 - Using Goto

In the program above, we assigned a value of 1 to the variable i. And then we added a new statement

which ends in a colon (:)

start:

This is called a label. Labels are like bookmarks that the computer understands. You can name the

bookmark anything and you can add as many labels as you want in your program, as long as they are all

uniquely named.

Another interesting statement here is:

i = i + 1

This just tells the computer to add 1 to the variable i and assign it back to i. So if the value of i was 1

before this statement, it will be 2 after this statement is run.

And finally,

If (i < 25) Then

 Goto start

EndIf

This is the part that tells the computer that if the value of i is less than 25, start executing statements

from the bookmark start.

Endless execution
Using the Goto statement you can make the computer repeat something any number of times. For

example, you can take the Even or Odd program and modify it like below, and the program will run for

ever. You can stop the program by clicking on the Close (X) button on the top right corner of the

window.

begin:

Text Window.Write("Enter a number: ")

num = Text Window.ReadNumber()

remainder = Math.Remainder(num, 2)

If (remainder = 0) Then

 Text Window.WriteLine("The number is Even")

Else

 Text Window.WriteLine("The number is Odd")

EndIf

Goto begin

Figure 18 - Even or Odd running endlessly

Chapter 5

Loops

For Loop
[ŜǘΩǎ ǘŀƪŜ ŀ ǇǊƻƎǊŀƳ ǿŜ ǿǊƻǘŜ ƛƴ ǘƘŜ ǇǊŜǾƛƻǳǎ ŎƘŀǇǘŜǊΦ

i = 1

start:

Text Window.WriteLine(i)

i = i + 1

If (i < 25) Then

 Goto start

EndIf

This program prints out numbers from 1 to 24 in order. This process of incrementing a variable is very

common in programming that programming languages usually provide an easier method of doing this.

The above program is equivalent to the program below:

For i = 1 To 24

 Text Window.WriteLine(i)

EndFor

And the output is:

Figure 19 - Using the For Loop

bƻǘƛŎŜ ǘƘŀǘ ǿŜΩǾŜ ǊŜŘǳŎŜŘ ǘƘŜ у ƭƛƴŜ ǇǊƻƎǊŀƳ ǘƻ ŀ п ƭƛƴŜ ǇǊƻƎǊŀƳΣ ŀƴŘ ƛǘ ǎǘƛƭƭ ŘƻŜǎ ŜȄŀŎǘƭȅ ǘƘŜ ǎŀƳŜ ŀǎ

the 8 line program! Remember earlier we said that there are usually several ways of doing the same

thing? This is a great example.

For..EndFor is, in programming terms, called a loop. It allows you to take a variable, give it an initial and

an end value and let the computer increment the variable for you. Every time the computer increments

the variable, it runs the statements between For and EndFor.

But if you wanted the variable to be incremented by 2 instead of 1 ς like say, you wanted to print out all

the odd numbers between 1 and 24, you can use the loop to do that too.

For i = 1 To 24 Step 2

 Text Window.WriteLine(i)

EndFor

Figure 20 - Just the Odd Numbers

The Step 2 part of the For statement tells the computer to increment the value of i by 2 instead of the

usual 1. By using Step you can specify any increment that you want. You can even specify a negative

value for the step and make the computer count backwards, like in the example below:

For i = 10 To 1 Step - 1

 Text Window.WriteLine(i)

EndFor

Figure 21 - Counting Backwards

While Loop
The While loop is yet another looping method, that is useful especially when the loop count is not

known ahead of time. Whereas a For loop runs for a pre-defined number of times, the While loop runs

ǳƴǘƛƭ ŀ ƎƛǾŜƴ ŎƻƴŘƛǘƛƻƴ ƛǎ ǘǊǳŜΦ Lƴ ǘƘŜ ŜȄŀƳǇƭŜ ōŜƭƻǿΣ ǿŜΩǊŜ ƘŀƭǾƛƴƎ ŀ ƴǳƳōŜǊ ǳƴǘƛƭ ǘƘŜ ǊŜǎǳƭǘ ƛǎ ƎǊŜŀǘŜǊ

than 1.

