

Componentization of Device Drivers in
Windows Embedded Standard 7

Introduction
This article describes the componentization of in-box device drivers for Windows Embedded Standard 7

(Standard 7). Within this article, any mention of “driver” refers to an “in-box” device driver which is

installable from Standard 7.

Device driver support is very important for embedded devices, especially because many embedded

devices are designed to be used with specific or specialized hardware. However, there are cases in which

off-the-shelf hardware is used based on availability or to reduce the cost per device. Regardless, robust

and reliable hardware functionality is very important for the successful deployment of embedded

devices. This leads to the question, “Why Componentize Drivers”?

Why Componentize Drivers?
Because many embedded devices are constrained by storage space, it would be wasteful to have all the

driver files present on the device. Instead, it would make sense for the device to only contain the driver

files that are required for the specific hardware on the device. In Windows 7, all the driver files are

present on the destination computer regardless of which drivers are actually loaded.

In addition to the reduction in storage space, we receive other benefits which include the following:

 Reduced maintenance overhead – updates and service packs only contain the necessary driver

changes.

 Reduced attack surface – from a security standpoint, the device can be locked down by

intentionally omitting driver software for hardware that has to be disabled on the device (for

example, disabling USB support).

 Streamlined installation images – after you create an embedded image, only the required or

desired driver software will be present.

Some driver installation scenarios are enumerated in the following section.

Driver Installation Scenarios

 Quickly create and deploy an image on an embedded device by using the Imaged Based Wizard

(IBW), where we are prototyping. We want to automatically discover all the hardware attached

to the device and install the correct drivers for them.

 Create an “answer file” image configuration by using the Image Configuration Editor (ICE),

where we only want to include drivers for the hardware we want to support.

 Quickly create and deploy an image to an embedded device by using IBW, but instead of

automatically discovering the hardware attached to the device, we want to import a

DEVICES.PMQ file. This can be generated by running Target Analyzer Probe (TAP.EXE). We have

edited the PMQ file to remove the hardware entries we do not want to support.

 After you deploy an image to a device, you want to install additional drivers online after booting

into it.

These scenarios were central to the design of this solution. The first step
is determining the exact set of drivers we have to componentize.

Identifying Drivers to Componentize
Standard 7 is based on the Windows 7 Ultimate product. So, the set of drivers to componentize include
all those present in Ultimate. However, certain drivers must always be present in an embedded image.
Therefore they must always be installed automatically. These drivers fall into the following two
categories:

 Boot critical drivers – these drivers are considered required for an embedded image to boot. In
Windows, each driver is categorized in a “device class”. For boot critical drivers, the associated
device classes are considered boot critical.

 Bus enumerator drivers – these boot critical drivers manage and discover hardware attached to
a device bus (for example, PCI, USB, AGP, and more.). Because these drivers are necessary for
device discovery, they must always be present.

Therefore, the boot critical and bus enumerator drivers will be installed as part of the Standard 7
runtime, with the remaining drivers being the exact set we have to componentize. Because we now
have the set of drivers to process, we now have to examine the driver data we must collect. A driver is
installed from an INF file. Upon close investigation of INF files, we find that we can extract all the driver
data we need from them.

The following section examines the INF file structure to see where the data resides.

INF File Structure
INF files are basically organized into “sections”, where each section contains one or more key/value pair

“entries”. Here is an example INF section with some entries. For detailed information on the INF file

structure see About INF File Architecture.

[Version]
Signature="$Windows NT$"
Class=MEDIA
ClassGuid={4d36e96c-e325-11ce-bfc1-08002be10318}
Provider=Microsoft
DriverVer=07/13/2009,6.1.7600.16385
PnPLockdown=1

INF files contain lots of data for driver installation. However, we will only focus on what we need. In
particular, the following information is of interest:

 Device identification strings

http://msdn.microsoft.com/en-us/library/aa741215(VS.85).aspx

 Include entries

 Package-aware printer driver sharing

Device Identification Strings
The Plug and Play (PnP) manager and Windows setup use “device identification strings” to identify

hardware which is attached to a computer. There are three types of device identification strings. These

are as follows:

1. Device ID – a given piece of hardware has only one device ID that is the most specific “hardware

ID” for it.

