B® Microsoft

Microsoft®
erminology Service AP

Last updated: January 2022

Microsoft Terminology Service API
New features in version 2.0 (June 2014)

Using the Terminology Service APl in Visual Studio

Public Methods

—_

GetCapability Method

Syntax

Return Value

Examples

GetLanguages Method

Syntax

Return Value

Examples

GetProducts Method

Syntax

Return Value

Examples

GetTranslations Method

Syntax

Parameters

© 0 oo o o o v »n utn Ltn MM DM DM W

Return Value

Sorting

Examples

Language and Locale Codes

Version History

Microsoft® Terminology Service API

10
11
13
16

Microsoft Terminology Service AP

The Microsoft Terminology Service API allows applications to look up terminology translations and user-interface
translations from actual Microsoft products. The Terminology Service APl is provided as a SOAP API, and it can be
used with any technology capable of creating SOAP requests and parsing SOAP responses.

New features in version 2.0 (June 2014)

There are several new features provided in the version 2.0 release of the Microsoft Terminology Web Service. These
features are:

e Support for “any to any” language translation searches. In previous versions of the API, searching was
restricted to either en-us to a target language, or to en-us from a source language. You can now search from
any language to any language.

e The ability to filter your search with string case and hotkey sensitivity. A new parameter in the
GetTranslations method allows you to specify the sensitivity level.

Although the GetTranslations method signature has an added parameter, existing client code will remain compatible
and will not break existing programs. To take advantage of the new features, however, applications will need to
regenerate their client proxy to retrieve the new method signature.

Using the Terminology Service API in Visual Studio

You can add the Terminology Service API as a Windows® Communication Foundation (WCF) service reference to a
Microsoft Visual Studio® project so that SOAP requests and responses are handled automatically for your application.
Here are the general steps for adding a service reference to a Visual Studio 2012 project:

1. Ensure that your Visual Studio project is configured to use the Microsoft .NET 3.5 Framework, .NET
Framework 4, or .NET Framework 4.5. If not, you will have to add a web reference instead of a WCF service
reference.

2. Right-click the project, and then select Add Service Reference.

3. Enter the URL https.//api.terminology.microsoft.com/Terminology.svc into the Address field, and then click
Go.A SOAP service should appear in the Services list.

1 Microsoft® Terminology Service API

https://api.terminology.microsoft.com/Terminology.svc

4. Setthe 'TerminologyService’ in the Namespace box, and then click OK. Client proxy classes are added to the
project.

Add Service Reference ? X

To see a list of available services on a specific server, enter a service URL and click Go. To browse for
available services, click Discover.

Address:

https://api.terminology.microsoft.com/Terminology.svc

Services: Operations:

> =@ Terminology

1 service(s) found at address 'https://api.terminology.microsoft.com/Terminology.svc'.

Namespace:

|Terrr|in0|cgyService‘ ‘

T e

5. Now you can create an instance of the TerminologyClient proxy class in the TerminologyService
namespace to call methods of the SOAP API.

TerminologyService.TerminologyClient service = new
TerminologyService.TerminologyClient();

6. After creating an instance of the TerminologyClient proxy class, you can call its GetTranslations method to
retrieve translations. A simple example of calling GetTranslations is illustrated in the following code snippet:

using System;
using SampleApplication.TerminologyService;

namespace SampleApplication

{

class Program

{

static void Main(string[] args)

// Create a collection to define the desired sources of translations

TranslationSources translationSources = new TranslationSources() ¢
{TranslationSource.Terms, TranslationSource.UiStrings};

2 Microsoft® Terminology Service API

// Create the proxy for the Terminology Service SOAP client

TerminologyClient service = new
TerminologyService.TerminologyClient();

// Call GetTranslations to get the results

Matches results = service.GetTranslations("start button", "en-us",
"es-es",

SearchOperator.Contains, translationSources, false, 20, true,
null);

// Use the results

foreach (Match match in results)

{
Console.WriteLine(match.OriginalText);
Console.WriteLine(match.Translations[@].TranslatedText);

Public Methods

The following public methods are available in the Terminology Service API:

GetCapability
GetLanguages
GetProducts
GetTranslations

Each method is covered in more detail on the subsequent pages.

