Measuring Performance on Windows
Embedded Standard 7

Contents
SUIMIMIAIY e s e s e e esesaaaeaaasasasasasssssasssssssssssesesssssssssssesessessssesenseeeseeesesasanaeenens 1
INEFOAUCTION .ttt sttt et e bt e e bt e s bt e sat e st e et e e bt e beesbeesaeesaseeabeesbeesaeesanenas 1
Using the Windows Performance Analysis TOOIKItciiviiiiiiiiiiiiieiie e 2
How Performance Measurement WOrKScc.ueiiiiiiiiiiiie ettt ettt 2
Measure RUNTIME PeIrfOrManCe.c.uuiiuiiiiiieeiie ettt ettt et sttt e e s bt e e sab e e sbeeesabeesabeeesabeens 2
Measure State Transition Performance. ...t 4
EXaMPIE: ANGIYZE CPU USAEE.......uuiiieeiiiieeeciiiee e ettt e e ettt e e ettt e e e ette e e e e ttaeeeeassseeesassaeeesnsseeessssseesansseeesansreeenan 6
(60] 0T (V11 DO T TP TSRO OTR PP UPUPTOPTON 9
Summary

The Windows Performance Analysis Toolkit is a powerful tool for measuring and diagnosing
performance issues in Windows Embedded Standard 7. By using this tool that you can capture and view
performance information for almost any part of the system. This includes your own applications.

Introduction

Performance is a very important aspect to all embedded systems. The level of performance for any
given system depends heavily on the design, regardless of the operating system being used. An
important part of the design process is using tools to assess performance problems and performance
opportunities. Many times developers must manually instrument the operating system and programs
with performance metrics, and write tools to collect and analyze these metrics. Fortunately Windows
Embedded Standard 7 is built on Windows 7 and therefore takes advantage the existing instrumentation
and powerful free tools that exist for Windows 7.

To improve the performance of an embedded system that is running Windows Embedded Standard 7
three primary steps are needed. The first is to determine key scenarios that are important from a
performance standpoint. The second step is to measure system activities during the execution of these
scenarios, and the third is to analyze the results for opportunities to improve the performance.

Starting with Windows Embedded Standard 7 there are new powerful tools that allow for better
measurement and diagnosis of performance issues. The dependencies required to run them are built

into the Windows Embedded Foundation Core (every Windows Embedded Standard 7 image contains
the Foundation Core) so no special steps are required to run them (with one exception which is
discussed in the “Measure State Transition Performance” section).

Using the Windows Performance Analysis Toolkit

The flagship tool for measuring performance in the Windows 7 code base is called the Windows
Performance Analysis (WPA) Toolkit and comes as part of the Windows 7 SDK. The WPA Toolkit enables
you to measure most aspects of performance on a system. You do not have to download the complete
SDK to access this tool. It can be selected by itself to minimize download time.

The Windows 7 SDK is available here:

http://www.microsoft.com/downloads/details.aspx?FamilylD=c17ba869-9671-4330-a63e-
1fd44e0e2505&displaylang=en

The WPA Toolkit is a part of the “Developer Tools” option in the Windows 7 SDK.

How Performance Measurement Works

Throughout Windows Embedded Standard 7 events are signaled called ETW (Event Tracing for
Windows) Events. These events are provided by hundreds of different providers. One of the core
providers is the kernel itself. Disk read/write events, task switching events, interrupt subroutines (ISR’s)
entry events, Deferred Procedure Calls (DPCs) events are only a few examples. These events are
collected to create event trace logs for analysis. The WPA Toolkit provides tools to capture and view
these traces.

There are two main executables for capturing and viewing traces. The first is xperf.exe which is used to
capture runtime traces, and to start the Graphical User Interface on traces already captured. The
second is xbootmgr.exe which is similarly used to capture traces for state transitions such as restart,
shutdown, hibernate, sleep, and resume, but is not used to view the traces. First we will examine run
time traces which are captured by using xperf.exe.

Measure Runtime Performance

As soon as the WPA Toolkit is installed, you can run it to capture a trace. First we willl run a basic trace
used for general performance investigations using xperf.exe. To execute a trace capture, type the
following from an elevated command prompt:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —on DiagEasy
Now execute whatever scenarios you are investigating.

