
DECEMBER 2009 VOL 24 NO 12

THIS MONTH on msdn.microsoft.com/magazine:
SHAREPOINT 2010 AND BCS: USING BUSINESS CONNECTIVITY
SERVICES IN SHAREPOINT 2010
Kirk Evans

USABILITY IN PRACTICE: MORE THAN SKIN DEEP
Charles B. Kreitzberg & Ambrose Little

COLUMNS
Toolbox
Database and OR/M Tools, Oren Eini
and Custom Visual Studio Tabs
Scott Mitchell page 9

CLR Inside Out
In-Process Side-by-Side
Jesse Kaplan & Luiz Fernando Santos
page 12

Cutting Edge
Live Data Binding in ASP.NET
AJAX 4.0
Dino Esposito page 18

Test Run
Pairwise Testing with QICT
James McCaffrey page 28

Extreme ASP.NET
Looking Ahead to ASP.NET 4.0
Scott Allen page 74

Windows with C++
Layered Windows with Direct2D
Kenny Kerr page 79

Going Places
Enhancing Windows Touch
Applications for Mobile Users
Gus Class page 87

Concurrent Affairs
Data-Parallel Patterns and PLINQ
Igor Ostrovsky page 92

GENERATION TEST
Automated Unit Tests for Legacy Code with Pex
Nikhil Sachdeva page 36

TEAM SYSTEM
Building a Visual Studio Team
Explorer Extension
Brian A. Randell & Marcel de Vries page 64

CODE CLEANUP
Using Agile Techniques
to Pay Back Technical Debt
David Laribee page 46

DATA ACCESS
Building a Desktop To-Do Application with NHibernate
Oren Eini page 54

Bu
Exp
Brian

Oren Eini page 54

g
Nikhil Sachdeva page 36

Usin
to P
David L

Rapid-but-Untested Coding

1098765432

Simple, Test-Driven Designs

1209msdn_0C1.v3.indd 11209msdn_0C1.v3.indd 1 11/12/09 9:37 AM11/12/09 9:37 AM

www.msdn.microsoft.com/magazine

Project6 11/5/09 2:47 PM Page 1

www.infragistics.com/killerapps

When an electrochemical reaction animated the dormant cells in
a very powerful egg, Gort was hatched. With special powers and

abilities to infuse ordinary applications with UIs that have
extreme functionality, complete usability and the “wow-factor!”,
Gort empowers Killer Apps. Go to infragistics.com/killerapps to

find out how you can start creating your own Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111

Copyright 1996-2009 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo are registered trademarks of Infragistics, Inc.

Project6 11/5/09 2:48 PM Page 2

www.infragistics.com/killerapps

www.syncfusion.com 1 888-9DOTNET

Project1 10/29/09 3:02 PM Page 1

http://www.syncfusion.com

What does your grid do?
Although many grids share basic features, only Syncfusion’s WPF grid has
the power and performance to set your application apart. Our grid builds
on years of Syncfusion’s expertise with high-performance scenarios.

Syncfusion Essential Grid WPF is the fastest WPF grid on the market.

Experience it for yourself at
www.syncfusion.com/wpf-gridperformance

Support for billions of rows

Unmatched scrolling performance with large data sets

Wide variety of styling options

•

•

•

ET ASP.NET MVC ASP.NET Windows Forms Back Offi ce Silverlight WPF Business Intelligence

Project1 10/29/09 3:03 PM Page 2

http://www.syncfusion.com/wpf-gridperformance

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS Don Box, Keith Brown, Dino Esposito, Juval Lowy,
Dr. James McCaffrey, Fritz Onion, John Papa, Ted Pattison, Charles Petzold,
Jeff Prosise, Jeffrey Richter, John Robbins, Aaron Skonnard, Stephen Toub

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President
Christopher M. Coates Vice President, Finance & Administration
Abraham M. Langer Vice President, Digital Media, Audience Marketing
Erik A. Lindgren Vice President, Information Technology & Web Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment to:
MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call
(847) 763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 1081, Skokie, IL
60076-8081. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or Bleuchip International, P.O. Box 25542, London, ON N6C 6B2.

© Copyright 2009 by 1105 Media, Inc. All rights reserved. Printed in the U.S.A. Reproductions in whole
or part prohibited except by written permission. Mail requests to “Permissions Editor,” c/o MSDN
Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

DECEMBER 2009 VOLUME 24 NUMBER 12

Printed in the USA

� 25+ full-text
and fielded
data search
options (with
Unicode
support for
hundreds of
international
languages)

� Built-in file
parsers /
converters
highlight hits
in popular
file types

� Spider
supports
static and
dynamic
web data;
highlights
hits with
links,
formatting
and images
intact

� API supports .NET, C++, Java, SQL, etc.
.NET Spider API

Fully-Functional Evaluations

The Smart Choice for Text Retrieval®

since 1991

1-800-IT-FINDS • www.dtsearch.com

Instantly Search
Terabytes of Text

Network with Spider

Web with Spider

Desktop with Spider

Network with Spider

Web with Spider
Publish (portable media)
Publish (portable media)

Desktop with Spider

Engine for Linux
Engine for Linux

includes

64-bit
Engine for Win & .NET
Engine for Win & .NET

“Bottom line: dtSearch manages a terabyte
of text in a single index and returns results
in less than a second” — InfoWorld

dtSearch “covers all data sources …
powerful Web-based engines” — eWEEK

“Lightning fast ... performance was
unmatched by any other product”
— Redmond Magazine

See www.dtsearch.com for hundreds
more reviews, and hundreds of developer
case studies

Masthead.lay4.1209_4.indd 4 11/12/09 10:53 AM

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
http://www.dtsearch.com

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames, bullets,

structured numbered lists, multiple undo/redo,
sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/farpoint

FarPoint Spread
for Windows Forms
The Best Grid is a Spreadsheet. Give your users
the look, feel, and power of Microsoft® Excel®,
without needing Excel installed on their machines.
Join the professional developers around the
world who consistently turn to FarPoint Spread
to add powerful, extendable spreadsheet solu-
tions to their COM, ASP.NET, .NET, BizTalk Server
and SharePoint Server applications.

• World’s #1 selling development spreadsheet
• Read/Write native Microsoft Excel Files
• Cross-sheet formula referencing
• Fully extensible models
• Royalty-free, run-time free

Paradise #
F02 01101A01
$936.99

dtSearch Engine for Win & .NET
Add dtSearch‘s “blazing speeds”
(CRN Test Center) searching and
file format support
• dozens of full-text and fielded

data search options
• file parsers/converters for hit-highlighted

display of all popular file types
• Spider supports dynamic and static web data;

highlights hits with links, images, etc. intact
• API supports .NET, C++, Java, SQL and more;

new .NET Spider API

“Bottom line: dtSearch manages a terabyte of
text in a single index and returns results in
less than a second.” —InfoWorld

programmers.com/dtsearch

3 Server Pack
Paradise #

D29 02101A08
$2,375.99

New
64-bit

Version!

programmers.com/pragma

Pragma Fortress SSH
—SSH Server for Windows
by Pragma Systems
Contains Windows SSH & SFTP Servers. Certified
for Windows Server 2008. Works with PowerShell.

• Full-featured server with centralized
& graphical management

• GSSAPI Kerberos & NTLM authentication
• Fastest SFTP & SCP file transfer
• Supports over 1000 sessions
• Runs console applications & allows history

scroll back within the same session
• Runs in Windows 2008/2003/Vista/XP/2000Paradise #

P35 04100A01
$698.99

Paradise #
P26 04201E01
$3,951.99

programmers.com/unify

Unify SQLBase
Embedded Database
by Unify
SQLBase is an easy to deploy database
for building desktop and Web applications
in server environments without a DBA.

• Small footprint
• Zero admin deployment
• GUI admin
• Embed it and forget it

For applications with encrypted security,
we offer SQLBase Treasury.

Reduce your database costs and simplify
maintenance with Unify SQLBase.

Paradise #
C15 03101A01

$143.99

programmers.com/vSphere

FREE WEBINAR SERIES:
MORE Maximum Data
Modeling with CA ERwin 7.3
In our last webinar series, we looked at CA
ERwin’s core functionality. In this second series,
we’ll provide a grounding in how CA ERwin r7.3’s
new features help you with Master Data Management, Metadata
Management, Data Warehousing, Data Governance and Business Intelligence.

There will be six sessions in the series:
• What’s New in CA ERwin 7.3
• MDM (Master Data Management) with CA ERwin and Data

Profiling tool
• Collaborative model management with CA ERwin ModelManager
• Validate the integrity of your model with CA ERwin Validator
• Reporting: Crystal Reports, PDF, HTML
• SAPHIR Option: light at the end of the metadata tunnel

CA ERwin r7.3

REGISTER TODAY: programmers.com/MDM_2009

programmers.com/sparxsystems

Enterprise Architect 7.5
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

Corporate Edition
1-4 Users

Paradise #
SP6 03101A02

$182.99

programmers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded OCR, OMR, and
1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

NEW
RELEASE!

programmers.com/solarwinds

Orion Network
Performance Monitor
by Solarwinds
Orion Network Performance Monitor is a
comprehensive fault and network performance
management platform that scales with the
rapid growth of your network and expands
with your network management needs.
It offers out-of-the-box network-centric views
that are designed to deliver the critical
information network engineers need.
Orion NPM is the easiest product of its
kind to use and maintain, meaning you
will spend more time actually managing
networks, not supporting Orion NPM.

Paradise #
S4A 08201E02

$4,606.99

New
Gen2

Release!

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing staff
three times over

• Control downtime—whether planned or not

• Save more than 50% on the cost of managing,
powering and cooling servers

Make your time (and money) count for more
with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09201S06

$4,228.99

Project4 10/29/09 2:59 PM Page 1

www.programmersparadise.com

msdn magazine6

1. Architectural background for enterprise development
2. More infrastructure awareness for a better understanding on what

the platform already off ers for security, health, scalability and so on
3. Best practices to adopt, followed by worst practices to avoid
4. Team consciousness, because the developer is just one in a

series of stakeholders who play a role in the development process
5. A stronger focus on the platforms and tools developers

currently use, and less emphasis on the next new thing
We are also tweaking our content, which will have an eff ect on

features and our column lineup. Th ese changes will be incorporated
incrementally, and we'll be actively seeking your input, to help us
shape the magazine to best serve your needs as active developers.

Regarding this issue, I want to highlight certain articles we
are featuring:

• Nikhil Sachdeva explains how Pex, a tool developed by Micro-
soft Research, can help you keep your legacy code from rotting
by automatically producing small test suites with high code
and assertion coverage.

• Brian A. Randell and Marcel de Vries show us how to extend
Visual Studio Team Explorer feature to add more level of
interactions with Team Foundation Server.

• Ayende Rahien explores best practices for desktop applications
that use NHibernate for object/relational mapping.

• Finally, David Laribee gives a particular look on the economics
of soft ware development, focusing on a way to turn down a high-
costly maintenance codebase in favor of a more productive one.
I hope you enjoy this issue. Keith and I, together with our production

team, will keep working on ways to improve MSDN Magazine. Tell us
how we can make it even better by sending your comments to
mmeditor@microsoft .com.

Shaping a New Era in MSDN Magazine

I’m Diego Dagum, the new editorial director
for MSDN Magazine. Because I'm new to the
magazine, I’ll tell you a bit about myself before
getting into the details of this month's issue.

Developing software has always been a
passion for me, since my teenage years when
a new range of so-called home computers
replaced the first wave of console games (these last

mainly dominated by Atari). Home computers were also console games,
but started coming with programming capabilities. There would
typically be some BASIC dialect built-in, plus the possibility of getting
alternative languages via cartridges like LOGO or Assembler.

That led to university training in computer science, with the goal
of becoming a professional developer. Once graduated, I worked as
a developer for different types of industries (from manufacturers
to communications, from startups to large corporations and so
on), having to learn not just the ways of the various platforms
being used, but the tricks of the trade for each business. That
helped me better match up the capabilities of technology with
the need of businesses to “do more with less.”

When you’re able to analyze technologies not for what they are
but for how much they help leverage business, you become an ar-
chitect. Th at’s what I’ve been doing as editor of Th e Architecture
Journal (a sister magazine) for a year and a half now; I’ll keep
doing that job as well.

Back on the MSDN Magazine side, I'm working with our new editor
in chief, Keith Ward, to make some changes to the magazine. A key
goal of that is to better align our content with your needs as a devel-
oper. To that end, I've written a blog entry discussing that new focus
at http://blogs.msdn.com/msdnmagazine/archive/2009/10/07/9904758.aspx.

To summarize here, there are five core areas we want to stress
going forward.

EDITOR'S NOTE

© 2009 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by United Business Media LLC. United Business Media LLC is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this
magazine. The recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation
does not make any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and
Microsoft logos are used by United Business Media under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://blogs.msdn.com/msdnmagazine/archive/2009/10/07/9904758.aspx
mailto:mmeditor@microsoft.com
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

Project3 11/10/09 5:05 PM Page 1

www.axosoft.com

Project6 10/22/09 2:13 PM Page 1

www.altova.com/wanted

TOOLBOXSCOTT MITCHELL

All prices confi rmed at press time are subject to change. The opinions expressed in this column are solely
those of the author and do not necessarily refl ect the opinions at Microsoft.

Send your questions and comments for Scott to toolsmm@microsoft.com.

Enhancing the LINQ to SQLand
ADO.NET Entity Framework
Designers
LINQ to SQL and the ADO.NET Entity
Framework are two object-relational
mapping (OR/M) implementations from
Microsoft. Using these OR/Ms entails
creating a .dbml or .edmx fi le that contains
a mapping between the relational model
and the object model. Under the covers,
this mapping is defi ned via XML, but the
Visual Studio designer makes creating such
mappings as easy as drag and drop.

If you use LINQ to SQL or Entity
Framework in your applications and are in
charge of maintaining the mapping fi les,
check out Huagati DBML/EDMX Tools
(version 1.76), which adds a number of
features to the Visual Studio LINQ to SQL
and Entity Framework designers.

Observing prescribed naming conven-
tions in the object model is a common
challenge with drag and drop OR/M tools.
Database object names often include
prefi xes like “tbl” or “usp_”, or may be
entirely capitalized or lowercase. When
adding a database object to the designer,
Visual Studio creates the corresponding
class using the same prefi xes and casing,
which may run counter to your team’s
naming conventions. With Huagati DBML/
EDMX Tools, you’re just a couple of clicks
away from renaming all of the classes and
members in the object model. You can add
or remove prefi xes or suffi xes, force proper
casing, remove underscores and more.

One shortcoming of the Visual Studio
LINQ to SQL designer is that there is no
mechanism to update the object model
to refl ect the latest database changes. For
example, when you fi rst drag a database
table onto the designer, an object is cre-

ated with properties that correspond to
the table’s columns. If three new columns
are added to the same table a few weeks
later, you must return to the LINQ to SQL
designer and either remove and then re-add
the table onto the designer, or manually add
three new properties to the corresponding
class. This shortcoming is a non-issue with
the Huagati DBML/EDMX Tools, which
can report the differences between the

relational model and the object model and
automatically sync the object model with
the relational model. The Huagati DBML/
EDMX Tools can also generate the SQL
statements needed to modify the relational
model so that it mirrors the object model.

Another handy feature is the documen-
tation tool, which retrieves the table and
column descriptions from the database and
includes them in the XML documentation
of the object model.

The Huagati DBML/EDMX Tools includes
a free 45-day trial version, along with
Standard and Professional versions. The
Standard version costs $50 per user license
and supports up to 80 tables per model.
The Professional version costs $120 per user
license and imposes no limits.

Price: $50 to $120 per user license
huagati.com/dbmltools

Blogs of Note
One of my favorite .NET bloggers is Oren Eini, a
prolifi c blogger and respected software devel-
oper who posts under the pseudonym Ayende
Rahien. Eini is perhaps best known for his con-
tributions to .NET open source projects. He’s a
contributor to NHibernate, a popular OR/M
framework reviewed in the October 2006
issue of MSDN Magazine (msdn.microsoft.com/
magazine/cc163540), and is the creator of Rhino
Mocks, a .NET mocking framework covered
in the January 2008 issue (msdn.microsoft.com/
magazine/cc135981).

Eini’s blog posts explore a spectrum of top-
ics. Some entries examine a feature or pitfall of
a particular framework, such as NHibernate
or the Microsoft Entity Framework. Most are
more general, imparting advice from the
trenches regarding database design, OR/M
usage, testing and software architecture
and design. Posts often include screenshots,
diagrams and code snippets.

Database and OR/M Tools, Oren Eini and
Custom Visual Studio Tabs

9December 2009

With Huagati
DBML/EDMX
Tools you’re

just a couple of
clicks away from
renaming all of
the classes and
members in the
object model.

Mitchell.Toolbox.1209.Lay8_9-11.indd 9 11/12/09 9:24 AM

mailto:toolsmm@microsoft.com
http://huagati.com/dbmltools
http://msdn.microsoft.com/magazine/cc163540
http://msdn.microsoft.com/magazine/cc135981

msdn magazine10 Toolbox

You’ll fi nd, for example, a series of posts
on OR/M implementation challenges such
as mapping between the relational and object
models, hydrating entities and so on. And be
sure to read “Solving the Select N+1 Problem”
(ayende.com/Blog/archive/2008/12/01/solving-the-select-
n1-problem.aspx), which explains how iterating
over parent-child data can unwittingly lead
to serious performance issues.

Eini’s blog also contains types of posts you
don’t typically fi nd in developer-focused
blogs. For instance, there are a number of
entries that are only a few sentences long, yet
still manage to convey an important idea and
get the reader thinking. Other posts contain
a lengthy code snippet with a single state-
ment like, “Find the bug.” With these types
of posts, along with his impressive output, it’s
not uncommon for there to be three or more
posts per day. Oren’s blog is a must-read for
.NET developers and architects.

ayende.com/Blog

Run Simultaneous Queries
Against Multiple Databases
Over the course of my career, I’ve helped
build a number of multi-tenant applica-
tions—applications that have a single
instance running on a hosted web server
but are used by multiple organizations.

A multi-tenant application must ensure
that a user can view and manage only the
data that belongs to her organization. To
this end, multi-tenant applications that
work with sensitive information often
store each organization’s data in a separate

database to fully isolate the data (among
other reasons).

Viewing data aggregated across mul-
tiple organizations can be a real challenge
when each organization’s data is stored in
a separate database. Imagine that a devel-
oper fi nds a bug that has corrupted data
for a particular organization. To determine
if there’s similar corruption for the other
customers, the developer must run a query
on every single database, emitting a separate
resultset for each. As you can imagine, that
gets tedious. Ideally, the results from each
database would be aggregated into a single,
unifi ed output, which could then be sorted,
fi ltered and so forth.

Over the years, I’ve queried multiple data-
bases using a variety of techniques, including
the undocumented sp_MsForEachDb stored
procedure, writing batch fi les and building
custom tools. Recently, a colleague introduced
me to Red Gate Software’s SQL Multi Script
(version 1.1), and I haven’t looked back. SQL
Multi Script works much like you’d expect—
enter the SQL statements to execute and
select the databases to query against. SQL
Multi Script then fi res off the SQL statements
to the specifi ed databases and aggregates
and displays the results.SQL Multi Script

Oren Eini’s blog

Mitchell.Toolbox.1209.Lay8_9-11.indd 10Mitchell.Toolbox.1209.Lay8_9-11.indd 10 11/12/09 9:24 AM11/12/09 9:24 AM

http://ayende.com/Blog/archive/2008/12/01/solving-the-select-n1-problem.aspx
http://ayende.com/Blog

11December 2009msdnmagazine.com

By default, SQL Multi Script sends the SQL
statements to the databases in parallel. This
can greatly reduce the time it takes to get back
the results, especially when the databases
reside on different servers. Alternatively, you
can instruct SQL Multi Script to issue the state-
ments serially, which is useful if you want to
stop executing the script in the face of an error.

If you do get an error, SQL Multi Script
offers four error handling options: continue
executing the script (the default behavior);
stop executing the current statement on the
database, but continue with the other SQL
statements; stop executing all statements
on this database and move on to the next
database in the list; or stop executing all
statements on all databases.

SQL Multi Script’s Results pane provides
an aggregated view of the messages and
data returned by the databases, along with
a history of the scripts executed against the
databases during the current session. The
Results pane also includes a checkbox list
of the databases that were queried; check
or uncheck a database to show or remove
its results from the aggregate. You can also
click the Save button to save the aggregated
results to a .CSV or .TXT fi le.

Price: $195
red-gate.com

Improve the Visual Studio Tabs
When working on a large project, it is not
uncommon to have dozens of fi les open
within Visual Studio. Unfortunately, the Visual
Studio user interface leaves a bit to be desired
when there are many open documents. By
default, Visual Studio uses a Single Document
Interface (SDI) with a series of tabs that show

which documents are open. However, these
tabs are laid out horizontally, which limits how
many can be displayed on the screen. The
Visual Studio Multi Document Interface (MDI)
does not show tabs, but instead requires the
user to go to the Window menu to view and
switch among the open documents.

Tabs Studio (version 1.6), by Sergey
Vlasov, is an add-in that replaces the built-in
Visual Studio tabs with an improved and
customizable set of tabs. Unlike Visual
Studio, Tabs Studio displays the tab for
every open document in both the SDI and
MDI confi gurations. If there is not enough
horizontal space to display every tab, Tabs
Studio stacks them vertically.

Many types of components created in
Visual Studio are implemented using multiple
fi les. For example, creating an ASP.NET page
named Default.aspx actually creates two
fi les, Default.aspx and Default.aspx.cs (or
Default.aspx.vb). Tabs Studio adds features
that make it easier to work with such fi les.

Say you’re working with Default.aspx and
need to open Default.aspx.cs. Right-click

on the Default.aspx tab and the context
menu includes an Open Default.aspx.cs
option. What’s more, Tabs Studio groups
related documents into a single tab. When
both Default.aspx and Default.aspx.cs are
opened, Tabs Studio will display a single tab
that lists the fi le name without the extension
(Default) along with the two extensions
(.aspx and .aspx.cs). Click the .aspx extension
in the tab to bring up Default.aspx, or click
.aspx.cs to display Default.aspx.cs.

Tabs Studio also has a variety of confi gu-
ration options. For instance, Tabs Studio
allows the tabs’ styles to be customized via
XAML. You can confi gure the tabs’ fonts,
colors, shapes and more. And because the
settings are defi ned using XAML, you can
include conditional statements and other
programmatic logic, making it possible
to do things like specify the styling for the
currently selected tab, or make the previ-
ously selected tab a different color from
the other non-selected tabs. Tabs Studio
can be further customized using add-ins.
You can write your own or download any
of the free add-ins available from the Tabs
Studio Web site.

Tabs Studio is available for the non-
Express Editions of Visual Studio 2005,
2008 and 2010.

Price: $34
tabsstudio.com

SCOTT MITCHELL, author of numerous books and founder
of 4GuysFromRolla.com, is an MVP who has been work-
ing with Microsoft Web technologies since 1998. Mitchell
is an independent consultant, trainer and writer. Reach
him at Mitchell@4guysfromrolla.com or via his blog at
ScottOnWriting.NET.

Unlike Visual Studio,
Tabs Studio displays

the tab for every
open document in
both the SDI and

MDI confi gurations.

Tabs Studio

Mitchell.Toolbox.1209.Lay8_9-11.indd 11Mitchell.Toolbox.1209.Lay8_9-11.indd 11 11/12/09 9:24 AM11/12/09 9:24 AM

mailto:Mitchell@4guysfromrolla.com
www.msdnmagazine.com
http://red-gate.com
http://tabsstudio.com
http://ScottOnWriting.NET
http://4GuysFromRolla.com

msdn magazine12

running it on the 2.0 runtime, with a few extra assemblies on top of
it. However, it also means that we couldn’t innovate in the .NET 2.0
assemblies, which include key functionalities, such as the garbage
collector, just in time (JIT) and base class libraries.

With the .NET Framework 4 we have implemented an approach that
allows high compatibility, including never breaking existing add-ins,
and also lets us innovate in the core. We can now run both .NET
2.0 and .NET 4 add-ins in the same process, at the same time. We
call this approach In-Process Side-by-Side, or In-Proc SxS.

While In-Proc SxS solves the most common compatibility
issues, it doesn’t fi x everything. In this column we’ll describe more
about why we decided to build In-Proc SxS, how it works and which
problems it doesn’t solve. For people writing normal applications or
add-ins, In-Proc SxS mostly just works—the right things all happen
automatically. For those of you who are writing hosts that can take
advantage of In-Proc SxS, we’ll also describe the updated hosting
APIs and provide some guidelines for using them.

The Trip to Ray Ozzie’s Offi ce
Late in 2005 almost all high-level Microsoft executives were
suddenly unable to check e-mail on any of their main machines.
For no apparent reason, whenever they opened Outlook it would
crash, restart and then crash again in a continuous loop. Th ere
were no recent updates to Outlook or anything else that seemingly
could have been causing this. It was soon tracked down to a
managed exception being thrown by a managed add-in. A friend
of mine [“Mine” refers to column co-author Jesse Kaplan—Ed.] from
the Visual Studio Tools for Offi ce (VSTO) team—responsible for
managed add-ins to Offi ce—was sent to diagnose this problem on
the machine of one of the most prominent victims of this bug: Ray
Ozzie, who was chief technical offi cer at the time.

Once in Ray’s offi ce, my friend was quickly able to determine that
a beta version of the .NET Framework 2.0 had been deployed via
an internal beta program, and he identifi ed which Offi ce add-in
was causing the problem. As one of the compatibility PMs on the
CLR team, I installed the add-in and took it from there.

We quickly determined what went wrong: the add-in had a race
condition in which it started up nine diff erent threads, and aft er

CLR INSIDE OUT

In-Process Side-by-Side

As we built the .NET Framework 4, one of the more diffi cult problems
we faced was maintaining compatibility with previous releases
while still adding new features and functionality. We followed strict
processes requiring approval for any changes that might introduce
compatibility issues—most were rejected—and ran a compatibility lab
with hundreds of real applications to fi nd any unintentional breaks.

But every time we fi x a bug there’s the risk that some application
depended on that wrong behavior. Sometimes applications take
dependencies we have warned against, such as the behavior of
private APIs or the description text of exceptions.

Since the .NET Framework was introduced, we’ve had a good
solution for application compatibility: allow multiple versions of
the .NET Framework to be installed on the same machine at the
same time. Th is enables two diff erent applications, built against
two diff erent versions and installed on one machine, to each run
against the appropriate version.

Add-In Problems
Th is works fi ne when each application gets its own process, but
add-ins are much more diffi cult problems. Imagine you are
running a program such as Outlook that hosts COM add-ins,
including managed COM add-ins, and you have two versions of
the runtime—and add-ins built against each one—installed on your
machine. Which runtime should you choose? Loading a newer
add-in on an older runtime clearly is not going to work.

On the other hand, because of the high level of compatibility,
an older add-in will usually run fi ne on a newer runtime. To give
all add-ins the best chance of working, we always choose the
latest runtime for managed COM activation. Even if you only have
older add-ins installed, there is no way for us to know that when
that add-in gets activated, so the latest runtime still gets loaded.

An unfortunate side eff ect of this activation policy is that
when a user installs a new application with a new version of the
runtime, completely unrelated applications that use managed COM
add-ins, built against older versions, suddenly start running on a
newer runtime and can fail.

For the .NET Framework 3.0 and 3.5, we solved this problem through
an extremely strict policy: each release was additive and only added new
assemblies to the prior version with the same runtime underneath.
Th is prevented any compatibility issues when installing them on a
machine running the .NET Framework 2.0. Th is means that when
you are running an app on the .NET Framework 3.5, you are really

JESSE KAPLAN AND LUIZ FERNANDO SANTOS

Send your questions and comments for Kaplan and Santos to
clrinout@microsoft.com.

mailto:clrinout@microsoft.com

Project3 10/29/09 9:22 AM Page 1

www.intel.com/software/products/eval

msdn magazine14 CLR Inside Out

starting each one it initialized the data the thread processed (see
Figure 1). Th e coders got lucky with the timing, but once the .NET
Framework 2.0 was installed, the add-in was automatically rolled
forward to .NET 2.0, for the reasons I outlined above. But .NET 2.0
was slightly faster at starting threads, so the latent race condition
started to surface consistently.

Th is application failure drove home a hard lesson in compatibility:
no matter how hard we try to avoid making behavior changes than can
break applications, simple things such as a performance improvement
can expose bugs in applications and add-ins that can cause them to fail
when run against anything other than the runtime they were built and
tested on. We realized that there was no way for us to evolve the plat-
form in any meaningful way and ensure that applications like the one
above can run perfectly on the latest version.

The Broken Installation
During our compatibility testing we came upon an application that
ran fi ne if .NET 2.0 was installed aft er the application but failed if
the application was installed on a machine that had both 1.1 (the
version the application was built against) and 2.0. It took a while to
fi gure out what was going on, but we tracked the problem down to
a bit of code that was running inside the installer that was, again,
fl oating forward to 2.0 and this time having problems fi nding the
framework directory.

Th e detection logic was clearly fragile and actually wrong, as
you can see here:

string sFrameworkVersion = System.Environment.Version.ToString();
string sWinFrameworkPath = session.Property["WindowsFolder"] +
"Microsoft.NET\\Framework\\v" +
sFrameworkVersion.Substring(0,8) + "\\";

But even aft er fi xing that bug, the application still failed to
execute properly aft er installing. Here’s the fi x:

string sWinFrameworkPath = System.Runtime.InteropServices.
RuntimeEnvironment.GetRuntimeDirectory();

 It turns out that the installer was looking for the framework
directory in order to get a path to caspol.exe and give the app
permission to run in that framework. It broke even aft er fi nding
the path because it had just granted itself permission to run on the
2.0 CLR even though the application itself runs on the 1.1 CLR.
Here’s the problem code:

System.Diagnostics.Process.Start(sWinFrameworkPath +
"caspol.exe " + casPolArgs);

Compatibility Through In-Process Side-by-Side
The core issue causing problems in all of these cases, as we came
to understand, is that it was impossible to make any significant
changes or additions to our platform and still ensure that the

latest version could run any application as well as older
versions did.

From the beginning, the .NET Framework tried to solve this
problem by supporting side-by-side installations of multiple
versions of the framework on a machine and having each application
choose which version it wanted to run on.

Unfortunately the limitation of one runtime per process meant
that for managed COM components and extensibility scenarios,
where there were multiple independent apps running in the same
process, there was no single choice that would work for every one.
Th is limitation meant that some components were not going to get
the runtime they wanted and that, regardless of how hard we tried
to maintain compatibility, some percentage of them would break.

Our new ability to load multiple versions of the runtime in a
process solves these problems.

Overarching Principles
To help you better understand some of the decisions we made and
the detailed behavior we describe later in the column, it’s useful to
discuss the guiding principles we held to while designing this feature.
1. Installing a new version of the .NET Framework should have

no impact on existing applications.
2. Applications and add-ins should run against the version of the

framework they were built and tested against.
3. Th ere are situations, such as when using libraries, where we can’t

run code against the framework the libraries were built against,
so we must still strive for 100 percent backward compatibility.
All existing applications and add-ins should continue to

run against the versions of the framework they were built and
confi gured to run on and should not see the new version unless they
specifi cally ask for it. Th is has always been the rule for managed
applications, but now it also applies to managed COM add-ins and
consumers of the runtime hosting APIs.

In addition to making sure applications run against the version
of the runtime they were built with, we still need to make sure it
is easy to transition to a newer runtime, so we have kept compat-
ibility for the .NET Framework 4 as high as or higher than it was
with .NET 2.0.

Overview of Behavior
Th e .NET Framework 4 runtime—and all future runtimes—will
be able to run in-process with one another. While we did not
back-port this functionality to older runtimes (1.0 through 3.5), we
did make sure that 4 and beyond will be able to run in-process with
any single older runtime. In other words, you will be able to load
4, 5 and 2.0 in the same process, but you will not be able to load 1.1
and 2.0 in the same process. .NET Frameworks 2.0 through 3.5 all
run on the 2.0 runtime and so have no confl icts with one another,
as shown in Figure 2.

No existing applications or components should notice
any difference when the .NET Framework 4 runtime is
installed: they should continue to get whichever runtime
they were built against. Applications and managed COM
components built against .NET 4 will execute on the 4 runtime.

Thread [] threads = new Thread[9];
for (int i=0; i<9; i++)
{
 Worker worker = new Worker();
 threads[i] = new ThreadStart(worker.Work);
 threads[i].Start(); //This line starts the thread executing
 worker.identity =i; //This line initializes a value that
 //the thread needs to run properly
}

Figure 1 Code from the Offi ce Add-In

15December 2009msdnmagazine.com

Hosts that wish to interact with the 4 runtime will need to
specifi cally request it.

What Does In-Process Side-by-Side Mean to You?
End Users and System Administrators: You now can have
confi dence that when you install a new version of the runtime,
either independently or with an application, it will have no impact
on your machine, and all existing applications will continue to run
as they did before.
Application Developers: In-Proc SxS has almost no impact on
application developers. Applications have always defaulted to run
against the version of the framework on which they were built and
this has not changed. Th e only change in behavior we have made
that impacts application developers is that we will no longer
automatically run an application built against an older runtime on
a newer version when the original version is not present. Instead
we will prompt the user to download the original version and
provide a link to make it easy to do so.

We still provide confi guration options that allow you to indicate
which versions of the framework you want your application to
run against, so it is possible to run an older application on a newer
runtime, but we won’t do it automatically.
Library Developers and Consumers: In-Proc SxS does not
solve the compatibility problems faced by library developers. Any
libraries directly loaded by an application—either via a direct
reference or an Assembly.Load*—will continue to load directly
into the runtime and AppDomain of the application loading it.
Th is means that if an application is recompiled to run against the
.NET Framework 4 runtime and still has dependent assemblies
built against .NET 2.0, those dependents will load on the .NET 4
runtime as well. Th erefore, we still recommend testing your libraries
against all version of the framework you wish to support. Th is is
one of the reasons we have continued to maintain our high level
of backward compatibility.
Managed COM Component Developers: In the past, these
components would automatically run against the latest version of the
runtime installed on the machine. Now, pre-.NET Framework 4 com-
ponents will still get activated against the latest runtime (3.5 or earlier)

and all newer components will be loaded against the version they were
built on, as shown in Figure 3.
Shell Extension Developers: Shell extension is a general name
applied to a wide variety of extensibility points inside the Windows
shell. Two common examples are extensions that add to the right-
click context menu for fi les and folders and those that provide
custom icons or icon overlays for fi les and folders.

Th ese extensions are exposed via a standard COM model, and
their defi ning characteristic is that they are loaded in-process with
any application. It is this last bit, and the fact that only one CLR
has been allowed per process, that caused problems for managed
shell extensions. To elaborate:

• Th e shell extension was written against runtime version N.
• It needs to be loadable in any application on the machine

including those built against versions later and earlier than N.
• If the application was built against a later version than the

extension, things are generally OK unless there are compat-
ibility problems.

• If the application was built against an earlier version of the ex-
tension, it is guaranteed to fail—the older runtime obviously
cannot run a shell extension that was built on a newer one.

• If somehow the shell extension was loaded before the applica-
tion’s managed code components, its choice of framework
version could confl ict with the app and break everything.
These problems led us to officially recommend against—

and not support—the development of in-process shell exten-
sions using managed code. This was a painful choice for us
and for our customers as you can see in this MSDN forum
explaining the problem: http://social.msdn.microsoft.com/forums/en-US/

.NET Framework Version
1.1 2.0 through 3.5 4 5

1.1 N/A No Yes Yes
2.0 through 3.5 No N/A Yes Yes
4 Yes Yes N/A Yes
5 Yes Yes Yes N/A

Figure 2 Will These Runtimes Load in the Same Process?

Managed COM Components: Which version will my component run against?
Component Version 1.1 2.0 through 3.5 4 5
Machine/Process State
1.1, 3.5, 4, 5 installed
None loaded

3.5 3.5 4 5

1.1, 3.5, 4, 5 installed
1.1, 4 loaded

1.1 Fails to load* 4 5

1.1, 3.5, 4, 5 installed
3.5, 5 loaded

3.5 3.5 4 5

1.1, 3.5, 5 installed
None loaded

3.5 3.5 Fails to load by default** 5

*These components would fail to load in the past as well.
**When you register components, you can now specify a range of versions they support, so you could confi gure this component to run against 5 or future
runtimes if you have tested them.

Figure 3 Managed COM Components and Runtime Interoperability

http://social.msdn.microsoft.com/forums/en-US/netfxbcl/thread/1428326d-7950-42b4-ad94-8e962124043e
www.msdnmagazine.com

msdn magazine16 CLR Inside Out

netfxbcl/thread/1428326d-7950-42b4-ad94-8e962124043e. Shell extensions
are very popular and one of the last places where developers of
certain types of applications are forced to write native code.
Unfortunately, because of our limitation allowing only one run-
time per process, we could not support them.

With the ability to have multiple runtimes in process with
any other runtime, we can now off er general support for writing
managed shell extensions—even those that run in-process with arbi-
trary applications on the machine. We still do not support writing
shell extensions using any version earlier than .NET Framework 4
because those versions of the runtime do not load in-process with
one another and will cause failures in many cases.

Developers of shell extensions, managed and native, still have
to take special care and ensure that they are able to run in a wide
variety of environments and work well with others. As we get closer
to release to manufacturing (RTM), we will provide guidance and
samples that will help you develop high-quality managed shell
extensions that play well in the Windows eco-system.
Hosts of Managed Code: If you host managed code using native
COM activation, you will not have to do anything special to
work with multiple runtimes. You can simply activate components
as you always did and the runtime will load them according to the
rules listed in Figure 3.

If you’ve ever used any of our pre-.NET Framework 4 hosting
APIs, you have probably noticed that they all assume that only
one runtime will ever be loaded in the process. Th erefore, if you
host the runtime using our native APIs, you will need to modify
your host to be In-Proc-SxS-aware. As part of our new approach
of having multiple runtimes in a process, we have deprecated
the old, single-runtime-aware hosting APIs and added a new set
of hosting APIs designed to help you manage a multi-runtime
environment. MSDN will have complete documentation for
the new APIs, but they will be relatively easy to use if you have
experience using the current ones.

