

Keith Brown

Pluralsight, LLC

Sesha Mani

Microsoft Corporation

Microsoft Windows Identity
Foundation (WIF)
Whitepaper for Developers

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

2 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Legal Information
The information contained in this document represents the current view of Microsoft Corporation on

the issues discussed as of the date of publication. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft

cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights

under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval

system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or

otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property

rights covering subject matter in this document. Except as expressly provided in any written license

agreement from Microsoft, the furnishing of this document does not give you any license to these

patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted in examples herein are fictitious. No association with any real

company, organization, product, domain name, e-mail address, logo, person, place, or event is intended

or should be inferred.

© 2008-09 Microsoft Corporation. All rights reserved.

Terms of Use | Trademarks | Privacy Statement

Microsoft, CardSpace, Windows, and Windows Server are trademarks of the Microsoft group of

companies.

All other trademarks are property of their respective owners.

http://msdn.microsoft.com/cc300389.aspx
http://www.microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx
http://www.microsoft.com/info/privacy.mspx

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

3 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

About this Paper
The goal of this whitepaper is to help developers get started building claims-aware applications using

Microsoft© Windows Identity Foundation, previously known as “Geneva” Framework. In this paper I

introduce concepts and terminology to help developers understand the benefits and concepts behind

the claims-based model of identity. My target audience does not consist of security experts, rather

those who are familiar with ASP.NET or Windows Communication Foundation (WCF) programming, and

who are building Web applications or services that care about authentication and authorization. As

such, my focus will be on building relying party applications using Windows Identity Foundation. I will

talk about issuance and security token services (STS) and will provide an example of an STS built using

WIF. However, that is not the focus of this paper.

Identity Challenges
Most developers are not security experts and many feel uncomfortable being given the job of

authenticating, authorizing, and personalizing experiences for users. It’s not a subject that has been

traditionally taught in computer science curriculum, and these features tend to be ignored until late in

the software development lifecycle.

It’s not surprising nowadays to see a single company with tens or hundreds of Web applications and

services, many of which have their own private silo for user identities, and most of which are hardwired

to use one particular means of authentication. Developers know how tedious it is to build identity

support into each application, and IT professionals know how expensive it is to manage the resulting set

of applications.

One very useful step toward solving the problem has been to centralize user accounts into an enterprise

directory. Commonly it’s the IT professional that knows the most effective and efficient way to query the

directory, but today the task is typically left up to the developer. And in the face of mergers,

acquisitions, and partnerships, the developer might be faced with accessing more than one directory,

using more than one API.

In the Microsoft .NET Framework, there are lots of different ways of building identity support into an

application, and each communication framework treats identity differently, with different object

models, different storage models, and so on. Even in ASP.NET, developers can get confused about where

they should look for identity: should they look at the HttpContext.User property? What about

Thread.CurrentPrincipal?

The rampant use of passwords has lead to a cottage industry for phishers1. And with so many

applications doing their own thing, it’s difficult for a company to upgrade to stronger authentication

techniques.

1
 Phishing is all about convincing a user to divulge sensitive information (such as passwords). This is commonly done by sending

an email that masquerades as being from a legitimate company with which the user may have an account. The email includes a
link that leads to the attacker’s website, convincingly built to look like the legitimate company’s website. When the user “logs
on”, her password is captured by the attacker, along with any other information the user is duped into giving away.

http://en.wikipedia.org/wiki/Phishing

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

4 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

A Better Solution
One step toward solving these problems is to stop building custom identity plumbing and user account

databases into every new application that comes along. But even developers who rely on a central

enterprise directory still feel the pain of mergers, acquisitions, and external partnerships, and may even

be blamed for poor performance that is actually due to another application bogging down the directory

with inefficient queries. The claims-based solution described in this paper does not require developers

to connect to any particular enterprise directory in order to look up identity details for users. Instead,

the user’s request arrives with all of the identity details the application needs to do its job. By the time

the user arrives with these claims, the user has already been authenticated, and the application can go

about its business without worrying about managing or finding user accounts.

Factoring authentication out of applications leads to many benefits for developers, IT professionals, and

users. Simply put, there are less user accounts for everyone to manage, and the resulting centralization

of authentication makes it easier to upgrade to stronger authentication methods as they evolve, and

even federate identity with other platforms and organizations.

This paper will help you, as a developer, to understand the claims-based identity model and take

advantage of it using Windows Identity Foundation (WIF), the new framework from Microsoft that is

focused on identity.

What is Windows Identity Foundation?
Windows Identity Foundation (WIF) is a set of .NET Framework classes. It is a framework for

implementing claims-based identity in your applications. By using it, you’ll more easily reap the benefits

of the claims-based identity model described in this paper. Windows Identity Foundation can be used in

any Web application or Web service that uses the .NET Framework version 3.5 SP1.

WIF is just one part of Microsoft’s Identity and Access Platform software family that implements the

shared industry vision for an interoperable Identity Metasystem. Active Directory Federation Services

(ADFS) 2.0 (previously known as “Geneva” Server), Windows CardSpace 2.0, and Windows Identity

Foundation (previously known as “Geneva” Framework) form the core of Microsoft’s new claims based

access strategy. You can refer to the Identity and Access Management web site for more information

about AD FS and CardSpace components. Also, the white paper “Claims-based Identity for Windows“

provides an overview of these three components. As of this writing, the RTW of Windows Identity

Foundation and Beta 2 releases of the other two products are available for download.

Claims-based identity model
When you build claims-aware applications, the user presents her identity to your application as a set of

claims (see Figure 1). One claim could be the user’s name; another might be her email address. The idea

here is that an external identity system is configured to give your application everything it needs to

know about the user with each request she makes, along with cryptographic assurance that the identity

data you receive comes from a trusted source.

http://www.microsoft.com/wif
http://www.microsoft.com/wif

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

5 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Web App/Service

User Name:

Roles:

Email:

IsOfLegalVotingAge:

Alice

Manager, Staff

alice@fabrikam.com

True

Figure 1: User Presents Claims

Under this model, single sign-on is much easier to achieve, and your application is no longer responsible

for:

 Authenticating users.

 Storing user accounts and passwords.

 Calling to enterprise directories to look up user identity details.

 Integrating with identity systems from other platforms or companies.

Under this model, your application makes identity-related decisions based on claims supplied by the

user. This could be anything from simple application personalization with the user’s first name, to

authorizing the user to access higher valued features and resources in your application.

It’s not Just About Federation
The claims-based model of identity has been incubating inside Microsoft for a while now. The original

reason for proposing this model was to enable federation between organizations, but over time it’s

become apparent that claims aren’t just for federation. But some of these terms still linger on. For

example, when you use WIF in your ASP.NET application, one way to perform claims processing is to

enable a WIF component called the WS-Federation Authentication Module. Don’t let the word

“federation” throw you off. There are clear benefits to building applications that outsource

authentication and authorization. Any company that has, or plans to have, more than one Web

application or Web service, can benefit by starting with a claims-based model for identity. One of the

major benefits is to have application developers focus only on application business logic while the

identity related requirements can be handled by external issuing authorities like Active Directory

Federation Services ADFS 2.0 (previously known as “Geneva” Server). Or if you have in-house identity

expertise, you can build a custom provider using WIF.

Introduction to Claims-Based Identity
In this section of the paper, I’m going to introduce some terminology and concepts so that you, as a

developer, can get your head around this new architecture for identity. Let’s start with some

terminology.

Identity
The word “identity” is a very overloaded term. So far I’ve been using it to describe the problem space

that includes authentication, authorization, etc. But for the purposes of describing the programming

model in WIF, I will use the term “identity” to describe a set of attributes (well, claims as you’ll see

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

6 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

shortly) that describe a user or some other entity in the system that you care about from a security

standpoint.

Claim
You can think of a claim as a bit of identity information such as a name, email address, age, membership

in the Sales role, and so on. The more claims your application receives, the more you’ll know about your

user. You may be wondering why I’m using the word “claim”, instead of the more traditional

“attributes”, commonly used in the enterprise directory world. The reason has to do with the delivery

method – in the claims-based identity model your application doesn’t look up user attributes in a

directory. Instead, the user delivers claims to your application, and you’re going to examine them with a

certain measure of doubt. Each claim is made by an issuer, and you’ll trust the claim only as much as you

trust the issuer. For example, you trust a claim made by your company’s domain controller more than

one made by the user herself. As you’ll see shortly, the Claim class in WIF has an Issuer property that

allows you to find out who issued the claim.

Security Token
The user delivers a set of claims to your application piggybacked along with her request. In a Web

service, these claims are carried in the security header of the SOAP envelope. In a browser-based Web

application, the claims arrive via an HTTP POST from the user’s browser, and may later be cached in a

cookie if a session is desired. Regardless of how they arrive, they must be serialized somehow, and this is

where security tokens come in. A security token is a serialized set of claims that is digitally signed by the

issuing authority. The signature is important – it gives you assurance that the user didn’t just make up a

bunch of claims and send them to you. In low security situations where cryptography isn’t necessary or

desired, you can use unsigned tokens, but that’s not a scenario I’m going to focus on in this paper.

One of the core features in WIF is the ability to create and read security tokens. WIF and the underlying

plumbing in the .NET Framework handles all the cryptographic heavy lifting, and presents your

application with a set of claims that you can read.

Issuing Authority
There are lots of different types of issuing authorities, from domain controllers that issue Kerberos

tickets to certificate authorities that issue X.509 certificates, but the specific type of authority I’ll be

talking about in this paper issues security tokens that contain claims. The issuing authority I’m speaking

of is a Web application or Web service that knows how to issue security tokens. It must have enough

knowledge to be able to issue the proper claims for the target relying party given the user that is making

the request, and may be responsible for interacting with user stores to look up claims and authenticate

the users themselves.

Whatever issuing authority you choose to buy or build, it will play a central role in your identity solution.

When you factor authentication out of your application by relying on claims, you’re ultimately just

passing responsibility to that authority and asking it to authenticate users on your behalf.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

7 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Security Token Service (STS)
A security token service (STS) is the plumbing that builds, signs, and issues security tokens according to

the interoperable protocols that I’ll discuss in the upcoming section called Standards. There’s a lot of

work that goes into implementing these protocols, but WIF does all of this heavy lifting for you, making

it feasible for someone who isn’t an expert in the protocols to get an STS up and running with very little

effort.

ADFS 2.0 (previously known as “Geneva” Server), one of the products featured in Geneva technologies,

is an STS that you can use instead of building your own STS. You might be wondering what ADFS 2.0 uses

for implementing the protocols and building a security token. Yes, you guessed it right it uses WIF for all

of this heavy lifting. If you want to build your own STS, WIF offers all the necessary APIs to do so. It’s up

to you to figure out how to implement the logic, or rules that drive it (often referred to as security

policy).

Relying Party (RP)
When you build an application that relies on claims, you are building a relying party. Some synonyms

that you may have heard are claims aware application or claims-based application. Web applications

and Web services can both be built this way, as you’ll see later in this paper.

Basic Scenario
Now that you’ve learned some basic terminology, here’s an example of a claims-based system in action.

STS

Smart

Client

Relying Party

(Web Service)

Authority

(Web Service)

2
.
G

e
t
C

la
im

s

1. Get Policy

3. Send Claims

Active Client

(WS-Trust)

Figure 2: Basic Scenario with Web Services

Figure 2 shows a claims-aware Web service (the relying party) and a smart client that wants to use that

service. The relying party exposes policy that describes its addresses, bindings, and contracts. But the

policy also includes a list of claims that the relying party needs, for example user name, email address,

and role memberships. The policy also tells the smart client the address of the STS (another Web service

in the system) where it should retrieve these claims. After retrieving this policy (1), the client now knows

where to go to authenticate: the STS. The smart client makes a Web service request (2) to the STS,

requesting the claims that the relying party asked for through its policy. The job of the STS is to

authenticate the user and return a security token that gives the relying party all of the claims it needs.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

8 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

The smart client then makes its request to the relying party (3), sending the security token along in the

security SOAP header. The relying party now receives claims with each request, and simply rejects any

requests that don’t include a security token from the issuing authority that it trusts.

Standards
In order to make all of this interoperable, several WS-* standards are used in the above scenario. Policy

is retrieved using HTTP GET and the policy itself is structured according to the WS-Policy specification.

The STS exposes endpoints that implement the WS-Trust specification, which describes how to request

and receive security tokens. Most STSs today issue SAML (Security Assertion Markup Language) tokens.

SAML is an industry-recognized XML vocabulary that can be used to represent claims in an interoperable

way. This adherence to standards means that you can purchase an STS instead of building it yourself. Or,

if you end up in a multi-platform situation, this allows you to communicate with an STS on an entirely

different platform and achieve single sign-on across all of your applications, regardless of platform.

Identity federation also becomes an option, as I’ll explain shortly.