3 Microsoft® Terminology Service API

GetCapability Method

The GetCapability method returns an object that defines the capabilities of the current version of the Terminology
Service API. For example, it allows checking whether the APl supports a reverse translation from a target language to
English (United States).

Syntax

Capability GetCapability();

Return Value

Type: TerminologyService.Capability
A Capability object with the following properties:

Property Description

SupportsEnUsToAny If true, GetTranslations supports translating en-us text to any other language returned
by the GetLanguages method.

SupportsAnyToEnUs If true, GetTranslations supports translating to en-us from any other language returned
by the GetLanguages method.

SupportsAnyToAny If true, GetTranslations supports translating from any language to any other language,
provided both languages are returned by the GetLanguages method.

Examples

(@)
3+

// Create the proxy for the Terminology Service SOAP client

TerminologyClient service = new TerminologyService.TerminologyClient();

// Call GetCapability

Capability capability = service.GetCapability();

Console.WriteLine("Can the service translate from any language to any other language? "
+ capability.SupportsAnyToAny);

Console.WriteLine("Can the service translate from any language to en-us? " +
capability.SupportsAnyToEnUs);

Console.WriteLine("Can the service translate from en-us to any other language? " +
capability.SupportsEnUsToAny);

SOAP Request

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<GetCapability xmlns="http://api.terminology.microsoft.com/terminology"/>
</s:Body>
</s:Envelope>

4 Microsoft® Terminology Service API

GetLanguages Method

The GetLanguages method returns the list of language codes supported by the Terminology Service API.

Syntax

Languages GetLanguages();

Return Value

Type: TerminologyService.Languages

This method is a Languages collection of Language objects. A Language object consists of the following property:

Property Description
Code The language code (for example, en-us, es-es) that can be used as a “to” or “from”
parameter on the GetTranslations method.
Examples

(@)
3+

// Create the proxy for the Terminology Service SOAP client
TerminologyClient service = new TerminologyService.TerminologyClient();
// Call GetlLanguages

Languages languages = service.GetLanguages();

// Use the results

foreach (Language language in languages)

{
}

Console.WriteLine(language.Code);

SOAP Request

<s:Enve10pedxmlns:s="http://schemas.xmlsoap.or‘g/soap/envelope/">

<s:Body>
y d<Ge’cLanguages xmlns="http://api.terminology.microsoft.com/terminology"/>
</s:Body>

</s:Envelope>

5 Microsoft® Terminology Service API

GetProducts Method

The GetProducts method returns the list of Microsoft products and versions for which this Terminology Service API
provides user-interface translations.

Syntax

Products GetProducts();

Return Value

Type: TerminologyService.Products

This method is a Products collection of Product objects. A Product object consists of the following properties:

Property Description
Name The name of the Microsoft product (such as Windows).
Versions A Versions collection of Version objects, representing the versions of the product for

which the Terminology Service API provides user-interface translations.

A Version object consists of the following property:

Property Description
| Name | The name of the Microsoft product version (for example, Windows 7 or Windows Vista). |
Examples

// Create the proxy for the Terminology Service SOAP client
TerminologyClient service = new TerminologyService.TerminologyClient();
// Call GetProducts

Products products = service.GetProducts();

// Use the results

foreach (Product product in products)

{
Console.WriteLine(product.Name);
foreach (TerminologyService.Version version in product.Versions)
{
Console.WriteLine("\t" + version.Name);
}
}

6 Microsoft® Terminology Service API

SOAP Request

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Body>

<GetProducts xmlns="http://api.terminology.microsoft.com/terminology"/>

</s:Body>

</s:Envelope>

7 Microsoft® Terminology Service API

GetTranslations Method

The GetTranslations method returns a list of translations for the given text by searching actual Microsoft product
translations and Microsoft terminology glossaries.

