

Preparing SharePoint solutions for migration

to apps for SharePoint

This document is provided “as-is”. Information and views expressed in this document, including URL and other

Internet Web site references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product.

You may copy and use this document for your internal, reference purposes.

© 2013 Microsoft Corporation. All rights reserved.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 2

Preparing SharePoint solutions for migration

to apps for SharePoint

Microsoft Corporation

June 2013

Applies to: SharePoint 2010 | SharePoint 2013

Summary: Using information in this white paper, SharePoint developers can easily transform

new or existing SharePoint solutions into apps for SharePoint in SharePoint 2013. IT

professionals also can use this information to host, scale, and manage solutions and apps

more seamlessly.

Contents

Executive summary .. 3

Introduction .. 4

SharePoint 2010 development model .. 5

SharePoint 2013 development model .. 7

Developing extensions: Key considerations for SharePoint 2013 .. 9

Ensuring readiness: Approaches for migration from SharePoint solutions to apps for

SharePoint ... 10

Preparing the environment and infrastructure .. 11

List .. 13

Web ... 19

Site ... 21

Search ... 24

Social ... 30

Workflow .. 36

Content management .. 46

Conclusion ... 48

Additional resources ... 48

Preparing SharePoint solutions for migration to apps for SharePoint

Page 3

Executive summary
Microsoft SharePoint 2013 introduces the power, flexibility, and scalability of a multi-tier app

model. It includes new client and server APIs and easy integration into cloud computing

models from on-premises deployments. A broader range of developer skill sets now can be

used to develop SharePoint extensions, and new deployment options also are available.

Branching out from the solutions in SharePoint 2010, SharePoint 2013 has both apps and

classic solutions. Both are collectively called extensions in SharePoint 2013. Apps are units of

specific functionality that extend the capabilities of SharePoint to fulfill business or user

requirements; they are lightweight and easy to use. Classic solutions are the same as the

solutions (both farm and sandboxed) in earlier versions of SharePoint.

SharePoint 2013 has introduced many architectural changes to improve existing SharePoint

2010 features. Although these changes provide benefits for developers building extensions on

SharePoint 2013, they may pose challenges for developers looking to transform an existing

SharePoint 2010 solution into an app for SharePoint. Thus, to retain investments in code

written in SharePoint 2010, developers should build SharePoint 2010 solutions in a way that

allows them to be quickly and easily converted into apps in SharePoint 2013 when required.

Who should read this paper?

This white paper is intended for SharePoint developers who want to build SharePoint 2010

classic solutions in a way that allows them to be easily transformed and deployed as apps in

SharePoint 2013. The paper also can benefit IT professionals looking for simpler ways to host,

scale, and manage apps and solutions. Topics covered include:

 Understanding the SharePoint 2013 architecture and app model.

 Building extensions on SharePoint 2010 with scenarios and considerations for SharePoint

2013.

Why read this paper?

This paper provides guidance for building or updating solutions in SharePoint 2010 so that

they can be easily converted into apps for SharePoint. It also includes examples with sample

code for building extensions compatible with SharePoint 2013.

With SharePoint 2013, developers can transform SharePoint 2010 solutions (classic solutions)

into apps for SharePoint based on the new app model. This ability can help address certain

challenges with previous versions of SharePoint, such as:

 Instability of farm environment: The SharePoint farm environment risked becoming

unstable due to running custom code or custom operations.

 Scalability of solutions: To scale a solution in previous versions of SharePoint, developers

had to consider multiple factors related to the environment, including downtime, cost,

and high availability/disaster recovery (HADR) changes.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 4

SharePoint 2013 provides developers and IT professionals with new features and other

improvements to overcome these challenges. With enhancements such as the app model,

developers can build platform-independent code and use their existing skills and tools to

write code and apps without an in-depth knowledge of SharePoint 2013. The SharePoint 2013

app model provides multiple hosting options outside of the SharePoint environment, with the

code being executed on either the client side or another non-SharePoint server in the cloud.

In addition, IT professionals can easily scale apps without drastically affecting or expanding the

SharePoint environment. Finally, with the SharePoint 2013 app model, developers have

multiple options for integrating their apps, such as through services or by developing

customized solutions.

Introduction
Apps for SharePoint are self-contained pieces of functionality that extend the capabilities of a

SharePoint website. Apps are lightweight and easy to use, and they can be targeted to solve

specific user needs. Apps can include SharePoint components such as lists, workflows, and site

pages; they also can support the surfacing of remote web applications and remote data. You

can easily install and uninstall apps because they have fewer or no dependencies on other

software, apart from the platform on which they are deployed. In addition, it is easy to deliver

and share your apps through new delivery models in SharePoint 2013, such as the Office

Store and the app catalog. Apps in SharePoint 2013 have some distinct benefits over classic

solutions, including the ability to:

 Maximize flexibility when building future upgrades.

 Maximize the use of existing non-SharePoint development skill sets.

 Integrate cloud-based resources in smoother and more flexible ways.

 Use different authentication schemes for the apps than for the users who are running the

apps.

 Use cross-platform standards such as HTML, Representational State Transfer (REST),

JavaScript, and OAuth.

 Use the SharePoint cross-domain JavaScript library to access SharePoint data.

Application migration requires modifying the code base of an application so that the

functionalities provided by the APIs of the existing system are replicated in the new target

environment. Solutions built on SharePoint 2010 can be easily migrated to SharePoint 2013

without major changes in application code. Apps in SharePoint 2013 support client object

model (CSOM) and REST APIs, but not the SharePoint 2010 server object model. By

developing SharePoint 2010 solutions using CSOM and REST APIs, you can eliminate the

requirement of rewriting compatible code for running the solutions as apps for SharePoint.

There are two basic approaches to migrating applications from one platform to another:

 All-at-once: This approach, sometimes called the big bang approach, is where you rewrite

your entire application all at once to the new platform. This has the benefit of cost

Preparing SharePoint solutions for migration to apps for SharePoint

Page 5

savings, but introduces risk because it requires extensive regression testing to make sure

that no business requirements are lost in the migration effort. This is a good approach

when you have comprehensive knowledge of the requirements of the application and can

afford the risk of downtime if the deployment does not go as planned.

 Iterative: This approach migrates an application in multiple phases. Here you migrate the

application slowly by rewriting parts of it over time. This approach reduces the overall risk

of a catastrophic failure because it is simpler to test and manage the smaller pieces. In

preparing SharePoint solutions for migration to apps, this approach also facilitates loosely

coupling a SharePoint solution for risk-averse migration. The downside to this approach is

that it typically costs more because you write code and spend resources specifically for

the migration process. This approach is best for when an application is not

comprehensively known or cannot afford much downtime.

SharePoint 2010 development model
In SharePoint 2010, you can use a number of object models to access a server. Managed

client object models are based on server object models. Using the server object model in

SharePoint 2010, you can write programs to access SharePoint lists and document libraries,

site collections, sites, and other resources (Figure 1).

Figure 1. Overview of the SharePoint 2010 object model

Client object models

The client object models use the same or similar programming concepts as the server object

model in SharePoint 2010. The CSOMs can be accessed through .NET code, Microsoft

Silverlight code, or JavaScript. The new CSOMs share structural design traits, such as object

Preparing SharePoint solutions for migration to apps for SharePoint

Page 6

model hierarchy, object identity, data retrieval semantics, client context, infrastructural client

objects, collections, and exception handling.

The CSOMs are consistent with the Microsoft SharePoint Foundation server object model, so

if you are familiar with the server API, you can learn to use the client .NET-managed,

Silverlight, or JavaScript API. Although the CSOMs do not have one-to-one parity with the

server object model, they generally have parity with each other. So, when you learn one

subset of the client object model, you also have learned most of the other subsets. Whenever

possible, the new object models borrow asynchronous paradigms from the .NET

Framework—in particular, ADO.NET.

Silverlight client object model

SharePoint 2010 supports the implementation of the Silverlight client object model in two

contexts: within a Silverlight Web Part and within the Silverlight Cross-Domain Data Access

system (through which a Silverlight application interacts with SharePoint Foundation 2010

data). A third possibility—modifying client access cross-domain policy on the server—opens

security risks and is not supported in SharePoint Foundation 2010.

ECMAScript (JavaScript) client object model

The JavaScript client object model lets you work with objects without deploying the code on

the server (Figure 2). Being able to work with objects on the client side is useful when

deploying a sandboxed solution or working with the SharePoint Server ribbon. Due to the

nature of JavaScript, all code is executed asynchronously and relies on callback functions to

work with the objects inside SharePoint Foundation 2010. JavaScript can work only with

objects in the current context. That is, there is no ability to do cross-site scripting or access

objects outside of the current context.

