
Master Pages :: Multiple ContentPlaceHolders

and Default Content

Introduction
In the preceding tutorial we examined how master pages enable ASP.NET developers to
create a consistent site-wide layout. Master pages define both markup that is common to all
of its content pages and regions that are customizable on a page-by-page basis. In the
previous tutorial we created a simple master page (Site.master) and two content pages

(Default.aspx and About.aspx). Our master page consisted of two ContentPlaceHolders

named head and MainContent, which were located in the <head> element and Web Form,

respectively. While the content pages each had two Content controls, we only specified
markup for the one corresponding to MainContent.

As evidenced by the two ContentPlaceHolder controls in Site.master, a master page may

contain multiple ContentPlaceHolders. What's more, the master page may specify default
markup for the ContentPlaceHolder controls. A content page, then, can optionally specify its
own markup or use the default markup. In this tutorial we look at using multiple content
controls in the master page and see how to define default markup in the ContentPlaceHolder
controls.

Step 1: Adding Additional ContentPlaceHolder
Controls to the Master Page
Many website designs contain several areas on the screen that are customized on a page-
by-page basis. Site.master, the master page we created in the preceding tutorial, contains

a single ContentPlaceHolder within the Web Form named MainContent. Specifically, this

ContentPlaceHolder is located within the mainContent <div> element.

Figure 1 shows Default.aspx when viewed through a browser. The region circled in red is

the page-specific markup corresponding to MainContent.

Figure 01: The Circled Region Shows the Area Currently Customizable on a Page-
by-Page Basis

Imagine that in addition to the region shown in Figure 1, we also need to add page-specific
items to the left column beneath the Lessons and News sections. To accomplish this, we add
another ContentPlaceHolder control to the master page. To follow along, open the
Site.master master page in Visual Web Developer and then drag a ContentPlaceHolder

control from the Toolbox onto the designer after the News section. Set the
ContentPlaceHolder's ID to LeftColumnContent.

Figure 02: Add a ContentPlaceHolder Control to the Master Page's Left Column

With the addition of the LeftColumnContent ContentPlaceHolder to the master page, we

can define content for this region on a page-by-page basis by including a Content control in
the page whose ContentPlaceHolderID is set to LeftColumnContent. We examine this

process in Step 2.

Step 2: Defining Content for the New
ContentPlaceHolder in the Content Pages
When adding a new content page to the website, Visual Web Developer automatically
creates a Content control in the page for each ContentPlaceHolder in the selected master
page. Having added a the LeftColumnContent ContentPlaceHolder to our master page in

Step 1, new ASP.NET pages will now have three Content controls.

To illustrate this, add a new content page to the root directory named
MultipleContentPlaceHolders.aspx that is bound to the Site.master master page.

Visual Web Developer creates this page with the following declarative markup:

<%@ Page Language="C#" MasterPageFile="~/Site.master"

AutoEventWireup="true"

CodeFile="MultipleContentPlaceHolders.aspx.cs"

Inherits="MultipleContentPlaceHolders" Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"

Runat="Server">

</asp:Content>

<asp:Content ID="Content3" ContentPlaceHolderID="LeftColumnContent"

Runat="Server">

</asp:Content>

Enter some content into the Content control referencing the MainContent

ContentPlaceHolders (Content2). Next, add the following markup to the Content3 Content

control (which references the LeftColumnContent ContentPlaceHolder):

<h3>Page-Specific Content</h3>

 This content is defined in the content page.

 The master page has two regions in the Web Form that are

editable on a page-by-page basis.

After adding this markup, visit the page through a browser. As Figure 3 shows, the markup
placed in the Content3 Content control is displayed in the left column beneath the News

section (circled in red). The markup placed in Content2 is displayed in the right portion of

the page (circled in blue).

Figure 03: The Left Column Now Includes Page-Specific Content Beneath the News

Section

Defining Content in Existing Content Pages
Creating a new content page automatically incorporates the ContentPlaceHolder control we
added in Step 1. But our two existing content pages - About.aspx and Default.aspx -

don't have a Content control for the LeftColumnContent ContentPlaceHolder. To specify

content for this ContentPlaceHolder in these two existing pages, we need to add a Content
control ourselves.

Unlike most ASP.NET Web controls, the Visual Web Developer Toolbox does not include a
Content control item. We can manually type in the Content control's declarative markup into
the Source view, but an easier and quicker approach is to use the Design view. Open the
About.aspx page and switch to the Design view. As Figure 4 illustrates, the

LeftColumnContent ContentPlaceHolder appears in the Design view; if you mouse over it,

the title displayed reads: "LeftColumnContent (Master)." The inclusion of "Master" in the
title indicates that there is no Content control defined in the page for this
ContentPlaceHolder. If there exists a Content control for the ContentPlaceHolder, as in the
case for MainContent, the title will read: "ContentPlaceHolderID (Custom)."