When you are finished executing your scenarios, stop the trace and merge all the data together into an
“Event Trace Log” file by typing following from an elevated command prompt:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —d MyTrace.etl

http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c17ba869-9671-4330-a63e-1fd44e0e2505&displaylang=en

The xperf.exe application will merge all the data it has collected into the MyTrace.etl file. This is a binary
collection of all the trace events. Be aware that these files can become very large for longer durations.

You can now view the data by just typing:
C:\Program Files\Microsoft Windows Performance Toolkit\xperf MyTrace.etl

This opens the GUI used to examine the data graphically. Figure 1 shows an example of what an event
trace log file looks like in the xperfviewer tool. In this view we can see the “CPU Usage by CPU”, the
“CPU Usage by Process”, and the “CPU Usage by Thread”. There are many more views under this one
and you can select which views by clicking the pull out arrow on the left side of the screen.

File Graphs Trace Window Help

CPU Usage by CPU [Thread Priority >= 1] Bl -

m

ST RN

. | |
I -#-M . u\ A ||
o) Py v A \oabb sl s to i MA A g oAt amb At b L
0 L L L L L L AL B B
0 2 4 & 8 10 12 14 16 18 20 22 24 26 28 30
Time
CPU Usage by Process [Thread Priority >= 0] B

% Usage Processes |

% Usage Threads |

CPU Scheduling ["Time Since Last Switch Out’ >= 0 ms] =

CPU I“CPU # h¥2

Figure 1 Viewing an Event Trace Log

In addition to viewing the graphs, you can view details about the graph by selecting a period of time

(click drag to select), right-clicking on it, and selecting “Summary Table” or “Detail Graph” depending on
which chart you are viewing.

In Figure 2 you can see how to select which graphs to view. Clicking the graph selection pullout midway
down the left side of the screen lets you select which graphs to view and compare.

More details about how to capture runtime traces and how to use the GUI are available in the Help file
provided by the WPA Toolkit.

File Graphs Trace Window Help

[S— 1 CPU Usage by CPU [Thread Priority »= 1] =]
7| CPU Usage by CPU
7] CPU Usage by Process

7| CPU Usage by Thread

V| CPU Scheduling

| CPU Idle States

V| Disk /O

V| Disk Utilization-

V| Disk Utilization-by Process
V| Process Lifetimes

V| DPC CPU Usage

7 Interrupt CPU Usage X) .
/| Hard Faults |\\\|\||‘\||‘|\\‘|\|‘|\|‘||| \|\|||\|\\|
| Generic Events 3 10 12

L L
14 16 18 20 2 24 26 28 30
Time

m

Ssdhadalll

CPU Usage by Process [Thread Priority >= 0] B

Processes |

Threads |

30
Time
CPU Scheduling ["Time Since Last Switch Out’ >= 0 ms] (=]
cPudcPUZ 2
,

Figure 2 Selecting Which Graphs to View

Measure State Transition Performance

In addition to measuring runtime performance using xperf.exe, you can use xbootmgr.exe to measure
performance metrics for boot, shutdown, suspend, hibernate, and resume.

This works much as xperf does. At the elevated command prompt, you can type the following.

C:\Program Files\Microsoft Windows Performance Toolkit\xbootmgr —trace boot —-numRuns 3 —
resultPath c:\myBootTraces

The xbootmgr.exe program will notify the user that it is shutting down the system. It will then restart
three times (-numRuns 3) and collect trace information about the boot process every time. This data
can then be further parsed for relevant boot data using the “boot” action. The “boot” action will parse
the .etl trace file for data which is pertinent to the boot process. This includes IO times, process load
times, and the boot interval times overall. It also includes several key boot metrics such as
“BootDoneViaPostExplorer” which is the overall time in mS it took the system to reach a usable state
plus 10 seconds. The 10 seconds are 10 accumulated seconds of idle time which are subtracted to find
the point at which the user might have started an application or otherwise seen the system as useful.
This is determined by measuring key system resources and establishing when the system became idle
enough for the user to begin effectively using the computer. Here is how to apply the “boot” action on
an .etl trace file captured by the previous command:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —i c:\myBootTraces\boot_BASE_CSWITCH_1.etl -
o bootl.xml —a boot

