Developing, Deploying, and Debugging
Applications on Windows Embedded
Standard 7

Contents
OVEIVIBW ..ttt ettt ettt e s a e s s b et e s s b et e s s s b et e s s b e e e s s bba e e s s aabaeessaabaeessnbaees 1
B3] 1 LoF= L o s PSR 2
IVIOTIVATION. .ttt e e et e e st e e s b et e s s ab e e e s s mbe e e s e abeeesenreeeeeanbeeessanreeeeennrenas 2
CodE aNd ENVIFONMENT ...oiiiiiiiiieite ettt ettt ettt st e st e s bt e e s bt e e bt e e sabeesabeeesabeesabeeesbeesareeennnes 2
Preparing the Windows Embedded Standard 7 IMage......cc.ueviieieeeiiciiie ettt 5
Statically analyze the HelloWorld applicationceeeiieiiiii it 5
O 20T Yo IVl e [T o= g Vo [=T o T = PP 8
2. Create shared folder for the target deViCe.coiouiei i 9
3. Add Visual Studio DebugEer t0 iIMagE.ciiiiiie ettt e e e sree e e e e 9
4. Create IBW IMage ..ottt ettt ettt et et et et e e et e e et e s e e e e e e e e e e e e e e e e eeeees 11
D T=T o] (oY1 oYU 12
D T=] o T =41 Y- SRRSOt 15
UMY i e s e e e e e e e e eeeeeseaeaaaeaaaaaasasasasasaaaeeaaaeeeaeeeaeeaasaeaseeaeeseeesenesanasanans 21
Overview

Windows Embedded Standard 7 is the next generation platform within the Windows Embedded
Standard portfolio and delivers the power, familiarity, and reliability of the Windows 7 operating system
in a highly customizable and componentized form. This article focuses on developers and how they can
easily perform their day-to-day tasks in developing applications for Windows Embedded Standard 7.

It may come as a surprise to many that developing an application for Windows Embedded Standard 7 is
not very different from developing the same application for Windows 7. In fact, in most cases, the
process is identical. One can write almost any application on Windows 7 and deploy it to Windows
Embedded Standard 7. Several things related to creating the Windows Embedded Standard 7 image
must be observed to make sure that the application works correctly, and has access to all components

that it needs in order to run. This article describes how to write such an application from scratch, deploy
it to Windows Embedded Standard 7 using the Image Configuration Editor (ICE) tool, Image Builder
Wizard (IBW) tool, and how to debug the application should anything go wrong.

This article describes creating a very basic "Hello World" application and deploying it to a Windows
Embedded Standard 7 image. The tools that you will need are Visual Studio 2005 or a later version, and
the Windows Embedded Standard 7 tools.

The application

Motivation

This article contains information about how to develop a very simple console-based C++ application that
outputs “Hello World” to the console. The article then describes how to deploy and debug the
application on a Windows Embedded Standard 7 computer. You can easily apply the knowledge that
you gain in deploying and debugging this simple application to a more complex application.

Code and Environment

To create the application, start Visual Studio. On the File menu, point to New, and then click Project.
Select a project type by clicking Visual C++, and then click Win32 Console Application, as shown in
Figure 1.

New Project [7 |l
Project types: Templates: NET Framework 3.5 "l |
Database « (| Visual Studio installed templates
Reporting ¥ Custom Wizard ZATest Project
Test ZAWindows Forms Application SACLR Console Application
Wer B .ﬁWinR Console Application EATL Project
Workflow u . . .
. A% MFC Application EMakefile Project
Database Projects]) -]
Other Languages ,J“jATL Smart Device Project ﬂ,-ﬂCIass Libarary
Visual Basic [EICLR Empty Project EEmpty Project
Visual C++ =||| HEMFC ActiveX Control M MFC DLL
ATL &l# MFC Smart Device ActiveX Contral jEMFC Smart Device Application
CLR alls MFC Smart Device DLL = Win32 Project
General AWin32 Smart Device Project 1 Windows Forms Control Library
MFC n EWindnws Service
Smart Device
Test My Templates
Win32 - || 2 Search Online Templates...

A project for creating a Win32 console application

MName: HelloWaorld

Location: o,

Solution: Create new Solution
Hello

’] [] Create directory for solution

- Browse...

oK

|| cance

Figure 1

In the Name box, type “HelloWorld” then click OK. In the Location box, type C:\.