Figure 2. JavaScript client object model mechanics

Preparing SharePoint solutions for migration to apps for SharePoint

Page 7

WCF Data Services

SharePoint 2010 introduces a new REST-based web service using Windows Communication

Foundation (WCF) Data Services. Using the WCF entry point, applications can reach across the

network to query and update items in a SharePoint list. Although the LINQ to SharePoint

provider introduces a new approach for writing the code to access SharePoint list data, it can

be used only by the code that actually runs on the front-end web server. When your code is

running from across the network (a desktop application, for example), you can achieve many

of the same benefits of the LINQ to SharePoint provider by using SharePoint 2010 support for

REST-based web services that access SharePoint list items.

SharePoint 2013 development model
SharePoint 2013 is a versatile development platform for building apps and solutions with

varying scopes to address diverse business and user needs. SharePoint 2013 introduces the

Cloud App Model for creating apps. Apps are self-contained pieces of functionality that

extend the capabilities of a SharePoint website. An app may include SharePoint components

such as lists, workflows, and site pages, but it also can surface remote web applications and

remote data in SharePoint.

An app has few or no dependencies on other software on the device or platform where it is

installed, other than what is built into the platform. This characteristic enables apps to be

installed simply and uninstalled cleanly. Apps have no custom code that runs on the

SharePoint servers. Instead, all custom logic moves “up” to the cloud or “down” to the client

computers. In other words, apps for SharePoint are platform independent and can be stored

and executed from any other non-SharePoint location in the cloud or any other server.

In addition, SharePoint 2013 introduces an innovative delivery model for apps for SharePoint

that includes components like the SharePoint Store and the app catalog.

Cloud App Model

The Cloud App Model in SharePoint 2013 supports a tiered architecture in which the business

logic, data, and user interface (UI) of the app can be distributed into separate components.

You can take advantage of tools that are designed specifically for the development of a

particular tier instead of using general-purpose tools. For example, you can have an app

whose presentation logic is in HTML and JavaScript running on a client whose business logic is

in Microsoft .NET running in Windows Azure and whose data is stored in a Windows Azure

SQL Database. Or you can have an app that is written in PHP, has its data stored in a

SharePoint list, and runs on a remote host accessing list data. There are many other options in

this flexible model.

You can connect an app with almost any internal or public web service, take advantage of the

new OAuth 2.0 support in SharePoint, and use the REST and client APIs (JavaScript and .NET)

Preparing SharePoint solutions for migration to apps for SharePoint

Page 8

to integrate and connect the app with SharePoint. SharePoint 2013 also provides a wide

variety of features—such as search, workflow, social networking, taxonomy, user profiles, and

Business Connectivity Services (BCS)—to make the apps even more robust.

Enhancements in SharePoint 2013

SharePoint 2013 supports a new cloud-based architecture and app-driven development

framework. From lower-level SharePoint APIs to connectivity to social media integration,

SharePoint 2013 is designed and executed to support a rich application development

experience (Figure 3). In addition to the use of REST endpoints for web services, there is a

broad API for both server and client development. Remote event receivers are now

supported, in addition to client-side rendering.

Figure 3. Robust application development in SharePoint 2013

REST service

SharePoint 2013 introduces a Representational State Transfer service that is similar to the way

SharePoint client object models work with the SharePoint server. You can interact remotely

with SharePoint data by using any technology that supports HTTP web requests. This means

that you can perform Create, Read, Update, and Delete (CRUD) operations from your apps,

solutions, and client applications using standard REST web technologies.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 9

SharePoint 2013 client object model

Custom logic in apps for SharePoint is always distributed “down” to the client or “up” to the

cloud (or “over” to a server outside the SharePoint farm). In all of these distribution models,

one of the CSOMs or REST/OData endpoints must be used. SharePoint 2013 has three

CSOMs for managed code: .NET, Silverlight, and mobile. The SharePoint CSOMs enable a

client application to make batch requests to a front-end web server running SharePoint

products and technologies to perform operations on the core platform.

Client-side rendering

Client-side rendering provides a mechanism that you can use to produce your own output for

a set of controls hosted on a SharePoint page. This mechanism lets you use well-known

technologies, such as HTML and JavaScript, to define the rendering logic of custom field

types. In client-side rendering, you can specify your own JavaScript resources and host them

in the data storage options available to the farm solution, such as the _layouts folder or

document library.

Compatibility modes

To minimize the impact on users of upgrading to a new version of the software, SharePoint

2013 supports new site collection provisioning modes. This means users can choose which

version of SharePoint a site collection should be provisioned in when it is created.

Developing extensions: Key considerations for

SharePoint 2013
Whether using full-trust or sandboxed solutions, you should consider the following guidance

when designing SharePoint 2010 extensions that will migrate more readily to apps for

SharePoint:

 Think of SharePoint as a service provider as opposed to using the SharePoint runtime

directly.

 The client object models are extended in SharePoint 2013. CSOMs now support search,

taxonomy, and workflow. Therefore, you have to make minor changes to the CSOM code

when transforming extensions to SharePoint 2013.

Note: The scope of this paper is to show migration options from SharePoint 2010 solutions

to apps for SharePoint 2013.

For more information on migrating your SharePoint 2010 environment to SharePoint 2013,

download the IT Professional Reviewer's Guide (http://download.microsoft.com/

download/0/9/D/09D05E53-08B6-44CE-B658-DCA670D5E2BB/

SharePoint%20Server%202013%20Preview%20IT%20Pro%20Reviewer%27s%20Guide.pdf).

http://download.microsoft.com/download/0/9/D/09D05E53-08B6-44CE-B658-DCA670D5E2BB/SharePoint%20Server%202013%20Preview%20IT%20Pro%20Reviewer%27s%20Guide.pdf

Preparing SharePoint solutions for migration to apps for SharePoint

Page 10

 You may have to add code for authentication because additional authentication and

authorization mechanisms are supported in SharePoint 2013.

 Separate out the dependencies in your SharePoint solution and abstract them as REST

services. (For example, rather than consuming the list APIs directly for general storage, use

a REST service that abstracts the data source to provide flexibility in choosing local or

cloud-based storage solutions in the future.)

 Change the application security model to be loosely coupled from the SharePoint security

model.

Ensuring readiness: Approaches for migration from

SharePoint solutions to apps for SharePoint
SharePoint provides multiple ways to develop applications for the SharePoint platform. One of

the most significant additions, specifically to SharePoint 2010, was enhanced client-side

functionality. SharePoint 2013 builds on these models for application development, which can

facilitate a smoother transition from solutions to apps.

Client object models: CSOMs provide client-side applications with access to a subset of the

SharePoint server object model, including core objects such as site collections, sites, lists, and

list items. You can design client applications to access SharePoint content without installing

code on the server. The CSOMs consist of multiple APIs, including the ECMAScript

(JavaScript), .NET-managed, and Silverlight client object models.

 The ECMAScript and Silverlight client object models provide a smaller subset of

functionality. The focus is to enhance the user experience, as these object models

minimize the time it takes Silverlight applications or JavaScript functions running in a

webpage to load the files required for operation.

 The .NET-managed client object model provides a larger subset of functionality for stand-

alone client applications.

SharePoint 2010 CSOM code can run as-is on apps in SharePoint 2013. However, if you are

using authentication mechanisms (claims-based, SAML, or forms-based) in a SharePoint 2010

classic solution, you may need to add code in your migrated app to suit the SharePoint 2013

authentication mechanisms.

Custom REST WCF Service: Using this approach, you can create a REST URI scheme on

SharePoint 2010 that is similar to the one available on SharePoint 2013 (Figure 4). This

generalizes the code to call SharePoint services and helps to save effort while transforming

your SharePoint solution to an app for SharePoint.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 11

Figure 4. Creating a custom REST URI scheme on SharePoint 2010

To create a REST URI scheme:

1. Create a web application using a preferred web technology, such as ASP.NET or PHP.

2. Create a service and host it within Microsoft SharePoint Server. (The service contains the

server-side code that communicates with SharePoint. It has REST endpoints that can be

consumed by any application.)

3. Use the URL scheme http://[DOMAIN]/_api/SERVICENAME for the REST endpoints. (This

makes converting to SharePoint 2013 easier because its REST service uses a similar URL

scheme.)

The rest of this guidance discusses using custom WCF REST endpoints and CSOM for

refactoring your SharePoint solution to be as loosely coupled as possible. This will allow you

to more seamlessly migrate your SharePoint solution to an app for SharePoint at a later time.

The guidance is offered through a series of common scenarios for key workloads. The

scenarios include sample code for building extensions compatible with SharePoint 2013. The

workloads discussed are List, Web, Site, Search, Social, Workflow, and Content Management.

