

World Class ARM Templates -

Considerations and Proven Practices

Marc Mercuri, Principal Program Manager,

Ulrich Homann, Distinguished Architect

George Moore, Principal Program Manager Lead

Reviewers ð Silvano Coriani, Rafael Godinho, Paige Lu, Rama Ramani, Jeremiah Talker, Arsen

Vladimirskiy, Tim Wieman , Geert Baeke

June 30, 2015

Executive summary

In our work with enterprises, system integrator (SIs), cloud service vendor (CSVs), and open source

software (OSS) project teams, itõs often necessary to quickly deploy environments, workloads, or

scale units. These deployments need to be supported , follow proven practices, and adhere to

identified policies. Using a flexible approach based on Microsoft Azure Resource Manager (ARM)

templates, you can deploy complex topologies quickly and consistently and then adapt these

deployments easily as core offerings evolve or to accommodate variants for outlier scenarios or

customers.

ARM templates combine the benefits of the underlying Azure Resource Manager with the

adaptability and readability of JavaScript Object Notation (JSON). Using ARM templates, you can:

¶ Deploy topologies and their workloads consistently.

¶ Manage all your resources in an application together using resource groups.

¶ Apply role-based access control (RBAC) to grant appropriate access to users, groups,

and services.

¶ Use tagging associations to streamline tasks such as billing roll ups.

This document provides details on consumption scenarios, architecture, and implementation

patterns identified during our design sessions and real-world template implementation s with

Azure Customer Advisory Team (AzureCAT) customers. Far from academic, these are proven

practices informed by the development of ARM templates for 12 of the top Linux-based OSS

technologies, including: Apache Kafka, Apache Spark, Cloudera, Couchbase, Hortonworks HDP,

DataStax Enterprise powered by Apache Cassandra, Elasticsearch, Jenkins, MongoDB, Nagios,

PostgreSQL, Redis, and Nagios. The majority of these templates were developed with a well-

known vendor of a given distribution and influenced by the requirements of Microsoftõs

enterprise and SI customers during recent projects.

This document shares these proven practices to help you architect world class ARM templates.

World Class Azure Resource Manager Templates ð Considerations and Proven Practices

ii

Contents
Common template consumption scenarios ... 3

Enterprises and System Integrators .. 3

Cloud service vendors .. 4

OSS projects ... 4

Key concepts and considerations ... 5

Identifying the outside vs. inside of a VM .. 5

Common Template Scopes .. 5

Choosing free-form vs. known configurations ... 6

Identifying resource groups ... 8

Deploying Multiple Instances .. 8

Understanding template linking .. 9

Using the concat() function ... 10

Tagging resources ... 12

Defining Dependencies ... 13

Resource Locking .. 17

Considerations for Handling State .. 18

Complex objects as a means for sharing state .. 18

Sharing state in .. 20

Sharing state out ... 25

Security Considerations ... 27

Secrets and Certificates ... 27

Assigning access with RBAC in Azure ... 29

Understanding network security groups ... 32

User Defined Routes .. 37

The template decomposition approach .. 39

Capacity and Capability Scoped Solution Templates ... 39

Capability Scoped Solution Template Example - Redis ... 47

Decomposition and End to End Solution Scoped Templates ... 48

Preparing Templates for the Marketplace .. 49

Contextual Examples ... 51

Moving a Capability Scoped Template into an End to End Solution Scoped Template 51

Creating an End to End Solution Template with Multiple Capability Scoped Templates 52

Creating an End to End Solution Scoped Template with Partial On/Off Pattern .. 53

Supporting Distinct Environments within a Subscription ... 53

Delivering Environments with Additional Customer Policy Constraints ... 57

Securing Resources from Internal Bad Actors ... 57

Enabling a òBring Your Own Subscriptionó Model .. 58

For more information ... 60

World Class ARM Templates ð Considerations and Proven Practices

3

Common template consumption scenarios

In our work with customers, we have identified a number of ARM template consumption

experiences across enterprises, System Integrators (SI)s, and CSVs. This section provides a

high-level overview of common scenarios and patterns for different customer types.

Enterprises and System Integrators

Within large organizations, we commonly see two consumers of ARM templates: internal

software development teams and corporate IT. The scenarios for the SIs weõve worked with

have mapped to those of Enterprises, so the same considerations apply.

Internal software development teams

If your team develops software to support your business, templates provide an easy way to

quickly deploy technologies for use in business-specific solutions. You can also use templates

to rapidly create training environments that enable team members to gain necessary skills.

You can use templates as-is or extend or compose them to accommodate your needs. Using

tagging within templates , you can provide a billing summary with various views such as team,

project, individual, and education.

Businesses often want software development teams to create a template for consistent

deployment of a solution while also offering constraints so certain items within that

environment remain fixed and canõt be overridden. For example, a bank might require an ARM

template to include RBAC so that a programmer canõt revise a banking solution to send data

to a personal storage account.

Corporate IT

Corporate IT organizations typically use ARM templates for delivering cloud capacity and

cloud-hosted capabilities.

Cloud capacity

A common way for corporate IT groups to provide cloud capacity for teams within their

organization is with òt-shirt sizesó, which are standard offering sizes such as small, medium,

and large. The t-shirt sized offerings can mix different resource types and quantities while

providing a level of standardization that makes it possible to use ARM templates. The

templates deliver capacity in a consistent way that enforces corporate policies and uses

tagging to provide chargeback to consuming organizations .

For example, you may need to provide development, test, or production environments within

which the software development teams can deploy their solutions. The environment has a

predefined network topology and elements which the software development teams cannot

change, such as rules governing access to the public internet and packet inspection. You may

also have organization-specific roles for these environments with distinct access rights for the

environment.

Cloud-hosted capabilities

You can use ARM templates to support cloud-hosted capabilities, including individual

software packages or composite offerings that are offered to internal lines of business. An

example of a composite offering would be analytics-as-a-serviceñanalytics, visualization, and

other technologiesñdelivered in an optimized, connected configuration on a predefined

network topology.

World Class ARM Templates ð Considerations and Proven Practices

4

Cloud-hosted capabilities are affected by the security and role considerations established by

the cloud capacity offering on which theyõre built as described above.

These capabilities are offered as is or as a managed service. For the latter, access-constrained

roles are required to enable access into the environment for management purposes.

Cloud service vendors

After talking to many CSVs, we have identified multiple approaches you can take to deploy

services for your customers and associated requirements.

CSV-hosted offering

If you host your offering in your own Azure subscription , two hosting approaches are

common: deploying a distinct deployment for every customer or deploying scale units that

underpin a shared infrastructure used for all customers.

¶ Distinct deployments for each customer. Distinct deployments per customer

require fixed topologies of different known configurations. These may have

different virtual machine (VM) sizes, varying numbers of nodes, and different

amounts of associated storage. Tagging of deployments is used for roll -up billing

of each customer. RBAC may be enabled to allow customers access to aspects of

their cloud environment.

¶ Scale units in shared multi -tenant environments. A template can represent a scale

unit for multi -tenant environment s. In this case, the same infrastructure is used to

support all customers. The deployments represent a group of resources that

deliver a level of capacity for the hosted offering, such as number of users and

number of transactions. These scale units are increased or decreased as demand

requires.

CSV offering injected into customer subscription

You may want to deploy your software into subscriptions owned by end customers. You can

use templates to deploy distinct deployments into a customerõs Azure account.

These deployments use RBAC so you can update and manage the deployment within the

customerõs account.

Azure Marketplace

If you want to advertise and sell your offerings through a marketplace, such as Azure

Marketplace, you can develop ARM templates to deliver distinct types of deployments that

will run in a customerõs Azure account. This distinct deployments can be typically described as

a t-shirt size (small, medium, large) , product/audience type (community, developer,

enterprise), or feature type (basic, high availability). In some cases, these types will allow you

to specify certain attributes of the deployment, such as VM type or number of disks.

OSS projects

Within open source projects, ARM templates enable a community to deploy a solution quickly

using proven practices. You can store templates in a GitHub repository so the community can

revise them over time. End users can then deploy these templates in their own Azure

subscriptions.

World Class ARM Templates ð Considerations and Proven Practices

5

Key concepts and considerations

This section identifies the thing s you need to know about ARM, the ARM template language,

and RBAC before continuing.

Identifying the o utside vs. inside of a VM

As you design your template, itõs helpful to look at the requirements in terms of whatõs

outside and inside of the virtual machines (VMs):

¶ Outside means the VMs and other resources of your deployment, such as the

network topology, tagging, references to the certs/secrets, and role-based access

control . All are part of your ARM template.

¶ For the VMõs insidesñthat is, the installed software and overall desired state

configurationñother mechanisms are used in whole or in part, such as VM

extensions or scripts. These may be identified and executed by the template but

arenõt in it .

Common examples of activities you would do òinside the boxó include -

Å Install or remove server roles and features

Å Install and configure software at the node or cluster level

Å Deploy websites on a web server

Å Deploy database schemas

Å Manage registry or other types of configuration settings

Å Manage files and directories

Å Start, stop, and manage processes and services

Å Manage local groups and user accounts

Å Install and manage packages (.msi, .exe, yum, etc.)

Å Manage environment variables

Å Run native scripts (Windows PowerShell, bash, etc.)

Desired State Configuration (DSC)

Thinking about the internal state of your VMs beyond deployment, youõll want to make sure

this deployment doesnõt òdriftó from the configuration that you have defined and checked

into source control. This ensures your developers or operations staff donõt manually make ad-

hoc changes to an environment that are not vetted, tested or recorded in source control. This

is important, because the manual changes are not in source control, they are also not part of

the standard deployment and will impact future automated deployments of the software.

Beyond your internal employees, desired state configuration is also important from a security

perspective. Hackers are regularly trying to compromise and exploit software systems. When

successful, its common to install files and otherwise change the state of a compromised

system. Using desired state configuration, you can identify deltas between the desired and

actual state and restore a known configuration.

There are resource extensions for the most popular mechanisms for DSC- PowerShell DSC ,

Chef, and Puppet. Each of these can deploy the initial state of your VM and also be used to

make sure the desired state is maintained.