One of the most interesting challenges we faced when developing
In-Proc SxS was the question of how to update the behavior
of the existing, single-runtime-aware hosting APIs. A range of
options was available, but when following the principles laid out
earlier in this column we were left with the following guideline:
the APIs should behave such that when the .NET Framework 4
is installed on a machine, they return the exact behavior they did
before. Th is means that they can only be aware of one runtime in
each process and that even if you used them in a way that would
have previously activated the latest runtime on the machine, they
will only give you the latest runtime with a version earlier than 4.

Th ere are still ways to “bind” these APIs to the .NET Framework
4 runtime by explicitly passing the 4 version number to them or
confi guring your application in a certain way, but, again, this will
happen only if you specifi cally request the 4 runtime and not if
you requested the “latest.”
In summary: code using the existing hosting APIs will continue
to work when .NET Framework 4 is installed but will get a view of
the process that sees only one runtime loaded. Also, to maintain
this compatibility, they will usually be able to interact only with

pre-4 versions. Th e details of which version is chosen for each
of these older APIs will be available on MSDN, but the few rules
above should help you understand how we determined these
behaviors. If you want to interact with multiple runtimes, you will
need to move to the new APIs.
C++/CLI Developers: C++/CLI, or managed C++, is an inter-
esting technology that allows developers to mix both managed
and native code in the same assembly and manage the transitions
between the two largely without developer interaction.

Because of that architecture, there will be limits on how you use
these assemblies in this new world. One of the fundamental problems
is that if we allowed these assemblies to be loaded multiple times per
process, we still would need to maintain isolation between both the
managed and native data sections. Th at means loading both sections
twice, which is not allowed by the native Windows loader. Th e full
details of why we have the following restrictions are outside the scope
of this column but will be available elsewhere as we get closer to RTM.

Th e basic restriction is that pre-.NET Framework 2.0-based
C++/CLI assemblies can only load on the .NET 2.0 runtime. If you
provide a 2.0 C++/CLI library and want it to be consumable from
4 and beyond, you need to recompile it with each version you want
it to be loaded in. If you consume one of these libraries, you will
either need to get an updated version from the library developer
or, as a last resort, you can confi gure your application to block
pre-4 runtimes from your process.

No More Hassle
The Microsoft .NET Framework 4 is the most backward-
compatible release of .NET yet. By bringing In-Proc SxS to the
table, Microsoft guarantees that the simple action of installing
.NET 4 will not break any existing application and that everything
already installed on the machine will work as well as it did before.

End users will no longer have to worry that installing the frame-
work—either directly or with an application that requires it—will
break any of the applications already on the machine.

Enterprises and IT professionals can adopt new versions of the
framework as quickly or as gradually as they wish without having
to worry about diff erent versions used by diff erent applications
confl icting with one another.

Developers can use the latest version of the framework to build
their applications and will be able to reassure their customers that
they will be safe to deploy.

Finally, hosts and add-in developers can be comfortable knowing
that they will get the version of the framework they want, without
impacting anyone else, so they can be confi dent their code will keep
working even as new versions of the framework are installed.

JESSE KAPLAN is the program manager of Managed/Native Interoperability for
the CLR team at Microsoft . His past responsibilities include compatibility and
extensibility. LUIZ SANTOS, formerly part of the CLR team, is a program manager
in the SQL Connectivity team, where he is responsible for the ADO.NET Managed
providers, including SqlClient, ODBCClient and OLEDBClient.

THANKS to the following technical experts for reviewing this article:
Joshua Goodman, Simon Hall and Sean Selitrennikoff

(888) 850-9911
Sales Hotline - US & Canada:

/update/2009/12

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2009 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Add Outlook style interfaces to your WinForms applications.

BEST SELLER Janus WinForms Controls Suite from $757.44

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

Project1 10/29/09 9:29 AM Page 1

http://www.componentsource.com

msdn magazine18

 A made-to-measure ActiveX control manages the connection
with a remote data source and takes care of downloading (and
optionally caching) data. Th e data source is any ODBC-compliant
data source with RDS; it’s a server-side text fi le with TDC.

Th e actual binding between source and target elements is imple-
mented through browser-specifi c HTML attributes such as datasrc,
datafl d and dataformatas. Here’s a quick example:

<span id="Label1" datasrc="#rdsCustomers"
datafld="CompanyName" />

Th e content of the bound fi eld—CompanyName in the example—
takes up the space reserved for the SPAN tag in the resulting
Document Object Model (DOM).

What does the actual job of inserting data into the DOM? As
mentioned, it’s the browser that in this case does the trick. When
the browser encounters any dataXXX attributes, it queries the data
source control for data using an internal, contracted API. Any data
it gets is then inserted into the fi nal DOM and displayed to the user.

As you can see, the solution is strongly browser-specifi c and
understandably never captured the heart of developers.

Client-side data binding was then set aside for a few years
as ASP.NET and its server-side programming model gained
wide acceptance.

In recent years, the advent of AJAX generated a lot of interest around
client-side data binding, and engineers were back at work fi nding
an eff ective (and this time cross-browser) way to make it happen.

Evolution in ASP.NET AJAX
Figure 2 shows the overall architecture of client-side data binding
as it’s implemented in ASP.NET AJAX 4.0.

 Although the architectures depicted in Figure 1 and Figure 2
may look similar at fi rst glance, they actually diff er in a number
of key aspects.

First and foremost, with ASP.NET AJAX 4.0 you can build client-
side data-binding solutions that work with any modern browser.
Th e glue code required to actually bind source data to target
elements is now part of the Microsoft Ajax JavaScript library. As
such, it can be hosted in any browser.

CUTTING EDGE

Live Data Binding in ASP.NET AJAX 4.0

Recently I moved into a new offi ce and went through the extremely
pleasant and gratifying experience of packing up all the programming
books I had collected in more than 10 years.

Th ose books could tell you quite clearly how Web programming
evolved in the past decade, and which technologies followed one
another, each improving (and in many cases revolutionizing) the other.

One book in particular caught my attention. It covered cutting-
edge (well, for that era) programming techniques for Internet
Explorer 4. I couldn’t resist the temptation to fl ip through its pages.

In the late 1990s, most big names in the computer industry were
engaged in their fi rst attempts to make the Web and the browser a
dynamic and highly programmable environment.

Data binding was just one of many popular features being
researched and developed. While the basic idea of data binding
hasn’t changed signifi cantly over the years, a real transformation
did occur as far as its application to the Web world. Th e common
approach to implementing data binding over the Web is radically
diff erent today than in the late 1990s, and much of the diff erence
is due to Asynchronous JavaScript and XML (AJAX).

In this column I’ll discuss various forms of client-side data binding
as they are coming out in ASP.NET AJAX 4.0. In particular, I’ll focus
on some advanced features of data binding and observable objects.

Basic Principles
Generally speaking, data binding is simply a program’s ability to bind
some members of a target component to the members of a data source.
Rapid Application Development (RAD) tools such as Microsoft Access
and Microsoft Visual Basic made data binding a successful reality.

RAD tools off ered an easy and eff ective infrastructure for devel-
opers to bind visual elements to the members of a data source. For a
long time, the data source was uniquely identifi ed with a record-set
data stream originating from a SQL query.

In this regard, data binding nicely fi ts in a smart-client scenario
but poses additional issues if employed in a Web-client scenario.
For example, how would you fl ow records from the origin data-
base server down to the requesting JavaScript-equipped browser?

Among many other things, that old book I opened up aft er years of
oblivion discussed the data binding features of IE4 based on a couple
of special ActiveX components, aptly named the Tabular Data
Control (TDC) and Remote Data Services (RDS) control. Figure 1
illustrates the overall architecture of client-side data binding as it was
envisioned by IE4 architects in the beginning of the dynamic Web era.

DINO ESPOSITO

This column is based on a prelease version of ASP.NET AJAX 4.0. All
information is subject to change.

Send your questions and comments for Dino to cutting@microsoft.com.

mailto:cutting@microsoft.com

19December 2009msdnmagazine.com

Furthermore, for binding you no longer
have proprietary and non-standard HTML
attributes such as datasrc and datafl d that
the browser must resolve. Instead, binding
information is specifi ed using XHTML-
compliant, namespaced custom attributes
resolved by code in the JavaScript library.
It can also be done imperatively.

Old-Style versus New-Style
Another signifi cant diff erence lies in the
structure of the data source object. In old-
style data binding, you use a sort of black-box
proxy that manages data retrieval for you. In
ASP.NET AJAX 4.0, you don’t need any such
ActiveX or binary components. All you need
is a JavaScript object with the source data.

Th e built-in binding infrastructure links
together fi elds on the JavaScript source
object and elements of the DOM.

In ASP.NET AJAX 4.0, such a binding
infrastructure is built into the Sys.UI.DataView component.
Functionally speaking, the DataView object operates in much the
same way as the RDS control does in IE4-style client data binding.
It connects directly to a remote endpoint to get and expose data.

However, there are some diff erences. Th e DataView object is a
client control entirely written in JavaScript that requires no special
support from the browser to run. As you can see, it’s quite diff erent
from the RDS ActiveX control.

Moreover, the DataView control doesn’t directly interface with a
relational data source. Instead, it connects to any JavaScript Object
Notation (JSON)- or JSON With Padding (JSONP)-enabled service,
such as a Windows Communication Foundation endpoint, and ex-
changes data using JSON. Th e service can wrap any physical data store
(including a relational database) or even be a plain wrapper around an
Entity Framework model. As Figure 2 illustrates, in ASP.NET AJAX
4.0 you can even have data binding in place without an outbound net-
work connection to the server. If, say, upon loading, a page downloads
some data onto the client machine, you can have data binding at work
on locally cached data without any further roundtrip to the server.

A Brief Summary
In the October 2009 installment of the Cutting Edge column
(msdn.microsoft.com/magazine/ee309508.aspx), I covered the basics of
data binding in ASP.NET AJAX 4.0 from a developer’s perspective.
While you can still refer to that article for deep coverage, I’m going to
provide here a brief summary of the most important programming
facts for client data binding.

In ASP.NET AJAX 4.0, client-side data binding can occur within
a proper HTML template. A template is a DOM tree decorated
with the sys-template CSS attribute:

<div sys:attach="dataview1" class="sys-template">
 ...
</div>

Th e sys-template is a conventional name
for a user-defi ned CSS style that at the very
minimum includes the following:
<style type="text/css">
 .sys-template { display:none; }
</style>

Decorating a given HTML tag with
the sys-template attribute is not enough,
however. You must also add some
behavior to the tag that enables it to
process any binding expressions in-
side. In this context, a behavior is just an
instance of a made-to-measure JavaScript
component or control.

A behavior can be attached to an HTML
tag, either by instantiating the behavior
programmatically or by using a declarative
approach (by adding markup to the
template tags in the page). For the
declarative approach, the behavior
must be associated with a public name
(namespace prefix).

Here’s an example of assigning a public name to an instance of
the DataView component:

<body xmlns:sys="javascript:Sys"
 xmlns:dataview1="javascript:Sys.UI.DataView">
...
</body>

Th e sys:attach attribute gets a public name and creates an
instance of the referenced behavior object. In the fi rst code example in
this section, the DIV tag is empowered with the behavior expressed by the
object named dataview1. As you can guess, dataview1 is just the
public name of the Sys.UI.DataView JavaScript object.

Once a DataView instance has been attached to an ASP.NET
AJAX 4.0 template, the DataView can successfully process any
binding expressions contained in the templates. Here’s a sample
template with the simplest binding syntax:

<ul id="imageListView" class="sys-template"
 sys:attach="dataview1"
 dataview1:data="{{ imageArray }}">

 {{ Name }}
 {{ Description }}

Th e {{expression}} token tells the DataView to process the embedded
JavaScript expression and assign the result to the DOM or the specifi ed
DataView property. For example, the code above assigns the content of
a JavaScript variable named imageArray to a DataView property named
data. In this way, you defi ne the data source of the binding operation.
Th is information is used to expand any other binding expressions with-
in the template, such as those used above in the body of the two SPAN
tags. Name and Description are expected to be public properties on
the data item or items assigned to the data property of the DataView.

Inline Expression Evaluation
Th e {{expression}} syntax indicates the simplest type of binding
supported by ASP.NET AJAX 4.0. Any bindings expressed in this

Figure 2 Client-Side Data Binding
in ASP.NET AJAX 4.0

Im
pe

ra
tiv

e
or

De
cl

ar
at

iv
e

Sy
nt

ax

ASP.NET AJAX JavaScript Library

Field 1

Field 2

Field 3

Data Provider
JavaScript Object

Figure 1 Client-Side Data Binding
in Internet Explorer 4

HT
M

L
At

tr
ib

ut
es

ActiveX Support

Field 1

Field 2

Field 3

Data Provider
ActiveX Control

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/ee309508.aspx

msdn magazine20 Cutting Edge

way are evaluated only when the template is rendered. Th ey are
never updated unless the template is refreshed programmatically.

An inline expression is evaluated against the current state of the
data source at rendering time, but doesn’t automatically capture
any further changes made to the data source.

An alternative, richer binding model is also supported that gives
you the same programming power of XAML data binding in
Windows Presentation Foundation and Silverlight applications.
Such a set of advanced data binding features are commonly
referred to as live binding. Let’s fi nd out more.

Live Binding
Live binding ensures that the value displayed in the user interface is
automatically updated any time the bound value in the data source
changes. For example, suppose you establish a live binding between
a SPAN tag and the CompanyName property in a data source. Th e
SPAN tag displays the current value of the CompanyName prop-
erty at the time of rendering. However, the content of the SPAN
tag will be automatically updated any time the bound data source
property undergoes changes. Live binding can be applied to any
two objects, whether DOM elements or JavaScript objects.

A diff erent syntax is required for live binding expressions. Here’s
an example:

{binding CompanyName}

You use a single pair of curly brackets to wrap the expression,
and prefi x it with the keyword binding. As you can see, the overall
syntax has much in common with the equivalent XAML syntax,
and that isn’t coincidental.

It should be noted that the content of the SPAN tag shown earlier
is updated whenever a change is detected on the currently bound
data item; the reverse won’t work. If the content of the SPAN is
updated, that change won’t be propagated to the source object.

Live binding also can be described as a one-way binding that
may happen repeatedly as updates on the data source are detected.

Hold on! Th e strategy employed to detect changes on bindings
is a key point and I’ll have more to say about it in a moment, but
not before introducing two-way binding.

 Two-Way Data Binding
Two-way data binding is a special form of live binding that uses
two channels to detect changes on the binding. When two-way
binding is in place between two objects, the following happens:

• If the data source changes, the target object is automatically
refreshed.

• If the target object changes, the new state is propagated to the
underlying data source.
Put another way, two-way data binding ensures that the source

and target objects are always in sync.

No Tier Crossing
Th e following may perhaps sound like a foregone conclusion, but
let me make it clear anyway. Imagine you have two-way binding
between a piece of user interface and some data that a service
retrieved from a database.

 Th e data downloaded from the server and bound to the visual
elements of the user interface represent a snapshot of the domain
model. Say, for example, it represents a Customer object. If the
displayed Customer object is modifi ed in a two-way binding page,
then all detected changes are mirrored to the client-side Customer
object, but in no way will they be propagated to the server.
Two-way data binding doesn’t cross any tiers.

In terms of syntax, two-way binding is nearly the same as one-way
live binding.

An ASP.NET AJAX binding is expressed via a Sys.Binding
Java Script object. You can control the direction of the data flow
through the mode attribute on the Sys.Binding object that the
framework creates for you any time you use the live binding syn-
tax. (Note that no Sys.Binding object is created when you opt for
plain {{...}} inline expressions.)

Th e following code snippet shows how to set up two-way data
binding using the mode attribute:

 {binding CompanyName, mode=twoWay}></span

Possible values for the mode attribute are summarized in Figure 3.

Live Binding in Action
Figure 4 shows sample code that demonstrates live, two-way data
binding. The page contains one template that is rendered using
a DataView control. The data source object is a JavaScript array
named theCustomers. Don’t be fooled by the fact that theCustomers
is a local object statically defined within the client browser. What
really matters is that theCustomers is ultimately assigned to the
data property of the DataView object. The DataView object has
a rich programming interface that allows you to put into the
data property any content, including content downloaded from
a Web service.

For each bound data item, the template emits an LI tag that
includes a text box. Th e text box is bound to the CompanyName
property of the source. In the same template, a SPAN tag is also
bound to the CompanyName property of the source.

Member Value Description
auto 0 Data fl ow is twoWay if the target is an input

element, select element, textArea element
or component that implements the Sys.
INotifyPropertyChange Interface. Data fl ow
is oneWay otherwise.

oneTime 1 Data is transferred from the source object
to the target only one time when the
template is rendered.

oneWay 2 Data is transferred from the source object
to the target whenever the source is
updated.

twoWay 3 Data is transferred from the source
object to the target whenever the source
is updated, and from target to source
whenever the target is updated.

oneWaytoSource 4 Data is transferred from target to source
whenever the target is updated.

Figure 3 The Sys.BindingMode Enumeration

Project2 8/24/09 10:57 AM Page 1

www.VisualWebGui.com

msdn magazine22 Cutting Edge

Note that live bindings are not limited to the template they
belong to. You can have the same expression—say, {binding
CompanyName}—in two different templates. As long as the same
data source object (or a compatible object) is attached to both
templates, the binding will always be correctly resolved. Figure
5 shows the page in action.

Initially the text box and the SPAN tag contain the same data.
However, at some point the user may start editing the name of
the company in the text box. Nothing happens until the user
tabs out of the text box.

Th e editing phase is considered complete as soon as the text box
loses focus. At this point, the two-way data binding mechanism
triggers and updates the underlying data source object. Because
the SPAN tag is also bound to the same data property through live
binding, any changes are propagated.

To prevent the automatic update of the data source when an
INPUT element is involved, you set the mode property explicitly,
as shown below:

<input type="text"
value="{binding CompanyName, mode=oneWay}"
/>

Enter this change to the code in Figure 4 and see the diff erence.

 Detecting Changes
When the mode property of a binding is not set explicitly, it takes the
auto value as described in Figure 3. So when you attach a binding
to any HTML elements that refer to input scenarios (such as INPUT,
SELECT or TEXTAREA), the property mode defaults to twoWay.
As a result, all the changes to the target made via the browser’s user
interface are automatically transferred to the source.

Note that there are two variations of a oneWay binding. Th e
standard oneWay binding detects changes in the source and
refl ects them in the user interface. Th e alternate oneWayToSource
does the reverse: it detects changes in the target and refl ects them
in the source object. Try using the following code:

<input type="text"
value="{binding CompanyName, mode=oneWayToSource}"
/>

Th e initial display of the page will contain empty text boxes. As
you type, though, the new text is detected and processed as expected.

Th e two-way data binding option is also the default option
for any bound JavaScript object that happens to implement the
Sys.INotifyPropertyChange interface. (Th e interface is part of the
Microsoft Ajax JavaScript library.)

When I fi rst introduced live binding, I said that the target is
updated whenever the source changes. Th e following explains
which changes the framework can detect and how.

HTML input elements fi re standard events when their state is
changed or, at a minimum, they notify when they enter or exit
an editing phase. Because these events are part of the HTML
standard, any data binding solution based on that standard will
work on any browsers.

For an update to one side of the binding to be refl ected in the other,
 it has to be done in a way that is possible to detect. Suppose you
have a binding where the source is a JavaScript array, as shown here:

<ul class="sys-template" sys:attach="dataview"
 dataview:data="{{ theCustomers }}">

 {binding CompanyName}

Try to update the CompanyName property on an object within
the array. Th e markup shows a button that if clicked runs the
enterChanges JavaScript function, shown here:

{binding CompanyName}
<input type="button" value="Enter changes"
onclick="enterChanges()" />
...
<script type="text/javascript">
 function enterChanges() {
 theCustomers[0].CompanyName =
 "This is a new name";
 }
</script>

Th e enterChanges function updates the CompanyName property
on the fi rst object in the array. As you can see, this clearly is an
operation that updates the state of a bound object.

In the case of live binding, you should expect the SPAN tag to
display the new value. If you try that, though, you will see that
nothing happens.

Th at is because there is no cross-browser way to be notifi ed of
updates occurring to a plain old JavaScript object such as that. So

<asp:Content ID="Content2" runat="server" ContentPlaceHolderID="PH_Head">

 <link rel="stylesheet" type="text/css"
 href="../../Css/lessantique.css" />
 <style type="text/css">
 .sys-template { display:none; }
 </style>

 <script type="text/javascript">
 var theCustomers = [
 { ID: "ALFKI", CompanyName:
 "Alfred Futterkiste" },
 { ID: "CONTS", CompanyName:
 "Contoso" }
];
 </script>
</asp:Content>

<asp:Content ID="Content5"
 ContentPlaceHolderID="PH_Body"
 runat="server">

 <asp:ScriptManagerProxy
 runat="server">
 <Scripts>
 <asp:ScriptReference Path=
"http://ajax.microsoft.com/ajax/beta/0910/MicrosoftAjaxTemplates.js" />
 </Scripts>
 </asp:ScriptManagerProxy>

 <div id="customerList">
 <ul class="sys-template"
 sys:attach="dataview" dataview:data="{{ theCustomers }}">

 {binding ID}
 <input type="text" id="TextBox1"
 value="{binding CompanyName}" />

 Currently displaying...
{binding CompanyName}

 </div>
</asp:Content>

Figure 4 Live, two-way Binding Sample

A LEADER IN REPORTING
More than 5 million units shipped to
developers since 1992.

THAT WORKS
Integrate reports with Java or .NET, access virtually any
database, and publish to the Web with support for Firefox,
Safari, and Internet Explorer.

WITH THE LATEST INNOVATIONS
Embed Flash to create compelling mashups, manage
dashboards and reports on a single server, and share
interactive reports affordably via new licensing options.

TEST DRIVE IT TODAY:
Visit us at sap.com/crystalreports/dev
or contact us at 1-888-333-6007.

Copyright © 2009 Business Objects SA. All rights reserved. Business Objects and the Business Objects logo and Crystal Reports are trademarks or registered trademarks of Business Objects SA or its
affi liated companies in the United States and/or other countries. Business Objects is an SAP company. SAP is a registered trademark of SAP AG in Germany and in other countries.

CRYSTAL REPORTS®
IT JUST WORKS

1996 to 2008

Project3 11/10/09 1:22 PM Page 1

www.sap.com/crystalreports/dev

Project2 10/30/09 8:46 AM Page 1

www.telerik.com/ORM

Project2 10/30/09 8:48 AM Page 2

www.telerik.com/ORM

msdn magazine26 Cutting Edge

changes happen but the binding isn’t aware of them and the user
interface isn’t refreshed.

Would polling the state of a plain JavaScript object be a viable
solution? Probably not, and the development team reasonably ruled
out that option, essentially for scalability reasons.

In the end, is using input HTML elements bound to data the
only possibility for making data changes in a way that will success-
fully trigger other live bindings? Well, not exactly. Th e Microsoft
Ajax JavaScript library features a static API through which you
can “observe” the changes of any JavaScript object. Th is API is also
available in a fl avor that transforms a plain JavaScript object into
an observable object for the binding machinery to detect updates.

 Observable JavaScript Objects
An observable JavaScript object is an object endowed with addi-
tional functionality that raises change notifi cations when modifi ed.
Additional functionality is codifi ed through the Sys.Observer
interface. Note that changes made directly, without going through
the interface, will not raise change notifi cations and will be ignored
by the binding infrastructure.

Observable objects fi t perfectly in a scenario where you want
to establish live bindings between visual elements and JavaScript
objects, such as those you might get from a remote Web service.

Th ere are two ways to work with observable objects. One entails
that you make a given object observable by adding some dynamic
code to it—not enough to make a plain JavaScript object a complex
thing, but enough to add new capabilities. Here is an example:

<script type="text/javascript">
 var theCustomers = [
 { ID: "ALFKI", CompanyName:
 "Alfred Futterkiste" },
 { ID: "CONTS", CompanyName:
 "Contoso" }
];
 function pageLoad() {
 Sys.Observer.makeObservable(theCustomers);
 }

 function onInsert() {
 var newCustomer = { ID: "ANYNA",
 CompanyName: "AnyNameThatWorks Inc" };
 theCustomers.add(newCustomer);
 }
</script>

Th e Sys.Observer.makeObservable method takes a JavaScript object
(including arrays) and adds methods to it that you can use to make
changes to the object that the bindings can detect. Note that having
an observable array provides methods for changing the array in an
observable way—so you can detect insertions and deletions. But it does
not automatically provide the corresponding methods for modifying
the properties of the individual items in the array in an observable
way. For that, you can separately call makeObservable on the indi-
vidual items, and they will then also have additional methods added.

 As I mentioned earlier, the following code associated with a
click event won’t trigger the binding:

<script type="text/javascript">
 function enterChanges() {
 theCustomers[0].CompanyName =
 "This is a new name";
 }
</script>

Th is code, however, will trigger the binding:
<script type="text/javascript">
 function enterChanges() {
 System.Observer.setValue(theCustomers[0],
 "CompanyName", "New name");
 }
</script>

What if the observed object has child objects? No worries: the
setValue method knows how to handle the “dotted” syntax:

System.Observer.setValue(theCustomers[0],
"Company.Address.City", "Rome");

Finally, note that the observer pattern can be applied to any object
you may encounter in the context of a Web page, including DOM
elements, behaviors and even browser objects such as window.

Static and Dynamic
Most times when you need data binding in an application, you
also need it to be live, at least one-way, if not two-way. In ASP.NET
AJAX 4.0, data binding can be both static—that is, a simple in-
line evaluation of data values during rendering—and dynamic,
in the sense that it can detect changes in source or target and apply
them.Not all updates can be detected and used to refresh bindings.
ASP.NET AJAX 4.0 easily recognizes changes entered into bound
objects through visual elements. But for changes entered programmati-
cally into JavaScript objects or arrays, there's no reliable cross-browser
way to have live detection of changes. Th e trick in ASP.NET AJAX con-
sists of providing a way to make changes so that they're observable and
thus can be detected by live bindings. Th is takes the form of appending
some observable operations to the object or, as an alternative, using ad
hoc Sys.Observer static methods to conduct updates.

DINO ESPOSITO is the author of the upcoming “Programming ASP.NET MVC 2”
(Microsoft Press, 2010). Based in Italy, Esposito is a frequent speaker at industry
events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical experts for reviewing this article:
Dave Reed and Boris Rivers-Moore

Figure 5 Live Binding in Action

http://weblogs.asp.net/despos

Now with 35+ advanced UI controls, full .NET RIA Support,
VS Extensions, free Testing tool, 5x better performance

RadControls for

Silverlight 3

www.telerik.com

UI COMPONENTS PRODUCTIVITY TOOLSDATA AUTOMATED TESTING CMS

ASP.NET AJAX
Silverlight
ASP.NET MVC
WinForms
WPF

TFS TOOLS

Work Item
Manager
Project
Dashboard

JustCodeOpenAccess ORM
Reporting

Web Testing Tools Sitefinity

Project1 10/30/09 8:49 AM Page 1

http://www.telerik.com

msdn magazine28

TEST RUN

all 44 pairs listed above. So in this situation, we have reduced our
possible test-case inputs from 48 test cases to 12 test cases. Th e
savings aren’t very signifi cant for this small example, but as I’ll
show in a moment, using pairwise testing can dramatically reduce
the number of test-case inputs in many situations. Th e underlying
assumption of pairwise testing is that soft ware bugs are more
frequently found in code that involves the interaction of values from
diff erent parameters than in code that involves values from within
a particular parameter. In other words, for the dummy application
in Figure 1, application code that deals with inputs “a”
and “g” is more likely to introduce a logic error than
code that deals with inputs “a” and “b”. This is a notion

that is, in fact, supported by some research.

Using the PICT Tool
Th ere are several pairwise test set generation
tools available to you. My favorite tool in most
situations is the PICT (Pairwise Independent
Combinatorial Testing) tool. PICT was
written by my colleague Jacek Czerwonka,
who adapted code from an existing internal-
Microsoft pairwise tool. PICT is available
as a free download from several locations,
including the Microsoft Tester Center page at
msdn.microsoft.com/testing/bb980925.aspx. If you
search the Internet, you will also fi nd several
other pairwise test set generation tools. How-
ever, PICT is a single executable that runs
from a shell command line. PICT is very fast,

very powerful and should meet your pairwise testing needs in
most situations. I named the tool presented in this article QICT
(which doesn’t stand for anything in particular) to acknowledge the
importance of the PICT tool.

So, why yet another pairwise test set generator? Th ere are
several reasons. First, although PICT is a wonderful tool, it is written
in native C++ code and the source code is not available. Th e QICT
tool presented here is, as far as I can tell, the fi rst production-
quality pairwise tool written with managed C# code. Th e availability
of the code allows you to freely modify QICT to meet your own

Pairwise Testing with QICT

A solid knowledge of pairwise testing principles is essential for all
soft ware testers, developers and managers. In this month’s column, I
explain exactly what pairwise testing is and provide you with complete
C# source code for a production-quality pairwise testing tool named
QICT. In short, pairwise testing is a technique that allows you to
reduce a large, unmanageable set of test-case inputs to a much smaller
set that is likely to reveal bugs in the system under test. Th e best way
to explain pairwise testing, and to show you where I’m headed in this
article, is by way of two screenshots. Consider the dummy Windows
Form-based application shown in Figure 1. Th e application has four
input parameters. Th e fi rst parameter is a TextBox control that can
accept “a” or “b”. Th e second parameter is a group of RadioButton con-
trols that can take a value of “c”, “d”, “e” or “f ”. Th e
third parameter is a ComboBox control that can
take a value of “g”, “h” or “i”. Th e fourth parameter
is a CheckBox control that takes a value of either
“j” or “k”. So one test-case input set would be { “a”,
“c”, “g”, “j” }. Th e dummy application has a total of
2 * 4 * 3 * 2 = 48 possible input sets, which is cer-
tainly manageable. But imagine a card-playing
application of some sort with fi ve parameters,
where each parameter can take on one of 52 val-
ues (to represent a card from a normal deck of
playing cards, with replacement). In this situation
there would be 52 * 52 * 52 * 52 * 52 = 380,204,032
possible input sets, which is likely to be unman-
ageable unless you could programmatically
generate expected values for each test set input.

Th e idea of pairwise testing is to generate
a list of test sets that capture all possible pairs of parameter values
from each parameter. For the example shown in Figure 1, there are a
total of 44 such input pairs:

(a,c), (a,d), (a,e), (a,f), (a,g), (a,h), (a,i), (a,j), (a,k), (b,c),
(b,d), (b,e), (b,f), (b,g), (b,h), (b,i), (b,j), (b,k), (c,g), (c,h),
(c,i), (c,j), (c,k), (d,g), (d,h), (d,i), (d,j), (d,k), (e,g), (e,h),
(e,i), (e,j), (e,k), (f,g), (f,h), (f,i), (f,j), (f,k), (g,j), (g,k),
(h,j), (h,k), (i,j), (i,k)

Now the test set { “a”, “c”, “g”, “j” } captures six of the 44 pairs: (a,c),
(a,g), (a,j), (c,g), (c,j) and (g,j). So the goal of pairwise test set
generation is to produce a collection of test sets that capture all 44
pairs. Take a look at the screenshot in Figure 2.

Th e screenshot shows a tool named qict.exe generating a collection
of 12 test sets that capture all 44 input pairs for the scenario shown
in Figure 1. If you trace through each pair of values in the 12 test
sets generated in Figure 2, you’ll see that they do in fact capture

JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag1209TestRun.

Send your questions and comments for James to testrun@microsoft.com.

Figure 1 A Dummy Application
with Four Input Parameters

mailto:testrun@microsoft.com
http://msdn.microsoft.com/testing/bb980925.aspx
http://code.msdn.microsoft.com/mag1209TestRun

29December 2009msdnmagazine.com

needs. For example, you can modify QICT to directly read its
input from an XML fi le or a SQL database, or you can modify QICT
to directly emit results in a custom output format. And you may
want to experiment with the tool’s logic, say, for example, by
introducing constraints (test input sets that are not permitted),
by introducing required test sets, or changing how the tool
generates its test set collection. Additionally, the availability of
QICT source code allows you to copy and place pairwise test
set generation code directly into a .NET application or test tool.
Finally, although source code for a few pairwise test set generation
tools is available on the Internet, some of these tools are quite
inefficient. For example, consider a situation with 20 parameters,
each of which has 10 values. For this scenario there are 10 * 10 *
10 * . . . * 10 (20 times) = 1020 = 100,000,000,000,000,000,000
possible test-case inputs. This is a lot of test cases. The PICT tool
reduces this to only 217 pairwise test sets, and the QICT tool
produces either 219 or 216 test sets (depending upon the seed
value of a random number generator, as I’ll
explain shortly). However, one widely refer-
enced pairwise test set generation tool writ-
ten in Perl produces 664 sets. Finally, with
the QICT source code available and this ar-
ticle’s explanation of the algorithms used, you
can recast QICT to other languages, such as
Perl, Python, Java or JavaScript if you wish.

The QICT Tool
The code for the QICT tool is slightly
too long to present in its entirety in this
column, but the entire source code is
available from the MSDN Code Gallery at
code.msdn.microsoft.com. I will describe the algorithms
and data structures I use, along with snippets of

key code, so you’ll have enough information to use and modify QICT as
needed. Th e essence of how QICT works is to generate one test set at a time,
using greedy algorithms to place each parameter value, until all pos-
sible pairs have been captured. The high-level algorithm for QICT is
presented in Figure 3.

Th e key to implementing this high-level algorithm is determining
what kind of data structures to use and what the various “best”
options are. Th e QICT source code begins like this:

static void Main(string[] args)
{
 string file = args[0];
 Random r = new Random(2);
 int numberParameters = 0;
 int numberParameterValues = 0;
 int numberPairs = 0;
 int poolSize = 20;

I coded QICT using a traditional procedural style rather
than taking an object-oriented approach so you can more easily
refactor QICT to languages with limited OOP support, such as
Perl and JavaScript. I fi rst read an input fi le from the command
line. As you can see, in order to keep my code clean and simple,
I have left out normal error-checking you’d want to include. Th e
input fi le for QICT is the same as that used by PICT, a simple text
fi le that looks like:

Param0: a, b
Param1: c, d, e, f
etc.

Parameter names are followed by a colon character and a comma-
d elimited list of legal values for that parameter. Parameter values
must be distinct. Next, I instantiate a Random object. The choice
of a seed value of 2 is arbitrary, but any value will make QICT
produce the same results for an input set every time it is run.
I’ll explain the purpose of the pseudo-random number object
shortly. I declare three int variables that will be assigned values
when the input file is read. For the example shown in Figure
2, number Parameters is 4, numberParameterValues is 11 and
numberPairs is 44. The poolSize variable stores the number of
candidate test sets to generate for each test set. If you experiment
with QICT a bit, you’ll see that the tool is impacted in a rather
surprisingly minor way by adjusting the value for poolSize.

The heart of QICT is the declaration of
the main data structures. The first four ob-
jects are:
int[][] legalValues = null;
string[] parameterValues = null;
int[,] allPairsDisplay = null;
List<int[]> unusedPairs = null;

Th e legalValues object is a jagged array
where each cell in turn holds an array of int
values. Th e legalValues array holds an in-
memory representation of the input fi le, so
cell 0 of legal values holds an array that in turn
holds the values 0 (to represent parameter
value “a”) and 1 (to represent “b”). It turns
out that working directly with string values
is rather inefficient and that representing
parameter values as integers yields

read input file
create internal data structures

create an empty testset collection
while (number of unused pairs > 0)
 for i := 1 to candidate poolSize
 create an empty candidate testset
 pick the "best" unused pair
 place best pair values into testset
 foreach remaining parameter position
 pick a "best" parameter value
 place the best value into testset
 end foreach
 end for
 determine "best" candidate testset
 add best testset to testset collection
 update unused pairs list
end while

display testset collection

Figure 3 QICT Algorithm

Figure 2 Pairwise Test Set Generation with the QICT Tool

www.msdnmagazine.com
http://code.msdn.microsoft.com

msdn magazine30 Test Run

signifi c antly faster performance. The parameterValues
string array holds the actual parameter values and is used at the
end of QICT to display results as strings rather than ints. So,
for the preceding example, cell 0 holds “a”, cell 1 holds “b” and
so on through cell 10, which holds “k”. The allPairsDisplay
object is a two-dimensional array of ints. It is populated by
all possible pairs. For our example, cell [0,0] holds 0 (for “a”)
and cell [0,1] holds 2 (for “c”)—the first possible pair. Cell
[1,0] holds 0 and cell [1,1] holds 3 to represent the second
pair, (a,d). The unusedPairs object is a generic List of int
arrays. The first item in unusedPairs is initially {0,2}. I use a List
collection for unusedPairs rather than an array because
each time a new test set is added to the test sets collection, I
remove the pairs generated by the new test set from unusedPairs.
Additionally, this means I have a convenient stopping condition
that will occur when unusedPairs.Count reaches 0.