number = 100

While (number > 1)

 Text Window.WriteLine(number)

 number = number / 2

EndWhile

Figure 22 - Halving Loop

In the program above, we assign the value 100 to number and run the while loop as long as number is

greater than 1. Inside the loop, we print out the number and then we divide it by two, effectively

halving it. And as expected, the output of the program is numbers that are progressively getting halved

one after another.

LǘΩƭƭ ōŜ ǊŜŀƭƭȅ ƘŀǊŘ ǘƻ ǿǊƛǘŜ ǘƘƛǎ ǇǊƻƎǊŀƳ ǳǎƛƴƎ ŀ CƻǊ ƭƻƻǇΣ ōŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ƪƴow how many times the

ƭƻƻǇ ǿƛƭƭ ǊǳƴΦ ²ƛǘƘ ŀ ǿƘƛƭŜ ƭƻƻǇ ƛǘΩǎ Ŝŀǎȅ ǘƻ ŎƘŜŎƪ ŦƻǊ ŀ ŎƻƴŘƛǘƛƻƴ ŀƴŘ ŀǎƪ ǘƘŜ ŎƻƳǇǳǘŜǊ ǘƻ ŜƛǘƘŜǊ

continue the loop or quit.

LǘΩƭƭ ōŜ ƛƴǘŜǊŜǎǘƛƴƎ ǘƻ ƴƻǘŜ ǘƘŀǘ ŜǾŜǊȅ ǿƘƛƭŜ ƭƻƻǇ Ŏŀƴ ōŜ ǳƴǿǊŀǇǇŜŘ ƛƴǘƻ ŀƴ LŦΦΦ¢ƘŜƴ ǎǘŀǘŜƳŜƴǘΦ CƻǊ

instance, the program above can be rewritten as follows, without affecting the end result.

number = 100

startLabel:

Text Window.WriteLine(number)

number = number / 2

If (number > 1) Then

 Goto startLabel

EndIf

In fact, the computer internally rewrites every

While loop into statements that use If..Then

along with one or more Goto statements.

Chapter 6

Beginning Graphics

{ƻ ŦŀǊ ƛƴ ŀƭƭ ƻǳǊ ŜȄŀƳǇƭŜǎΣ ǿŜΩǾŜ ǳǎŜŘ ǘƘŜ TextWindow to explain the fundamentals of the Small Basic

ƭŀƴƎǳŀƎŜΦ IƻǿŜǾŜǊΣ {Ƴŀƭƭ .ŀǎƛŎ ŎƻƳŜǎ ǿƛǘƘ ŀ ǇƻǿŜǊŦǳƭ ǎŜǘ ƻŦ DǊŀǇƘƛŎǎ ŎŀǇŀōƛƭƛǘƛŜǎ ǘƘŀǘ ǿŜΩƭƭ ǎǘŀǊǘ

exploring in this chapter.

Introducing GraphicsWindow
Just like we had TextWindow that allowed us to work with Text and Numbers, Small Basic also provides

a GraphicsWindow ǘƘŀǘ ǿŜ Ŏŀƴ ǳǎŜ ǘƻ ŘǊŀǿ ǘƘƛƴƎǎΦ [ŜǘΩǎ ōŜƎƛƴ ōȅ ŘƛǎǇƭŀȅƛƴƎ ǘƘŜ DǊŀǇƘƛŎǎ²ƛƴŘƻǿΦ

GraphicsWindow.Show()