Common Template Scopes

In our experience, weõve seen three key solution templates scopes emerge. These three

World Class ARM Templates ð Considerations and Proven Practices

6

scopes ð capacity, capability, and end to end solution ð are described in more detail below.

Capacity Scope

A capacity scope delivers a set of resources in a standard topology that is pre-configured to

be in compliance with regulations and policies. The most common example is deploying a

standard development environment in an Enterprise IT or SI scenario.

Capability Scope

A capability scope is focused on deploying and configuring a topology for a given technology.

Common scenarios including technologies such as SQL Server, Cassandra, Hadoop, etc.

End to End Solution Scope

An End to End SolutioN Scope is targeted beyond a single capability, and instead focused on

delivering an end to end solution comprised of multiple capabilities .

A solution scoped template scope manifests itself as a set of one or more capability scoped

templates with solution specific resources, logic, and desired state. An example of a solution

scoped template is an end to end data pipeline solution template that might mix solution

specific topology and state with multiple capability scoped solution templates such as Kafka,

Storm, and Hadoop.

Choosing free-form vs. known configurations

You might initially think a template should give consumers the utmost flexibility, but many

considerations affect the choice of whether to use free-form configurations vs. known

configurations. This section identifies the key customer requirements and technical

considerations that shaped the approach shared in this document.

Free-form configurations

On the surface, free-form configurations sound ideal. They allow you to select a VM type and

provide an arbitrary number of nodes and attached disks for those nodesñand do so as

parameters to a template. When you look closely, though, and consider templates that will

deploy multiple virtual machines of different sizes , additional considerations appear that make

the choice less appropriate in a number of scenarios.

In the article Virtual Machine and Cloud Service Sizes for Azure1 on the Azure website, the

different VM types and available sizes are identified , and each of the number of durable disks

(2, 4, 8, 16, or 32) that can be attached. Each attached disk provides 500 IOPS and multiples of

these disks can be pooled for a multiplier of that number of IOPS. For example, 16 disks can

be pooled to provide 8 ,000 IOPS. Pooling is done with configuration in the operating system,

using Microsoft Windows Storage Spaces or redundant array of inexpensive disks (RAID) in

Linux.

A free-form configuration enable s the selection of a number of VM instances, a number of

different VM types and sizes for those instances, a number of disks that can vary based on the

VM type, and one or more scripts to configure the VM contents.

It is common that a deployment may have multiple types of nodes, such as master and data

nodes, so this flexibility is often provided for every node type.

As you start to deploy clusters of any significance, you begin to work with multiples of all of

1 http://msdn.microsoft.com/library/azure/dn641267.aspx

https://msdn.microsoft.com/en-us/library/azure/dn197896.aspx

World Class ARM Templates ð Considerations and Proven Practices

7

these. If you were deploying a Hadoop cluster, for example, with 8 master nodes and 200 data

nodes, and pooled 4 attached disks on each master node and pooled 16 attached disks per

data node, you would have 208 VMs and 3,232 disks to manage.

A storage account will throttle requests above its identified 20,000 transactions/second limit,

so you should look at storage account partitioning and use calculations to determine the

appropriate number of storage accounts to accommodate this topology. Given the multitude

of combinations supported by the free -form approach, dynamic calculations are required to

determine the appropriate partitioning. The ARM Template Language does not presently

provide mathematical functions, so you must perform these calculations in code, generating a

unique, hard-coded template with the appropriate details.

In enterprise IT and SI scenarios, someone must maintain the templates and provide support

for the deployed topologies for one or more organizations . This additional overheadñ

different configurations and templates for each customerñis far from desirable.

You can use these templates to deploy environments in your customerõs Azure subscription,

but both corporate IT teams and CSVs typically deploy them into their own subscriptions ,

using a chargeback function to bill their customers. In these scenarios, the goal is to deploy

capacity for multiple customers across a pool of subscriptions and keep deployments densely

populated into the subscriptions to minimize subscription sprawlñthat is, more subscriptions

to manage. With truly dynamic deployment sizes, achieving this type of density requires

careful planning and additional development for scaffolding work on behalf of the

organization.

In addition, you canõt create subscriptions via an API call but must do so manually through the

portal. As the number of subscriptions increases, any resulting subscription sprawl requires

human interventionñit canõt be automated. With so much variability in the sizes of

deployments, you would have to pre-provision a number of subscriptions manually to ensure

subscriptions are available.

Considering all these factors, a truly free-form conf iguration is less appealing than at first

blush.

Known configurationsðthe t-shirt sizing approach

Rather than offer a template that provides total flexibility and countless variations , in our

experience a common pattern is to provide the ability to select known configurationsñin

effect, standard t-shirt sizes such as sandbox, small, medium, and large. Other examples of t-

shirt sizes are product offerings, such as community edition or enterprise edition. In other

cases, it may be workload specific configurations of a technology ð such as map reduce or no

sql.

Many enterprise IT organizations, OSS vendors, and SIs make their offerings available today in

this way in on-premises, virtualized environments (enterprises) or as software-as-a-service

(SaaS) offerings (CSVs and OSVs).

This approach provides good, known configuration s of varying sizes that are preconfigured

for customers. Without known configurations, end customers must determine cluster sizing

on their own, factor in platform resource constraints, and do math to identify the resulting

partitioning of storage accounts and other resources (due to cluster size and resource

constraints). Known configurations enable customers to easily select the right t-shirt sizeñ

that is, a given deployment . In addition to making a better experience for the customer, a

small number of known configurations is easier to support and can help you deliver a higher

level of density.

A known configuration approach focused on t -shirt sizes may also have varying number of

nodes within a size. For example, a small t-shirt size may be between 3 and 10 nodes. The t-

World Class ARM Templates ð Considerations and Proven Practices

8

shirt size would be designed to accommodate up to 10 nodes and provide the consumer the

ability to make free form selections up to the maximum size identified.

A t-shirt size based on workload type, may be more free form in nature in terms of the

number of nodes that can be deployed but will have workload distinct node size and

configuration of the software on the node.

T-shirt sizes based on product offerings, such as community or Enterprise, may have distinct

resource types and maximum number of nodes that can be deployed, typically tied to

licensing considerations or feature availability across the different offerings.

You can also accommodate customers with unique variants using the JSON-based templates.

When dealing with outliers, you can incorporate the appropriate planning and considerations

for development, support, and costing.

Identifying r esource groups

Resource groups enable you to manage all your resources in an application together. A

resource group might include all the resources for an application or only those that are

logically grouped together.

Consider these important factors when defining your resource group:

¶ All the resources in your group must share the same lifecycle. You will deploy,

update, and delete them together. If one resource, such as a database server,

needs to exist on a different deployment cycle, it should be in another resource

group.

¶ Each resource can exist in only one resource group.

¶ You can add or remove a resource to or from a resource group at any time.

¶ A resource group can contain resources that reside in different regions.

¶ A resource group can be used to scope access control for administrative actions.

When defining your resource groups, itõs important to consider your deployment lifecycle

(how you deploy, update, delete).

For example, if you have parts of your solution which have different lifecycles, you may choose

to deploy them using di fferent resource groups. If youõre using an on/off pattern but keeping

one resource alive, you may still use a single resource group but apply a resource lock on the

single resource to avoid it being deleted. More details on resource locks and this scenario can

be found later in the document.

If sections of your application must have constraints that identify distinct roles that can create,

update, or delete your resources, this may be another area where you may choose to utilize

different resource groups. Additional details on role based access control generally and this

scenario specifically canbe found later in the document.

Deploying Multiple Instances

It is very common that youõll want to deploy multiple instances of a given resource. For

example, your front end may have multiple web servers, your Hadoop cluster will have

multiple data nodes, etc.

Within ARM, resource looping provides the ability to deploy a number of instances of a given

resource type. A copy property is attached to a resource, and the loop is provided both a

name and count values, the latter indicating how many of the resource should be deployed.

World Class ARM Templates ð Considerations and Proven Practices

9

You can use the copyindex syntax in a template to provide details about the current index of

the loop being executedñfor example, to provide unique values to variables and pointers to

specific linked templates.

This example shows the count property in context:

"name": "[concat(variables('vmName'), copyindex(), '/install_postgresql')]",

"apiVersion": "2015 - 05- 01- preview",

"location": "[var iables('region')]",

"dependsOn": [

"[concat('Microsoft.Compute/virtualMachines/', variables('vmName'),

copyindex())]"

],

"copy": {

"name": "scriptCopyLoop",

"count": "[variables('vmCount')]"

},

When in a resource loop, the copyIndex syntax identifies the location within the loop. As the

example below illustrates, this syntax is often used with concatenation to provide names for a

resource.

"[concat('Microsoft.Compute/virtualMachines/', variables('vmName'),

copyindex())]"

copyIndex also allows you to provide an integer value as a parameter, creating an offset that

is used for the index. For example, copyIndex(10) will return the 0-bound index of the

resource plus the offset 10 so the loop will generate values 10, 11, 12, 13, 14, etc.

Understanding template linking

Template linking enables you to link to and execute another template. It enables you to

decompose your deployment into a set of targeted , purpose-specific templates. Just as with

decomposing an application into a number of code classes, decomposition provides benefits

in terms of testing, re-use, and readability.

Parameters can be passed from a source template to a linked template, and those parameters

can directly map to parameters exposed by the calling template, static variables, or variables

generated dynamically using a mix of static and previously provided parameters. The linked

template can also pass an output variable back to the source template, enabling a two-way

data exchange between templates.

You identify the lo cation of a linked template in the URI property of the templateLink

property.The example below shows a fixed variable, sharedResourcesTemplateUrl, that

provides the URL for a linked template. It also shows how parameters from the source

template are sent to the linked template.