Th e next four main program data structures are:
int[,] unusedPairsSearch = null;
int[] parameterPositions = null;
int[] unusedCounts = null;
List<int[]> testSets = null;

Most pairwise test set generation tools, including QICT,
perform a huge number of searches. An effi cient lookup approach is
crucial for reasonable performance. Here I declare a two-dimensional
array named unusedPairsSearch. It is a square array with size
number ParameterValues by numberParameterValues, where each
cell holds a 1 if the corresponding pair has not been used, and a
0 if the corresponding pair has been used or is not a valid pair.
Initially, the first three rows of unusedPairsSearch for the
example in Figure 2 are:

0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1

And so forth.
So row one means pairs (0,0) and (0,1)—that is, (a,a) and (a,b)—

are not valid, while pairs (0,2), (0,3), . . . (0,10)—that is (a,c), (a,d)
through (a,k)—have not yet been captured by a test set. Th e param-
eterPositions array holds the location within a test set of a speci-
fi ed parameter value. Aft er initialization this array holds values:

0 0 1 1 1 1 2 2 2 3 3

Th e index of parameterPositions represents a parameter value,
and the corresponding cell value represents its position in a test set.
So the fourth cell from the left has index = 3 and value = 1, meaning
parameter value 3 (“d”) belongs at position 1 (the second slot) in a
test set. Th e unusedCounts object is a one-dimensional array that
holds the number of times a particular parameter value appears in
the unusedPairs array. Initially unusedCounts holds:

9 9 7 7 7 7 8 8 8 9 9

Th e index represents a parameter value, and the corresponding
cell value is the unused count. So, the fourth cell from the left has
index = 3 and value = 7, meaning parameter value 3 (“d”) initially
appears in 7 unused pairs— (a,d), (b,d), (d,g), (d,h), (d,i), (d,j) and
(d,k). Th e testSets object holds the pairwise test set results. It is
initially empty but grows every time a new test set is generated.
Each test set is represented by an int array. So, in Figure 2, the fi rst

test set in the result is {“a”, “c”, “g”, “j” }, which is stored in the testSets
List as an array with values {0,2,6,9}.

With the key data structures in place, QICT reads the
input file to determine values for numberParameters and
numberParameter Values, and to populate the legalValues and
parameter Values arrays. I use the relatively crude approach of per-
forming an initial read of the fi le, and then resetting the fi le pointer
and performing a second pass through the fi le. Once legalValues is
populated, I can scan through it to determine the number of pairs
for the input:

for (int i = 0; i <= legalValues.Length - 2; ++i) {
 for (int j = i + 1; j <= legalValues.Length - 1; ++j) {
 numberPairs += (legalValues[i].Length * legalValues[j].Length);
 }
}
Console.WriteLine(“\nThere are “ + numberPairs + " pairs ");

Aft er initialization, the fi rst row of legalValues holds {0,1} and
the second row holds {2,3,4,5}. Notice that the pairs determined
by these two rows are (0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), and
(1,5), and that in general the number of pairs determined by any
two rows in legalValues is the product of the number of values in
the two rows, which equals the row Length property of the rows.
Th e next part of QICT code populates the unusedPairs List:

unusedPairs = new List<int[]>();
for (int i = 0; i <= legalValues.Length - 2; ++i) {
 for (int j = i + 1; j <= legalValues.Length - 1; ++j) {
 int[] firstRow = legalValues[i];
 int[] secondRow = legalValues[j];
 for (int x = 0; x < firstRow.Length; ++x) {
 for (int y = 0; y < secondRow.Length; ++y) {
 int[] aPair = new int[2];
 aPair[0] = firstRow[x];
 aPair[1] = secondRow[y];
 unusedPairs.Add(aPair);
 }
 }
 }
}

Here I grab each pair of rows from legalValues using indexes
i and j. Next, I walk through the values in each row pair using
indexes x and y. Extensive use of multiple nested for loops like this
is a hallmark of combinatorial code. When I write such code, I
always draw by hand on a piece of paper the arrays involved because
it’s quite easy to make mistakes without a diagram. Aft er populating
the unusedPairs List, I use the same nested loop structure to
populate the allPairsDisplay and unusedPairsSearch arrays. Th e
initialization code next populates the parameterPositions array
by iterating through legalValues:

parameterPositions = new int[numberParameterValues];
int k = 0;
for (int i = 0; i < legalValues.Length; ++i) {
 int[] curr = legalValues[i];
 for (int j = 0; j < curr.Length; ++j) {
 parameterPositions[k++] = i;
 }
}

Th e initialization code concludes by populating the unused-
Counts array:

unusedCounts = new int[numberParameterValues];
for (int i = 0; i < allPairsDisplay.GetLength(0); ++i) {
 ++unusedCounts[allPairsDisplay[i, 0]];
 ++unusedCounts[allPairsDisplay[i, 1]];
}

NetAdvantage for Silverlight Data Visualization is a
comprehensive collection of User Interface Controls
to Build Rich Dashboards, Visualize Business Data and
Empower Decision Makers. Go to infragistics.com/sldv
today to get the power of Infragistics behind you and
create high end BI applications without writing a lot
of code.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

Copyright 1996-2009 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo are registered trademarks of Infragistics, Inc.

Project3 11/5/09 2:44 PM Page 1

www.infragistics.com/sldv

Grids • Charts • Reports • Schedules • Menus • Toolbars • Ribbon • Data Input • Editors • PDF

WinForms • WPF • ASP.NET • Silverlight • iPhone • Mobile • ActiveX

Project6 11/10/09 1:25 PM Page 1

www.componentone.com/prepare

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

DOWNLOAD YOUR FREE TRIAL AT

© 1987-2009 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Project6 11/10/09 1:26 PM Page 2

www.componentone.com/prepare

msdn magazine34 Test Run

Here, as in many of the QICT routines, I take advantage of the
fact that C# automatically initializes all cells in int arrays to 0.
If you wish to recast QICT to an object-oriented style, all these
initialization routines would likely best be placed either in an ob-
ject constructor or perhaps in an explicit Initialize() method. Th e
main processing loop begins:

testSets = new List<int[]>();
while (unusedPairs.Count > 0) {
 int[][] candidateSets = new int[poolSize][];
 for (int candidate = 0; candidate < poolSize; ++candidate) {
 int[] testSet = new int[numberParameters];
 // fill candidate testSets
 }
 // copy best testSet into testSets collection; upate data structues
}

Because the number of candidate test sets is known to be pool Size,
I can instantiate an array rather than use a dynamic-sized List
object. Notice that the size of the unusedPairs collection controls
the main processing loop exit. Now it’s time to pick the “best”
unused pair—and now things start to become really interesting:

int bestWeight = 0;
int indexOfBestPair = 0;
for (int i = 0; i < unusedPairs.Count; ++i) {
 int[] curr = unusedPairs[i];
 int weight = unusedCounts[curr[0]] + unusedCounts[curr[1]];
 if (weight > bestWeight) {
 bestWeight = weight;
 indexOfBestPair = i;
 }
}

Here I defi ne best to mean the unused pair that has the highest
sum of unused individual parameter values. For example, if “a”
appears one time in the current list of unused pairs, “b” appears
two times, “c” three times and “d” four times, then pair (a,c) has
weight 1 + 3 = 4, and pair (b,d) has weight (b,d) 2 + 4 = 6, so pair
(b,d) would be selected over (a,c).

There are many other weighting schemes you might wish to
explore. For example, using some sort of multiplication would
give higher weights to pairs with extreme values of unused counts
compared with pairs that have unused counts closer together.
Another possibility is to track used counts—the number of times

parameter values appear in the test sets already added to the
 result testSets collection—and pick as the best pair the one that
has the least used counts. Once the best unused pair has been
determined, I create a two-cell array to hold the pair values and
determine the positions within a test set where each value belongs:

int[] best = new int[2];
unusedPairs[indexOfBestPair].CopyTo(best, 0);
int firstPos = parameterPositions[best[0]];
int secondPos = parameterPositions[best[1]];

At this point I have an empty test set and a pair of values to
place in the test set, and I know the location within the test set
where the values belong. The next step is to generate parameter
values for the remaining positions in the test set. Now, rather
than fill the test set positions in some fixed order (from low
index to high), it turns out that it is much better to fill the test
set in random order. First, I generate an array that holds the
parameter positions in sequential order:

int[] ordering = new int[numberParameters];
for (int i = 0; i < numberParameters; ++i)
 ordering[i] = i;

Next, I rearrange the order by placing the known locations of
the fi rst two values from the best pair into the fi rst two cells of the
ordering array:

ordering[0] = firstPos;
ordering[firstPos] = 0;
int t = ordering[1];
ordering[1] = secondPos;
ordering[secondPos] = t;

And now I shuffl e the remaining positions (from cell 2 and
up) using the Knuth shuffl e algorithm. Th is is why I created a
Random object at the beginning of the QICT code. Th e number
of test sets produced by QICT is surprisingly sensitive to the value
of the pseudo-random number generator seed value, so you may
want to experiment with several seed values. For the situation with
20, 10-value parameters I described earlier, using a seed value of 2
generates 219 test sets, and a seed value of 6 generates 216 test sets,
but a seed value of 0 yields 221 test sets.

for (int i = 2; i < ordering.Length; i++) {
 int j = r.Next(i, ordering.Length);
 int temp = ordering[j];
 ordering[j] = ordering[i];
 ordering[i] = temp;
}

Aft er shuffl ing, I place the two values from the best pair into the
candidate test set:

testSet[firstPos] = best[0];
testSet[secondPos] = best[1];

Now comes the most important part of the QICT algorithm. I must
determine the best parameter values to place in each of the empty
test set positions. Th e technique I use is another greedy approach.
For each parameter position, I test each possible legal value at that
position, by counting how many unused pairs in the test value, when
combined with the other values already in the test set capture. Th en I
select the parameter value that captures the most unused pairs. Th e
code to do this is the trickiest part of QICT and is listed in Figure 4.

Th e outermost loop in Figure 4 is a count of the total number
of test set positions (given by numberParameters), less two
(because two spots are used by the best pair). Inside that loop I

for (int i = 2; i < numberParameters; ++i) {
 int currPos = ordering[i];
 int[] possibleValues = legalValues[currPos];
 int currentCount = 0;
 int highestCount = 0;
 int bestJ = 0;
 for (int j = 0; j < possibleValues.Length; ++j) {
 currentCount = 0;
 for (int p = 0; p < i; ++p) {
 int[] candidatePair = new int[] { possibleValues[j],
 testSet[ordering[p]] };
 if (unusedPairsSearch[candidatePair[0], candidatePair[1]] == 1 ||
 unusedPairsSearch[candidatePair[1], candidatePair[0]] == 1)
 ++currentCount;
 }
 if (currentCount > highestCount) {
 highestCount = currentCount;
 bestJ = j;
 }
 }
 testSet[currPos] = possibleValues[bestJ];
}

Figure 4 Filling Test Set with Best Parameter Values

35December 2009msdnmagazine.com

fetch the position of the current spot to fi ll by looking into the
ordering array I created earlier. Th e currentCount variable holds
the number of unused pairs captured by the test parameter value.
Notice that because I am fi lling test set positions in random order,
the candidate pair of values can be out of order, so I need to check
two possibilities when I do a lookup into the unusedPairsSearch
array. At the end of the code in Figure 4, I will have a candidate
test set that has values in every position that were selected using
greedy algorithms. Now I simply add this candidate test set into
the collection of candidates:

candidateSets[candidate] = testSet;

At this point I have n = poolSize candidate test sets and I need
to select the best of these to add into the primary testSet result
collection. I could assume that the fi rst candidate test set captures
the most unused pairs and simply iterate through each candidate
starting at position 0, but again, introducing some randomness
produces better results. I pick a random spot within the candidates
and assume it is the best candidate:

int indexOfBestCandidate = r.Next(candidateSets.Length);
int mostPairsCaptured =
 NumberPairsCaptured(candidateSets[indexOfBestCandidate],
 unusedPairsSearch);

Here I use a little helper function named NumberPairsCaptured()
to determine how many unused pairs are captured by a given test
set. Th e helper function is:

static int NumberPairsCaptured(int[] ts, int[,] unusedPairsSearch)
{
 int ans = 0;
 for (int i = 0; i <= ts.Length - 2; ++i) {
 for (int j = i + 1; j <= ts.Length - 1; ++j) {
 if (unusedPairsSearch[ts[i], ts[j]] == 1)
 ++ans;
 }
 }
 return ans;
}

Now I walk through each candidate test set, keeping track of the
location of the one that captures the most unused pairs:

for (int i = 0; i < candidateSets.Length; ++i) {
 int pairsCaptured = NumberPairsCaptured(candidateSets[i],
 unusedPairsSearch);
 if (pairsCaptured > mostPairsCaptured) {
 mostPairsCaptured = pairsCaptured;
 indexOfBestCandidate = i;
 }
}

And now I copy the best candidate test set into the main result
testSets List object:

int[] bestTestSet = new int[numberParameters];
candidateSets[indexOfBestCandidate].CopyTo(bestTestSet, 0);
testSets.Add(bestTestSet);

At this point, I have generated and added a new test set, so I must
update all the data structures that are aff ected, namely, the unused-
Pairs List (by removing all pairs that are generated by the new test
set), the unusedCounts array (by decrementing the count for each
parameter value in the new test set), and the unusedPairsSearch
matrix (by fl ipping the values associated with each pair generated
by the new test set from 1 to 0).

Now I’m at the end of my main processing loop. I continue gen-
erating candidates, selecting the best candidate, adding the best

candidate to testSets and updating data structures operations. Th e
processing will end when the number of unused pairs reaches 0.

Th en I display the fi nal results:
Console.WriteLine("\nResult testsets: \n");
for (int i = 0; i < testSets.Count; ++i) {
 Console.Write(i.ToString().PadLeft(3) + ": ");
 int[] curr = testSets[i];
 for (int j = 0; j < numberParameters; ++j) {
 Console.Write(parameterValues[curr[j]] + " ");
 }
 Console.WriteLine("");
}
 Console.WriteLine(“”);
}

As I mentioned earlier, if you are modifying QICT to suit your
own particular testing scenario, you may want to emit results di-
rectly to an XML fi le, a SQL database or some other form of storage.

Produce Better Systems
Pairwise testing is a combinatorial technique with probabilistic
factors. Pairwise test set generation is an important technique, but
it isn’t magic. Remember that pairwise techniques simply reduce
the number of test-case inputs in situations where you just have
too many test cases to deal with. Pairwise test set generation does
not create test-case expected results. You should always begin by
using normal testing principles, such as looking at boundary
conditions, using pure random input and so on, and then use pair-
wise testing to supplement your test-case generation. Additionally,
as a general rule of thumb, more testing is better, so there’s no
reason why you can’t add additional test-case inputs to those
produced by pairwise generation tools. Although pairwise testing
is useful in many situations, be sure to use it only when appropriate.

I have found pairwise test set generation to be very useful for
confi guration testing, for module testing methods that accept
enumerated values and for testing SQL databases where each
column in a table has a relatively small number of diff erent values.
Pairwise testing is not necessarily a good approach for scenarios
where you have a relatively small number of test-case inputs, or
when you can programmatically produce test-case-expected results
(and therefore deal with a large test-case input set). And pairwise
testing is not normally usable when the input values to the system
under test are not discrete. However, even in situations where the
number of possible parameter values is very large, you may be able
to eff ectively use pairwise test-case input generation by separating
parameter values into equivalence classes. When used properly,
pairwise test set generation is an important technique that can
help you produce better soft ware systems.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where
he manages technical training for software engineers based at Microsoft’s
Redmond, Wash., campus. He has worked on several Microsoft prod-
ucts, including Internet Explorer and MSN Search, and is the author of
“.NET Test Automation: A Problem-Solution Approach” (Apress, 2006).
James can be reached at jmccaffrey@volt.com or v-jammc@microsoft.com.

THANKS to the following technical experts for reviewing this article:
Jacek Czerwonka

mailto:jmccaffrey@volt.com
mailto:v-jammc@microsoft.com
www.msdnmagazine.com

msdn magazine36

GE N E RAT ION T EST

Automated Unit Tests for
Legacy Code with Pex

In my previous life I was a consultant. One of my clients,
a leading bank, wanted to automate its loan origination process.
Th e bank already had a system in place that included a Windows-
based application, a proprietary back end and a mainframe system
that was also the heart of their solution. My job was to integrate
the existing systems with a set of applications being developed for
the accounts division.

Th e client had built a Web service that communicated with the
mainframe. At fi rst it seemed pretty simple. All I had to do was to
hook into the service, get the information and pass it to the new
accounts application. But it’s never that simple.

This article is based on a prerelease version of Pex. All information
is subject to change.

This article discusses:
• Keeping legacy code fresh

• Unit testing with Pex

• Factories, stubs, and moles

• Updating tests with code changes

Technologies discussed:
Visual Studio 2008, Pex

Code download available at:
code.msdn.microsoft.com/mag200912PEX

Nikhil Sachdeva

During implementation I found that the new systems expected
a Loan Originator attribute, but the Web service GetLoanDetails
method did not return that information. It turns out that the
service was created years ago by a developer who’s no longer with
the company. Th e bank has been using the service without any
modifi cations because it has many layers and everyone is afraid
of breaking something.

Th at Web service is legacy code.
Eventually, we built a lightweight service wrapper so the new sys-

tems could call it for any new information and continue using the
old service as well. It would have been much easier to modify the
existing service if a consistent and testable design had been followed.

Keeping Code Fresh
Legacy code is something that was developed in the past and is still
used, but is hard to maintain and change. Th e reasons for sustaining
these systems generally revolve around the cost and time involved
in building a similar new system—though sometimes there is a lack
of awareness about the future implications of current coding eff orts.

Th e fact is that over a period of time code begins to rot. Th is
can be because of requirement changes, a not-very-well-thought-
through design, applied anti-patterns, or lack of appropriate tests.
Th e end result is code that is hard to maintain and diffi cult to change.

Th ere are many approaches to prevent your code from rot-
ting, but one of the most eff ective can be to write code that is test-
able and then generate suffi cient unit tests for the code. Unit tests

http://code.msdn.microsoft.com/mag200912PEX

37December 2009msdnmagazine.com

act as agents that continuously probe the
system for uncovered paths, identify trouble-
some errors, and provide indicators whether
changes introduced into a subsystem have a
good or bad eff ect on the overall soft ware.
Unit tests give confi dence to the developer
that the any code change will not introduce
any regressions.

Having said that, creating and maintaining
a good unit test suite can be a challenge in
itself. It’s possible to end up writing more
code for the test suite than the code under
test. Another challenge is dependencies
within the code. Th e more complex the
solution, the more dependencies you are
likely to fi nd between classes. Mocks and
stubs are a recognized way of removing these
dependencies and testing the code in isolation, but these require
additional knowledge and experience from the developer to
create eff ective unit tests.

Pex to the Rescue
Pex (research.microsoft.com/projects/pex/) is a tool developed by Micro-
soft Research to automatically and systematically produce the
minimal set of test inputs needed to execute a fi nite number of
fi nite paths. Pex automatically produces a small test suite with high
code and assertion coverage.

Pex fi nds interesting input-output values of your methods, which
can then be saved as a small test suite with high code coverage. Pex
performs a systematic analysis, hunting for boundary conditions,
exceptions and assertion failures that you can debug right away. Pex
also enables parameterized unit testing (PUT), an extension of unit
testing that reduces test maintenance costs, and it utilizes dynamic
symbolic execution to probe through the code under test to create
a test suite covering most branches of execution.

 A PUT is simply a method that takes parameters, calls the code
under test and states assertions. A sample PUT looks like this:

void AddItem(List<int> list, int item) {
 list.Add(item);
 Assert.True(list[list.Count - 1] == item);
}

Th e PUT concept is derived from a broader terminology called
data-driven testing (DDT), which has been used for a long time
in traditional unit tests to make the tests repeatable. Because

traditional unit tests are closed in nature, the only way to provide
input values to them is through external sources such as an XML
fi le, spreadsheets, or a database. While the DDT approach works
well, there is additional overhead involved in maintaining and
changing the external data fi le, and the inputs are dependent on
the developer’s knowledge about the system.

Pex does not rely on external sources, and instead provides inputs
to the test method by passing values to the corresponding PUT.
Because the PUT is an open method, it can be arranged to accept
any number of inputs. Moreover, Pex does not generate randomized
values for the PUT. It relies on introspection of the method under
test and generates meaningful values based on factors like boundary
conditions, acceptable type values and a state-of-the-art constraint
solver called Z3 (research.microsoft.com/um/redmond/projects/z3/). Th is
ensures that all relevant paths of the method under test are covered.

Th e beauty of Pex is that it generates traditional unit tests from
the PUT. Th ese unit tests can be run directly in a unit testing frame-
work like MSTest in Visual Studio without any modifi cations. Pex
provides extensions to generate unit tests for frameworks like NUnit
or xUnit.NET. You can also create your own custom extension. A
Pex generated traditional unit test looks like this:

[TestMethod]
[PexGeneratedBy(typeof(TestClass))]
void AddItem01() {
 AddItem(new List<int>(), 0);
}

Dynamic symbolic execution is Pex’s answer to exploratory
testing. Using this technique, Pex executes the code multiple times
to understand the program behavior. It monitors the control and
data fl ow and builds a constraint system for the test inputs.

Unit Testing with Pex
Th e fi rst step is to create a PUT for the code under test. Th e PUT
can be generated manually by the developer or by using the Visual
Studio add-in for Pex. You can tailor the PUT by modifying
parameters, adding Pex factories and stubs, integrating with mocks,
adding assertions and so on. Pex factories and stubs are covered
later in this article.

Figure 1 A Legacy Order Fulfi llment System

While exploring the code, Pex
produces a unit test suite that
contains tests that cover all

branches that Pex can exercise.

www.msdnmagazine.com
http://research.microsoft.com/projects/pex/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

msdn magazine38 Generation Test

Currently the Visual Studio add-in for Pex
creates PUTs only in C#, but the code under
test can be in any .NET language.

Th e second step aft er the PUT has been
set up is to run the Pex exploration. Th is is
where Pex does its magic. It analyzes the
PUT to identify what is being tested. It then
starts the inspection of the code under test by
passing through each branch and evaluating
the possible input values. Pex repeatedly
executes the code under test. Aft er each run,
it picks a branch that was not covered previously, builds a constraint
system (a predicate over the test inputs) to reach that branch, then
uses a constraint solver to determine new test inputs, if any. Th e
test is executed again with the new inputs, and this process repeats.

On each run, Pex might discover new code and dig deeper into the
implementation. In this way, Pex explores the behavior of the code.

While exploring the code, Pex produces a unit test suite that contains
tests that cover all branches that Pex can exercise. Th ese tests are standard
unit test that can run in Visual Studio Test Editor. If you fi nd a lower
coverage for some sections, you might think of revising your code
by refactoring and then applying the same cycle again to achieve
higher code coverage and a more comprehensive test suite.

Pex can help in reducing the amount of eff ort and time involved
when dealing with legacy code. Because Pex automatically explores
the diff erent branches and code paths, you don’t have to understand
all details of the entire code base. Another benefi t is that the devel-
oper works at the PUT level. Writing a PUT is oft en much simpler
than writing closed unit tests because you focus on the problem
scenario rather than on all possible test cases for the functionality.

Putting Pex to Work
Let’s use Pex on a piece of legacy code and see how it can help make
the code more maintainable and easy to test.

Fabrikam, a leading manufacturer of basketballs and baseballs,
provides an online portal where the user can view available prod-
ucts and place orders for those products. Th e inventory details are
in a custom data store accessed through a Warehouse component
that provides connectivity to the data store and operations like
HasInventory and Remove. An Order component provides a
Fill method that processes an order based on the product and
quantity passed by the user.

The Order and WareHouse components are tightly coupled to
each other. These components were developed years ago and no
current employees have a thorough understanding of the system.
No unit tests were created during development and, probably as

a result, the components are very unstable. The current design
is shown in Figure 1.

Th e Fill method of the Order class looks like this:
public class Order {
 public bool Fill(Product product, int quantity) {
 // Check if WareHouse has any inventory
 Warehouse wareHouse = new Warehouse();
 if (wareHouse.HasInventory(product, quantity)) {
 // Subtract the quantity from the product in the warehouse
 wareHouse.Remove(product, quantity);
 return true;
 }

 return false;
 }
}

Th ere are a few key items that require attention here. First,
Order and Warehouse are tightly coupled. Th e classes depend
on implementations that make them less extensible and diffi cult
to use mock or stub frameworks. Th ere are no unit tests avail-
able so any change might introduce regressions resulting in an
unstable system.

Th e Warehouse component was written long ago and the
current development team has no knowledge of how to change
it or the implications of any changes. To make matters more
complicated, Order cannot work with other implementations of
Warehouse without modifi cations.

Let’s try to refactor the code and then use Pex to generate unit
tests. I will refactor the Warehouse and Order objects, and then
create unit tests for the Fill method of the Order class.

Refactoring legacy code is obviously a challenge. An approach
in these cases might be to at least make the code testable so that

Figure 2 Revised System with IWareHouse

public class Order {
 readonly IWareHouse orderWareHouse;

 // Use constructor injection to provide a wareHouse object
 public Order(IWareHouse wareHouse) {
 this.orderWareHouse = wareHouse;
 }

 public bool Fill(Product product, int quantity) {
 // Check if WareHouse has any inventory
 if (this.orderWareHouse.HasInventory(product, quantity)) {
 // Update the quantity for the product
 this.orderWareHouse.Remove(product, quantity);
 return true;
 }
 return false;
 }
}

Figure 3 Revised Order Class

Pex automatically produces a
small test suite with high code

and assertion coverage.

39December 2009msdnmagazine.com

suffi cient unit tests can be generated. I will
be applying only the bare minimal patterns
that make the code testable.

Th e fi rst problem here is that Order uses
a specifi c implementation of Warehouse.
This makes it difficult to decouple the
Warehouse implementation from the Order.
Let’s modify the code a bit to make it more
fl exible and testable.

I start by creating an interface IWareHouse
and modify the Warehouse object to imple-
ment this interface. Any new Warehouse will
require this interface to be implemented.

Because Order has a direct dependency on
Warehouse, they are tightly coupled. I use de-
pendency injection to open the class for exten-
sion of its behavior. Using this approach, an IWareHouse instance will
be passed to Order at runtime. Th e new design is shown in Figure 2.

Th e new Order class is shown in Figure 3.

Creating Parameterized Unit Tests
Let’s now use Pex to generate tests for the refactored code. Pex
provides a Visual Studio add-in that makes generating PUTs easy.
Right-click the project, class, or method for which the PUTs need to
be generated and click Pex | Create Parameterized Unit Test Stubs.
I started by selecting the Fill method of the Order class.

Pex allows you to select an existing unit test project or to create
a new one. It also gives you options to fi lter tests based on method
or type name (see Figure 4).

Pex generates the following PUT for the Fill method.
[PexClass(typeof(Order))]
[TestClass]
public partial class OrderTest {
 [PexMethod]
 public bool Fill([PexAssumeUnderTest] Order target,
 Product product, int quantity) {

 // Create product factory for Product
 bool result = target.Fill(product, quantity);
 return result;
 }
}

Th e OrderTest is not just a normal TestClass; it has been
annotated with a PexClass attribute, indicating that it was created
by Pex. Th ere is currently no TestMethod as you would expect in
a standard Visual Studio unit test. Instead, you have a PexMethod.
Th is method is a parameterized unit test. Later, when you let Pex
explore the code under test, it will create another partial class that
contains the standard unit tests annotated with the TestMethod
attributes. Th ese generated tests will be accessible through the
Visual Studio Test Editor.

Notice that the PUT for the Fill method takes three parameters.
[PexAssumeUnderTest] Order target

Th is is the class under test itself. Th e PexAssumeUnderTest
attribute tells Pex that it should only pass non-null values of the
exact specifi ed type.

Product product

Th is is the Product base class. Pex will try to create instances of
the product class automatically. For more granular control you can
provide Pex with factory methods. Pex will use these factories to
create instances of complex classes.

int quantity

Pex will provide values for the quantity based on the method
under test. It will try to inject values that are meaningful for the
test rather than junk values.

Figure 4 Setting up a New Pex Project

Figure 5 Creating the Default Factory

www.msdnmagazine.com

msdn magazine40 Generation Test

Pex Factories
As I mentioned before, Pex uses a constraint
solver to determine new test inputs for
parameters. Th e inputs can be standard .NET
types or custom business entities. During
exploration, Pex actually creates instances of
these types so that the program under test
can behave in diff erent interesting ways. If
the class is visible and has a visible default
constructor, Pex can create an instance of
the class. If all the fi elds are visible, it can
generate values for them as well. However,
if the fi elds are encapsulated with properties
or not exposed to the outside world, Pex
requires help to create the object so as to
achieve a better code coverage.

Pex provides two hooks to create and link
required objects to the Pex exploration. Th e
user can provide factories for complex objects so that Pex can ex-
plore diff erent object states. Th is is achieved through Pex Factory
method. Th e types that can be created through such factories are
called explorable types. We will be using this approach in this article.

Th e other approach is to defi ne the invariants of the objects private
fi elds so Pex can manufacture diff erent object states directly.

Coming back to the example scenario, if you run a Pex exploration
for the generated parameterized tests, the Pex Exploration Results
window will show a message “2 Object Creations.” Th is is not an
error. During exploration, Pex encountered a complex class (Order
in this case) and created a default factory for that class. Th is factory
was required by Pex to understand the program behavior better.

Th e default factory created by Pex is a vanilla implementation
of the required class. You can tailor this factory to provide your
own custom implementation. Click on Accept/Edit Factory to
inject the code into your project (see Figure 5). Alternatively, you
can create a static class with a static method that is annotated with
the PexFactoryMethod attribute. While exploring, Pex will search
in the test project for any static classes with methods with this
attribute and use them accordingly.

OrderFactory looks like this:
public static partial class OrderFactory {
 [PexFactoryMethod(typeof(Order))]
 public static Order Create(IWareHouse wareHouseIWareHouse) {

 Order order = new Order(wareHouseIWareHouse);
 return order;
 }
}

If you write factory methods in other assemblies, you can tell
Pex to use them in a declarative fashion by using the assembly level
PexExplorableFromFactoriesFromType or PexExplorableFrom-
FactoriesFromAssembly attributes, for example.

[assembly: PexExplorableFromFactoriesFromType(
 typeof(MyTypeInAnotherAssemblyContainingFactories))]

If Pex creates very few tests or fails to create interesting tests by
just throwing a NullReferenceException on the object it should
create, then this is a good indication that Pex might require a

custom factory. Otherwise, Pex comes with a set of heuristics to
create object factories that work in many cases.

Pex Stubs Framework
In soft ware development, the notion of a test stub refers to a dummy
implementation that can replace a possibly complex component
to facilitate testing. While the idea of stubs is simple, most existing
frameworks that can help to create and maintain dummy imple-
mentations are actually quite complex. Th e Pex team has developed
a new lightweight framework, which they simply call Stubs. Stubs
generates stub types for .NET interfaces and non-sealed classes.

In this framework, a stub of type T provides a default implementa-
tion of each abstract member of T, and a mechanism to dynamically
specify a custom implementation of each member. (Optionally, stubs
can also be generated for non-abstract virtual members.) Th e stub

/// <summary>Stub of method System.Boolean
/// FabrikamSports.IWareHouse.HasInventory(
/// FabrikamSports.Product product, System.Int32 quantity)
/// </summary>
[System.Diagnostics.DebuggerHidden]
bool FabrikamSports.IWareHouse.HasInventory(
 FabrikamSports.Product product, int quantity) {

 StubDelegates.Func<FabrikamSports.Product, int, bool> sh
 = this.HasInventory;
 if (sh != (StubDelegates.Func<FabrikamSports.Product,
 int, bool>)null)
 return sh.Invoke(product, quantity);
 else {
 var stub = base.FallbackBehavior;
 return stub.Result<FabrikamSports.Stubs.SIWareHouse,
 bool>(this);
 }
}

/// <summary>Stub of method System.Boolean
/// FabrikamSports.IWareHouse.HasInventory(
/// FabrikamSports.Product product, System.Int32 quantity)
/// </summary>
public StubDelegates.Func<FabrikamSports.Product, int, bool>
HasInventory;

Figure 7 Pex-Generated IWareHouse Stub

Figure 6 Creating a New Stub

41December 2009msdnmagazine.com

types are generated as C# code. Th e framework relies solely on
delegates to dynamically specify the behavior of stub members. Stubs
supports the .NET Framework 2.0 and higher and integrates with
Visual Studio 2008 and higher.

In my example scenario the Order type has a dependency on the
Warehouse object. Remember, I refactored the code to implement
dependency injection so that Warehouse access can be provided from
outside to the Order type. Th at comes in handy when creating the stubs.

Creating a stub is fairly simple. All you need is a .stubx fi le. If you
created the test project through Pex, you should already have it. If
not, this fi le can be created from within Visual Studio. Right-click
on the test project and select Add New Item. A Stubs template is
available (see Figure 6).

Th e fi le appears as a standard XML fi le in Visual Studio. In the
assembly element, specify the name of the assembly for which the
stubs need to be created and save the .stubx fi le.

<Stubs xmlns=”http://schemas.microsoft.com/stubs/2008/”>
 <Assembly Name=”FabrikamSports” />
</Stubs>

Pex will automatically create the necessary stub methods for all
the types in the assembly.

Th e generated stub methods have corresponding delegate fi elds
that provide hooks for stubbed implementations. By default, Pex
will provide an implementation for the delegate. You can also

provide a lambda expression to attach behavior to the delegate or
use the PexChoose type to let Pex automatically generate values
for the method.

For example, to provide choices for the HasInventory method,
I can have something like this:

var wareHouse = new SIWareHouse() {
 HasInventoryProductInt32 = (p, q) => {
 Assert.IsNotNull(p);
 Assert.IsTrue(q > 0);
 return products.GetItem(p) >= q;
 }
};

In fact, using PexChoose is already the default behavior for stubs
when using Pex, as the test project created by Pex contains the
following assembly-level attribute:

[assembly: PexChooseAsStubFallbackBehavior]

Th e SIWareHouse type is generated by the Pex Stubs framework.
It implements the IWareHouse interface. Let’s take a closer look at
the code generated by Pex for the SIWareHouse stub. Th e source
code for a .stubx fi le is created in a partial class with the name
<StubsxFilename>.designer.cs as shown in Figure 7.

Stubs created a public delegate fi eld for the HasInventory method and
invoked it in the HasInventory implementation. If no implementation is
available, Pex calls the FallBackBehaviour.Result method, which would
use PexChoose if the [assembly: PexChoose AsStubFallbackBehavior]
is present, and throws a StubNotImplementedException otherwise.

To use the stubbed implementation of IWareHouse, I will tweak
the Parameterized unit test a bit. I already modifi ed the Order class
to be able to take an IWareHouse implementation in its constructor.
I now create a SIWareHouse instance, then pass that to the Order
class so it uses the custom implementations of the IWareHouse
methods. Th e revised PUT is shown here:

[PexMethod]
public bool Fill(Product product, int quantity) {
 // Customize the default implementation of SIWareHouse
 var wareHouse = new SIWareHouse() {
 HasInventoryProductInt32 = (p, q) =>
 PexChoose.FromCall(this).ChooseValue<bool>(
 "return value")
 };

 var target = new Order(wareHouse);
 // act
 bool result = target.Fill(product, quantity);
 return result;
}

public sealed class PWareHouse : IWareHouse {
 PexChosenIndexedValue<Product, int> products;

 public PWareHouse() {
 this.products =
 new PexChosenIndexedValue<Product, int>(
 this, "Products", quantity => quantity >= 0);
 }

 public bool HasInventory(Product product, int quantity) {
 int availableQuantity = this.products.GetItem(product);
 return quantity - availableQuantity > 0;
 }

 public void Remove(Product product, int quantity) {
 int availableQuantity =
 this.products.GetItem(product);
 this.products.SetItem(product,
 availableQuantity - quantity);
 }
}

Figure 8 Parameterized Model of IWareHouse

[PexMethod]
public bool Fill([PexAssumeUnderTest]Order target,
 Product product, int quantity) {

 var products = new PexChosenIndexedValue<Product, int>(
 this, "products");
 // Attach a mole of WareHouse type
 var wareHouse = new MWarehouse {
 HasInventoryProductInt32 = (p, q) => {
 Assert.IsNotNull(p);
 return products.GetItem(p) >= q;
 }
 };

 // Run the fill method for the lifetime of the mole
 // so it uses MWareHouse
 bool result = target.Fill(product, quantity);
 return result;
}

Figure 9 Using Mole Types on Fill

A test stub refers to dummy
implementation that can replace
a possibly complex component

to facilitate testing.

www.msdnmagazine.com

msdn magazine42 Generation Test

Stubs actually automatically provides default implementations
for the stub methods, so you could have simply run the PUT
without any modifi cations as well.

Parameterized Models
For a more granular control of the stubbed implementation, Pex
supports a concept called a parameterized model. This is a way
to write stubs that do not have one particular fixed behavior.
The abstraction that Pex provides through this concept is that
the developer does not need to worry about the variations of
the implementation. Pex will explore different return values of
the method based on how they are used by the code under test.
Parameterized models are a powerful feature that allows you to
take complete control over how the stubs should be processed
while at the same time letting Pex evaluate the variant values for
the input parameters.

A parameterized model for IWareHouse might look like the
code in Figure 8.

Essentially I have created my own stubbed implementation for
IWareHouse, but notice that I do not provide values for Quantity and
Product. Instead I let Pex generate those values. PexChosenIndexed-
Value automatically provides the values for the objects, allowing only
one stubbed implementation with variant parameter values.

For simplicity I will let Pex provide the HasInventory implemen-
tation of the IWareHouse type. I will add code to the OrderFactory
class that I created earlier. Every time an Order instance is created
by Pex it will use a stubbed Warehouse instance.

Moles
So far I’ve focused on two principles—refactor your code to make
it testable, then use Pex to generate unit tests. Th is approach lets
you clean your code, eventually leading to more maintainable
soft ware. However, refactoring legacy code can be a big challenge
in itself. Th ere can be numerous organizational or technical
constraints that might prevent a developer from refactoring the
current source code. How do you deal with this?

In scenarios where legacy code is hard to refactor, the approach
should be to at least create suffi cient unit tests for the business
logic so that you can verify the robustness of each module of the
system. Mock frameworks like TypeMock (learn.typemock.com) have
been around for a while. Th ey let you create unit tests without
actually modifying the code base. Th is approach proves very
benefi cial specifi cally for large legacy codebases.

Pex comes with a feature called Moles that lets you achieve the
same goals. It allows you to generate Pex unit tests for legacy code
without actually refactoring your source code. Moles are really
meant to test otherwise untestable parts of the system, such as
static methods and sealed classes.

Moles work in a similar fashion to stubs: Pex code-generates
mole types that expose delegate properties for each method. You
can attach a delegate, and then attach a mole. At that point, all
your custom delegates get wired up magically by the Pex profi ler.

Pex automatically creates moles for all static, sealed and public
interfaces as specifi ed in the .stubx fi le. A Pex Mole looks very
similar to a Stubs type (see the code download for an example).