Syntax

Matches GetTranslations(string text, string from, string to, SearchOperator
searchOperator, TranslationSources sources, bool? unique, int maxTranslations, bool
includeDefinitions, Products products);

Parameters

Parameter Description

text Required. A string representing the text to translate.

from Required. A string representing the language code of the provided text. The language
codes used for this parameter must be a language code returned by GetLanguages.

to Required. A string representing the language code in to which to translate the text. The
language codes used for this parameter must be a language code returned by
GetLanguages.
In version 1.0 of the Terminology Service API, either the from or the to parameter must be
“en-us.” In version 2.0, this restriction no longer applies.

sensitivity New in version 2.0

Optional. A SearchStringComparison enum value representing the sensitivity to filter
results. The value can be one of the following:

Caselnsensitive (default) Return translations in which the “from” text
searched disregards the case of the text. A search for
"Cat” would return both:

"Cat”
and

u "

cat

CaseSensitive Return translations in which the "from” text searched
takes the case of the text into account. Only results
matching the case of the "from” are returned. A search for
“Cat” would return:

“Cat”

but not:

u

cat”

HotKeyAndCaseSensitive = Return translations in which the “from” text searched
takes the case of the text into account, along with any
hotkeys in the string. Only results matching the case of
the “from" are returned. A search for "&Cat” would return:

"&Cat”
but not:
"&cat”
or

“Cat”

8 Microsoft® Terminology Service API

Parameter Description

operator Optional. A SearchOperator enum value representing the type of matching operation to
use. The value can be one of the following:

Exact Return translations in which the provided text has an exact match to the
translation pair's “from” text (that is, Match.OriginalText).

Contains Return translations in which the "from” text contains the provided
translation text.

AnyWord Return translations in which the “from” text contains any word in the
provided translation text. This means that a search for:
“Lorem rutrum risus quis nulla ullamcorper”
Can even result in the hit:
“Lorem ipsum dolor sit amet, {0}, consectetur adipiscing elit”

Notice that there is only one word that matches. However, realize that
results with more matching words will be ranked higher. A one word
match isn't likely to be in the top results.

Note: If this parameter is not provided, the Exact operator is used. Even though this
parameter is not required in a SOAP request, a proxy class generated by Visual Studio will
require it.

source Required. A TranslationSources type collection representing the sources in which to
search for a translation. The collection must contain one or more of the following
TerminlogySource enum values:

Terms If provided, Microsoft terminology collections are searched.

UiStrings = If provided, Microsoft product strings are searched for translations.

unique Optional. A nullable bool indicating whether or not only unique (that is, distinct)
translations should be returned. If true is specified, the results are aggregated so that each
distinct translation only appears once. If false is specified, the results are not aggregated,
but each instance is returned. If null is provided or if this parameter is omitted from the
SOAP request, the default value is true.

maxTranslations Optional. An int representing the maximum number of translations to return. The
maximum allowed value is 20. If this parameter is omitted from the SOAP request, the
default value, 1, is used.

includeDefinitions Optional. A bool indicating whether or not to include term definitions. If true, definitions
are returned for the terms in the result set (if available in the data source). If unique is
specified as true, the first definition for each unique set of translation pairs is used. If this
parameter is omitted from the SOAP request, the default value, false, is used.

products Optional. A Products collection representing the products and product versions for which
to filter the search results. Each Product entity in the collection may include a Versions
collection to further restrict the results for that product. Valid products and versions are
returned by the GetProducts method.

If this parameter is omitted from the SOAP request or if the parameter is set to null, results
are not filtered by products and versions.

If the Versions collection for a product is null or empty, results matching the product are
not filtered by version.

When the products parameter is provided, the search only includes items from the
UiStrings source of translations.