{

"name": "shared",

"type": "Microsoft.Resources/deployments",

"apiVersion": "2015 - 01- 01",

"properties": {

"mode": "Incremental",

"templateLink": {

"uri": "[variables('sharedResourcesTemplateUrl')]",

"contentVersion": "1.0.0.0"

},

World Class ARM Templates ð Considerations and Proven Practices

10

" parameters": {

"storageSettings": {

"value": "[variables('tshirtSize').storage]"

},

"region": {

"value": "[parameters('region')]"

},

"networkSettings": {

"value": "[variables('networkSettings')]"

},

"availabilitySetSettings": {

"value": "[variables('availabilitySetSettings')]"

}

}

}

},

Using the concat() function

ARM Template Language provides the concat() function for concatenating multiple strings. In

our template decomposition approach, we use it for two significant purposes:

¶ Providing unique names for resources.

¶ Dynamically identifying templates to link to.

Creating unique resource names

The copyIndex () function is often used with concat to take a base name and append it with

the current index. In the example below, it takes the value of another parameter,

publicIPNamePrefix , and combines it with the current index to generate resource names. For

example, if publicIPNamePrefix is cloudfe, enabling resource names such as cloudfe1,

cloudfe2, and so on.

"name" : "[concat(parameters('publicIPNamePrefix'), copyIndex())]"

Defining appropriate linked template names

The concat() function is also used heavily when defining the appropriate name of templates

to link to. The most common example is to take the known configu ration type being

requested by the template consumer, then generating a variable that contains the appropriate

URI for that template.

This example shows how concat is first used to define a URL for the VM template that is used

in t-shirt sizes of small, medium, and large:

"tshirtSizeSmall": {

 "vmSize": "Standard_A1",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 2disk -

resources.json')]",

 "vmCount": 2,

 "slaveCount": 1,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 1,

 "pool": "db",

World Class ARM Templates ð Considerations and Proven Practices

11

 "map": [0,0],

 "jumpbox": 0

 }

 },

 "tshirtSizeMedium": {

 "vmSize": "Standard_A3",

 "diskSize": 1023,

 "vmTempla te": "[concat(variables('templateBaseUrl'), 'database - 8disk -

resources.json')]",

 "vmCount": 2,

 "slaveCount": 1,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 2,

 "pool": "db",

 "map": [0,1],

 "jumpbox": 0

 }

 },

 "tshirtSizeLarge": {

 "vmSize": "Standard_A4",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 16disk -

resources.json')]",

 "vmCount": 3,

 "slaveCount": 2,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 2,

 "pool": "db",

 "map": [0,1,1],

 "jumpbox": 0

 }

 },

Later in the template, a tshirtSize variable is dynamically created and takes the size provided

for the template (Small, Medium or Large), concatenates it with the prefix tshirtSize, and

assigns the appropriate tshirtSize variable (tshirtSizeSmall, tshirtSizeMedium ,

tshirtSizeLarge) to the tshirtSize variable. This tshirtSize variable is then used later in the

template for template linking.

"tshirtSize": "[variables(concat('tshirtSize', parameters('tshirtSize')))]",

When slave nodes are defined later in the template, you can see that the vmTemplate

property of the tshirtSize variable is provided as the uri property of templateLink .

 {

 "name": "slave - node",

 "type": "Microsoft.Resources/deployments",

 "apiVersion": "2015 - 01- 01",

 "dependsOn": [

 "[concat('Microsoft.Resou rces/deployments/', 'master - node')]"

],

 "properties": {

World Class ARM Templates ð Considerations and Proven Practices

12

 "mode": "Incremental",

 "templateLink": {

 "uri": "[variables('tshirtSize').vmTemplate]",

 "contentVersion": "1.0.0.0"

 },

 "parameters": {

 "adminPassword": {

 "value": "[parameters('adminPassword')]"

 },

 "replicatorPassword": {

 "value": "[parameters('replicatorPassword')]"

 },

 "osSettings": {

 "value": "[variabl es('osSettings')]"

 },

 "subnet": {

 "value": "[variables('networkSettings').subnets.data]"

 },

 "commonSettings": {

 "value": {

 "region": "[parameters('region')]",

 "admi nUsername": "[parameters('adminUsername')]",

 "namespace": "sl"

 }

 },

 "storageSettings": {

 "value":"[variables('tshirtSize').storage]"

 },

 "machineSettings": {

 "value": {

 "vmSize": "[variables('tshirtSize').vmSize]",

 "diskSize": "[variables('tshirtSize').diskSize]",

 "vmCount": "[variables('tshirtSize').slaveCount]",

 "availabilitySet": "[variables ('availabilitySetSettings').name]"

 }

 },

 "masterIpAddress": {

 "value": "[reference('master - node').outputs.masterip.value]"

 },

 "dbType": {

 "value": "SLAVE"

 }

 }

 }

 },

Tagging resources

With ARM you can tag resources with up to 15 key/value pairs to further categorize and view

them across resource groups and, within the portal, and across subscriptions.

Tagging provides you the ability to include metadata ab out your resource. Common use

cases are to include references to environment types (development, test, production, etc.),

team or division (finance, HR, etc.), individuals accountable (John, Sally, Chris, etc.), project

World Class ARM Templates ð Considerations and Proven Practices

13

name, system name or internal chargeback ID. The benefit of tags is that they can be pulled

together in billing roll up or within a summary view.

The following template excerpt contains JSON that describes tags for a resource that specify

the environment type, project name and internal b illing chargeback ID. The values for these

are passed in via parameters to make this template more re-usable and of higher value for

Systems Integrators, Corporate IT, and Cloud Service Vendors. This approach enables them to

use the same template to deploy capacity or capabilities for a multitude of customers that

each will have distinct values for these tags. x

"tags": {

"ChargebackID": "[parameters(chargebackID)]",

"ProjectName": "[parameters(projectName)]",

"EnvironmentType" :"[parameters('environme ntType')]"

},

Tags should not be used to provide metadata that you will use to identify and query links

between resources. The next section, òDefining Dependenciesó, will provide more context and

guidance for that use case.

Defining Dependencies

For a given resource, there can be multiple upstream and child dependencies that are critical

to the success of your topology. You can define dependencies on other resources using

dependsOn and resources property of a resource. A dependency can also be specified using

the reference function .

{

 "name": "<name - of - the - resource>",

 "type": "<resource - provider - namespace/resource - type - name>",

 "apiVersion": "<supported - api - version - of - resource>",

 "location": "<location - of - resource>",

 "tags": { < name- value - pairs - for - resource - tagging> },

 "dependsOn": [<array - of - related - resource - names>],

 "properties": { <settings - for - the - resource> },

 "resources": { <dependent - resources> },

}

There are also resource links which can define relationships between resources, and support

defining these relationships across resource groups.

This section provides background on each of these features and guidance on how to identify

if one or more are appropriate for your design.

dependsOn

For a given VM, you may be dependent on having a database resource successfully

provisioned. In another case, you may be dependent for multiple nodes in your cluster to be

installed before deploying a VM with the cluster management tool.

Within your template, the dependsOn property provides the ability to define this dependency

for a resource. Itõs value can be a comma separated list of resource names. The dependencies

between resources are evaluated and resources are deployed in their dependent order. When

resources are not dependent on each other, they are attempted to be deployed in parallel.

While you may be inclined to use dependsOn to map dependencies between your resources,

World Class ARM Templates ð Considerations and Proven Practices

14

itõs important to understand why youõre doing it because it can impact the performance of

your deployment. For example, if youõre doing this because you want to document how

resources are interconnected, dependsOn is not the right approach. The lifecycle of

dependsOn is just for deployment and is not available post-deployment. Once deployed there

is no way to query these dependencies. By using dependsOn you run the risk of impacting

performance where you may inadvertently distract the deployment engine from using

parallelism where it might have otherwise. To document and provide query capabililty over

the relationships between resources, you should instead use resource linking, which is

described later in this document.

This element is not needed if the reference function is used to get a representation of a

resource because a reference object implies a dependency on the resource. In fact, if there is

an option to use a reference vs. dependsOn, the guidance is to use the reference function and

have implicit references. The rationale here again is performance. References define implicit

dependencies that are known to be required as theyõre referenced within the template. By

their presence, they are relevant, avoiding again optimizing for performance and to avoid the

potential risk of distracting the deployment engine from avoiding parallelism unnecessarily.

resources

The resources property allows you to specify child resources that depend on the resource

being defined. Resource dependencies can only be defined 5 levels deep.

The resource section is also where resource links, described later in this section, are defined.

reference function

The reference function enables an expression to derive its value from other JSON name and

value pairs or runtime resources. Reference expressions implicitly declare that one resource

depends on another. The property represented by propertyPath below is optional, if it is not

specified, the reference is to the resource.

reference('resourceName').propertyPath

You can use either this element or the dependsOn element to specify dependencies, but you

do not need to use both for the same dependent resource. The guidance is to use the implicit

reference to avoid the risk of inadvertently having an unnecessary dependsOn element stop

the deployment engine from doing aspects of the deployment in parallel.

Resource Linking

Post-deployment, there is a desire to be able to query the relationship or links between

resources. Dependencies inform deployment, but their lifecycle ends at deployment. Once

deployment is compelte, there is no identified relationship between resources.

Tags were being used in different ways, such as facilitating roll up billing for a project or a

department, and some customers expressed interest in using tags to identify the relationships

between resources. While relationships could be stored in tags, but being totally free form

makes it a less desirable choice.

Instead, a new feature called Resource Linking was included in ARM. Resource Linking

provides the ability to establish and query relationsh ips between resources in ARM. For

example, being able to determine what resources are linked to a resource or which resources

are linked from a resource.

World Class ARM Templates ð Considerations and Proven Practices

15

The scope for a resource link can be a subscription, resource group or a specific resource. This

means that resource links can document relationships that span across resource groups. As

you begin to decompose your solution into multiple templates and multiple resource groups,

having a mechanism to identify these resource links proves to be useful.

The JSON code block below provides a real world example of resource linking. It shows the

creation of a resource of type òMicrosoft.AppService/apiappsó and establishes a set of

unidirection relationships to a website, a notification hub, and SQL databases.

