
All trademarks or registered trademarks are property of their respective owners.

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS NOVEMBER 15, 2016 VOL 31 NO 12

Special Issue

 1116msdnB_CoverTip_8x10.75.indd 1 1116msdnB_CoverTip_8x10.75.indd 1 10/28/16 11:41 AM10/28/16 11:41 AM

www.devexpress.com/try

 0716msdn_CoverTip_8x10.75.indd 2 0716msdn_CoverTip_8x10.75.indd 2 6/8/16 11:57 AM6/8/16 11:57 AM

www.devexpress.com

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS NOVEMBER 15, 2016 VOL 31 NO 12

Special Issue

Connect();
Special Issue
A Quick Look at Productivity
Enhancements in Visual Studio 2017 RC
Kasey Uhlenhuth.. 6

Introducing Visual Studio for Mac
Mikayla Hutchinson.. 12

What’s New in C# 7.0
Mark Michaelis.. 18

Increase App Engagement
with Xamarin and the Universal
Windows Platform
Tyler Whitney.. 26

Embedding Native Views
in Your Xamarin.Forms Apps
Charles Petzold.. 32

The (Interactive) Future
of Technical Docs
Craig Dunn.. 44

Rugged DevOps: Integrating
Security into the Development
and Release Pipeline
Sam Guckenheimer and Jean-Marc Prieur.. 50

Microsoft Graph: Gateway
to Data and Intelligence
Yina Arenas.. 60

Big Data Development Made Easy
Omid Afnan. 68

1116msdnCon_C1_v2.indd 1 10/27/16 3:36 PM

http://www.microsoft.com

www.textcontrol.com www.reporting.cloud

Untitled-1 2Untitled-1 2 10/20/16 11:37 AM10/20/16 11:37 AM

http://www.textcontrol.com
http://www.reporting.cloud

Untitled-1 3Untitled-1 3 10/20/16 11:37 AM10/20/16 11:37 AM

http://www.reporting.cloud
http://www.textcontrol.com

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Graphic Designer Erin Horlacher
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bundy
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos
Coordinator, Lead Generation Marketing
Obum Ukabam

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Senior Manager, Marketing Christopher Morales
Marketing Coordinator Alicia Chew
Marketing & Editorial Assistant Dana Friedman

ENTERPRISE COMPUTING GROUP EVENTS
Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

NOVEMBER 15, 2016 VOLUME 31 NUMBER 12

magazine

1116msdnCon_Masthead_v1_2.indd 2 10/27/16 3:33 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-1 1 10/28/16 11:14 AM

www.leadtools.com

msdn magazine4

Two years ago we published a special issue of MSDN Magazine
focused on Microsoft’s tools and services efforts in the wake of
the 2014 Connect(); conference in New York City. That event was
remarkable in that it transformed the dialog Microsoft was having
with developers. Cross-platform, open source, mobile and cloud
were the points of emphasis at the 2014 conference, and the seeds
Microsoft planted then have gone on to bear fruit today.

On Nov. 16 Microsoft holds its third Connect(); conference, and as
was the case at the first event, the focus is on breaking down borders,
reaching across platforms and maximizing developer productivity.
The difference this year is that the nascent tools and platforms
Microsoft touted in 2014 have matured, from innovative frame-
works like .NET Core and ASP.NET Core, to cross-platform tools
that leverage Xamarin technology such as Visual Studio for Mac and
Visual Studio Team Services. Microsoft is paying off on the promises
it made in 2014, and the impact on developers will be profound.

Our exploration of the innovations coming out of Connect();
begins with Kasey Uhlenhuth’s dive into the productivity enhance-
ments coming in Visual Studio 2017, while Mikayla Hutchinson
explores the new Visual Studio for Mac IDE, which brings the
first-class Visual Studio development experience to developers
on the Apple flagship platform. MSDN Magazine columnist Mark
Michaelis follows with a deep exploration of the upcoming C#
7.0 programming language, which adds compelling features like
deconstructors, local variables and improved pattern matching.

The Microsoft acquisition of Xamarin this year was a game
changer, and its impacts are on display both at Connect(); and in
this issue. Former MSDN Magazine columnist Charles Petzold
returns to our pages to show how native view embedding improves
cross-platform mobile development by letting developers directly
reference iOS, Android and Windows native controls within
Xamarin.Forms XAML files. Tyler Whitney shows how Xamarin
can be used to target the Universal Windows Platform alongside
iOS and Android, while Craig Dunn dives into the interactive

documentation and live coding features of Xamarin Workbooks
that let developers learn and experiment with the entire native SDKs
for Android, iOS, macOS and Windows Presentation Foundation.

There’s a lot more, including Jean-Marc Prieur’s and Sam
Guckenheimer’s feature on ruggedized DevOps and how it injects
security into the development and release pipeline. And don’t miss
Omid Afnan’s dive into Big Data and Yina Arenas’ exploration of
the API-driven capabilities of Microsoft Graph.

Finally, check out our additional coverage on the MSDN Mag-
azine Web site. Thomas Dohmke shows how Microsoft is taking
DevOps to the next level, enabling developers to connect a repos-
itory and then build, test, deliver and monitor apps from a single
dashboard connected with an Azure back end (msdn.com/magazine/
mt790198). Also featured is Justin Raczak’s examination of Xamarin
Test Cloud in mobile app development (msdn.com/magazine/mt790199),
and Michael Rys’ dive into U-SQL and its use in Big Data applica-
tions (msdn.com/magazine/mt790200).

Microsoft Connect(); carries forward the work that the con-
ference first laid out two years ago. We hope this special issue of
MSDN Magazine will help you to take full advantage of all the
advances we expect to see in
the years to come.

Reconnect();

© 2016 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

The Microsoft acquisition of
Xamarin this year was a game
changer, and its impacts are on

display both at Connect(); and in
this issue.

1116msdnCon_DesmondEdNote_v3_4.indd 4 10/27/16 3:34 PM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://msdn.com/magazine/mt790198
http://msdn.com/magazine/mt790198
http://msdn.com/magazine/mt790199
http://msdn.com/magazine/mt790200

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

If you want to be more productive, you have to save more time
or more effort on the tasks you perform every day. Visual Studio
2017 RC boosts your productivity with automated tasks and
improved navigation, as well as with immediate feedback on the
quality and state of your code.

The strides Visual Studio has made in refactorings, code gener-
ation, code analysis, navigation, testing, and debugging for .NET
developers were made possible by project “Roslyn,” a six-year under
taking to re-architect the C# and Visual Basic compilers. Visual Studio
2017 RC leverages the Visual Studio 2015 investment in Roslyn to
crank out tons of cool new features.

Navigating Code
When developers drill into a bug, discover the implications of a
refactoring, or work to grok an unfamiliar code base, they rely on

the accuracy and ease of code navigation. This release delivers a
greatly improved navigation experience—with Find All References,
GoTo and Indent Guides—to get you from A to B with greater con-
fidence and fewer distractions (even in large code bases).

Previously, Find All References would discover all usages of a
symbol and then output the results as a simple, flat list in the Results
Window. Now, as Figure 1 shows, the references are colorized and
arranged in a hierarchical display with custom grouping, sorting,
filtering and searching to help you rapidly home in on the partic-
ular reference you desire—even when there are many references
in the list. Furthermore, hovering over a reference displays a tool
tip to give foresight into where you’ll be navigating to before you
actually go there. You can save or “lock” your Find All References
results for situations when you need to run the command several
times but want your original results to persist (for example, when
investigating and drilling down into the impact of a refactoring).

To save even more time, learn the handy keyboard shortcuts
shown in Figure 2.

Another feature that has undergone significant improvement
in this release is GoTo (formerly Navigate To). GoTo All is a fast,
complete search for any file, type, member or symbol declaration in
a solution. Icons at the bottom of the search bar allow you to filter
your results by group or adjust the scope of the search, as shown in
Figure 3. (But if you prefer the keyboard over the mouse, you can
also take advantage of a query syntax that lets you filter directly by
typing a simple prefix). The gear icon in the bottom-right corner

V IS UAL ST UD IO 20 1 7 R C

A Quick Look
at Productivity
Enhancements in
Visual Studio 2017 RC
Kasey Uhlenhuth

This article is based on a preview version of Visual Studio 2017 RC.
All information is subject to change.

This article discusses:
•	Code navigation enhancements

•	Help with writing correct, readable code

•	Improved testing and debugging

Technologies discussed:
Visual Studio 2017 RC

1116msdnCon_UhlenhuthVS17_v5_6-10.indd 6 10/27/16 3:54 PM

Untitled-3 1 10/18/16 1:11 PM

www.devexpress.com/hybrid

msdn magazine8 Visual Studio 2017 RC

lets you customize a handful of settings, including the placement of
the search bar, a live preview of the files containing the highlighted
result, and additional file information for each result.

Finally, you might recognize Indent Guides from the popular Pro-
ductivity Power Tools extension. Now, as part of the core product,
the dotted, gray vertical lines serve as landmarks in code to provide
context within your frame of view. When hovering over a bottom
brace, you get a colorized preview of the top matching brace, and
when hovering over the guide itself, you get a colorized preview of
the code surrounding and containing the matching top brace. These
features aim to give you a better sense of your code “geography” and
context without scrolling or navigating. Indent Guides also work
well with the existing outlining features in Visual Studio and even
offer more regions that are expandable and collapsible.

You can also enable “Map Mode” on your scroll bar. This trans-
forms the scrollbar into a “map” of your code, allowing you to view
a miniature version of the entire document—including errors,
breakpoints and so forth. Hovering over any part of the “map” will
display a preview of the code at that point in the document.

And, again, you can increase your efficiency by learning the
useful keyboard shortcuts shown in Figure 4.

Writing and Reading Code
Along with navigation, developers spend a lot of time writing and
reading code. Visual Studio 2017 RC focuses on facilitating the writing
of correct code, as well as maintaining the readability of developer
code bases. Building on features in Visual Studio 2015, this release pro-
vides a refined IntelliSense experience, more refactorings and code
fixes, and customizable code-style configuration and enforcement.

IntelliSense The goal of Visual
Studio is to assist rather than hinder
the various code-writing workflows
that are being used today. One of the
most obvious ways Visual Studio
makes you productive is with
IntelliSense (see Figure 5). Visual
Studio 2017 RC updates the Intelli
Sense experience with several
enhancements: smart preselection,
filtering and XAML support.

Smart preselection will determine
the “target type” required at a posi-
tion in code and will preselect items
in the IntelliSense completion list
matching that type. This speeds
your typing flow and removes the
burden of having to figure out the
expected type at a given location.
IntelliSense filtering allows you to

filter the completion list by category; for example, you can filter out
extension methods or view only events. This feature boosts produc-
tivity when you’re working in a large code base where there are many
items in the completion list or when dealing with unfamiliar code.

Finally, this release delivers a whole new experience for XAML
IntelliSense to help developers bind quickly and correctly and see
only relevant information. This smarter completion experience
includes completion when binding events, paths and functions
with x:Bind; camelCase matching support (for example, “RTB” will
complete as “RichTextBox”); and namespace prefix autocompletion.

Go To
Definition

Peek
Definition

Find All
References

Go To
Implementation

Go To All (File/
Type/Member/
Symbol)

F12 Alt+F12 Shift+F12 Ctrl+F12 Ctrl+T or Ctrl+,

Figure 2 Keyboard Shortcuts for General Navigation

Figure 1 Find All References Improvements Include Colorization, Custom Organization
and Hover Previews

Figure 3 Use Icons or Query Syntax to Filter Results by Files,
Types, Members or Symbols

The goal of Visual Studio is to
assist rather than hinder the

various code-writing workflows
that are being used today.

1116msdnCon_UhlenhuthVS17_v5_6-10.indd 8 10/27/16 3:54 PM

9November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

Code Analysis Visual Studio 2015 introduced the live code
analysis feature, which enables “as-you-type” feedback on your
code. This lets you learn about issues early, before they build, rather
than accumulating a set of problems you might never get around
to fixing. To resolve the errors identified in live code analysis, you
use the lightbulb menu or the shortcut “Ctrl+.” to access code fixes
and refactorings. Visual Studio 2017 RC takes live analysis and
code fixes a step further by amplifying the set of refactorings and
code fixes available, and by introducing code style analyzers that
identify style issues in code as soon as they’re typed.

Visual Studio 2015 included some core refactorings: extract method
or interface, change method signature, inline temporary variable,
introduce local variable, and remove unnecessary usings and imports.
Visual Studio 2017 RC expands the set of refactorings and fixes to help
you maintain a readable code base and catalyze your development
workflows. For example, a significant number of developers initially
write all their classes, interfaces, and other types in a single file and then
extract each type into a file with the matching name later. Visual Studio
2017 RC expedites this process with the refactoring option “Move Type
To Matching File.” Other refactorings you can look forward to include:

• �Sync file and type name
• �Convert property to method
• �Use object initializer
• �Convert null-check + throw to use ?? + throw
• �Convert string.Format to interpolated string
• �Make method synchronous
• �Add missing case
• �Add braces

Additionally, this release introduces some basic code analysis
and fixes for XAML. Using the same lightbulb mechanism in C#
and Visual Basic, you can sort and remove unnecessary name
spaces and add missing namespaces in your XAML files.

Maintaining a consistent, readable code base is a challenging
endeavor. There are good reasons to aspire to a readable code base:
If all code looks consistent, it’s easier to onboard new developers;
and if all code looks consistent, code reviews can focus on logic
rather than on formatting and style minutiae. Visual Studio 2017
RC establishes a way to configure code style with built-in style rules
and custom naming conventions.

In the RC, you can go to Tools | Options | Text Editor | [C#/
Basic] | Code Style | General to see the built-in configurable style

rules, which include preferring var over
explicit type, predefined over frame-
work type, this over nothing. Each
rule comes with a description, a con-
figurable preference and a configu-
rable severity. The different severities

work as follows:
• �Error displays in the editor as a red squiggle, appears in the

Error List and will break the build.
• �Warning displays in the editor as a green squiggle, appears

in the Error List and will only break the build if the config-
uration “treat warning as errors” is enabled.

• �Suggestion displays in the editor as gray dots, appears in
the Error List and will not break the build (see Figure 6).

• �None has no display in the editor, does not appear in the
Error List and will not break the build.

Because preferences for naming styles vary widely across the
.NET developer community, you can create your own custom
naming conventions to enforce on your team. Visual Studio 2017
RC provides a set of defaults that can be configured to enforce
team conventions, including that members (except fields) should
be PascalCase, types should be PascalCase, interfaces start with “I,”
and async methods end with “Async.” You can configure and add to
these defaults by going to Tools | Options | Text Editor | [C#/Basic]
| Code Style | Naming. Naming rules are placed in a grid for con-
figuration just like the standard style rules (note that order matters
here—the first matching style rule is applied).

To add a custom naming rule, you click the green plus (“+”) button
at the bottom of the rule grid to open the rule creation dialog. You can
then use default specifications (for example, “all classes”) and styles
(such as, “use prefix _”) to craft a custom naming rule. If the built-in
specifications and styles aren’t sufficient to piece together your
desired naming convention, you can write your own.

Figure 5 IntelliSense Now Has Highlighting and Filtering

Figure 6 Enforce Team Style and Naming Conventions in the
Editor so You Get Live Diagnostics When You Violate Rules

Figure 4 Keyboard Shortcuts for GoTo

Go To All Go To Line Go To File Go To Type Go To Member Go To Symbol
Shortcut Ctrl+T or Ctrl+, Ctrl+G Ctrl+1, F Ctrl+1, T Ctrl+1, M Ctrl+1, S
Query Prefix No prefix : f t m #

Maintaining a consistent,
readable code base is a
challenging endeavor.

1116msdnCon_UhlenhuthVS17_v5_6-10.indd 9 10/27/16 3:54 PM

http://www.msdnmagazine.com

msdn magazine10 Visual Studio 2017 RC

You can also adjust your style rules from the editor by pressing
“Ctrl+.” to trigger the lightbulb menu, selecting the rule fix in the
menu and then clicking the gear icon in the live code preview.

Testing Code
Supporting unit tests creates an interesting tension between
selecting enough tests to ensure code is correct while still running
as few tests as possible so you don’t have to wait so long for test
results. This tradeoff between correctness and time has often left
developers feeling unproductive and frustrated. To mitigate this
stress, Visual Studio 2017 RC introduces Live Unit Testing for C#
and Visual Basic (see Figure 7).

Live Unit Testing analyzes data generated at run time to run
only impacted tests after an edit and provides immediate feedback
on the status of the tests in the editor. These inline visualizations
appear on a line-by-line basis:

• �If a line of executable code is hit by at least one failing test,
it’s decorated with a red “x.”

• �If a line of executable code is hit by all passing tests, it’s
decorated with a green checkmark.

• �If a line of executable code is hit by no tests, it’s decorated
with a blue dash.

The live code coverage and test result information provided by
Live Unit Testing removes the burden of manually selecting and
running tests. The live feedback also serves to notify you instantly if
your change has broken the program—if inline visualizations shift
from green checkmarks to red x’s, you know you broke a test. At any

point in time you can hover over the
check or x to see what tests are hit-
ting the given line. Additionally, you
can navigate directly to that test by
clicking on it in the hover tool tip.

If you’re part of a team that prac-
tices test-driven development, Live
Unit Testing gamifies the workflow;
in other words, all tests will be
red and failing at first, and as you
implement each method, you’ll see
them turn green if they succeed.
For all other developers, Live Unit
Testing provides visual feedback for
when they’ve broken their code.

Debugging Code
When all else fails, developers rely on debugging
to help them identify the source of an issue. Visual
Studio 2017 RC saves you time by reducing the num-
ber of actions required to step through a program
and to drill into exception information.

Run To Click does exactly what it sounds like; it
executes a program until it reaches the target line of
code and breaks in debug mode. Essentially, it removes
the need for developers to constantly add, hit and
remove temporary breakpoints by combining all
these actions into one click. To use this feature,

you simply need to press the green “run to here” icon that appears
to the left of the code line when you hover over it in debug mode.

Perhaps the biggest productivity improvement in the debugger is
the new Exception Helper. The redesigned dialog displays the most
important information from an exception at the top level, like inner
exception details and the expression that returns null, as shown in Fig-
ure 8. Visual Studio 2017 RC also enables you to prohibit breaking on
exception types in specific cases—allowing you to disregard exceptions
thrown from third-party libraries or certain .dlls while debugging.

Wrapping Up
Visual Studio 2017 RC focuses on making you more productive by
saving you time and effort. I’m thrilled to be able to share improve-
ments in navigation with GoTo and Find All References, enhancements
to IntelliSense both in C#/Visual Basic and XAML, an expansion of
live code analysis with more refactorings and fixes and the addition
of code style, an interactive way of testing with Live Unit Testing,
and an efficient debugging experience with the new exception helper.
I look forward to hearing your feedback and hope you have a pro-
ductive experience with Visual Studio 2017 RC.	 n

Kasey Uhlenhuth is a program manager on the .NET and Visual Studio team at
Microsoft and is currently working on modernizing the C# developer experience.
Previously, she worked on C# Interactive and Node.js Tools for Visual Studio.
Reach her at kaseyu@microsoft.com or on Twitter: @kuhlenhuth.

Thanks to the following Microsoft technical experts for reviewing this article:
David Carmona, Kevin Pilch-Bisson and Mark Wilson-Thomas

Figure 7 Live Unit Testing Provides Instant Feedback on Whether Code Is Touched by
Passing, Failing or No Tests

Figure 8 The New Exception Helper Removes the Need to Drill into
Dropdowns to Find the Most Important Information and Actions

1116msdnCon_UhlenhuthVS17_v5_6-10.indd 10 10/27/16 3:54 PM

mailto:kaseyu@microsoft.com
www.twitter.com/kuhlenhuth

Untitled-1 1Untitled-1 1 10/13/11 11:25 AM10/13/11 11:25 AM

www.nsoftware.com

msdn magazine12

At Connect(); in November, Microsoft is launching a
preview of Visual Studio for Mac. This is an exciting development,
evolving the mobile-centric Xamarin Studio IDE into a true
mobile-first, cloud-first development tool for .NET and C#, and
bringing the Visual Studio development experience to the Mac.

A New Member of the Visual Studio Family
At its heart, Visual Studio for Mac is a macOS counterpart of the
Windows version of Visual Studio. If you enjoy the Visual Studio
development experience, but need or want to use macOS, you
should feel right at home. Its UX is inspired by Visual Studio, yet
designed to look and feel like a native citizen of macOS. And like
Visual Studio for Windows, it’s complemented by Visual Studio

Code for times when you don’t need a full IDE, but want a light-
weight yet rich standalone source editor.

Below the surface, Visual Studio for Mac also has a lot in com-
mon with its siblings in the Visual Studio family. Its IntelliSense
and refactoring use the Roslyn Compiler Platform; its project sys-
tem and build engine use MSBuild; and its source editor supports
TextMate bundles. It uses the same debugger engines for Xamarin
and .NET Core apps, and the same designers for Xamarin.iOS and
Xamarin.Android.

Compatibility is a key focus of Visual Studio for Mac. Although
it’s a new product and doesn’t support all of the Visual Studio
project types, for those it does have in common it uses the same
MSBuild solution and project format. If you have team members
on macOS and Windows, or switch between the two OSes yourself,
you can seamlessly share your projects across platforms. There’s no
need for any conversion or migration.

Mobile-First, Cloud-First Development
The primary workloads supported by Visual Studio for Mac are
native iOS, Android and Mac development via Xamarin, and server
development via .NET Core with Azure integration. It gives you
all the tools you need to develop the rich, native mobile app expe-
riences that users expect today, and the cloud-based server back
ends to power them.

It’s all powered by the C# language you know and love, with the
latest C# 7 productivity enhancements. You get the performance of

V IS UAL ST UD IO FOR MAC

Introducing Visual Studio
for Mac
Mikayla Hutchinson

This article uses a pre-release version of Visual Studio for Mac.
All information is subject to change.

This article discusses:
•	A preview of a new member of the Visual Studio family

•	Mobile-first, cloud-first C# development with Xamarin and
ASP.NET Core

•	Core features and capabilities of Visual Studio for Mac

•	Developing an ASP.NET Core back end for a Xamarin mobile app

Technologies discussed:
Visual Studio for Mac

1116msdnCon_HutchinsonVSMac_v5_12-17.indd 12 10/27/16 3:48 PM

13November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

compiled code, the productivity of a modern type-safe language,
access to the unique features of each platform, and a rich ecosystem
of libraries and tools. You can use your existing experience across the
mobile and cloud domains, sharing code between client and server.
And with all your projects in one solution, you can take advantage
of solution-wide cross-project refactoring and code navigation.

C# isn’t the only language supported in the Visual Studio for Mac pre-
view. For the functional programmers among you, it includes excellent
F# support, powered by the same F# compiler used in Visual Studio.

iOS, Android and Mac
With the fragmented mobile market today it’s important to be able to
target a wide range of devices. Because it’s based on Xamarin Studio,
Visual Studio for Mac has mature support for C#-based iOS,
Android and Mac development with the Xamarin Platform. You
can take advantage of your existing C# experience and libraries,
and share common code across platforms, with full access to the
native APIs so you can build a fast, polished native app experience.

For even greater code sharing, you can use the cross-platform
Xamarin.Forms UI library, which provides a familiar XAML-based
development environment that can target multiple platforms,
including iOS, Android, macOS and the Universal Windows Platform
(UWP)—though UWP development is currently only supported in
Visual Studio—and maps to the native UI on each platform. When
you need more control, you can mix and match Xamarin.Forms with
direct access to the native toolkits. There’s a huge ecosystem of librar-
ies available for Xamarin via NuGet, too, including platform-specific
libraries, bindings to native code and portable .NET Standard libraries.

Like Visual Studio, Visual Studio for Mac has drag-and-drop
designers for iOS and Android development that let you rapidly
assemble and fine-tune your UI. For Xamarin.Forms, it has rich
XAML IntelliSense and a side-by-side live preview, as Figure 1

shows. Both the designer and the live preview use a simulator to
render your app exactly how it will appear on the device, and this
even works for your custom controls.

Cutting-Edge Cloud
Almost every mobile app is backed by a service, and Visual Studio
for Mac makes it easy to develop your app’s service with its support
for the latest ASP.NET Core Web development platform. ASP.NET
Core runs on .NET Core, the latest evolution of the .NET Frame-
work and runtime. It’s been tuned for blazingly fast performance,
factored for small install sizes, and reimagined to run on Linux
and macOS, as well as Windows.

.NET Core gives you a huge degree of flexibility in how and where
you develop and deploy your server application, whether in your
own datacenter or on a cloud platform such as Microsoft Azure.
Because both .NET Core and Xamarin Platform are open source,
you won’t have to worry about vendor lock-in.

The Visual Studio for Mac support for .NET Core projects also
allows you to write .NET Standard libraries, the new way to share
code across .NET platforms going forward. .NET Standard libraries
replace Portable Class Libraries (PCLs) and offer a much broader
API surface area. Because .NET Core and Xamarin Platform are
.NET Standard-compliant, they’re a great way to share code, both
within your solution and via the NuGet Package Manager.