Preparing the environment and infrastructure
To help ensure a more seamless refactoring of your SharePoint solution, the environment and

infrastructure must be properly set up. This section provides guidance for setting up the

custom REST API web application environment as well as the CSOM environment.

To use the custom REST API and set up the web application environment

1. Create a web application using a preferred web technology, such as ASP.NET.

2. Create a WCF service and host it within SharePoint Server. (The service contains the

server-side code that communicates with SharePoint. It has REST endpoints that can be

consumed by any application.)

Preparing SharePoint solutions for migration to apps for SharePoint

Page 12

3. Add the Operation Contracts for WCF Service:

o Create an interface and decorate it with the ServiceContract attribute.

o Decorate methods in the interface with the OperationContract attribute. For example:

[ServiceContract()]

public interface <InterfaceName>

{

 [OperationContract]

 [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Wrapped,

RequestFormat = WebMessageFormat.Json, ResponseFormat =

WebMessageFormat.Json, UriTemplate = "/_api/web/lists/<functionname>")]

 Returntype FunctionName(Parameters);

}

4. Add the Data Contract for WCF Service:

o Create a class and apply the DataContract attribute to it.

o Define the members (properties, fields, or events), and apply the DataMember

(http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.datamemberattribute.aspx) attribute to each of

them. For example:

[DataContract]

 public class <ClassName>

 {

 [DataMember(Name = "Title")]

 Public string Title;

}

5. Use the URL scheme http://[DOMAIN]/_api/SERVICENAME for the REST endpoints. (This

makes converting to SharePoint 2013 easier because its REST service uses a similar URL

scheme.)

6. Use the System.ServiceModel.Activation.WebServiceHostFactory in the .svc file.

To set up the CSOM for a .NET Web application

1. Create a new web project in Microsoft Visual Studio.

2. Add the following DLLs for CSOM for .NET in the application:

o Microsoft.SharePoint.Client.Runtime.dll

Note: For more details on creating the REST API using WCF, see the WCF REST

Programming Model Overview (http://msdn.microsoft.com/en-

us/library/bb412172(v=vs.90).aspx).

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute.aspx
http://msdn.microsoft.com/en-us/library/system.runtime.serialization.datamemberattribute.aspx
http://msdn.microsoft.com/en-us/library/bb412172(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/bb412172(v=vs.90).aspx

Preparing SharePoint solutions for migration to apps for SharePoint

Page 13

o Microsoft.SharePoint.Client.dll

Note: These DLLs are located in <SharePoint installation drive>:\Program

Files\Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI.

To set up the JavaScript CSOM for a .NET Web application

1. To use the JavaScript CSOM, create a new web project in your development environment.

2. Add an entry like this in the Web Part ASCX control:

<SharePoint:ScriptLink Name="SP.js" runat="server" OnDemand="true"

Localizable="false" />

3. To ensure the JavaScript code runs after sp.js finishes loading, add the following code:

ExecuteOrDelayUntilScriptLoaded([YourJavaScriptFunctionName], "sp.js");

List
Scenario: Create a webpage that displays the list of active tickets in a help desk application.

Using the custom REST API

This section discusses how to perform CRUD operations on a SharePoint list using a REST-

based WCF service. The service methods have the server object model code to access

SharePoint APIs. The URLs for hosting the WCF service on SharePoint are structured similarly

to the calls for the SharePoint 2013 REST API (http://<site url>/_api/web/lists). This helps to

ensure a smooth migration to SharePoint 2013.

In this scenario, IT personnel use the help desk application to get a list of all active service

requests that need to be addressed and to add new service requests.

Task 1 – Create and implement the interface in the WCF REST service

Create the Operation Contracts and Data Contract for CRUD operations on the SharePoint list

in the WCF REST service interface class (IContosoService.cs), as discussed in the Using the

custom REST API and setting up the web application environment section.

Note: For more information about implementing the managed client object model, see

Implementing the Client-Side Object Model (http://msdn.microsoft.com/en-

IN/library/ff521585(v=office.14).aspx).

For more information about using JavaScript to interact with SharePoint, see How to: Enable

ECMA Client Object Model IntelliSense in Visual Studio 2010.

(http://msdn.microsoft.com/en-us/library/ff798328.aspx).

http://msdn.microsoft.com/en-IN/library/ff521585(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/ff798328.aspx
http://msdn.microsoft.com/en-us/library/ff798328.aspx

Preparing SharePoint solutions for migration to apps for SharePoint

Page 14

1. Consider the following Operation Contracts in the Service Contract:

[OperationContract]

[WebGet(UriTemplate = "/_api/web/lists/getbytitle('{listName}')/items",

 RequestFormat = WebMessageFormat.Json,

 ResponseFormat = WebMessageFormat.Json)]

 ListResponseWrapper GetByTitle(string listName);

[OperationContract]

[WebInvoke(Method = "POST", UriTemplate = "/_api/web/lists/getbytitle('{ListName}')/ad

ditem",

 ResponseFormat = WebMessageFormat.Json,

 RequestFormat = WebMessageFormat.Json,

 BodyStyle = WebMessageBodyStyle.WrappedRequest

)]

 string AddListItem(string ListName, string Title, string Description);

2. Add the following Data Contracts in the interface:

[DataContract]

 public class ListResponseWrapper

 {

 [DataMember]

 public ListResponse d;

 }

 [DataContract]

 public class ListResponse

 {

 [DataMember]

 public List<ListResult> results;

 }

 [DataContract]

 public class ListResponseMetaData

 {

 [DataMember]

 public int id { get; set; }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 15

 [DataMember]

 public string type { get; set; }

 [DataMember]

 public Uri uri { get; set; }

 }

 [DataContract]

 public class ListResult

 {

 [DataMember(Name = "__metadata", Order = 1)]

 public ListResponseMetaData metadata;

 [DataMember(Order = 2)]

 public string Title;

 [DataMember(Order = 3)]

 public DateTime created;

 [DataMember(Order = 4)]

 public string Description;

 }

Task 2 – Create the service methods

 Implement the interface in the ContosoService.cs file, and add the methods to perform

the following operations:

o Get active tickets from HelpDeskList

o Add a Ticket

public ListResponseWrapper GetByTitle(string listName)

 {

 var listResults = new List<ListResult>();

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (SPSite site = new SPSite(sharepointSiteUrl))

 {

 SPWeb web = site.OpenWeb();

 web.AllowUnsafeUpdates = true;

 SPList listByTitle = web.Lists[listName];

Preparing SharePoint solutions for migration to apps for SharePoint

Page 16

 foreach (SPListItem item in listByTitle.Items)

 {

 listResults.Add(new ListResult

 {

 metadata = new ListResponseMetaData()

 {

 id = item.ID,

 type = item.GetType().FullName

 },

 Title = item.Title,

 created = DateTime.Parse(item["Created"].ToString()),

 Description = item["Description"].ToString()

 });

 }

 web.AllowUnsafeUpdates = false;

 }

 });

 var response = new ListResponseWrapper()

 {

 d = new ListResponse()

 {

 results = listResults

 }

 };

 return response;

 }

 public string AddListItem(string ListName, string Title, string Description)

 {

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (SPSite site = new SPSite(sharepointSiteUrl))

 {

 using (SPWeb web = site.OpenWeb())

 {

 SPList ticketList = web.Lists.TryGetList(ListName);

 web.AllowUnsafeUpdates = true;

 if (ticketList != null)

 {

 SPListItem ticket = ticketList.Items.Add();

 ticket["Title"] = Title;

 ticket["Description"] = Description;

 ticket.Update();

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 17

 web.AllowUnsafeUpdates = false;

 }

 }

 });

 return "Success Message";

 }

Task 3 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, add the

following generic Get Response method. This calls the WCF service APIs.

private string GetResponse(string requestUrl, string requestMethod, string requestBod

y = "")

 {

 WebRequest request = HttpWebRequest.Create(requestUrl);

 request.Method = requestMethod;

 Stream dataStream = null;

 if (!string.IsNullOrEmpty(requestBody))

 {

 byte[] byteArray = Encoding.UTF8.GetBytes(requestBody);

 request.ContentType = "application/json";

 request.ContentLength = byteArray.Length;

 dataStream = request.GetRequestStream();

 dataStream.Write(byteArray, 0, byteArray.Length);

 dataStream.Close();

 }

 string responseFromServer = string.Empty;

 using (WebResponse response = request.GetResponse())

 {

 dataStream = response.GetResponseStream();

 var reader = new StreamReader(dataStream);

 responseFromServer = reader.ReadToEnd();

 reader.Close();

 dataStream.Close();

 }

 return responseFromServer;

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 18

2. Consider these sample snippets to Get Active Tickets and Add a new Ticket:

protected void btnGetAllTickets_Click(object sender, EventArgs e)

 {

 string listName = "TicketsListName";

 string requestUrl = baseUrl + string.Format("web/lists/getbytitle('{0}')/items", listN

ame);

 var response = GetResponse(requestUrl, "GET");

 if (!string.IsNullOrEmpty(response))

 {

 var serializer = new JavaScriptSerializer();

 var listResponse = serializer.Deserialize<ListResponseWrapper>(response);

 var listResults = listResponse.d.results;

 }

 }

 protected void btnAddNewTicket_Click(object sender, EventArgs e)

 {

 string listName = "TicketsListName";

 string requestUrl = baseUrl + string.Format("web/lists/getbytitle('{0}')/additem", li

stName);

 var serializer = new JavaScriptSerializer();

 var requestBody = serializer.Serialize(new

 {

 Title = txtTicketTitle.Text,

 Description = txtTicketDescription.Text

 });

 var response = GetResponse(requestUrl, "POST", requestBody);

 }

Using the client object model

This section discusses how to perform CRUD operations on a SharePoint list using CSOM.