To add a Content control for the LeftColumnContent ContentPlaceHolder to About.aspx,

expand the ContentPlaceHolder's smart tag and click the Create Custom Content link.

Figure 04: The Design View for About.aspx Shows the LeftColumnContent

ContentPlaceHolder

Clicking the Create Custom Content link generates the necessary Content control in the
page and sets its ContentPlaceHolderID property to the ContentPlaceHolder's ID. For

example, clicking the Create Custom Content link for LeftColumnContent region in

About.aspx adds the following declarative markup to the page:

<asp:Content ID="Content3" runat="server"

contentplaceholderid="LeftColumnContent">

</asp:Content>

Omitting Content Controls
ASP.NET does not require that all content pages include Content controls for each and every
ContentPlaceHolder defined in the master page. If a Content control is omitted, the ASP.NET
engine uses the markup defined within the ContentPlaceHolder in the master page. This
markup is referred to as the ContentPlaceHolder's default content and is useful in scenarios
where the content for some region is common among the majority of pages, but needs to
be customized for a small number of pages. Step 3 explores specifying default content in
the master page.

Currently, Default.aspx contains two Content controls for the head and MainContent

ContentPlaceHolders; it does not have a Content control for LeftColumnContent.

Consequently, when Default.aspx is rendered the LeftColumnContent

ContentPlaceHolder's default content is used. Because we have yet to define any default
content for this ContentPlaceHolder, the net effect is that no markup is emitted for this
region. To verify this behavior, visit Default.aspx through a browser. As Figure 5 shows,

no markup is emitted in the left column beneath the News section.

Figure 05: No Content is Rendered for the LeftColumnContent ContentPlaceHolder

Step 3: Specifying Default Content in the
Master Page
Some website designs include a region whose content is the same for all pages in the site
except for one or two exceptions. Consider a website that supports user accounts. Such a
site requires a login page where visitors can enter their credentials to sign into the site. To
expedite the sign in process, the website designers might include username and password
textboxes in the upper left corner of every page to allow users to sign in without having to
explicitly visit the login page. While these username and password textboxes are helpful in
most pages, they are redundant in the login page, which already contains textboxes for the
user's credentials.

To implement this design, you could create a ContentPlaceHolder control in the upper left
corner of the master page. Each page that needed to display the username and password
textboxes in their upper left corner would create a Content control for this
ContentPlaceHolder and add the necessary interface. The login page, on the other hand,
would either omit adding a Content control for this ContentPlaceHolder or would create a
Content control with no markup defined. The downside of this approach is that we have to
remember to add the username and password textboxes to every page we add to the site
(except for the login page). This is asking for trouble. We're likely to forget to add these
textboxes to a page or two or, worse, we might not implement the interface correctly
(perhaps adding just one textbox instead of two).

A better solution is to define the username and password textboxes as the
ContentPlaceHolder's default content. By doing so, we only need to override this default
content in those few pages that do not display the username and password textboxes (the
login page, for instance). To illustrate specifying default content for a ContentPlaceHolder
control, let's implement the scenario just discussed.

Note: The remainder of this tutorial updates our website to include a login interface

in the left column for all pages but the login page. However, this tutorial does not

examine how to configure the website to support user accounts. For more

information on this topic, refer to my Forms Authentication, Authorization, User

Accounts and Roles tutorials.

Adding a ContentPlaceHolder and Specifying

Its Default Content
Open the Site.master master page and add the following markup to the left column

between the DateDisplay Label and Lessons section:

<asp:ContentPlaceHolder ID="QuickLoginUI" runat="server">

 <asp:Login ID="QuickLogin" runat="server"

 TitleText="<h3>Sign In</h3>"

 FailureAction="RedirectToLoginPage">

 </asp:Login>

</asp:ContentPlaceHolder>

After adding this markup your master page's Design view should look similar to Figure 6.

http://www.asp.net/learn/security/
http://www.asp.net/learn/security/
http://www.asp.net/learn/security/

Figure 06: The Master Page Includes a Login Control

This ContentPlaceHolder, QuickLoginUI, has a Login Web control as its default content. The

Login control displays a user interface that prompts the user for their username and
password along with a Log In button. Upon clicking the Log In button, the Login control
internally validates the user's credentials against the Membership API. To use this Login
control in practice, then, you need to configure your site to use Membership. This topic is
beyond the scope of this tutorial; refer to my Forms Authentication, Authorization, User

Accounts and Roles tutorials for more information on building a web application that
supports user accounts.