A Familiar Workspace
The Visual Studio for Mac workspace should be familiar to existing
Visual Studio developers. When you first open it, you see a Welcome
Page with a list of recently opened solutions, a feed of developer
news and other information to help you get started.

To create a new solution, go to the File menu and select New
Project, and you’ll see the workspace containing your new solution.

As you can see in Figure 2, there’s a
central tabbed source editor with a
number of other docked windows
or “pads” around it, such as Solu-
tion, Output, Properties, Document
Outline and Toolbox. Like Visual
Studio, this layout is highly custom-
izable and switches automatically,
depending on whether you’re
coding, debugging or using the
drag-and-drop designer.

The toolbar is familiar, too, but
has a few notable differences:

On the left is the Run button, a
dropdown to select the Active Con-
figuration, as well as dropdowns to
select the Run Configuration and
Target Device. For cross-platform
mobile development, it’s important
to be able to easily switch the device
or simulator on which you’re test-
ing or debugging your app. The Run
Configuration is like the startup Figure 1 The Xamarin.Forms XAML Live Preview

1116msdnCon_HutchinsonVSMac_v5_12-17.indd 13 10/27/16 3:48 PM

http://www.msdnmagazine.com

msdn magazine14 Visual Studio for Mac

project in Visual Studio, except that in addition to switching which
project runs, you can also create custom-named sets of run options.

In the center of the toolbar is a notification area, which shows mes-
sages about various operations, such as building or restoring NuGet
packages. When there’s a running operation, a cancel button shows
up in the notification area. This is also where notifications about soft-
ware updates are displayed. You can click on some notifications, such
as build errors, and they’ll bring up a pad with more information.

At the right of the toolbar is the global search. In addition to
helping you find things like commands and files in your solution,
its camelCase filtering system makes it an excellent way to quickly
activate commands, or jump to files or types in your solution. It
can even kick off a Find in Files search in your solution, or open
the NuGet Package Manager to search for a package.

The Solution pad works much the same as the Solution Explorer
in Visual Studio, letting you explore and manage the structure of your
solution, your project and the files in it. The context menu gives you
a range of context-specific commands on the items in the solution
tree, such as adding or removing files from projects, editing project

references, opening Terminal win-
dows in folders, and building or
debugging specific projects.

The Errors pad shows any build
warnings and errors, and is also
where you can find the build log
output in a split view. Unlike Visual
Studio, there isn’t a single unified
pad for all kinds of output. For
example, an Application Output pad
shows the output from your app
when you run or debug it, and
logs from NuGet operations are
shown in a NuGet Console pad. The
Properties pad contextually shows
properties of whatever is currently
focused and selected, and can be
used to view and change the build
action of files in the solution pad.

In the center is the heart of the
IDE, the source editor, which has
all the features you’d expect from a
member of the Visual Studio family.

Figure 3 shows C# IntelliSense and syntax highlighting in a .NET
Core project. There’s also code folding, live underlining of errors and
suggestions as you type, configurable automatic formatting, code
navigation commands and an array of powerful refactoring tools.

Not all of the editor’s functionality is enabled by default. You
can tweak the Visual Studio for Mac settings in the Preferences
dialog, which is accessible from its Mac application menu. This is
equivalent to the Options dialog in the Visual Studio Tools menu,
and contains plenty of options to help you customize the IDE to
work the way you want.

Unit testing is supported using NUnit, and other test runners can
be plugged in via extensions. The tests discovered in your assembly
are shown in a Unit Tests pad that can be accessed from the View
| Pads menu. There’s also git version control integrated right into
the source editor, with a row of tabs along the bottom of the editor
to access the current file’s log, diff and blame view.

If you’d like to get up to speed quickly with some more tips and
tricks, I encourage you to watch my “Become a Xamarin Studio
Expert” session from Xamarin Evolve 2016 (xmn.io/xs-expert) as its

content applies directly to Visual
Studio for Mac.

Open Source Core
Like Xamarin Studio, Visual Studio
for Mac is based on the open source
MonoDevelop IDE, which is
actively developed by Microsoft.
It’s written entirely in C#, and has
a rich extensibility model that
you can use to add functionality
ranging from simple editor com-
mands to entirely new languages Figure 3 IntelliSense in a .NET Core Project

Figure 2 The Visual Studio for Mac Workspace

1116msdnCon_HutchinsonVSMac_v5_12-17.indd 14 10/27/16 3:48 PM

http://xmn.io/xs-expert

Untitled-2 1 7/11/16 3:30 PM

www.aspose.com

msdn magazine16 Visual Studio for Mac

and project types. Even core features such as C# editing,
Xamarin.iOS, Xamarin.Android and ASP.NET Core are imple-
mented as extensions.

Like Visual Studio and Visual Studio Code, the C# support in
Visual Studio for Mac is powered by the open source Roslyn Com-
piler Platform. You get the exact same IntelliSense experience you’re
familiar with from Visual Studio, as well as support for in-editor live
Analyzers and Code Fixes. Visual
Studio for Mac even includes the
Refactoring Essentials collection of
Analyzers and Code Fixes by default.

Visual Studio for Mac supports
editing a wide range of languages
though the use of TextMate bundles,
which provide syntax highlighting
and simple IntelliSense. It includes
a number of open source TextMate
bundles from Visual Studio Code.

Creating an ASP.NET
Core App
To show you how easy it is to get up
to speed with Visual Studio for Mac,
I’m going to walk though creating
a simple ASP.NET Core back end.
It’s for a hypothetical “Shared To-do
List” mobile app, which allows mul-
tiple users to add items, and all users
see the items that any of them post.

Please note that I’m writing this article using a pre-release version
of Visual Studio for Mac, and some details of the UI may change
in the release. However, the approaches and concepts discussed in
this article will still apply.

After installing and opening Visual Studio for Mac, I start by
clicking on the New Solution button on the welcome page, which
opens the New Project dialog. I navigate into the Cloud section,
choose the ASP.NET Core Web Application template, and click
Next, then choose the Web API template. The Web API template
creates a RESTful Web service which is perfect for a mobile back
end, though you can add views to the project later to create a Web
front end.

Finally, I name my project HelloVSMac and click Create. Visual
Studio for Mac creates the projects using the dotnet templating
engine, opens it and starts restoring the NuGet packages on which
it depends. If you open the project file in the editor using the Tools
| Edit File context menu on the project in the solution pad, you
can see that it’s a minimalistic MSBuild-based project file that’s
intended to be easy to understand. If you edit it directly and save it,
the IDE will automatically reload your modified version.

Looking at the project in the solution pad, the key items are:
Packages: Your project’s NuGet package dependencies. ASP.NET

Core, the .NET Core framework and the MSBuild targets that build
the project are all installed via NuGet packages.

Program.cs: The entry point of your Web app. ASP.NET Core
apps are programs, so there’s a Main method entry point that
creates, builds and runs the WebHost at the heart of your app.

Startup.cs: Which defines a Startup class that was passed to the
WebHost. This class contains your application’s initialization methods.

appsettings.json: Your app’s configuration settings. This is the
ASP.NET Core equivalent of the ASP.NET web.config.

For the purposes of this walk-through, I’ll leave these all as is,
and look at the ValuesController.cs file in the Views folder. This

[Route("api/[controller]")]
public class ToDoController : Controller
{
 [HttpGet]
 public IEnumerable<ToDoItem> Get()
 {
 return ToDoList.GetAll();
 }

 [HttpPost]
 public void Post([FromBody]ToDoItem item)
 {
 ToDoList.Add(item);
 }
}

public class ToDoItem
{
 public string Title { get; set; }
}

public static class ToDoList
{
 static List<ToDoItem> list = new List<ToDoItem>();

 public static void Add(ToDoItem item)
 {
 lock (list) { list.Add(item); }
 }

 public static IEnumerable<ToDoItem> GetAll()
 {
 lock (list) { return list.ToArray(); }
 }
}

Figure 4 The Controller and Its Simple Shared To-Do List Storage

Figure 5 Debugging a .NET Core Project

1116msdnCon_HutchinsonVSMac_v5_12-17.indd 16 10/27/16 3:48 PM

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

 The Smart Choice for Text Retrieval®

since 1991

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise and

developer evaluations

With APIs for .NET, Java and C++.
SDKs for multiple platforms.
(See site for articles on faceted
search, SQL, MS Azure, etc.)

®

contains a ValuesController class registered on the [Route("api/
[controller]")] route. The [controller] is a placeholder for the class
name, so this is really the api/values route.

I’ll start by defining a very simple ToDoItem class and a
ToDoList storage class. ToDoList is static so it can be shared among
requests. In a real app you’d use a database for this, but it will do for
now. I also rename the controller class to ToDoController (which
makes the route api/todo), connect the Get and Post methods to
the store, and clear out the other unused controller methods. The
result can be seen in Figure 4.

This is now a complete, but very small, RESTful Web service.
Let’s try it out.

I place a breakpoint in the Post method, and start debugging the
app. The Output pad starts to show the output from the ASP.NET
Core built-in kestrel Web server as the app starts up, by default
on port 5000, but it won’t do anything else until it receives a
request. You can open your Web browser and check 127.0.0.1:5000/
api/todo, but it’ll just be an empty array.

Because there isn’t a mobile client for this service yet, it’s time
to open the macOS Terminal app and use curl to send a POST
request to the app:

$ curl -H "Content-type: application/json" -X POST -d '{ title: "build
 mobile app" }' 127.0.0.1:5000/api/todo

This triggers the breakpoint in the debugger. You can inspect the
value that has automatically been parsed from the JSON body of
the request and converted into the ToDoItem object. You can see
that Visual Studio for Mac automatically entered the debugging
layout, and has all the debugger pads you’d expect: Stack, Locals,
Threads, Breakpoints and so on.

Now, go back to the terminal and use curl to access the Get method,
and you’ll see the JSON array containing the item that was added:

$ curl 127.0.0.1:5000/api/todo
[{"title":"build mobile app"}]

The next step is to build the mobile app, but I’ll let you explore
that yourself. For more in-depth information on ASP.NET Core, I
recommend checking out asp.net/get-started, and if you’d like to learn
more about Xamarin development, there’s plenty of great material
at developer.xamarin.com. Although there isn’t much documentation
on Visual Studio for Mac yet, the Xamarin Studio documentation
applies directly in most cases, and Visual Studio documentation
is often applicable, too.

Wrapping Up
I hope this brief overview has whetted your appetite to try Visual
Studio for Mac and make it your macOS IDE of choice for cloud
and mobile development! If you have a Mac I encourage you to
download the preview from VisualStudio.com, give it a spin, and let us
know how you like it. We’re excited to hear your feedback to help
guide it through the preview and beyond.	 n

Mikayla Hutchinson is a senior program manager on Xamarin Platform at
Microsoft. Previously she developed the mobile and Web tooling for Xamarin
Studio and was a core developer on MonoDevelop. You can follow her on
Twitter: @mjhutchinson.

Thanks to the following Microsoft technical experts for reviewing this article:
Larry O’Brien and Lluis Sanchez

1116msdnCon_HutchinsonVSMac_v5_12-17.indd 17 10/27/16 3:48 PM

http://www.msdnmagazine.com
www.dtSearch.com
http://www.asp.net/get-started
http://developer.xamarin.com
www.VisualStudio.com
www.twitter.com/mjhutchinson

msdn magazine18

Back in December 2015, I discussed the designing
of C# 7.0 (msdn.com/magazine/mt595758). A lot has changed over the
last year, but the team is now buttoning down C# 7.0 development,
and Visual Studio 15 Preview 5 is expected to implement virtu­
ally all of the new features. (I say virtually because until Visual
Studio 15 actually ships, there’s always a chance for further change.)
For a brief overview, you can check out the summary table at
itl.tc/CSharp7FeatureSummary. In this article I’m going to explore each
of the new features in detail.

Deconstructors
Since C# 1.0, it’s been possible to call a function—the constructor—
that combines parameters and encapsulates them into a class. How­
ever, there’s never been a convenient way to deconstruct the object
back into its constituent parts. For example, imagine a PathInfo

class that takes each element of a filename—directory name, file
name, extension—and combines them into an object, with support
for then manipulating the object’s various elements. Now imagine
you wish to extract (deconstruct) the object back into its parts.

In C# 7.0 this becomes trivial via the deconstructor, which
returns the specifically identified components of the object. Be care­
ful not to confuse a deconstructor with a destructor (deterministic
object deallocation and cleanup) or a finalizer (itl.tc/CSharpFinalizers).

Take a look at the PathInfo class in Figure 1.
Obviously, you can call the Deconstruct method as you would

have in C# 1.0. However, C# 7.0 provides syntactic sugar that
significantly simplifies the invocation. Given the declaration of a
deconstructor, you can invoke it using a new C# 7.0 “tuple-like”
syntax (see Figure 2).

Notice how, for the first time, C# is allowing simultaneous
assignment to multiple variables of different values. This is not the
same as the null assigning declaration in which all variables are
initialized to the same value (null):

string directoryName, filename, extension = null;

Instead, with the new tuple-like syntax, each variable is assigned
a different value corresponding not to its name, but to the order in
which it appears in the declaration and the deconstruct statement.

As you’d expect, the type of the out parameters must match the
type of the variables being assigned, and var is allowed because the
type can be inferred from Deconstruct parameter types. Notice,
however, that while you can put a single var outside the parentheses
as shown in Example 3 in Figure 2, at this time it’s not possible to
pull out a string, even though all the variables are of the same type.

Note that at this time, the C# 7.0 tuple-like syntax requires that at
least two variables appear within the parentheses. For example, (File­
Info path) = pathInfo; is not allowed even if a deconstructor exists for:

public void Deconstruct(out FileInfo file)

C# 7 . 0

Programming C# 7.0
Mark Michaelis

This article uses pre-release versions of C# 7.0 and Visual Studio 15.
All information is subject to change.

This article discusses:
•	Deconstructors

•	Pattern matching with is expressions and with the switch statement

•	Local functions

•	Return by reference

•	More expression-bodied members

•	More C# 7.0 features

Technologies discussed:
 C# 7.0 and Visual Studio 15 Preview 5

Code download available at:
bit.ly/2dip18Y

1116msdnCon_MichaelisCS7_v5_18-25.indd 18 10/27/16 3:50 PM

http://msdn.com/magazine/mt595758
www.bit.ly/2dip18Y
http://itl.tc/CSharp7FeatureSummary
http://itl.tc/CSharpFinalizers

19November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

In other words, you can’t use the C# 7.0 deconstructor syntax for
Deconstruct methods with only one out parameter.

Working with Tuples
As I mentioned, each of the preceding examples leveraged the C# 7.0
tuple-like syntax. The syntax is characterized by the parentheses that
surround the multiple variables (or properties) that are assigned. I
use the term “tuple-like” because, in fact, none of these deconstructor
examples actually leverage any tuple type internally. (In fact, assign­
ment of tuples via a deconstructor syntax isn’t allowed and arguably
would be somewhat unnecessary because the object assigned already
is an instance representing the encapsulated constituent parts.)

With C# 7.0 there’s now a special streamlined syntax for working
with tuples, as shown in Figure 3. This syntax can be used when­
ever a type specifier is allowed, including declarations, cast
operators and type parameters.

For those not familiar with tuples, it’s a way of combining mul­
tiple types into a single containing type in a lightweight syntax
that’s available outside of the method in which it’s instantiated.
It’s lightweight because, unlike defining a class/struct, tuples can
be “declared” inline and on the fly. But, unlike dynamic types that
also support inline declaration and instantiation, tuples can be
accessed outside of their containing member and, in fact, they
can be included as part of an API. In spite of the external API
support, tuples don’t have any means of version-compatible
extension (unless the type parameters themselves happen to sup­
port derivation), thus, they should be used with caution in public
APIs. Therefore, a preferable approach might be to use a standard
class for the return on a public API.

Prior to C# 7.0, the framework already had a tuple class,
System.Tuple<…> (introduced in the Microsoft .NET Framework 4).

public class PathInfo
{
 public string DirectoryName { get; }
 public string FileName { get; }
 public string Extension { get; }
 public string Path
 {
 get
 {
 return System.IO.Path.Combine(
 DirectoryName, FileName, Extension);
 }
 }

 public PathInfo(string path)
 {
 DirectoryName = System.IO.Path.GetDirectoryName(path);
 FileName = System.IO.Path.GetFileNameWithoutExtension(path);
 Extension = System.IO.Path.GetExtension(path);
 }

 public void Deconstruct(
 out string directoryName, out string fileName, out string extension)
 {
 directoryName = DirectoryName;
 fileName = FileName;
 extension = Extension;
 }

 // ...
}

Figure 1 PathInfo Class with a Deconstructor
with Associated Tests

PathInfo pathInfo = new PathInfo(@"\\test\unc\path\to\something.ext");

{
 // Example 1: Deconstructing declaration and assignment.
 (string directoryName, string fileName, string extension) = pathInfo;
 VerifyExpectedValue(directoryName, fileName, extension);
}

{
 string directoryName, fileName, extension = null;
 // Example 2: Deconstructing assignment.
 (directoryName, fileName, extension) = pathInfo;
 VerifyExpectedValue(directoryName, fileName, extension);
}

{
 // Example 3: Deconstructing declaration and assignment with var.
 var (directoryName, fileName, extension) = pathInfo;
 VerifyExpectedValue(directoryName, fileName, extension);
}

Figure 2 Deconstructor Invocation and Assignment

[TestMethod]
public void Constructor_CreateTuple()
{
 (string DirectoryName, string FileName, string Extension) pathData =
 (DirectoryName: @"\\test\unc\path\to",
 FileName: "something",
 Extension: ".ext");

 Assert.AreEqual<string>(
 @"\\test\unc\path\to", pathData.DirectoryName);
 Assert.AreEqual<string>(
 "something", pathData.FileName);
 Assert.AreEqual<string>(
 ".ext", pathData.Extension);

 Assert.AreEqual<(string DirectoryName, string FileName, string Extension)>(
 (DirectoryName: @"\\test\unc\path\to",
 FileName: "something", Extension: ".ext"),
 (pathData));

 Assert.AreEqual<(string DirectoryName, string FileName, string Extension)>(
 (@"\\test\unc\path\to", "something", ".ext"),
 (pathData));

 Assert.AreEqual<(string, string, string)>(
 (@"\\test\unc\path\to", "something", ".ext"), (pathData));

 Assert.AreEqual<Type>(
 typeof(ValueTuple<string, string, string>), pathData.GetType());
}

[TestMethod]
public void ValueTuple_GivenNamedTuple_ItemXHasSameValuesAsNames()
{
 var normalizedPath =
 (DirectoryName: @"\\test\unc\path\to", FileName: "something",
 Extension: ".ext");

 Assert.AreEqual<string>(normalizedPath.Item1, normalizedPath.DirectoryName);
 Assert.AreEqual<string>(normalizedPath.Item2, normalizedPath.FileName);
 Assert.AreEqual<string>(normalizedPath.Item3, normalizedPath.Extension);
}

static public (string DirectoryName, string FileName, string Extension)
 SplitPath(string path)
{
 // See http://bit.ly/2dmJIMm Normalize method for full implementation.

 return (
 System.IO.Path.GetDirectoryName(path),
 System.IO.Path.GetFileNameWithoutExtension(path),
 System.IO.Path.GetExtension(path)
);
}

Figure 3 Declaring, Instantiating
and Using the C# 7.0 Tuple Syntax

1116msdnCon_MichaelisCS7_v5_18-25.indd 19 10/27/16 3:50 PM

http://www.msdnmagazine.com

msdn magazine20 C# 7.0

C# 7.0 differs from the earlier solution, however, because it embeds
the semantic intent into declaration and it introduces a tuple value
type: System.ValueTuple<…>.

Let’s take a look at the semantic intent. Notice in Figure 3 that the
C# 7.0 tuple syntax allows you to declare alias names for each ItemX
element the tuple contains. The pathData tuple instance in Figure 3,
for example, has strongly typed DirectoryName: string, FileName:
string, and Extension: string properties defined, thus allowing calls
to pathData.DirectoryName, for example. This is a significant
enhancement because prior to C# 7.0, the only names available
were ItemX names, where the X incremented for each element.

Now, while the elements for a C# 7.0 tuple are strongly typed,
the names themselves aren’t distinguishing in the type definition.
Therefore, you can assign two tuples with disparate name aliases
and all you’ll get is a warning that informs you the name on the
right-hand side will be ignored:

// Warning: The tuple element name 'AltDirectoryName1' is ignored
// because a different name is specified by the target type...
(string DirectoryName, string FileName, string Extension) pathData =
 (AltDirectoryName1: @"\\test\unc\path\to",
 FileName: "something", Extension: ".ext");

Similarly, you can assign tuples to other tuples that may not have
all alias element names defined:

// Warning: The tuple element name 'directoryName', 'FileNAme' and 'Extension'
// are ignored because a different name is specified by the target type...
(string, string, string) pathData =
 (DirectoryName: @"\\test\unc\path\to", FileName: "something", Extension: ".ext");

To be clear, the type and order of each element does define type
compatibility. Only the element names are ignored. However,
even though ignored when they’re different, they still provide
IntelliSense within the IDE.

Note that, whether or not an element name alias is defined, all
tuples have ItemX names where X corresponds to the number of
the element. The ItemX names are important because they make
the tuples available from C# 6.0, even though the alias element
names are not.

Another important point to be aware of is that the underlying
C# 7.0 tuple type is a System.ValueTuple. If no such type is avail­
able in the framework version you’re compiling against, you can
access it via a NuGet package.

For details about the internals of tuples, check see intellitect.com/
csharp7tupleiinternals.

Pattern Matching with Is Expressions
On occasion you have a base class, Storage for example, and a
series of derived classes, DVD, UsbKey, HardDrive, FloppyDrive
(remember those?) and so on. To implement an Eject method for
each you have several options:

• �As Operator
 ◉ �Cast and assign using the as operator
 ◉ �Check the result for null
 ◉ �Perform the eject operation
• �Is Operator
 ◉ �Check the type using the is operator
 ◉ �Cast and assign the type
 ◉ �Perform the eject operation
• �Cast
 ◉ �Explicit cast and assign
 ◉ �Catch possible exception
 ◉ �Perform operation
 ◉ �Yuck!

There’s a fourth, far-better approach using polymorphism in
which you dispatch using virtual functions. However, this is avail­
able only if you have the source code for the Storage class and can
add the Eject method. That’s an option I’m assuming is unavailable
for this discussion, hence the need for pattern matching.

The problem with each of these approaches is that the syntax is fairly
verbose and always requires multiple statements for each class to which
you want to cast. C# 7.0 provides pattern matching as a means of com­
bining the test and the assignment into a single operation. As a result,
the code in Figure 4 simplifies down to what’s shown in Figure 5.

The difference between the two isn’t anything radical, but when
performed frequently (for each of the derived types, for example)
the former syntax is a burdensome C# idiosyncrasy. The C# 7.0
improvement—combining the type test, declaration and assignment
into a single operation—renders the earlier syntax all but depre­
cated. In the former syntax, checking the type without assigning
an identifier makes falling through to the “default” else cumber­
some at best. In contrast, the assignment allows for the additional
conditionals beyond just the type check.

Note that the code in Figure 5 starts out with a pattern-matching
is operator with support for a null comparison operator, as well:

if (storage is null) { ... }

Pattern Matching with the Switch Statement
While supporting pattern matching with the is operator provides
an improvement, pattern-matching support for a switch statement
is arguably even more significant, at least when there are multi­
ple compatible types to which to convert. This is because C# 7.0
includes case statements with pattern matching and, furthermore,
if the type pattern is satisfied in the case statement, an identifier can
be provided, assigned, and accessed all within the case statement.
Figure 6 provides an example.

Notice in the example how local variables like usbKey and dvd are
declared and assigned automatically within the case statement. And,
as you’d expect, the scope is limited to within the case statement.

Perhaps just as important as the variable declaration and assign­
ment, however, is the additional conditional that can be appended

// Eject without pattern matching.
public void Eject(Storage storage)
{
 if (storage == null)
 {
 throw new ArgumentNullException();
 }
 if (storage is UsbKey)
 {
 UsbKey usbKey = (UsbKey)storage;
 if (usbKey.IsPluggedIn)
 {
 usbKey.Unload();
 Console.WriteLine("USB Drive Unloaded.");
 }
 else throw new NotImplementedException(); }
 else if(storage is DVD)
 // ...
 else throw new NotImplementedException();
}

Figure 4 Type Casting Without Pattern Matching

1116msdnCon_MichaelisCS7_v5_18-25.indd 20 10/27/16 3:50 PM

http://intellitect.com/csharp7tupleiinternals
http://intellitect.com/csharp7tupleiinternals

India
www.MelissaData.in

Australia
www.MelissaData.com.au

United Kingdom
www.MelissaData.co.uk

Germany
www.MelissaData.de

www.MelissaData.com 1-800-MELISSA

Solutions for 240+ Countries

Data Quality & Mailing Solutions

10,000+ Customers Worldwide

30+ Years Strong

Cloud • On-Premise • Services

Know Your Customer
Customers share tons of personal data through an increasing number of channels and applications. We supply
the full spectrum of data quality solutions to solve your KYC challenges – to collect, verify, enrich and consolidate
clean contact data for a true and complete view of the customer. Microsoft®, Oracle®, Pentaho®, Salesforce® and more.