²ƘŜƴ ȅƻǳ Ǌǳƴ ǘƘƛǎ ǇǊƻƎǊŀƳΣ ȅƻǳΩƭƭ ƴƻǘƛŎŜ ǘƘŀǘ ƛƴǎǘŜŀŘ ƻŦ ǘƘŜ ǳǎǳŀƭ ōƭŀŎƪ ǘŜȄǘ ǿƛƴŘƻǿΣ ȅƻǳ ƎŜǘ ŀ ǿƘite

²ƛƴŘƻǿ ƭƛƪŜ ǘƘŜ ƻƴŜ ǎƘƻǿƴ ōŜƭƻǿΦ ¢ƘŜǊŜΩǎ ƴƻǘƘƛƴƎ ƳǳŎƘ ǘƻ Řƻ ƻƴ ǘƘƛǎ ǿƛƴŘƻǿ ȅŜǘΦ .ǳǘ ǘƘƛǎ ǿƛƭƭ ōŜ ǘƘŜ

ōŀǎŜ ǿƛƴŘƻǿ ƻƴ ǿƘƛŎƘ ǿŜΩƭƭ ǿƻǊƪ ƻƴ ƛƴ ǘƘƛǎ ŎƘŀǇǘŜǊΦ ¸ƻǳ Ŏŀƴ ŎƭƻǎŜ ǘƘƛǎ ǿƛƴŘƻǿ ōȅ ŎƭƛŎƪƛƴƎ ƻƴ ǘƘŜ Ψ·Ω

button on the top right corner.

Figure 23 - An empty Graphics Window

Setting up the Graphics Window
The graphics window allows you to customize its appearance to your desire. You can change the title,

ǘƘŜ ōŀŎƪƎǊƻǳƴŘ ŀƴŘ ƛǘǎ ǎƛȊŜΦ [ŜǘΩǎ Ǝƻ ŀƘŜŀŘ ŀƴŘ ƳƻŘƛŦȅ ƛǘ ŀ ōƛǘΣ Ƨǳǎǘ to get familiar with the window.

GraphicsWindow.BackgroundColor = "SteelBlue"

GraphicsWindow.Title = "My Graphics Window"

GraphicsWindow.Width = 320

GraphicsWindow.Height = 200

GraphicsWindow.Show()

IŜǊŜΩǎ Ƙƻǿ ǘƘŜ ŎǳǎǘƻƳƛȊŜŘ ƎǊŀǇƘƛŎǎ ǿƛƴŘƻǿ ƭƻƻƪǎΦ You can change the background color to one of the

many values listed in Appendix B. tƭŀȅ ǿƛǘƘ ǘƘŜǎŜ ǇǊƻǇŜǊǘƛŜǎ ǘƻ ǎŜŜ Ƙƻǿ ȅƻǳ Ŏŀƴ ƳƻŘƛŦȅ ǘƘŜ ǿƛƴŘƻǿΩǎ

appearance.

Figure 24 - A Custom Graphics Window

Drawing Lines
Once we have the GraphicsWindow up, we can draw shapes, text and even ǇƛŎǘǳǊŜǎ ƻƴ ƛǘΦ [ŜǘΩǎ ǎǘŀǊǘ ōȅ

ŘǊŀǿƛƴƎ ǎƻƳŜ ǎƛƳǇƭŜ ǎƘŀǇŜǎΦ IŜǊŜΩǎ ŀ ǇǊƻƎǊŀƳ ǘƘŀǘ ŘǊŀǿǎ ŀ ŎƻǳǇƭŜ ƭƛƴŜǎ ƻƴ ǘƘŜ DǊŀǇƘƛŎǎ ²ƛƴŘƻǿΦ

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.DrawLine(10, 10 0, 100, 10)

Figure 25 ς CrissCross

The first two lines of the program setup the

window and the next two lines draw the crisscross

lines. The first two numbers that follow DrawLine

specify the starting x and y co-ordinates and the

other two specify the ending x and y co-ordinates.