{

 "$schema": "http://schemas.management.azure.com/schemas/2014 - 04- 01-

preview/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "$system": {

 "type": "Object"

 }

 },

 "resources": [

 {

 "apiVersion": "2014 - 11- 01",

 "type": "Microsoft.Web/sites",

 "name": "[parameters('$system').siteName]",

 "location": "[parameters('$system').location]",

 "resources": [

 {

 "apiVersion": "2014 - 11- 01",

 "name": "appsettings",

 "type": "config",

 "dependsOn": [

"[resourceId('Microsoft.NotificationHubs/namespaces/NotificationHubs ',

variables('notificationHubNamespace'), variables('notificationHubName'))]"

],

 "properties": {

 "MS_MobileServiceName":

"[parameters('$system').apiAppName]",

 "MS_Notif icationHubName":

"[variables('notificationHubName')]",

 "MS_NotificationHubConnectionString":

"[listkeys(resourceId('Microsoft.NotificationHubs/namespaces/notificationHubs/aut

horizationRules', variables('notificationHubNamespace'),

variables('notificationHubName'), 'DefaultFullSharedAccessSignature'), '2014 - 09-

01').primaryConnectionString]"

 }

 }

]

 },

 {

 "apiVersion": "[parameters('$system').apiVersion]",

 "type": "Microsoft.AppService/apiapps",

 "name": "[parameters('$system').apiAppName]",

 "properties": {

World Class ARM Templates ð Considerations and Proven Practices

16

 "accessLevel": "PublicAnonymous"

 },

 "resources": [

 {

 "apiVersion": "2015 - 01- 01",

 "type": "providers/links",

 "name": "Microsoft.Resources/mobile - codesite",

 "dependsOn": [

 "[resourceId('Microsoft.AppService/ apiapps',

parameters('$system').apiAppName)]",

 "[resourceId('Microsoft.Web/Sites',

variables('userSiteName'))]"

],

 "properties": {

 "targetId": "[resourceId('Microsoft.W eb/sites',

variables('userSiteName'))]"

 }

 },

 {

 "apiVersion": "2015 - 01- 01",

 "type": "providers/links",

 "name": "Microsoft.Resources/mobile - notifi cationhub",

 "dependsOn": [

 "[resourceId('Microsoft.AppService/apiapps',

parameters('$system').apiAppName)]",

"[resourceId('Microsoft.NotificationHubs/namespaces/NotificationHubs',

variable s('notificationHubNamespace'), variables('notificationHubName'))]"

],

 "properties": {

 "targetId":

"[resourceId('Microsoft.NotificationHubs/namespaces/NotificationHubs',

variables('notification HubNamespace'), variables('notificationHubName'))]"

 }

 },

 {

 "apiVersion": "2015 - 01- 01",

 "type": "providers/links",

 "name": "Microsoft.Resources/m obile - sqlserver",

 "dependsOn": [

 "[resourceId('Microsoft.AppService/apiapps',

parameters('$system').apiAppName)]"

],

 "properties": {

 "targetId": "[concat('/subscriptions/',

parameters('userDatabase').subscriptionId, '/resourcegroups/',

parameters('userDatabase').resourceGroupName,

'/providers/Microsoft.Sql/servers/', parameters('userDatabase').serverName)]"

 }

 },

 {

 "apiVersion": "2015 - 01- 01",

 "type": "providers/links",

 "name": "Microsoft.Resources/mobile - sqldb",

 "dependsOn": [

World Class ARM Templates ð Considerations and Proven Practices

17

 "[resourceId('Microsoft.AppService/apiapps',

parameters('$system').apiAppName)]"

],

 "properties": {

 "targetId": "[concat('/subscriptions/',

parameters('userDatabase').subscript ionId, '/resourcegroups/',

parameters('userDatabase').resourceGroupName,

'/providers/Microsoft.Sql/servers/', parameters('userDatabase').serverName,

'/databases/', parameters('userDatabase').databaseName)]"

 }

 }

]

 }

]

}

Resource Locking

As an administrator, there are scenarios where you will want to place a lock on a resource or

resource group. Specifically, you may want to constrain the ability to commit write actions

and protect against accidental deletions.

Azure Resource Manager provides this ability via resource locks, which are resources

themselves. Resource locks are policies which enforce a òlock leveló at a particular scope. The

lock level identifies the type of enforcement for the pol icy, which presently has two values ð

òCanNotDeleteó and òReadOnly.ó The scope is expressed as a URI and can be either a resource

or a resource group.

One common scenario is where you may have a deployment where much of it is used in an

off and on pattern. VM resources are turned on periodically to process data for a given

interval of time and is then turned off. òTurn offó in reality is focused on no longer using VM

resources but the storage would be kept constantly. In this scenario, you will want to enable

the shut down of the VMs but it is imperative that the storage account not be deleted. In this

scenario, you would use a resource lock with a lock level of òCanNotDelete.ó

The òReadOnlyó lock level, this stops creation or updates. Your business will have a lifecycle

and there will be periods of time where you wonõt want updates going into production. If

youõre a retail company, you may not want to allow updates to occur during holiday shopping

periods. If youõre a financial services company you may have constraints related to

deployments during certain pre, during, and post market hours. A resource lock can provide a

policy to lock the resources as appropriate. This could be applied to just certain resources or

to t he entirety of the resource group.

The example below is a sample standalone template that creates a lock on a storage account.

The storage account on which to apply the lock is provided as a parameter, and that is used in

conjunction with the concat() function. The result is the resource name appended with

ôMicrosoft.Authorizationõ and then a name of the lock, in this case òmyLock.ó

The type provided is specific to the resource type. For storage this is

òMicrosoft.Storage/storageaccounts/providers/locksó

The scope level is set using the òleveló property of the resource. As the example is focused on

helping avoid accidental deletion, the level is set as òCannotDeleteó

{

World Class ARM Templates ð Considerations and Proven Practices

18

 "$schema": "https://schema.management.azure.com/schemas/2015 - 01-

01/deploymentTemp late.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "lockedResource": {

 "type": "string"

 }

 },

 "resources": [

 {

 "name": "[concat(parameters('lockedResource'),

'/Microsoft.Authorization/myLock')]",

 "type": "Microso ft.Storage/storageAccounts/providers/locks",

 "apiVersion": "2015 - 01- 01",

 "properties": {

 "level": "CannotDelete"

 }

 }

]

}

Considerations for Handling State

This section describes how to use complex objects for managing and sharing state within a

template and across linked templates.

Complex objects as a means for sharing state

In addition to single value parameters or variables such as region or adminUserName , the

ARM Template Language supports complex objects.

In a decomposed template approach, you can use complex objects to implement and

reference collections of data for a specific area such as t-shirt size, network settings, operating

system (OS) settings, and availability settings.

Examples of complex objects for each of these areas can be found below.

 "tshirtSizeLarge": {

 "vmSize": "Standard_A4",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 16disk -

resources.json')]",

 "vmCount": 3,

 "slaveCount": 2 ,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 2,

 "pool": "db",

 "map": [0,1,1],

 "jumpbox": 0

 }

 },

 "osSettings": {

 "scripts": [

 "[concat(variables('templa teBaseUrl'), 'install_postgresql.sh')]",

World Class ARM Templates ð Considerations and Proven Practices

19

 "https://raw.githubusercontent.com/Azure/azure - quickstart -

templates/master/shared_scripts/ubuntu/vm - disk - utils - 0.1.sh"

],

 "imageReference": {

 "publisher": "Canonical",

 "offer": "U buntuServer",

 "sku": "14.04.2 - LTS",

 "version": "latest"

 }

 },

 "networkSettings": {

 "vnetName": "[parameters('virtualNetworkName')]",

 "addressPrefix": "10.0.0.0/16",

 "subnets": {

 "dmz": {

 "name": "dmz",

 "prefix": "10.0.0.0/24",

 "vnet": "[parameters('virtualNetworkName')]"

 },

 "data": {

 "name": "data",

 "prefix": "10.0.1.0/24",

 "vnet": "[parameters('virtualNetworkName')]"

 }

 }

 },

 "availabilitySetSettings": {

 "name": "pgsqlAvailabilitySet",

 "fdCount": 3,

 "udCount": 5

 }

You can then reference these variables later on in the template when linking to other

templates. The ability to reference named variables and their properties makes the template

cleaner, and easy-to-understand variable names make it straightforward to understand

context.

 "name": "master - node",

 "type": "Microsoft.Resources/deployments",

 "apiVersio n": "2015 - 01- 01",

 "dependsOn": [

 "[concat('Microsoft.Resources/deployments/', 'shared')]"

],

 "properties": {

 "mode": "Incremental",

 "templateLink": {

 "uri": "[variables('tshirtSize').vmTemplate]",

 "contentVersion": "1.0.0.0"

 },

 "parameters": {

 "adminPassword": {

 "value": "[parameters('adminPassword')]"

 },

 "replicatorPassword": {

 "value": "[parameters('replicatorPassword')]"

World Class ARM Templates ð Considerations and Proven Practices

20

 },

 "osSettings": {

 "value": "[variables('osSettings')]"

 },

 "subnet": {

 "value": "[variables('networkSettings').subnets.data]"

 },

 "commonSettings": {

 "value" : {

 "region": "[parameters('region')]",

 "adminUsername": "[parameters('adminUsername')]",

 "namespace": "ms"

 }

 },

 "storageSettings": {

 "value":"[variables('tshirtSize').storage]"

 },

 "machineSettings": {

 "value": {

 "vmSize": "[variables('tshirtSize').vmSize]",

 "diskSize": "[variables('tshirtSize').diskSize]",

 "vmCount": 1,

 "availabilitySet": "[variables('availabilitySetSettings').name]"

 }

 },

 "masterIpAddress": {

 "value": "0"

 },

 "dbType": {

 "value": "MASTER"

 }

 }

 }

 }

Sharing state in

You can share state information into the decomposed template model in two ways. The first is

through parameters that are passed by the initial template consumer into the main template.

The other is how the main template and its linked templates pass a mix of the initial

parameters, static variables, and generated variables downstream.

Common parameters provided by the template consumer

We often see similar parameters provided to the main template. Table 1 lists the most

commonly seen parameters used by template consumers.