Get Connected Today.
TAKE A FREE TEST DRIVE!
www.MelissaData.com/kyc

Children
2

JANE
SQUIRE

@janesquire 949-745-3375

js@jsquire.com

Household
Income
$145K

112 Main St.,
Irvine, CA
92618-8887

Latitude:
33.637553

Longitude:
-117.607415

Purchased
Home: 2007

Age
42

IP Input :
216.231.3.166

IP Output:
ISP: Cox
City: Irvine
ZIP: 92618

Current Value
of Home:
$680,000

Untitled-9 1 9/8/16 3:25 PM

mailto:js@jsquire.com
http://www.MelissaData.com
http://www.MelissaData.com/kyc
http://www.MelissaData.de
http://www.MelissaData.co.uk
http://www.MelissaData.in
http://www.MelissaData.com.au

msdn magazine22 C# 7.0

to the case statement with a when clause. The result is that a case
statement can completely filter out an invalid scenario without
an additional filter inside the case statement. This has the added
advantage of allowing evaluation of the next case statement if, in fact,
the former case statement is not fully met. It also means that case
statements are no longer limited to constants and, furthermore, a
switch expression can be any type—it’s no longer limited to bool,
char, string, integral and enum.

Another important characteristic the new C# 7.0 pattern-matching
switch statement capability introduces is that case statement order
is significant and validated at compile time. (This is in contrast with
earlier versions of the language, in which, without pattern matching,
case statement order was not significant.) For example, if I intro­
duced a case statement for Storage prior to a pattern-matching case
statement that derives from Storage (UsbKey, DVD and HardDrive),
then the case Storage would eclipse all other type pattern matching
(that derives from Storage). A case statement from a base type that
eclipses other derived type case statements from evaluation will
result in a compile error on the eclipsed case statement. In this way,
case statement order requirements are similar to catch statements.

Readers will recall that an is operator on a null value will return
false. Therefore, no type pattern-matching case statement will
match for a null-valued switch expression. For this reason, order of
the null case statement won’t matter; this behavior matches switch
statements prior to pattern matching.

Also, in support of compatibility with switch statements prior to
C# 7.0, the default case is always evaluated last regardless of where
it appears in the case statement order. (That said, readability would
generally favor putting it at the end, because it’s always evaluated
last.) Also, goto case statements still work only for constant case
labels—not for pattern matching.

Local Functions
While it’s already possible to declare a delegate and assign it an
expression, C# 7.0 takes this one step further by allowing the full
declaration of a local function inline within another member.
Consider the IsPalindrome function in Figure 7.

In this implementation, I first check that the argument passed
to IsPalindrome isn’t null or only whitespace. (I could’ve used pat­
tern matching with “text is null” for the null check.) Next, I declare
a function LocalIsPalindrome in which I compare the first and
last characters recursively. The advantage of this approach is that I
don’t declare the LocalIsPalindrome within the scope of the class
where it can potentially be called mistakenly, thus circumventing
the IsNullOrWhiteSpace check. In other words, local functions
provide an additional scope restriction, but only inside the
surrounding function.

The parameter validation scenario in Figure 7 is one of the com­
mon local function use cases. Another one I encounter frequently
occurs within unit tests, such as when testing the IsPalindrome
function (see Figure 8).

Iterator functions that return IEnumerable<T> and yield return
elements are another common local function use case.

To wrap up the topic, here are a few more points to be aware of
for local functions:

// Eject with pattern matching.
public void Eject(Storage storage)
{
 if (storage is null)
 {
 throw new ArgumentNullException();
 }
 if (((storage is UsbKey usbDrive) && usbDrive.IsPluggedIn)
 {
 usbKey.Unload();
 Console.WriteLine("USB Drive Unloaded.");
 }
 else if (storage is DVD dvd && dvd.IsInserted)
 // ...
 else throw new NotImplementedException(); // Default
}

Figure 5 Type Casting with Pattern Matching

public void Eject(Storage storage)
{
 switch(storage)
 {
 case UsbKey usbKey when usbKey.IsPluggedIn:
 usbKey.Unload();
 Console.WriteLine("USB Drive Unloaded.");
 break;
 case DVD dvd when dvd.IsInserted:
 dvd.Eject();
 break;
 case HardDrive hardDrive:
 throw new InvalidOperationException();
 case null:
 default:
 throw new ArgumentNullException();
 }
}

Figure 6 Pattern Matching in a Switch Statement

bool IsPalindrome(string text)
{
 if (string.IsNullOrWhiteSpace(text)) return false;

 bool LocalIsPalindrome(string target)
 {
 target = target.Trim(); // Start by removing any surrounding whitespace.
 if (target.Length <= 1) return true;
 else
 {
 return char.ToLower(target[0]) ==
 char.ToLower(target[target.Length - 1]) &&
 LocalIsPalindrome(
 target.Substring(1, target.Length - 2));
 }
 }
 return LocalIsPalindrome(text);
}

Figure 7 A Local Function Example

[TestMethod]
public void IsPalindrome_GivenPalindrome_ReturnsTrue()
{
 void AssertIsPalindrome(string text)
 {
 Assert.IsTrue(IsPalindrome(text),
 $"'{text}' was not a Palindrome.");
 }
 AssertIsPalindrome("7");
 AssertIsPalindrome("4X4");
 AssertIsPalindrome(" tnt");
 AssertIsPalindrome("Was it a car or a cat I saw");
 AssertIsPalindrome("Never odd or even");
}

Figure 8 Unit Testing Often Uses Local Functions

1116msdnCon_MichaelisCS7_v5_18-25.indd 22 10/27/16 3:50 PM

Untitled-4 1Untitled-4 1 7/8/16 12:26 PM7/8/16 12:26 PM

www.scaleoutsoftware.com/appfabric
www.scaleoutsoftware.com/trial

msdn magazine24 C# 7.0

• �Local functions don’t allow use of an accessibility modifier
(public, private, protected).

• �Local functions don’t support overloading. You can’t have
two local functions in the same method with the same name
even if the signatures don’t overlap.

• �The compiler will issue a warning for local functions that
are never invoked.

• �Local functions can access all variables in the enclosing scope,
including local variables. This behavior is the same with
locally defined lambda expressions except that local func­
tions don’t allocate an object that represents the closure, as
locally defined lambda expressions do.

• �Local functions are in scope for the entire method, regardless
of whether they’re invoked before or after their declaration.

Return by Reference
Since C# 1.0 it has been possible to pass arguments into a function by
reference (ref). The result is that any change to the parameter itself will
get passed back to the caller. Consider the following Swap function:

static void Swap(ref string x, ref string y)

In this scenario, the called method can update the original caller’s
variables with new values, thereby swapping what’s stored in the
first and second arguments.

Starting in C# 7.0, you’re also able to pass back a reference via the
function return—not just a ref parameter. Consider, for example,
a function that returns the first pixel in an image that’s associated
with red-eye, as shown in Figure 9.

By returning a reference to the image, the caller is then able
to update the pixel to a different color. Checking for the update
via the array shows that the value is now black. The alternative of
using a by reference parameter is, one might argue, less obvious
and less readable:

public bool FindFirstRedEyePixel(ref byte pixel);

There are two important restrictions on return by reference—both
due to object lifetime. These are that object references shouldn’t be

garbage collected while they’re still referenced, and they shouldn’t
consume memory when they no longer have any references. First,
you can only return references to fields, other reference-returning
properties or functions, or objects that were passed in as parameters
to the by reference-returning function. For example, FindFirst­
RedEyePixel returns a reference to an item in the image array, which
was a parameter to the function. Similarly, if the image was stored
as a field within a class, you could return the field by reference:

byte[] _Image;
public ref byte[] Image { get { return ref _Image; } }

Second, ref locals are initialized to a certain storage location
in memory, and can’t be modified to point to a different location.
(You can’t have a pointer to a reference and modify the reference—a
pointer to a pointer for those of you with a C++ background.)

There are several return-by-reference characteristics of which
to be cognizant:

• �If you’re returning a reference you obviously have to return it.
This means, therefore, that in the example in Figure 9, even
if no red-eye pixel exists, you still need to return a ref byte.
The only workaround would be to throw an exception. In
contrast, the by reference parameter approach allows you to
leave the parameter unchanged and return a bool indicating
success. In many cases, this might be preferable.

• �When declaring a reference local variable, initialization is
required. This involves assigning it a ref return from a func­
tion or a reference to a variable:

ref string text; // Error

• �Although it’s possible in C# 7.0 to declare a reference local
variable, declaring a field of type ref isn’t allowed:

class Thing { ref string _Text; /* Error */ }

• �You can’t declare a by reference type for an auto-
implemented property:

 class Thing { ref string Text { get;set; } /* Error */ }

• �Properties that return a reference are allowed:
class Thing { string _Text = "Inigo Montoya";
 ref string Text { get { return ref _Text; } } }

• �A reference local variable can’t be initialized with a value
(such as null or a constant). It must be assigned from a by
reference returning member or a local variable/field:

ref int number = null; ref int number = 42; // ERROR

Out Variables
Since the first release of C#, the invocation of methods containing out
parameters always required the pre-declaration of the out argument

public ref byte FindFirstRedEyePixel(byte[] image)
{

 //// Do fancy image detection perhaps with machine learning.
 for (int counter = 0; counter < image.Length; counter++)
 {
 if(image[counter] == (byte)ConsoleColor.Red)
 {
 return ref image[counter];
 }
 }
 throw new InvalidOperationException("No pixels are red.");
}

[TestMethod]
public void FindFirstRedEyePixel_GivenRedPixels_ReturnFirst()
{
 byte[] image;
 // Load image.
 // ...

 // Obtain a reference to the first red pixel.
 ref byte redPixel = ref FindFirstRedEyePixel(image);
 // Update it to be Black.
 redPixel = (byte)ConsoleColor.Black;
 Assert.AreEqual<byte>((byte)ConsoleColor.Black, image[redItems[0]]);
}

Figure 9 Ref Return and Ref Local Declaration

public long DivideWithRemainder(
 long numerator, long denominator, out long remainder)
{
 remainder = numerator % denominator;
 return (numerator / denominator);
}

[TestMethod]
public void DivideTest()
{
 Assert.AreEqual<long>(21,
 DivideWithRemainder(42, 2, out long remainder));
 Assert.AreEqual<long>(0, remainder);
}

Figure 10 Inline Declaration of Out Arguments

1116msdnCon_MichaelisCS7_v5_18-25.indd 24 10/27/16 3:50 PM

25November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

identifier before invocation of the method. C# 7.0 removes this
idiosyncrasy, however, and allows the declaration of the out argument
inline with the method invocation. Figure 10 shows an example.

Notice how in the DivideTest method, the call to DivideWith­
Remainder from within the test includes a type specifier after the
out modifier. Furthermore, see how remainder continues to be in
scope of the method automatically, as evidenced by the second
Assert.AreEqual invocation. Nice!

Literal improvements
Unlike previous versions, C# 7.0 includes a numeric binary literal
format, as the following example demonstrates:

long LargestSquareNumberUsingAllDigits =
 0b0010_0100_1000_1111_0110_1101_1100_0010_0100; // 9,814,072,356
long MaxInt64 { get; } =
 9_223_372_036_854_775_807; // Equivalent to long.MaxValue

Notice also the support for the underscore “_” as a digit separator.
It’s used simply to improve readability and can be placed anywhere
between the digits of the number—binary, decimal or hexadecimal.

Generalized Async Return Types
On occasion when implementing an async method, you’re able to
return the result synchronously, short-circuiting a long-running
operation because the result is virtually instantaneous or even
already known. Consider, for example, an async method that deter­
mines the total size of files within a directory (bit.ly/2dExeDG). If, in fact,
there are no files in the directory, the method can return immediately
without ever executing a long-running operation. Until C# 7.0, the
requirements of async syntax dictated that the return from such a
method should be a Task<long> and, therefore, that a Task be instan­
tiated even if no such Task instance is required. (To achieve this, the
general pattern is to return the result from Task.FromResult<T>.)

In C# 7.0, the compiler no longer limits async method returns
to void, Task or Task<T>. You can now define custom types, such
as the .NET Core Framework-provided System.Threading.Tasks.
ValueTask<T> struct, which are compatible with an async method
return. See itl.tc/GeneralizedAsyncReturnTypes for more information.

More Expression-Bodied Members
C# 6.0 introduced expression-bodied members for functions and
properties, enabling a streamlined syntax for implementing trivial

methods and properties. In C# 7.0, expression-bodied implemen­
tations are added to constructors, accessors (get and set property
implementations) and even finalizers (see Figure 11).

I expect the use of expression-bodied members to be particularly
common for finalizers because the most common implementation
is to call the Dispose method, as shown.

I’m pleased to point out that the additional support for expression-
bodied members was implemented by the C# community rather
than the Microsoft C# team. Yay for open source!

Caution: This feature is not implemented in Visual Studio 15 Preview 5.

Throw Expressions
The Temporary class in Figure 11 can be enhanced to include
parameter validation within the expression-bodied members;
therefore, I can update the constructor to be:

public TemporaryFile(string fileName) =>
 File = new FileInfo(filename ?? throw new ArgumentNullException());

Without throw expressions, C# support for expression-bodied
members couldn’t do any parameter validation. However, with C# 7.0
support for throw as an expression, not just a statement, the reporting
of errors inline within larger containing expressions becomes possible.

Caution: This feature is not implemented in Visual Studio 15 Preview 5.

Wrapping Up
I confess that when I started writing this article, I expected it to be
much shorter. However, as I spent more time programming and
testing the features, I discovered there was way more to C# 7.0
than I realized from reading the feature titles and following the
language development. In many cases—declaring out variables,
binary literals, throw expressions and such—there isn’t much
involved in understanding and using the features. However, sev­
eral cases—return by reference, deconstructors and tuples, for
example—require much more to learn the feature than one might
expect initially. In these latter cases, it isn’t just the syntax, but also
knowing when the feature is relevant.

C# 7.0 continues to whittle away at the quickly decreasing list
of idiosyncrasies (pre-declared out identifiers and lack of throw
expressions), while at the same time broadening to include sup­
port for features previously not seen at the language level (tuples
and pattern matching).

Hopefully, this introduction helps you jump into programming C#
7.0 immediately. For more information on C# 7.0 developments fol­
lowing this writing, check out my blog at intellitect.com/csharp7, as well as
an update to my book, “Essential C# 7.0” (which is expected to come
out shortly after Visual Studio 15 is released to manufacturing).	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP and a
Microsoft Regional Director since 2007. Michaelis serves on several Microsoft soft-
ware design review teams, including C#, Microsoft Azure, SharePoint and Visual
Studio ALM. He speaks at developer conferences and has written numerous books
including his most recent, “Essential C# 6.0 (5th Edition)” (itl.tc/EssentialCSharp).
Contact him on Facebook at facebook.com/Mark.Michaelis, on his blog at IntelliTect.com/
Mark, on Twitter: @markmichaelis or via e-mail at mark@IntelliTect.com.

Thanks to the following technical experts for reviewing this article:
Kevin Bost (IntelliTect), Mads Torgersen (Microsoft) and Bill Wagner (Microsoft)

class TemporaryFile // Full IDisposible implementation
 // left off for elucidation.
{
 public TemporaryFile(string fileName) =>
 File = new FileInfo(fileName);

 ~TemporaryFile() => Dispose();

 Fileinfo _File;
 public FileInfo File
 {
 get => _File;
 private set => _File = value;
 }

 void Dispose() => File?.Delete();
}

Figure 11 Using Expression-Bodied Members
in Accessors and Constructors

1116msdnCon_MichaelisCS7_v5_18-25.indd 25 10/27/16 3:50 PM

mailto:mark@IntelliTect.com
http://www.msdnmagazine.com
www.bit.ly/2dExeDG
http://itl.tc/GeneralizedAsyncReturnTypes
http://intellitect.com/csharp7
http://itl.tc/EssentialCSharp
www.facebook.com/Mark.Michaelis
www.IntelliTect.com/Mark
www.IntelliTect.com/Mark
www.twitter.com/markmichaelis

msdn magazine26

If you use Xamarin to target iOS and Android, you know about
the benefits of developing for multiple platforms using one program-
ming language and shared code. You also know about the benefits of
using Xamarin.Forms to reuse your UI across Android and iOS while
retaining the freedom to take advantage of unique platform capabilities.

What you might not be aware of is that you can use these same
tools to target the Universal Windows Platform (UWP), reach more
than 400 million devices, and increase downloads and engagement
across iOS and Android devices at the same time.

Why Target the UWP?
Why should you target your app for the UWP? App engagement—
that’s why. As developers, we want reach. We want eyes on our content.
We want our apps to be used—and used regularly—to make the
most of in-app purchases, advertising, content contributions to
build the app’s ecosystem and so on.

The UWP allows you to write apps that run on desktops, tablets,
phones, Xbox, HoloLens and Internet of Things (IoT) devices. That’s
more than 400 million potential sockets for your app. But it isn’t
just about the number of Windows-based devices. It’s also about
boosting engagement across all the devices you support. Consider
NPR’s experience with its app, NPR One (one.npr.org).

NPR One delivers a curated stream of public radio news, stories
and podcasts to its users. Targeting Windows dramatically increased
engagement with NPR’s content. A Microsoft blog post (bit.ly/2e30plQ)
quoted Ben Schein, product manager at NPR, as saying, “Seventy
percent of NPR listeners use Windows devices, and we’ve seen a 50
percent increase in their listening time just since Windows 10 came
out. And that was before we upgraded our app.” As an unexpected
bonus, NPR also found when “... we released the Windows app, we
had an unanticipated spike in iOS and Android downloads, as well.”

This speaks to the fact that we live in a multi-device world. We
know people have iOS and Android devices, and we know they
have PCs at work or at home. It makes sense that they switch
between these devices during the day depending on where they
are and what they’re doing. Having your app available on all the
devices people use makes it more likely they’ll stay engaged with
your app and your content.

Consider a typical day where someone rides the bus to work. On
the bus, she starts working on a task on her phone, such as reading
a report. Once she gets to work, she might want to pick that task
up on a desktop by exporting the report to Microsoft Excel for more

XAMA R I N

Increase App
Engagement with
Xamarin and the Universal
Windows Platform
Tyler Whitney

This article discusses:
•	How the Universal Windows Platform (UWP) extends app reach

and engagement

•	What the UWP offers to iOS and Android developers

•	Adding a UWP project to an existing Xamarin.Forms app

Technologies discussed:
Xamarin, Universal Windows Platform

1116msdnCon_WhitneyXamarinUWP_v4_26-30.indd 26 10/27/16 3:56 PM

http://one.npr.org
www.bit.ly/2e30plQ

27November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

analysis. On the bus ride home, she might start watching a video.
When she arrives home, she might transition to a PC—or to a large-
screen living room experience with an Xbox—and want to pick up
watching where she left off.

In each of these cases, reach isn’t simply about the devices your app
can run on, though that’s clearly important. Reach is also about how
well your app lets users transition between devices as they try to accom-
plish their tasks on the device that makes the most sense at the time.

What Is the UWP?
The UWP provides a common app platform that’s available on
every device that runs Windows 10.

In addition to a common set of APIs available on all Windows
10-based devices, device-specific APIs allow you to make the most
of a device. I’ll now discuss some of the main benefits the UWP
provides to developers.

Adaptive and Beautiful UI The UWP is designed to help your
app adapt to different screen sizes and types of input. It provides
UI controls and layout controls that adapt to the device on which
they’re running whether it’s a small phone screen or a large enter-
tainment center screen.

Figure 1 shows an example of adaptive UI. Notice the location
of the call button and picture-in-picture control on the mobile
device. When the app runs on the phone, the size of the call but-
ton changes and its position adjusts, making the UI easier to use
with one hand. The location of the picture-in-picture is adjusted
on the phone to accommodate the smaller screen.

The built-in controls accept
the type of inputs available on
the device, whether they’re touch
input, pen, keyboard, mouse or
Xbox controller.

You can write beautiful apps
with new composition APIs.
You can also create animations
(including keyframe animations)
and apply effects such as drop
shadows, thumbnail lighting, blurs,
opacity, scaling animation effects,
hue rotation, parallaxing ListView
items, Z-order scrolling, sepia, con-

trast and more. See these effects for yourself by cloning and running
the WindowsUIDevLabs project on GitHub (bit.ly/2e3PDqo).

UWP apps can provide Live Tiles and notifications, as shown
in Figure 2, to present at-a-glance information for your app. Live
Tiles and notifications can boost app engagement by up to 20
percent because they bring users back to your app.

Adaptive Code Takes Advantage of the Strengths of the
Device The UWP lets you tailor the experience to take advantage
of the strengths of various device types. You can write adaptive
code that takes advantage of the capabilities of a specific device
only when the app is running on that type of device, or target your
app to a specific type of device. Visual Studio filters the available
APIs to those associated with the device category you target. The
Windows Store scopes available apps to the type of device being
used. UWP apps are available on all devices.

Cortana APIs provide the ability to add voice commands to your
app. Register app actions on the Cortana portal and Cortana will
suggest actions that involve your app at the right time and place.

To help you write engaging apps for the UWP, Visual Studio
provides exceptional coding and debugging tooling. Resources are
available to help you write your app, such as code samples (bit.ly/1Rh-
G46l), task snippets (bit.ly/2dINSo9), a vibrant community of developers
from which you can get help, and libraries such as the UWP Com-
munity Toolkit (bit.ly/2b1PAJY), which provides animations, custom
controls, and services for Twitter and Facebook. You can then pro-
duce one package that can be installed on all UWP-based devices.

Get Your App into Customer Hands with Less Friction The
Windows Store reduces your cost per install by making it easier to
distribute to a wider audience. It handles sales across geographic
boundaries, which frees you from having to understand the bank-
ing infrastructure and tax laws in other countries and reduces the
friction of reaching regions outside of your own. The Store also
handles licensing for apps that share content between devices so
you don’t have to build out infrastructure to handle those concerns.

The Store provides the experiences to which you’re accustomed
from an app store, such as automatic updates, licensing, trials and
so on. It casts a large net by making your app available to hundreds
of millions of Windows 10 users.

The UWP provides the functionality to create rich apps, run them
across a wide variety of devices and make them available to your cus-
tomers. As you’ll see, it isn’t difficult to target the UWP from Xamarin.

Figure 1 Adaptive UI

Figure 2 A Live Tile and a Notification

1116msdnCon_WhitneyXamarinUWP_v4_26-30.indd 27 10/27/16 3:56 PM

http://www.msdnmagazine.com
www.bit.ly/2e3PDqo
http://www.bit.ly/1RhG46l
http://www.bit.ly/1RhG46l
www.bit.ly/2dINSo9
www.bit.ly/2b1PAJY

msdn magazine28 Xamarin

Add a UWP Project to Your
Existing Xamarin.Forms App
I’ll show you how a UWP project was added to James Montemagno’s
stock ticker code sample on GitHub (bit.ly/2dYHEvs), which is a
Xamarin.Forms solution that targets iOS, Android and the UWP.

I’m going to assume that you have Visual Studio 2015 Update 3 run-
ning on Windows 10 and that Xamarin is installed and up-to- date.

If you want to follow along with the steps, clone the code sample,
remove the MyStocks.Forms.UWP project and add it back with the
following steps:

1. �Add a UWP project to the existing Xamarin.Forms solution.
2. �Add a reference from the UWP project to Xamarin.Forms.
3. �Add a reference to the Portable Class Library (PCL) that

contains the shared forms.
4. �Modify the code in the UWP project to use Xamarin.Forms,

and load the app from the shared PCL project.
Let’s work through these one step at a time.
Add a Blank UWP Project to Your Existing Xamarin.Forms

Solution Once you’ve loaded the MyStocks.Forms solution into
Visual Studio, right-click the solution node and choose Add | New
Project. In the Add New Project dialog, navigate to Visual C# |
Windows | Universal and select Blank App (Universal Windows).
Name the project MyStocks.Forms.UWP and click OK.

Next, you’ll see the New Universal Windows Project dialog,
which asks you to choose the minimum platform versions that
your UWP app will support. Click OK to select the defaults.

Now that you’ve added a UWP project to your Xamarin solu-
tion, right-click the new UWP project’s References node and select
Manage NuGet Packages.

When the NuGet package window appears, select Browse,
type “forms” into the search box to narrow the list and then select
Xamarin.Forms from the list. Select the latest stable version from
the dropdown on the right, note which version it is and click
Install (see Figure 3).

Ensure Your Projects Target the Same Version If you have
other Xamarin.Forms projects in your solution, ensure they’re using
the same version of Xamarin.Forms that you added to your UWP
project. To see what version of Xamarin.Forms the other projects
are using, select a project (for example, MyStocks.Forms.Android),
right-click its References node and choose Manage NuGet Packages.

Ensure Installed is selected, type
“forms” into the search box to
narrow the list and then find
Xamarin.Forms in the list of in-
stalled NuGet packages. Verify that
the version matches the version of
Xamarin.Forms you’re using in your
MyStocks.UWP project. Update it if
it’s an earlier version (see Figure 4).