Browser-based Applications
Smart clients aren’t the only ones who can participate in the world of claims-based identity. Browser-

based applications (also referred to as passive clients2) can participate as well. Figure 3 shows how this

works. The user points her browser at a claims-aware Web application (relying party). The Web

application redirects the browser to the STS so the user can be authenticated. The STS in Figure 3 is

wrapped by a simple Web application that reads the incoming request, authenticates the user via

standard HTTP mechanisms, and then creates a SAML token and emits a bit of JavaScript that causes the

browser to initiate an HTTP POST that sends the SAML token back to the relying party.

STS

Browser
Relying Party

(Web App)

Authority

(Web App)

2
.
R

e
d

ir
e

c
t

1. HTTP GET

3. HTTP POST

Passive Client

(WS-Federation)

Figure 3: Basic Scenario with a Web Browser

The SAML token in the POST body contains the claims that the relying party requested. At this point it is

common for the relying party to package the claims into a cookie so that the user doesn’t have to be

2
 Smart clients are referred to as “active” because they have plumbing (WCF, for example) that can parse policy

and implement WS-Trust directly. Web browsers are referred to as “passive” because they can’t typically be
modified to do these things directly, so cookies, redirection, and JavaScript are used mimic the WS-Trust protocol
in a browser-friendly way.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

9 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

redirected for each request. The WS-Federation specification includes a section3 that describes how to

do these things in an interoperable way.

Identity Federation
When you build claims-aware Web applications and services, you decouple yourself from any one user

store. All you want to know is that an authority you trust has given you the identity details you need

about the user who is using your application. You don’t have to worry about what domain or security

realm that user happens to be part of. This makes it a lot easier to federate identity with other platforms

or organizations.

Here’s a concrete scenario that will help get your head around this idea. Let’s say a company called

Fabrikam is in the business of manufacturing bicycles, and thousands of bike shops around the world

carry their bikes. Fabrikam has a website that allows their retailers to get information about bikes, make

purchases, and so on.

When a new retailer (Bob) starts a business and wants to sell Fabrikam’s bikes, he contacts Fabrikam,

signs some agreements, and tells Fabrikam about his employees: which of them should be allowed to

use Fabrikam’s retailer website, which of them should be allowed to make purchases, and so on.

Fabrikam issues a user name and password for each employee at Bob’s bike shop, and configures its

Web site to grant those users different levels of access depending on their job.

Over time, Bob ends up doing business with lots of other bike manufacturers, each of which has their

own proprietary mechanism for purchasing. Some use the Web, and some rely on faxes and phone calls.

It’s easy for Bob to forget about all of these details when he’s doing his best just to sell bikes every day.

So when Alice joins as a new employee, it takes Bob a while to remember that he has to call Fabrikam

(and all of the other manufacturers) and let them know that Alice should be allowed to make purchases.

Alice’s first few weeks on the job are a bit daunting as she learns all of the passwords she needs to know

for the various systems she’ll be using, and she’ll be denied access to Fabrikam’s retailer Web site until

Bob gets around to calling Fabrikam to add Alice as a user.

What happens when Alice’s role in Bob’s company changes, or even worse, if she leaves the company

entirely? When does Fabrikam find out about this?

What we have here are two companies that have established a trust relationship, a covenant, between

each another. Fabrikam relies on Bob to indicate which employees should have access to Fabrikam’s

resources, and what level of access each should have. Identity federation is all about automating this

trust. Since Fabrikam already trusts Bob to tell the truth about his employees, it makes sense to let Bob’s

system authenticate those employees and automatically give Fabrikam the details about each

employee’s current role in the company.

3
 Section 13, to be precise. You may have heard this referred to in the past as the passive requestor profile,

although as of this writing, the latest version of WS-Federation undergoing standardization no longer uses this
term.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

10 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Once Bob is responsible for authenticating his own staff, Fabrikam no longer has to issue user accounts

for Bob’s employees. When Alice logs into her computer at Bob’s bike shop, that login can be used to tell

Fabrikam who Alice is, and what role she plays in Bob’s organization. If Alice leaves the company, all Bob

has to remember to do is disable her user account, and she’ll no longer be able to use Fabrikam’s

website, or any other manufacturer’s website that federates with Bob. When Alice changes jobs, and

Bob adjusts her group memberships in his directory, Fabrikam discovers that change the next time Alice

logs on and uses Fabrikam’s Web application. What we have now is single sign-on across organizations,

and this is a good thing, not just for developers, but for IT professionals, users, and shareholders alike.

Even within a single company, federation can be useful. If you end up with two different

implementations, say Java-based and Microsoft .NET-connected, as long as your applications are built to

support federated identity, you have a clear path to achieve single sign-on, and all of the benefits it

provides.

Identity federation works by introducing a second issuer. Your applications still trust the same STS they

used to, and it will continue to issue all of the tokens that your application needs. But now, instead of

authenticating all users directly, your STS is configured to accept SAML tokens from partner

organizations, leaving it to them to authenticate users in their own realm in a way that makes sense.

Relying Party

STS

Authority

STS

Authority

FabrikamBobôs shop

Client
3

1 2

Figure 4: Bob's bike shop federates with Fabrikam

In Figure 4, the client is in a different security realm over in Bob’s bike shop, while the relying party is

still in Fabrikam’s data center. In this case, the client (Alice, say) authenticates with Bob’s STS (1) and

gets a security token that she can send to Fabrikam. This token indicates that Alice has been

authenticated by Bob’s security infrastructure, and includes claims that specify what roles she plays in

Bob’s organization. The client sends this token to Fabrikam’s STS, where it evaluates the claims, decides

whether Alice should be allowed to access the relying party in question, and issues a second security

token that contains the claims the relying party expects. The client sends this second token to the

relying party(3), which now discovers Alice as a new user, and allows her to access the application

according to the claims issued by Fabrikam’s STS.

Note that the relying party didn’t have to concern itself with validating a security token from Bob’s bike

shop. Fabrikam’s authority did that, making certain to issue security tokens only to trusted partners that

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

11 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

have previously established a relationship with Fabrikam. In this example, the relying party will always

get tokens from its own STS. If it sees a token from anywhere else, it will reject it outright. This keeps

your applications as simple as possible.

Relying Party

STS

Authority

(.NET)

STS

Authority

(Java)

.NET AppsJava Users

Client
3

1 2

Figure 5: Cross-Platform Identity Federation

Figure 5 shows a company that uses .NET Framework and WIF to build its applications. They have

recently merged with another company whose IT platform is based on Java. Because the Microsoft .NET-

connected applications are already claims-aware, the company was able to install an STS built on Java

technology and suddenly the Microsoft .NET-connected applications became accessible to users in the

Java-based directory, with no changes to application code or even application configuration.

Information Cards and the Identity Selector
I don’t have room in this paper to motivate and explain the ideas behind information cards and identity

selectors like Windows CardSpace™, but you can read more about them at the Identity and Access

Management Group Web site.

An identity selector provides a few additional features that are important in many scenarios:

 Helps users manage multiple identities for the Web.

 Helps users select an appropriate identity for a given relying party.

 Protects user privacy.

 Gives consumers a non-phishable credential.

An identity selector can be very helpful in federation scenarios. Consider Fabrikam’s STS in Figure 4.

Fabrikam has many partners, not just Bob’s bike shop. If you asked Fabrikam for its policy, it would

supply a long list of trusted issuers. And imagine if the trust chain was longer, with three or four STSs

involved: if you start at the relying party and work backward, you find a whole tree of possible paths

from a leaf STS to the relying party. When the identity selector pops up in this case, the only cards that

will be lit up are identities that represent leaves on that tree. So when the user selects a particular card,

the identity selector knows exactly which path of trust to follow in order to get the required security

token.

http://www.microsoft.com/wif
http://www.microsoft.com/wif

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

12 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Windows Identity Foundation includes a sample that illustrates how to use Information Cards in an

ASP.NET Web site login page by embedding InformationCard object tags.

Now that I’ve introduced some terminology and concepts behind the claims-based identity model, it’s

time to look at the programming model of WIF.

Programming Claims: Windows Identity Foundation
Claims-based identity has been evolving within the Microsoft .NET Framework during the last few years.

Active Directory Federation Services (ADFS) was released with Microsoft Windows Server® 2003 R2, and

included its own claims-based programming model. Soon afterward, the .NET Framework version 3.0

shipped with an assembly called System.IdentityModel.dll, which included classes like Claim and

ClaimSet, and WCF exposed an AuthorizationContext that allowed you to access these in a Web service.

Another pillar of this new framework was CardSpace, and some sample code was released that helped

to decrypt and parse SAML tokens obtained by dereferencing an information card. And while WCF

already has all the plumbing you need to build an STS from scratch, many of the classes you’d need to

use are marked internal, making the task rather challenging for anyone outside of the WCF team. Suffice

it to say that in the .NET Framework 3.0 timeframe, the developer story around claims wasn’t very

appealing.

WIF solves this problem. It is designed to unify and simplify claims-based applications. It builds on top of

WCF’s plumbing to implement WS-Trust and comes with an HttpModule called the WS-Federation

Authentication Module (FAM) that make it trivial to implement WS-Federation in a browser-based

application by simply modifying your web.config file a bit.

The Windows Identity Foundation Object Model for Claims
When you build a relying party with WIF, you’re shielded from all of the cryptographic heavy lifting that

WIF (and its underlying WCF plumbing) does for you. It decrypts the security token passed from the

client, validates its signature, validates any proof keys4, shreds the token into a set of claims, and

presents them to you via an easy-to-consume object model.

Windows Identity Foundation represents a claim with the Claim class, whose key properties are shown

in Figure 6.

4
 A proof key provides assurance that the token wasn’t stolen and used by someone other than the subject who

requested it. To learn more about proof keys, see the discussion of Kerberos in The Developer’s Guide to Identity.

http://msdn.microsoft.com/en-us/library/aa480245.aspx

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

13 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

publ i c c l ass Cl ai m {

 / / some member s omi t t ed f or br evi t y

 publ i c v i r t ual st r i ng Cl ai mType { get ; }

 publ i c v i r t ual st r i ng Val ue { get ; }

 publ i c v i r t ual st r i ng Val ueType { get ; }

 publ i c v i r t ual I Di ct i onar y<st r i ng, st r i ng> Pr oper t i es

 publ i c v i r t ual st r i ng I ssuer { get ; }

 publ i c v i r t ual st r i ng Or i gi nal I ssuer { get ; }

 publ i c v i r t ual I Cl ai msI dent i t y Subj ect { get ; }

}

Claim

ClaimType (string)

Value (string)

ValueType (string)

Properties (Dictionary)

OriginalIssuer (string)

Subject (IClaimsIdentity)

Issuer (string)

Figure 6: Claim

Claim.ClaimType is a string (typically a URI) that tells you what the claim means. For example, a claim

with a ClaimType of "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname” represents a

user’s first name. This claim type was defined by Microsoft5 for use with CardSpace. A ClaimType of

”http://myclaimtype/role” might be your own simple representation of a role. The point here is that you

don’t have to wait around for some standards body to define a claim type that you need – as long as you

and your issuer agree on what a particular claim means, you can call it anything you want.

Once you know the type of the claim, you can read its value from Claim.Value. In order to reduce

dependencies and simplify administration, WIF represents the value of a claim with a string instead of

anything more complicated (such as an object reference that could point to any CLR type). So an integer

value of 42 would be represented as “42”. An email address is very naturally represented in a string.

Anything more complicated and it is recommended to use standard XML schema types to serialize the

value into a string. This is where Claim.ValueType comes in; it helps you figure out how to deserialize the

value of the claim by telling you the format of the value. The Microsoft.IdentityModel.ClaimValueTypes

class (Figure 7) includes a number of helpful value types that can be used to represent claims, and of

course you can define your own if you build your own issuer.

public static class ClaimValueTypes {

 // I have omitted some elements for brevity

 public const string Base64Binary = "http://www.w3.org/2001/XMLSchema#base64Binary" ;

 public const string Boolean = "http://www.w3.org/2001/XMLSchema#boolean" ;

 public const string Date = "http://www.w3.org/2001/XMLSchema#date" ;

 public const string Datetime = "http://www.w3.org/2001/XMLSchema#dateTime" ;

 public const string Double = "http://www.w3.org/2001/XMLSchema#double" ;

 public const string Integer = "http://www.w3.org/2001/XMLSchema#integer" ;

 public const string String = "http://www.w3.org/2001/XMLSchema#string" ;

}

Figure 7: ClaimValueTypes

Claims are supposed to be about the subject, typically a human who is using your application. But

sometimes you want more information about the claim itself. For example, consider an email claim.