The resulting boot.xml file will contain performance information about the boot process. Figure 3 is an
example of one of these files:

,,‘ CAUsers\danb ym\Documentsilogs\TC02_eco Nindows Internet Explore

(ki & | file/1/G:/Users/donbym/Documents/logs/ TCO2_ecore/bootbami*

i Favorites 53] Home - EW Team

58 - @& MSW Home Page € C\Users\donbym\Doc... X | [T v [dm v Pagev Safety~ Tool~ @~

~

- <results timeFormat="msec">
- <boot>
+ <processSummary numProcesses="40" numUnexpectedLonglived="30" numUnexpectedShortlived="8"
numUnexpectedVeryShortlived="0">
- <timing bootDoneViaExplorer="18899" bootDoneViaPostBoot="36699" osLoaderDuration="1868"
postBootRequiredIdleTime="10000" postBootDisturbance="7800" pnpBootStartStartTime="42"
pnpBootStartEndTime="557" pnpBootStartDuration="515" pnpSystemStartStartTime="930"
pnpSystemStartEndTime="1413" pnpSystemStartDuration="483"> .
<interval name="PreSMSS" startTime="0" endTime="1446" duration="1446">
<interval name="SMSSInit" startTime="1446" endTime="6672" duration="5225">
<interval name="WinlogonInit" startTime="6672" endTime="15831" duration="9159">
<interval name="ExplorerInit" startTime="15831" endTime="18899" duration="3068">
<interval name="PostExplorerPeriod" startTime="18899" endTime="36699" duration="17800">
<interval name="TraceTail" startTime="36699" endTime="143379" duration="106680">
</timing>
- <services autoStartStartTime="8530" autoStartEndTime="21471" autoStartDuration="12941">
<serviceTransition name="PlugPlay" group="PlugPlay" transition="start"
totalTransitionTimeDelta="436" firstCheckpointTimeDelta="327" processingTimeDelta="109"
container="DcomLaunch svchost (548)" startedAt="8530" firstCheckpointedAt="8858"
endedAt="8967" />
<serviceTransition name="Power" group="PlugPlay" transition="start" totalTransitionTimeDelta="95"
firstCheckpointTimeDelta="0" processingTimeDelta="95" container="DcomLaunch svchost (548)"
startedAt="8968" firstCheckpointedAt="8968" endedAt="9063" />
<serviceTransition name="DcomLaunch" group="COM Infrastructure" transition="start"
totalTransitionTimeDelta="53" firstCheckpointTimeDelta="0" processingTimeDelta="53"
container="DcomLaunch svchost (548)" startedAt="9072" firstCheckpointedAt="9072"
endedAt="9125" />
<serviceTransition name="RpcEptMapper"” group="COM Infrastructure" transition="start"
totalTransitionTimeDelta="90" firstCheckpointTimeDelta="70" processingTimeDelta="19"
container="RPCSS svchost (616)" startedAt="9073" firstCheckpointedAt="9144" endedAt="9164" />
<serviceTransition name="RpcSs" group="COM Infrastructure” transition="start"
totalTransitionTimeDelta="50" firstCheckpointTimeDelta="0" processingTimeDelta="49"
container="RPCSS svchost (616)" startedAt="9164" firstCheckpointedAt="9165" endedAt="9215" />
<serviceTransition name="eventlog" group="Event Log" transition="start"

totalTransitionTimeDelta="303" firstCheckpointTimeDelta="195" processingTimeDelta="107"
rantainer="1 ncalServireNaetwnrkResctrirted csurhnst [69K)" ctartedAt="9218" 52
W& Computer | Protected Mede: Off 3 v H150% ~

mn

+
+
+
+
+
+

Figure 3 Boot Action XML File

In this example the system was effectively booted in “bootDoneViaPostBoot — 10000mS” = 26.699
seconds. You can also view various other information such as which services were started, how long
each service took to start, Plug n Play events, and the duration and IO activity of each interval within the
boot process.