First, the DLL for the CSOM is added, as discussed in the Setting up the CSOM environment

section. The following is the sample code.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 19

public string GetAllActiveItems(string siteUrl, string listTitle)

 {

 string data = string.Empty;

 ClientContext context = new ClientContext(siteUrl);

 Web web = context.Web;

 List listByTitle = context.Web.Lists.GetByTitle(listTitle);

 CamlQuery camlQuery = new CamlQuery();

 camlQuery.ViewXml = @”<View><Query><Where><Eq><FieldRef

Name=’IsActive’/><Value Type=’Text’>True</Value></Eq></Where></Query></View>”;

 ListItemCollection items = listByTitle.GetItems(camlQuery);

 context.Load(items);

 context.ExecuteQuery();

 for (int count = 0; count < items.Count; count++)

 {

 ListItem item = items[count];

 data += (item[“Title”].ToString()) + “ : “ +

 (item[“Description”].ToString()) + “ : “ +

 (item[“IsActive”].ToString()) + “
”;

 }

 return data;

 }

Note: This is not the complete CSOM code. Rather, it is a brief snippet to provide you with an

approach for writing the code.

Web
Scenario: Change the welcome page of the help desk application to enable a customized

landing page experience for multiple websites in your organization.

Using the custom REST API

This section discusses how to perform web-related operations for changing the welcome

page of a SharePoint website by using a REST-based WCF service. The service methods have

the server object model code to access SharePoint APIs. The URLs for hosting the WCF

service on SharePoint are structured similarly to the calls for the SharePoint 2013 REST API

(http://<site url>/_api/../). This helps to ensure a smooth migration to SharePoint 2013.

In this scenario, IT personnel create a custom welcome page for the help desk application and

apply it to the help desk site, giving it a new look.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 20

Task 1 – Create and implement the interface in the WCF REST service

Create the Operation Contracts to change the welcome page of the site in the WCF REST

service interface class (IContosoService.cs), as discussed in the Using the custom REST API and

setting up the web application environment section.

 Consider the following Operation Contracts in the Service Contract:

 [OperationContract]

 [WebInvoke(Method = "POST", UriTemplate = "/_api/web/RootFolder/Update",

 ResponseFormat = WebMessageFormat.Json,

 RequestFormat = WebMessageFormat.Json,

 BodyStyle = WebMessageBodyStyle.WrappedRequest

)]

 string ChangeWelcomePage(string SiteName, string PageUrl);

Task 2 – Create the service methods

1. Implement the interface in the ContosoService.cs file, and add the following code to it:

public string ChangeWelcomePage(string SiteName, string PageUrl)

 {

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (SPSite site = new SPSite(sharepointSiteUrl))

 {

 SPWeb web = site.OpenWeb(SiteName);

 web.AllowUnsafeUpdates = true;

 SPFolder folder = web.RootFolder;

 folder.WelcomePage = PageUrl;

 folder.Update();

 web.Update();

 web.AllowUnsafeUpdates = false;

 }

 });

 return "Success Message";

 }

2. Deploy the project.

Task 3 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, create the Get

Response method, as shown earlier. This calls the WCF service APIs.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 21

2. Use the following code snippet to call the WCF REST service to change the welcome

page:

 string requestUrl = baseUrl + "web/RootFolder/Update";

 var serializer = new JavaScriptSerializer();

 var requestBody = serializer.Serialize(new

 {

 SiteName = "HelpDeskSiteName",

 PageUrl = "SitePages/NewHomePageName.aspx"

 });

 var response = GetResponse(requestUrl, "POST", requestBody);

Using the client object model

This section discusses how to change the welcome page of a SharePoint site using CSOM.

First, the DLL for the CSOM is added, as discussed in the Setting up the CSOM environment

section. The following is the sample code.

public string ChangeWelcomePage(string siteUrl, string pagepath)

 {

 ClientContext context = new ClientContext(siteUrl);

 var web = context.Web;

 Folder spfolder = web.RootFolder;

 spfolder.WelcomePage = pagepath;

 spfolder.Update();

 web.Update();

 context.ExecuteQuery();

 return "Successful";

 }

Site
Scenario: Easily change permissions for the help desk site to automate adding a new

employee.

Using the custom REST API

This section discusses how to perform site-related operations on a SharePoint site using a

REST-based WCF service. The service methods have the server object model code to access

SharePoint APIs. The URLs for hosting the WCF service on SharePoint are structured similarly

Preparing SharePoint solutions for migration to apps for SharePoint

Page 22

to the calls for the SharePoint 2013 REST API (http://<site url>/_api/../). This helps to ensure a

smooth migration to SharePoint 2013.

In this scenario, the administrator of the help desk application assigns permissions to users,

depending on their privileges on the site.

Task 1 – Create and implement the interface in the WCF REST service

Create the Operation Contracts to designate a permission level and assign it in the WCF REST

service interface class (IContosoService.cs), as discussed in the Using the custom REST API and

setting up the web application environment section.

 Consider the following Operation Contracts in the Service Contract:

 [OperationContract]

 [WebInvoke(Method = "POST", UriTemplate = "/_api/web/RoleAssignments/add",

 ResponseFormat = WebMessageFormat.Json,

 RequestFormat = WebMessageFormat.Json,

 BodyStyle = WebMessageBodyStyle.WrappedRequest

)]

 string AssignPermissions(string UserName, string SiteName, string

PermissionLevelName);

Task 2 – Create the service methods

 Implement the interface in the ContosoService.cs file, and add the following code to it:

public string AssignPermissions(string UserName, string SiteName, string PermissionLeve

lName)

 {

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (SPSite siteCollection = new SPSite(sharepointSiteUrl))

 {

 using (SPWeb web = siteCollection.OpenWeb(SiteName))

 {

 web.AllowUnsafeUpdates = true;

 SPUserCollection SpUsers = web.SiteUsers;

 SPUser sPUser = SpUsers[UserName];

 SPRoleAssignment SpRoleAss = new SPRoleAssignment((SPPrincipal)sPU

ser);

 web.BreakRoleInheritance(true);

 SpRoleAss.RoleDefinitionBindings.Add(web.RoleDefinitions[PermissionLev

Preparing SharePoint solutions for migration to apps for SharePoint

Page 23

elName]);

 web.RoleAssignments.Add(SpRoleAss);

 web.AllowUnsafeUpdates = false;

 }

 }

 });

 return "Success Message";

 }

Task 3 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, create the Get

Response method, as shown earlier. This calls the WCF service APIs.

2. Consider the following code snippets that use the WCF REST services:

 string requestUrl = baseUrl + "web/RoleAssignments/add";

 var serializer = new JavaScriptSerializer();

 var requestBody = serializer.Serialize(new

 {

 UserName = txtUserName.Text,

 SiteName = "HelpDeskSiteName",

 PermissionLevelName = txtPermissionLevelName.Text

 });

 var response = GetResponse(requestUrl, "POST", requestBody);

Using the client object model

This section discusses how to assign rights to site users using CSOM. First, the DLL for the

CSOM is added, as discussed in the Setting up the CSOM environment section. The following

is the sample code.

 public string CreatePermissionLevel(string siteUrl, string permissionlevelName)

 {

 ClientContext clientContext = new ClientContext(siteUrl);

 Site site = clientContext.Site;

 Web web = clientContext.Web;

 BasePermissions permissions = new BasePermissions();

 permissions.Set(PermissionKind.ApplyStyleSheets);

 permissions.Set(PermissionKind.ManageLists);

Preparing SharePoint solutions for migration to apps for SharePoint

Page 24

 // Create a new role definition.