Maybe, along with the email address, you want the issuer to tell you when the email address last

changed. This is the reason for the Claim.Properties collection. WIF allows an STS to add metadata about

5
 This and several other fundamental claim types are documented in the Identity Selector Interop Profile

specification.

http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-4e05-987c-6f1d31855cd2/Identity-Selector-Interop-Profile-v1.pdf
http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-4e05-987c-6f1d31855cd2/Identity-Selector-Interop-Profile-v1.pdf

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

14 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

a claim to this collection, and it’ll be sent along with the claim so that your application can make use of

it.

One claim that might seem a bit like metadata is the authentication method. Did the user present a

password? An information card? A smart card? These sorts of questions often come up in high security

scenarios, and some applications restrict features or resources based on the strength of the technique

used to authenticate the user. WIF represents this information as a claim, as you’ll see in the Step-up

Authentication section below.

The Claim class includes a property called Issuer. This is a simple string that gives your application a

name for the issuer of the claim. In federation scenarios, a chain of two or more issuers are involved (as

shown earlier in Figure 4). In this case, Claim.Issuer names the last issuer in the chain (Fabrikam in Figure

4), while Claim.OriginalIssuer names the first issuer in the chain (Bob’s shop in the same figure). You can

use both of these tidbits to personalize or authorize access. For example, in Figure 4, Fabrikam might

want to have a special discount page that only users from Bob’s Bike Shop are allowed to use.

Most applications won’t care precisely who issued the claims in the user’s identity; all these applications

need to worry about is that the issuer is one that it trusts. The simplest way to create a list of trusted

issuers is through the Microsoft.IdentityModel/IssuerNameRegistry configuration section, or you can

derive a custom class from IssuerNameRegistry and programmatically create a more dynamic list.

Introducing IClaimsIdentity

Remember IIdentity from the .NET Framework? It is a very simple interface that allows you to discover

the user’s name. Since an issuer has the ability to tell you much more than just a name, WIF defines a

new interface that extends IIdentity. It’s called, aptly enough, IClaimsIdentity. In WIF, when you look at a

user’s identity, you can get her name the same way you always have, but you can also look at

IClaimsIdentity.Claims to get more bits of the user’s identity, like her email address.

Claims Identity

(represents the

user)
Claims

Claim
Subject

publ i c i nt er f ace I Cl ai msI dent i t y : I I dent i t y {

 Cl ai mCol l ect i on Cl ai ms { get ; }

 / / ot her member s omi t t ed f or now

}

Figure 8: Getting at Claims via IClaimsIdentity

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

15 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Figure 8 shows how claims are exposed from IClaimsIdentity through the Claims property (I will show

the full definition of this interface a bit later in Figure 12). Keep in mind that the user whose identity you

are examining is called the subject. Note how you can enumerate the list of claims in the identity using

the Claims collection, and you can get back to the subject’s IClaimsIdentity using the Subject property of

any of those claims.

IClaimsPrincipal

Remember how WIF extended the existing IIdentity interface with IClaimsIdentity? Well, WIF also

extends IPrincipal with IClaimsPrincipal (see Figure 9).

publ i c i nt er f ace I Cl ai msPr i nci pal : I Pr i nci pal {

 Cl ai msI dent i t yCol l ect i on I dent i t i es { get ; }

}

Figure 9: IClaimsPrincipal

IClaimsPrincipal exposes a collection of identities, each of which implements IClaimsIdentity. Typically,

there will be a single issuer and a single token, and the Identities collection will only have one element.

In this case, you can use IPrincipal.Identity to get the identity as usual. In advanced scenarios, however,

a relying party might ask (through policy) for more than one security token, potentially from different

issuers, in which case having access to a collection of identities becomes important.

In some scenarios it’s useful to write your own class that implements IPrincipal and IClaimsPrincipal. You

can do this simply by deriving from ClaimsAuthenticationManager and implementing the Authenticate

method. The Authenticate method has access to the IClaimsPrincipal originally created by WIF, and you

can make the necessary transformations to the existing claims or completely replace the existing

IClaimsPrincipal with your own implementation. WIF will then use your IClaimsPrincipal and make it

available via Thread.CurrentPrincipal, as well as other means that an ASP.NET developer can use to

obtain the caller’s IPrincipal, such as HttpContext.User.

ClaimsPrincipal

publ i c c l ass Cl ai msPr i nci pal : I Cl ai msPr i nci pal {

 / / f r om I Pr i nci pal

 publ i c I I dent i t y I dent i t y { get ; }

 publ i c bool I sI nRol e(st r i ng r ol e) ;

 / / f r om I Cl ai msPr i nci pal

 Cl ai msI dent i t yCol l ect i on I dent i t i es { get ; }

}

Figure 10: ClaimsPrincipal

The ClaimsPrincipal class (Figure 10) is the default implementation of IClaimsPrincipal, and while it

implements the Identities property of IClaimsPrincipal, it also implements the more familiar IsInRole

method and Identity property from IPrincipal. And since a typical relying party will receive a single

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

16 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

IClaimsIdentity in the Identities collection, ClaimsPrincipal.Identity simply returns the first element in the

Identities collection, as shown in Figure 11.

publ i c I I dent i t y I dent i t y {

 get {

 i f (t hi s. _i dent i t i es. Count > 0)

 r et ur n t hi s. _i dent i t i es[0] ;

 el se r et ur n nul l ;

 }

}

Figure 11: ClaimsIdentity.Identity property implementation

IClaimsIdentity Defined

So if all it has to work with is a set of arbitrary claims, how does WIF implement IPrincipal.IsInRole or

IIdentity.Name, which are commonly used by application developers in existing Web applications and

services? One possible approach would have been to predefine a ClaimType for roles and a ClaimType

for names, and force everyone to use them, but WIF is more flexible than that. In your system, the type

of claim you pick to represent a role or name might be very different than what another company would

choose. The WIF solution becomes clear when you look at the full definition of IClaimsIdentity (Figure

12). WIF lets you configure NameClaimType and RoleClaimType to indicate which claims represent the

user’s name and her roles in your application’s web.config file under the Microsoft.IdentityModel

section.

publ i c i nt er f ace I Cl ai msI dent i t y : I I dent i t y {

 Cl ai mCol l ect i on Cl ai ms { get ; }

 st r i ng NameCl ai mType { get ; set ; }

 I Col l ect i on<st r i ng> Rol eCl ai mType { get ; }

 st r i ng Label { get ; set ; }

 I Cl ai msI dent i t y Act or { get ; set ; }

 Secur i t yToken Boot st r apToken { get ; set ; }

}

Figure 12: IClaimsIdentity

This has an exciting implication for developers: any code you have that already relies on IPrincipal and

IIdentity doesn’t need to change. If you’re using the PrincipalPermission attribute to control access to a

Web service method, you can continue to use it as long as your issuer specifies the same set of roles

that your service was expecting. If you’re using ASP.NET’s LoginView control, it’ll also continue to work

because it’s based on IPrincipal.IsInRole().

If there are no NameClaimType or RoleClaimType configured in the application, then by default WIF uses

“http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name” for NameClaimType and

“http://schemas.microsoft.com/ws/2008/06/identity/claims/role” for RoleClaimType. Note that while

it’s possible that the issuer may set NameClaimType and RoleClaimType when it creates an

IClaimsIdentity, these properties are not serialized as part of the security token and so they don’t flow

between the STS and the relying party. Typically, the STS does not decide which roles that the

application needs to use.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

17 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

In looking at Figure 12, you might be wondering about the Label, Actor, and BootstrapToken properties.

Label is a string that can be used to distinguish one identity from another in the more complicated case

where a relying party receives multiple security tokens (as mentioned earlier, this is an uncommon case,

so the Label property won’t be used by the vast majority of developers). Currently, the Label property is

not serialized as part of the security token and so it doesn’t flow between the STS and the relying party.

The Actor and BootstrapToken properties are more interesting and advanced topics. They help support

the delegation of credentials in multi-tier systems, where a middle tier makes requests to a back end

system while “acting as” the client. I’ll cover this optional feature in more detail later in this paper.

How to get at Identity
So far you’ve learned how WIF represents claims, subjects, and issuers, and how it extends the

traditional IPrincipal and IIdentity interfaces to add support for claims-based identity. But where do you

get at these interfaces? There are lots of places where IPrincipal and IIdentity are already exposed in the

.NET Framework, and with WIF you should continue to use them: for example, Thread.CurrentPrincipal

from the .NET Framework, or HttpContext.User from ASP.NET. In a relying party, WIF sets up all of these

properties so that you can access IClaimsPrincipal and IClaimsIdentity from any of these familiar places.

Figure 13 shows a couple of different ways to get at the user’s identity in a typical Web application.

pr ot ect ed voi d Page_Load(obj ect sender , Event Ar gs e) {

 I Cl ai msPr i nci pal p =

(I Cl ai msPr i nci pal) Thr ead. Cur r ent Pr i nci pal ;

 I Cl ai msI dent i t y c i = p. I dent i t i es[0] ;

 Di spl ayCl ai ms(ci) ;

}

pr ot ect ed voi d Page_Load(obj ect sender , Event Ar gs e) {

 I Cl ai msI dent i t y c i = (I Cl ai msI dent i t y) User . I dent i t y;

 Di spl ayCl ai ms(ci) ;

}

Figure 13: Accessing IClaimsIdentity

Programming with Claims: a Practical Example
The WIF object model for claims may seem a bit complicated at first glance, with subjects, issuers, claim

types and values, but in practice it’s easy to use. Figure 14 shows a typical example from a claims-aware

ASP.NET Web application. This example sends a personalized email to the user when she clicks a button.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

18 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

pr ot ect ed voi d SendLet t er _Cl i ck(obj ect sender , Event Ar gs e)

{

 I Cl ai msI dent i t y i d =

((I Cl ai msPr i nci pal) Thr ead. Cur r ent Pr i nci pal) . I dent i t i es[0] ;

 / / you can use a s i mpl e f or each l oop t o f i nd a c l ai m. . .

 st r i ng user sEmai l = nul l ;

 f or each (Cl ai m c i n i d. Cl ai ms) {

 i f (c. Cl ai mType == Cl ai mTypes. Emai l) {

 user sEmai l = c. Val ue;

 br eak;

 }

 }

 / / you can al so use LI NQ t o f i nd a c l ai m

 st r i ng user sFi r st Name = (f r om c i n i d. Cl ai ms

 wher e c. Cl ai mType == Cl ai mTypes. Gi venName

 sel ect c) . Fi r st () . Val ue;

 St r i ngBui l der body = new St r i ngBui l der () ;

 body. AppendFor mat (" Dear { 0} , " , user sFi r st Name) ;

 body. AppendLi ne() ;

 body. AppendLi ne(" Thank you f or shoppi ng wi t h us! ") ;

 new Smt pCl i ent () . Send(new Mai l Message(

 " admi n@f abr i kam. com" ,

 user sEmai l ,

 " Message f r om Fabr i kam" ,

 body. ToSt r i ng())) ;

}

Figure 14: Sending a Personalized Email

In this example, the code uses Thread.CurrentPrincipal to access the user’s identity. Then it loops

through all of the claims for the user, using IClaimsIdentity.Claims, looking for the ones it needs right

now: first name and email address. It then uses those claims to send a personalized email message to

the user. The example also shows two ways of finding claims. The code finds the email claim with a

foreach loop, and uses a LINQ expression to find the first name claim.