2. Hardware ID – is a vendor-defined identification string that Windows setup uses to match a

hardware device to an INF file. There is usually a list of hardware IDs for a given hardware

device, where the first is the device ID and the subsequent IDs are less specific.

3. Compatible ID – is also a vendor-defined identification string that Windows setup uses to match

a hardware device to an INF file. These are used by Windows setup to match a hardware device

in case all the hardware IDs did not provide a match.

So Windows setup maps discovered device identification strings to driver INF files when it tries to find a

driver. The best match is found by matching the device ID first. When this is not matched, the remaining

hardware IDs are matched followed by the compatible IDs. For a complete discussion on how drivers are

ranked and matched see How Setup Selects Drivers.

Device identification strings are defined in the INF “models” section, here is a sample of a models

section where the highlighted areas are device identification strings; in this case they are all hardware

IDs. If you want to dig deeper into INF sections see INF File Sections and Directives.

[ATI.Mfg.NTx86...1]
"AMD 760G (Microsoft Corporation WDDM 1.1) " = ati2mtag_RS780, PCI\VEN_1002&DEV_9616
"AMD 780E (Microsoft Corporation WDDM 1.1) " = ati2mtag_RS780, PCI\VEN_1002&DEV_9615
"ATI FireGL T2 (Microsoft Corporation - WDDM) " = ati2mtag_RV350GL, PCI\VEN_1002&DEV_4154
"ATI FireGL T2 Secondary (Microsoft Corporation - WDDM) " = ati2mtag_RV350GL, PCI\VEN_1002&DEV_4174
"ATI FireGL V3100(Microsoft Corporation - WDDM) " = ati2mtag_RV370GL, PCI\VEN_1002&DEV_5B64
"ATI FireGL V3100 Secondary (Microsoft Corporation - WDDM) " = ati2mtag_RV370GL, PCI\VEN_1002&DEV_5B74
"ATI FireGL V3200 (Microsoft Corporation - WDDM) " = ati2mtag_RV380GL, PCI\VEN_1002&DEV_3E54
"ATI FireGL V3200 Secondary (Microsoft Corporation - WDDM) " = ati2mtag_RV380GL, PCI\VEN_1002&DEV_3E74
"ATI FireGL V3300 (Microsoft Corporation - WDDM) " = ati2mtag_RV515GL, PCI\VEN_1002&DEV_7152

Include Entries
INF files can “include” other INF files to refer to common sections and entries. This is defined in the
“DDInstall” section with the “Include” entry.

What follows is an example DDInstall section where two INF files are being included. The highlighted line

shows the Include entry; in this case both the “ks.inf” and “wfmaudio.inf” files are being included.

[HdAudModel]
Include=ks.inf,wdmaudio.inf

http://msdn.microsoft.com/en-us/library/ff546228(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff547433(v=VS.85).aspx

Needs=KS.Registration,WDMAUDIO.Registration,mssysfx.CopyFilesAndRegister
CopyFiles = HdAudModel.CopyList
AddReg = HdAudModel.AddReg
AddProperty = HdAudBranding.AddProperty, HdAudModel.AddProperty

Package Aware Printer Driver Sharing
There is another mechanism used to share INF sections and entries. However, it is specific to printer

driver INF files. To optimize the writing of printer drivers, Microsoft provides a “core printer driver” INF

named “ntprint.inf”. This specifies common sections and entries. Printer driver INF files can be coded to

refer to this common data by using the “Package Aware Printer Driver Sharing” feature.

The common sections and entries are shared with GUIDs from ntprint.inf. To reference these common

sections and entries, a printer INF defines the “CoreDriverSections” entry in the DDInstall section, where

the common sections and GUIDs are referenced. Shown here is an example in which the highlighted line

shows this, the sections: “UNIDRV.OEM”, “UNIDRV_DATA” and “sRGBPROFILE.OEM” are located in

ntprint.inf. All the entries within these sections are also implicitly shared. Printer driver writers can use

this feature to share sections and entries within their own printer drivers. If you are interested in

reading more see Package Aware Printer Drivers That Share Files.