You can experiment with other actions also. To see a complete list of actions you can perform on traces
type:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —help processing

Example: Analyze CPU Usage
One fairly widespread metric of performance is CPU usage. Every embedded system has a CPU, and
every embedded system depends on that CPU to perform tasks in a timely manner. In this example |

will examine the CPU usage during the playback of an audio file in the Zune client application, as I'd like
to know how much of an effect that has on my system, from a CPU usage perspective. To analyze this

scenario, | must take a performance trace while playing back an audio track in zune.exe, and typing this
white paper.

With Microsoft Office Word 2007 running and the Microsoft Zune Client Application playing back an
audio track, | type the following in my elevated command prompt:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —on DiagEasy

My scenario is typing this sentence, after which | type the following into the command prompt:
C:\Program Files\Microsoft Windows Performance Toolkit\xperf —d zune.etl

Now | have a file that is named zune.etl which | can open by using the xperf.exe application:
C:\Program Files\Microsoft Windows Performance Toolkit\xperf zune.etl

Because | am only interested in CPU related metrics, | pull out the selection bar on the left and clear
everything except for “CPU Usage by CPU”, “CPU Usage by Process”, “CPU Usage by Thread”, and
“Interrupt CPU Usage”. The result is in Figure 4.

ff Chpertcotunest- Windows) T " T R i
File Graphs Trace Window Help
Frame it CPU Usage by CPU [Thread Priority >= 1] B -

7] CPU Usage by Process
7] CPU Usage by Threzd

CPU Scheduling

CPU Idle States | il

Disk /0 T \ ‘ ' ‘

Disk Utilization 1A |

Disk Utilization by Process | ! v

Process Lifetimes “ {

DPC CPU Usage poadhan) . wh ; b b q | L A y A i
3] Iterropt CPU Usoge I pa e i o oo AR il by AN i gL o Wi Ao, SNV, SR L B PN

Hard Faults L L L e L B e B L L e e B L e B L B B

Generic Events 4 5 8 10 12 14 15 18 20 2 24 2 2% 30 2 34 36 38 40 2 4 B

Time
CPU Usage by Process [Thread Priority >= 0] B
Processes |
I
| i /‘

e
ety st b | el
B R I A

4 5 8 10 2 it 15 18 2 2 2 % 28 30 2 34 3 38 40 2 44 4
Time
CPU Usage by Thread [Thread Priority >= 0] =]
[Threads |
) ||
Jo) i AL
L L B L B B B B B LN L IS L L B L B B B B
4 5 8 10 12 14 15 18 2 2 24 2% 2% 30 2 34 3 3 40 2 44
Time
Interrupt CPU Usage B
i)

Figure 4 Example Trace View

As you can see by the highlighted section of time, the CPU appears to be very active 26 seconds into my
trace. Therefore, | highlight that time period in the “CPU Usage by CPU” chart, right-click it and select
“Summary Table”. A new window appears with the summary table as shown in Figure 5.

1“ CPU Scheduling Aggregate Summary Table - C\perftools\zune.etl - [25.926736976 = - 30.283992739 5] - 4.367255813 = - Wind... Elﬂl_z_hJ
File Columns Trace Window Help
Line Process Name Process Thread ID Cpu Us‘age(ms) % Cpu Usage