Configuring Windows Identity Foundation
The code in Figure 14 made a lot of assumptions. It assumed the caller was authenticated and that her

first name and email address had been sent as claims. The reason this program can make these

assumptions is because it has a web.config file that uses the WS-Federation Authentication Module

(FAM) from WIF and configures it with the address of an STS that can authenticate the user and supply

these types of claims. Figure 15 shows the relevant parts of web.config for the personalized email

example.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

19 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

<conf i gur at i on>

 <conf i gSect i ons>

 <sect i on name=" mi cr osof t . i dent i t yModel "

t ype=" Mi cr osof t . I dent i t yModel . Conf i gur at i on. Mi cr osof t I dent i t yModel Sect i on, Mi cr osof t . I dent i t yModel ,

Ver si on=3. 5. 0. 0, Cul t ur e=neut r al , Publ i cKeyToken=31bf 3856ad364e35" / >

 </ conf i gSect i ons>

 <syst em. web>

 <compi l at i on debug=" t r ue" >

 <assembl i es>

 <add assembl y=" Mi cr osof t . I dent i t yModel , Ver si on=. . . " / >

 </ assembl i es>

 </ compi l at i on>

 <aut hent i cat i on mode=" None" / >

 <aut hor i zat i on>

 <deny user s=" ?" / >

 </ aut hor i zat i on>

 <ht t pModul es>

 <add name=" WSFeder at i onAut hent i cat i onModul e"

 t ype=" Mi cr osof t . I dent i t yModel . Web. WSFeder at i onAut hent i cat i onModul e. . . " / >

 <add name=" Sessi onAut hent i cat i onModul e"

 t ype=" Mi cr osof t . I dent i t yModel . Web. Sessi onAut hent i cat i onModul e. . . " / >

 </ ht t pModul es>

 </ syst em. web>

 <mi cr osof t . i dent i t yModel >

 <ser vi ce>

 <i ssuer NameRegi st r y t ype=òMicrosoft. I dent i t yModel . Tokens. ConfigurationBasedIssuerNameRegistryò>

<t r ust edI ssuer s>

 <add t humbpr i nt =òéò name=ò. . . CN=Sampl eSTS. . . ò / >

</ t r ust edI ssuer s>

 </ i ssuer NameRegi st r y>

 <audi enceUr i s>

 <add val ue=" ht t ps: / / l ocal host / MyWebApp" / >

 </ audi enceUr i s>

 <f eder at edAut hent i cat i on>

 <wsFeder at i on passi veRedi r ect Enabl ed=" t r ue"

 i ssuer =" ht t ps: / / l ocal host / STS/ "

 r eal m=" ht t ps: / / l ocal host / MyWebApp" / >

 </ f eder at edAut hent i cat i on>

 <ser vi ceCer t i f i cat e>

 <cer t i f i cat eRef er ence x509Fi ndType=' Fi ndBySubj ect Name' f i ndVal ue=' l ocal host '

st or eLocat i on=' Local Machi ne' st or eName=' My' / >

 </ ser vi ceCer t i f i cat e>

</ ser vi ce>

 </ mi cr osof t . i dent i t yModel >

</ conf i gur at i on>

Figure 15: Typical Windows Identity Foundation Configuration for a Relying Party

There are two things going on here in the <system.web> section. The config first references the WIF

assembly, Microsoft.IdentityModel.dll. Then it uses the Federation Authentication Module, which is an

HttpModule that plugs into the ASP.NET pipeline so that it can listen for the AuthenticateRequest event.

SessionAuthenticationModule enables sessions by issuing cookies. I’ll explain in more detail how the

FAM fits into the ASP.NET pipeline later in this paper.

The <microsoft.identityModel> section is new to WIF. A relying party application can configure a list of

trusted issuers in the <issuerNameRegistry> element by choosing an issuerNameRegistry type of

ConfigurationBasedIssuerNameRegistry. The <audienceUris> section is the place to list the target URIs to

which the FAM should expect security tokens to be delivered. If the STS posts a security token to a URI

that is not in this list, the FAM throws an exception.

The <federatedAuthentication> section is where you configure the FAM. It does its magic in the

AuthenticateRequest event and converts each incoming security token into an IClaimsPrincipal. The

<wsFederation> section, with passiveRedirectEnabled set to “true”, tells the FAM that when a user

points her browser at the application, the FAM should automatically redirect the browser to a particular

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

20 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

STS where the user will be authenticated and receive a security token (the issuer attribute indicates the

URL for the STS). When the user’s browser is redirected, the value of the realm attribute will be included

in the request to the STS, telling it which application is in use. If your application needs to show a default

page before redirecting the user to the STS, you can use the FederatedPassiveSignIn control on the

default page. I’ll cover the details of this control in a later section.

The <serviceCertificate> section is where you would specify the application certificate that the FAM

should use to decrypt incoming security tokens.

Preconfigured claims-aware ASP.Net Web Site – Visual Studio Templates
One of the major goals of the WIF is to reduce the learning curve on claims-based identity for

application developers. To achieve this goal and to make it easier to configure, WIF offers built-in Visual

Studio project template for creating a claims-aware ASP.NET application. This template is available

within the Visual Studio development environment when you navigate to “File Ą New Ą Web Site…”

and select “Claims-aware ASP.NET Web Site”. You now have a typical ASP.NET Web site preconfigured

with WIF. All the configuration settings we discussed in previous sections are already configured for you,

and the Web site has forms authentication enabled and has access to claims.

Note that this template is available only for the C# language and so the Language selection must be set

to “Visual C#”. Also, this template creates an IIS-based Web site. This template is intended to be used as

a starting point for building your claims-aware ASP.NET applications and due care needs to be taken

while building a production claims-aware application that meets your business needs.

In some cases you may want to convert an existing ASP.NET Web site to be claims-aware. WIF makes

this possible by providing a direct link from Visual Studio’s Solution Explorer to a utility that does this

conversion. This utility is called Federation Utility, or ”FedUtil”. You can invoke this tool by right-clicking

on your ASP.NET Web site project and selecting “Add STS Reference…”. The wizard interface includes

intuitive instructions, and after a few clicks your application’s web.config file will be updated so that

your application is configured to accept claims. Also, note that a federation metadata document that

highlights the application’s requirements is created and placed in a subfolder in the application’s folder,

making it easier to register a relying party with an issuer such as Active Directory Federation Services

2.0. I’ll cover federation metadata and FedUtil in detail in a later section.

Understanding the WS-Federation Authentication Module (FAM)
The FAM is an HttpModule that is specifically designed to make it easy to build federated claims-aware

Web applications using ASP.NET 2.0. There are two options available to build federated claims-aware

Web applications. One option is to use the FAM and SessionAuthenticationModule and provide passive

redirect based protection; another option is to provide a login page that uses the

FederatedPassiveSignIn control, which is an ASP.NET control offered by WIF. I’ll cover the control

aspects in a separate section; I’ll focus on the FAM in this section.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

21 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

As the name implies the FAM is capable of handling the WS-Federation protocol; while

SessionAuthenticationModule is specifically designed to be protocol-agnostic and handle session

cookies. Both of these modules are required and must be configured, as I showed earlier in Figure 15, in

your federated claims-aware Web application. You may wonder why these are two separate modules.

The motivation for this split is to provide the flexibility for configuring additional authentication modules

in conjunction with the protocol-agnostic SessionAuthenticationModule.

In essence the FAM extracts the claims from the security token issued by an STS and makes them easily
accessible to the application. However, some applications might not have an STS and might just want to
convert Windows authentication information into an IClaimsPrincipal that is usable by the claims-aware
aspects of the application. WIF provides an HttpModule for this scenario too: the
ClaimsPrincipalHttpModule. In this scenario, the default claims generated are based on the Windows
identity and include user name, group SIDs, and other authentication information. This module
eliminates the application’s need to get a security token from an STS and provides a way to always have
claims-based principal available in an ASP.NET application.

It is possible that some applications may not have any claims-aware aspects and just rely on Windows
identity, but requires federation capability so that users from other partner domains can access the
application’s resources. In this scenario, the application has an STS and expects to receive a security
token from the STS and somehow convert that to Windows authentication information that it can use.
WIF addresses this scenario by providing functionality to map incoming claims to a Windows identity;
this functionality can be enabled by setting the mapToWindows attribute within the
samlSecurityTokenRequirement element in the SAML Security Token Handlers element to true. Setting
the mapToWindows attribute to true lets the FAM does it magic of converting incoming claims to a
WindowsClaimsIdentity, which is a class that inherits from WindowsIdentity, and this can be used in the
same manner as Windows Identity is used in the application.

FAM Events
As is typical with HttpModules in ASP.NET, the FAM fires off several events that allow you to customize

its default processing. Keep in mind that most of the work done by the FAM occurs during the ASP.NET

AuthenticateRequest event. All of the events, except AuthorizationFailed and

RedirectingToIdentityProvider events, fired by the FAM will occur during this part of the ASP.NET

request pipeline.

SecurityTokenReceived

This is a very useful event that fires with every message that contains a WS-Federation passive sign-in

response, right before the FAM does its work. One important thing you can do here is to reject the

token before the FAM processes it. You have access to the security token received and you can

implement your own custom validation code that decides whether to reject the token or not.

If you want to allow anonymous access to some pages that get WS-Federation passive messages, you

can parse the page context and set the FAM’s Cancel property to “true”, which makes the FAM not do

anything. You can then configure the authorization policy in the ASP.NET pipeline to allow anonymous

access to those pages.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

22 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

SecurityTokenValidated

This event is raised after the security token is validated by the FAM and an IClaimsPrincipal is created

with the claims extracted from the token. The IClaimsPrincipal that is available as a property of the

event arguments, and has already passed through any configured claims authentication manager, which

has done the necessary transformations. One simple thing you can do here is to audit this event for

successful token validations that occur in the application.

SessionSecurityTokenCreated

At this stage of processing, the FAM has received the security token, validated and parsed it into a set of

claims, created a session security token with those claims in it, and is ready to issue a cookie to cache

that session security token so that the user isn’t constantly getting redirected back to the STS. WIF calls

the contents of this cookie a “session security token”, and has a class called SessionSecurityToken to

represent it.

By handling this event you’ll be informed whenever fresh claims have been delivered from an STS and

are about to be cached for a configured time in a cookie. If you plan on storing claim values in an

application data store, this would be a great time to do that. See the ‘Caching Claim Values Over Time’

section for an example. Also, by handling this event you have the opportunity to modify the session

security token per your needs. The FAM takes any modifications made to the session security token and

then writes out a cookie with the modified session security token in it. For example if you want the

cookie to be issued for single use only instead of persisting for the session, you can set the

WriteSessionCookie property of the SessionSecurityTokenCreatedEventArgs parameter to “false”.

SignedIn

This event fires right after the IClaimsPrincipal is set in the appropriate places (Thread.CurrentPrincipal

and HttpContext.Current.User).This event has no event arguments and its main purpose is to allow

applications to audit the user signed-in event.

SignInError

At this stage of processing the FAM has received the token from an STS, extracted claims from it, and

created a session security token, but encounters an error when it tries to write out a cookie with the

session security token. This event is also triggered when errors occur in token validation process.

You can use this event to handle the exceptions thrown by the FAM and convert them to user-friendly

error messages. Also, during application development, this event is very helpful in debugging the cause

of the exceptions thrown.

SigningOut

At this stage of processing, the user has indicated her desire to sign out of your application. This doesn’t

always happen: some users simply stop making requests to your application without explicitly signing

out. But when this event does fire, you can use it to more aggressively release resources that you might

have been holding for the user.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

23 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

SignedOut

This event fires when the user or application has triggered the sign-out process and the FAM has deleted

the cookie corresponding to the session. This event has no event arguments and its main purpose is to

allow applications to audit the event that the user has signed out.

RedirectingToIdentityProvider

This event fires before FAM redirects the user to the STS. It provides an opportunity for changing the

federated passive sign-in request message. For example, you might choose to redirect the request to a

specific STS based on the home realm of the user.

AuthorizationFailed

This event fires when an authenticated user is denied access to a resource due to authorization failure.

FAM catches the HTTP authorization failure error and fires this event. You can choose to reauthenticate

the user by setting RedirectToIdentityProvider property in AuthorizationFailedArgs and redirecting the

user to STS. This event can be used in combination with ClaimsAuthorizationManager. Refer to the

Samples\End-to-end\Authentication Assurance sample in WIF SDK package for a sample

implementation of this event.

SessionAuthenticationModule Events

SessionSecurityTokenReceived

Once a session security token has been issued in the form of a cookie, during all subsequent requests

(until the session security token expires) the SessionAuthenticationModule will simply read the contents

of this cookie instead of redirecting the browser back to the STS. By default, session security tokens are

set to expire after 10 hours; however, at runtime, applications typically extend the lifetime as needed.

This event is triggered after the session security token is received and processed by

SessionAuthenticationModule. One possible use of this event is to allow applications to check for

expiration of the session security token and extend the lifetime as needed. Another possible use of this

event is to let applications trigger SessionAuthenticationModule to reissue the cookie. You can find an

example of this in the WIF samples collection: Samples\Extensibility\Claims Aware AJAX Application, in

the AjaxRP (relying party) project.

SessionSecurityTokenCreated

Once the cookie issued by Session Authentication Module is expired, an application typically wants to

reissue a new cookie, in which case a new cookie is created. This event is triggered by the

SessionAuthenticationModule during this reissuance of the cookie and provides an opportunity for the

application to set session security token properties appropriately. For example, if you want the cookie to

be issued for single use only instead of persisting for the session, you can set the WriteSessionCookie

property of SessionSecurityTokenCreatedEventArgs to “false”.

ServiceConfigurationCreated Event
You may wonder whether it is possible to modify a relying party application configuration after the FAM

has loaded it from the web.config file. FederatedAuthentication is a static class that provides access to

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

24 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

the state for both the FAM and Session Authentication Modules, and contains a single configuration

object that is populated from the configuration in the web.config file.

When the application starts up, FederatedAuthentication builds its configuration object from the

web.config file and then fires the ServiceConfigurationCreated event to provide you an opportunity to

modify the settings as needed at run time. ASP.NET programmers are already familiar with the

Application_Start event, which fires during the very first request that comes through the pipeline once

an application starts up. This is a good place to register for the ServiceConfigurationCreated event

triggered from the FederatedAuthentication static class. There are certain aspects of the FAM that are

not available through configuration, and this event is for programmatically configuring the FAM beyond

what is available in web.config.