Table 1. Commonly used parameters passed to the main template

Name Value Description

location String from a

constrained list of

Azure regions

The location where the resources will be

deployed.

storageAccountNamePrefix String Unique DNS name for the Storage Account

where the VMõs disks will be placed

World Class ARM Templates ð Considerations and Proven Practices

21

domainName String Domain name of the publicly accessible

jumpbox VM in the format:

{doma inName}.{location}.cloudapp.co

m

For example:

mydomainname.westus.cloudapp.azure.

com

adminUsername String Username for the VMs

adminPassword String Password for the VMs

tshirtSize String from a

constrained list of

offered t -shirt

sizes

The named scale unit size to provision. For

example, òSmalló, òMediumó, òLargeó

virtualNetworkName String Name of the virtual network that the

consumer wants to use.

enableJumpbox String from a

constrained list

(enabled/disabled)

Parameter that identifies whether to enable

a jumpbox for the environment.

Values: òenabledó, òdisabledó

Parameters sent to linked templates

When connecting to linked templates, you will often use a mix of static and generated

variables.

Static variables

Static variables are often used to provide base values, such as URLs, that are used throughout

a template or as values that are used to compose values for dyamic variables.

In the template excerpt below, templateBaseUrl specifies the root location for the template in

GitHub. The next line builds a new variable sharedTemplateUrl that concatenates the value of

templateBaseUrl with the known name of the shared resources template. Below that, a

complex object variable is used to store a t-shirt size, where the templateBaseUrl is

concatenated to specify the known configuration template location stored in the vmTemplate

property.

The benefit of this approach is you can easily move, fork, or use the template as a base for a

new one. If the template location changes, you only need to change the static variable in the

one placeñthe main templateñwhich passes it throughout the decomposed template.

 "templateBaseUrl": "https://raw.githubusercontent.com/Azure/azure - quickstart -

templates/master/postgresql - on- ubuntu/",

 "sharedTempla teUrl": "[concat(variables('templateBaseUrl'), 'shared -

resources.json')]",

 "tshirtSizeSmall": {

 "vmSize": "Standard_A1",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 2disk -

resources.json')]",

 "vmCount": 2,

 "slaveCount": 1,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

World Class ARM Templates ð Considerations and Proven Practices

22

 "count": 1,

 "pool": "db",

 "map": [0,0],

 "jumpbox": 0

 }

Generated variables

In addition to static variables, a number of variables are generated dynamically. This section

identifies some of the common types of generated variables.

tshirtSize

When calling the main template (azuredeploy.json), you can select a t-shirt size from a

fixed number of options, which typically include values such as Small, Medium, and Large.

In the main template, this option appears in a parameter such as tshirtSize as shown:

 "tshirtSize": {

 "type": "string",

 "defaultValue": "Small",

 "allowedValues": [

 "Small",

 "Medium",

 "Large"

],

 "metadata": {

 "Description": "T - shirt size of the MongoDB deployment"

 }

 }

Within the main template, variables correspond to each of the sizes. For example, if the

available sizes are small, medium, and large, the variables section would include variables

named tshirtSizeSmall , tshirtSizeMedium , and tshirtSizeLarge .

As the following example shows, these variables define the properties of a particular t-

shirt size. Each identifies the VM type, disk size, associated scale unit resource template to

link to, number of instances, storage account details, and jumpbox status.

The storage account name prefix is taken from a parameter supplied by a user, and the

linked template is th e concatenation of the base URL for the template and the filename of

a specific scale unit resource template.

 "tshirtSizeSmall": {

 "vmSize": "Standard_A1",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'databa se - 2disk -

resources.json')]",

 "vmCount": 2,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 1,

 "pool": "db",

 "map": [0,0],

 "jumpbox": 0

 }

 },

 "tshirtSizeMedium": {

 "vmSize": "Standard_A3",

World Class ARM Templates ð Considerations and Proven Practices

23

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 8disk -

resources.json')]",

 "vmCount": 2,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 2,

 "pool": "db",

 "map": [0,1],

 "jumpbox": 0

 }

 },

 "tshirtSizeLarge": {

 "vmSize": "Standard_A4",

 "diskSize": 1023,

 "vmTemplate": "[concat(variables('templateBaseUrl'), 'database - 16disk -

resourc es.json')]",

 "vmCount": 3,

 "storage": {

 "name": "[parameters('storageAccountNamePrefix')]",

 "count": 2,

 "pool": "db",

 "map": [0,1,1],

 "jumpbox": 0

 }

 }

The tshirtSize variable appears further down in the variables section. The end of the t-

shirt size you provided (Small, Medium, Large) is concatenated with the text tshirtSize to

retrieve the associated complex object variable for that t-shirt size:

 "tshirtSize": " [variables(concat('tshirtSize',

parameters('tshirtSize')))]",

This variable is passed to the linked scale unit resource template.

networkSettings

In a capacity, capability, or end to end scoped solution template , the linked templates

typically create resources that exist on a network. One straightforward approach is to use

a complex object to store network settings and pass them to linked templates.

An example of communicating network settings can be seen below.

 "networkSettings": {

 "vnetName": "[parameters('virtualNetworkName')]",

 "addressPrefix": "10.0.0.0/16",

 "subnets": {

 "dmz": {

 "name": "dmz",

 "prefix": "10.0.0.0/24",

 "vnet": "[parameters('virtualNetworkName')]"

 },

 "data": {

 "name": "data",

 "prefix": "10.0.1.0/24",

 "vnet": "[parameters('virtualNetworkName')]"

World Class ARM Templates ð Considerations and Proven Practices

24

 }

 }

 }

availabilitySettings

Resources created in linked templates are often placed in an availability set. In the

following example, the availability set name is specified and also the fault domain and

update domain count to use.

 "availabilitySetSettings": {

 "name": "pgsqlAvailabilitySet",

 "fdCount": 3,

 "udCount": 5

 }

If you need multiple availability setsñone for master nodes, for example, and another for

data nodesñyou can use a name as a prefix, specify multiple availability sets, or follow

the model shown earlier for creating a variable for a specific t-shirt size.

storageSettings

Storage details are often shared with linked templates. In the example below, a

storageSettings object provides details about the storage account and contain er names.

"storageSettings": {

 "vhdStorageAccountName": "[parameters('storageAccountName')]",

 "vhdContainerName": "[variables('vmStorageAccountContainerName')]",

 "destinationVhdsContainer": "[concat('https://',

parameters('storageAccountName'), variables('vmStorageAccountDomain'), '/',

variables('vmStorageAccountContainerName'), '/')]"

 }

osSettings

In a decomposed template, you may need to pass operating system settings to various

nodes types across different known configuration types. A complex object is an easy way

to store and share operating system information and also makes it easier to support

multiple operating system choices for deployment.

An example complex object for osSettings is below:

 "osSettings": {

 "imageReference" : {

 "publisher": "Canonical",

 "offer": "UbuntuServer",

 "sku": "14.04.2 - LTS",

 "version": "latest"

 }

machineSettings

A generated variable, machineSettings is a complex object containing a mix of core

variables for creating a new VM: administrator user name and password, a prefix for the

VM names, and an operating system image reference as shown below:

 "machineSettings": {

 "adminUsername": "[p arameters('adminUsername')]",

 "adminPassword": "[parameters('adminPassword')]",

 "machineNamePrefix": "mongodb - ",

 "osImageReference": {

World Class ARM Templates ð Considerations and Proven Practices

25

 "publisher":

"[variables('osFamilySpec').imagePublisher]",

 "offer": "[variables('osFamilySpec').imageOffer]",

 "sku": "[variables('osFamilySpec').imageSKU]",

 "version": "latest"

 }

 },

Note that osImageReference retrieves the values from the osSettings variable defined in

the main template. That means you can easily change the operating system for a VMñ

entirely or based on the preference of a template consumer.

vmScripts

The vmScripts object contains details about the scripts to download and execute on a VM

instance, including outside and inside references. Outside references include the

infrastructure; inside references include the installed software installed and configuration.

For details, see Identifying the o utside vs. inside of a VM earlier in this document.

You use the scriptsToDownload property to list the scripts to download to the VM.

As the example below shows, this object also contains references to command-line

arguments for different types of actions. These actions include executing the default

installation for each individual node, an installation that runs after all nodes are depl oyed,

and any additional scripts that may be specific to a given template.

This example is from a template used to deploy MongoDB, which requires an arbiter to

deliver high availability. The arbiterNodeInstallCommand has been added to vmScripts

to install the arbiter.

The variables section is where youõll find the variables that define the specific text to

execute the script with the proper values.

 "vmScripts": {

 "scriptsToDownload": [

 "[concat(variables('scriptUrl'), ' mongodb- ',

variables('osFamilySpec').osName, ' - install.sh')]",

 "[concat(variables('sharedScriptUrl'), 'vm - disk - utils -

0.1.sh')]"

],

 "regularNodeInstallCommand": "[variables('installCommand')]",

 "lastNodeInstallCommand": "[concat(variables('installCommand'), '

- l')]",

 "arbiterNodeInstallCommand":

"[concat(variables('installCommand'), ' - a')]"

 },

Sharing state out

Not only can you pass data into a template using parameters, you can also share its data with

a calling template. In the outputs section of a linked template, you can provide key/value pairs

that can be consumed by the source template that called it.

The following example shows a template passing the private IP address generated in a linked

template.

"outputs": {

"masterip": {

"value":

World Class ARM Templates ð Considerations and Proven Practices

26

"[reference(concat(variables('nicName'),0)).ipConfigurations[0].properties.privat

eIPAddress]",

"type":"string"

}}

This can then be consumed within the source template by usin g the following

syntax ï

"masterIpAddress": {

"value":

"[reference('master - node').outputs.masterip.value]"

 } }

World Class ARM Templates ð Considerations and Proven Practices

27

Security Considerations

When looking at aspects of security for your templates, there are several areas to consider ð

keys and secrets, role based access control, and network security groups.