The interesting thing with computer graphics is

Instead of using names for colors you can use

the web color notation (#RRGGBB). For

example, #FF0000 denotes Red, #FFFF00 for

¸ŜƭƭƻǿΣ ŀƴŘ ǎƻ ƻƴΦ ²ŜΩƭƭ ƭŜŀǊƴ ƳƻǊŜ ŀōƻǳǘ

colors in [TODO Colors chapter]

that the co-ordinates (0, 0) start at the top left corner of the window. In effect, in the co-ordinate space

the window is considered to be on the 2nd quadrant.

Figure 26 - The co-ordinate map

LŦ ǿŜ Ǝƻ ōŀŎƪ ǘƻ ǘƘŜ ƭƛƴŜ ǇǊƻƎǊŀƳΣ ƛǘΩǎ ƛƴǘŜǊŜǎǘƛƴƎ ǘƻ ƴƻǘŜ ǘƘŀǘ {Ƴŀƭƭ .ŀǎƛŎ ŀƭƭƻǿǎ ȅƻǳ ǘƻ ƳƻŘƛŦȅ ǘƘŜ

ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ ƭƛƴŜΣ ǎǳŎƘ ŀǎ ǘƘŜ ŎƻƭƻǊ ŀƴŘ ƛǘǎ ǘƘƛŎƪƴŜǎǎΦ CƛǊǎǘΣ ƭŜǘΩǎ ƳƻŘƛŦȅ ǘƘŜ color of the lines as

shown in the program below.

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.PenColor = "Green"

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.PenColor = "Gold"

GraphicsWindow.DrawLine(10, 100, 100, 10)

Figure 27 - Changing Line Color

 bƻǿΣ ƭŜǘΩǎ ƳƻŘƛŦȅ ǘƘŜ ǎƛȊŜ ǘƻƻΦ Lƴ ǘƘŜ ǇǊƻƎǊŀƳ ōŜƭƻǿΣ ǿŜ ŎƘŀƴƎŜ ǘƘŜ ƭƛƴŜ ǿƛŘǘƘ ǘƻ ōŜ млΣ ƛƴǎǘŜŀŘ ƻŦ ǘƘŜ

default which is 1.

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

GraphicsWindow.P enWidth = 10

GraphicsWindow.PenColor = "Green"

GraphicsWindow.DrawLine(10, 10, 100, 100)

GraphicsWindow.PenColor = "Gold"

GraphicsWindow.DrawLine(10, 100, 100, 10)

Figure 28 - Thick Colorful Lines

PenWidth and PenColor modify the pen with which these lines are drawn. They not only affect lines but

also any shape that is drawn after the properties are updated.

By using the looping statements we learned in the previous chapters, we can easily write a program that

draws multiple lines with increasing pen thickness.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.Width = 200

GraphicsWindow.Height = 160

GraphicsWindow.PenColor = "Blue"

For i = 1 To 10

 GraphicsWindow.PenWidth = i

 GraphicsWindow.DrawLine(20, i * 15, 1 80, i * 15)

endfor

Figure 29 - Multiple Pen Widths

The interesting part of this program is the loop, where we increase the PenWidth every time the loop is

run and then draw a new line under the old one.

Drawing and Filling Shapes
When it comes to drawing shapes, there are usually two types of operations for every shape. They are

Draw operations and Fill operations. Draw operations draw the outline of the shape using a pen, and Fill

operations paint the shape using a brush. For example in the program below, there are two rectangles,

ƻƴŜ ǘƘŀǘ ƛǎ ŘǊŀǿƴ ǳǎƛƴƎ ǘƘŜ wŜŘ ǇŜƴ ŀƴŘ ƻƴŜ ǘƘŀǘΩǎ ŦƛƭƭŜŘ ǳǎƛƴƎ ǘƘŜ DǊŜŜƴ .ǊǳǎƘΦ

GraphicsWindow.Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawRectangle(20, 20, 3 00, 60)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillRectangle(60, 100, 300, 60)

Figure 30 Drawing and Filling

To draw or fill a rectangle, you need four numbers. The first two numbers represent the X and Y co-

ordinates for the top left corner of the rectangle. The third number specifies the width of the rectangle

while the fourth specifies its height. In fact, the same applies for drawing and filling ellipses, as shown in

the program below.