In the Win32 Application Wizard click Finish. This should create a project similar to the one shown in

Figure 2.

File Edit View WAssist{ Project Build Debug Data Tools
il a6 G B9 S5 | b Debyg >
PER®BE A g8 0%k e|EF

Test Apalyze Window Help

Ready

x “"HelloWorld.cpp - 3 | Solution Explorer - HelloWorld - 0 X
= = =
e |¢* HelloWorld.cpp - ,_| |0GD | 5 | 2
E (54 Solution 'HelloWorld' (1 project) -
= (Global Scope) - - & Eﬂ HelloWorld
B/ HelloWorld.cpp : Defines the e 2 [Header Files
rr - - . [n] stdafxh 5
N |n] targetver.h
#include "stdafx.h" .. [Resource Files
- El [Source Files
EI_ int tmain(int TCHAR* © . € HelloWerld.cpp -
int tmain(int argc, argwv . =S
.] Soluti.. |%‘u"ﬁ. Cu... |- VA View Chang...|
Properties - 4 x
returm o
) -
N il
N] | 3
Error List - 4 X
(@ 0 Errors|| 1\ 0 Warnings ||(i) 0 Messages
Description File Line Column Project
% Error List | 5] Output |5 Find Results 1 | g2 Find Symbol Results
Ln12 Coll Chl INS

Figure 2

”)"

As shown in Figure 1.2, type the “printf(“Hello World\n”)” code. To avoid having dynamic
dependencies you must change one aspect of the application by right-clicking the HelloWorld project in
Solution Explorer then clicking Properties. Expand Configuration Properties, and then expand C/C++.
Click Code Generation. Change Runtime Library from Multi-threaded Debug DLL (/MDd) to Multi-

threaded Debug (/MTd) as shown in Figure 3.

HelloWorld Property Pages |I||E|
Configuration: [Active([}ebug] | Platform: | Active(Win32) "l [Configuration Manager... l
Commeon Properties - Enable 5tring Pocling Mo
Configuration Properties | Enable Minimal Rebuild Yes (/Gm)
General Enable C++ Exceptions Yes ({EHsc)
Debugging Smaller Type Check Mo
C/Ce+ Basic Runtime Checks Both (/RTC1, equiv. to /RTCsu)
General Multi-threaded Debug (/MTd) v
Optimization Struct Member Alignment Multi-threaded (/MT)
Preprocessor

Buffer Security Check Multi-threaded Debug (/MTd)
Multi-threaded DLL (/MD)
Multi-threaded Debug DLL (/MDd)

<inherit from parent or project defaultss

Code Generation

Enable Function-Level Linking
Enable Enhanced Instruction Set
Floating Point Model

Enable Fleating Point Exceptions MNo

Language

m

Precompiled Heade
Output Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
XML Document Genera
Browse Information |
Build Events

; Runtime Library
Custom Build Step _ | Specify runtime library for linking. ~ (/MT, /MTd, /MD, /MDd)

~ &

4 | mn | »

ok || Cancel || apply

Figure 3

Changing the runtime library to Multi-threaded Debug makes the application self-contained without the
need for additional DLLs. The application is finished. Press CTRL+F5 to test the application. You should
see a console window that displays “Hello World”.

Preparing the Windows Embedded Standard 7 Image

Now that the application is finished, your goal will be to create an image with the minimum Windows
Embedded Standard footprint required to deploy this application. To create the image, follow these
steps.

Statically analyze the HelloWorld application
To start the Image Configuration Editor (ICE), click Start, point to All Programs, point to Windows
Embedded Standard 7, and then click Image Configuration Editor. Then open the 32-bit Distribution

Share by pointing to File and clicking Select Distribution Share. On the File menu, click New Answer

File. You should now have a screen similar to the one shown in Figure 4.