Add a Reference to the PCL
that Contains the Shared Forms
You want the UI for the UWP
project to use the shared UI in
the Xamarin.Forms project. To
accomplish that, the new UWP

project needs to reference the PCL that contains the shared forms.
In the My.Stocks.Forms.UWP project, right-click the References
node and choose Add Reference. In the Reference Manager that
appears, ensure that Projects | Solution is selected, and then select
MyStocks.Forms to add the reference (see Figure 5).

Modify the Code in the UWP Project to Use Xamarin.Forms
and Load the App from the Shared PCL Project Now I need
to override code in the app template, which was added as part
of the new UWP project, so it will use Xamarin.Forms to load
the app from the shared PCL project. Insert the following high-
lighted code into the start of App::OnLaunched, which is in
MyStocks.Forms.UWP | App.xaml | App.xaml.cs:

protected override void OnLaunched(LaunchActivatedEventArgs e)
{
 // Initialize Xamarin.Forms here
 Xamarin.Forms.Forms.Init(e);

 #if DEBUG
 ...
}

In the MainPage constructor, which is in MyStocks.Forms.
UWP | MainPage.xaml | MainPage.xaml.cs, add the following high-
lighted code to load the Xamarin.Forms project:

public MainPage()
{
 this.InitializeComponent();
 this.LoadApplication(new MyStocks.Forms.App());
}

In the same file, remove MainPage’s inheritance from Page:
 public sealed partial class MainPage : Page

Then make the following changes to MainPage.xaml
(MyStocks.Forms.UWP | MainPage.xaml):

Figure 3 The NuGet Package Manager

Figure 4 Verifying the Versions of Xamarin.Forms Match

1116msdnCon_WhitneyXamarinUWP_v4_26-30.indd 28 10/27/16 3:56 PM

www.bit.ly/2dYHEvs

GdPicture.NET is an

Untitled-3 1 5/3/16 12:35 PM

www.gdpicture.com

msdn magazine30 Xamarin

• �Inside the <Page> tag, add: xmlns:forms=
“using:Xamarin.Forms.Platform.UWP”:
 <Page
 x:Class="MyStocks.Forms.UWP.MainPage"
 xmlns:forms="using:Xamarin.Forms.Platform.UWP"
 ...

• �Change the opening <Page> tag to <forms:WindowsPage
and ensure that the closing tag changes from </Page> to
</forms:WindowsPage>

Now the page will inherit from Xamarin.Forms.Platform.
UWP.WindowsPage.

Add the MyStocks.Forms.UWP Project to the Build Con-
figuration After adding a UWP project to your Xamarin.Forms
project, ensure it’s configured to build. First, right-click on the
MyStocks.Forms.UWP project node and select Set as StartUp project.

Then right-click on the solution node and select Configura-
tion Manager. In the Configuration Manager dialog, ensure the

MyStocks.Forms.UWP checkboxes for Build and
Deploy are checked.

If you’ve been following these steps, you initially
removed the MyStocks.Forms.UWP project. The
new MyStocks.Forms.UWP project doesn’t have
the background image or the NuGet packages that
were added to the original project to get the value
of a stock symbol, access the Twitter API and so
on. To view the result of the steps taken to add
a UWP project to James Montemagno’s sample
app, clone a fresh copy of his GitHub project at
the link provided earlier, or install the following
NuGet packages to your MyStocks.Forms.UWP
project: linqtotwitter, Microsoft.Bcl, Mic-
rosoft.BCL.Build, Microsoft.Bcl.Compression,
Microsoft.Net.Http, Newtonsoft.Json and
Xam.Plugins.TextToSpeech.

You’ve now added a UWP project to your
Xamarin solution. The UWP project will load

and run the Xamarin.Forms app from the UWP Blank App tem-
plate. Figure 6 shows the app running on Android, iOS and
Windows 10.

Xamarin.Forms does the work of mapping controls from the shared
forms project to the UWP project that was added. Xamarin.Forms
also provides a way to introduce platform specificity, if you need to,
while still sharing other parts of the UI. Check out Charles Petzold’s
article, “Embedding Native Views in Your Xamarin.Forms Apps,” in
this issue and Kevin Ashley’s September 2016 article, “Cross-Platform
Productivity with Xamarin” (bit.ly/2dYKr8a), for more details.

Functionality specific to your UWP app, such as Live Tiles, custom
icons, notifications and so on, will go in the UWP project.

Wrapping Up
If you aren’t using Xamarin.Forms for your UI, you can still add a
UWP project to your solution. You can share code using a Shared

Asset Project, PCL or .NET Standard
Library. Then you can build out the UIs
for each project—including the UWP
project—by using XAML. See “Building
Cross-Platform Applications” on the
Xamarin developer site (bit.ly/2e3bV0C)
for information about best practices.

Microsoft bought Xamarin and
continues to invest in the open source
project (bit.ly/1MZsCFE). We encourage your
feedback and contributions!	 n

Tyler Whitney is a senior content developer at
Microsoft. He’s written about Windows Embed-
ded Compact and now writes about Windows
10 development.

Thanks to the following Microsoft technical
experts for reviewing this article:
Jim Cox, Norm Estabrook, James Montemagno
and Jason Short

Figure 5 Adding a Reference to the Portable Class Library

Figure 6 App Running on Various OSes
WindowsAndroid iOS

1116msdnCon_WhitneyXamarinUWP_v4_26-30.indd 30 10/27/16 3:56 PM

www.bit.ly/2dYKr8a
www.bit.ly/2e3bV0C
www.bit.ly/1MZsCFE

MSDN Magazine Vendor Profile

NCache and NosDB
Extreme Performance Linear Scalability

VPmagazine

MSDN MAGAZINE VENDOR PROFILE

To learn more, please visit our website g www.alachisoft.com

Industry leader for over 10 years. Powerful Open Source solutions (Apache 2.0)

NCache
Distributed Cache for .NET (Open Source)
NCache is an Open Source .NET distributed cache. It caches app data and
linearly scales applications to easily accommodate extreme transaction
processing (XTP). Use NCache for:

• In-Memory App Data Caching
• ASP.NET Sessions State
• Runtime Data Sharing with Events

NCache is the most powerful distributed cache in the market. See why with
“NCache vs. Redis” comparisons on our website.

NosDB
NoSQL Database for .NET (Open Source)
NosDB is an Open Source NoSQL Database for .NET. NosDB provides
schema-free JSON documents to reduce application development time and
offers extreme performance and scalability. And, NosDB provides SQL support
for data access and data definition, coupled with the NosDB Management
Studio to get you up and running in no time and with a low cost of ownership.

Some NosDB characteristics are:

• Multiple Shards and Data Replication
• Powerful SQL, LINQ, and ADO.NET
• Powerful Admin & Monitoring Tools
• NET, Java, REST, Node.js support

NosDB is the most feature rich NoSQL Database for .NET available.
See more in the “NosDB vs. MongoDB” comparison on our website.

President and Technology Evangelist Iqbal Khan co-founded Alachisoft to provide world class performance and
scalability solutions for .NET applications. Thanks to our customers, Alachisoft achieved its goal with NCache, the
.NET caching market leader for 10 years running. Now the company offers the first fully featured NoSQL Database
for .NET, called NosDB. Look to NCache and NosDB for your database scalability and performance needs.

Untitled-1 1 10/28/16 11:21 AM

http://www.alachisoft.com
http://www.alachisoft.com

msdn magazine32

When Xamarin.Forms debuted less than three years ago,
application programmers immediately recognized it as a powerful
and versatile solution for cross-platform mobile development. You
can create a Xamarin.Forms solution in Visual Studio and write an
entire mobile app in C#, with or without XAML, that you can compile
for iOS, Android and the Universal Windows Platform (UWP). On
the macOS you can use Xamarin Studio to target iOS and Android.

Xamarin.Forms includes some 20 controls, such as Button, Slider
and Entry, that are often referred to as views because they derive
from the Xamarin.Forms.View class. These are rendered on the
various platforms using native views, or widgets, or controls, or
elements as they’re called in various platforms. For example, the
Xamarin.Forms Entryview is mapped to an iOS UITextField, an
Android EditText and a UWP TextBox.

What makes this possible is an extensible infrastructure of
platform renderers that encapsulate the native view and expose
a uniform collection of properties and events that correspond to
the API of the corresponding Xamarin.Forms view. You can define
your own custom views and support them with your own render-
ers, but it’s not a trivial job. For that reason, Xamarin.Forms has
been enhanced recently to introduce various extensibility short-
cuts that avoid the hassle of writing renderers.

One of the most compelling of these shortcuts is called native
views, a feature that lets you instantiate native iOS, Android and
UWP views alongside the normal Xamarin.Forms views. That’s what
this article is all about. The story of native views begins with code,
but becomes much more interesting when XAML gets involved.

Platform-Specific Extension Methods
Xamarin.Forms supports native views with several platform-
specific classes. Each of the Xamarin.Forms platforms contains a
LayoutExtensions class with an extension method named ToView
that you can call on descendants of the following native types:

MO BILE

Embedding
Native Views in Your
Xamarin.Forms Apps
Charles Petzold

This article discusses:
•	Platform-specific extension methods

•	Embedding native views in Xamarin.Forms XAML files

•	Data binding and the MVVM pattern

•	Shared Asset Programs vs. Portable Class Libraries

Technologies discussed:
Xamarin.Forms

Code download available at:
msdn.com/magazine/1116Connect_magcode

This is important: You can’t
enable XAML compilation when

using XAML native views.

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 32 10/27/16 3:52 PM

http://msdn.com/magazine/1116Connect_magcode

33November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

• �iOS: UIKit.UIView
• �Android: Android.Views.View
• �UWP: Windows.UI.Xaml.FrameworkElement

Each version of the ToView method returns a platform-
specific instance of NativeViewWrapper, which derives from
Xamarin.Forms.View. NativeViewWrapper inherits all the public
and protected members of Xamarin.Forms.View, and despite
being platform-specific, is treated within Xamarin.Forms like a
normal View instance. A second extension method is Add, which
performs the ToView operation while adding the View object to a
layout such as StackLayout.

Each platform’s version of NativeViewWrapper has a corre-
sponding renderer: a class named NativeViewWrapperRenderer
that’s simpler than most renderers because it doesn’t need to

support any properties, methods or events of the underlying native
control. (Xamarin.Forms is open source, so you can examine these
and related classes at github.com/xamarin/Xamarin.Forms.)

Let’s see how this works.
Normally a Xamarin.Forms solution contains tiny stub application

projects for each platform and a common Portable Class Library
(PCL) that contains the bulk of your Xamarin.Forms application.
However, when using native views in code, you can’t use a PCL.
Instead, you’ll need to put your Xamarin.Forms code in a shared
project, which at Xamarin is often called a Shared Asset Project
or SAP. In the New Project dialog of Visual Studio select Blank
App (Xamarin.Forms Shared) rather than the usual Blank App
(Xamarin.Forms Portable). (In Xamarin Studio you select between
Portable Class Library or Shared Library with radio buttons.) The

code in this shared project is effectively an
extension of each application, which means
you can use C# conditional compilation
directives (#if, #elif and #endif) to delimit
the platform-specific code.

Among the downloadable code for this
article is the HelloNativeViews pro-
gram, with an SAP that contains the
page class shown in Figure 1. (Note that
normal code indentation practices have
been altered in some code samples to fit
in available space.) This class creates a
label for each platform: a UILabel for iOS, a
TextView for Android and a TextBlock for the
UWP. It then calls ToView to convert each
of these objects to a Xamarin.Forms.View
object, but which is actually a NativeView-
Wrapper object. The page can then apply

Figure 1 The HelloNativeViews Class

using System;
using Xamarin.Forms;

#if __IOS__
using Xamarin.Forms.Platform.iOS;
using UIKit;

#elif __ANDROID__
using Xamarin.Forms.Platform.Android;
using Android.Graphics;
using Android.Widget;

#elif WINDOWS_UWP
using Xamarin.Forms.Platform.UWP;
using Windows.UI.Text;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;
#endif

namespace HelloNativeViews
{
 public class HelloNativeViewsPage : ContentPage
 {
 public HelloNativeViewsPage()
 {
 View view = null;

#if __IOS__
 UILabel label = new UILabel
 {
 Text = "Hello iOS Native!",

 Font = UIFont.FromName("Papyrus", 32f),
 };
 view = label.ToView();

#elif __ANDROID__
 TextView textView = new TextView(Forms.Context)
 {
 Text = "Hello Android Native!",
 Typeface = Typeface.Create("cursive", TypefaceStyle.Normal),
 TextSize = 32f
 };
 view = textView.ToView();

#elif WINDOWS_UWP
 TextBlock textBlock = new TextBlock
 {
 Text = "Hello Windows Native!",
 FontFamily = new FontFamily("Georgia"),
 FontStyle = FontStyle.Italic,
 FontSize = 32
 };
 view = textBlock.ToView();
#endif

 view.HorizontalOptions = LayoutOptions.Center;
 view.VerticalOptions = LayoutOptions.Center;
 Content = view;
 }
 }
}

Figure 2 The HelloNativeViews Program on iOS, Android and Windows 10 Mobile

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 33 10/27/16 3:52 PM

http://www.msdnmagazine.com
http://github.com/xamarin/Xamarin.Forms

msdn magazine34 Mobile

Xamarin.Forms properties such as Vertical Options and Horizontal
Options to the View and finally set it to the Content property of the
page. Figure 2 shows the program running on all three platforms,
each with a font distinctive to that platform.

Of course, you can get the same effect entirely in standard
Xamarin.Forms by setting the FontFamily property of a Label to
a Device.OnPlatform method call that references the three font
family names. But I think you can see how you can expand this
technique in a much more sophisticated manner by taking advan-
tage of the specific APIs that each platform supports.

Sometimes you might need to apply custom sizing methods to
these views so they behave properly as children of a Xamarin.Forms
layout object. Check out the article on the Xamarin developer site
at bit.ly/2dhBxDk for more details.

While this is an interesting technique, of course it sure would
be much nicer to instantiate these native views directly in XAML.

XAML Native Views
As of Xamarin.Forms 2.3.3 (which is in pre-release state as I
write this article) you can indeed embed native views in your
Xamarin.Forms XAML files. You can set properties and event han-
dlers on these views. You can include views from multiple platforms
side-by-side in the same XAML file, and they can interact with all
the other Xamarin.Forms views.

One key to this feature is an extension to the XML namespace
(xmlns) declaration for XAML files. Custom XML namespaces
in Xamarin.Forms commonly use clr-namespace to denote the

Common Language Runtime (CLR) namespace, and assembly
for the assembly. The new item is targetPlatform, which indicates
to which platform this particular XML namespace applies. You
set this item to a member of the Xamarin.Forms TargetPlatform
enumeration: iOS, Android or Windows for the UWP.

For example, you can define the following XML namespace:
xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"

You can use this prefix within the XAML file to reference any
class or structure in the iOS UIKit namespace, for example:

<ios:UILabel Text="Hello iOS Native!"
 TextColor="{x:Static ios:UIColor.Red}"
 View.VerticalOptions="Center"
 View.HorizontalOptions="Center" \>

Text and TextColor are properties of UILabel, and TextColor
is set to a static read-only property of UIColor. However, notice
that the VerticalOptions and HorizontalOptions attributes
are prefaced by View, and they are indeed properties of the
Xamarin.Forms View class. This syntax—a class, dot and property
name—is commonly used for attached bindable properties, and
here it indicates that these properties are later applied to the View
object that results from the conversion of UILabel to a NativeView-
Wrapper object. You can use this syntax only for properties that
are backed by bindable properties.

To reference Android widgets you’ll need an XML namespace
something like this (which I’ve shown on three lines here, but which
in the XAML file must be on one line without spaces):

xmlns:androidWidget="clr-namespace:Android.Widget;
 assembly=Mono.Android;
 targetPlatform=Android"

Figure 3 The XAML File for the XamlNativeViewDemo Program

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:XamlNativeViewDemo"
 xmlns:ios="clr-namespace:UIKit; ... "
 xmlns:androidWidget="clr-namespace:Android.Widget; ... "
 xmlns:androidGraphics="clr-namespace:Android.Graphics; ... "
 xmlns:formsAndroid="clr-namespace:Xamarin.Forms; ... "
 xmlns:winui="clr-namespace:Windows.UI; ... "
 xmlns:winText="clr-namespace:Windows.UI.Text; ... "
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls; ... "
 xmlns:winMedia="clr-namespace:Windows.UI.Xaml.Media; ... "
 x:Class="XamlNativeViewDemo.XamlNativeViewDemoPage">

 <Grid x:Name="grid">
 <ContentView x:Name="textToRotateParent"
 Grid.Row="0"
 VerticalOptions="Center"
 HorizontalOptions="Center">

 <ios:UILabel Text="Text to Rotate"
 TextColor="{x:Static ios:UIColor.Red}">
 <ios:UILabel.Font>
 <ios:UIFont x:FactoryMethod="FromName">
 <x:Arguments>
 <x:String>Papyrus</x:String>
 <x:Single>32</x:Single>
 </x:Arguments>
 </ios:UIFont>
 </ios:UILabel.Font>
 </ios:UILabel>

 <androidWidget:TextView x:Arguments=
 "{x:Static formsAndroid:Forms.Context}"
 Text="Text to Rotate"
 TextSize="32">
 <androidWidget:TextView.Typeface>
 <androidGraphics:Typeface x:FactoryMethod="Create">
 <x:Arguments>
 <x:String>cursive</x:String>

 <androidGraphics:
 TypefaceStyle>Normal</androidGraphics:TypefaceStyle>
 </x:Arguments>
 </androidGraphics:Typeface>
 </androidWidget:TextView.Typeface>
 </androidWidget:TextView>

 <winControls:TextBlock Text="Text to Rotate"
 FontSize="32"
 FontStyle="{x:Static winText:FontStyle.Italic}">
 <winControls:TextBlock.FontFamily>
 <winMedia:FontFamily>
 <x:Arguments>
 <x:String>Georgia</x:String>
 </x:Arguments>
 </winMedia:FontFamily>
 </winControls:TextBlock.FontFamily>

 <winControls:TextBlock.Foreground>
 <winMedia:SolidColorBrush Color="{x:Static winui:Colors.Red}" />
 </winControls:TextBlock.Foreground>
 </winControls:TextBlock>
 </ContentView>

 <ContentView x:Name="rotateButtonParent"
 Grid.Row="1"
 VerticalOptions="Center"
 HorizontalOptions="Center">

 <ios:UIButton TouchUpInside="OnButtonTap" />

 <androidWidget:Button x:Arguments="{x:Static formsAndroid:Forms.Context}"
 Text="Rotate the Text"
 Click="OnButtonTap" />

 <winControls:Button Content="Rotate the Text" />
 </ContentView>
 </Grid>
</ContentPage>

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 34 10/27/16 3:52 PM

www.bit.ly/2dhBxDk

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-5 1Untitled-5 1 12/10/15 2:34 PM12/10/15 2:34 PM

http://MSDN.microsoft.com

msdn magazine36 Mobile

You can use any name for this namespace, of course, but I avoided
using just android because Android is a little trickier than iOS:
Widget constructors generally require the Android Context object
as an argument. This Context object is available as a public static
property of the Forms class in the Xamarin.Forms namespace in
the Xamarin.Forms.Platform.Android assembly. To obtain this
Context object, you’ll need this XML namespace (which also must
be on one line in the XAML file):

xmlns:formsAndroid="clr-namespace:Xamarin.Forms;
 assembly=Xamarin.Forms.Platform.Android;
 targetPlatform=Android"

You can then instantiate an Android widget in XAML by passing
an argument to the constructor using the x:Arguments attribute
with an x:Static markup extension:

<androidWidget:TextView x:Arguments="{x:Static formsAndroid:Forms.Context}"
 Text="Hello Android Native!" />

The assembly name for the UWP is quite long, specifically: Windows,
Version=255.255.255.255, Culture=neutral, PublicKeyToken=null,
ContentType=WindowsRuntime. For Android and the UWP, you’ll
probably need multiple XML namespace specifications for the var-
ious CLR namespaces used for the various classes, structures and
enumerations that tend to be involved in UI markup.

Keep in mind that when the XAML parser encounters one of these
native views, it doesn’t have access to type converters commonly used
to convert XAML text strings into objects, so the markup tends to
be a little more extensive to match property and object types. Often
you’ll need to create objects explicitly in XAML using constructors
or factory methods, which means that if you’re not familiar with
the x:Arguments tag and the x:FactoryMethod element, now is a
good time to learn.

This is important: You can’t enable XAML compilation when
using XAML native views. The compile-time XAML parser doesn’t
have references to these native types. The parsing must be delayed
until runtime, and at that point the XAML parser simply ignores
anything with an XML namespace prefix that has a targetPlatform
that doesn’t match the platform on which the program is running.
(I’m told the Xamarin.Forms developers are working on removing
this restriction.)

You can’t use styles with native views. Styles can target only prop-
erties that are backed by BindableProperty objects, and native views
don’t have such properties.

Because these XAML native views are instantiated by the run-
time XAML parser, you can include them in a XAML file in either
a PCL project or an SAP. However, if you need to refer to a native

view from the codebehind file, you must use an SAP and delimit the
platform-specific code with C# conditional compilation directives.

Here’s another restriction: With either a PCL or an SAP, you can’t
use x:Name on a XAML native view. The problem is that the compile-
time XAML parser generates a code file containing these named
objects as fields, but if these fields are based on platform-specific
types, the generated code can’t be compiled for all the platforms.

The XamlNativeViewDemo program contains the XAML file
shown in Figure 3 with three platform-specific red-text strings
and three platform-specific buttons. Pressing a button invokes an
event handler in the codebehind file that rotates the text in a circle.

I optimistically began XamlNativeViewDemo as a PCL project,
but it soon became apparent that the XAML needed a little help.
You can’t even set the text on an iOS UIButton from XAML. You
need to call a method, and that requires code. Similarly, you can’t
set the text color on an Android TextView with a property, and the
Click handler for the UWP Button is of type RoutedEventHan-
dler, which involves a RoutedEventArgs object that doesn’t derive
from EventArgs and, hence, requires a platform-specific handler.

using System;
using Xamarin.Forms;

namespace XamlNativeViewDemo
{
 public partial class XamlNativeViewDemoPage : ContentPage
 {
 View viewTextToRotate;

 public XamlNativeViewDemoPage()
 {
 InitializeComponent();

 viewTextToRotate = textToRotateParent.Content;
 View rotateButton = rotateButtonParent.Content;

#if __ANDROID__
 // Set Android text color
 var wrapper =
 (Xamarin.Forms.Platform.Android.NativeViewWrapper)
 viewTextToRotate;
 var textView = (Android.Widget.TextView)wrapper.NativeView;
 textView.SetTextColor(Android.Graphics.Color.Red);
#endif

#if __IOS__
 // Set iOS button text and color
 var wrapper = (Xamarin.Forms.Platform.iOS.NativeViewWrapper)rotateButton;
 var button = (UIKit.UIButton)wrapper.NativeView;
 button.SetTitle("Rotate the Text", UIKit.UIControlState.Normal);
 button.SetTitleColor(UIKit.UIColor.Black, UIKit.UIControlState.Normal);
#endif

#if WINDOWS_UWP
 // Set UWP button Click handler
 var wrapper = (Xamarin.Forms.Platform.UWP.NativeViewWrapper)rotateButton;
 var button = (Windows.UI.Xaml.Controls.Button)wrapper.NativeElement;
 button.Click += (sender, args) => OnButtonTap(sender, EventArgs.Empty);
#endif
 }

 void OnButtonTap(object sender, EventArgs args)
 {
 viewTextToRotate.RelRotateTo(360);
 }
 }
}

Figure 4 The Codebehind File for the
XamlNativeViewDemo Program

I optimistically began
XamlNativeViewDemo as a

PCL project, but it soon became
apparent that the XAML

needed a little help.

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 36 10/27/16 3:52 PM

37November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

These problems implied that the codebehind file needed to com-
pensate for the limitations of the XAML, which further implied that I
needed to abandon the PCL and use an SAP instead. Even with an SAP,
you can’t use x:Name on the native views, so I put the native views in
a ContentView with an x:Name attribute to get access to them in the
codebehind file, which is shown in Figure 4. The ContentView is also
handy for setting some layout properties (such as VerticalOptions and
HorizontalOptions) to avoid a lot of repetition on the native views.

I’ve fully qualified all the platform-specific types in the code-
behind file for clarity and to avoid a bunch of platform using
directives. The key to getting the underlying
native view from the NativeViewWrapper
is a property named NativeView (for iOS
and Android) or NativeElement (for UWP).

The iOS and Android buttons can share
the same event handler in the codebehind
file because it’s defined as an EventHandler
delegate. But the UWP Button must use a
separate event handler of type RoutedEvent
Handler, which is implemented by simply
calling the handler used for iOS and Android.

Another approach to getting access to the
native views in the codebehind file involves
enumerating children of layout objects and
searching for various types or ids. All three
platforms define a Tag property—integer on
iOS and object on Android and UWP—that
you can use for this purpose.