1 Idle Idle (0} 0 4,609.192 847 5211
2 sqlservr.exe sqlservr.exe (1968) 2,715.339 822 3109
3 Zune.exe Zune.exe (5308) 738,903 094 846
4 dwm.exe dwm.exe (3272) 231.067 720 265
5 Systermn Systern (4) 205016116 2,35
G WINWORD.EXE WINWORD.EXE (356) 98,609 626 113
7 audiodg.exe audiodg.exe (2332) 5,056 45,780 860 0.52
8 CSISS.EXE 12910173 015
9 svchost.exe 8.605 201 010
10 FSyshgent.exe FSyshgent.exe (1832) 4,866 106 0.06
11 communicator.exe communicator.exe (4440) 2.047 042 002
12 services.exe services.exe (540) 2792 0.800 683 001
13 HealthService.exe HealthService.exe (1880) 0.794 263 001
14 Searchlndexer.exe SearchIndexer.exe (3728) 0.497 434 001
15 |sass.exe Isass.exe (564) 612 0.388 367 0.00
16 ComExec.exe ComExec.exe (2428) 0,342 600 0.00
17 WmiPrvSE.exe WmiPrv5E.exe (3876) 0.192 044 0.00
18 explorer.exe explorer.exe (3320) 0.177 500 0.00
19 Bugger.exe Bugger.exe [4708) 0.144 994 0.00
20 FwcAgent.exe FwcAgent.exe (1852) 1,900 0144139 0.00
21 mobsync.exe mobsync.exe (5516) 5,544 0.094 525 0.00
22 sftlist.exe sftlist.exe (2364) 0.087 682 0.00
23 OfficeliveSignin.exe OfficeliveSignin.exe (2104) 5924 0.003 421 0.00
24 sftvsa.exe sftvea.exe (2236) 6,072 0.002 994 0.00
25 SRUserService.exe SRUserService.exe (2276) 2336 0.001 711 0.00 I

Total CPU Usage: Mon-Idle/DPC/ISR: 46.57% Idletime: 52.77% DPC/ISR time: 0.66%

.]

Figure 5 CPU Usage Example

From the table, it is clear from line 2 that sqlservr.exe appears to be doing something taking up a
significant amount of CPU during this time period. From this you can investigate why sqlservr.exe is
running and possibly reduce the amount of CPU usage during this scenario. For an embedded system
this may be especially important when it runs on a battery. Line three shows that during other parts of
the trace, the zune.exe application is the primary user of the CPU, and takes about 8.5%, with lots of
overhead in the idle task (52.8%).

In addition to viewing the trace in the Ul, | can perform “actions” on the trace to process the data for
key metrics. For example, running the “cpudisk” action will provide a text file summary of the CPU and
disk activity for the duration of the trace. You do this by executing the following command:

C:\Program Files\Microsoft Windows Performance Toolkit\xperf —i zune.etl —o zunecpudisk.txt —a
cpudisk

From this the file zunecpudisk.txt is created. Mine resembles Figure 6:

r N
File Edit Search Project Options View Window Help _[&]x
DEHER S L@ o0 al8me PDEessEm A0RLR BOED) 0K
Btart Time, End Time, apsed Time, Starting Mark, o
211 times in us |- . T B — [,-Disk Flush,-—------—-- 1 =
CPU Tims, CPU %, Count R, IO Time R, Serv Tims & me W, Serv Time W, Size Byte W, Count F, IO Time F, Serv Tims F, Process Name(PID), Ending Mark
., aTozasés, 47024888, [TraceStars],
74575824, 79.35, o, . . 0, 0, o, a, 0, a, 0, [TraceEnd]
8010680, 8.52, 1, 8342, 8342, 4095, o, o, a, 0, a. o,
3263333, 3.47, a, a, 0, 0 0, a, a, a, a, a,
2614625, 2.7, a, a, 0, 0, 0, a, a, a, a, a,
1443783, 1.54, 165, €45243, 238238, 10258384, 1415, 480008, &7872768, 18 432, 432,
1023014, 1.11, o, 0, o, o, o, o, a, . o, o,
613435, 0.¢5, a, a, 0, 0, 0, a, a, a, a, a,
584617, 0.€3, a, a, 0, o, 0, o, a, a, a, a,
564329, 0.60, 0, o o, o, o, o, a, 0, . o,
z673z3, 0.z8, a7, s 543114, 2144768, o, o, 0, o, 0, 0,
238423, 0. 15, 1732, 28508, 1273856, 58, B84, 530844, 4, 104, 104, A
92 0. 78, 422683, 258258, 1283136, o, o, a, 0, a, o, =
0. o, . o, o, o, o, o, o, o, o, o
0. a, 48230, 16950, 362496, 0, a, a, a, a, a,
0. a, a, o, 0, 0, o, o, a, o, a, |
0. o, o, o, o, o, o, a, o, . o,
0. 0, 0, o, o, o, o, 0, 0, a, 0,
0. a, a, 0, 0, 28, zazs, 13107z, 1, 26, 25,
0. 0, 0, o, o, o, o, a, o, a, 0,
0. 0, 0, o, o, o, o, a, 0, . o,
0. 0, 0, o, o, o, o, 0, 0, 0, 0, communicator.
0. a, a, 0, 0, 0, a, a, a, a, a, svchost.
0. 0, 0, o, o, o, o, a, 0, a, 0, conhost.
0. o, o, o, o, o, o, o, o, o, o, 1sass.
0. a, a, 0, 0, 0, a, a, a, a, a, svehost. L
0. a, a, 0, 0, 0, a, a, a, a, a, services.
0. 1, 5179, 5179, 819z, o, o, a, o, a, 0, HealthService.
0. o, 0, o, o, o, o, 0, 0, 0, 0, SearchIndexsr.
0. a, a, 0, 0, 0, o, a, a, a, a, svehost.
0. 0, 0, o, o, 1, 2 21, 512, 0, a, 0, svchost.
0. 0, 0, o, o, o, o, a, 0, a, o, Bugge=.
0. a, a, o, o, o, o, a, a, a, a, Wi PrvSE
0. a, a, 0, 0, 0, a, a, a, a, a, Fuchgent.
0. o, o, o, o, o, o, a, o, a, o, omd.
0. 0, 0, o, o, o, o, 0, 0, 0, 0, Tam.
0. a, a, 0, 0, 0, a, a, a, a, a, asrss.
0. a, a, 0, 0, 0, a, a, a, a, a, mobsync.
0. o, o, o, o, o, o, a, o, a, o, sftlist.
0. 0, 0, 0 o, o, o, 0, 0, 0, 0, spoaclsv.
0. a, a, 0, 0, 0, a, a, a, a, a, caskhost.
0. 0, 0, o, o, o, o, a, 0, a, 0, svchost
.o 0, 0, o, o, o, o, a, 0, a, 0, mi PrvSE
2, 0. a, a, o, o, o, o, a, a, a, 0, TrustedInssaller_e:
E a, a, 0, 0, 0, a, a, a, a, a, Sealort_exe
| 4, 0. o, o, o, o, o, o, a, o, a, 0, ShUsexService.exe
3, 0. 0, 0, 0 o, o, o, 0, 0, 0, 0, sppsve._exe
3 0. a, a, 0, 0, 0, a, a, a, a, 0, OfficeliveSignln_e:
2, 0. a, a, 0, o, 0, o, a, a, a, a,
2, 0. 0, 0, o, o, o, o, a, 0, . o,
2, 0. 0, 0, o, o, o, o, 0, 0, 0, 0, . [Traceznd)
2, 0. a, a, 0, 0, 0, a, a, o, a, o, . [TraceZnd]
19407118, 20. 250, 1808258, JEEEEETH 15548928, 150z, EEEREEN 481802, €8525286, 24, s€3, se2, Total (w/o Idle), [TracsZnd]
19407118, 20.€5, 350 1808258, 1338331, 15548928, 1502, 998795, 4180z, 68535296, 22 563, 563 trand Toval (w/o Idle), N/& -
m ’
H-0x
| mom®ewals
Line 1 Col 1 INS
— J

Figure 6 CPU Disk Action

You must zoom in on this to see it, but it contains average and total information for the trace on CPU
and disk activity. For example, overall the zune.exe application took 8.52% of the CPU time, and 79.35%
of the time was spend idle.

Conclusion

The systems and events needed to use the Windows Performance Analysis Toolkit are included in
Windows Embedded Standard 7. This enables embedded systems developers to perform powerful
analysis of performance on their systems. You can find the WPA Toolkit as part of the Windows 7 Client
SDK here.

Solutions and needs vary from one embedded project to another, but good performance stretches
across all categories of embedded systems. These tools are available to aid developers in reaching this
goal of achieving the best possible performance for their Windows Embedded Standard 7 device.

http://go.microsoft.com/fwlink/?LinkID=187622