Using moles is fairly simple. You can provide implementations
for the Mole methods and use them in your PUT. Notice that
because Mole injects the stubbed implementations during
runtime, you do not have to change your codebase at all to be able
to generate unit tests using moles.

Let’s use moles on the legacy Fill method
public class Order {
 public bool Fill(Product product, int quantity) {
 // Check if warehouse has any inventory
 Warehouse wareHouse = new Warehouse();
 if (wareHouse.HasInventory(product, quantity)) {
 // Subtract the quantity from the product
 // in the warehouse
 wareHouse.Remove(product, quantity);
 return true;
 }

 return false;
 }
}

I create a PUT for the Fill method that leverages the Mole types
(see Figure 9).

MWareHouse is a Mole type that was created automatically
by Pex when generating the stubs and moles via the .stubx fi le. I
provide a custom implementation for the HasInventory delegate of
the MWareHouse type, and then call the Fill method. Notice that

[TestMethod]
[PexGeneratedBy(typeof(OrderTest))]
public void Fill15()
{
 Warehouse warehouse;
 Order order;
 Product product;
 bool b;
 warehouse = new Warehouse();
 order = OrderFactory.Create((IWareHouse)warehouse);
 product = new Product("Base ball", (string)null);
 b = this.Fill(order, product, 0);
 Assert.AreEqual<bool>(true, b);
}
[TestMethod]
[PexGeneratedBy(typeof(OrderTest))]
public void Fill16()
{
 Warehouse warehouse;
 Order order;
 Product product;
 bool b;
 warehouse = new Warehouse();
 order = OrderFactory.Create((IWareHouse)warehouse);
 product = new Product("Basket Ball", (string)null);
 b = this.Fill(order, product, 0);
 Assert.AreEqual<bool>(true, b);
}
[TestMethod]
[PexGeneratedBy(typeof(OrderTest))]
public void Fill17()
{
 Warehouse warehouse;
 Order order;
 Product product;
 bool b;
 warehouse = new Warehouse();
 order = OrderFactory.Create((IWareHouse)warehouse);
 product = new Product((string)null, (string)null);
 b = this.Fill(order, product, 1);
 Assert.AreEqual<bool>(false, b);
}

Figure 10 Pex-Generated Tests

http://learn.typemock.com

Project3 3/18/09 9:10 AM Page 1

www.nsoftware.com

msdn magazine44 Generation Test

nowhere do I provide an implementation of the Warehouse object
to the Order type constructors. Pex will attach the MWareHouse
instance to the Order type at run time. For the lifetime of the PUT
any code written inside the block will leverage the MWareHouse
type implementation wherever a Warehouse implementation will
be required in the legacy code.

When Pex generates traditional unit tests that use moles, it attaches
the attribute [HostType(“Pex”)] to them, so that they will execute
with the Pex profi ler, which will allow the moles to become active.

Putting It All Together
I talked about the various features of Pex and how to use them. Now
it’s time to actually run the PUT and observe the results. To run an
exploration for the Fill method of Order, simply right-click on the
PUT and select Run Pex Exploration. You can optionally run the
exploration on a class or the entire project.

While Pex exploration is running, a partial class is created along
with the PUT class fi le. Th is partial class contains all the standard
unit tests that Pex will generate for the PUT. For the Fill method,
Pex generates standard unit tests using various test inputs. Th e tests
are shown in Figure 10.

Th e key point to observe here is the variations for the Product
type. Although I did not provide any factory for it, Pex was able to
create diff erent variations for the type.

Also note that the generated test contains an assertion. When a
PUT returns values, Pex will embed the values that were returned
at test generation time into the generated test code as assertions. As
a result, the generated test is oft en able to detect breaking changes
in the future, even if they don’t violate other assertions in the
program code, or cause exceptions at the level of the execution engine.

Th e Pex exploration results window (see Figure 11) provides
details of the unit tests generated by Pex. It also provides
information about the factories Pex created and the events that
occurred during the exploration. Notice in Figure 11 that two
tests failed. Pex shows a Null ReferenceException against both of

them. Th is can be a common problem where you miss out
placing validation checks in code paths that eventually might lead
to exceptions when running in production.

Pex not only generates tests, but also analyzes the code for
improvement. It provides a set of suggestions that can make the
code even more stable. Th ese suggestions are not just descriptive
message, but actual code for the problem area. With a click of a

button, Pex injects the code into the actual source fi le. Select the
failed test in the Pex exploration result window. In the bottom-right
corner, a button appears titled Add Precondition. Clicking this
button adds the code into your source fi le.

Th ese generated tests are normal MSTest unit tests and can be run
from the Visual Studio Test Editor as well. If you open the editor,
all the Pex generated tests will be available as standard unit tests.
Pex can generate similar tests for other unit testing frameworks
like NUnit and xUnit.

Pex also has built-in support for generating coverage reports.
Th ese reports provide comprehensive details around the dynamic
coverage for the code under test. You can enable reports from Pex op-
tions in the Tools menu of Visual Studio, then open them by clicking
Views | Report in the Pex menu bar aft er an exploration has fi nished.

Making your Tests Future Ready
So far you’ve seen how Pex was able to generate code coverage for
legacy code with minor refactoring of the source code. Th e beauty of

Figure 11 Pex Exploration Results

The Moles feature allows you to
generate Pex unit tests for legacy
code without actually refactoring

your source code.

45December 2009msdnmagazine.com

Pex is that it relieves the developer from writing unit tests and gener-
ates them automatically, thereby reducing the overall testing eff ort.

One of the major pain points while unit testing is maintaining the
test suite itself. As you progress in a project, you typically make lot of
modifi cations to existing code. Because the unit tests are dependent
on the source code, any code change impacts the corresponding
unit tests. Th ey might break or reduce the code coverage. Over
a period of time keeping the test suite live becomes a challenge.

Pex comes in handy in this situation. Because Pex is based on
an exploratory approach, it can search for any new changes in the
code base and create new test cases based on them.

Th e prime purpose of regression testing is to detect whether
modifi cations or additions to existing code have aff ected the code-
base adversely, either through the introduction of functional bugs
or creation of new error conditions.

Pex can generate a regression test suite automatically. When this
regression test suite is executed in the future, it will detect breaking
changes that cause assertions in the program code to fail, that cause
exceptions at the level of the execution engine (NullReference-
Exception), or that cause assertions embedded in the generated tests
to fail. Each time a Pex exploration is run fresh, unit tests are gen-
erated for the code under observation. Any change in behavior is
picked up by Pex and the corresponding unit tests are generated for it.

Change is Inevitable
Over a period of time, the developer team at Fabrikam realized that
it made sense to have a ProductId attribute added to the Product
class so that if the company adds new products to their catalog they
can be uniquely identifi ed.

Also the Order class was not saving the orders to a data store, so
a new private method SaveOrders was added to the Order class.
Th is method will be called by the Fill method when the product
has some inventory.

Th e modifi ed Fill method class looks like this:
public bool Fill(Product product, int quantity) {
 if (product == null) {
 throw new ArgumentException();
 }

 if (this.orderWareHouse.HasInventory(product, quantity)) {
 this.SaveOrder(product.ProductId, quantity);

 this.orderWareHouse.Remove(product, quantity);
 return true;
 }

 return false;
}

Because the signature of the Fill method was not changed, I do
not need to revise the PUT. I simply run the Pex Exploration again.

Pex runs the exploration, but this time it generates inputs using the
new Product defi nition, utilizing the ProductId as well. It generates
a fresh test suite, taking into account the changes made to the Fill
method. Th e code coverage comes out to be 100 percent—ensuring
that all new and existing code paths have been evaluated.

Additional unit tests are generated by Pex to test the variations of the
added ProductId fi eld and the changes made to the Fill method (see
Figure 12). Here PexChooseStubBehavior sets the fallback behavior
for the stubs; instead of just throwing a StubNotImplementedExcep-
tion, the stubbed method will call PexChoose to provide the possible
return values. Running the tests in Visual Studio, the code coverage
comes out to be 100 percent again.

A cknowledgements
I would like to thank Peli de Halleux and Nikolai Tillman for
encouraging me to write this article, special gratitude to Peli for his
tireless support, valuable comments and exhaustive review.

NIKHIL SACHDEVA is a soft ware development engineer for the OCTO-SE team at
Microsoft . You can contact him at blogs.msdn.com/erudition. You can also post
your queries around Pex at social.msdn.microsoft .com/Forums/en/pex/threads.

THANKS to the following technical experts for reviewing this article:
Peli de Halleux

[TestMethod]
[PexGeneratedBy(typeof(OrderTest))]
public void Fill12()
{
 using (PexChooseStubBehavior.NewTest())
 {
 SIWareHouse sIWareHouse;
 Order order;
 Product product;
 bool b;
 sIWareHouse = new SIWareHouse();
 order = OrderFactory.Create((IWareHouse)sIWareHouse);
 product = new Product((string)null, (string)null);
 b = this.Fill(order, product, 0);
 Assert.AreEqual<bool>(false, b);
 }
}

[TestMethod]
[PexGeneratedBy(typeof(OrderTest))]
public void Fill13()
{
 using (PexChooseStubBehavior.NewTest())
 {
 SIWareHouse sIWareHouse;
 Order order;
 Product product;
 bool b;
 sIWareHouse = new SIWareHouse();
 order = OrderFactory.Create((IWareHouse)sIWareHouse);
 product = new Product((string)null, (string)null);
 IPexChoiceRecorder choices = PexChoose.NewTest();
 choices.NextSegment(3)
 .OnCall(0,
 "SIWareHouse.global::FabrikamSports.IWareHouse.
HasInventory(Product, Int32)")
 .Returns((object)true);
 b = this.Fill(order, product, 0);
 Assert.AreEqual<bool>(true, b);
 }
}

Figure 12 Additional Pex-generated Unit Tests

Pex not only generates tests,
but also analyzes the code for

improvement.

www.msdnmagazine.com
http://blogs.msdn.com/erudition
http://social.msdn.microsoft.com/Forums/en-us/pex/threads

msdn magazine46

CODE CLEANUP

Using Agile Techniques to
Pay Back Technical Debt

In every codebase, there are the dark corners and alleys you
fear. Code that’s impossibly brittle; code that bites back with regression
bugs; code that when you attempt to follow, will drive you mad.

Ward Cunningham created a beautiful metaphor for the hard-
to-change, error-prone parts of code when he likened it to fi nancial
debt. Technical debt prevents you from moving forward, from
profi ting, from staying “in the black.” As in the real world, there’s
cheap debt, debt with an interest lower than you can make in a
low-risk fi nancial instrument. Th en there’s the expensive stuff , the
high-interest credit card fees that pile on even more debt.

Technical debt is a drag. It can kill productivity, making main-
tenance annoying, difficult, or, in some cases, impossible. Beyond
the obvious economic downside, there’s a real psychological cost
to technical debt. No developer enjoys sitting down to his com-
puter in the morning knowing he’s about to face impossibly brittle,

This article discusses:
• The case for fi xing debt

• Basic debt-fi nding workfl ow

• Prioritizing items as a team

• Selling your plan

Technologies discussed:
Agile

David Laribee

complicated source code. The frustration and helplessness thus
engendered is often a root cause of more systemic problems,
such as developer turnover— just one of the real economic costs
of technical debt.

Every codebase I’ve worked on or reviewed contains some
measure of technical debt. One class of debt is fairly harmless:
byzantine dependencies among bizarrely named types in stable,
rarely modified recesses of your system. Another is sloppy code
that is easily fixed on the spot, but often ignored in the rush to
address higher-priority problems. There are many more examples.

This article outlines a workflow and several tactics for dealing
with the high-interest debt. The processes and practices I’ll detail
aren’t new. They are taken straight from the Lean/Agile playbook.

The Case for Fixing Debt
The question, “should we fix technical debt,” is a no-brainer in my
book. Of course you should. Technical debt works against your
goals because it slows you down over time. There’s a well-known
visualization called the cost of change curve (see Figure 1),
that illustrates the difference between the 100-percent-quality-
test-driven approach and the cowboy-coder-hacking-with-
duct-tape approach.

Th e cost of change curve illustrates that high quality, simple,
and easy to follow designs may cost more initially, but incur less
technical debt—subsequent additions and modifi cations to the

47December 2009msdnmagazine.com

code are less costly over time. In the quality curve (blue), you
can see the initial cost is higher, but it’s predictable over time.
Th e hack-it curve (red) gets a lower cost of entry, but future
development, maintenance, and the total cost of owning a product
and its code becomes ever more expensive.

Ward Cunningham’s First Law of Programming” (c2.com/cgi-bin/
wiki?FirstLawOfProgramming) states, “lowering quality lengthens
development time.”

“Quality soft ware takes the least amount of time to develop. If
you have code that is simple as possible, tests that are complete and
a design that fi ts just right, additions and changes happen in the
fastest possible way because the impact is lowest. Consequently,
if you hack something out, the more you hack the slower you go
because the cost of addition or change grows with each line of code.”

Simply put, technical debt will decrease the throughput of your
team over time.

One of my great joys in soft ware development is relishing the
feeling of raw productivity. Th e competing and converse feeling,
for me at least, is pain. It’s painful when I’m not productive and it’s
pain that robs me of potential productivity, the so-called “good days
at work.” Th ere are many sources of pain in soft ware development,
but none more obvious than a rigid and chaotic codebase. Th is
psychological eff ect takes a toll on team morale which, in turn,
causes productivity to lag.

Systems Thinking
In order to fi x technical debt, you need to cultivate buy-in from
stakeholders and teammates alike. To do this, you need to start
thinking systemically. Systems thinking is long-range thinking. It
is investment thinking. It’s the idea that eff ort you put in today will
let you progress at a predictable and sustained pace in the future.

Perhaps it’s easiest to explain systems thinking with an analogy. I
live in downtown Atlanta, Georgia, in a quaint little neighborhood
called Inman Park. I’m mostly very happy there. I reserve, however,
some irritation related to the seemingly complete ignorance of urban
planning. Th e streets in Atlanta are byzantine, maze-like, madness-
provoking. When you miss your turn, you can’t simply loop back.

If you do, you’ll be sent on a spiraling path to who-knows-where.
Th ere seems to be little rhyme or reason to the planning of roads
in this otherwise very pleasant corner of the world.

Contrast this with the orderly streets and avenues of
Manhattan in New York City (most of it, anyway). It’s as if a
Marine Corps drill instructor designed the city. Avenues stretch
the length of the island, north to south, and streets form tidy,
latitudinal markers down its length. Furthermore, both streets and
avenues are named in numerical sequence: First Avenue, Second
Avenue, 42nd Street, 43rd Street, and so on. You’ll rarely walk more
than a block in the wrong direction.

What are the root causes for the diff erence between Atlanta and
New York City in this dimension of comparison?

In Atlanta the streets were formed by cattle wearing down paths.
You heard me right, cattle paths. Some need arose to frequently
move between the urban center and the suburbs, at which point
some cowboy thought, “golly, wouldn’t it be easiest to turn these
here cattle paths into roads?”

Th e New York State Legislature applied vision and forethought
to the design of the ever-growing and largest city in the state.
Th ey chose the gridiron plan, with orderly, predictable streets and
avenues. Th ey were thinking of the future.

Th is story gets to the essence of systems thinking. While legis-
lative processes are slow, investment in time and commitment to
vision pays the greatest dividend for the lifetime of a system. True
you’ll have to deal with crazy cabs on the mean streets of Manhattan,
but you’ll be able to fi nd your way around in a matter of days.

In Atlanta, it’s been a year of getting lost,
and I thank the system thinkers responsible
for the Global Positioning System (GPS)
each and every day.

Products over Projects
Th e idea that you have a development team
that completes a project then throws it over the
wall to a maintenance team is fundamentally
fl awed. Make no mistakes, you are working on
a product, and if it succeeds, it’s going to live a
long, long time.

If you have even a couple of years of experi-
ence as a professional developer, you’ve
probably experienced the increasing gravity
eff ect. You develop a piece of soft ware that
isn’t meant to last or be complicated or Figure 1 Cost of Change Curve

Rapid-but-Untested Coding

Time
109876543210

0
1

2
3

4
5
6

7
8
9

10

Simple, Test-Driven Designs

Co
st

Technical debt is a drag. It
can kill productivity, making

maintenance annoying, diffi cult
or, in some cases, impossible.

www.msdnmagazine.com
http://c2.com/cgi-bin/wiki?FirstLawofProgramming

msdn magazine48 Code Cleanup

change. And six months later, what are you doing? Modifying it?
Extending it? Fixing bugs?

Useful soft ware has a sometimes nasty habit of sticking around for
a very long time. It’s up to you to pick the metaphor you want to roll
with. Will you tend a forest of beautiful California Redwoods, living
entities enduring the centuries and reaching the highest heights, or
will you allow the relentless Kudzu vine to starve your forest of light?

Basic Workfl ow
At this point, I hope I’ve convinced you that technical debt can
take an awful toll on both your mental health and your customer’s
bottom line. I hope, also, that you accept the need to take a longer-
range view on the products you’re creating.

Now let’s fi gure out how you can dig yourself out of this hole.
No matter the shop, my sense is that the basic workfl ow for tackling

technical debt—indeed any kind of improvement—is repeatable.
Essentially, you want to do four things:
1. Identify where you have debt. How much is each debt item

aff ecting your company’s bottom line and team’s productivity?
2. Build a business case and forge a consensus on priority with

those aff ected by the debt, both team and stakeholders.
3. Fix the debt you’ve chosen head on with proven tactics.
4. Repeat. Go back to step 1 to identify additional debt and hold

the line on the improvements you’ve made.
It’s worth mentioning, for the soft ware process nerds out there,

that this workfl ow is adapted from a business management approach
called the Th eory of Constraints (ToC) created by Eliyahu Goldratt
(goldrattconsulting.com). ToC is a systems-thinking model that provides
a framework for improving the overall throughput of the system.
Th is is a gross simplifi cation, but ToC is predicated on the idea that a
system (a manufacturing facility, for example) is only as productive as
its biggest bottleneck. Value, such as a feature request or automobile or

any sellable item, is conceived of, designed, produced, and deployed.
A feature may be requested by a customer, internal or external, and
that feature fl ows through your business (the system), transforming
from an idea to a tangible result. What happens when these features
pile up in front of your quality assurance team? What happens when
there’s more demand for development than a development team can
fulfi ll? You get a bottleneck and the whole system slows down.

It’s very likely that you have many areas of debt—many bottle-
necks—in your codebase. Finding the debt that slows you down the
most will have the greatest net eff ect on increasing your throughput.
Understanding, then tackling debt and resulting improvements
as a team—as a system—is the most eff ective way to make positive

change, because more eyes and hands on the code equates to less
risk and better designs.

Identify Areas of Debt
It’s important that you be able to point at the problem areas. If you
haven’t been keeping track of them on a wiki or a shared list or in
code comments, your fi rst task is to fi nd the debt.

If you’re working on a team, I suggest calling a meeting to develop
a concrete list of the top areas of debt in your code. An exhaustive
list isn’t important. Focus on capturing the big-ticket items. Th is
meeting is your fi rst opportunity, as a leader on your team, to start
forging consensus. A more-than-simple majority of members should
agree and understand an item for it to make the list.

Once you have the list, make it durable. Create a wiki topic, write it
on a whiteboard (with “DO NOT ERASE” written prominently in one
corner), or whatever works in your situation. Th e medium you choose
should be visible, permanent and easy to use. It should be in your face
on a regular basis. You need to return to this list and groom it. Human
beings have a limited amount of short-term memory, so I suggest keep-
ing a list of between fi ve and nine of the most bothersome items. Don’t
worry so much about keeping an inventory—important items will sur-
face again if they’re really, well, important.

Using Metrics to Find Trouble Areas
Sometimes it’s hard to fi nd debt, especially if a team is new to a
codebase. In cases where there’s no collective memory or oral tradi-
tion to draw on, you can use a static analysis tool such as NDepend
(ndepend.com) to probe the code for the more troublesome spots.

Tools are, at best, assistive or perhaps even a second choice.
Tools won’t tell you what to do. Th ey will, however, give you inputs
to decision-making. Th ere is no single metric for code debt, but
people who work on a product day in and day out can surely point
to those dark corners that cause the most pain. Static analysis tools
will tell you where you have implementation debt. Sadly, they will
not tell you where you have debt due to factors like poor naming,
discoverability, performance, and other more qualitative design
and architectural considerations.

Knowing your test coverage (if you have tests) can be another
valuable tool for discovering hidden debt. Clearly, if there’s a big
part of your system that lacks solid test coverage, how can you be
certain that a change won’t have dramatic eff ects on the quality of
your next release? Regression bugs are likely to appear, creating
bottlenecks for QA and potential embarrassment and loss of
revenue due to customer-found defects.

Use the log feature of your version control system to generate
a report of changes over the last month or two. Find the parts of
your system that receive the most activity, changes or additions,
and scrutinize them for technical debt. Th is will help you fi nd the
bottlenecks that are challenging you today; there’s very little value
in fi xing debt in those parts of your system that change rarely.

Human Bottlenecks
You might have a bottleneck if there’s only one developer capable
of dealing with a component, subsystem, or whole application.

There are many sources of pain
in software development, but

none more obvious than a rigid
and chaotic codebase.

http://goldrattconsulting.com
http://ndepend.com

49December 2009msdnmagazine.com

Individual code ownership and knowledge silos (where “Dave
works on the Accounts Receivables module”—now there’s a painful
memory), can block delivery if that person leaves the team or has
a pile of other work to do. Finding places in your project where
individual ownership is happening lets you consider the benefi ts
and scope of improving the design so other individuals can share
the load. Eliminate the bottleneck.

Th ere are tremendous benefi ts that derive from the eXtreme
Programming practice of collective ownership (extremeprogramming.
org/rules/collective.html). With collective ownership, any developer on
your team is allowed to change any code in your codebase “to add
functionality, fi x bugs, improve designs or refactor. No one person
becomes a bottleneck for changes.”

Ah! Th ere’s that word again, “bottleneck.” By enabling collective
ownership, you eliminate the dark parts of your system that only a
single programmer—who may walk off the job or get hit by a bus—
knows about. Th ere is less risk with a codebase that’s collectively owned.

In my experience, the design is also much better. Two, three, or
four heads are almost certainly better than one. In a collectively
owned codebase, a team design ethos emerges and supplants
individual idiosyncrasies and quirks.

I call collective code ownership a practice, but collective
ownership is really an emergent property of a well-functioning
team. Th ink about it—how many of you show up and work on
“your code” versus code shared by an entire team? What are oft en
called teams in soft ware development are really workgroups
with an assignment editor where programming tasks are doled
out based on who’s worked on a particular feature, subsystem or
module in the past.

Prioritize as a Team
I’ve said before that it’s important you involve the whole team
in eff orts to improve. As an Agile Coach, I hold closely to the
mantra that people support a world they help to create. If you don’t
have a critical mass of support, an eff ort to foster a culture of
continuous improvement can be very diffi cult to get off the ground,
much less sustain.

Obtaining consensus is key. You want the majority of team members
to support the current improvement initiative you’ve selected. I’ve
used with some success Luke Hohmann’s “Buy a Feature” approach
from his book Innovation Games (innovationgames.com). I’ll attempt a
gross over-simplifi cation of the game, and urge you to check out the
book if it seems like something that’ll work in your environment.

1. Generate a short list (5-9 items) of things you want to improve.
Ideally these items are in your short-term path.

2. Qualify the items in terms of diffi culty. I like to use the abstract
notion of a T-shirt size: small, medium, large or extra-large (see
the Estimating Improvement Opportunities sidebar for more
information on this practice).

3. Give your features a price based on their size. For example,
small items may cost $50, medium items $100, and so on.

4. Give everyone a certain amount of money. Th ey key here is
to introduce scarcity into the game. You want people to have
to pool their money to buy the features they’re interested in.
You want to price, say, medium features at a cost where no
one individual can buy them. It’s valuable to fi nd where more
than a single individual sees the priority since you’re trying to
build consensus.

5. Run a short game, perhaps 20 or 30 minutes in length, where
people can discuss, collude, and pitch their case. Th is can be
quite chaotic and also quite fun, and you’ll see where the seats
of infl uence are in your team.

6. Review the items that were bought and by what margins they
were bought. You can choose to rank your list by the purchased
features or, better yet, use the results of the Buy a Feature game
in combination with other techniques, such as an awareness of
the next release plan.

Sell the Plan
Now that you’ve got a plan, it’s time to communicate the value
of eliminating debt to your project sponsors. In reality, this step
can happen in parallel with identification. Involve your customer
from the very beginning. After all, development of the plan is
going to take time, effort, and (ultimately) money. You want to

I mentioned estimating debt items or improvement
opportunities roughly in terms of T-shirt sizes. This is a common
technique used in Agile development methodologies. The idea is
that you’re collecting things in terms of relative size. The smalls
go together as do the mediums, larges, and so on.

It’s not super-important that you bring a lot of accuracy to
the table here. Remember: these are relative measures and not
commitments. You want to get a rough idea of the diffi culty, and
the theory is that after estimating a number of items, things will
start to even out. Even though one medium item actually takes a
pair of developers two weeks to complete while another takes a
month, on average a medium will take about three weeks.

Over time, however, you’ll start to gather good examples of
what a large or small item really is, and this will aid you in future
estimates because you’ll have a basis of comparison. I’ve used
several examples of the various sizes in the past as an aid for
estimating a new batch of work to good effect.

This can be a tough pill to swallow for management. They’ll
initially want to know exactly how long a thing might take and,
truth be told, you might need to invest more time in a precise,
time-based estimate.

Estimating Improvement Opportunities

Finding the debt that slows you
down the most will have the

greatest net effect on increasing
your throughput.

www.msdnmagazine.com
http://innovationgames.com

Project6 11/5/09 2:51 PM Page 1

www.xceed.com

Project6 11/5/09 2:52 PM Page 2

www.xceed.com

msdn magazine52 Code Cleanup

avoid, at all costs, questions about whose time and dime you
spent developing a cohesive plan.

Any successful and sustained eff ort to remove a large amount
of debt absolutely requires the support of your project’s fi nanciers
and sponsors. Th e folks who write the checks need to understand
the investment you’re making. Th is can be a challenge; you’re
asking people to think in long range, into the future, and to move
away from the buy now, pay later mentality. Th e explanation “just
because” simply doesn’t cut it.

Th e problem with this is that executives will inevitably ask,
“Aren’t you professionals?” You might feel put against the ropes
when probed along these lines. Aft er all, weren’t they paying you,
the pro, to deliver a quality product on time and in budget?

Th is is a tough argument to counter. I say don’t bother. Have
the courage and honesty to present the facts as they are. Th is
seemingly risky approach boils down to the very human issues of
accountability and trust.

Couch your argument like this: you’ve fi elded successful soft ware
in the requested amount of time for a provisioned amount of money.
In order to achieve this you’ve had to make compromises along the way
in response to business pressures. Now, to go forward at a predictable
and steady rate, you need to deal with the eff ects of these compromises.
Th e entire organization has bought them, and now it’s time to pay back.

Your next challenge is to prove to non-technical folks where the
debt is causing the most damage. In my experience, business execu-
tives respond to quantitative, data-driven arguments supported by
“numbers” and “facts.” I put numbers and facts in quotes because we
all really know we’re living in a relative world and no single number
(cyclomatic complexity, eff erent coupling, lines of code, test coverage,
what have you) sells a change. Compounding this diffi culty, you’ll
need to communicate the areas of biggest drain in economic terms:
why is this slower than you’d like; why did this feature cost so much?

Evidence DEFEATS Doubt
When building your case, there’s an immensely useful tool from
the Dale Carnegie management training system embodied in a
pithy phrase, “evidence defeats doubt.” As is common with such
management systems (and our discipline in general), the DEFEATS
part is an acronym. I’ll detail some of the ways in which this applies
to soft ware development. Note, however, that I’ve omitted the

second E which stands for Exhibit because it seems to repeat the
fi rst E, which stands for Example.

D is for Demonstration. Th ere’s nothing better than show and tell
and this is what the demonstration is all about. If you’re tracking
your velocity, this should be easy. Show the dip over time (see
Figure 2) while drawing the connection to increasingly infl exible
and hard-to-change code. Once you sell, you need to keep selling.

If you’re using an Agile process such as Scrum or eXtreme
Programming, customer feedback events are an essential practice.
At the end of an iteration, demonstrate new features to your
customer. While the quality and quantity of features will dip when
you encounter the technical debt tar pits and while you ramp up
your improvement eff orts, you should be able to demonstrate gains
over time. Less debt means greater output and greater output yields
more stuff to demonstrate.

As the idiom goes, before you criticize someone, walk a mile in
their shoes. If you have a more-technical manager, encourage her
to work with developers on some of the more diffi cult sections of
the codebase to develop empathy for the diffi culty of change. Ask
her to look at some code. Can she follow it? Is it readable? Th ere’s
no quicker way to win your champion.

E is for Example. Th ere’s nothing like a concrete example. Find
some stories or requirements that were either impossible to
complete because of technical debt, or created signifi cant regression.
Pick a section of code that’s unreadable, byzantine, riddled with
side-eff ects. Explain how these attributes of the code led to a
customer-found defect or the need for massive eff ort from QA.

Another powerful tool the Agile processes give you is the
retrospective. Choose a story that went south in the last couple of
iterations and ask the question “why?” Get to the root cause of why
this particular story couldn’t be completed, took twice as long as
your average story, or spanned more than a single iteration. Oft en,
infl exible soft ware will be the culprit or perhaps you had to revert
changes because regression bugs were insurmountable. If you
fi nd the last “why” ends up being a technical debt-related reason,
capture the analysis in a short, direct form. It’s another feather in
your cap, another point in your argument.

F is for Fact. Facts are very easy to come by. Did you release a
project on time? What was the post-release defect rate? What is the
team’s average velocity over time? Were customers satisfi ed with
the soft ware as delivered? Th ese are the kind of facts you’ll want to
bring to the business table, and I believe it’s these facts that speak
most directly to business-minded.

Collaboration is a key element here. As a developer, you can more
readily supply technical facts. Look for assistance from the people
that own the budgets. Chances are they’ll have a much clearer
picture and easier access to the business facts that demonstrate the
damage that technical debt is causing.

A is for Analogy. I fi nd this especially important. Business people
sometimes fi nd soft ware development confusing, even esoteric. If
you go to your sponsors with talk of coupling and cohesion and
Single Responsibility Principle, you stand a very good chance of
losing them. But these are very important concepts in professional
soft ware development and, ultimately, it’s how you’re building Figure 2 Tracking Development Velocity

0

1

2

3

4

5

6

7

JulyJan Feb Mar Apr May Jun

53December 2009msdnmagazine.com

a data-driven case for tackling debt. My suggestion is to avoid
jargon and explain these items with an analogy.

You could describe coupling as a house of cards, for example. Tell
your sponsors that the reason your velocity has dropped is because
making change to the code is like adding a wall, ceiling, or story to
an already established and very elaborate house of cards: a surgical
operation requiring an unusually steady hand, signifi cant time and
patience, and is ultimately an uncertain and anxiety-provoking
event. Sometimes the house of cards collapses.

When employing metaphor and simile, it’s a good idea to state
you are doing so. Justify your analogy with a brief description of the
more-technical concept you are trying to convey. Using the house
of cards example, you might say, “this is the eff ect that coupling
has on our ability to respond to change and add new features.”

T is for Testimonial. Sometimes hearing the same message from
a third party can have a more powerful eff ect. Th is third party may
be an industry leader or a consultant. Th e reason their word might
go farther than yours is that they’re perceived as an objective expert.

If you don’t have the money to hire an outside consultant,
consider collecting anecdotes and insight freely available from
industry thought leaders. While generic testimonials about
so-called best practices are unlikely to seal the deal, they will add
to the gestalt of your overall argument.

S is for Statistics. Numbers matter. Th ere’s a common phrase in man-
agement, “if you can’t measure it, you can’t manage it.” I’m not sure this
conventional wisdom applies wholly, but you can certainly present a
case. Coupling and complexity are two metrics that can be used to show
a root-cause relationship between a declining throughput (how much
work is being delivered) and a codebase increasingly calcifi ed with debt.

I fi nd that composite statistics are usually the best bet here; it’s
much easier to understand the importance of code coverage if you
can overlay a code coverage metric that decreases over time with a
decrease in velocity, thus implying, if not showing, a relationship.

Appoint a Leader
Your eff orts to procure a green light for fi xing technical debt will go
a lot longer with an eff ective leader, a champion who can commu-
nicate in business terms and who has infl uence with the decision
makers in your organization. Oft en, this will be your manager, her
director, the CTO, the VP of Engineering, or someone is a similar
position of perceived authority.

Th is brings up an interesting chicken and egg problem. How do
you sell this person? Th e process of “managing up” is a developer’s

responsibility, too. Your fi rst challenge is to sell the seller. How
exactly do you do that? Evidence defeats doubt!

Next Steps
So far I’ve covered identifying debt as a team and building a case
for fi xing that debt. I’ll reiterate: consensus among your team and
buy-in with your customers are key factors in these steps.

Make the steps small and don’t invest a lot of time. Th e fi rst time
you identify debt, it will necessarily take longer than when you
iterate over new opportunities for improvement, but when you build
your case for management, only include those items you plan to
work on. Keeping an eye on productivity can be a huge energy saver.

In a future issue I’ll look at the rest of the workfl ow, including
tactics for eliminating debt, and I’ll cover how you can make this
process iterative, and capturing the lessons learned from previous
debt removal eff orts.

DAVE LARIBEE coaches the product development team at VersionOne. He is
a frequent speaker at local and national developer events and was awarded a
Microsoft Architecture MVP for 2007 and 2008. He writes on the CodeBetter
blog network at thebeelog.com.

THANKS to the following technical experts for reviewing this article:
Donald Belcham

Now that you’ve got a plan, it’s
time to communicate the value

of eliminating debt to your
project sponsors.

www.nwoods.com
www.msdnmagazine.com
http://thebeelog.com

msdn magazine54

DATA ACC ESS

Building a Desktop
To-Do Application
with NHibernate

NHibernate is an Object Relational Mapper (OR/M),
tasked with making it as easy to work with a database as it is to work
with in-memory objects. It is one of the most popular OR/M frame-
works for Microsoft .NET Framework development. But most users
of NHibernate are doing so in the context of Web applications,
so there is relatively little information about building NHibernate
applications on the desktop.

When using NHibernate in a Web application, I tend to use the
session-per-request style, which has a lot of implications that are
easy to miss. I don’t worry about the session maintaining a reference
to the loaded entities, because I expect that the session will go
away shortly. I don’t have to worry about error handling (much),

This article discusses:
• Managing sessions and connections

• Publishing events

• Using the Interceptor

• Handling concurrency issues

Technologies discussed:
NHibernate, .NET Framework

Code download available at:
code.msdn.microsoft.com/mag200912NHibernate

Oren Eini

as I can just abort the current request and its associated session if
an error occurs.

Th e lifetime of the session is well defi ned. I don’t need to update
other sessions about any changes that I made. I don’t need to worry
about holding a long transaction in the database, or even holding
a connection open for a long time, because they are only alive for
the duration of a single request.

As you can imagine, those are concerns in a desktop application.
Just to be clear about it, I am talking about an application talking
to a database directly. An application that uses some sort of remote
services is using NHibernate on the remote server, under the
per-request scenario, and is not the focus of this article. Th is article
does not cover occasionally connected scenarios, although much
of the discussion here would apply to those scenarios.

Building an NHibernate-based desktop application isn’t much
diff erent than building a desktop application using any other
persistence technology. Many of the challenges that I intend to out-
line in this article are shared between all data-access technologies:

• Managing the scope of units of work.
• Reducing duration of opened database connections.
• Propagating entity changes to all parts of the application.
• Supporting two-way data binding.
• Reducing startup times.
• Avoiding blocking the UI thread while accessing the database.
• Handling and resolving concurrency confl icts.

http://code.msdn.microsoft.com/mag200912NHibernate

55December 2009msdnmagazine.com

While the solutions that I give are dealing exclusively with
NHibernate, at least the majority of them are also applicable to
other data-access technologies. One such challenge, shared by all
data-access technologies that I am aware of, is how to manage the
scope of the application’s unit of work—or, in NHibernate’s terms,
the session lifetime.

Managing Sessions
A common bad practice with NHibernate desktop applications
is to have a single global session for the entire application. It is a
problem for many reasons, but three of them are most important.
Because a session keeps a reference to everything that it loaded,
the user working on the application is going to load an entity, work
with it a bit, and then forget about it. But because the single global
session is maintaining a reference to it, the entity is never released.
In essence, you have a memory leak in your application.

Th en there is the problem of error handling. If you get an excep-
tion (such as StaleObjectStateException, because of concurrency
confl ict), your session and its loaded entities are toast, because
with NHibernate, an exception thrown from a session moves that
session into an undefi ned state. You can no longer use that session
or any loaded entities. If you have only a single global session, it
means that you probably need to restart the application, which is
probably not a good idea.

Finally, there’s the issue of transaction and connection handling.
While opening a session isn’t akin to opening a database connection,
using a single session means that you are far more likely to hold
transactions and connection for longer than you should.

Another equally bad and, unfortunately, almost as common
practice with NHibernate is micromanaging the session. A typical
example is code like this:

public void Save(ToDoAction action) {
 using(var session = sessionFactory.OpenSession())
 using(var tx = session.BeginTransaction()) {
 session.SaveOrUpdate(action);

 tx.Commit();
 }
}

Th e problem with this type of code is that it removes a lot of
the advantages that you gain in using NHibernate. NHibernate is
doing quite a bit of work to handle change management and trans-
parent persistence for you. Micromanaging the session cuts off
NHibernate’s ability to do that and moves the onus of doing that
work to you. And that is even without mentioning the problems
it causes with lazy loading down the line. In just about any system
where I have seen such an approach attempted, the developers had
to work harder to resolve those problems.

A session should not be held open for too long, but it should also
not be held open for too short a time to make use of NHibernate’s
capabilities. Generally, try to match the session lifetime to the
actual action that is being performed by the system.