I find the XamlNativeViewDemo program unsatisfactory
because I don’t like using SAP for my Xamarin.Forms apps. I don’t
know if you’re as passionate as I am about preferring PCL to SAP,
but if you are, you’ll be happy to know that the final two programs
in this article are pure PCL.

Data Bindings and MVVM
One of the best ways to avoid code in the codebehind file is to
structure your application around the Model-View-ViewModel
architecture (MVVM). All the interactions among the views on

Figure 6 The PlatformRgbSliders Program Running on the Three Platforms

Figure 5 The XAML File for the PlatformRgbSliders Program

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:PlatformRgbSliders"
 xmlns:ios="clr-namespace:UIKit; ... "
 xmlns:androidWidget="clr-namespace:Android.Widget; ... "
 xmlns:formsAndroid="clr-namespace:Xamarin.Forms; ... "
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls; ... "
 xmlns:winMedia="clr-namespace:Windows.UI.Xaml.Media; ... "
 xmlns:winui="clr-namespace:Windows.UI; ... "
 x:Class="PlatformRgbSliders.PlatformRgbSlidersPage">
 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness"
 iOS="0, 20, 0, 0" />
 </ContentPage.Padding>

 <ContentPage.Resources>
 <ResourceDictionary>
 <local:DoubleToSingleConverter x:Key="doubleToSingle" />
 <local:DoubleToIntConverter x:Key="doubleToInt"
 Multiplier="256" />
 </ResourceDictionary>
 </ContentPage.Resources>

 <ContentPage.BindingContext>
 <local:RgbColorViewModel Color="Gray" />
 </ContentPage.BindingContext>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="3*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <BoxView Grid.Row="0"

 Color="{Binding Color}" />

 <ios:UISlider Grid.Row="1"
 ThumbTintColor="{x:Static ios:UIColor.Red}"
 MinimumTrackTintColor="{x:Static ios:UIColor.Black}"
 MaximumTrackTintColor="{x:Static ios:UIColor.Red}"
 Value="{Binding Red,
 Mode=TwoWay,
 UpdateSourceEventName=ValueChanged,
 Converter={StaticResource doubleToSingle}}"/>
 ...

 <androidWidget:SeekBar x:Arguments=
 "{x:Static formsAndroid:Forms.Context}"
 Grid.Row="2"
 Max="256"
 Progress="{Binding Green,
 Mode=TwoWay,
 UpdateSourceEventName=ProgressChanged,
 Converter={StaticResource doubleToInt}}" />
 ...

 <winControls:Slider Grid.Row="3"
 Maximum="1"
 StepFrequency="0.01"
 IsThumbToolTipEnabled="True"
 Value="{Binding Blue,
 Mode=TwoWay,
 UpdateSourceEventName=ValueChanged}">
 <winControls:Slider.Foreground>
 <winMedia:SolidColorBrush Color=
 "{x:Static winui:Colors.Blue}" />
 </winControls:Slider.Foreground>
 </winControls:Slider>
 </Grid>
</ContentPage>

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 37 10/27/16 3:52 PM

http://www.msdnmagazine.com

msdn magazine38 Mobile

the page occur within the platform-independent ViewModel. The
ViewModel connects to the View (the UI) using Xamarin.Forms
data bindings. The data-binding sources are properties of the
ViewModel while the data-binding targets are properties of a view.

But wait a minute. Earlier I mentioned that you can’t use a
Style for native views because styled properties must be backed
by bindable properties. Data bindings have the same restriction:
The target property of a data binding—and with MVVM these
targets are always views on the page—must also be a property
backed by a BindableProperty object. So how can you set bindings
on native views?

Here’s the good news: To support data bindings on XAML native
views, each platform contains SetBinding extension methods that
automatically generate ad hoc BindableProperty objects on the fly.
These BindableProperty objects allow the native property values
to be changed from the ViewModel.

Now you might be considering another problem: In many
cases these data bindings need to go both ways—not only from
source to target but from target to source. Changes in the UI view
must be reflected in ViewModel properties. The Xamarin.Forms
BindableProperty infrastructure supports notifications of property
changes through the INotifyPropertyChanged interface, but native
views don’t support this interface, so how can the Binding object
know when a property of a native view changes value?

The Binding class now has a new property: UpdateSourceEvent-
Name. In the binding markup extension in XAML you can set this
property to the name of an event in the native view that signals
when the target property has changed.

The PlatformRgbSliders program shown in Figure 5 is a simple
example. (Some repetitious markup has been replaced with ellipses.)
The XAML file contains three sets of platform-specific sliders,
which I’ve enhanced by giving them a color corresponding to
their function in the program. (It wasn’t possible to do this for the
Android SeekBar.) The RgbColorViewModel set to the Binding-
Context of the page defines Red, Green and Blue properties that it
uses to construct a Color property.

The binding on the iOS UISlider requires a value converter to
convert the double values in the ViewModel to float values, and the
Android SeekBar requires a value converter to convert the double
values to integer values. You can see that all the data bindings use
the UpdateSourceEventName property so the Binding class can
be notified when the user has changed the slider value. The result
is shown in Figure 6.

Here’s an interesting experiment: Remove the UpdateSourceEvent-
Name items from the Windows Slider bindings. The program still
works. This is because Xamarin.Forms is able to use the notification
mechanism built into the UWP dependency properties. Also, work
is being done to allow the UpdateSourceEventName to be elimi-
nated on iOS views if the view implements key-value observing.

PlatformRgbSliders has no problem-specific code in the code-
behind file, so there’s no problem with using a PCL. But, admit-
tedly, PlatformRgbSliders is simple. Will you be able to use PCLs
in larger programs?

At first, it doesn’t look promising: Many iOS and Android native
views are just not conducive to instantiating in XAML, and there’s
really no reason why they should be. The problem can be summa-
rized: There aren’t always enough properties in iOS and Android
views for the important options that need to be set and accessed.
Instead, there are too many methods.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:PlatformSpinners"
 xmlns:iosLocal="clr-namespace:PlatformSpinners.iOS; ... "
 xmlns:androidLocal="clr-namespace:PlatformSpinners.Droid; ... "
 xmlns:formsAndroid="clr-namespace:Xamarin.Forms; ... "
 xmlns:winControls="clr-namespace:Windows.UI.Xaml.Controls; ... "
 x:Class="PlatformSpinners.PlatformSpinnersPage">

 <ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness"
 iOS="0, 20, 0, 0" />
 </ContentPage.Padding>

 <ContentPage.BindingContext>
 <local:ColorNameViewModel SelectedColorName="Black" />
 </ContentPage.BindingContext>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <BoxView Grid.Row="0"
 Color="{Binding SelectedColor}" />

 <iosLocal:PropertiedUIPickerView Grid.Row="1"
 Items="{Binding ColorNames}"
 SelectedItem=
 "{Binding SelectedColorName,
 Mode=TwoWay,
 UpdateSourceEventName=ValueChanged}"/>

 <androidLocal:PropertiedSpinner x:Arguments=
 "{x:Static formsAndroid:Forms.Context}"
 Grid.Row="1"
 View.VerticalOptions="Center"
 Items="{Binding ColorNames}"
 SelectedObject=
 "{Binding SelectedColorName,
 Mode=TwoWay,
 UpdateSourceEventName=ItemSelected}" />
 <winControls:ComboBox Grid.Row="1"
 View.VerticalOptions="Center"
 ItemsSource="{Binding ColorNames}"
 SelectedItem=
 "{Binding SelectedColorName,
 Mode=TwoWay,
 UpdateSourceEventName=SelectionChanged}"/>
 </Grid>
</ContentPage>

Figure 7 The PlatformSpinners XAML File

Many iOS and Android native
views are just not conducive
to instantiating in XAML, and
there’s really no reason why

they should be.

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 38 10/27/16 3:52 PM

39November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

Too Many Methods
To make iOS and Android more amenable to XAML, you need to
replace some of the methods with properties. Obviously the UWP
is much better in this regard because it’s designed for XAML, but
as you saw, UWP event handlers are often based on a platform-
specific delegates.

The obvious solution to this problem is to subclass the platform-
specific views in wrappers that define a more XAML-friendly
API that consists of properties and platform-independent
events. You might also be starting to see that the real power of
embedding native views in XAML comes when you create (or
consume) custom iOS, Android and UWP views to use in your
Xamarin.Forms application.

But where do you put these classes?

If you’re using an SAP, you could put them in the SAP and sur-
round them with C# conditional compilation directives. But if
you want to use a PCL—and you usually want to use a PCL—then
you can’t do that. A PCL can only reference another PCL, and by
definition a PCL can’t contain any iOS, Android or UWP code.
It’s a bit of a puzzle.

At least initially.
Keep in mind that you’re not compiling the XAML. The XAML

is parsed at compile time but that’s mostly to generate a code file
containing fields corresponding to the x:Name attributes. You’ve
already seen that uncompiled XAML can contain references to

iOS, Android and UWP classes. These ref-
erences are resolved at run time rather than
compile time, and that makes all the differ-
ence in the world. At run time, the XAML
parser has access to all the assemblies that
comprise the application, and that includes
the individual platform start-up projects.

This means that you can put platform-
specific classes in the platform applica-
tion projects, or you can put the code in
platform-specific libraries referenced by these
application projects. These classes can be
referenced from XAML. It might seem
weird and unnatural at first for a XAML file
in a PCL to reference classes in application
assemblies, but it works just fine.

The PlatformSpinners solution demon-
strates this technique. The idea is to use the

iOS UIPickerView, the Android Spinner and the UWP ComboBox
for selecting something from a list, but expectedly the UIPicker-
View and Spinner have some methods that need to be exposed as
properties. In addition, the UIPickerView requires a data model
that must be implemented in code.

For this reason, the PlatformSpinners.iOS application project
contains a PickerDataModel and a PropertiedUIPickerView that
derives from UIPickerView, so called because it adds essential
properties to UIPickerView. The PlatformSpinners.Droid project
contains a PropertiedSpinner that derives from Spinner.

The PlatformSpinners PCL contains a simple view model that
exposes a collection of the Xamarin.Forms color names, and con-
verts these color names to the actual colors. Figure 7 shows the
complete XAML file except for the long XML namespaces, and
Figure 8 shows it running on the three platforms with the Android
Spinner and UWP ComboBox opened to show the options.

This technique of providing additional properties is something
you’ll likely want to do when consuming third-party iOS and Android
custom views. Subclass the view to make it conducive to XAML and
MVVM data bindings, and in general you’ll be home free.

Is It Really Easier?
You’ve seen how Xamarin.Forms now allows you to reference
native views—or classes derived from native views—directly in
XAML rather than hiding the platform-specific code away in a
renderer and defining a platform-independent interface to it.

So, you might ask: Is this really easier than creating renderers?
Yes, it is.	 n

Charles Petzold has written numerous articles for MSDN Magazine and its
predecessor, Microsoft Systems Journal, over the past 30 years. He now works
in the Xamarin documentation group at Microsoft and is the author of “Creating
Mobile Apps with Xamarin.Forms,” a free book available for downloading from
the Xamarin Web site.

Thanks to the following Microsoft technical experts for reviewing this article:
David Britch, Stephane Delcroix and Rui Marinho

Figure 8 PlatformSpinners Running on the Three Platforms

It might seem weird and
unnatural at first for a XAML file
in a PCL to reference classes in
application assemblies, but it

works just fine.

1116msdnCon_PetzoldNativeViews_v5_32-39.indd 39 10/27/16 3:52 PM

http://www.msdnmagazine.com

Join us as we journey into real-world, practical education
and training on the Microsoft Platform. Visual Studio

Live! (VSLive!™) returns to warm, sunny Orlando for the
conference more developers rely on to expand their .NET

skills and the ability to build better applications.

Journey into Code

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

EVENT PARTNERS PLATINUM SPONSORS SUPPORTED BYGOLD SPONSORS

Untitled-2 2Untitled-2 2 10/12/16 11:35 AM10/12/16 11:35 AM

www.vslive.com/orlando
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/

NEW!

Six (6) events and hundreds of
sessions to choose from – mix and
match sessions to create your own,
custom event line-up – it’s like no
other conference available today!

Visual Studio Live! Orlando is part
of Live! 360, the Ultimate Education
Destination. This means you’ll have
access to fi ve (5) other co-located
events at no additional cost:

VSLIVE.COM/ORLANDO

Whether you are an
 Engineer
 Developer
 Programmer
 Software Architect
 Software Designer

You will walk away from this event
having expanded your .NET skills and
the ability to build better applications.

REGISTER WITH DISCOUNT
CODE L360NOV AND
SAVE $300!

Must use discount code
L360NOV

Scan the QR code to
register or for more
event details.

TURN THE PAGE FOR
MORE EVENT DETAILS

PRODUCED BY

Untitled-2 3Untitled-2 3 10/12/16 11:35 AM10/12/16 11:35 AM

www.vslive.com/orlando

Check Out the
Additional Sessions
for Devs, IT Pros, &
DBAs at Live! 360

SQL Server Live! features 15+
developer sessions, including:

• What's New in SQL Server 2016
- Leonard Lobel

• Powerful T-SQL Improvements
that Reduce Query Complexity
- Hugo Kornelius

• Implementing Data Protection and Security in SQL Server 2016
- Steve Jones

• Welcome To The 2016 Query Store! - Janis Griffi n
• Workshop: Big Data, BI and Analytics on The Microsoft Stack

- Andrew Brust

TechMentor features IT Pro
and DBA sessions, including:
• Workshop: 67 VMware vSphere

Tricks That’ll Pay for This
Conference! - Greg Shields

• Secure Access Everywhere!
Implementing DirectAccess in
Windows Server 2016 - Richard Hicks

• Getting Started with Nano Server - Jeffery Hicks
• Creating Class-Based PowerShell Tools - Jeffery Hicks
• Harvesting the Web: Using PowerShell to Scrape Screens,

Exploit Web Services, and Save Time - Mark Minasi
• PowerShell Unplugged: Stump Don - Don Jones
• Facing Increasing Malware Threats and a Growing Trend of BYO

with a New Approach of PC Security - Yung Chou

• Workshop: A Beginner’s Guide
to Client Side Development in
SharePoint - Mark Rackley

• Become a Developer Hero by Building Offi ce Add-ins - Bill Ayres
• Utilizing jQuery in SharePoint - Get More Done Faster
 - Mark Rackley
• Using the Offi ce UI Fabric - Paul Schaefl ein
• Enterprise JavaScript Development Patterns - Rob Windsor
• Leveraging Angular2 to Build Offi ce Add-ins - Andrew Connell
• Webhooks in Offi ce 365 - Paul Schaefl ein

Offi ce & SharePoint Live!
features 12+ developer
sessions, including:

START TIME END TIME

5:00 PM 8:00 PM

6:00 PM 9:00 PM Dine-A-Round Dinner @ Universal CityWalk

START TIME END TIME

8:00 AM 5:00 PM VSM01 Workshop: Distributed Cross-Platform Application
Architecture - Rockford Lhotka & Jason Bock

O

5:00 PM 6:00 PM EXPO Preview

6:00 PM 7:00 PM Live! 360 Keynote: Digital Transformation -
 -

START TIME END TIME

8:00 AM 9:00 AM Visual Studio Live! / Modern Apps Live!
 -

9:00 AM 9:30 AM Networking Break • Visit the EXPO

9:30 AM 10:45 AM VST01 Building Applications with
ASP.NET Core - Scott Allen

VST02 Busy .NET Developer’s
Guide to Swift - Ted Neward

11:00 AM 12:15 PM VST05 Richer MVC Sites with
Knockout JS - Miguel Castro

VST06 Busy .NET Developer’s
Guide to Native iOS

- Ted Neward

12:15 PM 2:00 PM Lunch • Visit the EXPO

2:00 PM 3:15 PM
VST09 WCF & Web API: Can

We All Just Get Along?!?
- Miguel Castro

VST10 Creating Great Looking
Android Applications Using
Material Design - Kevin Ford F

3:15 PM 4:15 PM Networking Break • Visit the EXPO

4:15 PM 5:30 PM
VST13 Busy Developer’s Guide to

Chrome Development
- Ted Neward

VST14 Creating Cordova Apps
using Ionic and Angular 2

- Kevin Ford

5:30 PM 7:30 PM Exhibitor Reception

START TIME END TIME

8:00 AM 9:15 AM VSW01 Moving from Angular 1
to Angular 2 - Ben Dewey

VSW02 The Future of
Mobile Application Search

- James Montemagno

9:30 AM 10:45 AM VSW05 Getting Started with
Aurelia - Brian Noyes

VSW06 Building Connected
and Disconnected Mobile

Applications - James Montemagno

10:45 AM 11:15 AM Networking Break • Visit the EXPO

11:15 AM 12:15 PM Live! 360 Keynote: To Be Announced
12:15 PM 1:45 PM Birds-of-a-Feather Lunch • Visit the EXPO

1:45 PM 3:00 PM
VSW09 Living in a Command Line

Web Development World
(NPM, Bower, Gulp, and More)

- Ben Dewey

VSW10 Understanding
the Windows Desktop App
Development Landscape

- Brian Noyes

3:00 PM 4:00 PM

4:00 PM 5:15 PM VSW13 Securing Client
JavaScript Apps - Brian Noyes

VSW14 Let’s Write a Windows
10 App: A Basic Introduction to

Universal Apps - Billy Hollis

8:00 PM 10:00 PM Live! 360 Dessert Luau

START TIME END TIME

8:00 AM 9:15 AM
VSH01 Build Real-Time Websites

and Apps with SignalR
VSH02 Cognitive Services:

Building Smart Applications with
Computer Vision - Nick Landry

9:30 AM 10:45 AM VSH05 HTTP/2: What You Need
to Know - Robert Boedigheimer

VSH06 Building Business Apps
on the Universal Windows

Platform - Billy Hollis

11:00 AM 12:15 PM VSH09 TypeScript and ES2015
JumpStart

VSH10 A Developers Introduction
to HoloLens - Billy Hollis &

Brian Randell

12:15 PM 1:30 PM Lunch on the Lanai

1:30 PM 2:45 PM VSH13 All Your Tests Are Belong
To Us

VSH14 Developing Awesome
3D Apps with Unity and C#

3:00 PM 4:15 PM VSH17 SASS and CSS for
Developers - Robert Boedigheimer

VSH18 From Oculus to HoloLens:
Building Virtual & Mixed Reality

Apps & Games - Nick Landry

4:30 PM 5:30 PM Live! 360 Conference Wrap-Up

START TIME END TIME

8:00 AM 5:00 PM VSF01 Workshop: Angular 2 Bootcamp

12:00 PM 1:00 PM Lunch

1:00 PM 5:00 PM VSF01 Workshop Continues

ALM / DevOps Cloud
Computing Mobile Client Software

Practices
Visual Studio /

.NET Framework

ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

Untitled-2 4Untitled-2 4 10/12/16 11:35 AM10/12/16 11:35 AM

www.vslive.com/orlando

Pre-Conference: Sunday, December 4, 2016

Pre-Conference Workshops: Monday, December 5, 2016
VSM02 Workshop: Service

Oriented Technologies - Designing,
Developing, & Implementing WCF
and the Web API - Miguel Castro

VSM03 Workshop: DevOps in a Day
- Brian Randell

MAM01 Workshop: Building
Modern Mobile Apps

- Brent Edwards & Kevin Ford
ADM01 Workshop: Building Teams

- Steve Green
ADM02 Workshop: One Codebase to

Rule Them All: Xamarin
- Fabian Williams

 Is Your IT Career on Track as Businesses Look to Become More Agile?

Day 1: Tuesday, December 6, 2016

 Keynote: Faster, Leaner, More Productive: The Next Generation of Visual Studio App Dev Trends Keynote: You Are the Future of Enterprise Java!
-

VST03 What’s New in Azure v2
- Eric D. Boyd

VST04 Real World Scrum with Team
Foundation Server 2015 & Visual

Studio Team Services - Benjamin Day

MAT01 Modern App Development:
Transform How You Build Web and
Mobile Software - Rockford Lhotka

ADT01 Hacking Technical Debt
- Steve Green

ADT02 Java 8 Lambdas and the
Streaming API - Michael Remijan

VST07 Overview of Power Apps VST08 Get Good at DevOps: Feature
Flag Deployments with ASP.NET,

WebAPI, & JavaScript - Benjamin Day
MAT02 Architecture: The Key to

Modern App Success - Brent Edwards
ADT03 Are You A SOLID Coder?

- Steve Green
ADT04 PrimeFaces 5: Modern UI
Widgets for Java EE - Kito Mann

VST11 Introduction to Next
Generation of Azure PaaS – Service

Fabric and Containers
VST12 To Be Announced

MAT03 Manage Distributed Teams
with Visual Studio Team Services

and Git - Brian Randell
ADT05 Agile Architecture

- Steve Green
ADT06 Full Stack Java with JSweet,

Angular 2, PrimeNG, and JAX-RS
- Kito Mann

VST15 Cloud Oriented
Programming

VST16 Bringing DevOps to the
Database - Steve Jones

MAT04 Focus on the
User Experience #FTW

- Anthony Handley
ADT07 Crafting Innovation

- Steve Green
ADT08 Who’s Taking Out the Garbage?

How Garbage Collection Works
in the VM - Kito Mann

Day 2: Wednesday, December 7, 2016
VSW03 Managing Enterprise and

Consumer Identity with Azure
Active Directory

VSW04 Improving Performance in
.NET Applications - Jason Bock

MAW01 DevOps, Continuous
Integration, the Cloud, and Docker

- Dan Nordquist
ADW01 Stop Killing Requirements!

- Melissa Green
ADW02 Migrating Customers to
Microsoft Azure: Lessons Learned

From the Field - Ido Flatow

o

VSW07 Practical Internet of
Things for the Microsoft
Developer - Eric D. Boyd

VSW08 I’ll Get Back to You:
Understanding Task, Await, and

Asynchronous Methods
- Jeremy Clark

MAW02 Mobile Panel
- Kevin Ford, Rockford Lhotka,

James Montemagno,
& Jordan Matthiesen

ADW03 Meeting-Free Software
Development in Distributed Teams

- Yegor Bugayenko

ADW04 The Essentials of Building
Cloud-Based Web Apps with Azure

- Ido Flatow

VSW11 How to Scale .NET Apps
with Distributed Caching

- Iqbal Khan
VSW12 Learn to Love Lambdas
(and LINQ, Too) - Jeremy Clark

MAW03 C# Everywhere:
How CSLA .NET Enables Amazing

Cross-Platform Code Reuse
- Rockford Lhotka

ADW05 Introduction to

- Fabian Williams

ADW06 Building IoT and Big Data
Solutions on Azure

- Ido Flatow

VSW15 ARM Yourself
for Azure Success
- Esteban Garcia

VSW16 Continuous Delivery on
Azure: A/B Testing, Canary Releases,
and Dark Launching

MAW04 Coding for Quality
and Maintainability

- Jason Bock

ADW07 As You Think About Azure
Databases, Think About DocumentDb

- Fabian Williams

ADW08 Where Does JavaScript
Belong in the App Store?

- Jordan Matthiesen

Day 3: Thursday, December 8, 2016

h VSH03 C# Best Practices
- Scott Allen

VSH04 Application Insights:
Measure Your Way to Success

- Esteban Garcia

MAH01 Modern Mobile
Development: Build a Single App For
iOS & Android with Xamarin Forms

- Kevin Ford

ADH01 From VMs to Containers:
Introducing Docker Containers for Linux

and Windows Server - Ido Flatow
ADH02 Continuous Testing in a
DevOps World - Wayne Ariola

VSH07 Debugging Your Way
Through .NET with Visual Studio

2015 - Ido Flatow
VSH08 The Ultimate Intro to Docker

for Developers
MAH02 Universal Windows

Development: UWP for PC, Tablet &
Phone - Brent Edwards

ADH03 CQRS 2.0 - Commands, Actors,
and Events...Oh My! - David Hoerster

ADH04 Microservices as Chat Bots
Are the Future - Yegor Bugayenko

n VSH11 Exploring Microservices
in a Microsoft Landscape

VSH12 Automated UI Testing for
iOS and Android Mobile Apps

- James Montemagno

MAH03 Modern Web Development:
Building Server Side using .NET Core,

MVC, Web API, and Azure
- Allen Conway

ADH05 The Curious Case for the
Immutable Object - David Hoerster

ADH06 Continuous Integration
May Have Negative Effects

- Yegor Bugayenko

VSH15 Unit Testing Makes Me
Faster: Convincing Your Boss,

Your Co-Workers, and Yourself
- Jeremy Clark

VSH16 Writing Maintainable,
X-Browser Automated Tests

MAH04 Modern Web Development:
Building Client Side using TypeScript

and Angular2 - Allen Conway
ADH07 To Be Announced

ADH08
with Xamarin, VSTS and HockeyApp

- Roy Cornelissen

s: VSH19 User Experience Case
Studies - Good and Bad

- Billy Hollis
VSH20 Debugging the Web with

Fiddler - Ido Flatow
MAH05 Using All That Data: Power

BI to the Rescue - Scott Diehl
ADH09 Get Started with Microsoft

PowerApps - Fabian Williams
ADH10 Overcoming the Challenges of
Mobile Development in the Enterprise

- Roy Cornelissen

Post-Conference Workshops: Friday, December 9, 2016

VSF02 Workshop: Building Modern Web Apps with Azure
- Eric D. Boyd & Brian Randell

MAF01 Workshop: Modern App
Deep Dive: Xamarin, Responsive

Web, UWP, CSLA .NET - Jason Bock,
Allen Conway, Brent Edwards &

Kevin Ford

ADF01 Workshop: Applied Agile
-

VSF02 Workshop Continues MAF01 Workshop Continues ADF01 Workshop Continues

/
k Web Client Web Server Windows Client Modern Apps Live! Agile Containerization Continuous

Integration Java Mobile Cloud

AGENDAS AT-A-GLANCE
Presented in
Partnership with

Untitled-2 5Untitled-2 5 10/12/16 11:36 AM10/12/16 11:36 AM

msdn magazine44

Once upon a time, printed technical books were the primary
approach to learning new programming languages and SDKs. Today,
you’ll find a myriad of content online, from product documenta-
tion to developer blogs, from Stack Overflow to GitHub, and from
podcasts to YouTube—even Xamarin University online classes.