Secrets and Certificates

Azure Virtual Machines, ARM and Azure Key Vault are fully integrated to provide support for

the secure handling of certs which are to be deployed in the VM. Utilizing Azure Key Vault

with ARM to orchestrate and store VM secrets and certificates is a best practice and provides

the following advantages:

¶ The ARM templates only contain URI references to the secrets, which means the

actual secrets are not in code, config or source code repositories. This prevents key

phishing attacks on internal or external repos, such as harvest-bots in github .

¶ Secrets stored in the Key Vault are under full RBAC control of a trusted operator . If

the trusted operator leaves the company or transfers within the company to a new

group , they no longer have access to the keys they created in the Vault.

¶ Full compartmentalization of all assets: a) the templates to deploy the keys, b) the

templates to deploy a VM with references to the keys, and c) the actual key materials

in the Vault. Each template (and action) can be under different RBAC roles for full

separation of duties.

¶ The loading of secrets into a VM at deployment time occurs via direct channel

between Azure Fabric and the Key Vault within the confines of the Microsoft

datacenter. Once the keys are in the Key Vault, they never see ôdaylightõ over an

untrusted channel outside of the datacenter.

¶ Key Vaults are always regional, so the secrets always have locality (and sovereignty)

with the VMs. There are no global Key Vaults.

Separation of Keys from Deployments

A best practice is to maintain separate ARM templates for:

1. Creation of vaults (which will contain the key material)

2. Deployment of the VMs (with U RI references to the keys contained in the vaults)

A typical enterprise scenario is to have a small group of Trusted Operators who have access

to critical secrets within the deployed workloads, with a broader group of dev/ops personnel

who can create or update VM deployments. Below is an example ARM template which

creates and configures a new vault in the context of the currently authenticated userõs

identity in Azure Active Directory. This user would have the default permission to create,

delete, list, update, backup, restore, and get the public half of keys in this new key vault.

While most of the fields in this template should be self -explanatory, the

enableVaultForDeployment setting deserves more background: vaults do not have any

default standing access by any other Azure infrastructure component. By setting this value, it

allows the Azure Compute infrastructure components read-only access to this specific named

vault. Therefore, a further best practice is to not comingle corporate sensitive data in the

same vault as virtual machine secrets.

 {

 " $schema": "https://schema.management.azure.com/schemas/2015 - 01-

01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

https://jordan-wright.github.io/blog/2014/12/30/why-deleting-sensitive-information-from-github-doesnt-save-you/

World Class ARM Templates ð Considerations and Proven Practices

28

 "keyVaultName": {

 "type": "string",

 "metadata": {

 "description ": "Name of the Vault"

 }

 },

 "location": {

 "type": "string",

 "allowedValues": ["East US", "West US", "West Europe", "East Asia",

"South East Asia"],

 "metadata": {

 "description": "Location of the Vault"

 }

 },

 "tenantId": {

 "type": "string",

 "metadata": {

 "description": "Tenant Id of the subscription. Get using Get -

AzureSubscription cmd let or Get Subscription API"

 }

 },

 "objectId": {

 "type": "string",

 "metadata": {

 "description": "Object Id of the AD user. Get using Get -

AzureADUser cmdlet"

 }

 },

 "skuName": {

 "type": "string",

 "allowedValues": ["Standard", "Premium"],

 "metadata": {

 "description": "SKU for the vault"

 }

 },

 "enableVaultForDeployment": {

 "type" : "bool",

 "allowedValues": [true, false],

 "metadata": {

 "description": "Specifies if the vault is enabled for a VM

deployment"

 }

 }

 },

 "resources": [{

 "type": "Microsoft.KeyVault/vaults",

 "name": "[parameters('keyVaultName')]",

 "apiVersion": "2014 - 12- 19- preview",

 "location": "[parameters('location')]",

 "properties": {

 "enabledForDeployment": "[parameter s('enableVaultForDeployment')]",

 "tenantid": "[parameters('tenantId')]",

 "accessPolicies": [{

 "tenantId": "[parameters('tenantId')]",

 "objectId": "[parameters('objectId')]",

World Class ARM Templates ð Considerations and Proven Practices

29

 "permissio ns": {

 "secrets": ["all"],

 "keys": ["all"]

 }

 }],

 "sku": {

 "name": "[parameters('skuName')]",

 "family": "A"

 }

 }

 }]

}

Once the vault is created, the next step is to reference that vault in the deployment template

of a new VM. As mentioned above, a best practice is to have a different dev/ops group

manage VM deployments, with that group having no direct access to the keys as stored in the

vault.

The below template fragment would be composed into higher order deployment constructs,

each safely and securely referencing highly-sensitive secrets which are not under the direct

control of the operator.

 "vaultName": {

 "type": "string",

 "metadata": {

 "description": "Name of Key Vault that has a secret"

 }

 },

{

 "apiVersion": "2015 - 05- 01- preview",

 "type": "Microsoft.Compute/virtualMachines",

 "name": "[parameters('vmName')]",

 "location": "[parameters('location')]",

 "properties": {

 "osProfile": {

 "secrets": [{

 "sourceVault": {

 "id": "[resourceId('vaultrg',

' Microsoft.KeyVault/vaults', 'kayvault')]"

 },

 "vaultCertificates": [{

 "certificateUrl": "[parameters('secretUrlWithVersion')]",

 "certificateStore": "My"

 }]

 }]

 }

}

Assigning access with RBAC in Azure

Every Azure subscription is associated with an Azure Active Directory. Users and services that

access resources of the subscription using Azure Management portal or Azure Resource

World Class ARM Templates ð Considerations and Proven Practices

30

Manager API first need to authenticate with that Azure Active Directory.

Figure 1. An Azure subscription is associated with an Azure Active Directory

Azure RBAC allows you to grant appropriate access to Azure Active Directory users, groups,

and services, by assigning roles to them at the level of a subscription or resource group or

individual resource. The assigned role defines the level of access that the users, groups, or

services have on the Azure resource.

Role

A role is a collection of actions that can be performed on Azure resources. A user or a service

is allowed to perform an action on an Azure resource if they have been assigned a role that

contains that action. For a list of built -in roles and their actions and not actions properties,

see Built-in roles.2

Role assignment

Access is granted to Azure Active Directory users and services by assigning the appropriate

role to them on an Azure resource.

Azure Active Directory security princip als

Roles can be assigned to the following types of Azure Active Directory security principals:

¶ Users: Roles can be assigned to organizational users that are in the Azure Active

Directory with which an Azure subscription is associated. Roles can also be

assigned to external Microsoft account users (such as <name>@outlook.com) by

using the Invite action to assign the user to a role in the Azure Preview portal.

Assigning a role to an external Microsoft account user causes a guest account to

be created in the Azure Active Directory for it. If this guest account is disabled in

the directory, the external user wonõt be allowed to access any Azure resource that

the user has been granted access to.

¶ Groups: Roles can be assigned to Azure Active Directory security groups. A user is

automatically granted access to a resource if the user becomes a member of a

group that has access. The user also automatically loses access to the resource

after getting removed from the group. Managing access via groups by assigning

roles to groups and adding users to those groups is the best practice, instead of

assigning roles directly to users. Azure RBAC does not allow you to assign roles to

distribution lists. The ability to assign roles to groups lets an organization extend

2 http://azure.microsoft.com/en -us/documentation/articles/role -based-access-control -

configure/#builtinroles

http://azure.microsoft.com/en-us/documentation/articles/role-based-access-control-configure/#builtinroles

World Class ARM Templates ð Considerations and Proven Practices

31

its existing access control model from its on-premises directory to the cloud, so

security groups that are already established to control access on-premises can be

re-used to control access to resources in the Azure Preview portal. For more

information about different options for synchronizing users and groups from an

on-premises directory, see Directory integration .3 Azure Active Directory Premium

also offers a delegated group management feature4 with which the ability to

create and manage groups can be delegated to non-administrator users from

Azure Active Directory.

¶ Service principals: Service identities are represented as service principals in the

directory. They authenticate with Azure Active Directory and communicate with

one another. Services can be granted access to Azure resources by assigning roles

via the Azure module for Windows PowerShell to the Azure Active Directory

service principal representing that service.

Resource scope

Access does not need to be granted to an entire subscription. Roles can also be assigned for

resource groups as well as for individual resources. In Azure RBAC, a resource inherits role

assignments from its parent resources. So if a user, group, or service is granted access to only

a resource group within a subscription, they will be able to access only that resource group

and resources within it, and not the other resources groups within the subscription. As

another example, a security group can be added to the Reader role for a resource group, but

be added to the Contributor role for a database within that resource group.

Figure 2. Role assignment scopes

Service Principals Unlock Multi-Organization Subscription Interactions

As identified in the previous section, service identities are represented by service principals in

Active Directory. Service principals will be at the center of enabling key scenarios for

Enterprise IT organizations, System Integrators, and Cloud Service Vendors.

Specifically, there will be use cases where one of these organizations will need to interact with

the subscription of one of their customers.

Your organization could provide an offering that will monitor a solution deployed in your

customers environment and subscription. In this case, you will need to get access to logs and

3 http://technet.microsoft.com/library/jj573653.aspx
4 http://msdn.microsoft.com/library/azure /dn641267.aspx

http://technet.microsoft.com/library/jj573653.aspx
http://msdn.microsoft.com/library/azure/dn641267.aspx

World Class ARM Templates ð Considerations and Proven Practices

32

other data within a customers account so that you can utilize it in your monitoring solution.

If youõre a Corporate IT organization, a Systems Integrator, you may provide an offering to a

customer where you will deploy and manage a capability for them, such as a data analytics

platform, where the offering resides in the customers own subscription.

In these use cases your organization would require an identity that could be given access to

perform these actions within the context of a customer subscription.

These scenarios bring with them a certain set of considerations for your customer ð

¶ For security reasons, access may need to be scoped to certain types of actions, e.g.

read only access.

¶ As deployed resources are provided at a cost, there may be similar constraints on

access required for financial reasons.

¶ For security reasons, access may need to be scoped only to a specific resource

(storage accounts) or resources (resource group containing an environment or

solution)

¶ As a relationship with a vendor may change, the customer will want to have the ability

to enable/disable access to SI or CSV

¶ As actions against this account having billing implications, the customer desires

support for auditability and accountability for billing.