 RoleDefinitionCreationInformation roleDefinitionCreationInformation = new

RoleDefinitionCreationInformation();

 roleDefinitionCreationInformation.Name = permissionlevelName;

 roleDefinitionCreationInformation.Description = "This Permission level has custom

set of rights defined within it"; ;

 roleDefinitionCreationInformation.BasePermissions = permissions;

 RoleDefinition roleDefinition =

site.RootWeb.RoleDefinitions.Add(roleDefinitionCreationInformation);

 RoleDefinitionBindingCollection roleDefinitionBindingCollection =

 new RoleDefinitionBindingCollection(clientContext);

 roleDefinitionBindingCollection.Add(roleDefinition);

 clientContext.ExecuteQuery();

 return "Successful";

 }

Note: This is not the complete CSOM code. Rather, it is a brief snippet to provide you with an

approach for writing the code.

Search
Scenario: Create a Web Part that searches help desk supporting documents for a specific set

of properties.

Using the custom REST API

This section discusses how to perform search-related operations on a SharePoint site using a

REST-based WCF service. Specifically, it covers how to create a custom search scope and

search help desk-related documents by entering a keyword. The service methods have the

server object model code to access SharePoint APIs. The URLs for hosting the WCF service on

SharePoint are structured similarly to the calls for the SharePoint 2013 REST API (http://<site

url>/_api/../). This helps to ensure a smooth migration to SharePoint 2013.

In this scenario, users of the help desk application can search for all help desk-related

documents, and in the search results, they can retrieve only the necessary properties related

to the documents, such as Title, Path, and Hit Highlighted Summary.

Task 1 – Create and implement the interface in the WCF REST service

Create the Operation Contracts and Data Contracts to search documents related to the help

desk in the WCF REST service interface class (IContosoService.cs), as discussed in the Using

the custom REST API and setting up the web application environment section.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 25

1. Consider the following Operation Contracts in the Service Contract:

[OperationContract]

[WebGet(UriTemplate = "/_api/search/query/querytext/'{SearchText}'",

 RequestFormat = WebMessageFormat.Json,

 ResponseFormat = WebMessageFormat.Json)]

 SearchResponseWrapper Search(string SearchText);

2. Add the following DataContracts in the interface:

[DataContract]

 public class SearchResponseWrapper

 {

 [DataMember]

 public SearchResponse d;

 }

 [DataContract]

 public class SearchResponse

 {

 [DataMember]

 public SearchResult query;

 }

 [DataContract]

 public class SearchResponseMetaData

 {

 [DataMember]

 public string type { get; set; }

 }

 [DataContract]

 public class SearchPrimaryQueryResult

 {

 [DataMember]

 public SearchRelevantResults RelevantResults { get; set; }

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 26

 [DataContract]

 public class SearchRelevantResults

 {

 [DataMember]

 public SearchTable Table { get; set; }

 }

 [DataContract]

 public class SearchTable

 {

 [DataMember]

 public SearchTableRows Rows { get; set; }

 }

 [DataContract]

 public class SearchTableRows

 {

 [DataMember]

 public List<SearchTableRowsResult> results { get; set; }

 }

 [DataContract]

 public class SearchTableRowsResult

 {

 [DataMember]

 public string Value { get; set; }

 }

 [DataContract]

 public class SearchResult

 {

 [DataMember(Name = "__metadata", Order = 1)]

 public SearchResponseMetaData metadata;

 [DataMember(Order = 2)]

 public SearchPrimaryQueryResult PrimaryQueryResult;

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 27

Task 2 – Create the service methods

Note: You need to add references to the following DLLs from

ProgramFiles/CommonFiles/Microsoft Shared/WebServerExtensions/14/ISAPI):

 Microsoft.Office.Server.dll

 Microsoft.Office.Server.Search.dll

 Implement the interface in the ContosoService.cs file and add the following code to it:

public SearchResponseWrapper Search(string searchText)

 {

 var searchRows = new List<SearchTableRowsResult>();

 using (SPSite site = new SPSite(sharepointSiteUrl))

 {

 SPWeb web = site.OpenWeb();

 web.AllowUnsafeUpdates = true;

 SearchServiceApplicationProxy SSAProxy = (SearchServiceApplicationProxy)Se

archServiceApplicationProxy.

 GetProxy(SPServiceContext.GetContext(new SPSite(sharepointSiteUrl)));

 KeywordQuery keywordQuery = new KeywordQuery(SSAProxy);

 keywordQuery.ResultsProvider = Microsoft.Office.Server.Search.Query.SearchP

rovider.SharepointSearch;

 keywordQuery.QueryText = searchText + " +isDocument:1";

 keywordQuery.HiddenConstraints = "site:\"" + sharepointSiteUrl + "\"";

 keywordQuery.KeywordInclusion = KeywordInclusion.AllKeywords;

 keywordQuery.ResultTypes |= ResultType.RelevantResults;

 keywordQuery.SelectProperties.Add("Title");

 keywordQuery.SelectProperties.Add("Path");

 keywordQuery.SelectProperties.Add("HitHighlightedSummary");

 ResultTableCollection searchResults = keywordQuery.Execute();

 if (searchResults.Exists(ResultType.RelevantResults))

 {

 ResultTable searchResultTable = searchResults[ResultType.RelevantResults];

 DataTable result = new DataTable();

 result.TableName = "SearchResults";

 result.Load(searchResultTable, LoadOption.OverwriteChanges);

 foreach (DataRow resultRow in result.Rows)

 {

 SearchTableRowsResult searchResultValue = new SearchTableRowsResult

Preparing SharePoint solutions for migration to apps for SharePoint

Page 28

()

 {

 Value = resultRow.ItemArray[0].ToString(),

 };

 searchRows.Add(searchResultValue);

 }

 }

 web.AllowUnsafeUpdates = false;

 }

 var response = new SearchResponseWrapper()

 {

 d = new SearchResponse()

 {

 query = new SearchResult()

 {

 metadata = new SearchResponseMetaData() { },

 PrimaryQueryResult = new SearchPrimaryQueryResult()

 {

 RelevantResults = new SearchRelevantResults()

 {

 Table = new SearchTable()

 {

 Rows = new SearchTableRows()

 {

 results = searchRows

 }

 }

 }

 }

 }

 }

 };

 return response;

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 29

Task 3 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, create the Get

Response method, as shown earlier. This calls the WCF service APIs.

2. Consider the following code snippets that use the WCF REST services:

 string searchText = txtSearch.Text;

 string requestUrl = baseUrl + string.Format("search/query/querytext/'{0}'", search

Text);

 var response = GetResponse(requestUrl, "GET");

 if (!string.IsNullOrEmpty(response))

 {

 var serializer = new JavaScriptSerializer();

 var searchResults = serializer.Deserialize<SearchResponseWrapper>(response

);

 var results = searchResults.d.query.PrimaryQueryResult.RelevantResults.Table.R

ows.results;

 }

Using the Search service in JavaScript

In this scenario, users can search using keywords in JavaScript. SharePoint 2010 provides the

Search.asmx service to perform this operation. The following is the sample code.

function Search() {

 var soapxml = CreateEnvelopeForSearchQuery([keyword]);

 $.ajax({

 url: “http://[Your Server Name]/_vti_bin/search.asmx”,

 type: “POST”,

 dataType: “xml”,

 data: soapxml,

 complete: processResult,

 contentType: “text/xml; charset=\”utf-8\””

 });

 function CreateEnvelopeForSearchQuery(query)

 {

 var queryXML = “<QueryPacket

xmlns=’urn:Microsoft.Search.Query’><Query><Context> <QueryText language=’en-US’

type=’STRING’>” + query + “</QueryText></Context></Query></QueryPacket>”;

 var soapXml = “<soap:Envelope xmlns:xsi=’http://www.w3.org/2001/XMLSchema-

Preparing SharePoint solutions for migration to apps for SharePoint

Page 30

instance’ xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope/’> \

<soap:Body> \

<Query xmlns=’urn:Microsoft.Search’> \

<queryXml>” + escapeHTML(queryXML) + “</queryXml> \

</Query> \

</soap:Body> \

</soap:Envelope>”;

 return soapXml;

 };

 function escapeHTML(str) {

 return str.replace(/&/g, ‘&’).replace(/</g, ‘<’).replace(/>/g, ‘>’);

 }

 function processResult(xData, status) {

 // Process your result here.

 }

};

Note: This is not the complete JavaScript code. Rather, it is a brief snippet to provide you with

an approach for writing the code.

Social
Scenario: Integrate a newsfeed into the help desk site.

In this scenario, users of the help desk application can view their MySite activities or events

directly in the web application.