There can still be barriers to learning, though: Configuring the
new IDE you want to start programming in, understanding the File |
New Project wizard and all its options, typing or copying sample code
into a new or existing project to try it out, and even navigating the
resulting solution structure, can all be confusing for the uninitiated.
Developers who’ve switched from Visual Basic to Eclipse to Xcode
understand just how different these experiences can be.

Roslyn—the Microsoft open source .NET compiler service—
facilitates new experiences that mitigate these problems by removing
the need for the IDE. Learning experiences, such as Gistlyn (bit.ly/
2d00D7b) and the new online C# tutorial from Microsoft (bit.ly/28WyuvW),
immerse the developer in documentation and code, without the
overhead of solutions and projects. These new tools make learning
simpler and more interactive.

Introducing Xamarin Workbooks
Xamarin Workbooks brings this interactive-documentation-plus-
live-coding concept to mobile and desktop application development.
In conjunction with device simulators, Workbooks gives you the
same immersive experience as the online tools I mentioned, but
provides the added ability to learn and experiment with the entire
native SDKs for Android, iOS, Mac and Windows Presentation
Foundation (WPF):

• �Learning Xamarin Mobile app development becomes an
interactive and exploratory process. Rather than just read-
ing the docs, Workbooks lets you interactively code and test
native mobile app features.

• �Exploring online APIs—including Microsoft Azure services—
can be done without the hassle of starting up a sample app
and navigating through a maze of source files. Because you’re
using the same tools your mobile apps are written with,
working code can be copied from Workbooks into your
Xamarin app projects.

• �Writing your own Workbooks is easy, whether testing out an
idea or building your own courseware to teach others. Instead

XAMA R I N WOR KBOOKS

The (Interactive) Future
of Technical Docs
Craig Dunn

This article relies on a pre-release version of Xamarin Workbooks.
All information is subject to change.

This article discusses:
•	Xamarin Workbooks basics

•	Using Workbooks to learn Android, iOS and Xamarin.Forms

•	Exploring other APIs with Workbooks

•	Writing your own Workbooks

Technologies discussed:
Xamarin Workbooks, C#, Windows Presentation Foundation,
Xamarin.Forms, iOS, Android

Code download available at:
bit.ly/2dKhkqm

1116msdnCon_DunnWBooks_v5_44-49.indd 44 10/27/16 3:43 PM

www.bit.ly/2dKhkqm
www.bit.ly/28WyuvW
www.bit.ly/2d00D7b
www.bit.ly/2d00D7b

45November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

of creating your hundredth File | New Project to try some-
thing new, you get a faster, easier way to experiment. As an
added bonus, you can interact with the UI in the simulator,
and explore the visual tree in the inspector view.

Getting Started
What, exactly, is Workbooks? In short: It’s live, interactive docu-
mentation for mobile and desktop platforms. You can download
the Workbooks app for Mac and Windows at bit.ly/2ejXBj8. For
Android and iOS, you should have Xamarin and the platform SDKs
and simulators installed on your system.

Workbooks files are essentially Markdown files with a YAML
header; they contain formatted text and code-fenced C#. The file
extension is “.workbook.” You can write a workbook with any text
editor, but the Xamarin Workbooks app includes the ability to
create and edit workbooks, so you don’t really need to learn the
underlying format. Here’s some sample Markdown source:

uti: com.xamarin.workbook
platform: iOS

My First Workbook
Simple C# assignment will render the resulting object as a string.
```csharp
var greeting = "Hello, MSDN"
```

Figure 1 shows the resulting
workbook before and after execution.

Executable code cells have a
grey background and utilize the
same editing experience as Visual
Studio Code. Features like syntax
highlighting, code completion,
compilation errors and keyboard
shortcuts are all supported.

When you click inside a code
cell to give it focus, a set of action
buttons appears below it (as shown
in Figure 1). Press the Play button
(arrow inside circle, on the far left)
to execute that code cell (and any
preceding code). You can also run
the entire workbook at once from
the Run menu.

Once the code has executed, a
result cell is displayed below the
code cell. You can edit any part of

the code cell, to change how it runs or to experiment
with the API, and press Play to run it again. (And
again. This is how developers learn with Work-
books—by reading the documentation, and run-
ning and modifying the example code as they go.)

The result cell contains a representation of the
last object reference in the code cell. By default, the
object’s string representation is used, but Work-
books supports a number of additional visualizers
to help you explore the results. Use the small menu
next to the result to choose from the available

visualizations, including:
C#: A string escaped for C# (for example, new lines encoded as “\n”).
Plain Text: An unescaped string value (for example, new lines

are rendered as multi-line text).

Object Members: Renders a complete list of the object’s proper-
ties in a table. Large, cyclic object graphs are evaluated on demand,
so they don’t slow down your coding, but are available to be explored
if required, just like with a runtime debugger.

Enumerable: Automatically expands a collection so you can
explore each item. Only the first 10 elements are initially displayed, but
you can explore more by clicking the Continue Enumerating button.

Figure 1 MyFirst.workbook Before and After Execution

Figure 2 Visualization Options

What, exactly, is Workbooks?
In short: It’s live, interactive

documentation for mobile and
desktop platforms.

1116msdnCon_DunnWBooks_v5_44-49.indd 45 10/27/16 3:43 PM

http://www.msdnmagazine.com
www.bit.ly/2ejXBj8

msdn magazine46 Xamarin Workbooks

Color: A small swatch of color is displayed, along with Hex or
RGB representations of its value.

Location: Objects that represent a latitude/longitude location
are shown on a map (Mac only).

Image: Valid image view classes can show the image inline in
the workbook.

Exception: Highlights exception messages in the result cell.

Html: Workbooks authors can use the AsHtml method in their
code cells to have the result cell render a string as HTML.

Figure 2 shows the Visualizers Workbook, including examples
of some of these options.

So far you’ve just seen Workbooks displaying their results inline,
but they’re even more interesting when exploring native mobile
APIs with Xamarin via mobile device simulators.

Learning Xamarin
with Workbooks
Once you’re comfortable running
code cells and interpreting the re-
sults, you can visit developer.xamarin.com/
workbooks and download Work-
books to learn Android, iOS
and Xamarin.Forms. The native
platform APIs are available in
Workbooks, for tasks as simple
as adding a label to the screen,
up to rendering 3D content that
responds to touch.

When you create or open an
iOS, Android or Xamarin.Forms
workbook, a mobile device sim-
ulator will start up (Mac and
Windows Presentation Foundation
[WPF] workbooks just start an
empty window). These external
simulators (or windows) run an
agent app that communicates
with the workbook—you’ll see a
status message when the agent is Figure 4 Workbooks and iOS Simulator

Figure 3 XamariniOS.workbook

uti: com.xamarin.workbook
platform: iOS
packages:
- id: Newtonsoft.Json
 version: 9.0.1

iOS UITableView
This example uses **Json.NET** and `WebClient` to download a file
monkeydata.json that is used to bind to the iOS UITableView.

```csharp
#r "Newtonsoft.Json"
#load "json_monkey.csx"
```

To add a UITableView control to the screen, instantiate an instance, set
the bounds, and add to the `RootViewController`. You can experiment with
changing the `Frame`.
```csharp
var tableView = new UITableView();
tableView.Frame = UIScreen.MainScreen.Bounds;
RootViewController.View.AddSubview(tableView);
```

Wiring up a data source (like a generic list of `Monkey` objects) to a
table requires a `UITableViewSource`. This class converts the data into
`UITableViewCell` classes to be rendered.
```csharp
public class MySource : UITableViewSource

{
  string identifier = "mycell";
  public List<Monkey> Data {get;set;} = new List<Monkey>(); // C# 6
  public override nint RowsInSection (UITableView tableview, nint section)
  {
    return Data.Count;
  }
  public override UITableViewCell GetCell (UITableView tableView, 
    NSIndexPath indexPath)
  {
    // First, get or create a cell
    UITableViewCell cell = tableView.DequeueReusableCell (identifier);
    if (cell == null)
    { cell = new UITableViewCell (UITableViewCellStyle.Subtitle, identifier); }
    // Then, get the data and set the UI
    cell.TextLabel.Text = Data[indexPath.Row].Name;
    cell.DetailTextLabel.Text = Data[indexPath.Row].Location;
    return cell;
  }
}
```

To display the data in the table, create the source object, assign the
Monkey object list, then assign it to the table
```csharp
var source = new MySource(); // Create the class
source.Data = monkeys;       // Assign the list of strings
tableView.Source = source;   // Give it to the table view
tableView.ReloadData();      // and show on the screen
```

1116msdnCon_DunnWBooks_v5_44-49.indd 46 10/27/16 3:43 PM

http://developer.xamarin.com/workbooks
http://developer.xamarin.com/workbooks

Untitled-2 1 7/11/16 3:31 PM

www.groupdocs.com

msdn magazine48 Xamarin Workbooks

being started. Once the agent is running, Xamarin Workbooks
is ready to be explored.

As you read through and run each code cell, the app in the sim-
ulator changes to reflect each new piece of code. If you’re curious
about how something works, edit the code and run it again. Figure
3 shows a simple iOS UITableView example, and Figure 4 shows
it running in the simulator.

Workbooks can also display an exploded view of the UI hierarchy
to explore. You can select items in the simulator, the 3D rendering
or the visual tree list, and view their properties in a pad. To access
this on the Mac, select View | Visual Inspector. On Windows the
pads are docked, ready to access at any time. To switch back to the
code and documentation, use the View | Workbook menu item.

Exploring APIs
Workbooks is also great for exploring other APIs, such as those
provided by NuGet packages or REST endpoints. An example that
combines both is a workbook that connects to Azure EasyTables,
using the free tryappservice.azure.com back end.

The complete workbook source is shown in Figure 5, including
the required NuGet packages; and the complete source code to
save and retrieve data from an Azure EasyTable is shown running
in Figure 6.

Of course, there’s a lot more to Azure—this example just begins
to demonstrate how Workbooks can be applied to the idea of
teaching an API.

Writing Your Own Workbooks
Although you can write workbooks in Markdown, the easiest way
to create your own is within the Workbooks app itself. Choose the
File | New menu item, then choose a platform: iOS and Android
can be created on both macOS and Windows. Mac and WPF work-
books can be created only on macOS or Windows, respectively.

Workbooks consists of three types of elements: text cells, code
cells and result cells. A brand-new workbook contains a single
code cell, where you can immediately type and execute C# code.

Cells can be added and deleted using the action buttons that appear
below a cell when it has focus. There are three buttons (visible in Figure 1):

• �Plus (+) – Add a new code cell.
• �Double Quote (") – Add a new text cell.
• �Delete (x) – Delete the preceding cell.

All the code cells in a workbook run in the same context, so
variables and classes created in one code cell are available in
subsequent code cells.

Text can be formatted by selecting it and using the formatting
bar shown in Figure 7. Options include bold, italic, adding links,
and code format, as well as bulleted lists, numbered lists, and
blockquotes. There are also six heading levels and the ability to
insert images or a horizontal rule.

Code cells support C# keyword highlighting and both member
and signature/override auto-completion. Errors are indicated by a red
underline, and the error message is displayed when you hover over it.

 Each platform has its own mechanism for accessing the UI,
as follows:

Android: Building workbooks that utilize the simulator means
you need a way to reference the UI from code cells. For Android,

Figure 5 Azure-TryAppService.workbook

uti: com.xamarin.workbook
platform: WPF
packages:
- id: Microsoft.Bcl
 version: 1.1.10
- id: Newtonsoft.Json
 version: 9.0.1
- id: Microsoft.Net.Http
 version: 2.2.29
- id: Microsoft.Azure.Mobile.Client
 version: 3.0.1

Azure TryAppService
Two NuGets - **Microsoft.Azure.Mobile.Client** & Newtonsoft.Json - have been added:

```csharp
#r "Newtonsoft.Json"
#r "Microsoft.WindowsAzure.Mobile"
#r "Microsoft.WindowsAzure.Mobile.Ext"
```
This `TodoItem` class matches the one configured in the TryAppService back end.

```csharp
using Newtonsoft.Json;
using Microsoft.WindowsAzure.MobileServices;

public class TodoItem
{
  [JsonProperty(PropertyName = "id")]

  public string ID {get;set;}
  [JsonProperty(PropertyName = "text")]
  public string Name {get;set;}
  [JsonProperty(PropertyName = "complete")]
  public bool Done {get;set;}
  [Version]
  public string Version { get; set; }
  public override string ToString() {
    return $"{Name} is " + (Done?"done":"not done");
  }
}
```
Sign up at [tryappservice.azure.com](https://tryappservice.azure.com/ "Try
Azure for free!") **Mobile App > TodoList**. Replace the URL with *your*
temporary, generated endpoint URL:

```csharp
var mobileService = new MobileServiceClient (
  "https://da0cfa57-0ee0-4-231-b9ee.azurewebsites.net/"); 
  // Replace this with your own
var table = mobileService.GetTable<TodoItem> ();
```
The following code creates a new `TodoItem` class, inserts it into the
table on the server, and retrieves the list from the server:

```csharp
var rememberTo = new TodoItem {Name="buy apples"};
await table.InsertAsync (rememberTo);
List<TodoItem> todos = await table.Take (10).ToListAsync ();
```

Workbooks is also great for
exploring other APIs, such

as those provided by NuGet
packages or REST endpoints.

1116msdnCon_DunnWBooks_v5_44-49.indd 48 10/27/16 3:43 PM

http://tryappservice.azure.com

49November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

use the following code to get a reference to the Activity being used
by the simulator:

var mainActivity = StartedActivities.First();
var label = new Android.Widget.TextView(mainActivity) {
 Text = "Hello, Workbooks",
 TextSize = 36
};
mainActivity.SetContentView(label);

iOS: iOS workbooks expose the RootViewController of the
simulator so that you can build up the UI by adding subviews, as
shown here:

var label = new UIKit.UILabel(new CGRect(10,10,300,50)) {
 Text = "Hello, Workbooks",
 Font = UIFont.SystemFontOfSize(36)
};
RootViewController.Add(label);

WPF: Adding controls to the app window in WPF workbooks
can be accomplished by setting the Content
property on System.Windows.Appli
cation.Current.MainWindow, for example:

var label = new System.Windows.Controls.Label {
 Text = "Hello, Workbooks",
 FontSize = 36
};
System.Windows.Application.Current.MainWindow.
 Content = label;

Workbooks also includes features to help you create more-
sophisticated code scenarios, so you can:

Reference additional namespaces: By default, only a limited
set of namespaces are available in each workbook. Some, such
as System.Xml, require a using clause at the start of the code cell
before they’re used (just like in a regular C# file).

Add NuGet packages: Use the File | Add Package menu item
to add NuGet packages to a workbook, and ensure that the assem-
blies are referenced using the following syntax:

#r "Microsoft.WindowsAzure.Mobile"

Assemblies referenced this way still require the appropriate
using statement in a code cell (as shown in Figure 6).

Include additional code: More-complex examples might
require lots of code, which would only clutter the workbook if it’s
displayed inline. External code files can be referenced by a work-
book with the following syntax:

#load "my-extra-code.csx"

Use external files to create supporting classes, UI elements, Model
and ViewModel classes or other objects that are required for the
workbook to function but aren’t necessary to the documentation
(and are unlikely to need modification by the user). The workbook
in Figure 3 shows where some data-setup code is added with an
external file, to keep the instructions easy-to-read.

Get help: Type help as the last line in any code cell to quickly
view the convenience methods available in the workbook.

Wrapping Up
Xamarin Workbooks is now the fastest way to learn mobile application
development. You can learn more about the native mobile platforms
and explore online APIs. It’s also easy to create your own custom
workbooks for your blog, training or anything else. Workbooks can
include NuGet packages and can reference additional namespaces,
as well as the entire Android, iOS, macOS and WPF SDKs.

Visit developer.xamarin.com/workbooks to get started. Xamarin is freely
available as part of Visual Studio Community Edition (and also on
the Mac), and the Workbooks app is free to download and use.	n

Craig Dunn is the program manager for Xamarin doc-
umentation at Microsoft. Find him on Twitter: @con-
ceptdev or via LinkedIn at linkedin.com/in/conceptdev.

Thanks to the following Microsoft technical
experts for reviewing this article:
Aaron Bockover and David Britch

Figure 6 Using Azure TryAppService Interactively

Figure 7 Formatting Text

Workbooks can include NuGet
packages and can reference
additional namespaces, as

well as the entire Android, iOS,
macOS and WPF SDKs.

1116msdnCon_DunnWBooks_v5_44-49.indd 49 10/27/16 3:43 PM

http://www.msdnmagazine.com
http://developer.xamarin.com/workbooks
www.twitter.com/conceptdev
www.twitter.com/conceptdev
www.linkedin.com/in/conceptdev

msdn magazine50

Security can be a scary topic. According to the Microsoft
Security Intelligence Report (bit.ly/2drid6a), last year 17.9 percent of
reporting computers encountered security threats. And the urgency
to protect is greater than ever. The time to compromise is almost
always days or less, if not minutes or less, finds Verizon in its “2016
Data Breach Investigations Report” (vz.to/2dnpNk8).

Often there’s a perceived conflict between DevOps practices,
which aim for speed, and security practices, which emphasize
thoroughness. The conflict doesn’t have to exist. In fact, a number
of vendors have been working to make DevOps pipelines more
secure. And this is part of a movement toward Rugged DevOps.
This article discusses four extensions newly available through the
Visual Studio Team Services (VSTS) Marketplace.

Let’s start with an overview of a Rugged DevOps pipeline (see
Figure 1).

The goal of a Rugged DevOps pipeline is to allow develop-
ment teams to go fast without breaking things by introducing
unwanted vulnerabilities. For case studies of teams implementing
Rugged DevOps, see chapter 22 of “The DevOps Handbook” (IT
Revolution Press, 2016) by Gene Kim, Jez Humble, Patrick Debois
and John Willis (bit.ly/2dUXJW3).

Package Management
Just as a team uses version control as the single source of truth
for current source code, it can rely on a package manager as the
unique source of binary components. By using binary pack-
age management, a development team can create not only a
local cache of approved components, but also make this a trust-
ed feed for the continuous integration (CI) pipeline. Package
management—now in VSTS and coming to Team Foundation
Server (TFS)—is an integral part of the component workflow.
The Package Management extension is available from the Visual
Studio Marketplace (bit.ly/1VLXIzG).

The Role of OSS Components
Developers today are much more productive than ever, due to the
wide availability of reusable open source software (OSS) compo-
nents. There’s now a practical approach to reuse, with runtimes
available on Windows and Linux such as .NET Core and Node.js.
At the same time, the productivity of reusing OSS comes with
the risk that the reused dependencies bring security vulnera-
bilities. For example, the snyk.io service claims that 76 percent

ALM AND DEVOPS

Rugged DevOps:
Integrating Security into
the Development and
Release Pipeline
Sam Guckenheimer and Jean-Marc Prieur

This article discusses:
•	Managing binary components workflow

•	Using DevOps to check security of open source components

•	The WhiteSource extension for VSTS and TFS

•	The Fortify Static Code Analyzer for VSTS

•	The Checkmarx extension for VSTS

•	The Veracode extension for VSTS

Technologies discussed:
Visual Studio Team Services (VSTS), Team Foundation Server (TFS)

1116msdnCon_GuckPrieurDevOps_v5_50-56.indd 50 10/27/16 3:45 PM

www.bit.ly/2drid6a
www.vz.to/2dnpNk8
www.bit.ly/2dUXJW3
www.bit.ly/1VLXIzG
www.snyk.io

51November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

of its users find security vulnerabilities in their
applications due to the versions of the Node.js
packages they consume.

In the world of OSS, there’s a new concept, some-
times called Software Composition Analysis (SCA).
It involves scenarios like this:

As a developer or dev lead, when I consume an
OSS component, create a dependency or consume
dependencies, I want to: start with the latest cor-
rect version in order to avoid any old vulnerabili-
ties or license misuse; validate that they are in fact
the correct binaries for this version; in the release
pipeline, validate binaries to ensure they’re correct
and to keep a traceable bill of materials; and in the
event of a vulnerability, be notified immediately
and be able to correct and redeploy automatically
in order to prevent any security vulnerability or
license misuse from reused software.

Two vendors that now provide services for man-
aging OSS with VSTS and TFS are WhiteSource and
Veracode. Both have extensions available in the
 Visual Studio Marketplace.

Solution Spotlight:
WhiteSource Extension
for VSTS and TFS
For a team consuming exter-
nal packages, the WhiteSource
Extension specifically addresses the
questions of open source security,
quality and license compliance. In
a world where most breaches target
known vulnerabilities in known
components, this is essential
hygiene for consuming open
source. We’ll discuss some of its capabilities.

Continuously Detects All Open Source Components in Your
Software The WhiteSource extension (bit.ly/2dEMCC0) will automati-
cally detect all open source components—including their transitive
dependencies—every time you run a build. This means you can
generate a comprehensive inventory report within minutes, based
on the last build you ran. It also gives your security, DevOps
and legal teams full visibility into your organization’s software
development process.

Alerts on Open Source Security Vulnerabilities and Their
Fixes When a new security vulnerability is discovered, White-
Source automatically generates an alert and provides targeted
remediation guidance (see Figure 2). This can include links to
patches, fixes, relevant source files and even recommendations to
change system configuration to prevent exploitation.

Automatically Enforces Open Source Security and
License Compliance Policies According to a company’s policies,
WhiteSource automatically approves, rejects or triggers a manual
approval process every time a new open source component is added
to a build. Developers can set up policies based on parameters

such as security-vulnerability severity, license type or library age.
As soon as a developer attempts to add a problematic open source
component, the service will send an alert and fail the build.

For searching online repositories such as GitHub and Maven
Central, WhiteSource also offers an innovative browser extension.
Even before choosing a new component, a developer can see its
security vulnerabilities, quality, and license issues, and whether it
fits a company’s policy.

Figure 1 The Rugged DevOps Workflow

Rugged DevOps Cycle

DevOps Team

Source
Scanner

Package
ManagerDeployment

Version
Control

Build and
CI Agent

Release
Pipeline with

Testing

OSS
Management

Service

Approval
Process

External
Package

Feeds

Dynamic
Scanner

Monitoring

Often there’s a perceived conflict
between DevOps practices,

which aim for speed, and security
practices, which emphasize

thoroughness.

Figure 2 WhiteSource Detection of Vulnerable Components

1116msdnCon_GuckPrieurDevOps_v5_50-56.indd 51 10/27/16 3:45 PM

http://www.msdnmagazine.com
www.bit.ly/2dEMCC0

msdn magazine52 ALM and DevOps

Solution Spotlight: Extension for VSTS:
The Fortify Static Code Analyzer (SCA)
HPE Security Fortify SCA provides static analysis for application secu-
rity testing through VSTS and TFS (bit.ly/2dEWEOW). This makes software
security a seamless part of the coding process by empowering devel-
opers to find security vulnerabilities earlier in the DevOps lifecycle.

Fortify SCA provides a comprehensive set of software security
analyzers that search for violations of security-specific coding rules
and guidelines. Development groups and security professionals
use it to analyze application source code for security issues (see
Figure 3). Fortify SCA identifies root causes of software-security

vulnerabilities and delivers accurate, risk-ranked results
with line-of-code remediation guidance.

Fortify on Demand also delivers application Security as a
Service (SaaS). Fortify on Demand tasks automatically
submit static and dynamic scan requests to the applica-
tion SaaS platform (see Figure 4). For static assessments,
the project is uploaded to Fortify on Demand. For dynam-
ic assessments, Fortify on Demand uses the application’s
pre-configured URL.

Balancing Speed and Depth
In the past, security scanning was typically an “over-
the-wall” activity, done perhaps only once per release.
This creates a horrible pattern in which security special-
ists find large batches of issues at exactly the time when
developers are under the most pressure to ignore them
and release. Rugged DevOps strives to make all quality
activity—including security—continuous and automated.

All of the extensions described here can fully scan
the team’s source code. There are multiple points to
integrate scanning into the team’s workflow.