¶ From a compliance perspective, the customer will want to be able to audit your

behavior within their environment

A combination of a service principal and RBAC can be used to address these requirements.

Additional detail on these scenarios in the contextual examples at the end of this document.

Understanding network security groups

Many scenarios will have requirements that specify how traffic to one or more VM instances in

your virtual network is controlled. You can use a network security group (NSG) to do this as

part of an ARM template deployment .

A network security group is a top-level object that is associated with your subscription. An

NSG contains access control rules that allow or deny traffic to VM instances. The rules of an

NSG can be changed at any time, and changes are applied to all associated instances. To use

an NSG, you must have a virtual network that is associated with a region (location). NSGs are

not compatible with virtual networks that are associated with an affinity group. If you donõt

have a regional virtual network and you want to control traffic to your endpo ints, please see

About Network Access Control Lists (ACLs).5

You can associate an NSG with a VM, or to a subnet within a virtual network . When associated

with a VM, the NSG applies to all the traffic that is sent and received by the VM instance.

When applied to a subnet within your virtual network , it applies to all the traffic that is sent

and received by all the VM instances in the subnet. A VM or subnet can be associated with

only 1 NSG, but each NSG can contain up to 200 rules. You can have 100 NSGs per

subscription.

NOTE Endpoint -based ACLs and network security groups are not supported on the

same VM instance. If you want to use an NSG and have an endpoint ACL already in

5 https://msdn.microsoft.com/en -us/library/azure/dn376541.aspx

https://msdn.microsoft.com/en-us/library/azure/dn376541.aspx

World Class ARM Templates ð Considerations and Proven Practices

33

place, first remove the endpoint ACL. For information about how to do this, see

Managing Access Control Lists (ACLs) for Endpoints by using PowerShell.6

How NSGs work

Network security groups are different than endpoint -based ACLs. Endpoint ACLs work only on

the public port that is exposed through the Input endpoint. An NSG works on one or more

VM instances and controls all the traffic that is inbound and outbound on the VM.

A network security group has a Name, is associated with a Region (one of the supported

Azure locations), and has a descriptive label. It contains two types of rules, Inbound and

Outbound. The Inbound rules are applied on the incoming packets to a VM and the

Outbound r ules are applied to the outgoing packets from the VM. The rules are applied at the

server machine where the VM is located. An incoming or outgoing packet must match an

Allow rule to be permitted ; otherwise, itõs dropped.

Rules are processed in the order of priority. For example, a rule with a lower priority number

such as 100 is processed before rules with a higher priority numbers such as 200. Once a

match is found, no more rules are processed.

A rule specifies the following:

¶ Name: A unique identifier for the rule

¶ Type: Inbound/Outbound

¶ Priority: An integer between 100 and 4096

¶ Source IP Address: CIDR of source IP range

¶ Source Port Range: An integer or range bet ween 0 and 65536

¶ Destination IP Range: CIDR of the destination IP Range

¶ Destination Port Range: An integer or range between 0 and 65536

¶ Protocol: TCP, UDP or ô*õ

¶ Access: Allow/Deny

Default rules

An NSG contains default rules. The default rules canõt be deleted, but because they are

assigned the lowest priority, they can be overridden by the rules that you create. The default

rules describe the default settings recommended by the platform. As illustrated by the default

rules below, traffic originating and ending in a virtual network is allowed both in Inbound and

Outbound directions.

While connectivity to the Internet is allowed for Outbound direction, it is by default blocked

for Inbound direction. A default rule allows the Azure load balancer to probe the health of a

VM. You can override this rule if the VM or set of VMs under the NSG does not participate in

the load balanced set.

The default rules are shown in Tables 1 and 2.

6 https://msdn.microsoft.com/en -us/library/azure/dn376543.aspx

https://msdn.microsoft.com/en-us/library/azure/dn376543.aspx

World Class ARM Templates ð Considerations and Proven Practices

34

Table 2. Inbound default rules

Name Priority Source IP
Source

Port
Destination IP

Destination

Port
Protocol Access

ALLOW

VNET

INBOUND

65000 VIRTUAL_NETWORK * VIRTUAL_NETWORK * * ALLOW

ALLOW

AZURE

LOAD

BALANCER

INBOUND

65001 AZURE_LOADBALANCER * * * * ALLOW

DENY ALL

INBOUND
65500 * * * * * DENY

Table 3. Outbound default rules

 Name Priority Source IP
Source

Port
Destination IP

Destination

Port
Protocol Access

ALLOW VNET

OUTBOUND
65000 VIRTUAL_NETWORK * VIRTUAL_NETWORK * * ALLOW

ALLOW

INTERNET

OUTBOUND

65001 * * INTERNET * * ALLOW

DENY ALL

OUTBOUND
65500 * * * * * DENY

Special infrastructure rules

NSG rules are explicit. No traffic is allowed or denied beyond what is specified in the NSG

rules. However, two types of traffic are always allowed regardless of the Network Security

group specification. These provisions are made to support the infrastructure:

¶ Virtual IP of the Hos t Node: Basic infrastructure services such as DHCP, DNS, and

Health monitoring are provided through the virtualized host IP address

168.63.129.16. This public IP address belongs to Microsoft and will be the only

virtualized IP address used in all regions for this purpose. This IP address maps to

the physical IP address of the server machine (host node) hosting the VM. The

host node acts as the DHCP relay, the DNS recursive resolver, and the probe

source for the load balancer health probe and the machine health probe.

Communication to this IP address should not be considered as an attack.

¶ Licensing (Key Management Service): Windows images running in the VMs

should be licensed. To do this, a licensing request is sent to the Key Management

Service host servers that handle such queries. This will always be on outbound port

1688.

Default tags

Default tags are system-provided identifiers to address a category of IP addresses. Default

tags can be specified in user-defined rules.

Table 4. Default tags for NSGs

Tag Description

VIRTUAL_NETWORK Denotes all of your network address space. It includes the virtual

network address space (IP CIDR in Azure) as well as all connected

World Class ARM Templates ð Considerations and Proven Practices

35

on-premises address space (Local Networks). This also includes

virtual network -to-virtual network address spaces.

AZURE_LOADBALANCER Denotes the Azure Infrastructure load balancer and will translate to

an Azure datacenter IP where Azureõs health probes will originate.

This is needed only if the VM or set of VMs associated with the NSG

is participating in a load balanced set.

INTERNET Denotes the IP address space that is outside the virtual network and

can be reached by public Internet. This range includes Azure-owned

public IP space as well.

Ports and port ranges

NSG rules can be specified on a single source or destination port, or on a port range. This

approach is particularly useful when you want to open a wide range of ports for an

application, such as FTP. The range must be sequential and canõt be mixed with individual port

specifications.

To specify a range of ports, use the hyphen (ð) character. For example, 100-500.

ICMP traffic

With t he current NSG rules, you can specify TCP or UDP as protocols but not ICMP. However,

ICMP traffic is allowed within a virtual network by default through the Inbound rules that

support traffic from and to any port and protocol (*) within the virtual network .

Associating an NSG with a VM

When an NSG is directly associated with a VM, the network access rules in the NSG are

directly applied to all traffic that is destined to the VM. Whenever the NSG is updated for rule

changes, the traffic handling reflects the updates within minutes. When the NSG is

disassociated from the VM, the state reverts to its pre-NSG conditionñthat is, to the system

defaults before the NSG was introduc ed.

Associating an NSG with a subnet

When an NSG is associated with a subnet, the network access rules in the NSG are applied to

all the VMs in the subnet. Whenever the access rules in the NSG are updated, the changes are

applied to all VMs in the subnet within minutes.

Associating an NSG with a subnet and a VM

You can associate one NSG with a VM and another NSG with the subnet where the VM

resides. This scenario is supported to provide the VM with two layers of protection. On the

inbound traffic , the packet follows the access rules specified in the subnet, followed by rules in

the VM. When outbound , the packet follows the rules specified in the VM first, then follows

the rules specified in the subnet as Figure 3 shows.

World Class ARM Templates ð Considerations and Proven Practices

36

Figure 3. Associating an NSG to a subnet and a VM

When an NSG is associated with a VM or subnet, the network access control rules become

very explicit. The platform will not insert any implicit rule to allow traffic to a particular port. In

this case, if you create an endpoint in the VM, you must also create a rule to allow traffic from

the Internet. If you donõt do this, the VIP:<Port> canõt be accessed from outside.

For example, you can create a new VM and a new NSG. You associate the NSG with the VM.

The VM can communicate with other VMs in the virt ual network through the ALLOW VNET

INBOUND rule. The VM can also make outbound connections to the Internet using the

ALLOW INTERNET OUTBOUND rule. Later, you create an endpoint on port 80 to receive traffic

to your website running in the VM. Packets destined to port 80 on the VIP (public Virtual IP

address) from the Internet will not reach the VM until you add a rule similar to the following

(Table 4) to the NSG.

Table 5. Explicit rule allowing traffic to a particular port

Name Priority Source IP

Source

Port

Destination

IP

Destination

Port Protocol Access

WEB 100 INTERNET * * 80 TCP ALLOW

World Class ARM Templates ð Considerations and Proven Practices

37

User Defined Routes

Azure uses a route table to decide how to forward IP traffic based on the destination of each

packet. Although Azure provides a default route table based on your virtual network settings,

you may need to add custom routes to that table.

The most common need for a custom entry in the route table is the use of a virtual appliance

in your Azure environment. Take into account the scenario shown in the Figure below.

Suppose you want to ensure that all traffic directed to the mid -tier and backed subnets

initiated from the front end subnet go through a virtual firewall appliance. Simply adding the

appliance to your virtual network and connecting it to the different subnets will not provide

this functionality. You must also change the routing tabl e applied to your subnet to ensure

packets are forwarded to the virtual firewall appliance.

The same would be true if you implemented a virtual NAT appliance to control traffic between

your Azure virtual network and the Internet. To ensure the virtual appliance is used you have

to create a route specifying that all traffic destined to the Internet must be forwarded to the

virtual appliance.