[BRM8640D.LPT.GPD]
CopyFiles=@BRM8640D.GPD,BRZL2_UNIDRV.CopyList
DataFile=BRM8640D.GPD
CoreDriverSections="{D20EA372-DD35-4950-9ED8-A6335AFE79F0},UNIDRV.OEM,UNIDRV_DATA","{D20EA372-
DD35-4950-9ED8-A6335AFE79F3},sRGBPROFILE.OEM"

Driver Packaging and Selection
Now that we have identified all the required driver data, we can now focus on how we will package the

drivers. We also have to figure out how to select the correct drivers for installation.

We will create driver packages which will contain all the driver bits which must be installed. Also, we will

provide package metadata in the driver packages which will be used to identify them for specific

hardware devices. We also have to think about how we will manage dependencies, because a driver

might require other driver or non-driver software to be previously installed. We can add this

dependency information into the package metadata also.

We take these ideas and produce a design for driver packaging. The
following section examines the proposed driver package structure.

Driver Package Structure
Each driver to be componentized will be in its own driver package. This driver package structure will

consist of the following:

http://msdn.microsoft.com/en-us/library/ff559704.aspx

 Driver payload

 Package manifest file

 Package catalog file

 Driver component manifest file

Driver Payload
This is composed of the driver INF file and all the driver specific files such as SYS, DLL, and so on. – note

some driver payload will only consist of an INF file. There will also be an additional catalog file for printer

drivers only. This file contains a hash of the complete printer driver payload.

Package Manifest File
We will be using the standard Windows package format for our packages. Therefore, we have to provide

a package manifest file. This file specifies internal package settings required by Windows setup. This file

can be augmented to include additional settings also. We will take advantage of this by adding the

package “metadata” we mentioned earlier. This package metadata will consist of the following:

1. Device identification strings – this will be all the hardware and compatible IDs for all the

hardware devices supported by the driver INF. This will be used by IBW and ICE to map

discovered device identification strings for attached hardware devices on an embedded device,

to driver packages.

2. Package dependencies – this is the list of driver or non-driver packages. These must be installed

before this driver Package. This information will be used by IBW and ICE.

Package Catalog file
This is a required file for all Windows packages. It contains a hash of the complete driver package.

Driver Component Manifest File
Within Windows, each driver is considered a “component”. Components are referenced from packages,

and are the smallest unit of installation within Windows setup. Each component is defined in a

“component manifest file”.

INF File

Catalog File *Printer Drivers Only

<Driver Specific Files>

SYS

DLL

...

Driver Payload

Package Specific

Driver Package Structure

Package Manifest File

Driver Component Manifest File

Package Catalog File

<Internal Package Settings>

...

Device Identification Strings

Package Dependencies

<Hardware IDs>

…

<Compatible IDs>

...

<Package Names>

...

Package Metadata

Now that we have the package format that is defined and that supports the desired driver installation

scenarios we have previously outlined, we can now focus on how to build these packages.

Driver Package Creation Process
Here are the steps we have to take:

1. Parse the INF files

2. Determine the package dependencies

3. Store the processed driver data

4. Build the packages

5. Publish the packages

Parsing the INF Files
As mentioned earlier, the Standard 7 product is based on Ultimate. Therefore all the relevant INF files

from Ultimate are parsed. However as we mentioned earlier, we will filter out any INF files for drivers

which are boot critical or bus enumerators. These drivers will always be installed with the Standard 7

runtime.

For each INF file we process, we extract the following data:

 INF filename

 Device class

 Include entries

 Package Aware Printer Driver Sharing entries

 Hardware IDs

 Compatible IDs

The extracted hardware and compatible IDs will be added to the package metadata.

Determining the Package Dependencies
After we have parsed the required INF files to pull the relevant data, we must now determine whether

we have any package dependencies. Therefore, we can add them to the package metadata. There are

three types of dependencies:

1. Driver dependencies – these can be discovered by examining the Include entries and by looking

at the Package Aware Printer Driver Sharing entries. The result will be referenced INF files,

where each referenced INF refers to a driver package we must add a dependency on.