Ideas for Hooking FAM and SessionAuthenticationModule Events
Here are some practical examples of how you can hook FAM events to achieve various goals.

Substitute your own Principal
Claims are very simple to read – just enumerate a collection and look for the claim type you want. But if

you’ve got a lot of code that depends on claims, this can get tedious. Recall the code I wrote that used

claims to send a personalized email message to the user (Figure 14). Wouldn’t it be easier instead to

write code like that shown in Figure 16?

pr ot ect ed voi d SendLet t er _Cl i ck(obj ect sender , Event Ar gs e) {

 MyPr i nci pal cust omPr i nci pal = (MyPr i nci pal) Thr ead. Cur r ent Pr i nci pal ;

 St r i ngBui l der body = new St r i ngBui l der () ;

 body. AppendFor mat (" Dear { 0} , " , cust omPr i nci pal . Fi r st Name) ;

 body. AppendLi ne() ;

 body. AppendLi ne(" Thank you f or shoppi ng wi t h us! ") ;

 new Smt pCl i ent () . Send(new Mai l Message(

 " admi n@f abr i kam. com" ,

 cust omPr i nci pal . Emai l ,

 " Message f r om Fabr i kam" ,

 body. ToSt r i ng())) ;

}

Figure 16: Simplified Personalized Email Example

In this new version, you don’t have to enumerate claims to find the user’s first name and email address.

A custom principal class already has that sorted out, and the code can simply use its properties to access

the claims. This is even more useful if you have claims that are more complicated than strings. Because

WIF passes all claims as strings, you may need to deserialize the value of a claim into an instance of a

class. Using a custom principal to expose this is a great way to centralize this code. Figure 17 shows the

implementation of the custom principal used in the code above.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

25 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

publ i c c l ass MyPr i nci pal : Cl ai msPr i nci pal , I MyCl ai ms {

 publ i c MyPr i nci pal (I Cl ai msPr i nci pal c l ai msPr i nci pal)

 : base(cl ai msPr i nci pal)

 { }

 publ i c st r i ng Fi r st Name { get ; set ; }

 publ i c st r i ng Emai l { get ; set ; }

}

Figure 17: Custom Principal Definition

With this class definition, all you need to do now is ensure that the FAM uses an instance of MyPrincipal

instead of the default ClaimsPrincipal when it sets up the user’s identity. The SecurityTokenValidated

event in the FAM is the place to do this, as shown in Figure 18.

voi d WSFeder at i onAut hent i cat i onModul e_Secur i t yTokenVal i dat ed(obj ect sender ,

 Secur i t yTokenVal i dat edAr gs ar gs) {

 MyPr i nci pal cust omPr i nci pal = new MyPr i nci pal (ar gs. Cl ai msPr i nci pal) ;

 f or each (Cl ai m c i n ar gs. Cl ai msPr i nci pal . I dent i t i es[0] . Cl ai ms) {

 i f (c. Cl ai mType == Syst em. I dent i t yModel . Cl ai ms. Cl ai mTypes. Gi venName)

 cust omPr i nci pal . Fi r st Name = c. Val ue;

 i f (c. Cl ai mType == Syst em. I dent i t yModel . Cl ai ms. Cl ai mTypes. Emai l)

 cust omPr i nci pal . Emai l = c. Val ue;

 }

 ar gs. Cl ai msPr i nci pal = cust omPr i nci pal ;

}

Figure 18: Injecting a Custom Principal

You can also achieve the same customization by creating a custom claims authentication manager and

overriding the Authenticate method.

Caching Claim Values over Time
One of the first things you’ll notice when you build a claims-aware Web application is that you no longer

need to provision user accounts. This is one of the responsibilities that you can hand off when you rely

on an external party (your issuing authority) to authenticate your users. But even claims-aware

applications may need to store per-user data such as preferences. And sometimes it makes sense to

store claims for later use. For example, what if you wanted to send an email blast out to every user of

your application?

The solution to this problem is simple: just keep a record of the claims you think you might want to

remember during times when the user may not be logged on. The user’s name and contact information

are prime candidates for a profile. Just keep in mind that as soon as you write that data, it’s by definition

stale, and will only become more so as time goes by, so you should update the user’s profile every time

you think you might have fresh information from your issuer. It’s also wise to keep a timestamp of the

last time the information was updated, so you can track just how stale the information is.

The SessionSecurityTokenCreated event fired by the FAM is a great place to freshen the user’s profile,

because it only fires when the FAM parses actual claims posted from the STS. Figure 19 shows an

example of how this could be done in global.asax:

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

26 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

voi d WSFeder at i onAut hent i cat i onModul e_Sessi onSecur i t yTokenCr eat ed(obj ect sender ,

Sessi onSecur i t yTokenCr eat edEvent Ar gs ar gs)

{

 st r i ng user sFi r st Name = nul l ;

 s t r i ng user sEmai l Addr ess = nul l ;

 f or each (Cl ai m c i n ar gs. Cl ai msPr i nci pal . I dent i t i es[0] . Cl ai ms)

 {

 i f (c. Cl ai mType == Cl ai mTypes. Gi venName)

 user sFi r st Name = c. Val ue;

 i f (c. Cl ai mType == Cl ai mTypes. Emai l)

 user sEmai l Addr ess = c. Val ue;

 }

 Dat eTi me l ast Updat ed = Dat eTi me. Ut cNow;

 / / t he def i ni t i on of t hi s met hod i s up t o you

 Updat eUser Pr of i l e(user sFi r st Name, user sEmai l Addr ess, l ast Updat ed) ;

}

voi d Updat eUser Pr of i l e(st r i ng f i r st Name, st r i ng emai l , Dat eTi me l ast Updat ed)

{

 / / updat e what ever dat a st or e you' r e usi ng t o st or e pr of i l e det ai l s

}

Figure 19: Tracking Claims in a User Profile

The FederatedPassiveSignIn Control
WIF includes a FederatedPassiveSignIn control, which is a typical ASP.NET control, to allow applications

to redirect to different STS at their discretion. For example, you can have different instances of this

control that redirect the user to different issuers, depending on your application needs, as I describe in

the section on authentication assurance. All of these controls derive from a base control that supplies

common properties such as whether you want a session to result, or just a single set of claims. Typically

this control is embedded in a login page; and there are lots of references on how to configure a login

page using Forms Authentication in ASP.NET.

Once the user signs in using the FederatedPassiveSignIn control, you can discover the resulting claims

using the same mechanisms I’ve discussed throughout this paper.

This login control effectively works the same as the FAM, but the functionality is in the scope of a login

page instead of being handled by a module in the ASP.NET pipeline. This control can be useful if you

want to allow various levels of authentication for a given page.

<%@ Regi st er Assembl y=" Mi cr osof t . I dent i t yModel , . . . "

 Namespace=" Mi cr osof t . I dent i t yModel . Web. Cont r ol s"

 TagPr ef i x=" wi f " %>

<wi f : Feder at edPassi veSi gnI n

 r unat =" Ser ver "

 Ti t l eText =" Si gn I n t o Access Mor e Feat ur es"

 Si gnI nText =" Si gn I n"

 I ssuer =" ht t ps: / / l ocal host / MyPassi veSTS/ Logi n. aspx"

 Real m=" ht t ps: / / l ocal host / MyRel yi ngPar t y/ "

 OnSi gnI nEr r or =" MyEr r or Handl er "

 Vi s i bl eWhenSi gnedI n=" f al se"

 Di spl ayRemember Me=" f al se" / >

Figure 20: The FederatedPassiveSignIn Control

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

27 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Figure 20 shows an example of this control on a web page, along with the ASP.NET Register directive

you’ll need in order to use it.

Information Card SignIn
Information Cards provide another claims-based login mechanism. Embedding an object tag of type

“application/x-informationCard” in the login page triggers the browser to pop up an identity selector,

making it easy for a user to select an identity, which can help lead to a more user-centric claims

experience as well as serve as a very natural home realm discovery mechanism in cross-realm federation

scenarios.

The properties of this object tag allow you to specify the issuer you trust, the type of token you require,

and the claim types that you require.

<obj ect t ype=' appl i cat i on/ x- i nf or mat i onCar d' i d=' i car dObj ' >

 <par am name=' i ssuer ' val ue=' ht t ps: / / l ocal host / Cust omUser NameCar dSt sHost Fact or y/ Ser vi ce. svc' / >

 <par am name=' t okenType' val ue=' ur n: oasi s: names: t c: SAML: 1. 0: asser t i on' / >

 <par am name=' r equi r edCl ai ms' val ue=' ht t p: / / schemas. xml soap. or g/ ws/ 2005/ 05/ i dent i t y/ c l ai ms/ gi venname' / >

 <par am name=' opt i onal Cl ai ms' val ue=' ht t p: / / schemas. xml soap. or g/ ws/ 2005/ 05/ i dent i t y/ c l ai ms/ sur name ht t p: / /

schemas. xml soap. or g/ ws/ 2005/ 05/ i dent i t y/ c l ai ms/ emai l addr ess' / >

 </ obj ect >

Figure 21: The InformationCard Object Tag

Figure 21 shows an example of this information card object tag embedded on a web page. For a sample

application that uses the information card, refer to the WIF samples collection and Samples\Quick

Start\CardSpace.

One property that we want to highlight in Windows CardSpace 2.0 Beta2 is the “DisplayType” property,

which can be set to either “CardTile” or “None”. If you are familiar with current version of Windows

CardSpace shipping in .NET Framework 3.0, you’ve probably noticed the CardSpace UI that pops up

when you click on an Information Card image. This CardTile feature is to make the login experience

more user friendly by showing the card image on the web page or application window itself. The sample

mentioned above illustrates this, but note that you’ll need to install Windows CardSpace 2.0 Beta2 to

see this feature in action.

Using Windows Identity Foundation in Web Services
So far all of my examples have been browser-based Web applications. Now I’d like to show how you can

use WIF to build and consume claims-aware services.

Writing a Claims-Aware Service
A claims-aware Web service expects to receive a security token (SAML by default) in the security header

of the SOAP envelope. This security token identifies the user (subject) to the Web service (relying party).

But the service usually also proves its identity to the user, and in claims-based systems this is done by

configuring the service with a certificate.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

28 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

WCF already supports building Web services that accept tokens issued from an STS. Your service just

needs to indicate to WCF the address of the STS’s metadata, commonly known as a “MEX” endpoint. In

order to do this, today you need to create a WSFederationHttpBinding or a custom WCF binding, which

is easy to do both in code and configuration.

The example I’ll be walking through here is from the WIF samples collection: Samples\End-to-

end\Identity Delegation. The relying party in this example in the Service2 project, and all of the code for

this Web service can be found in Service2.cs. If you examine the Main() method, you’ll see how to

construct the required binding in code (you can also do this in configuration if you prefer). The part that

you’ll customize for your own Web service is the IssuedSecurityTokenParameters class, which specifies

the type of token being requested (SAML 1.1 in this example), and the addresses of the metadata and

WS-Trust endpoints for the issuer’s STS, which in this example is also built using WIF in the STS project.

There’s nothing special about the ServiceHost configuration other than the explicit shutting off of a

couple of certificate validation features that WCF normally runs, in order to support the test certificate

that ships with the samples. This is not appropriate in production code, where you normally want to

validate certificate chains and check for certificate revocation.

So far, nothing about this Web service is WIF specific. The line of code that calls

FederatedServiceCredentials.ConfigureServiceHost() is where WIF comes in. This call gives WIF a chance

to install WIF specific behaviors that connect WIF into WCF’s claims-processing pipeline. There is also a

configuration approach of enabling WIF for a WCF service if the programmatic approach is not suitable

for your WCF Service. WIF offers the ConfigureServiceHostBehaviorExtensionElement class which

implements a behavior extension element, which when set in the serviceBehaviors element, enables

WIF for a WCF Service.

Enabling WIF for your service means that from inside your service method

(ClaimsAwareWebService.ComputeResponse in this example), you’ll be able to reach up into WIF via

Thread.CurrentPrincipal and use the simplified WIF object model to read the claims sent with the

request. The code for reading claims in a Web service looks exactly the same as it does in my earlier

browser-based examples. Once you’ve got the claims, it’s the exact same programming model as in the

ASP.NET environment: IClaimsPrincipal, IClaimsIdentity, and Claim. One of the major goals of WIF was to

abstract the complexity away from WCF developers and offer a consistent and intuitive claims

programming model for both WCF and ASP.NET developers.

One point to note is that once WIF is enabled for a WCF service, ServiceSecurityContext.Current can no

longer be used in that service as the AuthorizationContext will be empty.