Th e recommended practice for desktop applications is to use a
session per form, so that each form in the application has its own
session. Each form usually represents a distinct piece of work that
the user would like to perform, so matching session lifetime to the

form lifetime works quite well in practice. Th e added benefi t is that
you no longer have a problem with memory leaks, because when
you close a form in the application, you also dispose of the session.
Th is would make all the entities that were loaded by the session
eligible for reclamation by the garbage collector (GC).

Th ere are additional reasons for preferring a single session per
form. You can take advantage of NHibernate’s change tracking,
so it will fl ush all changes to the database when you commit the
transaction. It also creates an isolation barrier between the diff erent
forms, so you can commit changes to a single entity without worrying
about changes to other entities that are shown on other forms.

While this style of managing the session lifetime is described as
a session per form, in practice you usually manage the session per
presenter. Th e code in Figure 1 is taken from the presenter base class.

As you can see, I lazily open a session (or a stateless session) and
keep it open until I dispose of the presenter. Th is style matches quite
nicely to the lifetime of the form itself and allows me to associate a
separate session with each presenter.

Maintaining Connections
In the presenters, you don’t have to worry about opening or closing
the session. Th e fi rst time that you access a session, it’s opened for
you, and it will dispose itself properly as well. But what about the
database connection associated with the session? Are you holding a
database connection open for as long as the user is viewing the form?

Most databases dislike having to hold a transaction open for
extended periods of time. It usually results in causing errors or
deadlocks down the line. Opened connections can cause similar
problems, because a database can only accept so many connections
before it runs out of resources to handle the connection.

To maximize performance of your database server, you should
keep transaction lifespan to a minimum and close connections
as soon as possible, relying on connection pooling to ensure fast
response times when you open a new connection.

With NHibernate, the situation is much the same, except that
NHibernate contains several features that are there to explicitly

protected ISession Session {
 get {
 if (session == null)
 session = sessionFactory.OpenSession();
 return session;
 }
}

protected IStatelessSession StatelessSession {
 get {
 if (statelessSession == null)
 statelessSession = sessionFactory.OpenStatelessSession();
 return statelessSession;
 }
}

public virtual void Dispose() {
 if (session != null)
 session.Dispose();
 if (statelessSession != null)
 statelessSession.Dispose();
}

Figure 1 Presenter Session Management

www.msdnmagazine.com

msdn magazine56 Data Access

make things easier for you. Th e NHibernate session doesn’t have
a one-to-one association with a database connection. Instead,
NHibernate manages the database connection internally, opening
and closing it as needed. Th is means you don’t have to maintain
some sort of state in the application to disconnect and reconnect
to the database as needed. By default, NHibernate will minimize to
the maximum extent the duration in which a connection is open.

You do need to worry about making transactions as small as
possible. In particular, one of the things that you don’t want is to
hold a transaction open for the lifetime of the form. Th is will force
NHibernate to keep the connection open for the duration of the
transaction. And because the lifetime of a form is measured in human
response times, it’s more than likely that you would end up holding up
a transaction and connection for longer periods than is really healthy.

What you will usually do is open separate transactions for each
operation that you make. Let’s look at a form mockup that shows a
simple to-do list, my sample application of choice (see Figure 2). Th e
code for handling this form is quite simple, as you can see in Figure 3.

I have three operations: loading the form for the fi rst time, show-
ing the fi rst page, and paging back and forth through the records.

On each operation, I begin and commit a separate transaction.
Th at way I don’t consume any resources on the database and don’t
have to worry about long transactions. NHibernate will automatically
open a connection to the database when I begin a new transaction
and close it once the transaction is completed.

Stateless Sessions
Th ere is another small subtlety that I should note: I’m not using an
ISession. Rather, I’m using IStatelessSession in its place to load the

data. Stateless sessions are typically used in bulk data manipulation,
but in this case I’m making use of a stateless session to resolve
memory consumption issues.

A stateless session is, well, stateless. Unlike a normal session, it
doesn’t maintain a reference to the entities that it loads. As such,
it’s perfectly suited to loading entities for display-only purposes.
For that type of task, you generally load the entities from the
database, throw them on the form and forget about them. A stateless
session is just what you need in this case.

But stateless sessions come with a set of limitations. Chief among
them in this case is that stateless sessions do not support lazy loading,
do not involve themselves in the usual NHibernate event mode
and do not make use of NHibernate’s caching features.

For those reasons, I generally use them for simple queries where I
just want to show the user the information without doing anything
complicated. In cases where I want to show an entity for editing, I
could still make use of a stateless session, but I tend to avoid that
in favor of a normal session.

In the main application form, I strive to make all the data
display-only, and try to make use of stateless sessions alone. Th e
main form lives for as long as the application is open and a stateful
session is going to be a problem, not only because it will maintain
a reference to the entities that it loaded, but because it’s likely to
cause problems if the session throws an exception.

NHibernate considers a session that threw an exception to be in
an undefi ned state (only Dispose has a defi ned behavior in this case).
You would need to replace the session, and because entities loaded
by a stateful session maintain a reference to it, you would need to

public void OnLoaded() {
 LoadPage(0);
}

public void OnMoveNext() {
 LoadPage(CurrentPage + 1);
}

public void OnMovePrev() {
 LoadPage(CurrentPage - 1);
}

private void LoadPage(int page) {
 using (var tx = StatelessSession.BeginTransaction()) {
 var actions = StatelessSession.CreateCriteria<ToDoAction>()
 .SetFirstResult(page * PageSize)
 .SetMaxResults(PageSize)
 .List<ToDoAction>();

 var total = StatelessSession.CreateCriteria<ToDoAction>()
 .SetProjection(Projections.RowCount())
 .UniqueResult<int>();

 this.NumberOfPages.Value = total / PageSize +
 (total % PageSize == 0 ? 0 : 1);
 this.Model = new Model {
 Actions = new ObservableCollection<ToDoAction>(actions),
 NumberOfPages = NumberOfPages,
 CurrentPage = CurrentPage + 1
 };
 this.CurrentPage.Value = page;

 tx.Commit();
 }
}

Figure 3 Creating the To-Do Form

Figure 2 A To-Do List Application

57December 2009msdnmagazine.com

clear all the entities that were loaded by the now-defunct session.
It’s so much simpler to use a stateless session in this circumstance.

Entities loaded by stateless sessions do not care for the state of
the session, and recovering from an error in a stateless session is as
simple as closing the current stateless session and opening a new one.

Manipulating Data
Figure 4 shows the edit screen mockup. What challenges do you
face when you need to edit entities?

Well, you actually have two separate challenges here. First, you
want to be able to make use of NHibernate’s change tracking, so
you can display an entity (or an entity object graph) and have
NHibernate just persist it when you’re fi nished. Second, once you
save an entity, you want to ensure that every form that also displays
this entity is updated with the new values.

Th e fi rst item of business is actually fairly easy to handle. All you
need to do is make use of the session associated with the form, and
that’s it. Figure 5 shows the code driving this screen.

You get the entity from the database in the Initialize(id) method,
and you update it in the OnSave method. Notice that you do so in
two separate transactions, instead of keeping a transaction alive
for a long period of time. Th ere’s also this strange EventPublisher
call. What’s that all about?

EventPublisher is here in order to deal with another challenge:
when each form has its session, then each form has diff erent
instances of the entities you work with. On the face of it, that looks
like a waste. Why should you load the same action several times?

In actuality, having this separation between the forms will simplify
the application considerably. Consider what would happen if you
shared the entity instances across the board. In that situation, you
would fi nd yourself with a problem in any conceivable edit scenario.
Consider what would happen if you were to display an entity in
two forms that allow editing that entity. Th at may be an editable
grid and a detailed edit form, for example. If you make a change to
the entity in the grid, open the detailed edit form and then save it,
what would happen to the change you made on the editable grid?

If you employ a single entity instance throughout the application,
then it’s likely that saving the details form would also cause you to
save the changes made using the grid. Th at’s likely not something
that you would want to do. Sharing an entity instance also makes it
much more diffi cult to do things like cancel an edit form and have
all the unsaved changes go away.

Th ose problems simply do not exist when you use an entity
instance per form, which is a good thing, as this is more or less
mandatory when you use a session per form approach.

Publishing Events
But I haven’t fully explained the purpose of the EventPublisher yet.
It’s actually fairly simple. Instead of having a single instance of the
entity in the application, you may have many, but the user would
still like to see the entity (once properly saved) updated on all the
forms that show that entity.

In my example I do so explicitly. Whenever I save an entity, I
publish an event saying that I did so, and on which entity. Th is isn’t

a standard .NET event. A .NET event requires a class to subscribe
to it directly. Th at doesn’t actually work for this type of notifi cation
because it would require each form to register to events in all other
forms. Just trying to manage that would be a nightmare.

Th e EventPublisher is a publish-subscribe mechanism that I use
to decouple a publisher from its subscriber. Th e only commonality
between them is the EventPublisher class. I use the event type
(ActionUpdated in Figure 5) to decide who to tell about the event.

Let’s look at the other side of that now. When I update a to-do
action, I would like to show the updated values in the main form,
which shows a grid of to-do actions. Here is the relevant code from
that form presenter:

public Presenter() {
 EventPublisher.Register<ActionUpdated>(
 RefreshCurrentPage);
}

private void RefreshCurrentPage(
 ActionUpdated actionUpdated) {
 LoadPage(CurrentPage);
}

On startup, I register the method RefreshCurrentPage to the
ActionUpdated event. Now, whenever that event is raised, I will
simply refresh the current page by calling LoadPage, which you
are already familiar with.

Th is is actually a fairly lazy implementation. I don’t care if the
current page is showing the edited entity; I just refresh it anyway. A
more complex (and effi cient) implementation would only refresh
the grid data if the updated entity is shown on that page.

Figure 4 Editing Entities

www.msdnmagazine.com

msdn magazine58 Data Access

Th e main advantage of using the publish-subscribe mechanism in
this manner is decoupling the publisher and subscribers. I don’t care
in the main form that the edit form publishes the ActionUpdated
event. Th e idea of event publishing and publish- subscribe is a cor-
nerstone in building loosely coupled user interfaces, and is covered
extensively in the Composite Application Guidance (msdn.microsoft.com/
library/cc707819) from the Microsoft patterns & practices team.

Th ere is another case worth considering: What would happen if you
have two edit forms to the same entity open at the same time? How can
you get the new values from the database and show them to the user?

Th e following code is taken from the edit form presenter:
public Presenter() {
 EventPublisher.Register<ActionUpdated>(RefreshAction);
}

private void RefreshAction(ActionUpdated actionUpdated) {
 if(actionUpdated.Id != Model.Action.Id)
 return;
 Session.Refresh(Model.Action);
}

Th is code registers for the ActionUpdated event, and if it’s the
entity that you’re editing, you ask NHibernate to refresh it from
the database.

Th is explicit model of refreshing the entity from the database also
gives you the chance to make decisions about what should happen
now. Should you update automatically, erasing all the user changes?
Should you ask the user? Try to silently merge the changes? Th ose
are all decisions that you now have the chance to deal with in a
straightforward manner.

In most cases, however, I fi nd that simply refreshing the entity
is quite enough, because you generally do not allow updating of a
single entity in parallel (at least not by a single user).

While this entity refresh code will indeed update the values of
the entity instance, how are you going to make the UI respond to
this change? You have data bound the entity values to the form
fi elds, but you need some way of telling the UI that those values
have changed.

Th e Microsoft .NET Framework provides the INotifyProperty-
Changed interface, which most UI frameworks understand and know
how to work with. Here’s the INotifyPropertyChanged defi nition:

public delegate void PropertyChangedEventHandler(
 object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs {
 public PropertyChangedEventArgs(string propertyName);
 public virtual string PropertyName { get; }
}

public interface INotifyPropertyChanged {
 event PropertyChangedEventHandler PropertyChanged;
}

An object that implements this interface should raise the
Property Changed event with the name of the property that was
changed. Th e UI will subscribe to the PropertyChanged event and
whenever a change is raised on a property that’s bound, it will
refresh the binding.

Implementing this is quite easy:
public class Action : INotifyPropertyChanged {
 private string title;
 public virtual string Title {
 get { return title; }
 set {
 title = value;
 PropertyChanged(this,
 new PropertyChangedEventArgs("Title"));
 }
 }

 public event PropertyChangedEventHandler
 PropertyChanged = delegate { };
}

While simple, it’s fairly repetitive code, and is only required to
satisfy UI infrastructure concerns.

Intercepting Entity Creation
I don’t want to have to write code just to get the UI data binding
working properly. And as it turns out, I don’t actually need to.

One of the requirements of NHibernate is that you make all
properties and methods on your classes virtual. NHibernate
requires this to handle lazy loading concerns properly, but you can
take advantage of this requirement for other reasons.

One thing you can do is take advantage of the virtual keyword
to inject your own behavior into the mix. You do this using a
technique called Aspect-Oriented Programming (AOP). In essence,
you take a class and add additional behaviors to this class at
runtime. Th e exact mechanism of how you implement this is outside
the scope of the article, but it’s encapsulated in the DataBinding-
Factory class, whose defi nition is:

public static class DataBindingFactory {
 public static T Create<T>();
 public static object Create(Type type);
}

Th e entire implementation of the class is about 40 lines, not
terribly complex. What it does is take a type and produce an instance

public void Initialize(long id) {
 ToDoAction action;
 using (var tx = Session.BeginTransaction()) {
 action = Session.Get<ToDoAction>(id);
 tx.Commit();
 }

 if(action == null)
 throw new InvalidOperationException(
 "Action " + id + " does not exists");

 this.Model = new Model {
 Action = action
 };
}

public void OnSave() {
 using (var tx = Session.BeginTransaction()) {
 // this isn't strictly necessary, NHibernate will
 // automatically do it for us, but it make things
 // more explicit
 Session.Update(Model.Action);

 tx.Commit();
 }

 EventPublisher.Publish(new ActionUpdated {
 Id = Model.Action.Id
 }, this);

 View.Close();
}

Figure 5 Editing an Entity in the Session

http://msdn.microsoft.com/library/cc707819

59December 2009msdnmagazine.com

of this type that also fully implements the INotifyPropertyChanged
contract. In other words, the following test will work:

ToDoAction action = DataBindingFactory.Create<ToDoAction>();
string changedProp = null;
((INotifyPropertyChanged)action).PropertyChanged
 += (sender, args) => changedProp = args.PropertyName;
action.Title = "new val";
Assert.Equal("Title", changedProp);

Given that, all you have to do now is make use of the DataBinding-
Factory whenever you create a new class in the presenters. Th e
main advantage that you gain from such a system is that now, if
you would like to make use of the NHibernate domain model in
a non-presentation context, you can simply not make use of the
DataBindingFactory, and you get a domain model completely free
from presentation concerns.

Th ere’s still one problem, though. While you can create new
instances of entities using the DataBindingFactory, a lot of the
time you will have to deal with instances that were created by
NHibernate. Obviously, NHibernate knows nothing about your
DataBindingFactory and can’t make use of it. But before you
despair, you can make use of one of the most useful extension
points with NHibernate, the Interceptor. NHibernate’s Interceptor
allows you to take over, in essence, some of the functionalities that
NHibernate is performing internally.

One of the functionalities that the Interceptor allows you to take
over is creating new instances of entities. Figure 6 shows an Interceptor
that creates instances of entities using the DataBindingFactory.

You override the Instantiate method and handle the case where
we get an entity with a type that you recognize. You then proceed
to create an instance of the class and set its identifi er property. You
also need to teach NHibernate how to understand what type an
instance created via DataBindingFactory belongs to, which you do
in the GetEntityName method of the intercepter.

Th e only thing left now is to set up NHibernate with the new
Interceptor. Th e following is taken from the BootStrapper class,
responsible for setting up the application:

public static void Initialize() {
 Configuration = LoadConfigurationFromFile();
 if(Configuration == null) {
 Configuration = new Configuration()
 .Configure("hibernate.cfg.xml");
 SaveConfigurationToFile(Configuration);
 }
 var intercepter = new DataBindingIntercepter();
 SessionFactory = Configuration
 .SetInterceptor(intercepter)
 .BuildSessionFactory();
 intercepter.SessionFactory = SessionFactory;
}

For now, ignore the confi guration semantics—I will address that
in a bit. Th e important point is that you create the Interceptor, set
it on the confi guration and build the session factory. Th e last step
is setting the session factory on the Interceptor. It’s a bit awkward,
I’ll admit, but that’s the simplest way to get the appropriate session
factory into the Interceptor.

Once the Interceptor is wired, every entity instance that
NHibernate creates will now support INotifyPropertyChanged
notifi cations without you having to do any work at all. I consider
this quite an elegant solution to the problem.

Th ere are a few who would say that choosing such a solution is
a problem from a performance perspective over hard coding the
implementation. In practice, that turns out to be a false assumption.
Th e tool that I’m using (Castle Dynamic Proxy) to perform this
on-the-fl y extension of classes has been heavily optimized to
ensure optimal performance.

Addressing Performance
Speaking of performance, an additional concern in desktop
applications that you do not have in Web applications is startup
time. In Web applications it is quite common to decide to favor
longer startup times to increase request performance. In desktop

applications, you would like to reduce the startup time as much as
possible. In fact, a common cheat with desktop application is to
simply show a screen shot of the application to the user until the
application fi nishes starting up.

Unfortunately, NHibernate startup time is somewhat long. Th is
is mostly because NHibernate is performing a lot of initialization
and checks on startup, so it can perform faster during normal
operation. Th ere are two common ways of handling this issue.

Th e fi rst is to start NHibernate in a background thread. While this
means the UI will show up much faster, it also creates a complication

public class DataBindingInterceptor : EmptyInterceptor {
 public ISessionFactory SessionFactory { set; get; }

 public override object Instantiate(string clazz,
 EntityMode entityMode, object id) {

 if(entityMode == EntityMode.Poco) {
 Type type = Type.GetType(clazz);
 if (type != null) {
 var instance = DataBindingFactory.Create(type);
 SessionFactory.GetClassMetadata(clazz)
 .SetIdentifier(instance, id, entityMode);
 return instance;
 }
 }
 return base.Instantiate(clazz, entityMode, id);
 }

 public override string GetEntityName(object entity) {
 var markerInterface = entity as
 DataBindingFactory.IMarkerInterface;
 if (markerInterface != null)
 return markerInterface.TypeName;
 return base.GetEntityName(entity);
 }
}

Figure 6 Intercepting Entity Creation

Generally, try to match the
session lifetime to the actual

action that is being performed
by the system.

www.msdnmagazine.com

msdn magazine60 Data Access

for the application itself, because you can’t show the user anything
from the database until you fi nish the session factory startup.

Th e other option is to serialize NHibernate’s Confi guration class.
A large amount of the cost related to NHibernate startup is related
to the cost of validating the information passed to the Confi guration
class. Th e Confi guration class is a serializable class and therefore you
can pay that price only once, aft er which you can shortcut the cost
by loading an already validated instance from persistent storage.

That is the purpose of the LoadConfigurationFromFile
and SaveConfigurationToFile, serializing and deserializing
NHiber nate’s confi guration. Using these you only have to create the
confi guration the fi rst time you start the application. But there’s
a small catch you should be aware of: You should invalidate the
cached confi guration if the entities assembly or the NHibernate
confi guration fi le has changed.

Th e sample code for this article contains a full implementation
that‘s aware of this and invalidates the cached fi le if the entities or
the confi guration have changed.

Th ere’s another performance issue that you have to deal with.
Calling the database is one of the more expensive operations that
the application makes. As such, it’s not something that you’d want
to do on the application UI thread.

Such duties are oft en relegated to a background thread, and
you can do the same with NHibernate, but keep in mind that the
NHibernate session is not thread safe. While you can make use of a
session in multiple threads (it has no thread affi nity), you must not
use a session (or your entities) on multiple threads in parallel. In other
words, it’s perfectly fi ne to use the session in a background thread,
but you must serialize access to the session and not allow concurrent
access to it. Using the session from multiple threads in parallel will
result in undefi ned behavior; in other words, it should be avoided.

Luckily, there are a few relatively simple measures that you can
take in order to ensure that access to the session is serialized. Th e

System.ComponentModel.BackgroundWorker class was explicitly
designed to handle these sorts of tasks. It allows you to execute a
task on a background thread and notify you when it is completed,
taking care of the UI thread synchronization issue, which is so
important in desktop applications.

You saw earlier how to manage editing an existing entity, which
I did directly on the UI thread. Now, let’s save a new entity on a
background thread. Th e following code is the initialization of the
Create New presenter:

private readonly BackgroundWorker saveBackgroundWorker;

public Presenter() {
 saveBackgroundWorker = new BackgroundWorker();
 saveBackgroundWorker.DoWork +=
 (sender, args) => PerformActualSave();
 saveBackgroundWorker.RunWorkerCompleted +=
 (sender, args) => CompleteSave();
 Model = new Model {
 Action = DataBindingFactory.Create<ToDoAction>(),
 AllowEditing = new Observable<bool>(true)
 };
}

Th e BackgroundWorker is used to perform the actual save
process, which was split into two distinct pieces. Aside from that
split, it’s very similar to the way I handled it in the edit scenario.
Another interesting bit that you need to pay attention to is the
Allow Editing property; this property is used to lock the UI in the
form when you’re performing a save operation. Th is way, you can
safely use the session in another thread, knowing that there won’t be
concurrent access to either the session or any of its entity by that form.

Th e saving process itself should be pretty familiar to you by now.
Let’s look at the OnSave method fi rst:

public void OnSave() {
 Model.AllowEditing.Value = false;
 saveBackgroundWorker.RunWorkerAsync();
}

Th is method is responsible for disabling editing in the form,
then kicking off the background process. In the background, you
perform the actual save. Th e code shouldn’t come as a surprise:

private void PerformActualSave() {
 using(var tx = Session.BeginTransaction()) {
 Model.Action.CreatedAt = DateTime.Now;

 Session.Save(Model.Action);
 tx.Commit();
 }
}

When the actual save to the database is completed, the
BackgroundWorker will execute the CompleteSave part of the
process in the UI thread:

private void CompleteSave() {
 Model.AllowEditing.Value = true;
 EventPublisher.Publish(new ActionUpdated {
 Id = Model.Action.Id
 }, this);

 View.Close();
}

You re-enable the form, publish a notifi cation that an action
was updated (causing the relevant screens to update as well), and
fi nally close the form. I suppose that enabling the UI isn’t strictly
necessary, but I included it there for completion sake.

Using this technique, you can take advantage of background
processing without violating the threading contract on the session

public void OnSave() {
 bool successfulSave;
 try {
 using (var tx = Session.BeginTransaction()) {
 Session.Update(Model.Action);

 tx.Commit();
 }
 successfulSave = true;
 }
 catch (StaleObjectStateException) {
 successfulSave = false;
 MessageBox.Show(
 @"Another user already edited the action before you had a chance to
do so. The application will now reload the new data from the database,
please retry your changes and save again.");

 ReplaceSessionAfterError();
 }

 EventPublisher.Publish(new ActionUpdated {
 Id = Model.Action.Id
 }, this);

 if (successfulSave)
 View.Close();
}

Figure 7 Handling Concurrency Confl icts

Project3 11/5/09 2:54 PM Page 1

www.xceed.com

msdn magazine62 Data Access

instances. As always, threading is a great way to create a more
responsive application, but multi-threaded programming is not
a task to be approached lightly, so use this technique with care.

Dealing with Concurrency
Concurrency is a complex topic at the best of times, and it isn’t
limited to threading alone. Consider the case where you have two
users that edit the same entity at the same time. One of them is
going to hit the submit button fi rst, saving the changes to the
database. Th e question is, what should happen when the second
user hits the save button?

Th is is called a concurrency confl ict, and NHibernate has quite
a few ways of detecting such a confl ict. Th e ToDoAction entity has
a <version/> fi eld that tells NHibernate that it needs to explicitly
perform optimistic concurrency checks. For a full discussion of
the concurrency options that NHibernate off ers, see my blog post
at ayende.com/Blog/archive/2009/04/15/nhibernate-mapping-concurrency.aspx.

Essentially, the concurrency solutions fall into two broad categories:
• Pessimistic concurrency control, which requires you to hold

locks on the database and keep the transaction open for an
extended period of time. As I discussed earlier, this is not a
good idea in a desktop application.

• Optimistic concurrency control, which means you can close
the database connection during the user’s “think time.” Most of
the options NHibernate has to off er are on the optimistic side,
allowing several strategies to detect confl icts.
Because pessimistic concurrency control incurs such a heavy

performance cost, it’s generally not acceptable. This, in turn,
means that you should favor optimistic concurrency control.
With optimistic concurrency, you try to save the data normally,
but you’re prepared to handle the case where the data was changed
by another user.

NHibernate will manifest this situation as a StaleObjectState-
Exception during the save or commit processes. Your applications
should catch that exception and behave accordingly. Usually, it
means that you need to show some sort of a message to the user,
explaining that the entity was edited by another user, and that the
user needs to redo their changes. Occasionally, you need to perform
more complex operations, such as off ering to merge the information,
or allowing the user to decide which version to keep.

Because the fi rst option—displaying a message and having the
user redo any changes—is much more common, I’ll show how to
implement that with NHibernate, and then discuss briefl y how you
can implement the other solutions.

One interesting problem that you face right away is that an
exception raised from the session means the session is no longer
usable. Any concurrency confl ict shows up in NHibernate as an
exception. Th e only thing that you may do to a session aft er it has
thrown an exception is to call Dispose on it; any other operation
will result in undefi ned behavior.

I’m going to go back to the edit screen and implement concurrency
handling there as an example. I will add a Create Concurrency
Confl ict button to the edit screen, which will execute the following:

public void OnCreateConcurrencyConflict() {
 using(var session = SessionFactory.OpenSession())
 using(var tx = session.BeginTransaction()) {
 var anotherActionInstance =
 session.Get<ToDoAction>(Model.Action.Id);
 anotherActionInstance.Title =
 anotherActionInstance.Title + " -";
 tx.Commit();
 }
MessageBox.Show("Concurrency conflict created");
}

Th is creates a new session and modifi es the title property. Th is
will trigger a concurrency confl ict when I try to save the entity in
the form, because the session on the form is not aware of those
changes. Figure 7 shows how I’m handling that.

I simply wrapped the code that saves to the database in a try catch
block and handled the stale state exception by informing the user
that I detected a concurrency confl ict. I then replace the session.

Notice that I am always calling ActionUpdated, even if I received a
concurrency confl ict. Here’s why: Even if I got a concurrency confl ict,
the rest of the application probably doesn’t know about it, and the en-
tity was changed in the database, so I might as well give the rest of the
application the chance to show the user the new values as well.

Finally, I only close the form if I’ve been successful in saving to
the database. So far, there’s nothing much, but there is the session
and entity replacement that I still need to consider (see Figure 8).

As you can see, I replace the session or the stateless session by
disposing them and opening new ones. In the case of a session, I
also ask the presenter to replace all the entities that were loaded

protected void ReplaceSessionAfterError() {
 if(session!=null) {
 session.Dispose();
 session = sessionFactory.OpenSession();
 ReplaceEntitiesLoadedByFaultedSession();
 }
 if(statelessSession!=null) {
 statelessSession.Dispose();
 statelessSession = sessionFactory.OpenStatelessSession();
 }
}

protected override void
 ReplaceEntitiesLoadedByFaultedSession() {
 Initialize(Model.Action.Id);
}

Figure 8 Updating Sessions and Entities

Despite the number of
challenges outlined in this

article, building an NHibernate
desktop application isn’t

any harder than building a
NHibernate Web application.

http://ayende.com/Blog/archive/2009/04/15/nhibernate-mapping-concurrency.aspx

63December 2009msdnmagazine.com

by the faulted session. NHibernate entities are closely associated
to their session, and when the session become unusable, it’s generally
best to replace the entities as well. It is not required—the entities aren’t
going to suddenly stop working—but things like lazy loading will no
longer work. I’d rather pay the cost of replacing the entities than try to
fi gure out if I can or cannot traverse the object graph in certain cases.

Th e implementation of the entity replacement is done by just
calling the Initialize method in this case. Th is is the same Initialize
method that I discussed in the edit form case. Th is method
just gets the entity from the database and sets it into the model
property—nothing exciting. In more complex scenarios, it may
replace several entity instances that are used in a single form.

For that matter, the same approach holds not only for
concurrency confl icts, but for any error that you might get from
NHibernate’s sessions. Once you get an error, you must replace the
session. And when you replace the session, you probably ought
to reload any entities that you loaded using the old session in the
new one, just to be on the safe side.

Confl ict Management
Th e last topic that I want to touch upon in this article is the more
complex concurrency confl ict management techniques. Th ere’s only
one option, basically: allow the user to make a decision between the
version in the database and the version that the user just modifi ed.

Figure 9 shows the merge screen mockup. As you can see,
here you are simply showing the user both options and asking
to choose which one they will accept. Any concurrency confl ict
resolution is somehow based on this idea. You may want to
present it in a diff erent way, but that’s how it works, and you can extrapo-
late from here. In the edit screen, change the confl ict resolution to this:

catch (StaleObjectStateException) {
 var mergeResult =
 Presenters.ShowDialog<MergeResult?>(
 "Merge", Model.Action);
 successfulSave = mergeResult != null;

 ReplaceSessionAfterError();
}

I show the merge dialog, and if the user has made a decision about
the merge, I decide that it was a successful save (which would close

the edit form). Note that I pass the currently edited action to the
merge dialog, so it knows the current state of the entity.

Th e merge dialog presenter is straightforward:
public void Initialize(ToDoAction userVersion) {
 using(var tx = Session.BeginTransaction()) {
 Model = new Model {
 UserVersion = userVersion,
 DatabaseVersion =
 Session.Get<ToDoAction>(userVersion.Id),
 AllowEditing = new Observable<bool>(false)
 };

 tx.Commit();
 }
}

On Startup, I get the current version from the database and show
both it and the version that the user changed. If the user accepts the
database version, I don’t have much to do, so I simply close the form:

public void OnAcceptDatabaseVersion() {
 // nothing to do
 Result = MergeResult.AcceptDatabaseVersion;
 View.Close();
}

If the user wants to force their own version, it’s only slightly
more complicated:

public void OnForceUserVersion() {
 using(var tx = Session.BeginTransaction()) {
 //updating the object version to the current one
 Model.UserVersion.Version =
 Model.DatabaseVersion.Version;
 Session.Merge(Model.UserVersion);
 tx.Commit();
 }
 Result = MergeResult.ForceDatabaseVersion;
 View.Close();
}

I use NHibernate’s Merge capabilities to take all the persistent
values in the user’s version and copy them to the entity instance
inside the current session. In eff ect, it merges the two instances,
forcing the user values on top of the database value.

Th is is actually safe to do even with the other session dead and
gone, because the Merge method contract ensures that it doesn’t
try to traverse lazy loaded associations.

Note that before I attempt the merge, I set the user’s version
property to the database’s version property. Th is is done because in
this case I want to explicitly overwrite that version.

Th is code doesn’t attempt to handle recursive concurrency
confl icts (that is, getting a concurrency confl ict as a result of
resolving the fi rst one). Th at’s left as an exercise for you.

Despite the number of challenges outlined in this article, building
an NHibernate desktop application isn’t any more diffi cult than
building a NHibernate Web application. And in both scenarios, I believe
that using NHibernate will make your life easier, the application more
robust and the overall system easier to change and work with.

OREN EINI (who works under the pseudonym Ayende Rahien) is an active
member of several open source projects (NHibernate and Castle among them)
and is the founder of many others (Rhino Mocks, NHibernate Query Analyzer
and Rhino Commons among them). Eini is also responsible for the NHibernate
Profi ler (nhprof.com), a visual debugger for NHibernate. You can follow Eini’s
work at ayende.com/Blog.

THANKS to the following technical experts for reviewing this article:
Howard Dierking

Figure 9 UI for Managing Change Confl icts

www.msdnmagazine.com
http://nhprof.com
http://ayende.com/Blog

TE AM S YST EM

Building a Visual Studio
Team Explorer Extension

The main user interface you use to interact with
Team Foundation Server (TFS) is the Team Explorer client. Team
Explorer provides a way to access and view information on one
or more TFS servers. By default, Team Explorer provides access
to TFS features like work items, SharePoint document libraries,
reports, builds, and source control.

Marcel’s development teams use a number of separate Visual
Studio solutions, each consisting of fi ve to ten projects. In each of
these solutions, there is a single point of deployment, maintenance,
and design. Sometimes there are cross-solution dependencies. Th e
team manages those dependencies via a special folder inside the
TFS version control repository. Each solution writes its output to a
well-known location and the team checks in the output aft er each
build. A solution that depends on the output of another solution
can reference the assembly when it is retrieved from TFS.

Unfortunately, Marcel’s team faced a problem: Visual Studio
stores fi le references using a relative path to the current solution,
but developers want the fl exibility of using their own directory
structures and workspace mappings. Th is desirable fl exibility
results in frustration when Visual Studio can’t build solutions
because it can’t fi nd referenced fi les.

This article discusses:
• Building a VSPackage

• Defi ning context menus

• Handling commands

• VSPackage Registration

Technologies discussed:
Visual Studio Team System and Team Foundation Server 2008

Code download available at:
code.msdn.microsoft.com/mag200912VSTS2008Ext

Brian A. Randell and Marcel de Vries

One way to fi x this problem is to map the location that contains
the binary references as a substituted drive using the subst.exe com-
mand. By referencing the assemblies on the substituted drive, Visual
Studio is able to fi nd the fi les in a consistent location. Developers
can put the fi les in the locations they prefer, then use subst.exe to
map their locations to the standard mapping. Because the fi les
reside on a diff erent drive, Visual Studio stores a full path rather
than a relative path. An additional benefi t is that a developer can
test a diff erent version by simply changing the mapping.

While this technique works, even better would be a Team
Explorer extension that allows a developer to defi ne a mapping
between the version control location and a mapped drive. Marcel’s
team implemented this functionality in a Team Explorer extension
called Subst Explorer. You can see the menu for the Subst Explorer
extension in see Figure 1.

Getting Started
To build your own Team Explorer plug-in, you’ll need Visual
Studio 2008 Standard Edition or higher, Team Explorer, and the
Visual Studio 2008 SDK, which you can get from the Visual Studio
Extensibility Developer Center (msdn.microsoft.com/vsx).

Before creating a Team Explorer plug-in, you need to create
a VSPackage. Th e package supplies a class that implements the
Microsoft .TeamFoundation.Common.ITeamExplorerPlugin inter-
face defi ned in Microsoft .VisualStudio.TeamFoundation.Client.dll.

In Visual Studio parlance, your plug-in becomes a part of the
hierarchy. One feature that diff erentiates the Team Explorer hier-
archy from other hierarchy implementations in Visual Studio is
that Team Explorer supports asynchronous loading of the hierar-
chy, essentially because loading the hierarchy for things like work
items and documents oft en requires remote queries to TFS. Th ese
calls would otherwise block Visual Studio during those queries,
resulting in a poor user experience. Th e ITeamExplorerPlugin
interface implemented by your VSPackage provides the mecha-

msdn magazine64

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 64 11/12/09 10:05 AM

http://code.msdn.microsoft.com/mag200912VSTS2008Ext
http://msdn.microsoft.com/vsx

65December 2009 65msdnmagazine.com

nism that Team Explorer uses to load the contents of each node
asynchronously.

Create a VSPackage by selecting File | New | Project. In the New
Project dialog, expand the Other Project Types node and select the
Extensibility node. Over in the Templates pane, select the Visual
Studio Integration Package template.

Aft er you fi ll out the New Project dialog and click OK, Visual Studio
launches the Visual Studio Integration Package wizard. First, choose
your preferred language—C++, C#, or Visual Basic (C# is used in this
article). When choosing Visual Basic or C#, you need to select the op-
tion to generate a new strong name key fi le or specify an existing fi le.
On the next page, fi ll in information for your company and some details
about the package, including the Package Name, icon, and so on. Much
of this information is shown in the Help | About dialog in Visual Studio.

On the next page, select how you want Visual Studio to expose
your package. For this particular example, you want to have a Me-
nuCommand only. Th e plug-in will use this to handle the context
menus. On the next page, you provide a Command Name and
Command ID. Just accept the defaults since you’ll change them
later. On the next page you can add a support for test projects.
We won’t be covering them in this article, so feel free to deselect
them and then fi nish the wizard. Th e wizard will generate the basic
classes and resources you need for implementing the VSPackage.

Next, you need to add the following references, which provide access to
the Team Explorer base classes used to create the Team Explorer plug-in:

Microsoft.VisualStudio.TeamFoundation.Client.(9.0.0)
Microsoft.VisualStudio.TeamFoundation (9.0.0)
Microsoft.VisualStudio.Shell (2.0.0)

You also need to remove the default reference to Microsoft .
Visual Studio.Shell.9.0, since Microsoft built the Team Foundation
assemblies against the 2.0 version of the assemblies instead of the
9.0 version. In addition, as generated, the project assumes it can
use the regpkg.exe tool to register the package in the registry aft er
compile. However, regpkg.exe depends on the Shell.9.0 assembly.
To make the project build in Visual Studio 2008, you must change
the project’s .proj fi le. You need to unload the project fi le, and then
add the following properties to the fi le under the RegisterOutput-
Package property:

<!-- We are 2005 compatible, and don't rely on RegPkg.exe
of VS2008 which uses Microsoft.VisualStudio.Shell.9.0 -->
<UseVS2005MPF>true</UseVS2005MPF>
<!-- Don't try to run as a normal user (RANA),
create experimental hive in HKEY_LOCAL_MACHINE -->
<RegisterWithRanu>false</RegisterWithRanu>.

Th e Microsoft .VisualStudio.TeamFoundation.Client assem-
bly provides a Microsoft .TeamFoundation.Common namespace
that contains a base class called PluginHostPackage. Use this as
the base class for your package. It also contains a base class called
Basic AsyncPlugin that implements the required ITeamExplorer-
Plugin interface. You’ll need to delete the default implementation of
the generated Package class, then inherit from PluginHost Package
instead of the default Package class.