2. Binary dependencies - for driver binary payload files (for example SYS, DLL files and so on) we

perform binary dependency analysis. We examine each driver binary to see whether it depends

on other files in the system. The packages which contain these discovered file dependencies are

added as package dependencies. These can be driver or non-driver package dependencies.

3. Undiscoverable dependencies – there are driver and non-driver package dependencies which

are not discoverable. In this case, we manually add these package dependencies to the package

metadata.

Storing the Processed Driver Data
All the processed INF data is stored in an internal “data store” repository that contains all the extracted

driver information.

Data Store

Repository

Extract Relevant Driver Data

Driver Package Creation Process – Steps 1 thru 3

INF Files

Determine Package

Dependencies

Parse INF Files

Store Processed

Driver Data

Building the Packages
There is an internal package build tool that is used to build packages. This tool was also adapted to build

driver packages. The source for packages is defined in “YAML” files, which define a simple key/value

syntax. See YAML Ain’t Markup Language for more information on the YAML file format.

The YAML files for driver packages are automatically generated for each driver defined in the data store

repository. What follows is an example YAML file for the “WinEmb-INF-hdaudio” driver package. Note:

the “$(MWE)” macro expands to the “WinEmb-” prefix.

%YAML 1.1

http://yaml.org/

name: $(MWE)INF-hdaudio
displayName: Microsoft UAA Function Driver for High Definition Audio (HDAudio)
status: official
restart: true
category: Media

dependsOnPackages:
- $(MWE)INF-ks
- $(MWE)INF-wdmaudio

package components section

components:
- hdaudio.inf

#---
eof
...

Examine theYAML file closely. Notice that the driver package dependencies are defined as

“dependsOnPackages” YAML key values. This particular driver package depends on two packages:

“WinEmb-INF-ks” and “WinEmb-INF-wdmaudio”. The “category” YAML key value: “Media” is the

extracted driver class. The “components” YAML key value: “hdaudio.inf” is the driver component name.

This is the same as the driver INF filename. Windows driver components are named the same as the

driver INF filename.

Note: we do not have to store the hardware and compatible IDs in the YAML file. This information will

be pulled directly from the data store repository during package creation.

The package build tool processes all the YAML files, while referencing the data repository for associated

driver data. Then it outputs package “Cabinet” (CAB) files for each. The final package CAB files are then

published. This is described next.

Data Store

Repository

Generate Package YAML

Files

YAML

Files

Driver

Package

CABs

Package Build Tool

Driver Package Creation Process – Step 4

Process YAMLs

Access Driver Data

Publishing the Packages
The final package CAB files are published by importing them into the “Distribution Share” (DS). This is a

package repository accessed by IBW and ICE. Package CAB files are imported into the DS by invoking the

ImportPackage tool.

Driver Package Creation Process – Step 5

Driver

Package

CABs

ImportPackage Distribution

Share

IBW

ICE

Publishes Packages

Tools Can Access Driver

Packages

Device Discovery
As mentioned earlier, you can run TAP.EXE to generate a DEVICES.PMQ file. PMQ files can be imported

into IBW or ICE when you build an image to automatically map driver packages from the DS which match

the device identification strings in the PMQ. IBW will internally start TAP.EXE to automatically map

driver packages, if you select the option to automatically map drivers to devices.

Installing Additional Drivers
After you build an image, and deploy it to an embedded device, you may want to install additional

drivers after booting into it. You can do this in ICE by creating a new answer file, and then adding the

desired driver packages and associated package dependencies, followed by creating a “configuration

set”. This configuration set can then be deployed to an image online, by using the Deployment Image

Servicing and Management tool (DISM) utility.

Conclusion
The result of all this work gives embedded system designers the ability to fine tune driver installation on

an embedded device. This provides great benefits and flexibility for prototyping embedded image

deployments and for building optimized production ready images.

If you are interested in how to diagnose driver setup issues, see the following series of blog articles:

Diagnosis of Driver Setup Issues in Windows Embedded Standard 7 – part 1, 2 and 3.

Best of luck!