Note: Even though the optional parameters listed are optional in the SOAP request, a WCF proxy generated by Visual
Studio will not create these parameters as C# optional parameters.

9 Microsoft® Terminology Service API

Return Value

Type: TerminologyService.Matches

This method is a Matches collection of Match objects. A Match object consists of the following properties used to
represent a translation pair, and to define where the translation pair comes from.

Property Description

OriginalText The from text version of the translation pair. If the Contains operator is used, this text
may be different than the input translation text. Additionally, even if the Exact operator is
used, there may be differences in punctuation and character casing.

Translations A Translations type collection of Translation objects. In version 1, this collection only
contains one entry. In future versions, the APl may support returning more than one
language translation at a time.

Count This property specifies how many matches with the same OriginalText and
TranslatedText are in the combined data sources.

Confidencelevel An int representing the translation confidence level, between the value of 0 and 100. The
value is set according to the following rules:
e If the OriginalText is an exact match of the input text, this value is 100.
Punctuation and text case are ignored when comparing the text.
e If the OriginalText is not an exact match, but contains the input text, this value is
50.
If the operator parameter is set to Exact there is never a result with the
ConfidenceLevel of 50, so this is only relevant if the API is called with the
operator parameter set to Contains.

Source A TranslationSource enum value indicating the source of this match. This value is only
provided if the unique parameter is false. It can be one of the following values:

Terms Microsoft terminology collections.

UiStrings Microsoft product string translations.

Product A string representing the Microsoft product to which this translation belongs. This value is
only provided if the unique parameter is false, and if the Source of the match is UiStrings.

ProductVersion A string representing the Microsoft product version to which this translation belongs. This
value is only provided if the unique parameter is false, and if the Source of the match is
UiStrings.

Definition If the includeDefinitions parameter is provided, this string represents the definition of the

matching term.

A Translation object consists of the following properties:

Property Description

Language A string representing the language code of the translation.
TranslatedText The translated text, in the language specified by the Language property.
Sorting

The sorting of the Match objects in the return value depends on the following rules:

e If the unique parameter is true, the Match objects are sorted in the following priority:

o ConfidenceLevel (descending)

10 Microsoft® Terminology Service API

o Count (descending)
e If the unique parameter is false, the Match objects are sorted in the following priority:
o Source (UiStrings first)
o Product (ascending)
o ProductVersion (descending)
o Confidencelevel (descending)
o Count (descending)

Note: The top 20 results are determined first by making ConfidenceLevel the highest priority. After the top 20 are
determined, the results are sorted by Source, Product, ProductVersion, ConfidencelLevel, and then Count.

Examples

// Create a collection to define the desired sources of translations

TranslationSources translationSources = new TranslationSources() {
TranslationSource.UiStrings };

// Create a collection to define the desired products and versions from which to get the
translations

Product word = new Product() { Name = "Windows" };
word.Versions = new Versions() { new TerminologyService.Version() { Name = "Vista" },
new TerminologyService.Version() { Name = "7" } };

Products products = new Products() { word };
// Create the proxy for the Terminology Service SOAP client
TerminologyClient service = new TerminologyService.TerminologyClient();
// Call GetTranslations to get the results
Matches results = service.GetTranslations("start", "en-us", "es-es",
SearchStringComparison.CaseInsensitive, SearchOperator.Contains, translationSources,
false, 20, true, products);
// Use the results
foreach (Match match in results)
{
Console.WriteLine();
Console.WriteLine("OriginalText: {0}", match.OriginalText);
Console.WriteLine("ConfidenceLevel: {0}", match.ConfidencelLevel);
Console.WriteLine("Definition: {@}", match.Definition);
Console.WriteLine("Count: {@}", match.Count);
Console.WriteLine("Source: {0}", match.Source);
Console.WriteLine("Product: {@}", match.Product);
Console.WriteLine("ProductVersion: {@}", match.ProductVersion);
Console.WriteLine("Translations");
Console.WriteLine(" ");
foreach (Translation translation in match.Translations)