Visual Studio Template for claims-aware WCF Service
Similar to the project template for claims-aware ASP.NET Web site described in a previous section, WIF

offers a built-in Visual Studio project template for claims-aware WCF services. To create a new claims-

aware WCF service you can open Visual Studio and navigate to “File Ą New Ą Web Site…” and then

select “Claims-aware WCF Service”. This will generate a starter WCF service, named

ClaimsAwareService, enabled with WIF, and designed to be hosted in IIS. This service uses a

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

29 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

configuration-based approach to enable WIF, and if you examine the Service.cs file you will see a

GetData() method that uses the IClaimsIdentity.Name property to discover and return the user’s name.

In some cases you may want to convert an existing WCF Service to be claims-aware. WIF offers a

solution for these cases as well; it offers a utility called FedUtil that can be invoked in the context of your

WCF service by right-clicking your service project in the Solution Explorer and selecting “Add STS

Reference…”. This pops up FedUtil, a wizard which enables WIF for your WCF service and generates a

federation metadata document that highlights your service’s claim requirements. I’ll cover the details on

this federation metadata document in a later section.

Next I’ll show how you write code to call a claims-aware WCF service.

Calling a Claims-Aware Service
WCF already has everything a client needs to call a claims-based service, so you don’t need WIF on the

client side at all! All the client needs is the .NET Framework 3.0, so when you’re developing a smart

client, you can work the way you are used to with WCF, which is typically to point Visual Studio or

svcutil.exe at the metadata address for the service you want to call, and generate a proxy that you can

use to make those calls. The binding that the service configured will be exposed via WSDL, and that will

give the client all the information it needs, including the type of token required by the relying party and

the address of the STS from which it should be obtained. Keep in mind that the binding in this

configuration file wasn’t written by hand: it was generated by svcutil.exe along with the proxy.

If you examine the code in Client.cs, you’ll see that there’s nothing interesting going on here; the smart

client developer is blissfully unaware of the way identity is being managed on the back end.

Using Windows Identity Foundation to Build a Security Token Service
This paper is primarily aimed at developers building relying parties, but I would be remiss if I didn’t at

least briefly discuss how an STS can be built using WIF.

Issuing Authority versus STS
Before I show you how to implement an STS using WIF, here’s an important caveat: in any non-trivial

claims-based system, the STS is a very small part of an issuing authority. The STS is the component that

accepts incoming requests, validates, decrypts, and shreds incoming security tokens into claims, and

does the opposite for outgoing security tokens. WIF takes care of all of that heavy lifting. But what WIF

does not do is provide a framework for managing or administering policy, which you can think of as the

logic, or the rules, behind the STS.

Here’s an example of some of the questions that an issuer’s policy could answer:

 What applications am I providing security tokens for?

 What claims do those applications care about?

 How should I authenticate users?

 Do different apps have different authentication requirements?

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

30 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

 What partners am I federating with?

So if you’re trying to figure out whether you should build your own STS or use one that was built by

someone else (like the ADFS V2 STS, for example), most people would be much better off using an

existing one.

If, on the other hand, your company wants to do something that existing products don’t support, you

can use WIF to get started building your own authority.

What an Issuer has to Work With
A request for a security token includes details about what claims the relying party needs. This might

come in the form of a WS-Policy document from the relying party that explicitly lists which claim types it

needs. On the other hand, it might simply be a string that identifies a particular relying party, in which

case it’s the issuer’s job to know what claims that particular application needs.

Recall from Figure 2 that the request originates from the user (the subject), and it’s the issuer’s job to

either authenticate that user, or bounce her to some other STS to be authenticated. In the latter case,

the issuer will receive a set of claims about the subject from the upstream issuer.

So ultimately the issuer has a couple of very important categories of information to work with:

information about the subject, and information about the relying party.

The issuer must take this information, along with any contextual data it may need (for example, time of

day) and either reject the request if it can’t satisfy the relying party’s needs, or issue a security token

containing claims that meet the relying party’s requirements.

Where does the issuer look to get claims? If the user is part of the issuer’s enterprise, the user’s record

in the enterprise directory would be a natural source for claims. Sometimes user data is stored in other,

less obvious places such as SQL databases, so the issuer might need to look in multiple places to get the

claims that the relying party needs. But centralizing this logic for looking up claims is very useful: as your

organization adds more and more applications, they all benefit by not having to figure out how to query

the various user stores themselves. Issuers are typically configured by IT professionals, and they usually

know best where to get any given attribute for a user, since they manage identity on a daily basis.

Windows Identity Foundation STS Architecture
WIF includes a base class, SecurityTokenService, which you derive from to create a custom STS. There

are two key methods that you must override in your derived class, which are shown in Figure 20.

pr ot ect ed abst r act Scope Get Scope(I Cl ai msPr i nci pal pr i nci pal ,

Request Secur i t yToken r equest)

pr ot ect ed abst r act I Cl ai msI dent i t y Get Out put Cl ai msI dent i t y(I Cl ai msPr i nci pal pr i nci pal ,

 Request Secur i t yToken r equest ,

 Scope scope)

Figure 20: Methods to Override on SecurityTokenService

http://go.microsoft.com/fwlink/?LinkId=122266

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

31 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

 The first method, GetScope, gives you the opportunity to normalize the relying party’s address and

choose signing and encryption keys (security tokens are typically encrypted so that only the relying party

can read them, and signed by the issuing authority). If you’re accessing a database during any of this

work, you can also use that database round-trip to pre-fetch data that GetOutputClaimsIdentity will

need, in the interest of efficiency.

The second method, GetOutputClaimsIdentity, lets you define the claims that will be folded into an

IClaimsIdentity that will be serialized into a security token. GetOutputClaimsIdentity is the method that

should fire off all of the logic in your issuer, evaluating the claims for the subject, information about the

relying party, and ultimately result in a set of claims exposed from an IClaimsIdentity implementation.

By overriding these two methods, you’ve effectively connected the STS to your policy for claims

issuance. Now all you have to do is actually issue those claims, and how you do that depends on

whether you are exposing your STS for WCF or browser clients.

WS-Trust (for Active Clients – WCF Based) Example
The example I’ll use for this discussion is from the WIF samples collection: Samples\Quick Start\Web

Service. There are three projects in this solution: a WCF client, a WCF service for the relying party, and a

WCF service for the STS. The STS project is called SimpleActiveSTS-VS2008, and that’s what I’ll be

focusing on here.

Start by opening the MySecurityTokenService.cs file and note how the sample derives a class from

SecurityTokenService and overrides the two methods I discussed earlier. In GetScope, you’ll see a

signing certificate for the service being specified as part of the scope. This is the certificate of the issuer,

and its private key will be used to sign any security tokens issued by this STS. You’ll also notice that a

certificate is being specified to use for encrypting the token so the relying party can read it. This is the

certificate of the relying party, and its public key will be used to encrypt the tokens issued by this STS to

the relying party.

This is one reason why this example is called “Simple”. The STS is hardcoded to issue tokens for one

relying party only: the Web service in the ClaimsAwareWebService-VS2008 project. A real STS would

need to support multiple relying parties to be useful, and thus would need to keep a list of certificates

and provide some way of managing that list. For an example of a real STS, take a look at the ADFS 2.0

(previously known as “Geneva” Server) STS and its features list in the administration console.

Now have a look at the GetOutputClaimsIdentity override. The body of this method pulls out the

subject’s IClaimsIdentity that resulted from the STS authenticating the user (using Windows integrated

authentication, which is the default client authentication method in WCF). You can see that it creates a

new IClaimsIdentity and simply copies the name claim it gets by authenticating the user with Windows

integrated authentication, then adds one new claim, one that represents the user’s age. Note the

ClaimType (http://WindowsIdentityFoundationSamples/2008/05/AgeClaim) used here is a URI defined

by the issuer; this is a simple example of creating a custom claim that allows you to communicate

arbitrary identity details to relying parties, as long as the issuer and relying party agree on what the

claim means.

http://windowsidentityfoundationsamples/2008/05/AgeClaim

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

32 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

In practice, it would make more sense to look up the user’s date of birth in a user store, but this

example is focused on how you use WIF to issue claims. If you build your own issuer using an example

like this, where you get the claims is entirely up to you.

To see how the issuer exposes its WS-Trust endpoint to the world, open Program.cs and have a look at

the Main() method. You’ll notice down towards the bottom of the code that ServiceHost is not used;

instead, the sample uses a derived host that WIF supplies called WSTrustServiceHost. This class

simplifies configuring WCF to expose a WS-Trust endpoint. Note that in configuring the host, you specify

the security token service configuration instance and the WS-Trust endpoint you want to expose,

although you don’t have to actually implement it yourself. The security token service configuration has

the property SecurityTokenService which is set to the type of the custom class that you derived from

SecurityTokenService (MySecurityTokenService in this example).

When you run this sample, if you watch closely, you’ll see that the client first makes a call to the STS, (it

prints out the claims it is issuing to its console window). Then, a moment later, you’ll see that the relying

party receives the claims and prints them out into its console window.

Visual Studio Template for WS-Trust WCF STS

You might think that it is going to take a while for you to get started with a STS project and build an end-

to-end solution. It is not as difficult as you think; WIF offers a built-in Visual Studio template that can

make it easier. This template creates a typical WCF service project that is preconfigured with WIF and a

WS-Trust end point and ready to issue security tokens to Web service clients.

To try out this template, open Visual Studio and select “FileĄNewĄ Web Site…”. From there, select

“WCF Security Token Service” as your project type. This creates a simple WS-Trust STS project. This will

generate a CustomSecurityTokenService class under the App_Code folder that derives from the WIF’s

SecurityTokenService base class. The derived class overrides the GetScope and GetOutputClaimsIdentity

methods. For signing the tokens it has STSTestCert certificate that is installed as part of the template. In

practice you would want to load the certificate from your trusted certificate store, and you can modify

the CustomSecurityTokenServiceConfiguration.cs file to do so. The end point exposed by this project is

accessible at “<your host name>/STSService/Service.svc” and it requires Windows integrated

authentication.

This sample STS project is intended only for learning purposes, as building a real STS for production

environments is a non-trivial task worth a separate white paper onto itself. The security, performance,

and scalability requirements of your business need to be addressed carefully in addition to the policy

questions that I highlighted in the section “Issuing Authority versus STS”. In many cases you would be

better off using an existing STS such as ADFS 2.0 (formerly known as “Geneva” Server).

WS-Federation (for Passive Clients – ASP.Net Based) Example
The example I’ll use for this discussion is from the WIF samples collection: Samples\End-to-

end\Federation For Web Apps. For this discussion let us focus on the FPSTS project. Unlike the active

example, there is no client project because there is no smart client; this is a browser-based example.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

33 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

When you are building a passive STS for browsers, you expose your STS to the world by handling HTTP

requests from a browser, and in this example, a Web page called Default.aspx is used. The ASPX page

itself isn’t very interesting, but if you look at the code behind file, Default.aspx.cs, you’ll see some

boilerplate code that processes WS-Federation requests. This particular example handles the request in

Page_PreRender, and if you look inside that method, you’ll see the request being read and deserialized

into a WSFederationMessage object, which is a helper class provided by WIF. Note that you don’t

actually need to use an ASPX page to process the request – if you know how to build an ASP.NET

HttpHandler, it would work just as well.

The ProcessSignInRequest helper method is the most interesting section of code in this example. It

creates an instance of custom security token service (which looks exactly like it did in the Active

example) and calls its Issue method (Figure 21), passing in the caller’s identity and the details of the

request. Note the use of WSFederationSerializer, which supplies the impedance mismatch between the

active and passive scenarios. It is used to deserialize the incoming request into a RequestSecurityToken

that can be consumed by the STS, and also to serialize the resulting RequestSecurityTokenResponse

from the STS into a response message that includes JavaScript to auto-post the response back to the

relying party.

publ i c v i r t ual Request Secur i t yTokenResponse I ssue(I Cl ai msPr i nci pal pr i nci pal ,

 Request Secur i t yToken r equest)

Figure 23: SecurityTokenService.Issue

Visual Studio Template for WS-Federation ASP.Net STS

Similar to the WCF WS-Trust STS template, WIF offers a template for an ASP.NET STS (WS-Federation

Passive). This template creates a typical ASP.NET web site that is preconfigured with WIF and ready to

accept WS-Federation requests and to issue security tokens for passive clients.

From Visual Studio, navigate to “FileĄNewĄ Web Site…” and select “ASP.NET Security Token Service”

as your project type. This creates an ASP.NET Web Site project with the name STSWebSite with a

Login.aspx page. This project is enabled with a simple Forms authentication and includes a Default.aspx

page with Federated Passive Token Service operations.

Once the federation passive security token service operations are used in a Web page it turns your Web

site into an STS; it accepts a WS-Federation request and then responds with a WS-Federation response

that contains a security token. As you can see you don’t have to write a lot of code to make an ASP.NET

Web site into a passive STS. Link the CustomSecurityTokenService class so that the claims that you want

to issue are put in the token. Then call ProcessSignInRequest with STS as a parameter and then call

ProcessSignInResponse method.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

34 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

/ / Pr ocess si gni n r equest .