Using the custom REST API

This section discusses how to perform operations related to social feeds on a SharePoint site

using a REST-based WCF service. The service methods have the server object model code to

access SharePoint APIs. The URLs for hosting the WCF service on SharePoint are structured

similarly to the calls for the SharePoint 2013 REST API (http://<site url>/_api/../). This helps to

ensure a smooth migration to SharePoint 2013.

Note: While this JavaScript code may work in SharePoint 2013, it is recommended that you

use the REST API approach for Search in SharePoint 2013 (http://msdn.microsoft.com/en-

us/library/jj163876.aspx).

Preparing SharePoint solutions for migration to apps for SharePoint

Page 31

Task 1 – Create and implement the interface in the WCF REST service

Create the Operation Contracts to view activity feeds from MySite in the WCF REST service

interface class (IContosoService.cs), as discussed in the Using the custom REST API and setting

up the web application environment section.

1. Consider the following Operation Contracts in the Service Contract:

[OperationContract]

[WebInvoke(Method = "POST",

 UriTemplate = "/_api/socialfeed/my/feed",

 RequestFormat = WebMessageFormat.Json,

 ResponseFormat = WebMessageFormat.Json,

 BodyStyle = WebMessageBodyStyle.WrappedRequest)]

 SocialFeedResponseWrapper GetMyActivities(string UserName);

2. Add the following DataContracts in the interface:

[DataContract]

 public class SocialFeedResponseWrapper

 {

 [DataMember]

 public SocialResponse d;

 }

 [DataContract]

 public class SocialResponse

 {

 [DataMember(Name = "__metadata", Order = 1)]

 public SocialResponseMetaData metadata;

 [DataMember]

 public SocialResult SocialFeed;

 }

 [DataContract]

 public class SocialResponseMetaData

 {

 [DataMember]

Preparing SharePoint solutions for migration to apps for SharePoint

Page 32

 public int id { get; set; }

 [DataMember]

 public string type { get; set; }

 [DataMember]

 public Uri uri { get; set; }

 }

 [DataContract]

 public class SocialResult

 {

 [DataMember]

 public List<SocialThread> Threads;

 }

 [DataContract]

 public class SocialThread

 {

 [DataMember]

 public SocialThreadActor Actors { get; set; }

 public SocialThreadRootPost RootPost { get; set; }

 }

 [DataContract]

 public class SocialThreadActor

 {

 [DataMember]

 public List<SocialThreadActorResult> results { get; set; }

 }

 [DataContract]

 public class SocialThreadActorResult

 {

 [DataMember]

Preparing SharePoint solutions for migration to apps for SharePoint

Page 33

 public string Name { get; set; }

 }

 [DataContract]

 public class SocialThreadRootPost

 {

 [DataMember]

 public string Text { get; set; }

 }

Task 2 – Create the service methods

Note: You need to add a reference to the following DLL from ProgramFiles/CommonFiles/

Microsoft Shared/WebServerExtensions/14/ISAPI): Microsoft.Office.Server.UserProfiles.dll.

 Implement the interface in the ContosoService.cs file and add the following code to it.

 public SocialFeedResponseWrapper GetMyActivities(string CurrentUserName)

 {

 var socialThreads = new List<SocialThread>();

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (var sitecollection = new SPSite(sharepointSiteUrl))

 {

 var currentcontext = SPServiceContext.GetContext(sitecollection);

 var userprofmanager = new UserProfileManager(currentcontext);

 var currentuser = userprofmanager.GetUserProfile(CurrentUserName);

 ActivityManager activitymanager = new ActivityManager(currentuser, curre

ntcontext);

 ActivityEventsCollection eventscollection = activitymanager.GetActivitiesByM

e();

 foreach (ActivityEvent activity in eventscollection)

 {

 if (activity.LinksList != null)

 {

 socialThreads.Add(new SocialThread()

 {

 Actors = new SocialThreadActor()

Preparing SharePoint solutions for migration to apps for SharePoint

Page 34

 {

 results = new List<SocialThreadActorResult>(){

 new SocialThreadActorResult(){ Name = activity.Publisher

.Name}

 }

 },

 RootPost = new SocialThreadRootPost()

 {

 Text = activity.Value,

 }

 });

 }

 }

 }

 });

 var response = new SocialFeedResponseWrapper()

 {

 d = new SocialResponse()

 {

 metadata = new SocialResponseMetaData() { },

 SocialFeed = new SocialResult()

 {

 Threads = socialThreads

 }

 }

 };

 return response;

 }

Task 3 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, create the Get

Response method, as shown earlier. This calls the WCF service APIs.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 35

2. Consider the following code snippets that use the WCF REST services:

string requestUrl = baseUrl + "socialfeed/my/feed";

 var serializer = new JavaScriptSerializer();

 var requestBody = serializer.Serialize(new

 {

 UserName = HttpContext.Current.User.Identity.Name

 });

 var response = GetResponse(requestUrl, "POST", requestBody);

 if (!string.IsNullOrEmpty(response))

 {

 var feedResults = serializer.Deserialize<SocialFeedResponseWrapper>(respon

se);

 var results = feedResults.d.SocialFeed.Threads;

 }

Using the SocialDataService in JavaScript

In this scenario, users want to add comments on MySite using the SocialDataService.asmx

service. The following is the sample code for Add a Comment:

function AddComment() {

 var soapxml = CreateEnvelopeForAddingComment([url], [SampleComment],

[isHighPriority], [Title]);

 $.ajax({

 url: "http:/[Your Server Name]/_vti_bin/socialdataservice.asmx",

 type: "POST",

 dataType: "xml",

 data: soapxml,

 complete: processResult,

 contentType: "text/xml; charset=\"utf-8\""

 });

 function CreateEnvelopeForAddingComment(url, comment, isHighPriority, title) {

 var soapXml = "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-

instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">" +

 "<soap:Body>" +

 "<AddComment

Preparing SharePoint solutions for migration to apps for SharePoint

Page 36

xmlns=\"http://microsoft.com/webservices/SharePointPortalServer/SocialDataService\">" +

 " <url>" + url + "</url>" +

 "<comment>" + comment + "</comment>" +

 "<isHighPriority>" + isHighPriority + "</isHighPriority>" +

 "<title>" + title + "</title>" +

 "</AddComment>" +

 "</soap:Body>" +

 "</soap:Envelope>"

 return soapXml;

 };

 function processResult(xData, status)

 {

 // Process your result here.

 }

};

Note: This is not the complete JavaScript code. Rather, it is a brief snippet to provide you with

an approach for writing the code.

Workflow
This section discusses major changes in the SharePoint 2013 workflow engine from SharePoint

2010. It also explores SharePoint workflow interop, showing how this feature allows

SharePoint 2013 to call SharePoint 2010 workflows within it.

SharePoint 2013 workflow enhancements

The workflow framework in SharePoint 2013 is significantly changed from previous versions.

SharePoint 2013 workflows are powered by Windows Workflow Foundation (WF) 4, which was

substantially redesigned. SharePoint 2010 used WF found in the .NET Framework 3.5 SP1.

Workflows built for SharePoint 2010 were tightly coupled with and designed for on-premises

deployments. This meant that coded workflows could not run within the sandbox or

SharePoint Online. All workflow data also was retained within the site collection’s content

database where the workflow ran.

Note: While this JavaScript code may work in SharePoint 2013, it is recommended that you

use the REST API approach for social operations in SharePoint 2013

(http://msdn.microsoft.com/

en-us/library/dn155789.aspx).

Preparing SharePoint solutions for migration to apps for SharePoint

Page 37

Perhaps the most prominent feature of the new workflow infrastructure is the introduction of

Windows Azure as the workflow execution host. The workflow execution engine now lives

outside of SharePoint in Windows Azure. The workflow service provided by Workflow

Manager is decoupled from SharePoint and no longer runs in the SharePoint farm; rather, it

runs in Microsoft data centers. Workflow Manager is an installable product and can be hosted

in an on-premises SharePoint farm. SharePoint instructs Workflow Manager to execute a

workflow, and the two products communicate with each other through standard protocols:

WCF services over port 80 (HTTP)/443 (HTTPS).

These workflows are primarily declarative but can also be extended with custom code, similar

to how you can create custom activities and actions in SharePoint 2010 workflows for use in

SharePoint Designer 2010. However, you must install custom-coded workflows separately as

farm solutions in SharePoint 2013. Note that when you create a workflow in SharePoint

Designer 2013, you have the option of choosing the platform on which you wish to build it

(Figure 5).

Figure 5. Choosing a platform for building a workflow

 SharePoint 2010 workflow: These workflows are based on the SharePoint 2010 model

using .NET Framework 3.5 SP1 Windows Workflow Foundation. They execute the same

way they did in SharePoint 2010, meaning they run within the same SharePoint processes.