{
}

Console.WriteLine("{©}: {1}", translation.Language, translation.TranslatedText);

11 Microsoft® Terminology Service API

SOAP Request

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<GetTranslations xmlns="http://api.terminology.microsoft.com/terminology">
<text>1 hours ago</text>
<from>en-us</from>
<to>nl-nl</to>
<sensitivity>CaseSensitive</sensitivity>
<searchOperator>Exact</searchOperator>
<sources xmlns:a="https://api.terminology.microsoft.com/terminology"
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance">
<a:TranslationSource>Terms</a:TranslationSource>
<a:TranslationSource>UiStrings</a:TranslationSource>
</sources>
<unique>true</unique>
<maxTranslations>4</maxTranslations>
<includeDefinitions>true</includeDefinitions>
<products i:nil="true"
xmlns:a="https://api.terminology.microsoft.com/terminology"”
xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"/>
</GetTranslations>
</s:Body>
</s:Envelope>

12 Microsoft® Terminology Service API

Language and Locale Codes

The GetLanguages method returns the list of language codes supported by the Terminology Service API. The
following table shows the names of the languages and locales represented by the codes.

Language Code Language and country/region

af-ZA Afrikaans (South Africa)
am-ET Ambharic (Ethiopia)

ar-EG Arabic (Egypt)

ar-SA Arabic (Saudi Arabia)
as-IN Assamese (India)
az-Latn-AZ Azerbaijani (Latin, Azerbaijan)
be-BY Belarusian (Belarus)
bg-BG Bulgarian (Bulgaria)
bn-BD Bangla (Bangladesh)
bn-IN Bangla (India)
bs-Cyri-BA Bosnian (Cyrillic, Bosnia and Herzegovina)
bs-Latn-BA Bosnian (Latin, Bosnia and Herzegovina)
ca-ES Catalan (Catalan)
ca-ES-valencia Valencian

chr-cher-us Cherokee (USA)

cs-CZ Czech (Czech Republic)
cy-GB Welsh (United Kingdom)
da-DK Danish (Denmark)
de-AT German (Austria)

de-CH German (Switzerland)
de-DE German (Germany)
el-GR Greek (Greece)

en-AU English (Australia)
en-CA English (Canada)

en-GB English (United Kingdom)
en-IE English (Ireland)

en-MY English (Malaysia)
en-NZ English (New Zealand)
en-PH English (Republic of the Philippines)
en-SG English (Singapore)
en-US English (United States)
en-ZA English (South Africa)
es-ES Spanish (Spain)

es-MX Spanish (Mexico)

es-US Spanish (United States)
et-EE Estonian (Estonia)
eu-ES Basque (Basque)

fa-IR Persian

fi-FI Finnish (Finland)

fil-PH Filipino (Philippines)
fr-BE French (Belgium)

13 Microsoft® Terminology Service API

fr-CA French (Canada)

fr-CH French (Switzerland)

fr-FR French (France)

fr-LU French (Luxembourg)

ga-IE Irish (Ireland)

gd-GB Scottish Gaelic (United Kingdom)
gl-ES Galician (Galician)

gu-IN Gujarati (India)

guc-VE Wayuu

ha-Latn-NG Hausa (Latin, Nigeria)

he-IL Hebrew (Israel)

hi-IN Hindi (India)

hr-HR Croatian (Croatia)

hu-HU Hungarian (Hungary)

hy-AM Armenian (Armenia)

id-ID Indonesian (Indonesia)
ig-NG Igbo (Nigeria)

is-IS Icelandic (Iceland)

it-CH Italian (Switzerland)

it-IT Italian (Italy)

iu-Latn-CA Inuktitut (Latin, Canada)
ja-JP Japanese (Japan)

ka-GE Georgian (Georgia)

kk-KZ Kazakh (Kazakhstan)

km-KH Khmer (Cambodia)

kn-IN Kannada (India)

kok-IN Konkani (India)

ko-KR Korean (Korea)

ku-arab-IQ Central Kurdish

ky-KG Kyrgyz (Kyrgyzstan)

Ib-LU Luxembourgish (Luxembourg)
lo-LA Lao (Lao P.D.R.)