Si gnI nRequest Message r equest Message = (Si gnI nRequest Message) WSFeder at i onMessage. Cr eat eFr omUr i (Request . Ur l) ;

i f (User ! = nul l && User . I dent i t y ! = nul l && User . I dent i t y. I sAut hent i cat ed)

{

 Secur i t yTokenSer vi ce st s = new Cust omSecur i t yTokenSer vi ce(Cust omSecur i t yTokenSer vi ceConf i gur at i on. Cur r ent) ;

 Si gnI nResponseMessage r esponseMessage =

Feder at edPassi veSecur i t yTokenSer vi ceOper at i ons. Pr ocessSi gnI nRequest (r equest Message, User , st s) ;

 Feder at edPassi veSecur i t yTokenSer vi ceOper at i ons. Pr ocessSi gnI nResponse(r esponseMessage, Response) ;

}

Figure 24: Federated Passive Token Service Operations

Note that this STS template is intended only for learning purposes. If you plan to build a custom STS, you

might use this template as a starting point, but the security, performance, and scalability requirements

need to be addressed carefully in addition to the policy questions that I highlighted in the section

“Issuing Authority versus STS”. As I mentioned in the previous section, most STS requirements can be

covered by an existing product such as ADFS 2.0.

Using FedUtil to configure a relying party to use as STS
In previous sections I have addressed how WIF helps in building claims-aware applications and security

token services. The key functionality of an end-to-end solution involving federation and claims-based

identity is how to establish trust between a relying party application and an STS.

An application needs to understand the characteristics of an issuer before choosing to accept claims

issued by it. Likewise, an issuer needs to know the application’s claims requirements so that it can set

appropriate issuance policies. This is where federation metadata documents play a vital role in providing

guidance on expressing the common characteristics of the STSes and relying party applications.

Federation Metadata
Federation metadata specifications are included in the WS-Federation 1.2 Specification under Section 3.

A federation metadata document is an XML document that contains the characteristics of an STS or a

claims-aware application that can be used when establishing trust.

For a relying party application the most interesting STS characteristics are the list of claims offered, the

STS token signing certificate, and the list of end points exposed. Relying party applications typically

require a specific list of claims for their identity related aspects; for example, a name claim for

personalizing the application and a role claim for performing access checks. So an application must

examine the list of claims offered by an STS and ensure that the list covers its own list of required claims.

In practice an application wants to accept tokens only from trusted issuers; to perform this trust

validation, the STS token signing certificate needs to be stored and used by the application during token

validation (WIF uses the public key from the issuer’s certificate in order to verify the signature on tokens

that it receives). In scenarios where an STS supports multiple authentication methods, it might expose

multiple end points that address different authentication methods. The relying party application uses

this list to determine which end point to redirect the user to, depending on the resource that the user is

trying to access and the application’s claims requirements for that resource. The STS’s federation

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

35 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

metadata document typically contains these characteristics in addition to other advanced properties

which are outside the scope of this paper.

You might wonder what application characteristics an issuer might be interested in. There are three

characteristics of a relying party that an issuer cares about: the claims required by the application, the

application’s encryption certificate, and the end point where the application is accessible. The issuer

uses these characteristics to register a trusting relying party and the corresponding claims issuance

policy. An STS might support multiple relying parties and it normally creates a separate issuance policy

for each relying party. The required claims list is used to determine the list of claims to be issued to the

application. The encryption certificate is used to encrypt the security tokens that are issued to the

application so that only the intended relying party can decrypt the token. The end point of the

application is typically used as an identifier to load the relying party’s policy and determine the return

address where the tokens to be sent to.

The federation metadata document is recommended to be hosted in a specific HTTPS URL, namely

https://<your host name>/FederationMetadata/2007-06/FederationMetadata.xml where <your host

name> is either a STS’s host name or an application’s Web site location.

It appears that establishing trust between an application and an STS, and publishing federation

metadata documents, are complex tasks. WIF offers a solution for this trust establishment process; it

offers a utility called Federation Utility, or FedUtil, which does the work for you. FedUtil helps you to

configure your federated claims-aware application to trust an STS and to publish a federation metadata

document for that application. Note that the WIF contains serialization interfaces for the federation

metadata specifications, so if you want to build a custom trust establishment process between your

custom STS and your claims-aware applications you can achieve that as well. In fact, FedUtil uses these

federation metadata serializer interfaces when it parses the STS federation metadata and when it

creates an application’s federation metadata document.

Basic scenario using FedUtil

Web Front End

(Relying Party App)

3. Provide App federation metadata URL Issuing Authority

(STS)

FedUtil

Alice Bob

2. Run FedUtil

against app

1. Obtain STS federation metadata URL

4. Add trusted app

to STSTrust established between STS & app STS Admin

console

Figure 25: FedUtil Tool Basic Scenario

Figure 25 illustrates a typical flow involved in establishing trust between an STS and an application.

Assume a scenario where a federated claims-aware application is deployed in the Web front end server

and an STS needs to be provisioned to this application. Alice is the site administrator of the Web front

end server and Bob is the STS administrator. Alice and Bob have agreed to establish trust between the

STS and the application and following would be the sequence of steps that they follow to achieve this.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

36 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Bob shares the HTTPS URL of the STS’s federation metadata document with Alice through phone or

email or other means (1) and asks for the URL of the application’s federation metadata document from

Alice. Alice runs FedUtil against the application and follows the onscreen instructions in the FedUtil

wizard (2). Alice specifies the location of the configuration file of the application (its web.config file) and

the certificate to be used for encrypting the tokens, as well as the URL of the federation metadata

document of the STS that Bob provided. FedUtil fetches the STS characteristics and shows the list of

claims offered. Alice reviews the list of claims offered and ensures that the application’s required claims

are in the list and finishes the wizard. Here’s what FedUtil does behind the scenes:

 FedUtil updates the application’s configuration file (web.config) to use the FAM and

SessionAuthenticationModule, and enables the passiveRedirect property on the FAM.

 FedUtil parses the STS’s federation metadata document and copies the claims offered list into a

comment section in the configuration file under the <applicationService> element. The name

claim and role claim are enabled by default because most applications use name and role

information through the well known IIdentity and IPrincipal interfaces.

 FedUtil creates a federation metadata document, FederationMetadata.xml, for the application

and places it in the application’s folder in a subfolder “FederationMetadata\2007-06”.

Alice provides the URL of the application’s federation metadata document to Bob (3). Bob opens up the

STS administration console and follows the STS administrator’s guide to register a relying party to his

issuer with the URL that Alice provided (4). Where you enter the application’s URL depends on the STS

product you use; refer to your STS’s product guide for this information. Afterward, trust is established

between the application and the issuer. Once the trust is established the application is ready to redirect

unauthenticated users to the STS and is also ready to consume tokens issued by the STS, and the STS is

ready to issue tokens with the claims required by the application.

Note that this is a basic scenario that demonstrates how FedUtil works. In some advanced scenarios, the

STS may require more than just the application’s federation metadata to set up STS policy settings.

Typical policy queries might include the following:

 Is the relying party trusted to delegate credentials?

 Does the relying party specify user accounts and ask for specific user’s profiles as claims?

 Does the relying party intend to use the STS in identity provider role or federation provider role?

Even if you have these additional requirements, you’ll find that exchanging metadata document URLs

makes it easier to get started. The fact that they include serialized copies of the certificates you need is a

big timesaver.

Using FedUtil during application development
As developers, we often want to perform all the early stages of application development in a single

system and build the application prototype as quickly as possible. For developing a federated claims-

aware application, the main prerequisites are to have access to an STS and to be able to modify claims

issued by this STS to meet the application’s claims requirements. In practice, during the development

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

37 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

cycle, the application’s claims requirements often change to meet business needs and also as part of

various development phases, where new claims are introduced in each phase. The good news is that

WIF offers a solution to address this need; the solution is referred as “local STS” and you can experiment

with this solution through FedUtil.

Let us imagine a scenario where you have an existing ASP.NET Web site that uses the IIdentity.Name

property and IPrincipal.IsInRole() from Thread.CurrentPrincipal. You want to convert this Web site into a

federated claims-aware Web site, but you don’t have an existing STS in your production environment.

To achieve this task, you can open up your project in Visual Studio and in the Solution Explorer simply

right click on the project and select “Add STS Reference…”. This invokes FedUtil with your application’s

information already added. In the Security Token Service dialog, you can choose “Create a new STS

project in your current solution”. This option adds a local STS project to your current solution and

automatically connects your Web site project to this local STS. Once the wizard is completed you can see

a new STS project with the name same as your Web site name, but with the suffix “_STS”, added to your

solution. As we indicated earlier, FedUtil by default enables name and role claims, and so your Web site

continues to work without any code changes needed, because WIF sets IIdentity.Name from the name

claim and implements IPrincipal.IsInRole() based on the role claims sent by the STS.

You may wonder how to add additional custom claims to your Web site. This can be accomplished in a

simple two step process:

1. Add the new custom claims in the application’s configuration file within the

<applicationService> element and refresh the application’s federation metadata document by

right-clicking the Web site project in the Solution Explorer and selecting

“Update federation metadata”.

2. Add the custom claims in the GetOutputClaimsIdentity() method in the

CustomSecurityTokenService.cs file of your local STS project. You can iterate through this

process and add more claims as needed. When you are ready to connect the application to a

production STS, use FedUtil and point to the production STS’s federation metadata document

URL.

One interesting point to remember is that you can use FedUtil to switch between a “local STS” and a

production STS at any time. Select the “Use an existing STS” option in FedUtil’s Security Token Service

dialog and specify federation metadata URL for the STS. This flexibility allows you to debug any issues

you may notice in trust establishment in your production versus development environment.

Claims Authorization Manager
As a WCF developer you are familiar with the ServiceAuthorizationManager base class that allows you to

plug in your service’s authorization rules so that WCF can invoke them during request processing. In a

similar fashion, as an ASP.NET developer, you are familiar with the UrlAuthorization module offered by

ASP.NET that you can use to authorize access to specific pages in your Web site. In the same fashion,

WIF offers an extensibility point where you can plug in your application’s authorization rules based on

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

38 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

the claims issued for the user. This extensibility point is called ClaimsAuthorizationManager and you can

derive from this class and override the CheckAccess() method to perform your custom authorization

logic. WIF defines an AuthorizationContext class that contains a collection of Action and Resource and

the actual IClaimsPrincipal. These collections are populated from the application’s configuration element

named ‘policy’.

For a sample implementation of a custom claims authorization manager, refer to the sample in the

folder Samples\Extensibility\Claims Based Authorization. I encourage you to take a look at this sample

and more specifically the implementation of SimpleClaimsAuthorizationManager class and the

claimsAuthorizationManager section in app.config file.

Delegation and ActAs
When you build a multi-tier system, typically with a Web front end and a collection of Web services and

other resources on the back end, you have a tough choice to make. Should the Web front end use its

own identity to access those back end resources, or should it delegate the user’s credentials to make

those requests? If you choose the first option, you end up with what is known as a trusted subsystem

model. If you choose the second, you’ll need some way to delegate the client’s identity to the back end.

There are performance and security tradeoffs for both of these choices, with the trusted subsystem

model generally favoring performance over security and the delegation model generally favoring

security over performance. Sometimes it makes sense to have a mixture of these models where high

volume, low value transactions are handled using the trusted subsystem model, but low-volume, high

value transactions requiring the original caller’s credentials. Regardless of how you design your system,

it’s important to note that the claims-based model of identity and the implementation in WIF supports

delegation of credentials.

The Web front end, once it receives a client’s token, can make calls using its own identity to back end

claims-aware web services. No special code is required to do this. But if the Web front end wishes to

delegate the client’s credentials, it needs to retrieve the bootstrap token and send it along with its

request for a security token for the back end Web service.

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

39 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Back End

Web Service

STS

Issuing

Authority

Aliceôs

Browser

1. G
et C

la
im

s
fo

r A
lic

e

Alice Bob

2. Alice 4. Bob ActAs Alice
Web Front

End

(browser-

based app)

3
.
G

e
t
C

la
im

s
 f
o

r

B
o

b
 A

c
tA

s
 A

lic
e

Figure 26: ActAs Scenario

Figure 26 shows a typical ActAs scenario. Alice has pointed her browser at a web application that, as

part of its implementation, makes use of a back end Web service. Alice’s browser goes through the

passive redirection handshake just like normal in order to present a security token to the Web front end.