File Edit Validate Insert Tools Community Help
EEBEEXQRE @ ,
—— = |
P dnds 4 [# Untitled N -
| SOEMS Folders 4 |) Product Filter view by: | All Settings -
| Out-of-Box Drivers 4 | | Operating System Mame & Value Path Pass it
| Packages 4 | | Foundation Core = - L
_—— | [|% E
|| Driver » [Windows Embedde 2] |_| AuditComputerName Windows...ment_x86 P35
| FeaturePack [%| AutoLogon Windows...etup_x86 P4, P5, P7
| LanguagePack %] BluetoothTaskbarlconEna... Windows...etup_x86 P2, P3, P4, P6, P7
L Product [# BootDriverFlags 0 Windows...|-PrP x86 P2
| Update X
|} Templates % Cachelimit Windows...ation_x86 P4
5
% Cachelist Windows...rvice x86 P4
% CEIPEnabled 1 Windows...MApi_x86 P4
ﬁl ClientApplications Windows...etup_x86 P4, P6, P7
%] ComplianceCheck Windows...etup_x86 P1
%] ComputerMame Windows...etup_x86 P4
] CopyProfile Windows...etup x86 P4
%] CreateSeparateSystemParti... Windows...etup_x86 P1
ﬁl DefaultConsent 0 Windows...Core_x86 P4
%] Diagnostics Windows...etup_x86 P1
‘ i D L s ~tim w@E DA NE N7 i
Estimated Footprint: 530 MB / 550 MEB Type: Object
Messages
AML 0] | Validation (0) | File Copy (0) | Import PMQ) {0}
Description Source Location
Figure 4

Now that you have an empty answer file, you will do a static analysis of the HelloWorld.exe binary. On
the Tools menu, click Analyze Static Dependencies. The Windows File Open dialog box appears. Click the
Files of type arrow, and select Executables and Libraries (*.dll, *.exe).

Locate the HelloWorld.exe file that is located in C:\HelloWorld\Debug folder, and then click Open. The
Analyze Static Dependencies dialog box appears as shown in Figure 5.

—— — h
a5 Analyze Static Dependencies Iﬁ

Mapped Dependencies | Urmapped Dependenc;ies|

The anatyzed file(s) dependis) on the following Windows® Embedded Standard 7 packages. Flease make a
selection between any required choices and select any optional packages to be included.

Packages Package files being used
Required Packages i
[#] Windows Embedded Edition (already in answe

[¥]Win22 Application Rurtimes and Libraries

Input files which depend on this package

1| 1] 3 -
Input Files
[7] Copy analyzed file(z) to @ new SOEMS Folders subfalder
MName: I
Estimated Footprirt: 17.6 MB / 568 MB 0K || cancel |
Figure 5

Be aware that the required packages are already in the answer file.

Usually when you create an image and want the application to run on the image, you would select the
Copy Analyzed File(s) to a new SOEM Folders subfolder check box. However, because the goal of the
current image is to actually debug the application, you will skip this step. If you were actually going to

deploy the application, you would select this option. After vetting and debugging the application, you
can return to this step and select that option to correctly deploy the binary to the target image. Clear

the Copy Analyzed File(s) to a new SOEM Folders subfolder check box, and then click OK.

1. Resolve dependencies
Resolve all image dependencies by pressing CTRL+F5 in ICE. One error will be displayed in the Messages

pane. Double-click the error and the Resolve Dependencies dialog box appears as shown in Figure 6.

-

- Resolve Dependencies @

|l Windows Embedded Edition
requires the following package dependencies be satisfied, Please select how to satisfy all dependencies. Once
all dependencies are resclved, click OK to commit your changes to your configuration,

4 Drequires exactly one of (Resclved)
[¥]Windows Boot Envirenment
[T1Enhanced Write Filter Boot Environment
4 Drequires exactly one of (Reschved)
[[|Unbranded Startup Screens
[¥]Windows Embedded Standard Startup Screens
4 Drequires exactly one of (Resclved)
[[]Command Prompt Shell with Customn Shell Support
[¥]Windows Explorer Shell
4 Drequires exactly one of (Reschved)
[(1Bootable Windows USBE Stack
[¥] standard Windows USE Stack
4 Drequires at least one of (Resolved)
[T German Language Pack
[¥]English (US) Language Pack
[]5panish Language Pack
[“|French Language Pack

LTI PR [P o g

m

Estimated Footprint: 21.2 MB / 571 MB oK] [—

Figure 6

Select the options shown in Figure 6.