Because the class now inherits from PluginHostPackage, you
only need to override the method OnCreateService. Th is method
returns a new instance of a BasicAsyncPlugin derived class that
manages the actual plug-in implementation. You can see the im-

plementation of the HostPackage for the Subst Explorer in Figure
2. You’ll also need to register your Team Explorer plug-in by hand,
a task we’ll return to later in the article.

In Figure 2, there are two attributes that are of special interest for the
Team Explorer plug-in. ProvideService indicates this package provides
a service, and the ServiceType is SubstExplorer. PluginRegistration

Figure 1 The Subst Explorer Loaded in the Team
Explorer Window

...

[ProvideService(typeof(SubstExplorer))]
[PluginRegistration(Catalogs.TeamProject, "Subst explorer",
typeof(SubstExplorer))]
public sealed class SubstExplorerPackage: PluginHostPackage,
IVsInstalledProduct {
 private static SubstExplorerPackage _instance;
 public static SubstExplorerPackage Instance {
 get { return _instance; }
 }

 public SubstExplorerPackage () : base() {
 _instance = this;
 }

 protected override object OnCreateService(
 IServiceContainer container, Type serviceType) {

 if (serviceType == typeof(SubstExplorer)) {
 return new SubstExplorer();
 }
 throw new ArgumentException(serviceType.ToString());
 }
}

Figure 2 SubstExplorerPackage Implementation

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 65deVriesRandell.ExtendTeam.1209.v9_64-73.indd 65 11/12/09 10:05 AM11/12/09 10:05 AM

www.msdnmagazine.com

msdn magazine66 Team System

indicates that the package provides a Team Explorer plug-in and that
additional registration is required. Th is attribute derives from Regis-
trationAttribute and regpkg.exe normally processes it.

Nodes and Hierarchies
As you can see i n Figure 2, the implementation of OnCreateService
is straightforward. It returns a new instance of the SubstExplorer
class that provides the implementation of the BasicAsyncPlugin
class. Th e SubstExplorer class is responsible for managing a part
of the Team Explorer hierarchy. A hierarchy in Visual Studio is a
tree of nodes where each node has a set of associated properties.
Examples of other hierarchies in Visual Studio are the Solution
Explorer, the Server Explorer, and the Performance Explorer.

Th e SubstExplorer manages the plug-in hierarchy by overrid-
ing two methods called CreateNewTree and GetNewUIHierarchy.
In Figure 3, you can see the implementation of the SubstExplorer
class that derives from BasicAsyncPlugin.

Th e SubstExplorer class manages the creation of a set of hierar-
chy nodes. For the SubstExplorer package, these nodes represent
virtual folder locations that the plug-in can map as a drive. Each
node contains the properties needed to map a drive using the subst.
exe command. Th e package will track Name, Drive Letter, and Lo-
cation (in the version control repository).

Th e package creates the tree in two steps. First, it creates the
command handler class of all hierarchy nodes, better known as a
UIHierarchy. Th e GetNewUIHierarchy method initiates this step.
Second, the CreateNewTree method handles the creation of the
tree of nodes that represent virtual drive mappings.

GetNewUIHierarchy is called from the UI thread and returns an
instance of a class that derives from the base class BaseUIHierarchy.
You’ll fi nd the package’s implementation in the SubstExplorerUI-
Hierarchy class. SubstExplorerUIHierarchy needs to handle all the
Add, Delete, and Edit commands executed from any of the nodes
the package adds to Team Explorer. Th e ExecCommand method
class handles these commands. But fi rst you need to create the
menus and commands in Visual Studio.

In the SubstExplorer class, you override the CreateNewTree
method that is called from a non-UI thread and returns the tree of
nodes that represent all the drive substitutions confi gured for a team
project. Th e tree always starts with a root node, derived from the
RootNode class. For each defi nition, you’ll add a child node to the
root. Th e leaf node contains the properties you need to map a drive.

Commands and Properties
Now that you’ve seen the basic requirements to set up a Team Ex-
plorer plug-in, you need to add some functionality to it. Th e Sub-
stExplorerRoot class derives from the RootNode class found in the
Microsoft .TeamFoundation.Common assembly. Here you override
the Icons, PropertiesClassName, and ContexMenu properties.

Th e Icons property returns an ImageList that contains the icons
you want to use for displaying the nodes. In the constructor of the
RootNode, you need to set the ImageIndex so that it points to the
right image in the ImageList.

Th e PropertiesClassName returns a string that represents the name
that Visual Studio displays in the properties grid window when you
select a node. Any string you think is appropriate will suffi ce here.

[Guid("97CE787C-DE2D-4b5c-AF6D-79E254D83111")]
public class SubstExplorer : BasicAsyncPlugin {
 public SubstExplorer() :
 base(MSDNMagazine.TFSPlugins.SubstExplorerHostPackage.Instance) {}

 public override String Name
 { get { return "Subst drive mappings"; } }

 public override int DisplayPriority {
 get {
 // After team explorer build, but before any installed power tools
 // power tools start at 450
 return 400;
 }
 }

 public override IntPtr OpenFolderIconHandle
 { get { return IconHandle; }}

 public override IntPtr IconHandle
 { get { return new Bitmap(
 SubstConfigurationFile.GetCommandImages().Images[2]).GetHicon(); } }

 protected override BaseUIHierarchy GetNewUIHierarchy(
 IVsUIHierarchy parentHierarchy, uint itemId) {

 SubstExplorerUIHierarchy uiHierarchy =
 new SubstExplorerUIHierarchy(parentHierarchy, itemId, this);
 return uiHierarchy;
 }

 protected override BaseHierarchyNode CreateNewTree(
 BaseUIHierarchy hierarchy) {

 SubstExplorerRoot root =
 new SubstExplorerRoot(hierarchy.ProjectName +
 '/' + "SubstExplorerRoot");
 PopulateTree(root);
 // add the tree to the UIHierarchy so it can handle the commands
 if (hierarchy.HierarchyNode == null)
 { hierarchy.AddTreeToHierarchy(root, true); }
 return root;
 }

 public static void PopulateTree(BaseHierarchyNode teNode) {
 string projectName =
 teNode.CanonicalName.Substring(0,
 teNode.CanonicalName.IndexOf("/"));
 var substNodes =
 SubstConfigurationFile.GetMappingsForProject(projectName);
 if (substNodes != null) {
 foreach (var substNode in substNodes) {
 SubstExplorerLeaf leafNode =
 new SubstExplorerLeaf(substNode.name, substNode.drive,
 substNode.versionControlPath);
 teNode.AddChild(leafNode);
 }
 // (bug workaround) force refresh of icon that changed
 // during add, to force icon refresh
 if (teNode.IsExpanded) {
 teNode.Expand(false);
 teNode.Expand(true);
 }
 }
 }
}

Figure 3 SubstExplorer implementation

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 66 11/12/09 10:05 AM

Project3 11/10/09 2:27 PM Page 1

www.leadtools.com/msdn

msdn magazine68 Team System

Th e ContextMenu property returns a CommandID that repre-
sents the context menu you want to show. For the root node, you
need a Context Menu with one option, called Add. Figure 4 shows
the implementation of the SubstExplorerRoot.

Th e leaf node class SubstExplorerLeaf (see Figure 5) derives from
BaseHierarchyNode, and here you need to override the properties
ContextMenu, PropertiesClassName and PropertiesObject. Youl
also need to provide a custom implementation of DoDefaultAc-
tion. Visual Studio calls this method when you double-click a leaf
node. DoDefaultAction executes the code that performs the Subst
command. If you’ve previously executed the Subst command, it
removes the mapping.

Th e ContextMenu property represents the context menu you
want to show at the leaf node. Th e context menu exposes two com-
mands: Properties and Delete. In the class, the PropertiesClassName
has the same purpose as in the root node. You use the Properties-
Object property to get back an object that you can use to display
the properties of the selected node in the properties window. For
the leaf node, the properties exposed will be Name, DriveLetter,
and VersionControlPath.

You return a new instance of the type SubstExplorerProperties
(see Figure 6). You use this object to display the properties of the
leaf node. SubstExplorerProperties provides an implementation
of the ICustomTypeDescriptor interface that returns information
on which properties you want to show and how you want to show

p ublic class SubstExplorerLeaf : BaseHierarchyNode {
 private enum SubstIconId {
 unsubsted = 1,
 substed = 2
 }

 CommandID command =
 new CommandID(GuidList.guidPackageCmdSet,
 CommandList.mnuDelete);
 bool IsDriveSubsted { get; set; }

 public string VersionControlPath { get; set; }
 public string SubstDriveLetter { get; set; }

 public SubstExplorerLeaf(string path,
 string substDriveLetter, string versionControlPath)
 : base(path, path + " (" + substDriveLetter + ":)") {

 this.ImageIndex = (int)SubstIconId.unsubsted;
 this.NodePriority = (int)TeamExplorerNodePriority.Leaf;

 this.VersionControlPath = versionControlPath;
 this.SubstDriveLetter = substDriveLetter;
 this.IsDriveSubsted = false;
 }

 public override void DoDefaultAction() {
 if (!IsDriveSubsted) {
 SubstDrive();
 }
 else {
 UnsubstDrive(SubstDriveLetter);
 }
 }

 public override CommandID ContextMenu
 { get { return command; } }

 public override string PropertiesClassName
 { get { return "Subst Leaf Node"; }}

 public override ICustomTypeDescriptor PropertiesObject {
 get {

 return new SubstExplorerProperties(this);
 }
 }

 private void SubstDrive() {
 if (IsDriveAlreadySubsted(SubstDriveLetter)) {
 UnsubstDrive(SubstDriveLetter);
 }
 string substresponse =
 SubstHelper.Subst(SubstDriveLetter, GetLocalFolder());

 if (string.IsNullOrEmpty(substresponse)) {
 IsDriveSubsted = true;
 this.ImageIndex = (int)SubstIconId.substed;
 }
 else {
 MessageBox.Show(string.Format(
 "Unable to make subst mapping. Message:\n {0}",
 substresponse));
 }
 }

 private bool IsDriveAlreadySubsted(string driveLetter) {
 bool IsdrivePhysicalyMaped =
 SubstHelper.SubstedDrives().Where(
 d => d.Contains(driveLetter + ":\\")).Count() != 0;
 bool IsdriveKnownToBeMaped =
 (from substedNode in _substedNodes
 where substedNode.SubstDriveLetter == driveLetter
 select substedNode).ToArray<SubstExplorerLeaf>().Length > 0;
 return IsdriveKnownToBeMaped || IsdrivePhysicalyMaped;
 }

 public void UnsubstDrive(string substDriveLetter) {
 string substResponse = SubstHelper.DeleteSubst(substDriveLetter);
 IsDriveSubsted = false;
 this.ImageIndex = (int)SubstIconId.unsubsted;
 }

 public string localPath {
 get { return VersionControlPath; }
 }
}

Figure 5 SubstExplorerLeaf

p ublic class SubstExplorerRoot : RootNode {
 static private readonly CommandID command =
 new CommandID(GuidList.guidPackageCmdSet,
 CommandList.mnuAdd);

 public SubstExplorerRoot(string path) : base(path) {
 this.ImageIndex = 2;
 NodePriority = (int)TeamExplorerNodePriority.Folder;
 }

 public override System.Windows.Forms.ImageList Icons
 { get { return SubstConfigurationFile.GetCommandImages(); } }

 public override string PropertiesClassName {
 //Name of the node to show in the properties window
 get { return "Subst Explorer Root"; }
 }

 public override
 System.ComponentModel.Design.CommandID ContextMenu
 { get { return command; } }
}

Figure 4 SubstExplorerRoot

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 68 11/12/09 10:05 AM

DynamicPDF Viewer
O u r n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you
to display PDF documents within

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and
all common Office file formats) to PDF. Events can be

used to manage the action taken on a successful or failed
conversion. It is highly intuitive and flexible and

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter,
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download

Project1 10/30/09 1:28 PM Page 1

http://www.cete.com/download
www.cete.com

msdn magazine70 Team System

them. BaseHierarchyNode has a default properties object that shows
things like the URL, ServerName, and ProjectName, but that did
not seem useful for our leaf node.

Commands and Menus
If you examine the root and leaf node implementations, you see
that both need to display a context menu. Th e root node needs to
have an Add menu item. A leaf node needs Delete and Properties
menu items. Both node implementations return a CommandID
instance as the implementation of their respective ContextMenu
properties. In order for the CommandID class to function correct-
ly, you need to defi ne the menus and commands in the solution.

To add a menu and command to Visual Studio, you need to defi ne
the commands in a command table. You add command tables to the
assembly as an embedded resource. In addition, you need to register
the command table and the system registry during package registra-
tion. When you run devenv /setup, Visual Studio gathers all com-
mand resources from all registered packages and builds an internal
representation of all commands in the development environment.

Starting with Visual Studio 2005, you could defi ne command
tables in an XML fi le with the extension .vsct. In this fi le, you de-
fi ne the menus, the command groups, and the buttons you want
to show in the menu. A Visual Studio command is part of a com-
mand group. You place command groups on menus.

For the root node, you need an Add command, placed in a group
contained by a menu. Th e leaf node needs Delete and Properties
commands. You need to defi ne a second menu that contains a dif-
ferent group that contains these two commands. (See the download
accompanying this article for an example .vsct fi le.)

Th e .vsct fi le needs special treatment in the Visual Studio project.
You must compile it into a resource and then embed the resource

in the assembly. Aft er you install the Visual Studio SDK, you can
select a special build action for your command fi le called VSCT-
Compile. Th is action takes care of compiling and embedding the
resource in the assembly.

In the command table XML, some symbols are used in the defi ni-
tion of the menus and commands. You add all menus, commands,
and buttons to the same commandSet called GuidPackageCmdSet:

<Symbols>
 <!-- This is the package guid. -->
 <GuidSymbol name="GuidPackage" value=
"{9B024C14-2F6F-4e38-AA67-3791524A807E}"/>
 <GuidSymbol name="GuidPackageCmdSet" value=
"{D0C59149-AC1D-4257-A68E-789592381830}"/>
 <IDSymbol name="mnuAdd" value="0x1001" />
 <IDSymbol name="mnuDelete" value="0x1002" />

Everywhere you need to provide context menu information, you
refer back to this symbol as the container of the menu. Th us, in the
SubstExplorerRootNode and SubstExplorerLeafNode implemen-
tations, you create an instance of the CommandID type and use
GuidPackageCommandSet as the fi rst argument and the actual
menu you want to display as the second argument:

CommandID command = new CommandID(
 GuidList.guidPackageCmdSet,
 CommandList.mnuDelete);

In the .vsct fi le, there are three commands that the UIHierarchy
needs to respond to. Th e ExecCommand method is called when
you click one of the menu items. Th e method needs to select the
action to execute based on the nCmdId passed to it. Th e basic imple-
mentation of the SubstExplorerUIHierarchy is shown in Figure 7.

Add, Edit and Delete
Now you need to provide a way for the user to add, delete, or edit map-
pings on the root or leaf nodes. Th e code is in place to handle calls for
Add on the root node and for the Edit and Delete commands on the
leaf nodes. Adding a new mapping requires input from the user and

public class SubstExplorerProperties
 : ICustomTypeDescriptor, IVsProvideUserContext {

 private BaseHierarchyNode m_node = null;
 public SubstExplorerProperties(BaseHierarchyNode node)
 { m_node = node; }

 public string GetClassName()
 { return m_node.PropertiesClassName;}

 public string GetComponentName()
 { return m_node.Name; }
 public PropertyDescriptorCollection
 GetProperties(Attribute[] attributes) {

 // create for each of our properties the
 // appropriate PropertyDescriptor
 List<PropertyDescriptor> list = new List<PropertyDescriptor>();
 PropertyDescriptorCollection descriptors =
 TypeDescriptor.GetProperties(this, attributes, true);

 for (int i = 0; i < descriptors.Count; i++) {
 list.Add(new DesignPropertyDescriptor(descriptors[i]));
 }
 return new PropertyDescriptorCollection(list.ToArray());
 }

 public object GetPropertyOwner(PropertyDescriptor pd) {

 // return the object implementing the properties
 return this;
 }

 // rest of ICustomTypeDescriptor methods are not
 // shown since they are returning defaults
 // actual properties start here
 [Category("Drive mapping")]
 [Description("...")]
 [DisplayName("Version Control Path")]
 public string VersionControlPath
 { get { return ((SubstExplorerLeaf)m_node).VersionControlPath; } }

 [Category("Drive mapping")]
 [Description("...")]
 [DisplayName("Subst drive letter")]
 public SubstDriveEnum SubstDriveLetter {
 get { return
 (SubstDriveEnum)Enum.Parse(typeof(SubstDriveEnum),
 ((SubstExplorerLeaf)m_node).SubstDriveLetter); }
 }

 [Category("Drive mapping")]
 [Description("...")]
 [DisplayName("Mapping name")]
 public string MappingName
 { get { return ((SubstExplorerLeaf)m_node).Name; } }
}

Figure 6 SubstExplorerProperties

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 70 11/12/09 10:05 AM

71December 2009msdnmagazine.com

you need to store the mapping data in a well-known location. Th is lo-
cation is preferably in the user’s roaming profi le. So let's take a closer
look on how you can respond to the Add command.

Th e AddNewDefi nition method in the SubstExplorerUIHierar-
chy class handles the Add command. AddNewDefi nition shows a
dialog allowing users to specify the mapping they want to create.
A mapping needs to have a name and a drive letter for the Subst
command. In addition, the mapping needs to point to a path in the
version control repository. You want to allow the user to pick the
location from version control rather than having to enter a com-
plex path manually. You can enable this by using the TFS object
model, specifi cally the GetServer method from the TeamFounda-
tionServerFactory class. GetServer accepts a URL representing the
server you want to use and a credentialsProvider in case the user
is not in the same domain as the server and the server connec-
tion requires new authentication. Aft er you have access to a valid
TeamFoundationServer instance, you have access to the various
services provided by TFS.

You need the VersionControlServer service to get information
about the folder structure inside the current team project. In Bri-
an’s January 2007 Team System column (msdn.microsoft .com/
magazine/cc163498), he showed how you could use this service
to create your own version control folder browser dialog. We’ve
reused the dialog described in that article here (see Figure 8). Th e
dialog returns the folder selected by the user in the Version Con-
trol repository as shown in Figure 9. You store the path returned
in a confi guration fi le.

When the user clicks OK, you can add a new node to the con-
figuration file and a new child node to the hierarchy. You add

a new node by calling the AddChild method on the Hierarchy-

Node instance.

Executing the Default Command
Th e SubstExplorerUIHierarchy class is responsible for handling all
commands fi red by the menu options off ered by the plug-in. One
of the other commands you need to handle is when a user dou-
ble-clicks on a node. Th e DoDefaultAction method processes this
event. For the root node, the default action of either collapsing or
expanding the nodes in the hierarchy is acceptable. However, for
leaf nodes, you’ll provide a custom implementation.

You want to substitute the drive based on the properties set for
that node. To subst a drive, you can issue a command-line action
and provide the required parameters. For that purpose, we cre-
ated a SubstHelperClass that calls into the System.Diagnostics
namespace to create a new process called subst.exe and provide it
with the required parameters. Th e parameters needed are the drive
letter and the local folder you want to map as the drive. You have
the drive letter available. However, you need to map the version
control path to local folder. Once again, you’ll use the TFS object
model and get a reference to the VersionControlServer object. You
can query this object for all available workspaces and try to get a
mapping to a local folder based on the version control path you
have. Figure 10 provides an implementation.

p ublic class SubstExplorerUIHierarchy : BaseUIHierarchy,
 IVsHierarchyDeleteHandler, IVsHierarchyDeleteHandler2 {

 public SubstExplorerUIHierarchy(IVsUIHierarchy parentHierarchy,
 uint itemId, BasicAsyncPlugin plugin)
 : base(parentHierarchy, itemId, plugin,
 MSDNMagazine.TFSPlugins.SubstExplorerHostPackage.Instance) {
 }

 public override int ExecCommand(uint itemId,
 ref Guid guidCmdGroup, uint nCmdId,
 uint nCmdExecOpt, IntPtr pvain, IntPtr p) {

 if (guidCmdGroup == GuidList.guidPackageCmdSet) {
 switch (nCmdId) {
 case (uint)CommandList.cmdAdd:
 AddNewDefinition(this.ProjectName);
 return VSConstants.S_OK;
 case (uint)CommandList.cmdDelete:
 RemoveDefinition(itemId);
 return VSConstants.S_OK;
 case (uint)CommandList.cmdEdit:
 EditDefinition(itemId);
 return VSConstants.S_OK;
 default: return VSConstants.E_FAIL;
 }
 }

 return base.ExecCommand(itemId, ref guidCmdGroup, nCmdId,
nCmdExecOpt, pvain, p);
 }
 ...
}

Figure 7 SubstExplorerUIHierarchy

Fi gure 8 Adding a New Mapping Defi nition

Figure 9 Choosing a Location in Version Control

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 71deVriesRandell.ExtendTeam.1209.v9_64-73.indd 71 11/12/09 10:05 AM11/12/09 10:05 AM

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/cc163498

msdn magazine72 msdn magazine72 Team System

Finishing Touches
Now you have all the logic in place to show a tree of nodes and han-
dle drive mapping. However, you want your Team Explorer plug-
in to stand out. You might want to add some additional features in
terms of delete node handling and other professional touches, such
as adding an icon in the splash screen of Visual Studio.

Adding the delete functionality requires you to implement an addi-
tional interface in the SubstExplorerUIHierarchy class. Visual Studio
has a specifi c interface called IVsHierarchyDeleteHandler that you
implement to show a default dialog when you press the delete key. For
this plug-in, you’ll want to provide a custom dialog asking the user to
confi rm the deletion of the node that is selected. To make that work,
you also need to implement the IVsHierarchyDeleteHandler2 interface
for delete handling to work from the keyboard. Since you’ve already
implemented the actual delete functionality, you need only to imple-
ment this interface and call the existing functions. In Figure 11 you
can see the implementation of the interfaces.

It’s important to note that the plug-in does not support multiple
selected nodes being deleted at once, hence pfCancelOperation is
set to true in the ShowMultiSelDeleteOrRemoveMessage method.
In the ShowSpecifi cDeleteRemoveMessage method implementa-
tion, you need to return the correct value of what you want to de-
lete. You return a value of 1 to indicate you have removed it from
storage. Th ese fl ags are normally used in the Visual Studio project
system and only a value of 1 produces the correct results.

You might also want to add support for splash screen integration.
By default, each time you start Visual Studio, you’ll see a splash screen
listing the products registered. You accomplish this by implementing
the IVsInstalledProduct interface in the SubstExplorerHostPackage
implementation class. Th e methods there require you register the re-
source IDs for the icon to use in the splash screen and the icon to use
in the About box.

Th e implementation is nothing more than setting the out param-
eter to the correct integer value and embedding a 32x32 pixel icon as a

resource in the assembly. In order to embed the resource correctly in
your assembly, you need to open up the resources.resx fi le in the XML
editor and add the following lines to the resource fi le:

<data name="500"
 type="System.Resources.ResXFileRef, System.Windows.Forms">
 <value>..\Resources\SplashIcon.bmp;System.Drawing.Bitmap,
 System.Drawing, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a</value>
</data>

Th is adds the resource bitmap located in the Resources folder in
the project to the resource and embeds it at the reference 500. In the
method IdBmpSplash, you can now set pIdBmp to 500 and return the
S_OK constant as a return value. To get the icon in the splash screen,
you need to build the assembly and then run devenv /setup from the
command line. Th is will get the information from the package you’ve
created and it will cache the data. Th is ensures the package does not
need to be loaded when Visual Studio shows the splash screen. You do
this for the same reasons you needed to do so for the menu options you
added: to speed up the load time of Visual Studio.

pri vate string GetLocalFolder() {
 VersionControlServer vcs =
 (VersionControlServer)((
 SubstExplorerUIHierarchy)ParentHierarchy).
 tfs.GetService(typeof(VersionControlServer));
 Workspace[] workspaces =
 vcs.QueryWorkspaces(null, vcs.AuthenticatedUser,
 Environment.MachineName);
 foreach (Workspace ws in workspaces) {
 WorkingFolder wf =
 ws.TryGetWorkingFolderForServerItem(VersionControlPath);
 if (wf != null) {
 // We found a workspace that contains this versioncontrolled item
 // get the local location to map the drive to this location....
 return wf.LocalItem;
 }
 }
 return null;
}

Figure 10 Mapping a Version Control Path to a Location on Disk

#region IVsHierarchyDeleteHandler2 Members

public int ShowMultiSelDeleteOrRemoveMessage(
 uint dwDelItemOp, uint cDelItems,
 uint[] rgDelItems, out int pfCancelOperation) {

 pfCancelOperation = Convert.ToInt32(true);
 return VSConstants.S_OK;
}

public int ShowSpecificDeleteRemoveMessage(
 uint dwDelItemOps, uint cDelItems, uint[] rgDelItems,
 out int pfShowStandardMessage, out uint pdwDelItemOp) {

 SubstExplorerLeaf nodeToDelete =
 NodeFromItemId(rgDelItems[0]) as SubstExplorerLeaf;
 if (AreYouSureToDelete(nodeToDelete.Name)) {
 pdwDelItemOp = 1; // == DELITEMOP_DeleteFromStorage;
 // DELITEMOP_RemoveFromProject==2;
 }
 else {
 pdwDelItemOp = 0; // NO delete, user selected NO option }

 pfShowStandardMessage = Convert.ToInt32(false);
 return VSConstants.S_OK;

}

#endregion
#region IVsHierarchyDeleteHandler Members

public int DeleteItem(uint dwDelItemOp, uint itemid) {
 SubstExplorerLeaf nodeToDelete =
 NodeFromItemId(itemid) as SubstExplorerLeaf;
 if (nodeToDelete != null) {
 // remove from storage
 RemoveDefinitionFromFile(nodeToDelete);
 // remove from UI
 nodeToDelete.Remove();
 }
 return VSConstants.S_OK;
}

public int QueryDeleteItem(uint dwDelItemOp, uint itemid,
 out int pfCanDelete) {

 pfCanDelete = Convert.ToInt32(NodeFromItemId(itemid) is
SubstExplorerLeaf);
 return VSConstants.S_OK;
}
#endregion

Figure 11 IVsHierarchyDelete Handler implementation

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 72 11/12/09 10:05 AM

73December 2009msdnmagazine.com

Package Registration
Now that you’ve fi nished the Team Explorer extension, it's time
to package the product and get it running on other developer’s
systems. So, how can you distribute the results?

First, Visual Studio behaves diff erently when you’ve installed the
SDK. By default it will accept or load any VSPackage. Th is will not
be the case on machines where you haven’t installed the SDK.

For a package to load correctly, you need to embed a package load
key, which you obtain from Microsoft (see msdn.microsoft.com/vsx/cc655795).
Th e most important part of this process is to ensure that you provide
the exact same information when registering for your key as the infor-
mation you provided in the attributes for the hostPackage class (in this
case the SubstExplorerHostPackage class). Also, when the Web site asks
you to enter the package name, you must provide the product name
you used in the ProvideLoadKey attribute.

Once you get your load key, you can paste it into the resource
file with the resource identifier you provided as last argument of
the ProvideLoadKey attribute. Make sure you remove the carriage
return/line feeds from the string when you copy it from the site so
it is one consecutive string before you paste it in the resource file.

Now you can test if your plug-in works by specifying an additional
debug parameter: /NoVsip. Th is parameter ensures that Visual Studio
uses the normal loading behavior. If the key is not accepted, Visual
Studio will display a load failure dialog. With the SDK installed, you’ll
fi nd under the Visual Studio Tools menu the Package Load Analyzer.
You can point this at your assembly to help debug what is wrong. If it
is only the package load key, then ensure you have typed exactly the
same parameters at the Web site as in your attribute.

Th e last step that remains is the package registration for a produc-
tion machine. Unfortunately, because the Team System assemblies use
a diff erent version of the shell assemblies, you cannot use regpkg.exe to
register your package. Instead, you need to do it by hand using a regis-
try fi le. In this fi le, you need to publish the package in the correct reg-
istry location. Th e registration script required is shown in Figure 12.

In the registration script, you’ll see a number of entries. Th e fi rst
entry registers a new Team Explorer extension that Team Explorer
should load as soon as it loads. Here you provide a registry value that
refers to the service ID that provides an implementation of ITeam-
ExplorerPlugin. Th e next entry provides the service registration where
you see the previously referred-to service ID, as well as a registry value
that points to the package that provides the plug-in.

Th e next entry is the package registration itself. Th ere you use the pack-
age ID as a new key and provide the information where the assembly can

be found, how it can be loaded using the COM infrastructure, and what
Visual Studio version the package supports. Th e last two entries are the
registration of the installed products, used for the splash screen. Here the
UseInterface key indicates Visual Studio must call the IVsInstalledProduct
interface instead of relying on the InstalledProductRegistration
attribute to provide an icon and product description that needs to be
shown at startup.

Th e last entry is the registration of the context menus. Here you
refer back to your package, but you also provide information about
where you’ve embedded the resources in the assembly. Th ese are the
embedded resources you created before using the .vsct fi les and the
custom build action on that fi le. With this script and the assembly
you’ve built, you can deploy it on other machines. Just place the as-
sembly on the fi le system, tweak the registry script to refl ect the correct
assembly location, and merge it into the registry. Th en, the fi nal step is
to run devenv /setup on that machine. When you start Visual Studio,
you will see the icon in the splash screen and when you load the Team
Explorer, you will see the root node of the plug-in you’ve created.

BRIAN A. RANDELL is a senior consultant with MCW Technologies LLC. Brian
spends his time speaking, teaching, and writing about Microsoft technologies. He
is the author of Pluralsight's Applied Team System course and is a Microsoft MVP.
You can contact Brian via his blog at mcwtech.com/cs/blogs/brianr.

MARCEL DE VRIES is an IT architect at Info Support in the Netherlands, where he
creates solutions for large bank and insurance companies across the country and
teaches the Team System and Windows Workfl ow courses. Marcel is a frequent
speaker at developer conferences in Europe, a Team System MVP since 2006, and
a Microsoft regional director since January 2009.

THANKS to the following technical experts for reviewing this article:
Dennis Habib and Buck Hodges

REG EDIT4
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\9.0\
TeamSystemPlugins\Team Explorer Project Plugins\SubstExplorer]
@="97CE787C-DE2D-4b5c-AF6D-79E254D83111"
"Enabled"=dword:00000001

[HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\9.0\Services\
{97ce787c-de2d-4b5c-af6d-79e254d83111}]
@="{9b024c14-2f6f-4e38-aa67-3791524a807e}"
"Name"="SubstExplorer"

[HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\9.0\Packages\
{9b024c14-2f6f-4e38-aa67-3791524a807e}]
@="MSDNMagazine.TFSPlugins.SubstExplorerHostPackage, TFSSubstExplorer,
Version=1.0.0.0, Culture=neutral, PublicKeyToken=324c86b3b5813447"
"InprocServer32"="C:\\Windows\\system32\\mscoree.dll"
"Class"="MSDNMagazine.TFSPlugins.SubstExplorerHostPackage"
"CodeBase"="c:\\program files\\msdnsamples\\TFSSubstExplorer.dll"
"ID"=dword:00000065
"MinEdition"="Professional"
"ProductVersion"="1.0"
"ProductName"="SubstExplorer"
"CompanyName"="vriesmarcel@hotmail.com"

[HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\9.0\
InstalledProducts\SubstExplorerHostPackage]
"Package"="{9b024c14-2f6f-4e38-aa67-3791524a807e}"
"UseInterface"=dword:00000001

[HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\9.0\Menus]
"{9b024c14-2f6f-4e38-aa67-3791524a807e}"=", 1000, 1"

Figure 12 Package Registration Script

For a package to load
correctly, you need to embed
a package load key, which is
obtained from Microsoft.

deVriesRandell.ExtendTeam.1209.v9_64-73.indd 73 11/12/09 10:05 AM

www.msdnmagazine.com
http://msdn.microsoft.com/vsx/cc655795
http://mcwtech.com/cs/blogs/brianr

EXTREME ASP.NET

Looking Ahead to ASP.NET 4.0

K. SCOTT ALLEN

When Visual Studio 2010 and .NET 4.0 arrive next year, we ASP.
NET developers will have two mature frameworks for building Web
applications: the ASP.NET Web Forms framework and the ASP.NET
MVC framework. Both build on top of the core ASP.NET runtime,
and both are getting some new features to start the next decade.

I don’t have the space to cover every addition to ASP.NET in one
article, as there are numerous improvements to both frameworks
and the underlying runtime. Instead, I’ll highlight what I think are
the important new features for Web Forms and MVC.

New For ASP.NET Web Forms
ASP.NET Web Forms will be over eight years old by the time Microsoft
releases Version 4, and the team continues to refi ne the framework and
make improvements. In my last column, I touched on a few of these
improvements, like the new classes that make it easy to use the URL
routing features now included in the core services of ASP.NET, and the
new MetaKeywords and MetaDescription properties on the Page base
class that make it simple to control the content of metatags on a form.
Th ese changes are relatively minor, however.

Th e key changes in Web Forms address some of the chief criti-
cisms about the framework. Many developers have wanted more
control over the HTML a Web form and its controls produce, in-
cluding the client-side identifi ers emitted inside the HTML. In 4.0,
many of ASP.NET’s server-side controls were reworked to produce
HTML that is easier to style with CSS and conforms to conven-
tional Web practices. Also, new properties have been added to base
classes that will give developers more control over the client-side
identifi ers generated by the framework. I’ll highlight these changes
in the following sections.

CSS-Friendly HTML
One example of a server control that is notoriously diffi cult to style
with CSS is the ASP.NET menu control. When the menu renders,
it emits nested table tags that include cellpadding, cellspacing and
border attributes. To make matters worse, the menu control em-
beds style information inside the cells of the nested tables and

injects an in-line style block at the top of the page. As an example,
look at the following defi nition of a simple menu:

<asp:Menu runat="server" ID="_menu">
 <Items>
 <asp:MenuItem Text="Home" NavigateUrl="~/Default.aspx" />
 <asp:MenuItem Text="Shop" NavigateUrl="~/Shop.aspx" />
 </Items>
</asp:Menu>

In ASP.NET 3.5, the simple menu produces the following HTML
(with some attributes omitted or shortened for clarity):

<table class="..." cellpadding="0" cellspacing="0" border="0">
 <tr id="_menun0">
 <td>
 <table cellpadding="0" cellspacing="0"
 border="0" width="100%">
 <tr>
 <td style="...">
 Home
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

In ASP.NET 4.0, Microsoft revised the menu control to produce
semantic markup. Th e same menu control in ASP.NET 4.0 will pro-
duce the following HTML:

<div id="_menu">
 <ul class="level1">
 Home

</div>

Th is type of CSS-friendly markup was achievable in previous
versions of ASP.NET if you used a control adapter to provide al-
ternate rendering logic for a control, but now the markup is CSS-
friendly by default. If you already have style sheets and client script
written against the HTML produced by ASP.NET 3.5, you can set
the controlRenderingCompatibilityVersion attribute of the pages
section in web.confi g to the value “3.5”, and the control will pro-
duce the nested table markup we saw earlier. Th e default value for
this attribute is 4.0. Note that the 4.0 menu control still produces
a style block at the top of the page, but you turn this off by setting
the IncludeStyleBlock property of the control to false.

Many other controls in 4.0 are CSS-friendly as well. For ex-
ample, validation controls like the RangeValidator and Required-
FieldValidator will no longer render inline styles, and template
controls like the FormView, Login, and Wizard control will no
longer render themselves inside of a table tag (but only if you set
the RenderOuterTable property on these controls to false). Other

msdn magazine74

This article is based on a prerelease version of ASP.NET 4.0. Details are subject
to change.

Send your questions and comments to xtrmasp@microsoft.com.

mailto:xtrmasp@microsoft.com

controls have changed, too. As just one example, you can force the
RadioButtonList and CheckBoxList controls to render their inputs
inside of list elements by setting the RepeatLayout property to the
value OrderedList or UnorderedList, which forces the controls to
render using ol and li elements, respectively.

Generating Client IDs
If you have ever written client-side script to manipulate the DOM, then
you are probably aware of ASP.NET’s affi nity for changing client-side
ID attributes. In an eff ort to ensure that all ID attributes are unique
on a page, ASP.NET will generate a client ID by concatenating a con-
trol’s ID property with additional information. On the server, you can
access the generated value using the ClientID property of a control.

As an example, if a control is inside a naming container (a control
that implements the INamingContainer interface, as user controls
and master pages do), then ASP.NET produces the ClientID value
by prefi xing the naming container’s ID to the control’s ID. For data-
bound controls that render repeating blocks of HTML, ASP.NET will
add a prefi x that includes sequential numbers. If you view the source
of any ASP.NET page, you’ll probably encounter id values like “ctl00_
content_ctl20_ctl00_loginlink”. Th ese generated values add an extra
level of diffi culty when writing client script for a Web Forms page.

In Web Forms 4.0, a new ClientIDMode property is on every
control. You can use this property to infl uence the algorithm ASP.
NET will use for generating the control’s ClientID value. Setting the
value to Static tells ASP.NET to use the control’s ID as its ClientID,
with no concatenation or prefi xing. For example, the CheckBox-
List in the following code will generate an tag with a client
id of “checklist”, regardless of where the control exists on the page:

<asp:CheckBoxList runat="server" RepeatLayout="OrderedList"
 ID="checklist" ClientIDMode="Static">
 <asp:ListItem>Candy</asp:ListItem>
 <asp:ListItem>Flowers</asp:ListItem>
</asp:CheckBoxList>

When using a ClientIDMode of Static, you’ll need to ensure the
client identifi ers are unique. If duplicated id values exist on a page,
you’ll eff ectively break any scripts that are searching for DOM ele-
ments by their ID value.

Th ere are three additional values available for the ClientIDMode
property. Th e value Predictable is useful for controls implement-
ing IDataBoundListControl, like the GridView and ListView. Use
the Predictable value in conjuˆnction with the ClientIDRowSuffi x
property of these controls to generate client IDs with specifi c values
suffi xed to the end of the ID. For example, the following ListView
will bind to a list of Employee objects. Each object has EmployeeID
and IsSalaried properties. Th e combination of the ClientIDMode
and ClientIDRowSuffi x properties tell the CheckBox to generate
a client ID like employeeList_IsSalaried_10, where 10 represents
the associated employee’s ID.