GraphicsWindow. Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawEllipse(20, 20, 300, 60)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillEllipse(60, 100, 300, 60)

Figure 31 - Drawing and Filling Ellipses

Ellipses are just a general case of circles. If you want to draw circles, you would have to specify the same

width and height.

GraphicsWindow.Width = 400

GraphicsWindow.Height = 300

GraphicsWindow.PenColor = "Red"

GraphicsWindow.DrawEllipse(20 , 20, 100, 100)

GraphicsWindow.BrushColor = "Green"

GraphicsWindow.FillEllipse(100, 100, 100, 100)

Figure 32 ς Circles

Chapter 7

Fun with Shapes

²ŜΩǊŜ ƎƻƛƴƎ ǘƻ ƘŀǾŜ ǎƻƳŜ Ŧǳƴ ƛƴ ǘƘƛǎ ŎƘŀǇǘŜǊ ǿƛǘƘ ǿƘŀǘŜǾŜǊ ǿŜΩǾŜ ƭŜŀǊƴŜŘ ǎƻ ŦŀǊΦ This chapter contains

ǎŀƳǇƭŜǎ ǘƘŀǘ ǎƘƻǿ ǎƻƳŜ ƛƴǘŜǊŜǎǘƛƴƎ ǿŀȅǎ ƻŦ ŎƻƳōƛƴƛƴƎ ŀƭƭ ǘƘŀǘ ȅƻǳΩǾŜ ƭŜŀǊƴŜŘ ǎƻ ŦŀǊ ǘƻ ŎǊŜŀǘŜ ǎƻƳŜ

cool looking programs.

Rectangalore
Here we draw multiple rectangles in a loop, with increasing size.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightBlue"

GraphicsWindow.Width = 2 00

GraphicsWindow.Height = 200

For i = 1 To 100 Step 5

 GraphicsWindow.DrawRectangle(100 - i, 100 - i, i * 2, i * 2)

EndFor

Figure 33 - Rectangalore

Circtacular
A variant of the previous program, draws circles instead of squares.

GraphicsWindow.BackgroundColor = "Black"

GraphicsWindow.PenColor = "LightGreen"

GraphicsWindow.Width = 200

GraphicsWindow.Height = 200

For i = 1 To 100 Step 5

 GraphicsWindow.DrawEllipse(100 - i, 100 - i, i * 2, i * 2)

EndFor

Figure 34 ς Circtacular

Randomize
This program uses the operation GraphicsWindow.GetRandomColor to set random colors for the brush

and then uses Math.GetRandomNumber to set the x and y co-ordinates for the circles. These two

operations can be combined in interesting ways to create interesting programs that give different

results each time they are run.

GraphicsWindow.BackgroundColor = "Black"

For i = 1 To 1000

 GraphicsWindow.BrushColor = GraphicsWindow.GetRandomColor()

 x = Math.GetRandomNumber(640)

 y = Math.GetRandomNumber(480)

 GraphicsWindow.FillEllipse(x, y, 10, 10)

EndFor

Figure 35 ς Randomize

Fractals
The following program draws a simple triangle fractal using random numbers. A fractal is a geometric

shape that can be subdivided into parts, each of which resembles the parent shape accurately. In this

case, the program draws hundreds of triangles each of which resembles its parent triangle. And since

the program runs for a few seconds, you can actually see the triangles forming slowly from mere dots.