Pull requests (PRs) are the way DevOps teams submit
changes. Prior to the PR, a developer needs to be able to see
the effect of code changes and be confident they’ll merge
correctly and not introduce new issues. In a DevOps pro-
cess, each PR is typically small and merges are continual,

so the master branch of code can
stay fresh. Ideally, the developer
can check for security issues prior
to the PR. WhiteSource facilitates
this for validating dependencies
with its binary fingerprinting;
Checkmarx provides an incremen-
tal scan of changes; and Veracode
has the concept of a developer
sandbox. These approaches allow
a developer to experiment with
changes before submitting them.

Similarly, CI needs to be opti-
mized for speed to give the devel-
opment team immediate feedback
of any build breaks. Just as in the
PR flow, when the scanning is
fast enough, it can and should be

integrated into the CI build definition. A failed scan can break
the build, and security issues can be fixed right away to restore the
build to green.

At the same time, continuous delivery (CD) needs to be thor-
ough. In VSTS, CD is typically managed through either release
definitions, which progress the build output across environments,
or via additional build definitions that can be scheduled—perhaps
daily—rather than triggered with each commit. In either case, the
definition can perform a longer static analysis scan. The full code
project can be scanned and any errors or warnings reviewed offline
without blocking the CI flow.

Figure 4 HPE Security Fortify on Demand Vulnerability Detection

Figure 3 Visual Studio Team Services Build Tasks for HPE Security
Fortify SCA

1116msdnCon_GuckPrieurDevOps_v5_50-56.indd 52 10/27/16 3:45 PM

www.bit.ly/2dEWEOW

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetgear.com

msdn magazine54 ALM and DevOps

Solution Spotlight: Checkmarx Extension for VSTS
The Checkmarx extension for VSTS (bit.ly/2dVyuDg) allows devel-
opers to not only scan all source code, but also to just scan new
or modified code. This incremental scanning capability is a key
enabler for developers in CI environments as it reduces scan times
from hours to only a few minutes.

Once the analysis is complete, Checkmarx delivers a concise
report detailing the security posture of the scanned code on the
VSTS project summary page, which allows developers to address
and mitigate the vulnerabilities (see Figure 5).

 Checkmarx also provides developers with the “Best Fix Location”
in order to minimize the time to remediate. This includes a visual
chart of the data flow graph that indicates the ideal location in the
code to address multiple vulnerabilities within the data flow in a
single line of code (see Figure 6).

With rule customization, development teams also can modify the
existing vulnerability detection preset queries to enhance detection
and accuracy. Checkmarx describes the rules in a simple C# syntax.

Secure Code Is Only Part of the Picture
Secure code is necessary, but not sufficient to achieve Rugged
DevOps. The Verizon “2016 Data Breach Intelligence Report” makes
clear the many attack vectors that skilled criminals use to compromise
their targets. In addition to protecting your code, it’s essential to
protect credentials and secrets. In particular, phishing is becoming
ever more sophisticated.

There are several operational practices that a team ought to apply
to protect itself, as we’ll discuss now.

Authentication and Authorization Use multi-factor authen-
tication even across internal domains and just-in-time adminis-
tration, such as the PowerShell Just Enough Administration (JEA),
to protect against escalation of privilege (aka.ms/jea). Different pass-
words for different user accounts will limit the damage if one set
of credentials is stolen.

Use the CI/CD Release Pipeline Do this to rebuild infrastruc-
ture so the release pipeline and cadence can also contain damage.
If you manage Infrastructure as Code with Azure Resource

Manager or use Azure PaaS or a
similar service, then your pipe-
line will automatically create new
instances and destroy them, giving
attackers no place to hide inside
your infrastructure (bit.ly/2dEY5wR).
VSTS will encrypt the secrets in
your pipeline, and you should
rotate the passwords just as you
would other credentials.

Manage Permissions Do this
to secure the pipeline with role-
based access control just as you
would for your source code. You
want to control who can edit the
build and release definitions you
use for production.

Dynamic Scanning This is the
process of testing the running
application with known attack
patterns. For example, OWASP
Zed (bit.ly/1fjloVy) is a popular open
source dynamic scanner to check
against the primary vulnerabilities
that owasp.org tracks. Two of the part-
ners discussed in this article, HPE
Security and Veracode, provide
dynamic scanning services, as well.

Monitoring Production This
is a key DevOps practice. The
specialized services for detecting
anomalies related to intrusion are
known as Security Information
and Event Management. Azure
Security Center focuses on the
security incidents related to the
Azure cloud (bit.ly/2dzcj5r).

Figure 5 Visual Studio Team Services Build Report with Checkmarx Scan Results

Figure 6 Checkmarx Best Fix Location in Data Flow Graph

1116msdnCon_GuckPrieurDevOps_v5_50-56.indd 54 10/27/16 3:45 PM

www.bit.ly/2dVyuDg
www.aka.ms/jea
www.bit.ly/2dEY5wR
www.bit.ly/1fjloVy
www.owasp.org
www.bit.ly/2dzcj5r

APPDEVTRENDS.COM

6 Great Conferences, 1 Great Price

App Dev Trends, brought to you by ADTmag.com, is a
new technology conference focused on the makers and
maintainers of the purpose-designed software that Power
organizations in virtually every industry in the world—in
other words, enterprise software professionals! You Power
your company. It’s our job to Power you!

This event is for:
 • down-in-the-trenches developers
 • team leaders
 • entire software development teams

Track topics include:
 • Agile
 • Cloud
 • Mobility
 • Java
 • Containerization
 • Continuous Integration

A NEW CONFERENCE FOR
SOFTWARE DEVELOPERS

REGISTER WITH DISCOUNT CODE
LEB02 AND SAVE $300!

Must use discount code LEB02
for savings

Scan the QR code to register
or for more event details.

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

PRODUCED BY

Untitled-5 1Untitled-5 1 10/6/16 3:12 PM10/6/16 3:12 PM

www.appdevtrends.com

msdn magazine56 ALM and DevOps

Solution Spotlight: Veracode Extension for VSTS
The Veracode Application Security Platform is a SaaS that
enables developers to automatically scan an application for
security vulnerabilities. Veracode provides static application security
testing (SAST), dynamic application security testing (DAST) and
SCA, allowing development teams to assess both first-party code
and third-party components for security risk (see Figure 7).

The Veracode VSTS extension (bit.ly/2dme4Vr) allows teams to
configure continuous and automated assessment of their appli-
cations as a build or release step from their CI/CD pipeline. The
build or release step can also be configured to automatically stop
a build or release based on application security policy, allowing
developers to integrate security testing into a fully automated
CD pipeline. In addition, Veracode offers “Developer Sandbox”
scans to provide results on an individual developer’s changes
before submission.

Why Integrate Security Scanning
into Your DevOps Pipeline?
Because it’s now practical. With the new extensions in the VSTS
Marketplace, you can make security scanning a continuous part
of your team’s release pipeline. Unlike in the past, when scans were
infrequent and generated a wall of issues right before a release, you
can address warnings and errors as they occur. By addressing the
security warnings in small batches—either with each PR or even

daily—you can reduce the work in process and
address component and code security continuously.

In order to optimize for speed, DevOps promotes
the idea of shift-left. In other words, whatever is
worth doing, is worth doing continuously as part
of a DevOps workflow. When you make changes,
make them and version them with code. This
creates one source of truth: your source repo and
trusted package management store. Whenever
you update, update the single source of truth.

According to the 2016 “State of DevOps Report”
(bit.ly/28NI32i) from Puppet, high performers, in
addition to higher agility and reliability outcomes,
also had better security outcomes. By integrating
information security (InfoSec) objectives into the
daily work of Dev and Ops, they spent 50 percent
less time remediating security issues. If you inte-
grate security into your DevOps pipeline, then you
have an automatic way to create, test and deploy
updates. This will shorten your time to remediate
when new vulnerabilities are discovered. Security
updates become just like other updates and can
follow the same automated flow.

The practices make reuse safe. When you scan
packages continuously, you can depend on them
and know that you aren’t picking up their vulner-
abilities. Moreover, when new vulnerabilities are
discovered in the wild, you can be notified imme-
diately so security intelligence becomes actionable.
You can pick up the new package versions, modify

your code as needed, test and release—without needing to wait for
attackers to discover your vulnerability.

DevOps started by breaking down silos between development
and operations. Now you can break down the next wall, between
DevOps and InfoSec. Rather than build up security debt that needs
to be addressed too late, you can prevent it from creeping into
the pipeline.

The combination of these benefits helps you go fast. By inte-
grating security automation into your pipeline, you can use it as
an accelerator. After all, the bad guys will go for easy targets. And
as the old joke has it, if you’re in a camping party in the woods and
a bear appears, it’s not the bear you need to outrun, but the bear’s
other potential prey.	 n

Sam Guckenheimer works in Visual Studio Cloud Services. He is the author of
three books on agile development practices and an e-book on the Visual Studio
Team Services journey to cloud cadence. Reach him at samgu@microsoft.com or
on Twitter: @samguckenheimer.

Jean-Marc Prieur is a senior program manager at Microsoft envisioning and
driving the delivery of experiences in Visual Studio and Visual Studio Team Ser-
vices focused on controlling technical debt, including architecture analysis tools.
Reach him at jmprieur@microsoft.com or on Twitter: @jm_prieur.

Thanks to the following technical experts for reviewing this article: Amit
Ashbel, Michael Right, Joanna Rosenberg and Maya Rotenberg

Figure 7 Visual Studio Team Services Build Report with Veracode Scan Results

1116msdnCon_GuckPrieurDevOps_v5_50-56.indd 56 10/27/16 3:45 PM

mailto:samgu@microsoft.com
mailto:jmprieur@microsoft.com
www.bit.ly/2dme4Vr
www.bit.ly/28NI32i
www.twitter.com/samguckenheimer
www.twitter.com/jm_prieur

Untitled-4 1 8/25/16 12:21 PM

www.gnostice.com

magazine

SUPPORTED BY PRODUCED BY

7 LOCATIONS
TO CHOOSE FROM

JOIN US

Untitled-2 2 10/11/16 11:46 AM

www.vslive.com

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com

Untitled-2 3 10/11/16 11:47 AM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine60

A key strategy for Microsoft is to “reinvent productivity” by
empowering developers to build smart, people-centric applications
on the Microsoft platform so users can get more out of work and life.

The way we work is rapidly evolving. People seem to always be
connected and users expect applications to help them with the task
at hand—in the precise moment where they’re needed, right where
they are, and with the relevant context that can intelligently lever-
age the data available to make meaningful connections between
people and information, and make productive use of the most
valuable commodity: time.

Imagine an app that can look at your next meeting and help
you prepare for it, such as providing useful profile information for
attendees that includes not only their job titles, but also who they
work with and information on the latest documents or projects on
which they’re working.

Or, imagine an app that not only has access to your calendar, but
suggests the best times for the next team meeting.

How about an app that can get the latest sales projection chart
from an Excel file sitting in your OneDrive and lets you update the
forecast in real time, all from your mobile phone?

Or, how about an app that can subscribe to changes to your
calendar, alert you when you’re spending too much time in meet-
ings, and provide recommendations for the ones you could miss
or delegate based on how relevant the attendees are to you?

Or, how about an app that can help you sort out personal and
work information on your phone, like pictures that should go to
your OneDrive because they’re your children’s pictures versus pic-
tures that should go to your OneDrive for business because they’re
pictures of receipts for an expense report.

All of these app examples can easily be powered by Microsoft Graph.

Unparalleled Opportunities for Developers
In an age of information abundance, we know that people are seeking
integrated experiences to help them leverage many sources of data
and connect information from multiple touchpoints in meaningful
ways. Here’s where Microsoft Graph is the key enabler, empowering
developers to create powerful and personalized cloud-based apps
that can transform the productivity landscape.

If you look at the massive amount of data available for develop-
ers, you’ll see that there are about 850 million Outlook meetings
scheduled per month and more than 100 million of those are Skype
meetings. There have been 4 trillion e-mails sent to date using Office
and hundreds of petabytes of data stored in Office 365. Users spend
an average of two to three hours each day in Office and, now that
Office apps are mobile, the mobile Office apps just surpassed 340
million downloads; this reach wasn’t possible just two years ago!

Microsoft Graph: Easing Integration
Microsoft Graph (graph.microsoft.com) was created to meet user demand
for smart contextual experiences and to ease the developer pain of
integrating with Microsoft services one at a time to create them.
Microsoft Graph is the unified gateway for developers to access all

MICRO SOF T GR APH

Microsoft Graph:
Gateway to Data
and Intelligence
Yina Arenas

This article discusses:
•	Empowering developers to build smart, people-centric applications

•	Microsoft Graph is the gateway to data and intelligence in Office 365

•	Enabling access to data in the consumer, commercial and
sovereign clouds, as well as hybrid deployments.

•	Microsoft Graph is a unified REST API with lots of developer
resources to get started simple and fast

Technologies discussed:
Microsoft Graph, Office 365 and Microsoft Cloud Services, REST APIs

1116msdnCon_ArenasGraph_v5_60-65.indd 60 10/27/16 3:41 PM

http://graph.microsoft.com

SPLIVE360.COM

6 GREAT CONFERENCES, 1 GREAT PRICE

Today, organizations expect people to work from
anywhere at any time. Office & SharePoint Live!, provides
leading-edge knowledge and training to administrators,
developers, and planners who must customize, deploy
and maintain SharePoint Server on-premises and in
Office 365 to maximize the business value.

Whether you are a Manager, IT Pro, DBA, or Developer,
Office & SharePoint Live! brings together the best the
industry has to offer for 5 days of workshops, keynotes,
and sessions to help you work through your most
pressing collaboration projects.

Must use discount code L360NOV

Scan the QR code to register or for
more event details.

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

REGISTER WITH DISCOUNT
CODE L360NOV AND
SAVE $300!

Untitled-6 1Untitled-6 1 10/11/16 3:00 PM10/11/16 3:00 PM

www.splive360.com

msdn magazine62 Microsoft Graph

the data, intelligence and APIs housed in Microsoft’s intelligent cloud
including Exchange, SharePoint, Azure Active Directory, OneDrive,
Outlook, OneNote, Planner, Excel and more. Microsoft Graph also
includes calculated insights and rich relationships based on machine
learning performed by its intelligent engine. All this is available
through the same REST API endpoint, providing a much simpler
developer experience across all of Microsoft’s APIs by bringing them
together in a single URI namespace with a single authentication story.

The reason why Microsoft Graph is so important is because the
data that’s in Office 365—the organizational hierarchy, the calendar,
the mailbox, the files and so on—are cornerstones for organizations
and how people get things done. And the easier your applications
can leverage all that data, the smarter they can be and the better
experiences they can provide for users.

As shown in Figure 1, Microsoft Graph aggregates information
from multiple services and makes it available to the application in
a single request. Developers can build user- and group-centered
experiences that help users achieve more. An example: a produc-
tivity app that gives you the profile and picture of all the people
you’re about to meet and can tell you their organizational structure
and the topics relevant to them. It doesn’t matter where the data is
stored; with Microsoft Graph you get a single endpoint to access it.

Microsoft Graph can also be used to traverse data across services
to empower rich content scenarios. An example: an educational
app that models classrooms around groups and lets the teacher
track the documents students submit for their projects, see who
modified the files, track their collaboration and progress, and have
conversations around topics relevant to the class.

Access to Intelligence
Microsoft Graph surfaces intelligent insights by bringing together
smart machine learning algorithms with a wealth of data and user
behavior. Using Microsoft Graph, developers can access this rele-
vant data to make applications contextual and smarter. For example:
people picking controls powered by the People API in Microsoft
Graph, where leveraging its fuzzy matching functionality, users

don’t have to remember how to spell
some complicated last name and can
get to the data just by remembering
how it phonetically sounds. Imagine
a sales app where the sales represen-
tative can quickly get to his custom-
er’s contact information and have it
on the spot when needed. How many
times have you forgotten how to spell a
name and then have to scramble to find
the contact based on other keywords?

Another example of Microsoft
Graph intelligence is its ability to get
trendind documents. Microsoft Graph
listens to signals and activities such
as file uploads, file views and modifi-
cations, e-mail conversations, and so
on. Then it uses its intelligent engine
to calculate rich relationships and in-

ferred insights between people and documents. When a file becomes
popular in your circle, Microsoft Graph creates a trending insight;
this information then becomes available to power contextual ex-
periences such as Delve in Office 365 and now is also available to
developers as an API in Microsoft Graph.

Reach Millions of Users
Microsoft Graph is also the unified endpoint for consumer and
commercial clouds. The lines between work and personal produc-
tivity are increasingly blurring. That app that can sort your personal
and work photos to OneDrive and OneDrive for Business
can be written with a single code base and a single app registra-
tion using Microsoft Graph. This means that developers can use
this single endpoint and the same code to access personal data
sitting in Outlook.com, Hotmail.com, Live.com, and other personal
accounts in the Microsoft cloud, as well as with work and school
data sitting in Office 365 and Azure Active Directory accounts.
So, with Microsoft Graph, you use the same code with a single app
registration and a single auth flow.

In addition to being the unified endpoint for consumer and com-
mercial services, Microsoft Graph is also the unified endpoint for
sovereign deployments. Microsoft announced the general availabil-
ity of Microsoft Graph in China this year. That has strengthened
the ISV ecosystem in China and empowered multi-national ISVs
to build smarter apps for the Chinese market. As more sovereign
clouds become available in other markets, Microsoft Graph becomes
the gateway to access their data.

Furthermore, Microsoft Graph wants to close the programmability
gap between the cloud and on-premises. Now in preview, Microsoft
Graph can reach out to Exchange 2016 mailboxes sitting on-premises
for customers with hybrid deployments. From the development
perspective, the code can be agnostic to where the data is coming
from and the same code can get data from a mailbox in the cloud
(whether it’s an Office 365 mailbox or an Outlook.com/Hotmail.com
mailbox) or a mailbox on-premises. Microsoft Graph takes care or
finding where the data lives and retrieving it for the app.

Figure 1 Microsoft Graph Lets Apps Access Digital Work and Digital Life Data

1116msdnCon_ArenasGraph_v5_60-65.indd 62 10/27/16 3:41 PM

SUPPORTED BYEVENT PARTNERS PLATINUM SPONSORS GOLD SPONSORS SILVER
SPONSOR

PRODUCED BY

A Par� of Liv�! 360: � � Ultimat� Educatio� Destinatio�
6 GREAT CONFERENCES, 1 GREAT PRICE

After 5 days of workshops, deep dives and
breakout sessions, SQL Server Live! will leave you
with the skills needed to Lead the Data Race.

With timely, relevant content, SQL Server Live!
helps administrators, DBAs, and developers do more
with their SQL Server investment. Sessions will
cover performance tuning, security, reporting, data
integration, adopting new techniques, improving
old approaches, and modernizing the SQL Server
infrastructure.

Lea� th� Dat� Rac�

Must use discount code L360NOV

Scan the QR code to register or for
more event details.

REGISTER WITH DISCOUNT
CODE L360NOV AND
SAVE $300!

✱

✱

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

SQLLIVE360.COM

Untitled-12 1 10/7/16 4:36 PM

www.sqllive360.com

msdn magazine64 Microsoft Graph

Microsoft Graph Is Core to the Office Platform
Microsoft Graph alters the landscape of work and productivity for IT,
users and developers. For IT, apps are easier to deploy and manage due
to their graph integration and because data access is secured. For us-
ers, apps are smarter, richer and contextual. For developers, Microsoft
Graph brings tremendous value by shortening development time and
making it simple to integrate with data and intelligence.

Today, innovative businesses are transforming work and pro-
ductivity through Microsoft Graph. For example:

• �Zapier: Uses the Microsoft Graph to tap into Excel data and
let users create powerful “zaps” or personal workflows that
automate data collection into Excel and integrate it with other
cloud services. This is an integration that wasn’t possible
before Microsoft Graph and its Excel REST API.

• �Smartsheet: Integrates with Microsoft Graph in Outlook to
give the Outlook user the ability to interact with the sheets
and projects in Smartsheet right from the Outlook experi-
ence while leveraging data from OneDrive and other services.

• �SkyHigh Networks: Leverages Microsoft Graph to enable
security teams to gain visibility into sensitive data, apply
data loss prevention policy to users or groups, and identify
or alert high-risk behavior.

• �Hyperfish: A brand-new startup that enables organizations
to automatically identify and populate missing user profile
information quickly and easily. It turns blank people cards
into rich cards that enable faster people connections.

• �Workday: Uses Microsoft Graph to integrate with Office 365
groups such that when an employee starts a new position in
the organization, all changes in Workday are automatically
reflected in Office 365 groups and the employee gets imme
diate access to all events, conversations and documents.

The API
Microsoft Graph uses Web standards that enable any device capable
of making an HTTP request to interact with it. It’s a RESTful API
that follows Microsoft REST API guidelines recently made public

to the API community and available at bit.ly/2dzFp1a. Many portions
of the Microsoft REST API guidelines evolved from standardization
and rationalization exercises to unify the existing service APIs and
their direct endpoints and schemas, so that they could participate
in Microsoft Graph. I personally wrote the first proposal for naming
conventions and casing that went into the guidelines and was part
of long, internal API debates among more than 15 teams across
Microsoft that collaborated in the creation of Microsoft Graph.

Microsoft Graph supports a rich set of query parameters such as
select, filter, expand, and orderBy that can be used to specify and
control the amount of data returned in the response. Microsoft
Graph also has a growing set of SDKs for devices and services—so
whether you’re working on iOS, Android, or Universal Windows
Platform (UWP) apps, creating a .NET Azure Web site, or building
a service with Node.js, Python, PHP, or Ruby, you can quickly
incorporate Microsoft Graph data into your application.

Getting Started with Microsoft Graph
So how can you leverage Microsoft Graph? Start by navigating
to graph.microsoft.io. This will take you to the developer portal,
where you’ll find quick-start experiences that can bootstrap your
development and, in less than five minutes, you’ll have a working
application in the platform of your choice calling Microsoft Graph.

At the Microsoft Graph developer portal, you’ll also find docu-
mentation, complete API reference, a full suite of SDKs and code
samples on a variety of platforms, and the Graph explorer. Using
the Graph explorer, you’ll be able to send requests to Microsoft
Graph and inspect the response right away using your personal
account, your work or school account, or even a demo account.
Figure 2 shows some sample requests showcasing the type of data
that can be accessed using Microsoft Graph. Data can be read, cre-
ated, updated and deleted using the APIs. You can easily try all of
these requests and more using the Graph explorer.

Now I’ll take a look at Microsoft Graph in more detail. You start
by using the Getting Started link at graph.microsoft.io to create an
ASP.NET MVC Web application that uses the Microsoft Graph

.NET SDK to send mail on the user’s behalf.
Then you enhance it with an additional call to
the OneDrive API exposed in Microsoft Graph
to query for the user’s recent files.

After navigating to the Get started page and
interacting with the try experience, navigate
toward the bottom of the page and select the
ASP.NET MVC entry point.

The next step is to follow the links to regis-
ter the app. Remember to copy the “secret”
and save it as it won’t be presented to you again.
After this process, you’ll get a .zip package with
the project. Extract the files, open the project
in Visual Studio, build it and run it. If you need
to make updates or changes to the registered
app you can make them at apps.dev.microsoft.com.

This quick-start experience grabs the code
sample, inserts the application id and the
secret in the web.config file and leaves the

Figure 2 Sample Requests in Microsoft Graph

Operation Service Endpoint
Get my profile https://graph.microsoft.com/v1.0/me
Get my files https://graph.microsoft.com/v1.0/me/drive/root/children
Get my photo https://graph.microsoft.com/v1.0/me/photo/$value
Get my mail https://graph.microsoft.com/v1.0/me/messages
Get my calendar https://graph.microsoft.com/v1.0/me/calendar
Get my manager https://graph.microsoft.com/v1.0/me/manager
Get last user to modify file foo.txt https://graph.microsoft.com/v1.0/me/drive/root/children/

foo.txt/lastModifiedByUser
Get users in my organization https://graph.microsoft.com/v1.0/users
Get group conversations https://graph.microsoft.com/v1.0/groups/<id>/conversations
Get people relevant to me https://graph.microsoft.com/beta/me/people
Get my tasks https://graph.microsoft.com/beta/me/tasks
Get my notes https://graph.microsoft.com/beta/me/notes/notebooks
Get files trending around me https://graph.microsoft.com/beta/me/insights/trending

1116msdnCon_ArenasGraph_v5_60-65.indd 64 10/27/16 3:41 PM

https://graph.microsoft.com/v1.0/me
https://graph.microsoft.com/v1.0/me/drive/root/children
https://graph.microsoft.com/v1.0/me/photo/$value
https://graph.microsoft.com/v1.0/me/messages
https://graph.microsoft.com/v1.0/me/calendar
https://graph.microsoft.com/v1.0/me/manager
https://graph.microsoft.com/v1.0/me/drive/root/children/foo.txt/lastModifiedByUser
https://graph.microsoft.com/v1.0/users
https://graph.microsoft.com/v1.0/groups/<id>/conversations
https://graph.microsoft.com/beta/me/people
https://graph.microsoft.com/beta/me/tasks
https://graph.microsoft.com/beta/me/notes/notebooks
https://graph.microsoft.com/beta/me/insights/trending
www.bit.ly/2dzFp1a
http://graph.microsoft.io
http://graph.microsoft.io
http://apps.dev.microsoft.com

65November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

project ready for you to run. The running app is the resulting
ASP.NET 4.6 MVC Web app that connects to a Microsoft work or
school (Azure Active Directory) or personal (Microsoft) account using
the Microsoft Graph API to send an e-mail. It uses the Microsoft
Graph .NET SDK to work with data returned by Microsoft Graph.