This is where things get interesting: the Web front end which, for the sake of this discussion, runs under

an identity called Bob, takes Alice’s token and submits it as an “ActAs” parameter in his request to get a

security token for the back end Web service. The issuing authority notes that Bob wants to make

requests to the back end using Alice’s credentials, and so crafts an IClaimsIdentity for Alice and an

IClaimsIdentity for Bob, and links them together via the Actor property, as shown in Figure 23. These

identities are serialized into a security token for the back end, where WIF rehydrates this same structure

so that the back end can see that this is Alice making the request (but technically, Bob is delegating her

credentials). The back end can then perform appropriate access control, typically granting access based

on Alice’s level of permission. The back end can also audit the request, typically noting the fact that Bob

delegated Alice’s credentials to make the request. This is richer than the current model of delegation in

Kerberos on the Windows platform today, where the back end has no programmatic way to discover

that Alice’s credentials were delegated by some middle tier component.

In the claims-based model, the back end can see that Alice went to the Web front end (Bob) and that

Bob delegated her credentials to get to the back end. If the back end were to receive a token for Alice

without Bob as a delegate, it would know that Alice was accessing the back end directly, and could take

appropriate action (deny the request, perhaps).

Claims

Identity

(Alice)

Claims

Identity

(Bob)

Delegate

Figure 27: WIF Programming Model for Delegation

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

40 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

Consider the information the authority gets in this scenario. The authority knows which target relying

party is the target of the request (the back end Web service). It knows who is making the request (Bob)

and knows that Bob wants to act on Alice’s behalf. The authority may decide not to issue a security

token in this case if Alice is a sensitive user such as an administrator with very high privilege. Or it may

issue a token with a restricted set of claims to limit what Bob can do while using Alice’s credentials. Or it

may issue an entirely different set of claims based on what the back end needs. The authority might

decide to deny direct requests from Alice to talk to the back end, if that is desirable. The only limitation

is the policy supported by the STS that you buy. Of course, if you implement your own STS, you’ll only be

limited by your imagination.

The WIF samples collection includes an example of ActAs (Samples\End-to-end\Identity Delegation),

and I’d like to point out some of the more interesting bits. I’ll start with a look at the Web front end (the

WFE project), which uses ActAs to delegate the client’s identity to a back end Web service. In

global.asax.cs, you’ll see an example of handling the ServiceConfigurationCreated event fired by

FederatedAuthentication class to wire up a channel factory with custom binding configured to Service2.

In this example, the Web front end handles the passive redirect to the STS and makes use of bootstrap

tokens collection preserved by WIF; you can see this code in default.aspx.cs in the Page_Load method.

Note how the WIF is exposing the bootstrap token through IClaimsIdentity’s BoostrapToken property.

This capability removes the burden of caching bootstrap tokens in your application.

When the Web front end wishes to make a call to the back end Web service (the Service2 project), it

pulls the user’s bootstrap token out of session security token and prepares a WCF channel for Service2.

You can see this code in Page_Load. It then configures its ChannelFactory to Service2 and then creates a

channel using CreateChannelActingAs method to perform a Web service request using two sets of

credentials (one user acting as another). The user’s security token is specified as the ActAs credentials,

and the channel is used to make a call to Service2’s ComputeResponse operation. On the relevant note

it is helpful to point out that WIF offers APIs to easily add the capability of sending WSTrust messages

from a WCF client to WSTrust-based token services; the WSTrustChannelFactory and WSTrustChannel

classes let you add this capability.

However, before the channel can make the request to Service2, it needs to get an appropriate token

from the STS that Service2 trusts. If you look in the STSBackend project, you’ll find the implementation

of this STS, and you’ll see how this request gets processed. In MySecurityTokenService.cs, have a look at

the GetOutputClaimsIdentity override. Note how the request argument includes an ActAs property that

allows the issuer to see the IClaimsIdentity of the original client (via the Subject property). This sample

issuer is very simple. It creates a new ClaimsIdentity by copying the IClaimsIdentity of the ActAs user

(this is the identity from the original user’s security token that was passed via ActAs), appending a

second identity for the caller (the web front end) to the end of the delegate chain.

Note that this is a very simple example that demonstrates how ActAs works. In the real world, the issuer

would likely perform at least checks similar to the checks that domain controllers in Windows deal with

Kerberos delegation. Typical policy queries might include the following:

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

41 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

 Is the caller trusted to delegate credentials?

 For which users?

 To which relying parties?

The resulting SAML token that is issued will include the entire chain of identities. In this case there will

be only two: the original client, and the Web front end. You can see this deserialized by WIF in the back

end Web service, Service2. Open Service2.cs and note that the code prints out the caller’s claims, (which

in this case will be the user sitting behind the browser). It also traverses the delegate chain via

IClaimsIdentity.Actor, printing out the claims for each subject that delegated the user’s credentials.

Authentication Assurance
Sometimes, in order to find a balance between security and usability, it’s good to have different levels of

authentication. For example, for high volume, low value transactions, you might allow the user to

authenticate with a user name and password using a Web form. And for convenience, you might create

a session via a cookie so that the user doesn’t have to log in every time she submits a request.

But for infrequent, high value transactions, you may want stronger authentication. Maybe there’s a

particular Web page that exposes a sensitive feature, and your security policy absolutely requires the

user to prove her identity using multi-factor authentication (such as a smart card with a PIN) before

granting access. What you need here is authentication assurance – when the user arrives at the sensitive

Web page, you need to have assurance from the authenticating authority that the user has indeed

proved possession of her smart card, and knowledge of her PIN code.

The STS can inform the relying party of the type of authentication that it used by injecting a special

authentication method claim. The sample I’m going to discuss uses this technique, and can be found in

the WIF samples collection: Samples\End-to-end\Authentication Assurance.

In this example there are two end points exposed by the STS (called AuthAssuranceSTS), one for

Windows Integrated authentication and another one for an Information Card backed by certificate,

which requires the client to present a certificate, which is a stronger but more cumbersome form of

authentication. Each issuer adds an Authentication claim into the list of claims for the user, indicating

the form of authentication used. You can see this in the GetOutputClaimsIdentity method found in the

App_Code\CustomSecurityTokenService.cs file for each of these projects.

The relying party in this example is a browser-based application (called AuthAssuranceRP) that exposes a

low value page (LowValueResourcePage.aspx) and a high value page (HighValueResourcePage.aspx). The

low value page simply checks to see if the user is authenticated, and if not, redirects to default.aspx, on

which FAM redirect kicks in.

Regardless of whether the user is authenticated or not, when she visits HighValueResourcePage.aspx,

the code checks not only whether the user is authenticated, but if she also has an authentication

strength claim with the expected claim value of “AuthenticationMethods.X509” and is only issued by

certificate endpoint of the STS, which requires the user to present an information card backed by a

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

42 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

certificate (or smart card, if you have that infrastructure). So instead of redirecting the user to

default.aspx, the high value page redirects to a separate sign-in page specifically for high-assurance

logins. This is easy to implement; if you look at Global.asax there are two event handlers implemented

namely AuthorizationFailed and RedirectingToIdentityProvider. In AuthorizationFailed event handler it

checks whether the user is denied access for High Value Resources page and if true redirect to STS for

reauthentication. In the RedirectingToIdentityProvider event handler the ‘wauth’ parameter is set to be

‘”AuthenticationMethods.X509” to indicate to STS that Certificate authentication need to be performed.

In order to handle the scenario where the user logs in once using Windows authentication, and then logs

in a second time using a certificate, one would imagine that the sample has a bit of work to do. But WIF

handles this scenario seamlessly; the FAM simply refreshes its session security token with the latest

claims received. This means that when the user initially logged in with Windows authentication, the FAM

issues a session security token with the claims issued in that case; when the user performs steps up

authentication with a certificate, the FAM sees that the user is already authenticated and a new token

has been issued, so it refreshes the session security token with the new collection of claims. If an

application wants the second set of claims to be appended to the initial set it needs to preserve the

initial set of claims and then redirect the user to the second issuer and use a custom claims

authentication manager to append the new claims to the initial claims. In essence WIF offers more

flexibility so that you can achieve these advanced scenarios in your claims-aware applications.

Overview of Claims to Windows Token Service (C2WTS)
When you introduce the claims-based model together with federated authentication into your existing

multi-tiered system, typically with a Web front end and a group of Web services and other resources on

the back end, you’ll likely take an incremental approach in migrating the back end services to the claims-

based model. For an interim migration period you would need to establish compatibility between

services that are claims-aware and federated, and services that are not claims-aware. Typically, these

claims-unaware services require Windows identity to authenticate the requests. On a related note, the

back end services might depend on other software products that require a Windows identity and don’t

recognize the security tokens issued by an STS. For example, imagine a back end service that

communicates with a SQL-based data store that requires a Windows identity for authentication.

In summary, we need a solution that acts as a bridge between the services that are claims-aware and

services that are not claims-aware; a solution that provides a way to get a Windows identity from the

security tokens issued by an STS. The claims-aware services can then use that solution to get the

Windows identity of the user from the STS issued security tokens and then calls into the back end

services that are not claims-aware. WIF offers such a solution: the “Claims To Windows Token Service”

or in short form “C2WTS”.

C2WTS is a Windows service that offers APIs to get a Windows identity by passing in the value of UPN

claim. The most helpful API is UpnLogon, which takes a UPN claim value as a string and returns a

Windows identity for that user. There are some additional steps to make this service work in the cases

where you want to use the Windows identity returned from this service to access resources in remote

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

43 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

servers (in other words, flowing identity off of the box); in that case, you would need to configure your

Active Directory to allow constrained delegation. Also note that C2WTS needs the callers’ identities

explicitly listed in its configuration file, c2wtshost.exe.config, which is located in the WIF install folder, in

the “allowedCallers” property; it doesn’t accept requests from all authenticated users in the system

unless it is configured to do so.

Back End

Web Service

(not claims-

aware)

STS

Issuing

Authority

Aliceôs

Browser

1. G
et C

laim
s fo

r A
lic

e

Alice

2. Alice submits claims
4.Submit Alice Windows

Identity
Web Front End

(claims-aware)

3.C2WTS converts claims

to Windows Identity

Bob

Figure 28: Claims To Windows Token Service (C2WTS)

Figure 28 illustrates a typical C2WTS usage scenario. Alice has pointed her browser to a Web application,

which is a claims-aware application and, as part of its implementation, makes use of a back end service

that is not claims aware. The normal passive redirect handshake happens in order to get a security token

from STS and present it to the web front end. Now the interesting part starts: the Web front end

extracts claims from the security token, and notes that the content that Alice trying to access needs to

be obtained from the back end web service, which is not a claims-aware service and requires the

Windows identity of Alice. For the sake of this discussion, let’s assume that Web front end runs under an

identity called Bob and is configured as the only allowed caller to the C2WTS. The Web front end

extracts the UPN claim value from the token and makes a request to C2WTS. Since Bob is configured in

the allowed callers list, the C2WTS processes the request and returns the Windows identity of Alice. The

Web front end impersonates Alice and then calls to the back end service and gets access to the

resources. The important point to note here is that the back end doesn’t have to know anything about

the claims model for this scenario to work.

In some scenarios, the Web front end might request resources from the back end service more

frequently and it would be more efficient to always have access to the Windows identity of Alice instead

of calling to the C2WTS for each individual request. To address this scenario, WIF introduces a

‘mapToWindows’ configuration setting that can be set in the <Microsoft.IdentityModel> section of the

application’s configuration file. When the mapToWindows property is set to ‘true’, WIF always creates

an instance of WindowsClaimsIdentity, which includes both the claims identity and Windows identity

© 2008-09 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

44 Microsoft Windows Identity Foundation (WIF) Whitepaper for Developers

aspects of Alice, instead of a ClaimsIdentity upon successful token authentication. This means that the

Windows identity of Alice is always available to the web front end.

The WIF samples collection has sample (Samples\Extensibility\Convert Claims to NT Token) that shows

how to configure the C2WTS and call its UPNLogon interface. Refer to the sample’s readme file to get

the background information about the projects included in the sample and to run the sample.

Summary
As an application developer, by building claims-aware Web applications and services, you’ll spend less

time worrying about where to find identity attributes for users and have more time to focus on building

a great application that solves real business problems. By relying on claims, you’ll be able to personalize

your applications more effectively, and implement important security features such as authorization and

auditing, without baking one particular authentication method into your application, or writing queries

against a corporate directory. By centralizing identity management in this fashion, IT professionals can

build the most efficient possible queries against their directories and give your application the identity

details that it needs about users. And becoming claims-aware means you’ll be much better prepared

when you’re asked to implement single sign-on and perhaps even identity federation.

Windows Identity Foundation (WIF) is a framework for building claims-aware Web applications and

services and offers built-in templates for these, as well as issuing authorities, should you need to roll

your own. Or you can use a pre-built issuing authority such as ADFS 2.0, formerly known as “Geneva”

Server.

Federated claims-based identity is the wave of the future. Get on board with Windows Identity

Foundation (WIF) today!