¢ƘŜ ƭƻƎƛŎ ƛǘǎŜƭŦ ƛǎ ǎƻƳŜǿƘŀǘ ƘŀǊŘ ǘƻ ŘŜǎŎǊƛōŜ ŀƴŘ LΩƭƭ ƭŜŀǾŜ ƛǘ ŀǎ ŀƴ ŜȄŜǊŎƛǎŜ ŦƻǊ ȅƻǳ ǘƻ ŜȄǇƭƻǊŜΦ

GraphicsWindow.B ackgroundColor = "Black"

x = 100

y = 100

For i = 1 To 100000

 r = Math.GetRandomNumber(3)

 ux = 150

 uy = 30

 If (r = 1) then

 ux = 30

 uy = 1000

 EndIf

 If (r = 2) Then

 ux = 1000

 uy = 1000

 EndIf

 x = (x + ux) / 2

 y = (y + uy) / 2

 GraphicsWindow. SetPixel (x, y, "LightGreen")

EndFor

Figure 36 - Triangle Fractal

If you want to really see the dots slowly forming the fractal, you can introduce a delay in the loop by

using the Program.Delay operation. This operation takes in a number that specifies in milliseconds, how

ƭƻƴƎ ǘƻ ŘŜƭŀȅΦ IŜǊŜΩǎ ǘƘŜ ƳƻŘƛŦƛŜŘ ǇǊƻƎǊŀƳΣ ǿƛǘƘ ǘƘŜ ƳƻŘƛŦƛŜŘ ƭƛƴŜ ƛƴ ōƻƭŘΦ

GraphicsWindow.BackgroundColor = "Black"

x = 100

y = 100

For i = 1 To 100000

 r = Math.GetRandomNumber(3)

 ux = 150

 uy = 30

 If (r = 1) then

 ux = 30

 uy = 1000

 EndIf

 If (r = 2) Then

 ux = 1000

 uy = 1000

 EndIf

 x = (x + ux) / 2

 y = (y + uy) / 2

 GraphicsWindow. SetPixel (x, y, "LightGreen")

 Program.Delay(2)

EndFor

LƴŎǊŜŀǎƛƴƎ ǘƘŜ ŘŜƭŀȅ ǿƛƭƭ ƳŀƪŜ ǘƘŜ ǇǊƻƎǊŀƳ ǎƭƻǿŜǊΦ 9ȄǇŜǊƛƳŜƴǘ ǿƛǘƘ ǘƘŜ ƴǳƳōŜǊǎ ǘƻ ǎŜŜ ǿƘŀǘΩǎ ōŜǎǘ ŦƻǊ

your taste.

Another modification you can make to this program is to replace the following line:

GraphicsWindow.SetPixel (x, y, "Li ghtGreen")

with

color = GraphicsWindow.GetRandomColor()

GraphicsWindow.SetPixel (x, y, color)

This change will make the program draw the pixels of the triangle using random colors.

Chapter 8

Turtle Graphics

Logo
In the 1970s, there was a very simple but powerful programming language, called Logo that was used by

ŀ ŦŜǿ ǊŜǎŜŀǊŎƘŜǊǎΦ ¢Ƙƛǎ ǿŀǎ ǳƴǘƛƭ ǎƻƳŜƻƴŜ ŀŘŘŜŘ ǿƘŀǘ ƛǎ ŎŀƭƭŜŘ ά¢ǳǊǘƭŜ DǊŀǇƘƛŎǎέ ǘƻ ǘƘŜ ƭŀƴƎǳŀƎŜ ŀƴŘ

ƳŀŘŜ ŀǾŀƛƭŀōƭŜ ŀ ά¢ǳǊǘƭŜέ ǘƘŀǘ ǿŀǎ ǾƛǎƛōƭŜ ƻƴ ǘƘŜ ǎŎreen and responded to commands like Move

Forward, Turn Right, Turn Left, etc. Using the Turtle, people were able to draw interesting shapes on the

screen. This made the language immediately accessible and appealing to people of all ages, and was

largely responsible for its wild popularity in the 1980s.