Feel free to customize the Login control's behavior or appearance. I have set two of its
properties: TitleText and FailureAction. The TitleText property value, which defaults

to "Log In", is displayed at the top of the control's user interface. I have set this property so
that it displays the text "Sign In" as an <h3> element. The FailureAction property

indicates what to do if the user's credentials are invalid. It defaults to a value of Refresh,

which leaves the user on the same page and displays a failure message within the Login
control. I've changed it to RedirectToLoginPage, which sends the user to the login page in

the event of invalid credentials. I prefer to send the user to the login page when a user
attempts to login from some other page, but fails, because the login page can contain
additional instructions and options that would not easily fit into the left column. For

example, the login page might include options to retrieve a forgotten password or to create
a new account.

http://www.asp.net/learn/security/
http://www.asp.net/learn/security/
http://www.asp.net/learn/security/

Creating the Login Page and Overriding the
Default Content
With the master page complete, our next step is to create the login page. Add an ASP.NET
page to your site's root directory named Login.aspx, binding it to the Site.master master

page. Doing so will create a page with four Content controls, one for each of the
ContentPlaceHolders defined in Site.master.

Add a Login control to the MainContent Content control. Likewise, feel free to add any

content to the LeftColumnContent region. However, make sure to leave the Content control

for the QuickLoginUI ContentPlaceHolder empty. This will ensure that the Login control

does not appear in the left column of the login page.

After defining the content for the MainContent and LeftColumnContent regions, your login

page's declarative markup should look similar to the following:

<%@ Page Language="C#" MasterPageFile="~/Site.master"

AutoEventWireup="true" CodeFile="Login.aspx.cs" Inherits="Login"

Title="Untitled Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"

 Runat="Server">

 <h2>

 Sign In</h2>

 <p>

 <asp:Login ID="Login1" runat="server" TitleText="">

 </asp:Login>

 </p>

</asp:Content>

<asp:Content ID="Content3" ContentPlaceHolderID="QuickLoginUI"

Runat="Server">

</asp:Content>

<asp:Content ID="Content4" ContentPlaceHolderID="LeftColumnContent"

Runat="Server">

 <h3>Sign In Tasks</h3>

 Create a New Account

 Recover Forgotten Password

<p>TODO: Turn the above text into links...</p>

</asp:Content>

Figure 7 shows this page when viewed through a browser. Because this page specifies a
Content control for the QuickLoginUI ContentPlaceHolder, it overrides the default content

specified in the master page. The net effect is that the Login control displayed in the master
page's Design view (see Figure 6) is not rendered in this page.

Figure 07: The Login Page Represses the QuickLoginUI ContentPlaceHolder's

Default Content

Using the Default Content in New Pages
We want to show the Login control in the left column for all pages except the Login page. To
achieve this, all the content pages except for the login page should omit a Content control
for the QuickLoginUI ContentPlaceHolder. By omitting a Content control, the

ContentPlaceHolder's default content will be used instead.

Our existing content pages - Default.aspx, About.aspx, and

MultipleContentPlaceHolders.aspx - do not include a Content control for QuickLoginUI

because they were created before we added that ContentPlaceHolder control to the master
page. Therefore, these existing pages do not need to be updated. However, new pages
added to the website include a Content control for the QuickLoginUI ContentPlaceHolder,

by default. Therefore, we have to remember to remove these Content controls each time we

add a new content page (unless we want to override the ContentPlaceHolder's default
content, as in the case of the login page).

To remove the Content control, you can either manually delete its declarative markup from
the Source view or, from the Design view, choose the Default to Master's Content link from
its smart tag. Either approach removes the Content control from the page and produces the
same net effect.

Figure 8 shows Default.aspx when viewed through a browser. Recall that Default.aspx

only has two Content controls specified in its declarative markup - one for head and one for

MainContent. As a result, the default content for the LeftColumnContent and

QuickLoginUI ContentPlaceHolders are displayed.

Figure 08: The Default Content for the LeftColumnContent and QuickLoginUI

ContentPlaceHolders are Displayed

Summary
The ASP.NET master page model allows for an arbitrary number of ContentPlaceHolders in

the master page. What's more, ContentPlaceHolders include default content, which is

emitted in the case that there is no corresponding Content control in the content page. In
this tutorial we saw how to include additional ContentPlaceHolder controls in the master
page and how to define Content controls for these new ContentPlaceHolders in both new
and existing ASP.NET pages. We also looked at specifying default content in a

ContentPlaceHolder, which is useful in scenarios where only a minority of pages needs to
customize the otherwise standardized content within a certain region.

In the next tutorial we'll examine the head ContentPlaceHolder in more detail, seeing how to

declaratively and programmatically define the title, meta tags, and other HTML headers on a
page-by-page basis.

Happy Programming!

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of 4GuysFromRolla.com,
has been working with Microsoft Web technologies since 1998. Scott works as an
independent consultant, trainer, and writer. His latest book is Sams Teach Yourself ASP.NET
2.0 in 24 Hours. Scott can be reached at mitchell@4GuysFromRolla.com or via his blog at
http://ScottOnWriting.NET.

Special Thanks To
This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial
was Suchi Banerjee. Interested in reviewing my upcoming MSDN articles? If so, drop me a
line at mitchell@4GuysFromRolla.com.

http://www.4guysfromrolla.com/ScottMitchell.shtml
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4GuysFromRolla.com
http://scottonwriting.net/
mailto:mitchell@4GuysFromRolla.com