They cannot take advantage of any improvements offered by Windows Azure.

 SharePoint 2013 workflow: This option is available when SharePoint 2013 is connected to

a configured instance of Workflow Manager. These workflows execute within Workflow

Manager instead of SharePoint processes.

SharePoint workflow interop

SharePoint workflow interop enables SharePoint 2010 workflows (which are based on WF 3)

to be called from SharePoint 2013 workflows (which are based on WF 4). This important

Preparing SharePoint solutions for migration to apps for SharePoint

Page 38

feature lets you reuse existing workflow capabilities and call on workflow activities that are not

integrated into SharePoint 2013.

For example, say you have legacy SharePoint 2010 workflows that you want to reuse on the

SharePoint 2013 platform. Or perhaps you are creating new SharePoint 2013 workflows and

need to invoke activities available only on the SharePoint 2010 platform. SharePoint workflow

interop can resolve these issues.

The Workflow Foundation 4 execution engine in SharePoint 2013 is hosted in Workflow

Manager, which runs as an external service; however, SharePoint 2013 still contains the legacy

workflow host used to process SharePoint 2010 workflows. SharePoint workflow interop

negotiates the two execution environments (Figure 6).

Figure 6. Overview of SharePoint workflow interop

 As shown at point A, an instance of a SharePoint 2013 workflow starts to run in the

Workflow Foundation 4-based Workflow Manager. Note that Workflow Manager is not in

SharePoint; instead, it runs as an external service.

 At point B, you reach a place in the SharePoint 2013 workflow (step 3 in Workflow

Manager) where you want to invoke a SharePoint 2010 workflow. Using the Microsoft

Visual Studio 2012 workflow designer, you can do this by implementing the Start 2010 WF

activity (Figure 7). From the perspective of the SharePoint object model, this is

accomplished using the Start Workflow method on the Workflow Interop Service class.

Preparing SharePoint solutions for migration to apps for SharePoint

Page 39

Figure 7. Stage tile for starting a SharePoint 2013 workflow

 At point C, the SharePoint 2010 workflow begins executing in the Workflow Foundation

3.5 workflow host inside SharePoint, but an important consideration arises: In some

scenarios, you may want the SharePoint 2013 workflow to wait for the SharePoint 2010

workflow to finish executing (and perhaps return some data) before continuing to execute

the SharePoint 2013 workflow. In other scenarios, this may not be necessary, and both

workflows can run independently in parallel.

To control this behavior, the Workflow Interop class, which controls executing workflows in

the Workflow Foundation 3.5 workflow host, provides a Wait property (Figure 8). Setting

this Boolean property to Yes (in the properties dialog box) or to true (in the Wait

property) causes the SharePoint 2013 workflow to pause until the SharePoint 2010

workflow finishes executing and returns a completed message.

Figure 8. Setting the Wait property to pause a SharePoint 2013 workflow

 At point D, the practical effect of selecting Yes or No in the properties dialog box (or true

or false in the Wait property) is depicted. If Wait is true, the SharePoint 2010 workflow

passes a WorkflowCompleted (http://msdn.microsoft.com/en-

us/library/microsoft.sharepoint.workflowservices.workflowinteropeventreceiver.workflowco

mpleted(v=office.15).aspx) event (and, optionally, returns data as a DynamicValue

(http://msdn.microsoft.com/en-us/library/jj193446.aspx) property). Of course, if Wait is

false, the SharePoint 2010 workflow executes and terminates normally.

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.workflowservices.workflowinteropeventreceiver.workflowcompleted(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.workflowservices.workflowinteropeventreceiver.workflowcompleted(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.workflowservices.workflowinteropeventreceiver.workflowcompleted(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.workflowservices.workflowinteropeventreceiver.workflowcompleted(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj193446.aspx
http://msdn.microsoft.com/en-us/library/jj193446.aspx

Preparing SharePoint solutions for migration to apps for SharePoint

Page 40

 The step at point E is only relevant if the invocation of the SharePoint 2010 workflow is

specified as Wait=true. In this case, the SharePoint 2013 workflow receives the Workflow

Completed event and restarts its execution at the point where it left off.

 At point F, the SharePoint 2013 workflow completes its execution and terminates

normally. If Wait=false, the SharePoint 2013 workflow executes and terminates

independently of the SharePoint 2010 workflow.

Scenario: Route a help desk service request to IT personnel on the basis of the request’s

priority.

Using the custom REST API

This section discusses how to create a simple workflow in SharePoint 2010 using Microsoft

Visual Studio 2012, and how to associate the workflow with a SharePoint list using a web

service. In the help desk application, the workflow is associated with a Service Request list that

has Priority and AssignedTo fields. Based on the priority of the service request (high, normal,

or low), the request is assigned to different IT personnel.

Task 1 – Create a SharePoint 2010 workflow in Visual Studio

1. In a SharePoint project, add a Site workflow and add activities to it (Figure 9).

Preparing SharePoint solutions for migration to apps for SharePoint

Page 41

Figure 9. Adding activities to a Site workflow

As shown, the If Else activity has been added to test the value of the Priority field. On the

basis of that value, the code activities High Priority, Normal Priority, and Low Priority are

generated.

2. Add a property for the Priority field in the workflow.cs file, as shown in this example.

 string priority;

 private void onWorkflowActivated1_Invoked(object sender,

ExternalDataEventArgs e)

 {

 priority = workflowProperties.Item["Priority"].ToString();

 }

3. Generate handlers for the code activities: Right-click a code activity and click Generate

Handler. Then add the following code to the .cs file of the workflow.

private void HighPriority_ExecuteCode(object sender, EventArgs e)

Preparing SharePoint solutions for migration to apps for SharePoint

Page 42

 {

 string loginName = "CORP\\ITAdmin";

 SPUser userToAssign = workflowProperties.Web.SiteUsers[loginName];

 SPListItem itemToUpdate = workflowProperties.Item;

 itemToUpdate["Assigned To"] = userToAssign.ID.ToString() + ";#" +

userToAssign.Name;

 itemToUpdate.Update();

 }

private void NormalPriority_ExecuteCode(object sender, EventArgs e)

 {

 string loginName = "CORP\\lisa";

 SPUser userToAssign = workflowProperties.Web.SiteUsers[loginName];

 SPListItem itemToUpdate = workflowProperties.Item;

 itemToUpdate["Assigned To"] = userToAssign.ID.ToString() + ";#" +

userToAssign.Name;

 itemToUpdate.Update();

 }

private void LowPriority_ExecuteCode(object sender, EventArgs e)

 {

 string loginName = "CORP\\John";

 SPUser userToAssign = workflowProperties.Web.SiteUsers[loginName];

 SPListItem itemToUpdate = workflowProperties.Item;

 itemToUpdate["Assigned To"] = userToAssign.ID.ToString() + ";#" +

userToAssign.Name;

 itemToUpdate.Update();

 }

Task 2 – Create and implement the interface in the WCF REST service

Create the Operation Contracts to associate the workflow to a list in the WCF REST service

interface class (IContosoService.cs), as discussed in the Using the custom REST API and setting

up the web application environment section.

 Consider the following Operation Contracts in the Service Contract:

 [OperationContract]

 [WebInvoke(Method = "POST",

 UriTemplate = "/_api/web/lists/getbytitle('{ListName}')/workflowassociations/add",

 RequestFormat = WebMessageFormat.Json,

 ResponseFormat = WebMessageFormat.Json,

Preparing SharePoint solutions for migration to apps for SharePoint

Page 43

 BodyStyle = WebMessageBodyStyle.WrappedRequest)]

string AssociateWorkflow(string AssociationListName, string TaskListName, string History

ListName, string WorkflowName

);

Task 3 – Create the service methods

 Implement the interface in the ContosoService.cs file, and add the following code to it.

public string AssociateWorkflow(string AssociationListName, string TaskListName, string

HistoryListName, string WorkflowName)

 {

 SPSecurity.RunWithElevatedPrivileges(delegate()

 {

 using (SPSite spSite = new SPSite(sharepointSiteUrl))

 {

 using (SPWeb spWeb = spSite.OpenWeb())

 {

 var workflowTemplate = spWeb.WorkflowTemplates.GetTemplateByNam

e(WorkflowName, System.Globalization.CultureInfo.CurrentCulture);

 var taskList = spWeb.Lists[TaskListName];

 var historyList = spWeb.Lists[HistoryListName];

 var workflowAssociation = SPWorkflowAssociation.CreateListAssociation(

workflowTemplate, WorkflowName, taskList, historyList);

 workflowAssociation.AutoStartChange = true;

 workflowAssociation.AutoStartCreate = true;

 workflowAssociation.AllowManual = true;

 spWeb.AllowUnsafeUpdates = true;

 var associatedList = spWeb.Lists[AssociationListName];

 associatedList.WorkflowAssociations.Add(workflowAssociation);

 associatedList.Update();

 spWeb.AllowUnsafeUpdates = false;

 }

 }

 });

 return "Success Message";

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 44

Task 4 – Consume the WCF service in a web application

1. To consume the service in a web application hosted in a different domain, create the Get

Response method, as shown earlier. This calls the WCF service APIs.