Small Basic comes with a Turtle object with many commands that can be called from within Small Basic

ǇǊƻƎǊŀƳǎΦ Lƴ ǘƘƛǎ ŎƘŀǇǘŜǊΣ ǿŜΩƭƭ ǳǎŜ ǘƘŜ ¢ǳǊǘƭŜ ǘƻ ŘǊŀǿ ƎǊŀǇƘƛŎǎ ƻƴ ǘƘŜ ǎŎǊŜŜƴΦ

The Turtle
To begin with, we need to make the Turtle visible on the screen. This can be achieved by a simple one

line program.

Turtle.Show()

²ƘŜƴ ȅƻǳ Ǌǳƴ ǘƘƛǎ ǇǊƻƎǊŀƳ ȅƻǳΩƭƭ ƴƻǘƛŎŜ ŀ ǿƘƛǘŜ ǿƛƴŘƻǿΣ Ƨǳǎǘ ƭƛƪŜ ǘƘŜ ƻƴŜ ǿŜ ǎŀǿ ƛƴ ǘƘŜ ǇǊŜǾƛƻǳǎ

chapter, except this one has a Turtle in the center. It is this Turtle that is going to follow our instructions

and draw whatever we ask it to.

Figure 37 - Turtle is visible

Moving and Drawing
One of the instructions that the Turtle understands is Move. This operation takes a number as input.

¢Ƙƛǎ ƴǳƳōŜǊ ǘŜƭƭǎ ǘƘŜ ¢ǳǊǘƭŜ Ƙƻǿ ŦŀǊ ǘƻ ƳƻǾŜΦ {ŀȅΣ ƛƴ ǘƘŜ ŜȄŀƳǇƭŜ ōŜƭƻǿΣ ǿŜΩƭƭ ŀǎƪ ǘƘŜ ¢ǳǊǘƭŜ ǘƻ ƳƻǾŜ

100 pixels.

Turtle.Move(100)

When you run this program, you can actually see

the turtle move slowly a 100 pixels upwards. As it

ƳƻǾŜǎΣ ȅƻǳΩƭƭ ŀƭǎƻ ƴƻǘƛŎŜ ƛǘ ŘǊŀǿƛƴƎ ŀ ƭƛƴŜ ōŜƘƛƴŘ

it. When the Turtle has finished moving, the

result will look something like the figure below.

When using operations on the Turtle, it is not

necessary to call Show(). The Turtle will be

automatically made visible whenever any

Turtle operation is performed.

Figure 38 - Move a hundred pixels

Drawing a Square
A square has four sides, two vertical and two horizontal. In order to draw a square we need to be able

to make the Turtle draw a line, turn right and draw another line and continue this until all four sides are

ŦƛƴƛǎƘŜŘΦ LŦ ǿŜ ǘǊŀƴǎƭŀǘŜŘ ǘƘƛǎ ǘƻ ŀ ǇǊƻƎǊŀƳΣ ƘŜǊŜΩǎ Ƙƻǿ ƛǘ ǿƻǳƭŘ ƭƻƻƪΦ

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

Turtle.Move(100)

Turtle.TurnRight()

When you run this program, you can see the Turtle drawing a square, one line at a time, and the result

looks like the figure below.

Figure 39 - Turtle drawing a square

It wƛƭƭ ōŜ ƛƴǘŜǊŜǎǘƛƴƎ ǘƻ ƴƻǘŜ ǘƘŀǘ ǿŜΩǊŜ ƛǎǎǳƛƴƎ ǘƘŜ ǎŀƳŜ ǘǿƻ ƛƴǎǘǊǳŎǘƛƻƴǎ ƻǾŜǊ ŀƴŘ ƻǾŜǊ ς four times

ǇǊŜŎƛǎŜƭȅΦ !ƴŘ ǿŜΩǾŜ ŀƭǊŜŀŘȅ ƭŜŀǊƴǘ ǘƘŀǘ ǎǳŎƘ ǊŜǇŜǘƛǘƛǾŜ ŎƻƳƳŀƴŘǎ Ŏŀƴ ōŜ ŜȄŜŎǳǘŜŘ ǳǎƛƴƎ ƭƻƻǇǎΦ {ƻΣ ƛŦ

we take the program above and modify it to use the For..EndFor ƭƻƻǇΣ ǿŜΩƭƭ ŜƴŘ ǳǇ ǿƛǘƘ ŀ ƳǳŎƘ ǎƛƳǇƭŜǊ

program.