2. Create shared folder for the target device.
In order to be able to run the application on the target device, you will create a shared folder. On the

Insert menu, point to Synchronous Command, and then click Pass 7 oobeSystem . The Create
Synchronous Command dialog box will appear as shown in Figure 7:

-

Create Synchronous Command @
Enter a cornmand line: Order
mikdir c:\temp| 1 =
oK l l Cancel
Figure 7

In Enter a command line, type mkdir c:\temp. Click OK. When the command runs it will create the

folder where your application will be deployed.

Add another synchronous command to be able to dynamically deploy the program to the target
computer. On the Insert menu, point to Synchronous Command, and then click Pass 7 oobeSystem .
Type the following command: net share temp=c:\temp /grant:EVERYONE,FULL as shown in Figure 8:

Create Synchronous Command @
Enter a command line: Order
net share temp=c\temp /grant: EVERYONE,FULL | 3 =
[oK l l Cancel
Figure 8

3. Add Visual Studio Debugger to image.
Because the goal of this exercise is not only to have the application up and running, but also to set up
remote debugging should anything go wrong, you must install the Visual Studio debugging client onto
our image. The remote debugging client is located on the installation media of Visual Studio 2005 or a
later version. On Visual Studio 2008 installation media, it is located at Remote

Debugger\x86\rdbgsetup.exe. Perform a static analysis on this item and add it to our image. On the
Tools menu, click Analyze Static Dependencies in ICE.

The static analysis will reveal that the item will need nothing more than the Windows Embedded Core
package. Check the Copy analyzed File(s) into SOEMS Folder subfolder check box. In Name, type
Debug, and then select Add new subfolder path to OemFolderPaths as shown in Figure 9:

[1

- Analyze Static Dependencies ==
Mapped Dependencies | Unmapped Dependencjeg|
The analyzed file(s) dependis) on the following Windows® Embedded Standard 7 packages. Please make a
gelection between any required choices and select any optional packages to be included.
Packages Package files being used
Required Package L
[#] Windows Embedded Edition (already in answe
Input files which depend on this package
A
1 | 1] 3 -

Input Files
Copy analyzed file(s) to a new SOEMS Folders subfolder

Mame: Debug
Add new subfolder path to OemFolderPaths setting in answer file

Estimated Footprint: 0.00 KB / 550 MB 0K || Cancsl

Figure 9

There is one additional step that you will take to install the remote debugger with product. On the
Insert menu, point to Synchronous Command, and then click Pass 7 oobeSystem . In Enter a command
line, type “C:\rdbgsetup.exe” for the remote debugger setup. This command will run the remote
debugger setup during the first boot run of the image as shown in Figure 10.

1 test - Windows Virtual PC = = =

Action -+ Tools = Ctrl+Alt+Del @ -

ii&: Microsoft Visual Studio 2008 Remote Debugger Setup

Welcome to Microsoft Visual Studio 2008
Remote Debugger Setup

Thig wizard will guide you through the installation process.

Windows Embedded
For testing purposes only. Build 7600

Figure 10

4. Create IBW Image
Now you have prepared an answer file, you can create an IBW image with only the required packages.
Insert a USB key into your computer. In ICE, on the Tools menu, point to Create Media, and then click
Create IBW Image from Answerfile. The Create IBW Disk dialog box appears. Locate the root folder of
the USB key. Click OK. The files that are needed to create the image will be copied to our USB drive as
shown in Figure 11.

A Create IBW Disk

Select the target folder for the image

Cancel

Figure 11

Deploying

Before you create the image by using IBW, make sure that the primary partition of the USB keys set to
active so that the image can boot from the key. You will use the Disk Management utility as shown in
Figure 12. Click Start, and type “Computer Management”. Press ENTER. The Computer Management
utility will appear as shown in figure 12. Right-click the USB partition and then click Mark Partition as

Active.

» (%) Performance
=y Device Manager
4 =5 Storage
=% Disk Management
= Services and Applications

I

195,31 GB NTFS (BitLocker Encry
Healthy (Boot, Page File, Crash L

m

B Unallocated Wl Primary ¢

Figure 12

Extend Volume...

Shrink Velume...