2. Consider the following code snippets that use the WCF REST services:

string listName = "List Name Here";

string requestUrl = baseUrl + string.Format("web/lists/getbytitle('{0}')/workflowassociation

s/add", listName);

var serializer = new JavaScriptSerializer();

var requestBody = serializer.Serialize(new

 {

 WorkflowName = "Workflow Name",

 TaskListName = listName ,

 AssociationListName = "Association Name",

 HistoryListName = "History List Name"

 });

var response = GetResponse(requestUrl, "POST", requestBody);

Using the client object model

In the help desk application, the workflow is associated with a Service Request list that has

Priority and AssignedTo fields. Service requests are assigned to different IT personnel based

on their priority (high, normal, or low). The following is sample code for associating the

workflow to the SharePoint list using the CSOM.

 public string CreateListworkflowAssociaton(string siteUrl, string listTitle, string

workflowTemplateName,

 string historyListName, string taskListName, string workflowName)

 {

 try

 {

 ClientContext clientContext = new ClientContext(siteUrl);

 Site site = clientContext.Site;

 Web web = clientContext.Web;

 // Create historyList and task List.

 ListCreationInformation ListCreationInformationHistory = new

ListCreationInformation();

 ListCreationInformationHistory.Title = historyListName;

Preparing SharePoint solutions for migration to apps for SharePoint

Page 45

 ListCreationInformationHistory.TemplateType =

(int)ListTemplateType.WorkflowHistory;

 web.Lists.Add(ListCreationInformationHistory);

 ListCreationInformation ListCreationInformationTask = new

ListCreationInformation();

 ListCreationInformationTask.Title = taskListName;

 ListCreationInformationTask.TemplateType = (int)(ListTemplateType.Tasks);

 web.Lists.Add(ListCreationInformationTask);

 clientContext.ExecuteQuery();

 clientContext.Load(web.Lists);

 List listbyTitle = web.Lists.GetByTitle(listTitle);

 WorkflowTemplate workflowTemplate =

web.WorkflowTemplates.GetByName(workflowTemplateName);

 clientContext.ExecuteQuery();

 WorkflowAssociationCreationInformation workflowAssociationCreationInformation

= new WorkflowAssociationCreationInformation();

 workflowAssociationCreationInformation.HistoryList =

web.Lists.GetByTitle(historyListName);

 workflowAssociationCreationInformation.TaskList =

web.Lists.GetByTitle(taskListName);

 workflowAssociationCreationInformation.Template = workflowTemplate;

 workflowAssociationCreationInformation.Name = workflowName;

 WorkflowAssociation workflowAssociation =

listbyTitle.WorkflowAssociations.Add(workflowAssociationCreationInformation);

 workflowAssociation.AutoStartCreate = true;

 workflowAssociation.AutoStartChange = false;

 workflowAssociation.AllowManual = false;

 workflowAssociation.Enabled = true;

 workflowAssociation.Update();

 clientContext.Load(workflowAssociation);

 clientContext.ExecuteQuery();

 return "Successful";

 }

 catch (Exception ex)

 {

 return ex.Message;

 }

Preparing SharePoint solutions for migration to apps for SharePoint

Page 46

 }

Note: This is not the complete CSOM code. Rather, it is a brief snippet to provide you with an

approach for writing the code.

Content management
Scenario: Get SharePoint taxonomy to tag help desk tickets and optimize searching.

Using the TaxonomyClientService in JavaScript

This section discusses how to fetch taxonomy terms using taxonomyclientservice.asmx. This

web service enables a client to interact with the managed metadata TermStore object.

The following sample code generates the SOAP envelopes and then uses the AJAX call from

JavaScript to get the terms within the term set.

function GetTerm() {

 var soapxml = CreateSoapEnvelope([Your TermStore Guid], 1033, [Your TermSet Guid);

 $.ajax({

 url: "http://[your Server Name]/_vti_bin/taxonomyclientservice.asmx",

 type: "POST",

 dataType: "xml",

 data: soapxml,

 complete: processResultData,

 contentType: "text/xml; charset=\"utf-8\""

 });

 function CreateSoapEnvelope(sspIdGuid, lcidGuid, termSetIdGuid) {

 var soapXml = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<soap:Envelope xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" " +

 "xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" " +

 "xmlns:soap=\"http://www.w3.org/2003/05/soap-envelope\">" +

 "<soap:Body>" +

 "<GetChildTermsInTermSet

xmlns=\"http://schemas.microsoft.com/sharepoint/taxonomy/soap/\">" +

 "<sspId>" + sspIdGuid + "</sspId>" +

 "<lcid>" + lcidGuid + "</lcid>" +

 "<termSetId>" + termSetIdGuid + "</termSetId>" +

 "</GetChildTermsInTermSet>" +

 "</soap:Body>" +

 "</soap:Envelope>";

Preparing SharePoint solutions for migration to apps for SharePoint

Page 47

 return soapXml;

 };

 function processResultData(xData, status)

 {

 // Process your result here. }

 };

Note: This is not the complete JavaScript code. Rather, it is a brief snippet to provide you with

an approach for writing the code.

Note: While this JavaScript code may work in SharePoint 2013, it is recommended that you

use the client object model APIs for taxonomy operations in SharePoint 2013

(http://msdn.microsoft.com/en-us/library/jj163949.aspx#SP15_ManagedMetadataAndNav_

CSOMSupport).

http://msdn.microsoft.com/en-us/library/jj163949.aspx#SP15_ManagedMetadataAndNav_CSOMSupport

Preparing SharePoint solutions for migration to apps for SharePoint

Page 48

Conclusion
SharePoint 2013 introduces a new multi-tier model for apps that increases their power,

flexibility, and scalability. With new client and server APIs, easy integration into cloud

computing models, and expanded deployment options, the architectural changes in

SharePoint 2013 simplify development and installation tasks.

Developers can now build and update solutions in SharePoint 2010 in a way that allows them

to be easily transformed into apps for SharePoint 2013. This largely eliminates the time and

effort required for migration and avoids common conflicts associated with upgrading product

versions. Organizations can continue to benefit from investments in SharePoint 2010, while

still capitalizing on the enhanced features of SharePoint 2013.

The scenarios and sample code in this paper help to explain how to convert SharePoint 2010

solutions into apps for SharePoint 2013 and how these conversions can improve the efficiency

and reach of specific workloads.

Additional resources
Developing applications for SharePoint 2010

http://msdn.microsoft.com/en-us/library/ff770300.aspx

Apps for SharePoint overview

http://msdn.microsoft.com/en-us/library/fp179930.aspx

SharePoint 2013 overview

http://office.microsoft.com/en-us/sharepoint/sharepoint-2013-overview-collaboration-

software-features-FX103789323.aspx

Development best practices for SharePoint 2010

http://social.technet.microsoft.com/wiki/contents/articles/8666.sharepoint-2010-best-

practices.aspx#Development

Development best practices for SharePoint 2013

http://social.technet.microsoft.com/wiki/contents/articles/12438.sharepoint-2013-best-

practices.aspx#Development

To comment on this paper or request more documentation on these developer features,

contact Office and SharePoint Developer Documentation at Doc This

(docthis@microsoft.com).

http://msdn.microsoft.com/en-us/library/ff770300.aspx
http://msdn.microsoft.com/en-us/library/fp179930.aspx
http://office.microsoft.com/en-us/sharepoint/sharepoint-2013-overview-collaboration-software-features-FX103789323.aspx
http://office.microsoft.com/en-us/sharepoint/sharepoint-2013-overview-collaboration-software-features-FX103789323.aspx
http://social.technet.microsoft.com/wiki/contents/articles/8666.sharepoint-2010-best-practices.aspx#Development
http://social.technet.microsoft.com/wiki/contents/articles/8666.sharepoint-2010-best-practices.aspx#Development
http://social.technet.microsoft.com/wiki/contents/articles/12438.sharepoint-2013-best-practices.aspx#Development
http://social.technet.microsoft.com/wiki/contents/articles/12438.sharepoint-2013-best-practices.aspx#Development
mailto:docthis@Microsoft.com?subject=Partner%20Feedback:
mailto:docthis@microsoft.com