 For i = 1 To 4

 Turtle.Move(100)

 Turtle.TurnRight()

EndFor

Changing Colors
The Turtle draws on the exact same GraphicsWindow that we saw in the previous chapter. This means

that all the operations that we learned in the previous chapter are still valid here. For instance, the

following program will draw the square with each side in a different color.

For i = 1 To 4

 GraphicsWindow.PenColor = GraphicsWindow.GetRandomColor()

 Turtle.Move (100)

 Turtle.TurnRight()

EndFor

Figure 40 - Changing Colors

Drawing more complex shapes
The Turtle, in addition to the TurnRight and TurnLeft operations, has a Turn operation. This operation

takes one input which specifies the angle of rotation. Using this operation, it is possible to draw any

sided polygon. The following program draws a hexagon (a six-sided polygon).

For i = 1 To 6

 Turtle.Move(100)

 Turtle.Turn(60)

EndFor

Try this program out to see if it really draws a hexagon. Observe that since the angle between the sides

is 60 degrees, we use Turn(60). For such a polygon, whose sides are all equal, the angle between the

sides can be easily obtained by dividing 360 by the number of sides. Armed with this information and

using variables, we can write a pretty generic program that can draw any sided polygon.

sides = 12

length = 400 / sides

angle = 360 / sides

For i = 1 To sides

 Turtle.Move(length)

 Turtle.Turn(angle)

EndFor

Using this program, you can draw any polygon by just modifying the sides variable. Putting 4 here

would give us the Square we started with. Putting a sufficiently large value, say 50 would make the

result indistinguishable from a circle.

Figure 41 - Drawing a 12 sided polygon

Using the technique we just learned, we can make the Turtle draw multiple circles each time with a little

shift resulting in an interesting output.

sides = 50

length = 400 / sides

angle = 360 / sides

Turtle.Speed = 9

For j = 1 To 20

 For i = 1 To sides

 Turtle.Move(length)

 Turtle.Turn(angle)

 EndFor

 Turtle.Turn(18)

EndFor

 The program above has two For..EndFor loops,

one within the other. The inner loop (i = 1 to

sides) is similar to the polygon program and is

responsible for drawing a circle. The outer loop (j

= 1 to 20) is responsible for turning the Turtle by a

small bit for every circle that is drawn. This tells

the Turtle to draw 20 circles. When put together,

this program results in a very interesting pattern, like the one shown below.

Figure 42 - Going in circles

Moving Around
You can make the turtle not draw by calling the PenUp operation. This allows you to move the turtle to

anywhere on the screen without drawing a line. Calling PenDown will make the turtle draw again. This

Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ƎŜǘ ǎƻƳŜ ƛƴǘŜǊŜǎǘƛƴƎ ŜŦŦŜŎǘǎΣ ƭƛƪŜ ǎŀȅΣ ŘƻǘǘŜŘ ƭƛƴŜǎΦ IŜǊŜΩǎ ŀ ǇǊƻƎǊŀƳ ǘƘŀǘ ǳǎŜǎ ǘƘƛǎ ǘƻ

draw a dotted line polygon.

sides = 6

length = 400 / sides

angle = 360 / sides

In the program above, we have made the Turtle

go faster by setting the Speed to 9. You can set

this property to any value between 1 and 10 to

make the Turtle go as fast as you want.