—4Disk 0
Basic (H2) D2 ()
485.76 GB 100 MB N° || 270.35 GB NTFS
Online Healthy (S || Healthy (Primary Partition)
CaDisk 1 .|
Basic backup (E:)
931.51 GB 931,51 GRLMTES
Online Healthy Open
Explore
caco-romo | HERE==""Tark Partition as Active
ovD DVD1 | -
38368 283 GB Change Drive Letter and Paths...
Online Healthyl Format...

b omputer Management
C M =
File Action
=AC
& Computer Management (Local|| Volume | Layout| Type| File System | Status Actions
4 [[’j System Tools ca (C) Simple Basic MNTFS (BitLocker Encrypted) Healthy (Boot, Page File, Crash Dump, Primary F Disk Management -
3 @ Task Scheduler a (D) Simple Basic NTFS Healthy (Primary Partition) .
> Event Viewer Ca (H: imple Basic ealthy (System, Active, Primary Partition
(H:) Simple Basic NTFS Healthy (5 Active, Primary Partition) More Actions 4
> ai| Shared Folders Cwhackup (E) Simple Basic NTFS Healthy (Primary Partition)
. ¥ Local Users and Groups o DVDL (F) Simple Basic UDF Healthy (Primary Partition)

Make sure that the BIOS of the device is set so that the USB device is given boot priority. Plug the USB
key into the device and restart it. IBW appears as shown in Figure 13.

S U . N

Please read the license terms

MICROSOFT PRE-RELEASE SOFTWARE LICENSE TERMS

MICROSOFT WINDOWS EMBEDDED STANDARD 2011 RELEASE CANDIDATE

These license terms are an agreement between Microsoft Corporation (or based on
where you live, one of its affiliates) and you. Please read them. They apply to the pre-
release software named above, which includes the media on which you received it, if
any. The terms also apply to any Microsoft

updates,
supplements,

Internet-based services, and

support services

[~ 1accept the license terms

1 Collecting information 2 Installing Windows

Figure 13

Accept the license, and accept all the default options, or other options depending on what your needs
are. These selections will not affect the ability to complete the next steps in this document. After the
image is deployed, you should have a display similar to the one in Figure 14.

r .
=)

Recyde Bin

Windows Embedded
For testing purposes only. Build 7600

== 403 PM
= 2/26/2010

Figure 14

Debugging

Now that the image deployed, it is fairly easy to remotely-deploy our application. First in Visual Studio,

instead of outputting the application locally, you will output it to the embedded computer that we
created. In Visual Studio, on the Project menu, click Properties. The Project Properties page appears as

shown in Figure 15:

KioskCPP Property Pages

(-7 (el

Configuration: | Active(Debug)

v | Platform: | Active(64)

"l [Configuration Manager...]

» Common Properties
» | Configuration Properties

Debuagerto launch:

[F{emote Windows Debugger

*)

Remote Command
Command Argurments
Working Directory
Remote Server Name
Connection

Debugger Type
Attach

5QL Debugging

Remote Command
The debug command to execute.

S(OutDir)\S(ProjectMame).exe

MNICKIAYZ

Remote with Windows authentication
Auto

Mo

Mo

OK] ’ Cancel

Apply

Figure 15

Expand Configuration Properties, and then click General. Change the default Output Directory to the

target computer’s temp folder. For example, if the name of computer is Foo, then you would type
\\Foo\temp\$(ConfigurationName). This is shown in Figure 16:

KioskCPP Property Pages

Configuration: [Active(Debu gl

B

Common Properties
Configuration Properties

General

Debugging

C/C++

Linker

Manifest Tool

XML Document Generator
Browse Information
Build Events
Custom Build Step
Code Analysis
Application Verifier

4

11 | b

=

=

~| Platform: |Active(Win32)

'l [Cenfiguration Manager...]

Output Directory

Intermediate Directory

Extensions to Delete on Clean
Build Log File

Inherited Project Property Sheets
Enable Managed Incremental Build

Configuration Type
Use of MFC

Use of ATL
Character Set

Cormmen Language Runtime support
Whole Program Optimization

Output Directory

Specifies a relative path to the output file directory; can include envirenment varnables.

\\Foohtemp\$(ConfigurationName)
£{ConfigurationName)

“objilkg* tby i th* trmpy rep* pg g * . pgd; . meta; 5(]
S{IntDir)\BuildLog.htm

Yes

Application (exe)
Use Standard Windows Libraries

Mot Using ATL

Use Unicode Character Set

Mo Cemmoen Language Runtime support

Mo Whele Program Optimization

[=]

ok || canca ||

Apply

Figure 16

From the Configuration Properties list, click Debugging. The default option in Visual Studio is to use the
local Debugger. Select the option to use the remote debugger by selecting the Remote Windows
Debugger check box as shown in Figure 17:

KioskCPP Property Pages

Configuration: [Active(Debug]

vl Platform: [Acti.veiWi.n}Z] 'l [Configuration Manager...]