It-LT Lithuanian (Lithuania)

Iv-LV Latvian (Latvia)

mi-NzZ Maori (New Zealand)

mk-MK Macedonian (Former Yugoslav Republic of Macedonia)
mli-IN Malayalam (India)

mn-MN Mongolian (Cyrillic, Mongolia)
mr-IN Marathi (India)

ms-BN Malay (Brunei Darussalam)
ms-MY Malay (Malaysia)

mt-MT Maltese (Malta)

nb-NO Norwegian, Bokmal (Norway)
ne-NP Nepali (Nepal)

nl-BE Dutch (Belgium)

nl-NL Dutch (Netherlands)

nn-NO Norwegian, Nynorsk (Norway)
nso-ZA Sesotho sa Leboa (South Africa)
or-IN Oriya (India)

14 Microsoft® Terminology Service API

pa-arab-PK

Punjabi (Pakistan)

pa-IN Punjabi (India)

pl-PL Polish (Poland)

prs-AF Dari (Afghanistan)

ps-AF Pashto (Afghanistan)

pt-BR Portuguese (Brazil)

pt-PT Portuguese (Portugal)
qut-GT K’iche’ (Guatemala)

quz-PE Quechua (Peru)

rm-CH Romansh (Switzerland)
ro-RO Romanian (Romania)
ru-RU Russian (Russia)

rw-RW Kinyarwanda (Rwanda)
sd-arab-pk Sindhi (Pakistan)

si-LK Sinhala (Sri Lanka)

sk-SK Slovak (Slovakia)

sl-SI Slovenian (Slovenia)

sq-AL Albanian (Albania)
sr-Cyri-BA Serbian (Cyrillic, Bosnia and Herzegovina)
sr-Cyrl-rs Serbian (Cyrillic, Serbia)
sr-Latn-rs Serbian (Latin, Serbia)
sv-SE Swedish (Sweden)

sw-KE Kiswahili (Kenya)

ta-IN Tamil (India)

te-IN Telugu (India)

tg-Cyrl-TJ Tajik (Cyrillic, Tajikistan)
th-TH Thai (Thailand)

Ti-ET Tigrinya (Ethiopia)

tk-TM Turkmen (Turkmenistan)
tn-ZA Setswana (South Africa)
tr-TR Turkish (Turkey)

tt-RU Tatar (Russia)

ug-CN Uighur (PRC)

uk-UA Ukrainian (Ukraine)

ur-PK Urdu (Islamic Republic of Pakistan)
uz-Cyrl-Uz Uzbek (Cyrillic, Uzbekistan)
uz-Latn-Uz Uzbek (Latin, Uzbekistan)
vi-VN Vietnamese (Vietnam)
wo-SN Wolof (Senegal)

xh-ZA isiXhosa (South Africa)
yo-NG Yoruba (Nigeria)

zh-CN Chinese Simplified (People's Republic of China)
zh-HK Chinese (Hong Kong S.A.R.)
zh-TW Chinese Traditional (Taiwan)
zu-ZA isiZulu (South Africa)

15 Microsoft® Terminology Service API

Version History

Description Last updated

Terminology Service API, original SDK document August 2013
AnyWord operator added to list of SearchOperator enum values March 2014
Version 2.0 with “any to any” translation service and the sensitivity operator added June 2014

Added endpoint references and help images for HTTPS endpoint August 2021

The information contained in this document represents the current view of Microsoft Corporation on the issues
discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This white paper is for informational purposes only. Microsoft makes no warranties, express or implied, in this
document.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for
any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2021 Microsoft Corporation. All rights reserved.

Microsoft, Visual Studio, and Windows are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

16 Microsoft® Terminology Service API