 <asp:ListView runat="server" ID="employeeList"
 ClientIDMode="Predictable"
 ClientIDRowSuffix="EmployeeID">
 <ItemTemplate>
 <asp:CheckBox runat="server" ID="IsSalaried"
 Checked=<%# Eval("IsSalaried") %> />
 </ItemTemplate>
 </asp:ListView>

Another possible value for ClientIDMode is Inherit. All controls
on a page use a ClientIDMode of Inherit by default. Inherit means
the control will use the same ClientIDMode as its parent. In the pre-
vious code sample, the CheckBox inherits its ClientIDMode value
from the ListView, which holds the value Predictable. Th e fi nal pos-
sible value for ClientIDMode is AutoID. AutoID tells ASP.NET to
use the same algorithm for generating the ClientID property as it
does in Version 3.5. Th e default value for a page’s ClientIDMode
property is AutoID. Since all controls on a page default to using a
ClientIDMode of Inherit, moving an existing ASP.NET applica-
tion to 4.0 will not change the algorithm the runtime uses to gen-
erate client ID values until you make a change to a ClientIDMode
property. Th is property can also be set in the pages section of web.
confi g to provide a diff erent default for all pages in an application.

New Project Template
Th e Web application and Web site project templates in Visual Stu-
dio 2008 provide a Default.aspx page, a web.confi g fi le and an App_
Data folder. Th ese starting templates are simple and require some
additional work before you can get started on a real application.
Th e same templates in Visual Studio 2010 provide more of the in-
frastructure you need to build an application using contemporary
practices. A screen capture of a brand new application produced
by these templates is shown in Figure 1.

Notice how the new application includes a master page by default
(Site.master). All of the .aspx fi les you fi nd inside the new project
will be content pages using ContentPlaceholder controls to plug
content into the structure defi ned by the master page. Notice the
new project also includes a style sheet in the Content directory (Site.

75December 2009msdnmagazine.com

Figure 1 New Web Application in Visual Studio 2010

www.msdnmagazine.com

msdn magazine76 Extreme ASP.NET

css). The master page includes this style sheet using a link tag,
and inside the style sheet you’ll fi nd a number of styles defi ned to
control the appearance of the page body, headings, primary layout
and more. Th e new project also includes a Scripts directory with
the latest version of the jQuery library, an open source JavaScript
framework offi cially supported by Microsoft and included with
Visual Studio 2010 as part of the install.

Th e new project template, with its use of mas-
ter pages and style sheets, will help developers
get started in the right direction when using
Web Forms. A running version of the new ap-
plication is shown in Figure 2. Visual Studio
2010 will also include “Empty” templates for
both Web sites and Web applications. Th ese
empty templates will not include fi les or direc-
tories when you use them, so you’ll be starting
your application from scratch.

Another bit of good news about new projects
in ASP.NET 4.0 is that the web.confi g fi le starts
off nearly empty. Most of the confi guration we
became accustomed to seeing in ASP.NET 3.5
web.confi g fi les is now in the machine.confi g fi le
that lives underneath the 4.0 framework’s instal-
lation directory. Th is includes the confi guration
of controls from the System.Web.Extensions
directory, the HTTP handlers and modules confi gured to support
JavaScript proxies for Web services, and the system.webserver sec-
tion for Web sites running under IIS 7.

New for ASP.NET MVC
Visual Studio 2010 should bring us the second re-
lease of the ASP.NET MVC framework. While still
young, the framework has attracted many Web developers who
wanted a framework designed for testability. Th e second release of
ASP.NET MVC is going to focus on better developer productivity and
adding the infrastructure to handle large, enterprise-scale projects.

Areas
One approach to building an extremely large ASP.NET Web
Forms application is to break apart the application into multiple
sub-projects (an approach promoted by the P&P Web Client Com-
posite Library). Th is approach is diffi cult to undertake with ASP.
NET MVC 1.0 because it works against a number of the MVC con-
ventions. MVC 2.0 will offi cially support this scenario using the
concept of an area. An area allows you to partition an MVC appli-
cation across Web application projects, or across directories inside
of a single project. Areas help to separate logically diff erent pieces
of the same application for better maintainability.

Th e parent area of an MVC Web application is an MVC project that
will include a global.asax and root level web.confi g fi le for the applica-
tion. Th e parent area can also include common pieces of content, like
application-wide style sheets, JavaScript libraries, and master pages.
Child areas are also MVC Web application projects, but since these

projects physically exist underneath the parent area project at run-
time, the parent and its children will appear as a single application.

As an example, imagine a large inventory application. In addi-
tion to the parent area, the inventory application might be broken
into ordering, distributing, reporting and administrative areas.
Each area can live in a separate MVC web project, and each proj-

ect will need to register its routes by including a class that derives
from the abstract base class AreaRegistration. In the code that fol-
lows, we override the AreaName property to return the friendly
name of the reporting area, and override the RegisterArea method
to defi ne the routes available in the reporting area:

public class ReportingAreaRegistration : AreaRegistration
{
 public override string AreaName
 {
 get { return "Reporting"; }
 }

 public override void RegisterArea(AreaRegistrationContext context)
 {
 context.MapRoute(
 // route name
 "ReportingDefault",
 // url pattern
 "reporting/{controller}/{action}",
 // route defaults
 new { controller = "Home", action = "Index" },
 // namespaces
 new string[] { "Reporting.Controllers" });
 }
}

Notice that we include a string array of namespaces to search
when locating the controller for the reporting area. Constraining
the namespaces to search allows diff erent areas to have controllers
with the same name (multiple HomeController classes can exist in
the application, for example).

DataAnnotations for Easy Validation
Th e DefaultModelBinder in ASP.NET MVC is responsible for
moving data from the request environment into model proper-

Figure 2 Running the new ASP.NET Application

Project3 10/29/09 9:20 AM Page 1

www.aspose.com

msdn magazine78 Extreme ASP.NET

ties. For example, when the model binder sees a model object
with a property named Title, it will look through the form, que-
ry string and server variables to find a variable with a matching
name (Title). However, the model binder doesn’t perform any
validation checks beyond simple type conversions. If you want
the Title property of your model object to contain only strings
with 50 characters or less, you have to perform this validation
check during the execution of your controller action, implement
a custom model binder or implement the IDataErrorInfo inter-
face on your model.

In ASP.NET MVC 2.0, the DefaultModelBinder will look at
DataAnnotation attributes on model objects. These DataAnno-
tation attributes allow you to provide validation constraints on
your model. As an example, consider the following Movie class:

public class Movie
{
 [Required(ErrorMessage="The movie must have a title.")]
 [StringLength(50, ErrorMessage="The movie title is too long.")]
 public string Title { get; set; }
}

Th e attributes on the Title property tell the model binder that
the Title is a required fi eld, and the maximum length of the string
is 50 characters. Th e MVC framework can automatically display
the ErrorMessage text in the browser when validation fails. Addi-
tional built-in validation attributes include an attribute to check a
range and an attribute to match a regular expression.

At the time of this writing, the MVC runtime uses only the vali-
dation attributes for server-side validation checks. Th e MVC team
expects to generate client-side validation logic from the validation
attributes by the time it releases MVC 2.0. Driving both the server-
and client-side validation using these attributes will be a boon for
the maintainability of an application.

Templated Helpers
Templated helpers in ASP.NET MVC 2.0 also consume DataAn-
notation attributes. But instead of using the attributes to drive
validation logic, template helpers use the attributes to drive the
UI display of a model. Th e template helpers begin with the new
HTML helper methods DisplayFor and EditorFor. Th ese helper
methods will locate the templates for a given model based on the
model’s type. For example, let’s use the Movie class we looked at
before, but with an additional property:

public class Movie
{
 // ...

 [DataType(DataType.Date)]
 public DateTime ReleaseDate { get; set; }
}

In this scenario, every movie carries its release date, but no one
ever cares what time of day a movie is released. We only want to
display the date information when displaying this property, and
not the time information. Notice the property is decorated with a
DataType attribute that advertises our intention.

To properly display the release date, we need a display template.
A display template is just a partial view with an .ascx extension that
lives inside a DisplayTemplates folder. Th e DisplayTemplates folder

itself can live underneath a controller’s view folder (in which case
the template applies only to the views for that one controller), or
in the shared views folder (in which case the template is available
everywhere). In this case, the template needs the name Date.ascx
and looks like the following:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<%= Html.Encode(String.Format("{0:d}", Model)) %>

In order for the MVC framework to use this template, we need
to use the DisplayFor helper method when rendering the Release-
Date property. Th e code shown in Figure 3 is from another tem-
plate, the Movie.ascx display template.

Notice how the LabelFor and DisplayFor helper methods are
strongly typed, which can help you propagate changes if a model
is refactored. To use the Movie.ascx template to display a movie
anywhere in an application, we just need to use the DisplayFor
helper again. Th e following code is from a view that is strongly
typed against the Movie class:

<asp:Content ID="detailContent"
 ContentPlaceHolderID="MainContent"
 runat="server">
 Movie:
 <%= Html.DisplayFor(m => m) %>

 </p>
</asp:Content>

The DisplayFor method is strongly typed to use the same model
as the view page, so the m parameter in the DisplayFor lambda
expression is of type Movie. DisplayFor will automatically use
the Movie.ascx template when displaying the movie (which in
turn uses a DisplayFor to find the Date.ascx template). If we did
not use the DataType attribute on the ReleaseDate property of
a movie, DisplayFor would not use the Date.ascx template and
would display the date and the time portions of the ReleaseDate,
but the DataType attribute helps guide the framework to the
correct template. This concept of strongly typed, nested tem-
plates and data type annotations is powerful and will prove to
be a productivity boost.

K. SCOTT ALLEN is a member of the Pluralsight technical staff and founder of
OdeToCode. You can reach Scott at scott@OdeToCode.com or read his blog at
odetocode.com/blogs/scott.

THANKS to the following technical experts for reviewing this article:
Phil Haack and Matthew Osborn

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<Movie>" %>

 <fieldset>
 <legend>Fields</legend>
 <p>
 Title:
 <%= Html.LabelFor(m => m.Title) %>
 <%= Html.DisplayFor(m => m.Title) %>
 </p>
 <p>
 <%= Html.LabelFor(m => m.ReleaseDate) %>
 <%= Html.DisplayFor(m => m.ReleaseDate) %>
 </p>
 </fieldset>

Figure 3 Movie.ascx Display Template

mailto:scott@OdeToCode.com
http://odetocode.com/blogs/scott

79December 2009

top Window Manager (DWM) will automatically blend the window
appropriately. On the fl ip side, you need to draw absolutely everything
yourself. Of course, if you’re using a brand-new rendering technology
such as Direct2D, that’s not a problem!

So what’s involved? Well, at a fundamental level it is straightfor-
ward. First, you need to fill in an UPDATELAYEREDWINDOW-
INFO structure. This structure provides the position and size of a
layered window as well as a GDI device context (DC) that defines
the surface of the window—and therein lies the problem. DCs
belong to the old world of GDI and are far from the world of
DirectX and hardware acceleration. More on that in a moment.

Besides being full of pointers to structures that you need to
allocate yourself, the UPDATELAYEREDWINDOWINFO
structure isn’t fully documented in the Windows SDK, making it
less than obvious to use. In all, you need to allocate fi ve structures.
Th ere’s the source position identifying the location of the bitmap
to copy from the DC. Th ere’s the window position identifying
where the window will be positioned on the desktop once

WINDOWS WITH C++

Layered Windows with Direct2D

In my third installment on Direct2D, I’m going to show off some
of its unmatched power when it comes to interoperability. Instead
of exhaustively detailing all the various interoperability options
that Direct2D provides, I’m going to walk you through a practical
application: layered windows. Layered windows are one of those
Windows features that have been around for a long time but haven’t
evolved much and thus require special care to use eff ectively with
modern graphics technologies.

In this article I’m going to assume you have a basic familiarity
with Direct2D programming. If not, I recommend you read my
previous articles from the June (msdn.microsoft.com/magazine/dd861344)
and September (msdn.microsoft.com/magazine/ee413543) issues that
introduced the fundamentals of programming and drawing
with Direct2D.

Originally, layered windows served a few diff erent purposes.
In particular, they could be used to easily and effi ciently produce
visual eff ects and fl icker-free rendering. In the days when GDI was
the predominant method for producing graphics, this was a real
bonus. In today’s hardware-accelerated world, however, it is no
longer compelling because layered windows still belong to the world
of User32/GDI and have not been updated in any signifi cant way
to support DirectX, the Microsoft platform for high-performance
and high-quality graphics.

Layered windows do provide the unique ability to compose a
window on the desktop using per-pixel alpha blending, which
cannot be achieved in any other way with the Windows SDK.

I should mention that there are really two types of layered
window. Th e distinction comes down to whether you need per-pixel
opacity control or you just need to control the opacity of the
window as a whole. Th is article is about the former, but if you
really just need to control the opacity of a window, you can do so
by simply calling the SetLayeredWindowAttributes function aft er
creating the window to set the alpha value.

Verify(SetLayeredWindowAttributes(
 windowHandle,
 0, // no color key
 180, // alpha value
 LWA_ALPHA));

Th is assumes you’ve created the window with the WS_EX_
LAYERED extended style or applied it aft er the fact using the Set-
WindowLong function. Figure 1 provides an example of such a
window. Th e benefi t should be obvious: you don’t need to change any-
thing about the way your application paints the window as the Desk-

KENNY KERR

Send your questions and comments for Kerr to mmwincpp@microsoft.com.

Figure 1 Window with Alpha Value

mailto:mmwincpp@microsoft.com
http://msdn.microsoft.com/magazine/dd861344
http://msdn.microsoft.com/magazine/ee413543

msdn magazine80 Windows with C++

updated. Th ere’s the size of the bitmap to copy, which also
defi nes the size of the window:

POINT sourcePosition = {};
POINT windowPosition = {};
SIZE size = { 600, 400 };

Th en there’s the BLENDFUNCTION structure that defi nes
how the layered window will be blended with the desktop. Th is is a
surprisingly versatile structure that is oft en overlooked, but can be
quite helpful. Normally you might populate it as follows:

BLENDFUNCTION blend = {};
blend.SourceConstantAlpha = 255;
blend.AlphaFormat = AC_SRC_ALPHA;

Th e AC_SRC_ALPHA constant just indicates that the source
bitmap has an alpha channel, which is the most common scenario.

Th e SourceConstantAlpha, however, is interesting in that you
can use it in much the same way you might use the SetLayered-
WindowAttributes function to control the opacity of the win-
dow as a whole. When it is set to 255, the layered window will
just use the per-pixel alpha values, but you can adjust it all the
way to zero, or fully transparent, to produce effects such as fad-
ing the window in or out without the cost of redrawing. It should
now be obvious why the BLENDFUNCTION structure is named
as it is: the resulting alpha-blended window is a function of this
structure’s value.

Last, there’s the UPDATELAYEREDWINDOWINFO structure
that ties it all together:

UPDATELAYEREDWINDOWINFO info = {};
info.cbSize = sizeof(UPDATELAYEREDWINDOWINFO);
info.pptSrc = &sourcePosition;
info.pptDst = &windowPosition;
info.psize = &size;
info.pblend = &blend;
info.dwFlags = ULW_ALPHA;

Th is should be pretty self-explanatory at this point, with the
only undocumented member being the dwFlags variable. A value
of ULW_ALPHA, which should look familiar if you’ve used the
older UpdateLayeredWindow function before, just indicates that
the blend function should be used.

Finally, you need to provide the handle to the source DC
and call the UpdateLayeredWindowIndirect function to update
the window:

info.hdcSrc = sourceDC;

Verify(UpdateLayeredWindowIndirect(
 windowHandle, &info));

And that’s it. Th e window won’t receive any WM_PAINT mes-
sages. Any time you need to show or update the window, just call the
UpdateLayeredWindowIndirect function. To keep all of this boiler-
plate code out of the way, I’m going to use the Layered WindowInfo
wrapper class shown in Figure 2 in the rest of this article.

Figure 3 provides a basic skeleton for a layered window using
ATL/WTL and the LayeredWindowInfo wrapper class from
Figure 2. Th is fi rst thing to notice is that there’s no need to call
UpdateWindow since this code doesn’t use WM_PAINT. Instead it
immediately calls the Render method, which in turn is required to
perform some drawing and to provide a DC to LayeredWindow-
Info’s Update method. How that drawing occurs and where the DC
comes from is where it gets interesting.

The GDI/GDI+ Way
I’ll fi rst show you how it was done in GDI/GDI+. First you need
to create a pre-multiplied 32-bits-per-pixel (bpp) bitmap us-
ing a blue-green-red-alpha (BGRA) color channel byte order.
Pre-multiplied just means that the color channel values have al-
ready been multiplied by the alpha value. Th is tends to provide
better performance for alpha blending images, but it means you
need to reverse the process by dividing the color values by the
alpha value to get their true color values. In GDI terminology,
this is called a 32-bpp device-independent bitmap (DIB) and is
created by fi lling out a BITMAPINFO structure and passing it to
the Create DIBSection function (see Figure 4).

Th ere are a lot of details here, but they aren’t relevant to the dis-
cussion. Th is API function goes back a long way. What you should
take note of is that I’ve specifi ed a negative height for the bitmap.
Th e BITMAPINFOHEADER structure defi nes either a bottom-up
or a top-down bitmap. If the height is positive you’ll end up with a
bottom-up bitmap, and if it’s negative you’ll get a top-down bitmap.
Top-down bitmaps have their origin in the upper-left corner, whereas
bottom-down bitmaps have their origin in the lower-left corner.

Although not strictly necessary in this case, I tend to use top-down
bitmaps as that is the format used by most of the modern imaging

class LayeredWindowInfo {
 const POINT m_sourcePosition;
 POINT m_windowPosition;
 CSize m_size;
 BLENDFUNCTION m_blend;
 UPDATELAYEREDWINDOWINFO m_info;

public:

 LayeredWindowInfo(
 __in UINT width,
 __in UINT height) :
 m_sourcePosition(),
 m_windowPosition(),
 m_size(width, height),
 m_blend(),
 m_info() {

 m_info.cbSize = sizeof(UPDATELAYEREDWINDOWINFO);
 m_info.pptSrc = &m_sourcePosition;
 m_info.pptDst = &m_windowPosition;
 m_info.psize = &m_size;
 m_info.pblend = &m_blend;
 m_info.dwFlags = ULW_ALPHA;

 m_blend.SourceConstantAlpha = 255;
 m_blend.AlphaFormat = AC_SRC_ALPHA;
 }

 void Update(
 __in HWND window,
 __in HDC source) {

 m_info.hdcSrc = source;

 Verify(UpdateLayeredWindowIndirect(window, &m_info));
 }

 UINT GetWidth() const { return m_size.cx; }

 UINT GetHeight() const { return m_size.cy; }
};

Figure 2 LayeredWindowInfo Wrapper Class

Project1 11/12/09 11:47 AM Page 1

www.alexcorp.com

msdn magazine82 Windows with C++

components in Windows and thus improves interoperability. Th is
also leads to a positive stride, which can be calculated as follows:

UINT stride = (width * 32 + 31) / 32 * 4;

At this point you have enough information to start drawing
in the bitmap through the bits pointer. Of course, unless you’re
completely insane you’ll want to use some drawing functions, but
unfortunately most of those provided by GDI don’t support the
alpha channel. Th at’s where GDI+ comes in.

Although you could pass the bitmap data directly to GDI+, let’s
instead create a DC for it since you’ll need it anyway to pass to the
UpdateLayeredWindowIndirect function. To create the DC, call
the aptly named CreateCompatibleDC function, which creates
a memory DC that is compatible with the desktop. You can then
call the SelectObject function to select the bitmap into the DC.
Th e GdiBitmap wrapper class in Figure 5 wraps all of this up and
provides some extra housekeeping.

Th e GDI+ Graphics class, which provides methods for drawing
to some device, can be constructed with the bitmap’s DC. Figure 6
shows how the LayeredWindow class from Figure 3 can be
updated to support rendering with GDI+. Once you have all
of the boilerplate GDI code out of the way, it’s quite straight-
forward. The window’s size is passed to the GdiBitmap
constructor and the bitmap’s DC is passed to the Graphics
constructor and the Update method. Although straightforward, nei-
ther GDI nor GDI+ are hardware-accelerated (for the most part),
nor do they provide particularly powerful rendering functionality.

The Architecture Problem
By contrast, this is all it takes create a layered window with
Windows Presentation Foundation (WPF):

class LayeredWindow : Window {
 public LayeredWindow() {
 WindowStyle = WindowStyle.None;
 AllowsTransparency = true;

 // Do some drawing here
 }
}

Although incredibly simple, it belies the complexity involved
and the architectural limitations of using layered windows. No
matter how you sugarcoat it, layered windows must follow the
architectural principles outlined thus far in this article. Although
WPF may be able to use hardware acceleration for its rendering,
the results still need to be copied to a pre-multiplied BGRA bitmap
selected into a compatible DC before the display is updated via a
call to the UpdateLayeredWindowIndirect function. Since WPF
is not exposing anything more than a bool variable, it has to make
certain choices on your behalf that you have no control over. Why
does that matter? It comes down to hardware.

A graphics processing unit (GPU) prefers dedicated memory to
achieve the best performance. Th is means that if you need to manip-
ulate an existing bitmap, it needs to be copied from system memory
(RAM) to GPU memory, which tends to be much slower than copying
between two locations in system memory. Th e converse is also true: if
you create and render a bitmap using the GPU, then decide to copy it
to system memory, that’s an expensive copy operation.

Normally this should not occur as bitmaps rendered by the
GPU are typically sent directly to the display device. In the case of
layered windows, the bitmap must travel back to system memory
since User32/GDI resources involve both kernel-mode and
user-mode resources that require access to the bitmap. Consider,
for example, the fact that User32 needs to hit test layered windows.
Hit testing of a layered window is based on the alpha values of the
bitmap, allowing mouse messages through if the pixel at a particular
point is transparent. As a result, a copy of the bitmap is required in
system memory to allow this to happen. Once the bitmap has been
copied by UpdateLayeredWindowIndirect, it is sent straight back
to the GPU so the DWM can compose the desktop.

class LayeredWindow :
 public CWindowImpl<LayeredWindow,
 CWindow, CWinTraits<WS_POPUP, WS_EX_LAYERED>> {

 LayeredWindowInfo m_info;

public:

 BEGIN_MSG_MAP(LayeredWindow)
 MSG_WM_DESTROY(OnDestroy)
 END_MSG_MAP()

 LayeredWindow() :
 m_info(600, 400) {

 Verify(0 != __super::Create(0)); // parent
 ShowWindow(SW_SHOW);
 Render();
 }

 void Render() {
 // Do some drawing here

 m_info.Update(m_hWnd,
 /* source DC goes here */);
 }

 void OnDestroy() {
 PostQuitMessage(1);
 }
};

Figure 3 Layered Window Skeleton

BITMAPINFO bitmapInfo = {};
bitmapInfo.bmiHeader.biSize =
 sizeof(bitmapInfo.bmiHeader);
bitmapInfo.bmiHeader.biWidth =
 m_info.GetWidth();
bitmapInfo.bmiHeader.biHeight =
 0 – m_info.GetHeight();
bitmapInfo.bmiHeader.biPlanes = 1;
bitmapInfo.bmiHeader.biBitCount = 32;
bitmapInfo.bmiHeader.biCompression =
 BI_RGB;

void* bits = 0;

CBitmap bitmap(CreateDIBSection(
 0, // no DC palette
 &bitmapInfo,
 DIB_RGB_COLORS,
 &bits,
 0, // no file mapping object
 0)); // no file offset

Figure 4 Creating a DIB

83December 2009msdnmagazine.com

Besides the expense of copying memory back and forth, forcing the
GPU to synchronize with the CPU is costly as well. Unlike typical CPU-
bound operations, GPU operations tend to all be performed asynchro-
nously, which provides great performance when batching a stream of
rendering commands. Every time we need to cross paths with the CPU,
it forces batched commands to be fl ushed and the CPU to wait until
the GPU has completed, leading to less than optimal performance.

Th is all means that you need to be careful about these roundtrips
and the frequency and costs involved. If the scenes being rendered
are suffi ciently complex, then the performance of hardware accel-
eration can easily outweigh the cost of copying the bitmaps. On the
other hand, if the rendering is not very costly and can be performed
by the CPU, you might fi nd that opting for no hardware acceleration
will ultimately provide better performance. Th ese choices aren’t easy
to make. Some GPUs don’t even have dedicated memory and instead
use a portion of system memory, which reduces the cost of the copy.

Th e catch is that neither GDI nor WPF give you a choice. In the case
of GDI, you’re stuck with the CPU. In the case of WPF, you’re forced
into using whatever rendering approach WPF uses, which is typically
hardware acceleration via Direct3D.

Th en Direct2D came along.

Direct2D to GDI/DC
Direct2D was designed to render to whatever target you
choose. If it’s a window or Direct3D texture, Direct2D does this
directly on the GPU without involving any copying. If it’s a Windows

Imaging Component (WIC) bitmap, Direct2D similarly renders
directly using the CPU instead. Whereas WPF strives to put much
of its rendering on the GPU and uses a soft ware rasterizer as a fall-
back, Direct2D provides the best of both worlds with unparalleled
immediate mode rendering on the GPU for hardware acceleration,
and highly optimized rendering on the CPU when a GPU is either
not available or not desired.

As you can imagine, there are quite a few ways to render a layered
window with Direct2D. Let’s take a look at a few and I’ll point out

class LayeredWindow :
 public CWindowImpl< ... {

 LayeredWindowInfo m_info;
 GdiBitmap m_bitmap;
 Graphics m_graphics;

public:
 LayeredWindow() :
 m_info(600, 400),
 m_bitmap(m_info.GetWidth(), m_info.GetHeight()),
 m_graphics(m_bitmap.GetDC()) {
 ...
 }

 void Render() {
 // Do some drawing with m_graphics object

 m_info.Update(m_hWnd,
 m_bitmap.GetDC());
 }
...

Figure 6 GDI Layered Window

class GdiBitmap {
 const UINT m_width;
 const UINT m_height;
 const UINT m_stride;
 void* m_bits;
 HBITMAP m_oldBitmap;

 CDC m_dc;
 CBitmap m_bitmap;

public:

 GdiBitmap(__in UINT width,
 __in UINT height) :
 m_width(width),
 m_height(height),
 m_stride((width * 32 + 31) / 32 * 4),
 m_bits(0),
 m_oldBitmap(0) {

 BITMAPINFO bitmapInfo = { };
 bitmapInfo.bmiHeader.biSize =
 sizeof(bitmapInfo.bmiHeader);
 bitmapInfo.bmiHeader.biWidth =
 width;
 bitmapInfo.bmiHeader.biHeight =
 0 - height;
 bitmapInfo.bmiHeader.biPlanes = 1;
 bitmapInfo.bmiHeader.biBitCount = 32;
 bitmapInfo.bmiHeader.biCompression =
 BI_RGB;

 m_bitmap.Attach(CreateDIBSection(
 0, // device context
 &bitmapInfo,
 DIB_RGB_COLORS,
 &m_bits,

 0, // file mapping object
 0)); // file offset
 if (0 == m_bits) {
 throw bad_alloc();
 }

 if (0 == m_dc.CreateCompatibleDC()) {
 throw bad_alloc();
 }

 m_oldBitmap = m_dc.SelectBitmap(m_bitmap);
 }

 ~GdiBitmap() {
 m_dc.SelectBitmap(m_oldBitmap);
 }

 UINT GetWidth() const {
 return m_width;
 }

 UINT GetHeight() const {
 return m_height;
 }

 UINT GetStride() const {
 return m_stride;
 }

 void* GetBits() const {
 return m_bits;
 }

 HDC GetDC() const {
 return m_dc;
 }
};

Figure 5 DIB Wrapper Class

www.msdnmagazine.com

msdn magazine84 Windows with C++

Direct2D to WIC
Now if you can avoid the GDI DC entirely and just use a WIC
bitmap directly, you can achieve the best possible performance
without hardware acceleration. To use this approach start by
 creating a pre-multiplied BGRA bitmap directly with WIC:

CComPtr<IWICImagingFactory> factory;
Verify(factory.CoCreateInstance(
 CLSID_WICImagingFactory));

CComPtr<IWICBitmap> bitmap;

Verify(factory->CreateBitmap(
 m_info.GetWidth(),
 m_info.GetHeight(),
 GUID_WICPixelFormat32bppPBGRA,
 WICBitmapCacheOnLoad,
 &bitmap));

Next you need to once again initialize a D2D1_RENDER_TARGET
_PROPERTIES structure in much the same way as before, except
that you must also tell Direct2D that the render target needs to be
GDI-compatible:

const D2D1_PIXEL_FORMAT format =
 D2D1::PixelFormat(
 DXGI_FORMAT_B8G8R8A8_UNORM,
 D2D1_ALPHA_MODE_PREMULTIPLIED);

const D2D1_RENDER_TARGET_PROPERTIES properties =
 D2D1::RenderTargetProperties(
 D2D1_RENDER_TARGET_TYPE_DEFAULT,
 format,
 0.0f, // default dpi
 0.0f, // default dpi
 D2D1_RENDER_TARGET_USAGE_GDI_COMPATIBLE);

You can now create the WIC render target using the Direct2D
factory object:

CComPtr<ID2D1RenderTarget> target;

Verify(factory->CreateWicBitmapRenderTarget(
 bitmap,
 properties,
 &target));

But what exactly does D2D1_RENDER_TARGET_USAGE_
GDI_COMPATIBLE do? It’s a hint to Direct2D that you will query
the render target for the ID2D1GdiInteropRenderTarget interface:

CComPtr<ID2D1GdiInteropRenderTarget> interopTarget;
Verify(target.QueryInterface(&interopTarget));

For simplicity and efficiency of implementation, querying
for this interface will always succeed. It is only when you try to

void Render() {
 CreateDeviceResources();
 m_target->BeginDraw();
 // Do some drawing here
 {
 RenderTargetDC dc(m_interopTarget);
 m_info.Update(m_hWnd, dc);
 }

 const HRESULT hr = m_target->EndDraw();

 if (D2DERR_RECREATE_TARGET == hr) {
 DiscardDeviceResources();
 }
 else {
 Verify(hr);
 }
}

Figure 8 GDI-Compatible Render Method

the recommended approaches depending on whether you want to
use hardware acceleration.

First, you could just rip out the GDI+ Graphics class from
Figure 3 and replace it with a Direct2D DC render target. This
might make sense if you have a legacy application with a lot
invested in GDI, but it’s definitely not the most efficient solution.
Instead of rendering directly to the DC, Direct2D renders first to an
internal WIC bitmap, then copies the result to the DC. Although
faster than GDI+, this nevertheless involves extra copying that
could be avoided if you didn’t need to use a DC for rendering.

To use this approach, start by initializing a D2D1_RENDER_TAR-
GET_PROPERTIES structure. Th is tells Direct2D the format of the
bitmap to use for its render target. Recall that it needs to be a pre-mul-
tiplied BGRA pixel format. Th is is expressed with a D2D1_PIXEL_
FORMAT structure and can be defi ned as follows:

const D2D1_PIXEL_FORMAT format =
 D2D1::PixelFormat(DXGI_FORMAT_B8G8R8A8_UNORM,
 D2D1_ALPHA_MODE_PREMULTIPLIED);

const D2D1_RENDER_TARGET_PROPERTIES properties =
 D2D1::RenderTargetProperties(
 D2D1_RENDER_TARGET_TYPE_DEFAULT,
 format);

You can now create the DC render target using the Direct2D
factory object:

CComPtr<ID2D1DCRenderTarget> target;

Verify(factory->CreateDCRenderTarget(
 &properties,
 &target));

Finally, you need to tell the render target to which DC to send
its drawing commands:

const RECT rect = {0, 0, bitmap.GetWidth(), bitmap.GetHeight()};

Verify(target->BindDC(bitmap.GetDC(), &rect));

At this point you can draw with Direct2D as usual between
Begin Draw and EndDraw method calls, and then call the Update
method as before with the bitmap’s DC. Th e EndDraw method
ensures that all drawing has been fl ushed to the bound DC.

class RenderTargetDC {
 ID2D1GdiInteropRenderTarget* m_renderTarget;
 HDC m_dc;

public:
 RenderTargetDC(ID2D1GdiInteropRenderTarget* renderTarget) :
 m_renderTarget(renderTarget),
 m_dc(0) {

 Verify(m_renderTarget->GetDC(
 D2D1_DC_INITIALIZE_MODE_COPY,
 &m_dc));

 }

 ~RenderTargetDC() {
 RECT rect = {};
 m_renderTarget->ReleaseDC(&rect);
 }

 operator HDC() const {
 return m_dc;
 }
};

Figure 7 Render Target DC Wrapper Class

85December 2009msdnmagazine.com

use it, however, that it will fail if you didn’t specify your desires
up front.

Th e ID2D1GdiInteropRenderTarget interface has just two
methods: GetDC and ReleaseDC. To optimize cases where hardware
acceleration is used, these methods are restricted to being used
between calls to the render target’s BeginDraw and EndDraw
methods. GetDC will fl ush the render target before returning the
DC. Since the interop interface’s methods need to be paired, it
makes sense to wrap them in a C++ class as shown in Figure 7.

Th e window’s Render method can now be updated to use the
RenderTargetDC, as shown in Figure 8. Th e nice thing about this
approach is that all of the code that is specifi c to creating a WIC
render target is tucked away in the CreateDeviceResources method.
Next I’ll show you how to create a Direct3D render target to gain
hardware acceleration, but in either case, the Render method
shown in Figure 8 stays the same. Th is makes it possible for your
application to fairly easily switch render target implementations
without changing all your drawing code.

Direct2D to Direct3D/DXGI
To obtain hardware-accelerated rendering, you need to use
Direct3D. Because you’re not rendering directly to an HWND via
ID2D1HwndRenderTarget, which would gain hardware acceleration
automatically, you need to create the Direct3D device yourself and
connect the dots in the underlying DirectX Graphics Infrastructure
(DXGI) so that you can get GDI-compatible results.

DXGI is a relatively new subsystem that lives on a layer below
Direct3D to abstract Direct3D from the underlying hardware
and provide a high-performance gateway for interop scenarios.
Direct2D also takes advantage of this new API to simplify the
move to future versions of Direct3D. To use this approach, start by
creating a Direct3D hardware device. Th is is the device that repre-
sents the GPU that will perform the rendering. Here I’m using the
Direct3D 10.1 API as this is required by Direct2D at present:

CComPtr<ID3D10Device1> device;

Verify(D3D10CreateDevice1(
 0, // adapter
 D3D10_DRIVER_TYPE_HARDWARE,
 0, // reserved
 D3D10_CREATE_DEVICE_BGRA_SUPPORT,
 D3D10_FEATURE_LEVEL_10_0,
 D3D10_1_SDK_VERSION,
 &device));

Th e D3D10_CREATE_DEVICE_BGRA_SUPPORT fl ag is
crucial for Direct2D interoperability, and the BGRA pixel
format should by now look familiar. In a traditional Direct3D
application, you might create a swap chain and retrieve its back
buff er as a texture to render into before presenting the rendered
window. Since you’re using Direct3D for rendering only and not
for presentation, you can simply create a texture resource directly.
A texture is a Direct3D resource for storing texels, which are the
Direct3D equivalent of pixels. Although Direct3D provides 1-, 2- and
3-dimensional textures, all you need is a 2D texture, which most
closely maps to a 2D surface (see Figure 9).

The D3D10_TEXTURE2D_DESC structure describes the
texture to create. The D3D10_BIND_RENDER_TARGET

constant indicates that the texture is bound as the output buff er,
or render target, of the Direct3D pipeline. Th e DXGI_FORMAT_
B8G8R8A8_UNORM constant ensures that Direct3D will produce
the correct pixel format for GDI. Finally, the D3D10_RESOURCE_
MISC_GDI_COMPATIBLE constant instructs the underlying DXGI
surface to off er a GDI DC through which the results of rendering can be
obtained. Th is Direct2D exposes through the ID2D1GdiInteropRen-
derTarget interface I discussed in the previous section.

As I mentioned, Direct2D is capable of rendering to a Direct3D
surface via the DXGI API to avoid tying the API to any particular
version of Direct3D. Th is means you need to get the Direct3D
texture’s underlying DXGI surface interface to pass to Direct2D:

CComPtr<IDXGISurface> surface;
Verify(texture.QueryInterface(&surface));

At this point you can use the Direct2D factory object to create
a DXGI surface render target:

CComPtr<ID2D1RenderTarget> target;

Verify(factory->CreateDxgiSurfaceRenderTarget(
 surface,
 &properties,
 &target));

Th e render target properties are the same as those I described in the
previous section. Just remember to use the correct pixel format and
request GDI compatibility. You can then query for the
ID2D1GdiIntero pRenderTarget interface and use the same
Render method from Figure 8.

And that’s all there is to it. If you want to render your layered
window with hardware acceleration, use a Direct3D texture.
Otherwise use a WIC bitmap. Th ese two approaches will provide
the best possible performance with the least amount of copying.

Be sure to check out the DirectX blog and, in particular,
Ben Constable’s August 2009 article on componentization and
interoperability at blogs.msdn.com/directx.

KENNY KERR is a soft ware craft sman passionate about Windows. He is also the creator
of Window Clippings (windowclippings.com). Reach him at weblogs.asp.net/kennykerr.