Common Properties
Configuration Properties
General
Debugging
CfC++
Linker
Manifest Tool
AML Docurnent Generator
Browse Information
Build Events
Custom Build Step
Code Analysis
Application Verifier

Debugger to launch:
\Loeal Windows Debugger |
Local Windows Debugger

Remote Windows Debugger

Web Service Debugger

MP| Cluster Debugger
‘Web Browser Debugger

Working Directory
Attach Mo
Debugger Type Auto
Environment
Merge Envircnment Yes
SQL Debugging Mo
Command
The debug command to execute.

[oK] ’ Cancel Apply

Figure 17

For the Remote command, type $(OutDir)\$(ProjectName).exe. This will start our program on the
remote computer. Change the Remote Server Name and Connection options to match the computer
name and authentication that is used for your target image. It will vary depending on whether you are
connected to a domain or part of a workgroup. This is shown in Figure 18.

KioskCPP Property Pages @
Configuration: [Active([}ebug] vl Platform: [Active(}@l) "l [Configuration Manager..,]
Common Properties Debugger to launch:
Configuration Properties [Remote Windows Debugger v]
General
E"TEUggi”g Remote Command S(OutDir)\S(ProjectMame).exe
Jio++

Link Command Argurments
tker Working Directory

Manifest Tool
erifest Too Remote Srverame [0 B

XML Document Generator

Browse Information Connection Remote with Windows authentication
Build Events Debugger Type Auto

Custom Build Step Attach Mo

Code Analysis 5QL Debugging Mo

Application Verifier

Remote Server Name
specifies a remote server name.

] 1l | »

ok || cancel || Apply

Figure 18

You are almost finished. On the target computer, run the Remote Debugging Client. On the
target computer click Start, point to Programs, point to Microsoft Visual Studio 2008. Point to Visual
Studio Tools, and then click Visual Studio 2008 Remote Debugger. The Visual Studio Remote
Debugging Monitor appears as shown in Figure 19:

Visual Studio Remote Debugging Monitor (Administrator)

File Tools Help
Date and Time | Description |

i3/23/2010 5:37:05 PM Mavemon started a new server named foo @foo-PC, Waiting for new connections,

Figure 19

You are now ready to deploy the application directly from the development computer to the destination

computer and debug it. In the C++ project, set a breakpoint where the “Hello World” is displayed on the
console, as shown in Figure 20:

B int _tmain(int argc, _TCHAR* argv([])
{

Q printf ("Hello Worldin™);

return 0;

Figure 20

On the Debug menu, click Start Debugging. This starts the application on the destination computer.
You will receive a notification in the remote debugging client on the destination Windows Embedded
Standard 7 computer that an external computer has connected as shown in Figure 21:

r

<2 Wisual Studio Remate Debugging Monitor E'@
File Tools Help
Date and Time Cescriptian
32372010 6:05:13 PR Mawsmon started a new server named 'REDRONDY Waiting £
372372010 6:05:24 P4 REDRAOMND connected,
32372010 6:08:16 Ph REDMOMND connected,

Figure 21

When you run the application, it will hit the breakpoint you set on the development computer as shown
in Figure 22:

Hint tmain(int argc, TCHAR* argv[])
i

") printf ("Hello Worldi\n™):

return 0;

Figure 22

Summary

The techniques described in this document apply not only to Visual C++ applications, but to any other
application type you can create in Windows 7. This includes, but is not limited to, the following:
ASP.NET pages, Windows Forms Applications, Windows Presentation Framework (WPF) applications,
Silverlight applications, Windows Communication Framework (WCF) services, and more. In addition,
although it is beyond the scope of this document to describe in detail, third-party and open-source
technologies that can run on Windows 7 can also run on Windows Embedded Standard 7. Because the
correct dependencies are satisfied on the target image, there really is no limit to the applications that
you can develop, deploy, and debug on Windows Embedded Standard 7.