Routing

Packets are routed over a TCP/IP network based on a route table defined at each node on

the physical network. A route table is a collection of individual routes used to decide

where to forward packets based on the destination IP address. A route consists of the

following:

¶ Address Prefix . The destination CIDR to which the route applies, such as

10.1.0.0/16.

¶ Next hop type . The type of Azure hop the packet should be sent to. Possible

values are:

o Local. Represents the local virtual network. For instance, if you have two subnets,

10.1.0.0/16 and 10.2.0.0/16 in the same virtual network, the route for each subnet

in the route table will have a next hop value of Local.

o VPN Gateway . Represents an Azure S2S VPN Gateway.

o Internet . Represents the default Internet gateway provided by the Azure

Infrastructure

o Virtual Appliance . Represents a virtual appliance you added to your Azure virtual

network.

o NULL. Represents a black hole. Packets forwarded to a black hole will not be

forwarded at all.

¶ Nexthop Value . The next hop value contains the IP address packets should be

forwarded to. Next hop values are only allowed in routes where the next hop type

is Virtual Appliance.

World Class ARM Templates ð Considerations and Proven Practices

38

Default Routes

Every subnet created in a virtual network is automatically associated with a route table that

contains the following default route rules: - Local Vnet Rule : This rule is automatically created

for every subnet in a virtual network. It specifies that there is a direct link between the VMs in

the VNet and there is no intermediate next hop. - On-premises Rule : This rule applies to all

traffic destined to the on -premises address range and uses VPN gateway as the next hop

destination. - Internet Rule : This rule handles all traffic destined to the public Internet and

uses the infrastructure internet gateway as the next hop for all traffic destined to the Internet.

BGP Routes

At the time of this writing, ExpressRoute is not yet supported in the Network Resource

Provider for ARM. If you have an ExpressRoute connection between your on-premises

network and Azure, you can enable BGP to propagate routes from your on-premises network

to Azure once ExpressRoute is supported in the NRP. These BGP routes are used in the same

way as default routes and user defined routes in each Azure subnet. For more information see

ExpressRoute Introduction.

NOTE:

When ExpressRoute on NRP is supported, you will be able to configure your Azure

environment to use force tunneling through your on -premises network by creating a user

defined route for subnet 0.0.0.0/0 that uses the VPN gateway as the next hop. However, this

only works if you are using a VPN gateway, not ExpressRoute. For ExpressRoute, forced

tunneling is configured through BGP.

User Defined Routes

You cannot view the default routes specified above in your Azure environment, and for most

environments, those are the only routes you will need. However, you may need to create a

route table and add one or more routes in specific cases, such as:

¶ Force tunneling to the Internet via your on -premises network.

¶ Use of virtual appliances in your Azure environment.

In the scenarios above, you will have to create a route table and add user defined routes to it.

You can have multiple route tables, and the same route table can be associated to one or

more subnets. And each subnet can only be associated to a single route table. All VMs and

cloud services in a subnet use the route table associated to that subnet.

Subnets rely on default routes until a route table is associated to the subnet. Once an

http://azure.microsoft.com/en-us/documentation/articles/expressroute-introduction

World Class ARM Templates ð Considerations and Proven Practices

39

association exists, routing is done based on Longest Prefix Match (LPM) among both user

defined routes and default routes. If there is more than one route with the same LPM match

then a route is selected based on its origin in the following order:

1. User defined route

2. BGP route (when ExpressRoute is used)

3. Default route

NOTE:

User defined routes are only applied to Azure VMs and cloud services. For instance, if you

want to add a firewall virtual appliance between your on -premises network and Azure, you will

have to create a user defined route for your Azure route tables that forward all traffic going to

the on-premises address space to the virtual appliance. However, incoming traffic from the

on-premises address space will flow through your VPN gateway or ExpressRoute circuit

straight to the Azure environment, bypassing the virtual appliance.

IP Forwarding

As describe above, one of the main reasons to create a user defined route is to forward traffic

to a virtual appliance. A virtual appliance is nothing more than a VM that runs an application

used to handle network traffic in some way, such as a firewall or a NAT device.

This virtual appliance VM must be able to receive incoming traffic that is not addressed to

itself. To allow a VM to receive traffic addressed to other destinations, you must enable IP

Forwarding in the VM.

The template decomposition approach

Based on the customer template consumption scenarios, requirements identified at the start

of this document, and our hands-on experience creating numerous templates, we identified a

pattern for template decomposition.

Capacity and Capability Scoped Solution Templates

Decomposition provides a modular approach to template development that supports reuse,

extensibility, testing, and tooling. This section provides detail on how a decomposition

approach can be applied to templates with a Capacity or Capability scope.

In this approach, a main template receives parameter values from a template consumer, then

links to several types of templates and scripts downstream as Figure 4 shows. Parameters,

static variables, and generated variables are used to provide values in and out of the linked

templates.

World Class ARM Templates ð Considerations and Proven Practices

40

Figure 4. Parameters are passed to a main template then to linked templates

This following sections focus on the types of templates and scripts that a single template

would be decomposed into and examines approaches for passing state information among

the templates. Each template and the script types in Figure 4 are described along with

examples. For a contextual example, see Putting it together: a sample implementation later in

this document.

Template metadata

Template metadata (the metadata.json file) contains key/value pairs that describe a template

in JSON, which can be read by humans and software systems.

Figure 5. Template metadata is described in the metadata.json file

Software agents can retrieve the metadata.json file and publish the information and a link to

the template in a web page or directory . Elements include itemDisplayName , description ,

summary, githubUsername , and dateUpdated .

World Class ARM Templates ð Considerations and Proven Practices

41

An example file is shown below in its entirety.

{

 "itemDisplayName": "PostgreSQL 9.3 on Ubuntu VMs",

 "description": "This template creates a PostgreSQL streaming - replication

between a master and one or more slave servers each with 2 striped data disks.

The database servers are deployed into a private - only subnet with one publicly

accessible jumpbox VM in a DMZ subnet with public IP.",

 "summary": "PostgreSQL stream - replication with multiple slave servers and a

publicly accessible jumpbox VM",

 "githubUsername": "arsenvlad",

 "dateUpdated": "2015 - 04- 24"

}

World Class ARM Templates ð Considerations and Proven Practices

42

Main template

The main template (the azuredeploy.json file) is called by an end user and is the template

through which a set of user-defined parameters are presented.

Figure 6. The main template receives parameters from a user

The role of this template is to receive parameters from a user, use that information to

populate a set of complex object variables, then execute the appropriate set of related

templates using template linking.

One parameters that is provided is a known configuration type also known as the t-shirt size

parameter because of its standardized values such as small, medium, or large. In practice you

can use this parameter in multiple ways. For details, see Known configuration resources

template later in this document .

Some resources are deployed regardless of the known configuration specified by a user

parameter. These resources are provisioned using a single shared resource template and are

shared by other templates, so the shared resource template is run first.

Some resources are deployed optionally regardless of the specified known configuration .

Shared resources template

This template delivers resources that are common across all known configurations. It contains

the virtual network, availability sets, and other resources that are required regardless of the

known configuration template that is deployed.

World Class ARM Templates ð Considerations and Proven Practices

43

Figure 7. Shared resources template

Resource names, such as the virtual network name, are based on the main template. You can

specify them as a variable within that template or receive them as a parameter from the user,

as required by your organization.

Optional resources template

The optional resources template contains resources that are programmatically deployed

based on the value of a parameter or variable.

Figure 8. Optional resources template

For example, you can use an optional resources template to configure a jumpbox that enables

indirect access to a deployed environment from the public Internet. You would use a

parameter or variable to identify whether the jumpbox should be enabled and the concat

function to build the target na me for the template, such as jumpbox_enabled.json . Template

linking would use the resulting variable to install the jumpbox.

World Class ARM Templates ð Considerations and Proven Practices

44

You can link the optional resources template from multiple places:

¶ When applicable to every deployment, create a parameter-driven link from the

shared resources template.

¶ When applicable to select known configuration sñfor example, only install on

large deploymentsñcreate a parameter-driven or variable-driven link from the

known configuration template.

Whether a given resource is optional may not be driven by the template consumer but

instead by the template provider . For example, you may need to satisfy a particular product

requirement or product add-on (common for CSVs) or to enforce policies (common for SIs

and enterprise IT groups). In these cases, you can use a variable to identify whether the

resource should be deployed.

Known configuration resources template

In the main template, a parameter can be exposed to allow the template consumer to specify

a desired known configuration to deploy. In many cases, this known configuration uses a t-

shirt size approach with a set of fixed configuration sizes such as sandbox, small, medium, and

large.

Figure 9. Known configuration resources template

The t-shirt size approach is commonly used, but the parameters can represent any set of

known configurations. For example, you can specify a set of environments for an enterprise

application such as Development, Test, and Product. Or you could use it for a cloud service to

represent different scale units, product versions, or product configurations such as

Community, Developer, or Enterprise.

As with the shared resource template, variables are passed to the known configurations

template from either :

¶ An end userñthat is, the parameters sent to the main template.

¶ An organizationñthat is, the variables in the main template that represent internal

requirements or policies.

World Class ARM Templates ð Considerations and Proven Practices

45

Member resources template

Within a known configuration , one or more member node types are often included. For

example, with Hadoop you would have master nodes and data nodes. If you are installing

MongoDB, you would have data nodes and an arbiter. If you are deploying DataStax, you

would have data nodes as well as a VM with OpsCenter installed.

Figure 10. Member resources template

Each type of nodes can have different sizes of VMs, numbers of attached disks, scripts to

install and set up the nodes, port configurations for the VM(s), number of instances, and other

details. So each node type gets its own member resource template, which contains the details

for deploying and configuring an infrastructure as well as executing scripts to deploy and

configure software within the VM.

For VMs, typically two types of scripts are used, widely reusable and custom scripts.

Widely reusable scripts

Widely reusable scripts can be used across multiple types of templates. One of the better

examples of these widely reusable scripts sets up RAID on Linux to pool disks and gain a

greater number of IOPS. Regardless of the software being installed in the VM, this script

provides reuse of proven practices for common scenarios.