Now that you have the project up and running, you’ll add the calls
to the OneDrive API to get the list of items that have been recently
used by the signed-in user. This list includes items that are in the
user’s drives, as well as items she has access to from other drives.

The first step is to modify the web.config file to add the
Files.Read permission scope to let the application read access to the
user’s OneDrive. In the web.config file, look for the ida:GraphScopes key
in the appSettings element and add Files.Read to the value string.
The next time the user launches the app, the service will identify
the new scope and dynamically ask the user to consent for it:

<appSettings>
 ...
 <add key="ida.GraphScopes" value="User.Read Mail.Send Files.Read" />
</appSettings>

Next, you’ll modify the controller. Open HomeController.cs in
the Controllers folder; this class contains the actions that initialize

the Microsoft Graph .NET SDK in response to the UI events. Add
the method in Figure 3 to get the top 10 recent OneDrive items.

Notice the [Authorize] statement before the method. This is there to
ensure this request will initiate a sign-in if the user isn’t already signed in.

Finally, update the view Graph.cshtml in the Views folder to
include a button that will trigger the request and divs to render the
name of the item and the name of the user who created the item
for each of the items in the returned list. Do this by appending the
code in Figure 4 at the end of the file.

The result is an ASP.NET 4.6 MVC Web app that connects to
Microsoft Graph and can be used by users with Microsoft work or
school (Azure Active Directory) accounts or users with personal
(Microsoft) accounts to send an e-mail from their Outlook.com or
Office 365 mailbox and access OneDrive or OneDrive for Business
data. This is a simple example that illustrates how easy it is to get
data from the Microsoft cloud using Microsoft Graph, whether that
data comes from Azure Active Directory, SharePoint, OneDrive,
Exchange, Outlook.com, Planner, OneNote, Excel, or other services.

Imagine the applications that you can build. Microsoft is
working to increase the number of services and functionality available
in Microsoft Graph, on deepening its understanding of user activity to
make richer inferences and relationships, and simplifying the developer
experience so you can access all of this data from a single connected API.

This is a massive opportunity for developers, who can tap into
all this data and intelligence using the Microsoft Graph. The
momentum behind Microsoft Graph since it launched in Novem
ber 2015 speaks to this. Microsoft has seen a huge uptake in the
number of registered apps, the organizations that consent to apps
that use Microsoft Graph, and end-user active usage of those
apps. Some of these apps built using Microsoft Graph are already
reaching millions of active daily users.

Wrapping Up
With Microsoft Graph, developers are empowered to build smart,
people-centric apps that can easily interact with data from all touch
points of modern work. It enables developers to take advantage of
the tremendous amount of data in Microsoft’s cloud services—to
build smarter apps and help people be more productive. Microsoft
Graph exposes APIs, data, and intelligence across Office 365 and
Azure Active Directory. Microsoft is building toward a near future
where multiple graphs and all APIs throughout Microsoft contribute
to, and are accessible through, a single unified gateway to the power
of the Microsoft cloud. This translates into the ecosystem helping
reinvent productivity by creating sticky experiences in all industry
verticals. It opens a future where developers can re-shape health care,
education, finance, law and many more industries; the possibilities are
endless. I can’t wait to see what you build using Microsoft Graph. 	n

Yina Arenas is a principal program manager at Microsoft and lead for Microsoft
Graph. She’s taking Office and Microsoft APIs from legacy and disjointed technologies
to a new, unified API world. She lives in the Seattle area with her husband and
their three energetic boys and actively leads and participates in activities that grow,
retain, and empower women in technology. Find her on Twitter: @yina_arenas.

Thanks to the following Microsoft technical experts for reviewing this article:
Agnieszka Girling, Gareth Jones and Dan Kershaw

[Authorize]
// Get the items that are shared with the current user.
public async Task<ActionResult> GetMyRecentItems()
{
 try
 {
 // Initialize the GraphServiceClient.
 GraphServiceClient graphClient = SDKHelper.GetAuthenticatedClient();

 // Get the recent items.
 ViewBag.RecentItems =
 await graphClient.Me.Drive.Recent().Request().Top(10).GetAsync();
 return View("Graph");
 }
 catch (ServiceException se)
 {
 if (se.Error.Message ==
 Resource.Error_AuthChallengeNeeded) return new EmptyResult();
 return RedirectToAction("Index", "Error", new { message =
 string.Format(Resource.Error_Message, Request.RawUrl,
 se.Error.Code, se.Error.Message) });
 }
}

Figure 3 Acquiring Top 10 Recent OneDrive Items

<h2>Recent OneDrive Items</h2>
@using (Html.BeginForm("GetMyRecentItems", "Home"))
{
 <div class="col-sm-12">
 <div class="form-group">
 <button class="btn btn-default">Get Recent OneDrive Items</button>
 </div>
 </div>
}
<div class="col-sm-12">
 <label for="recent-items">Recent Items</label>
 @if (ViewBag.RecentItems != null)
 {
 foreach (var item in ViewBag.RecentItems)
 {
 <div class="row">
 <div class="col-sm-4">@item.Name</div>
 <div class="col-sm-8">@item.CreatedBy.User.DisplayName</div>
 </div>
 }
 }
</div>

Figure 4 Update the View Graph.cshtml in the Views Folder

1116msdnCon_ArenasGraph_v5_60-65.indd 65 10/27/16 3:41 PM

http://www.msdnmagazine.com
www.twitter.com/yina_arenas

Code!
EVENT PARTNERS SUPPORTED BY

magazine

PRODUCED BY

LAS VEGAS
MAR 13-17 2017
BALLY’S, LAS VEGAS, NV

Untitled-2 2Untitled-2 2 10/11/16 12:59 PM10/11/16 12:59 PM

www.vslive.com/lasvegas

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Register by December 16 and Save $500!*
Use promo code VSLNOV2 Scan the QR code to register or for more event details. *SAVINGS BASED ON 5 DAY PACKAGES ONLY.

vslive.com/lasvegas

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

Track Topics include:

Visual Studio / .NET Framework
JavaScript / HTML5 Client
Modern App Development
Mobile Client
Software Practices
Database and Analytics

Angular JS
ASP.NET / Web Server
Agile
ALM / DevOps
Cloud Computing
Windows Client

SPACE IS LIMITED

Sunday Pre-Con Hands-On Labs

Choose From:
 Angular
 Azure
 XAML

ONLY $595 955
NEW!

Untitled-2 3Untitled-2 3 10/11/16 12:59 PM10/11/16 12:59 PM

www.vslive.com/lasvegas
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine68

There’s a big buzz around the concept of Big Data in business
discussions today. Organizations as diverse as power utilities, med-
ical research firms, and charitable organizations are demonstrating
the use of large-scale data to discover patterns, deduce relationships,
and predict outcomes. Online services, and the businesses operating
them, were the early development grounds for Big Data and remain
its most eager adopters. Scenarios such as product recommenda-
tion, fraud detection, failure prediction and sentiment analysis have
become mainstays of the Big Data revolution.

Big Data is often defined as having the characteristics of the
“three V’s”—large volume, high velocity and variety. While massive
volume is the common association for Big Data, the need to take
action on data arriving in near-real time and dealing with a large
and changing variety in format and structure are equally defining
for Big Data. In fact, any one of these characteristics present in data
can be enough to create a Big Data scenario with the others often
following soon after. The desire—and increasingly the necessity—
to derive value from data that has the three V’s is the motivation
behind the increased interest in Big Data.

While data science, statistical analysis, and machine learning have
all enjoyed renewed attention and growth, the use of Big Data has
truly been unlocked by underlying advances in distributed com-
puting. This includes the development of software stacks that can
stitch together computing clusters from inexpensive commodity
hardware. Associated compilers and job schedulers make it possible
to distribute a computing workload across such clusters. This puts

the computations close to where the data is stored and aggregates
many servers to get higher performance. These big data platforms
were developed by companies such as Microsoft, Yahoo and Google
for internal use, but have become available for public use through
platforms like Azure Data Lake (ADL), Hadoop and Spark.

It comes as no surprise, then, that getting started with Big Data
means an investment in building up a data platform based on
these new technologies. At the enterprise system level, this means
the introduction of a “data lake” in addition to the traditional data
warehouse. The data lake is based on the concept of storing a wide
variety of data types on a very large scale and in their original for-
mats. Unlike the data warehouse model, data is first captured without
any cleaning or formatting, and is used with a late-binding schema.
This kind of architecture requires the adoption of the new software
platforms, ADL, Hadoop or Spark. For the data developer, it means
having to learn new programming models and languages while
dealing with more complex execution and debugging situations.

Fortunately, Big Data systems have already come a long way.
Let’s say you want to build a product recommendation system with
information collected from the online shopping site you operate.
Your plan is to send e-mails to shoppers to promote new products
based on previous shopping patterns. You might also want to rec-
ommend products while the customer is shopping on the site based
on what other customers did. Both scenarios fit well with Big Data
techniques. Until recently you’d have to start by selecting a partic-
ular Big Data stack, designing and procuring the cluster hardware,
installing and tuning the software, and then you could start to
develop the code for collecting, aggregating, and processing the
data you have. Based on your investment, you would likely feel
locked into the particular hardware and software stack you chose.

While stacks like Hadoop and Spark have become easier to install
and manage, the coming of Big Data in cloud services is an even bigger
game changer. As a cloud service, ADL provides both the storage and
computation power needed to solve Big Data problems. More important,
one of its key principles is that Big Data development needs to be easy.

IN TE LL IGENT APPS

Big Data Development
Made Easy
Omid Afnan

This article discusses:
•	Developing code for Big Data analytics

•	Debugging distributed queries with parallel scale-out

•	Using U-SQL to move into Big Data development

Technologies discussed:
Azure Data Lake, Visual Studio IDE, U-SQL

1116msdnCon_AfnanUSQL_v3_68-72.indd 68 10/27/16 3:39 PM

69November 15, 2016 / Connect(); Special Issuemsdnmagazine.com

Big Data Gets Easier
ADL is a cloud-based environment that offers a Big Data query ser-
vice. That means you don’t have to set up and manage any hardware.
When you’re ready to do Big Data development, you simply create
ADL accounts on Azure and the service takes care of allocating
storage, computation and networking resources. In fact, ADL goes
further and abstracts away the hardware view almost completely.
ADL Storage (ADLS) works as an elastic storage system, stretching
to accommodate files of arbitrary size and number. To run queries
and transformation on this data the ADL Analytics (ADLA) layer
allocates servers dynamically as needed for the given computations.
There’s no need to build out or manage any infrastructure—simply
ingest data into ADLS and run various queries with ADLA.
From a developer’s viewpoint, ADL creates something that looks
and behaves a lot like a server with infinite storage and compute
power. That’s a powerful simplification both for setting up the
environment and understanding the execution model.

The next simplification comes from the U-SQL language.
U-SQL is a unique combination of SQL and C#. A declarative SQL
framework is used to build a query or script. This part hides the
complexity that arises from the actual distributed, parallel execu-
tion environment under the covers. You, the developer, don’t have
to say how to generate a result. You specify the desired outcome
and the system figures out the query plan to do it. This is the same
as what happens with SQL on an RDBMS but different than other
Big Data stacks where you may have to define map and reduce
stages, or manage the creation of various types of worker nodes.
The compiler, runtime and optimizer system in ADL creates all the
steps for generating the desired data, along with the possible par-
allelization of executing these steps across the data.

Note that a query can actually be a very complex set of data trans-
formations and aggregations. In fact, the work of developing Big
Data programs with U-SQL is writing potentially complex scripts
that re-shape data, preparing it for user interaction in BI tools or
further processing by other systems such as machine-learning

platforms. While many transforma-
tions can be done with the built-in
constructs of a SQL language, the
variety of data formats and possible
transformations requires the ability
of add custom code. This is where
C# comes into U-SQL, letting you
create logic that is customized, but
can still be scaled out across the
underlying parallel processing
environment. U-SQL extensibil-
ity is covered in-depth in Michael
Rys’ online article, “Extensibility
in U-SQL Big Data Applications,”
(msdn.com/magazine/mt790200), which
is part of this special issue.

The addition of support in
development tools such as Visual
Studio provides another critical
simplification: the ability to use

familiar tools and interaction models to build up your Big Data
code base. In the remainder of this article I’ll cover the capabili-
ties provided for U-SQL programming in Visual Studio and how,
together with the previously mentioned capabilities, they provide
a major shift in the ease of use for Big Data overall.

Developing U-SQL
To make Big Data development easy, you start with being able to
construct programs easily. The fact that U-SQL combines two very
familiar languages as its starting point makes it quite easy to learn
and removes one of the barriers for adopting Big Data. In the case of
development tools such as Visual Studio, it also makes it easy to reuse
familiar experiences such as the built-in support for C# development
and debugging. The Azure Data Lake Tools for Visual Studio plug-in
(bit.ly/2dymk1N) provides the expected behavior around IntelliSense,
solution management, sample code and source control integration.

Because ADL is a cloud service, the Visual Studio tools draw on
the integration with Azure through the server and cloud explorers.
Other experiences must be extended or changed: IntelliSense for
U-SQL includes an understanding of the tables and functions
defined in the cloud within ADLS, providing appropriate com-
pletions based on them. Another key set of features is found in
Figure 1, which is a representation of the query execution graph
that results when a query is compiled for execution in the distrib-
uted, parallel cloud environment.

When you develop a U-SQL script, you start it as you do in other
languages. You create a new project where you can add U-SQL type
files. You can insert code snippets into query files to get you started,
or access sample code from a sample project. Once you’ve written
some code, it’s natural to compile and run your code to find and
fix any errors and test your logic. This then becomes the tight loop
for your work until the code reaches an overall functional level.

This work loop has some complications for Big Data. Big Data
code runs in Big Data clusters, so the existing situation is for
developers to run their code in a cluster. This often requires the

Figure 1 U-SQL Job Graph Viewed in Visual Studio

1116msdnCon_AfnanUSQL_v3_68-72.indd 69 10/27/16 3:39 PM

http://www.msdnmagazine.com
http://msdn.com/magazine/mt790200
www.bit.ly/2dymk1N

msdn magazine70 Intelligent Apps

setup and maintenance of a development cluster. It can also take
longer to go through the full cycle of submitting, executing and
receiving results. The tight loop in this case becomes too slow. In
some technologies a “one box” install of a cluster is available. This
probably requires special installation tools, but it might be instal-
lable on the development machine you use.

U-SQL simplifies this situation by providing a compiler and
runtime that can execute on a local machine. While the execution
plan (including such things as degrees of parallelism, partitioning
and so on) for a local machine and the cloud-based environment
are likely to be quite different, the computation and data flow
graph will be the same. So, while the performance of the local run
won’t be comparable to that in the cloud service, it provides a func-
tional debugging experience. The necessary tools for local run
are installed with the Azure Data Lake Tools for Visual Studio
plug-in and are available immediately. They can also be installed as a
NuGet package and run from the command line for automation purposes.

The local execution environment looks like another ADLA
account. You can see it in the Server Explorer window under the
Data Lake Analytics section, where your cloud-based accounts
are listed. On submission dialogs it’s shown as an option on the list
of target accounts with the label “(Local).” This local account can
have all the child nodes that real accounts have. This means you can
define metadata objects such as databases, tables and views. You
can also register C# libraries here to support execution of U-SQL
scripts that have user-defined code. This is necessary to provide parity
with the cloud environment for full testability of your U-SQL code.

The U-SQL development loop then looks very much like other
languages. You can create a U-SQL project and once enough code is
ready, you can compile to find syntax errors. You can also run locally
through the Debug (F5) and the Run without debug (Ctrl+F5) com-
mands in Visual Studio. This will expose runtime errors such as
data-parsing problems during file ingestions (the EXTRACT command
in U-SQL), a very common debug case. At any point you can switch
to submitting the code to run in your ADLA account in Azure. Note
that this will incur charges based on the overall time for the query.

Managing Data
Given that datasets for Big Data scenarios are often too big to use
on a development machine, it becomes necessary to manage data
for test and debugging purposes. A common way to handle this is
to refer to data files by relative paths. The U-SQL compiler inter-
prets relative paths from the root of the default storage for a given
execution environment. Each ADLA account has a default storage
account associated with it (you can see this in the Server Explorer
window). For execution in the cloud, file paths are found in this
root. When executed locally, paths are searched under the global
data root directory shown under Tools | Options | Azure Data Lake.

For development, a common practice is to specify a relative path
to a file that exists both locally and in the cloud. The script can
then be run without modification both locally or as submitted to
ADLA. In the case that the input data already exists in Azure, you
can download a portion of the file. The ADL experience in Visual
Studio lets you do this by navigating to the file from the Job Graph
or File Explorer (from the context menu on the storage accounts

in Server Explorer) and selecting the download option. If the data
doesn’t yet exist, then a test file must be created. With the data in
place, the local development loop can proceed as before.

Debugging with User-Defined Code
The fact that U-SQL lets you use C# to define customer code intro-
duces additional debugging capabilities. Briefly, C# extensions must
be registered in a database in the ADLA account where the related
query will be executed. As mentioned earlier, this can also be done
in the local run scenario using the “(Local)” account. The general
case is that you create a separate C# class library project (there’s
a project type for this under the ADL area) and then register it.

There’s also another easy way to define user code and have
Visual Studio manage the registration for you. You’ll notice that
in a U-SQL project, each file automatically has a codebehind file
associated with it. This is a C# file where you can add code for sim-
ple extensions that aren’t meant to be shared with other projects.
Behind the scenes, Visual Studio will manage creating a library, reg-
istering and unregistering for you during submission of the query
for execution. Again, this works against a “(Local)” account, as well.

Regardless of how the user-defined code is created, it can be
debugged like other C# code during execution in the local environ-
ment. Breakpoints can be set in the C# code, stack traces examined,
variables watched or inspected, and so on. The Start Debugging
(F5) command kicks off this capability.

Debugging at Scale
Up to this point, I’ve discussed the capabilities that let you build
U-SQL code in projects, specify data sources, compile and run
locally, and step through C#. If you’re thinking, “That sounds like
every other language I code in,” that’s great! I mentioned that the
goal here is to take an inherently complex distributed, parallel-
execution environment and make it look like you’re coding for
a desktop app. I’ve also talked a bit about how to manage data
sources and C# extensions in your code between local and cloud
environments. Now, let’s talk about something unique to the debug-
ging of Big Data jobs at scale (that means running in the cloud).

If you’ve followed the approach of developing your code and
debugging on your local machine, then at this point you’ve prob-
ably figured out any logic errors and are getting the outputs you
want. In other words, your business logic should be sound. With
Big Data, though, you’ll have massive amounts of data and the
format of the data is likely to change. Remember that in data lake
architecture, you store data in its native format and specify struc-
ture later. This means data can’t be assumed to be well-formatted
until after you’ve processed it to be that way.

Now, when you run your tested code at scale in the cloud and
try to process all of your data, you’ll see new data and might start
to hit problems you didn’t find before. Also, your query has been
compiled, optimized and distributed across possibly hundreds or
thousands of nodes, each of which execute a portion of the logic
on a portion of the data. But if one of those chunks of work fails
in an unrecoverable way, how can you figure out what happened?

The first way that U-SQL and ADLA help you with this is to manage
error reporting as you’d expect a job service would. If an exception

1116msdnCon_AfnanUSQL_v3_68-72.indd 70 10/27/16 3:39 PM

SUPPORTED BYEVENT PARTNERS PLATINUM SPONSORS GOLD SPONSORS SILVER
SPONSOR

MODERNAPPSLIVE.COM
PRODUCED BY

A Par� of Liv�! 360: � � Ultimat� Educatio� Destinatio�
6 GREAT CONFERENCES, 1 GREAT PRICE

Presented in partnership with Magenic, Modern Apps
Live! brings Development Managers, Software Architects
and Development Leads together to break down the
complex landscape of mobile, cross-platform, and cloud
development and learn how to architect, design and build
a complete Modern Application from start to fi nish.

In-depth and educational sessions taught by the
industry's top thought leaders will lay out how to get an
app done successfully and at a low cost!

Navigat� En�-t�-En�
Moder� App�

Must use discount code L360NOV
Scan the QR code to register or for
more event details.

✱

ORLANDO
ROYAL PACIFIC RESORT AT
UNIVERSAL ORLANDO

DEC
5-9

REGISTER WITH DISCOUNT
CODE L360NOV AND
SAVE $300!

✱

Untitled-12 1 10/7/16 4:35 PM

www.modernappslive.com

msdn magazine72 Intelligent Apps

occurs outside of user code, then
the error message, accompanying
stack trace, and detailed data are
collected from the offending node
and stored against the original job
(query submission). Now, when you
view the job in Visual Studio or the
Azure Portal, you’ll immediately
be shown the error information.
No need to parse through log or
stdout files to try and decrypt the
error location.

An even more interesting and
common case is when you have cus-
tom code and the failure happens
there. For example, you’re parsing
a binary file format with your own
Extractor and it fails on a particu-
lar input halfway through the job
execution. In this case, ADLA again
does a lot of work for you. For the
parts of the query execution graph
that succeed, neither the code
image nor the intermediate data
is kept in the system. However, if
a vertex (an instance of a node in
the execution graph) fails with an
error in the user code portion, the
binary executable and the input
data are kept for a period of time
to allow debugging. This feature is
integrated with Visual Studio, as shown in Figure 2.

Clicking the debug button starts a copy of the binary, resource
and data files from the failed vertex to your local machine. Once
the copy is downloaded, a temporary project is created and loaded
in a new instance of Visual Studio. You now have the executable
version of the failed node and can do all the normal debugging you
might expect, such as running to the exception, putting breakpoints
in the C# code, and inspecting variables. Remember that the indi-
vidual vertices in the clusters used to run Big Data jobs are actually
commodity servers and are likely to be similar to your develop-
ment machine. Because you also have a local U-SQL runtime on
your machine, this capability becomes possible.

Once you have debugged the problem on your local machine,
you’ll update your source code separately. The project and code
shown in your debug instance are artifacts from a previously run
query and any changes you make are local. If you have a regis-
tered library of C# code, then you’ll have to rebuild and update
the library in ADLA. If you made changes to your U-SQL script or
codebehind files, then you must update your project.

Wrapping Up
Big Data platforms have been highly specialized systems that
required learning new concepts, models and technologies. Most
early adopters had to go under the hood to learn the inner workings

of these systems, first to set them up and then to be able to reason
about programming in those environments. While the field has
moved forward to the point that installing these platforms has
become simpler, a bigger shift is underway. The opportunity today
is to leapfrog to a Big Data service model in the cloud where the
system abstraction is at a higher level. While this makes the setup
of a Big Data environment trivial, an even more impactful outcome
is that the development model is immensely simplified.

The combination of Azure Data Lake and U-SQL simplifies
the execution model, programming paradigm, and tools used to
develop Big Data queries and applications. This has the dual effect
of enabling more developers to get started with Big Data, and for
developers to build more complex Big Data solutions more quickly.
ADL is supported by a large set of analytics services in Azure that
support workflow management, data movement, business intel-
ligence visualization and more. While U-SQL is the best place to
start for Big Data application development, look to these other
services as your needs grow. 	 n

Omid Afnan is a principal program manager in the Azure Big Data team working
on implementations of distributed computation systems and related developer
toolchains. He lives and works in China. Reach him at omafnan@microsoft.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Yifung Lin

Figure 2 Debugging a Failed Vertex Locally

1116msdnCon_AfnanUSQL_v3_68-72.indd 72 10/27/16 3:39 PM

mailto:omafnan@microsoft.com

Untitled-3 1Untitled-3 1 10/18/16 1:23 PM10/18/16 1:23 PM

http://tools.grapecity.com/?utm_source=msdnmagazine&utm_medium=print&utm_content=13th.cov.3_gcdevtools

Untitled-1 1 10/28/16 11:23 AM

www.syncfusion.com/MSDNunlimited

	Back
	Print
	MSDN Magazine, November 15, 2016, (Special Issue)
	Cover Tip
	Front
	Back

	Contents
	Connect(); Special Issue
	A Quick Look at Productivity Enhancements in Visual Studio 2017 RC
	Introducing Visual Studio for Mac
	What’s New in C# 7.0
	Increase App Engagement with Xamarin and the Universal Windows Platform
	Embedding Native Views in Your Xamarin.Forms Apps
	The (Interactive) Future of Technical Docs
	Rugged DevOps: Integrating Security into the Development and Release Pipeline
	Microsoft Graph: Gateway to Data and Intelligence
	Big Data Development Made Easy