THANKS to the following technical experts for reviewing this article:
Ben Constable and Mark Lawrence

D3D10_TEXTURE2D_DESC description = {};
description.ArraySize = 1;
description.BindFlags =
 D3D10_BIND_RENDER_TARGET;
description.Format =
 DXGI_FORMAT_B8G8R8A8_UNORM;
description.Width = GetWidth();
description.Height = GetHeight();
description.MipLevels = 1;
description.SampleDesc.Count = 1;
description.MiscFlags =
 D3D10_RESOURCE_MISC_GDI_COMPATIBLE;

CComPtr<ID3D10Texture2D> texture;

Verify(device->CreateTexture2D(
 &description,
 0, // no initial data
 &texture));

Figure 9 A 2D Texture

www.msdnmagazine.com
http://blogs.msdn.com/directx
http://windowclippings.com
http://weblogs.asp.net/kennykerr

PureVisual Studio and .NET

GET TIPS
GET CODE
GET THE BEST
HOW-TO ARTICLES
ON THE NET

Visit VisualStudioMagazine.com
and RedDevNews.com

Project1 11/12/09 11:09 AM Page 1

www.RedDevNews.com
www.VisualStudioMagazine.com

87December 2009

of COM and Windows Touch, and have Windows Touch-capable
hardware. For a primer on Windows Touch, go to go.microsoft.com/
fwlink/?LinkId=156612 or read Yochay Kiriaty’s article at msdn.microsoft.com/
magazine/ee336016.aspx.

Th e example is on the MSDN Code Gallery at code.msdn.microsoft.com/
 windowstouchmanip. Th e Downloads tab contains two .zip fi les, the
fi rst without mobile enhancements and the second with them.
Download the fi le named Multiple Manipulators.zip, expand it
and compile the project.

GOING PLACES

Enhancing Windows Touch
Applications for Mobile Users

Windows 7 introduces Windows Touch, which enhances
touch input on capable hardware and provides a solid platform
for building touch applications. Potentially, this means that you
can develop remarkably intuitive interfaces that users of all ages
and computing abilities can understand with a minimal amount
of training or instruction.

Th e magic behind this functionality is the Windows Touch API. Using
this API, you can retrieve information about where a user is touching
the screen and about a user’s on-screen gestures. You also have access
to real- world physics for user interface elements. Moving an on-screen
object becomes as easy as moving an object in the real world. Stretching
an object is like stretching a piece of elastic. When users interact with
a well-implemented touch application, they feel as though they’re
interacting with the technology of the future, or even better, they don’t
notice that they’re using an application at all. Th ey don’t have to use a
mouse, a stylus or shortcut keys or precisely select menu items to get
at the application’s core functionality.

Applications tailored to mobile use should incorporate specifi c
requirements to ensure that the experience is well suited to the user’s
environment. A poorly implemented touch application can com-
pletely defeat the purpose of using Windows Touch. Th e Windows
Touch User Experience guidelines (go.microsoft.com/fwlink/?LinkId=156610)
highlight ways that developers can improve the experience for
users on the go. Th ese guidelines cover various scenarios relevant
to mobile application developers and make it easier to avoid
potential pitfalls of Windows Touch development.

If you take away only one thing from this article, remember that
when creating an application that targets mobile users, you need to
consider aspects that are specifi c to your type of application. For
instance, if your application uses Windows controls, be sure they are
of adequate size and have suffi cient spacing so that users can touch
them easily. If you are creating an application that can take advantage
of fl icks, be sure that the fl ick actions are properly handled.

First Things First
In this article, I’ll take a sample touch application and enhance it
for mobile applications. I assume that you have some knowledge

GUS CLASS

VOID Drawable::FillInputData(TOUCHINPUT* inData, DWORD cursor, DWORD
eType, DWORD time, int x, int y)
{
 inData->dwID = cursor;
 inData->dwFlags = eType;
 inData->dwTime = time;
 inData->x = x;
 inData->y = y;
}

void Drawable::ProcessMouseData(HWND hWnd, UINT msg, WPARAM wParam,
LPARAM
 lParam){
 TOUCHINPUT tInput;
 if (this->getCursorID() == MOUSE_CURSOR_ID){
 switch (msg){
 case WM_LBUTTONDOWN:
 FillInputData(&tInput, MOUSE_CURSOR_ID, TOUCHEVENTF_DOWN,
(DWORD)GetMessageTime(),LOWORD(lParam) * 100,HIWORD(lParam) * 100);
 ProcessInputs(hWnd, 1, &tInput, 0);
 break;

 case WM_MOUSEMOVE:
 if(LOWORD(wParam) == MK_LBUTTON)
 {
 FillInputData(&tInput, MOUSE_CURSOR_ID, TOUCHEVENTF_
MOVE, (DWORD)GetMessageTime(),LOWORD(lParam) * 100, HIWORD(lParam) *
100);
 ProcessInputs(hWnd, 1, &tInput, 0);
 }
 break;

 case WM_LBUTTONUP:
 FillInputData(&tInput, MOUSE_CURSOR_ID, TOUCHEVENTF_UP,
(DWORD)GetMessageTime(),LOWORD(lParam) * 100, HIWORD(lParam) * 100);
 ProcessInputs(hWnd, 1, &tInput, 0);
 setCursorID(-1);
 break;
 default:
 break;
 }
 }
}

Figure 1 Utility Functions for Simulating
Touch Input with the Mouse

Send your questions and comments for Gus to goplaces@microsoft.com.

Code download available at code.msdn.microsoft.com/ windowstouchmanip.

mailto:goplaces@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=156612
http://msdn.microsoft.com/magazine/ee336016.aspx
http://code.msdn.microsoft.com/windowstouchmanip
http://go.microsoft.com/fwlink/?LinkId=156610
http://code.msdn.microsoft.com/ windowstouchmanip

msdn magazine88 Going Places

To be honest, using the example is at times like trying to thread a
needle while wearing mittens: the functionality is diminished to a point
that frustrates users. For example, if you try to select overlapping
objects in an overlapping region, you will select and move both objects.
You also can resize an object so that it’s so small that you can’t resize it
again. I’ll show you how to fi x these problems and make other
changes that improve the user experience in the areas of general
usability, object selection and the use of a natural user interface.
Remember that considerations you make for each mobile application
depend on how users will interact with it. Th e issues I cover here should
be used as guidelines only for this specifi c application.

General Usability
When a user is manipulating graphical objects in a mobile applic-
ation, he must be able to perform tasks without the use of a
keyboard and mouse. Also, when a mobile user is using high DPI
settings or is connected to multiple screens, the application must
behave consistently. (High DPI requirements are discussed in
detail at go.microsoft.com/fwlink/?LinkId=153387.)

For the sample application, Windows Touch implicitly addresses the
issue of obtaining input from the user without a mouse and keyboard.
Users can use touch input to perform actions such as object transla-
tion, scaling and so on. A related consideration is supporting mouse
and keyboard input in an application designed for touch input so that
a user can drive the manipulation processor using any input, including
mouse input. Figure 1 shows how you could let a user simulate touch
input through mouse input by adding some utility functions to the
sample application’s Drawable class. You also have to add handlers to
WndProc to hook mouse input to the input processor (see Figure 2).

To address high DPI requirements, you can add a project mani-
fest to the build settings to make the application aware of the DPI
settings. You do this so that the coordinate space is correct when
you are working at various DPI levels. (If you are interested in seeing
how the application behaves aft er you have changed the DPI level,
right-click your desktop, click Personalize and then change your
DPI level in the Display control panel.)

Th e following XML shows how this manifest could be defi ned to
make your application compatible with high DPI settings:

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"
 xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" >
 <asmv3:application>
 <asmv3:windowsSettings xmlns=
"http://schemas.microsoft.com/SMI/2005/WindowsSettings">
 <dpiAware>true</dpiAware>
 </asmv3:windowsSettings>
 </asmv3:application>
</assembly>

Once the project manifest is added to the project’s properties,
the application correctly sends touch input information to the
manipul ation processor regardless of the user’s DPI settings.
You can also use the ScreenToClient method (see go.microsoft.com/
fwlink/?LinkID=153391 for more information) to ensure that the co-
ordinate space is set to the application coordinates rather than
to the screen coordinates. Figure 3 shows the changes to the
ProcessInputs member function of the Drawable class that convert
the screen points to client points. Now when the user connects an

 case WM_LBUTTONDOWN:
 case WM_MOUSEMOVE:
 case WM_LBUTTONUP:
 for (i=0; i<drawables; i++){
 // contact start
 if (message == WM_LBUTTONDOWN && draw[i]-
>IsContacted(LOWORD(lParam), HIWORD(lParam), MOUSE_CURSOR_ID)){
 draw[i]->setCursorID(MOUSE_CURSOR_ID);
 }
 // contact end
 if (message == WM_LBUTTONUP && draw[i]->getCursorID() == MOUSE_
CURSOR_ID){
 draw[i]->setCursorID(-1);
 }
 draw[i]->ProcessMouseData(hWnd, message, wParam, lParam);
 }
 InvalidateRect(hWnd, NULL, false);
 break;

Figure 2 Changes from WndProc

POINT ptInput;
void Drawable::ProcessInputs(HWND hWnd, UINT cInputs,
 PTOUCHINPUT pInputs, LPARAM lParam){
 for (int i=0; i < static_cast<INT>(cInputs); i++){
...
 ScreenToClient(hWnd, &ptInput);

 if (ti.dwFlags & TOUCHEVENTF_DOWN){
 if (IsContacted(ptInput.x, ptInput.y, ti.dwID)){
 pManip->ProcessDownWithTime(ti.dwID, static_cast<FLOAT>
(ptInput.x), static_cast<FLOAT>(ptInput.y), ti.dwTime);
 setCursorID(ti.dwID);

 if (!CloseTouchInputHandle((HTOUCHINPUT)lParam)) {
 // Error handling
 }
 }
 }
 if (pInputs[i].dwFlags & TOUCHEVENTF_MOVE){
 pManip->ProcessMoveWithTime(ti.dwID, static_cast<FLOAT>
(ptInput.x), static_cast<FLOAT>(ptInput.y), ti.dwTime);
 }
 if (pInputs[i].dwFlags & TOUCHEVENTF_UP){
 pManip->ProcessUpWithTime(ti.dwID, static_cast<FLOAT>
(ptInput.x), static_cast<FLOAT>(ptInput.y), ti.dwTime);
 setCursorID(-1);
 }
 // If you handled the message and don’t want anything else done
 // with it, you can close it

 }
}

Figure 3 Converting Screen Points to Client Points

POINT ptInput;
void Drawable::ProcessInputs(HWND hWnd, UINT cInputs,
 PTOUCHINPUT pInputs, LPARAM lParam){
 BOOL fContinue = TRUE;
 for (int i=0; i < static_cast<INT>(cInputs) && fContinue; i++){
...
 if (ti.dwFlags & TOUCHEVENTF_DOWN){
 if (IsContacted(ptInput.x, ptInput.y, ti.dwID)){
 pManip->ProcessDownWithTime(ti.dwID, static_cast<FLOAT>
(ptInput.x), static_cast<FLOAT>(ptInput.y), ti.dwTime);
 setCursorID(ti.dwID);

 fContinue = FALSE;
 }
 }
...
 }
 CloseTouchInputHandle((HTOUCHINPUT)lParam);

}

Figure 4 Updating the Touch Input Handler

http://go.microsoft.com/fwlink/?LinkId=153387
http://msdn.microsoft.com/en-us/library/dd162952(VS.85).aspx

89December 2009msdnmagazine.com

external monitor to a Windows Touch–enabled PC, the coordinate
space of your application will remain consistent and DPI aware.

Object Selection
To ensure that object selection functions as the user expects, the
user must be able to select overlapping objects in a natural and
intuitive manner, and the user must be able to select and easily
transform objects on screens on smaller form factors or screens
with limited touch input resolution.

As the application currently operates, when a user selects an
overlapping object, the application sends touch data to all the
objects that are under the point where the user touches the window.
To modify the application to stop handling touch input aft er the
fi rst touched object is encountered, you need to close the touch
input handle when an object is selected. Figure 4 shows how you
can update the touch input handler to stop handling the touch
message aft er the fi rst object is contacted.

After you implement this change, when a touched object is
contacted, touch data stops getting sent to other objects in the
array. To change the application so that only the first object
under mouse input receives touch input, you can break out of
the switch in the input processing statement for mouse down

input, which short-circuits the logic for mouse input. Figure 5
demonstrates the changes to the switch statement in the mouse
input handler.

Next, you should change your application to ensure that when
a user resizes objects, the objects will not become so small that the
user cannot select or resize them again. To address this, you can use
settings in the Manipulations API to restrict how small an object
can be sized. Th e following changes are made to the manipulation
processor utility of the Drawable object:

void Drawable::SetUpManipulator(void){
 pManip->put_MinimumScaleRotateRadius(4000.0f);
}

 case WM_LBUTTONDOWN:
 for (i=0; i<drawables; i++){
 if (draw[i]->IsContacted(LOWORD(lParam), HIWORD(lParam), MOUSE_
CURSOR_ID)){
 draw[i]->setCursorID(MOUSE_CURSOR_ID);
 draw[i]->ProcessMouseData(hWnd, message, wParam, lParam);
 break;
 }
 }
...

Figure 5 Changing the Switch Statement
in the Mouse Input Handler

CManipulationEventSink::CManipulationEventSink(IManipulationProcessor
*manip, IInertiaProcessor *inert, Drawable* d){
 drawable = d;
 // Yes, we are extrapolating inertia in this case
 fExtrapolating = false;

 //Set initial ref count to 1
 m_cRefCount = 1;

 m_pManip = NULL;
 m_pInert = inert;

 m_cStartedEventCount = 0;
 m_cDeltaEventCount = 0;
 m_cCompletedEventCount = 0;

 HRESULT hr = S_OK;

 //Get the container with the connection points
 IConnectionPointContainer* spConnectionContainer;

 hr = manip->QueryInterface(
 IID_IConnectionPointContainer,
 (LPVOID*) &spConnectionContainer
);

 if (spConnectionContainer == NULL){
 // Something went wrong, try to gracefully quit
 }

 //Get a connection point
 hr = spConnectionContainer->FindConnectionPoint
(__uuidof(_IManipulationEvents), &m_pConnPoint);

 if (m_pConnPoint == NULL){
 // Something went wrong, try to gracefully quit
 }

 DWORD dwCookie;

 //Advise
 hr = m_pConnPoint->Advise(this, &dwCookie);
}

CManipulationEventSink::CManipulationEventSink(IInertiaProcessor *inert,
Drawable* d)
{
 drawable = d;
 // Yes, we are extrapolating inertia in this case
 fExtrapolating = true;

 //Set initial ref count to 1
 m_cRefCount = 1;

 m_pManip = NULL;
 m_pInert = inert;

 m_cStartedEventCount = 0;
 m_cDeltaEventCount = 0;
 m_cCompletedEventCount = 0;

 HRESULT hr = S_OK;

 //Get the container with the connection points
 IConnectionPointContainer* spConnectionContainer;

 hr = inert->QueryInterface(
 IID_IConnectionPointContainer,
 (LPVOID*) &spConnectionContainer
);

 if (spConnectionContainer == NULL){
 // Something went wrong, try to gracefully quit
 }

 //Get a connection point
 hr = spConnectionContainer->FindConnectionPoint
(__uuidof(_IManipulationEvents), &m_pConnPoint);
 if (m_pConnPoint == NULL){
 // Something went wrong, try to gracefully quit
 }

 DWORD dwCookie;

 //Advise
 hr = m_pConnPoint->Advise(this, &dwCookie);
}

Figure 6 Implementations of IManipulationProcessor and IInertiaProcesor Constructors

www.msdnmagazine.com

msdn magazine90 Going Places

Now when you scale an object, scale values less than 4,000
centi pixels are ignored by the application. Each Drawable
object can have unique constraints set in the SetUpManipulator
method to ensure that the object can be manipulated in an
appropriate manner.

Natural User Interface
In an application designed to have a natural look and feel, a
user should be able to perform simultaneous manipulations on
multiple objects. Objects should have simple physics when
they’re moved across the screen, similar to how they behave in
the real world, and the user should not be able to manipulate
objects off screen.

By design, applications that use the Manipulations API should
support simultaneous manipulation of objects. Because this
example uses the Manipulations API, simultaneous manipulations
are enabled automatically. When you use the Gestures API for
Windows Touch support, simultaneous manipulation of objects
is not possible and compound gestures such as pan+zoom and
zoom+rotate aren’t either. For this reason, you should use the

Manipulations API when you are designing a Windows Touch
application that targets mobile PCs.

Th e Windows Touch API includes the IInertiaProcessor inter-
face to enable support for simple physics (inertia). IInertiaProcessor
uses some of the same methods as the IManipulationProcessor
interface to simplify adding support for inertia to applications that
are already using manipulations. To enable support for inertia,
you need to extend the existing event sink for the manipulation
processor, add a reference to an IInertiaProcessor interface instance
on the Drawable object, connect event data from the event sink to
the IInertiaProcessor object and use a timer to trigger the IInertia-
Processor interface to trigger manipulation events for inertia. Let’s
look at each operation in more detail.

First you need to update the event sink to enable support for
sending data to an IInertiaProcessor interface. Th e following
members and constructor defi nitions are added to the event sink
implementation header:

class CManipulationEventSink : _IManipulationEvents
{
public:
 CManipulationEventSink(IInertiaProcessor *inert, Drawable* d);
 CManipulationEventSink(IManipulationProcessor *manip,
IInertiaProcessor *inert, Drawable* d);

...
protected:
 IInertiaProcessor* m_pInert;
 BOOL fExtrapolating;

You also add a member and an access method to the event sink
for setting a HWND that is used for timers, as shown here:

public:
 void SetWindow(HWND hWnd) {m_hWnd = hWnd;}
...

private:
...
HWND m_hWnd;

Next, change the constructor that takes an IManipulation-
Processor interface to accept an IInertiaProcessor interface,
and add a constructor that accepts only an IInertiaProcessor
interface. Th e constructor that takes an IManipulationProcessor
interface uses the reference to the IInertiaProcessor interface
to trigger inertia from the ManipulationCompleted event. Th e
constructor that takes only an IInertiaProcessor interface handles
events that are for inertia. Figure 6 shows the implementations of
these constructors.

Next, you update the Drawable class to enable support for
inertia. Th e forward defi nition shown in Figure 7 should be added
as well as a member variable, pInert.

Th e following code shows the simplest implementation for the
SetUpInertia method. Th is method fi nishes any processing, resets
the inertia processor and then sets any confi guration settings:

void Drawable::SetUpInertia(void){
 // Complete any previous processing
 pInert->Complete();

 pInert->put_InitialOriginX(originX*100);
 pInert->put_InitialOriginY(originY*100);

 // Configure the inertia processor
 pInert->put_DesiredDeceleration(.1f);
}

interface IInertiaProcessor;
public:
...
 // Inertia Processor Initiation
 virtual void SetUpInertia(void);

...
protected:

 HWND m_hWnd;

 IManipulationProcessor* pManip;
 IInertiaProcessor* pInert;
 CManipulationEventSink* pEventSink;

Figure 7 Updating the Drawable Class

Drawable::Drawable(HWND hWnd){
. .

 // Initialize manipulators
 HRESULT hr = CoCreateInstance(CLSID_ManipulationProcessor,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IUnknown,
 (VOID**)(&pManip)
);

 // Initialize inertia processor
 hr = CoCreateInstance(CLSID_InertiaProcessor,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IUnknown,
 (VOID**)(&pInert)
);

 //TODO: test HR
 pEventSink = new CManipulationEventSink(pManip,pInert, this);
 pInertSink = new CManipulationEventSink(pInert, this);
 pEventSink->SetWindow(hWnd);
 pInertSink->SetWindow(hWnd);

 SetUpManipulator();
 SetUpInertia();
 m_hWnd = hWnd;
}

Figure 8 Incorporating the New Event Sink Constructors

91December 2009msdnmagazine.com

Aft er you update the Drawable class, change the Drawable constructor
to incorporate the new event sink constructors, as shown in Figure 8.

And now add the following timer message handler to the
main program:

 case WM_TIMER:
 // wParam indicates the timer ID
 for (int i=0; i<drawables; i++){
 if (wParam == draw[i]->GetIndex()){
 BOOL b;
 draw[i]->ProcessInertia(&b);
 }
 }
 break;

Once you have your timer handler and your timer is set up, you
need to trigger it from the completed message in the event where
there is no inertia. Figure 9 shows changes to the completed event
that start the timer when the user is fi nished manipulating an
object and stop the timer once inertia is complete.

Notice that reducing the timer interval, the third parameter for
SetTimer, results in smoother animation but triggers more update
events, potentially causing performance degradation depending on
what operations the event handlers perform. For example, changing
this value to 5 results in very smooth animation, but the window is up-
dated more frequently because of additional calls to CManipul ation -
EventSink::ManipulationDelta.

Now you can build and run your application, but without addi-
tional changes, manipulated objects will drift off screen. To prevent

objects from being manipulated off screen, confi gure the IInertia-
Processor interface to use elastic bounds. Figure 10 shows the
changes that should be made to the SetUpInertia method for the
Drawable object to initialize the screen boundaries.

Looking Forward
Using the Windows Touch API is an eff ective way to add value to
existing applications and is a great way to make your applications
stand out. Taking extra time to address the context that your
application will be used in allows you to make the most of the
Windows Touch API. If you take into consideration the mobility
and usability requirements of your application, the application
becomes more intuitive, and users need less time to discover
its functionality. (Additional resources, including the complete
documentation reference for Windows Touch, can be found on
MSDN at msdn.microsoft.com/library/dd562197(VS.85).aspx).

With the release of Windows Presentation Framework (WPF)
and .NET 4, Microsoft will support managed development using
controls that enable multiple contact points. If you are a developer
working with managed code looking to enhance your application
with multiple-input support, this release is worth checking out.
Currently, examples of managed Windows Touch wrappers for
C# are included in the Windows SDK.

GUS “GCLASSY” CLASS is a programming writer/evangelist for Microsoft,
where he has worked on Windows Touch, Tablet PC and Microsoft’s DRM
systems. He discusses developer gotchas and off ers programming examples on his
blog at gclassy.com.

THANKS to the following technical expert for reviewing this article: Xiao Tu

HRESULT STDMETHODCALLTYPE CManipulationEventSink::ManipulationCompleted(
 /* [in] */ FLOAT x,
 /* [in] */ FLOAT y,
 /* [in] */ FLOAT cumulativeTranslationX,
 /* [in] */ FLOAT cumulativeTranslationY,
 /* [in] */ FLOAT cumulativeScale,
 /* [in] */ FLOAT cumulativeExpansion,
 /* [in] */ FLOAT cumulativeRotation)
{
 m_cCompletedEventCount ++;

 m_fX = x;
 m_fY = y;

 if (m_hWnd){
 if (fExtrapolating){
 //Inertia Complete, stop the timer used for processing
 KillTimer(m_hWnd,drawable->GetIndex());
 }else{
 // Setup velocities for inertia processor
 float vX, vY, vA = 0.0f;
 m_pManip->GetVelocityX(&vX);
 m_pManip->GetVelocityY(&vY);
 m_pManip->GetAngularVelocity(&vA);

 drawable->SetUpInertia();

 // Set up the touch coordinate data
 m_pInert->put_InitialVelocityX(vX / 100);
 m_pInert->put_InitialVelocityY(vY / 100);

 // Start a timer
 SetTimer(m_hWnd, drawable->GetIndex(), 50, 0);

 // Reset sets the initial timestamp
 pInert->Reset();
 }
 }
}

Figure 9 Changes to the Completed Event

void Drawable::SetUpInertia(void){
(...)

 // Reset sets the initial timestamp
 pInert->put_DesiredDeceleration(.1f);

 RECT rect;
 GetClientRect(m_hWnd, &rect);

 int width = rect.right - rect.left;
 int height = rect.bottom - rect.top;

 int wMargin = width * .1;
 int hMargin = height * .1;

 pInert->put_BoundaryLeft(rect.left * 100);
 pInert->put_BoundaryTop(rect.top * 100);
 pInert->put_BoundaryRight(rect.right * 100);
 pInert->put_BoundaryBottom(rect.bottom * 100);

 pInert->put_ElasticMarginTop((rect.top - hMargin) * 100);
 pInert->put_ElasticMarginLeft((rect.left + wMargin) * 100);
 pInert->put_ElasticMarginRight((rect.right - wMargin) * 100);
 pInert->put_ElasticMarginBottom((rect.bottom + hMargin) * 100);

...
}

Figure 10 Initializing Screen Boundaries

www.msdnmagazine.com
http://msdn.microsoft.com/library/dd562197(VS.85).aspx
http://gclassy.com

msdn magazine92

To benefit from PLINQ, the total work in the query has to be
large enough to hide the overhead of scheduling the work on
the thread pool, and the work per element should be significant
enough to hide the small amount of overhead to process that
element. Also, PLINQ performs best when the most expensive
part of the query can be decomposed in such a way that differ-
ent worker threads evaluate the expensive computation on dif-
ferent input elements.

In the remaining part of the article, I’ll look at the types of
data-parallel patterns that can be effectively parallelized
using PLINQ.

Projection
Projection, mapping, Select operator—all these terms refer to the
same common and naturally data-parallel operation. In a projec-
tion, you have a projection function that takes one argument and
computes an answer, and you need to evaluate that function on a
set of inputs.

Projection is naturally data-parallel because the projection
function can be evaluated on different input elements concur-
rently. If the function is at least somewhat computationally ex-
pensive, PLINQ should be able to speed up the computation by
distributing the work of evaluating the function among multiple
cores on the machine.

For example, in the following query, PLINQ evaluates the calls
to ExpensiveFunc in parallel (at least on multicore machines):

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel()
 .Select(x => ExpensiveFunc(x));

foreach(var x in query)
{
 Console.WriteLine(x);
}

This block of code prints the values ExpensiveFunc(0),
ExpensiveFunc(1) and so on to ExpensiveFunc(99) on the console.
However, the values are not necessarily printed in the expected
order. By default, PLINQ treats sequences as unordered, so the
values are printed in an undefi ned order.

CONCURRENT AFFAIRS

Data-Parallel Patterns and PLINQ

Multicore processors are now ubiquitous on mainstream desktop
computers, but applications that use their full potential are still
diffi cult to write. Multicore parallelism is certainly feasible, how-
ever, and a number of popular applications have been retrofi tted
to provide a performance boost on multicore computers. Version
4 of the .NET Framework will deliver several tools that program-
mers can employ to make this task easier: a set of new coordina-
tion and synchronization primitives and data structures, the Task
Parallel Library and Parallel LINQ (PLINQ). Th is article focuses
on the last item in this list, PLINQ.

PLINQ is an interesting tool that makes writing code that scales
on multicore machines much easier—provided that your problem
matches a data-parallel pattern. PLINQ is a LINQ provider, so
to program against it, you use the familiar LINQ model. PLINQ
is very similar to LINQ to Objects, except that it uses multiple
threads to schedule the work to evaluate a query. To bind a query
to PLINQ instead of LINQ to Objects, you simply add an AsParallel
call aft er the data source, as shown in the following code. Th is step
wraps the data source with a ParallelQuery wrapper and causes the
remaining extension methods in the query to bind to PLINQ rather
than to LINQ to Objects.

IEnumerable<int> src = ...
var query =
 src.AsParallel()
 .Where(x => x % 2 == 0)
 .Select(x => Foo(x));

foreach(var x in query)
{
 Bar(x);
}

Th e same code looks like the following using the C# query syntax:
IEnumerable<int> src = ...
var query =
 from x in src.AsParallel()
 where x % 2 == 0
 select Foo(x);

foreach(var x in query)
{
 Bar(x);
}

However, putting AsParallel into a LINQ-to-Objects query does
not guarantee that your program will run faster. PLINQ attempts
to use appropriate algorithms to partition the data, execute parts
of the query independently in parallel and then merge the results.
Whether this strategy results in a performance improvement on
multicore machines depends on several factors.

IGOR OSTROVSKY

This article is based on a pre-release version of the Microsoft .NET Framework 4.
All information is subject to change.

Send your questions and comments for Igor to mmsync@microsoft.com.

mailto:mmsync@microsoft.com

93December 2009msdnmagazine.com

To tell PLINQ to treat the src array as an ordered sequence, you
can use the AsOrdered operator:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel().AsOrdered()
 .Select(x => ExpensiveFunc(x));

foreach(var x in query)
{
 Console.WriteLine(x);
}

Now the results are printed on the screen in the expected order,
from ExpensiveFunc(0) to ExpensiveFunc(99). PLINQ incurs
some additional overhead for each input element to preserve the
ordering, but this is typically only a modest cost.

In the cases that we’ve examined so far, the PLINQ query is al-
ways consumed in a for loop. In such scenarios, PLINQ sets up
asynchronous workers that compute the results in the background,
and the for loop waits whenever the next result is not yet ready.
However, this is not the only way to consume a PLINQ query.
Alternatively, you can execute the query by operators such as
ToArray, ToList and ToDictionary:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel().AsOrdered()
 .Select(x => ExpensiveFunc(x));

int[] results = query.ToArray(); // The query runs here

Again, PLINQ makes the calls to ExpensiveFunc in parallel,
speeding up the query execution. Th is time, however, the execu-
tion is synchronous—the entire query is completed on the one line
identifi ed in the code sample.

Instead of converting the results to an array, you could compute
the sum of the results, or use min, max, average, or a user-defi ned
aggregation of the results:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel()
 .Select(x => ExpensiveFunc(x));

int resultSum = query.Sum(); // The query runs here

As yet another possibility, you could execute an action for each
element produced:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel()
 .Select(x => ExpensiveFunc(x));

int resultSum = query.ForAll(
 x => Console.WriteLine(x)
);

Th ere is an important diff erence between this example, which
uses ForAll, and the fi rst example in this section, which uses a for
loop. In the ForAll example, the actions execute on the PLINQ
worker threads. In the for loop example, the loop body obviously
executes on the thread that creates the PLINQ query.

Finally, in writing parallel projection queries, you might run
into one more diffi culty that is worth calling out. PLINQ achieves
parallel execution by splitting the input sequence into multiple
sequences and then processing the sequences in parallel. Th e
sequence-splitting step is called “partitioning,” and your choice
of partitioning algorithm could have a signifi cant impact on the
performance of your queries.

PLINQ typically chooses a good algorithm to partition your
input sequence, but one case where you might want to override

PLINQ’s choice is if the input is an array (or another type imple-
menting IList). In such cases, the default PLINQ behavior is to
partition the array statically into the same number of sections
as there are cores on the machine. But if the cost of the projec-
tion element varies per element, all expensive elements could
end up in one partition.

To get PLINQ to use a load-balancing partitioning algorithm
for arrays (or other IList types), you can use the Partitioner.Create
method, passing in a true value for the loadBalancing argument:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = Partitioner.Create(src, true).AsParallel()
 .Select(x => ExpensiveFunc(x));

foreach(var x in query)
{
 Console.WriteLine(x);
}

Filtering
A slight variation of the projection pattern is fi ltering. Here,
instead of having a projection function that computes an output from
each input, you have a fi ltering function that decides whether a
particular element should be included in the output.

For best parallel speedup, the fi ltering function should be com-
putationally expensive to evaluate. In certain cases, fi ltering with
even a cheap function might scale very well, especially when the
fi ltering function rejects most inputs. In this sample, PLINQ prints
those numbers in the range [0 to 99] on which ExpensiveFilter
returns true:

int[] src = Enumerable.Range(0, 100).ToArray();
var query = src.AsParallel()
 .Where(x => ExpensiveFilter(x));

foreach(var x in query)
{
 Console.WriteLine(x);
}

As in the fi rst projection example, the results here will be unor-
dered. Th e solution to making the results ordered is the same: sim-
ply add AsOrdered aft er AsParallel. In fact, all the other follow-up
points explained earlier about projections apply to fi ltering as well.
Th is means that the query can be consumed using foreach, ToArray/
ToList/ToDictionary, aggregation, or ForAll. Also, you may want
to override the default partitioning scheme if your input is in an
array, and static partitioning may lead to load imbalances. (Th ese
options work generally the same way for the remaining patterns
in this article as well.)

Independent Actions
In the projection and fi ltering patterns, the expensive part of
the computation is converting an input sequence into an output
sequence. A simpler pattern is an expensive action that needs to be
performed for each sequence element. Th e action does not need to
return a value; it simply executes some computationally expensive
and thread-safe side eff ect, as shown here:

int[] src = Enumerable.Range(0, 100).ToArray();
src.AsParallel()
.ForAll(
 x => { ExpensiveAction(x); }
);

www.msdnmagazine.com

msdn magazine94 Concurrent Affairs

For concurrency, PLINQ executes ExpensiveAction on worker
threads. Th is means that ExpensiveAction should be computa-
tionally expensive and, even more importantly, thread safe. Since
ExpensiveAction is invoked on diff erent threads, no order is
implied among the invocations.

As it turns out, this pattern is so simple that you don’t need
PLINQ and can simply use the Parallel.ForEach method available
in the Task Parallel Library (as of .NET Framework 4). However,
ForAll in PLINQ is oft en handy when it is combined with other
PLINQ operators:

int[] src = Enumerable.Range(0, 100).ToArray();
src.AsParallel()
.Where(x => x%2 == 0)
.ForAll(
 x => { ExpensiveAction(x); }
);

Sequence Zipping
Sequence zipping is a pattern similar to projection, except that two
input sequences are present rather than one. Instead of having an
expensive function that converts one input element into one output
element, you have an expensive function that converts one input
from one sequence and one input from the other sequence into a
single output element.

Th is pattern is supported by using the Zip LINQ-to-Objects
operator introduced in .NET 4.0. You can use the operator in PLINQ
as well. For the best performance, the input sequences should be
in arrays or IList collections:

int[] arr1 = ..., arr2 = ...;
int[] results =
 arr1.AsParallel().AsOrdered()
 .Zip(
 arr2.AsParallel().AsOrdered(),
 (arr1Elem, arr2Elem) => ExpensiveFunc(arr1Elem, arr2Elem))
 .ToArray();

In fact, you might notice that if you have the input sequences in
arrays, the Zip operator can be conveniently restated as a projection:

int[] arr1 = ..., arr2 = ...;
int length = Math.Min(arr1.Length, arr2.Length);
int[] results =
 ParallelEnumerable.Range(0, length).AsOrdered()
 .Select(index => ExpensiveFunc(arr1[index], arr2[index]))
 .ToArray();

Regardless of which implementation of the pattern you choose,
remember that this type of workload can be nicely sped up with
PLINQ.

Reduction
Reduction, also known as aggregation or folding, is an operation
in which elements of a sequence are combined until you are left
with a single result. Sum, average, min and max are a few popular
reductions, and these reductions are so frequently used that they are
directly supported by PLINQ as operators (Sum, Average, Min and
Max). However, these operators perform little work per element, so
in PLINQ they are usually used in queries that also contain an expen-
sive computation—a projection or a fi lter, for example. One possible
exception to this rule is a min or max operation with an expensive
comparison function. However, if the reduction function is an expen-
sive operation, a reduction can be a parallel workload in its own right.

Th ere are several diff erent overloads of Aggregate, but I will not
discuss them in this article because of space constraints. (See
blogs.msdn.com/pfxteam/archive/2008/01/22/7211660.aspx and blogs.msdn.com/
pfxteam/archive/2008/06/05/8576194.aspx for a more thorough dis-
cussion of PLINQ reductions.) Th e most general overload of
Aggregate has this signature:

public static TResult Aggregate<TSource, TAccumulate, TResult>(
 this ParallelQuery<TSource> source,
 Func<TAccumulate> seedFactory,
 Func<TAccumulate, TSource, TAccumulate> updateAccumulatorFunc,
 Func<TAccumulate, TAccumulate, TAccumulate> combineAccumulatorsFunc,
 Func<TAccumulate, TResult> resultSelector)

And here is how you’d use it to implement a parallel Average
operator:

public static double Average(this IEnumerable<int> source)
{
 return source.Aggregate(
 () => new double[2],
 (acc, elem) => {
 acc[0] += elem; acc[1]++; return acc;
 },
 (acc1, acc2) => {
 acc1[0] += acc2[0]; acc1[1] += acc2[1]; return acc1;
 },
 acc => acc[0] / acc[1]);
}

Each PLINQ worker initializes its accumulator by using seed-
Factory, so it will get its own array of two double values. Th en the
worker processes part of the input sequence, updating its accumu-
lator with each element by using updateAccumulatorFunc. Next,
diff erent workers combine their accumulators by using combine-
AccumulatorsFunc, and fi nally the single accumulator is converted
into the return value by using resultSelector.

Keep in mind that although the parallel Average opera-
tor sample is convenient for explaining the semantics of the
Aggregate operator, its work per element (two additions) is
probably too low to make parallelization worthwhile. Scenari-
os with a more expensive reduction function often come up in
the real world, though.

Sorting
LINQ supports sorting via the OrderBy operator, and PLINQ
naturally implements the sort by using a parallel algorithm.
Usually, the sorting algorithm seems to get a decent speedup against
the LINQ-to-Objects sort (perhaps two to three times on a four-
core machine). However, one fact to remember is that the LINQ-to-
Objects sorting model imposes a fairly heavy interface on OrderBy.
Th e key selector is mandatory and passed in as a delegate rather
than an expression tree, so PLINQ does not ignore the key selec-
tor even if it is an identity function, x => x. Consequently, PLINQ
manipulates key-value pairs, even in cases where keys are equal to
values. Also, as a result of the functional nature of LINQ, PLINQ
cannot sort the sequence in place even if it is in an array because
that would destroy the original sequence.

With this in mind, if you are using the LINQ-to-Objects
OrderBy operator, you should be able to speed up your query by
using PLINQ. However, if you need to sort only an array of integers,
an in-place sort like Array.Sort is likely to be faster than PLINQ’s
OrderBy. If you need to speed up an in-place sort, you might have

http://blogs.msdn.com/pfxteam/archive/2008/01/22/7211660.aspx
http://blogs.msdn.com/pfxteam/archive/2008/06/05/8576194.aspx

ON-DEMAND UNTIL
FEBRUARY 5, 2010

Learn more and register for free at SharePointVCX.com
use promo code NQ9P03

NOW AVAILABLE ON DEMAND!

SharePoint 2010 Virtual
Conference & Expo
… and it’s FREE!

Keynote Address: Arpan Shah, Director,
SharePoint Product Management team, Microsoft

Enjoy Sessions On:
• SharePoint Developer Roadmap

• A Lap Around The New Security Features in SharePoint 2010

• Silverlight and SharePoint

• Architecting a Robust Global SharePoint Infrastructure

• Setting up a SharePoint 2010 Lab on Microsoft HyperV

We’ve heard from you that it’s hard to get out of the office
these days and training dollars are limited, so we’re
bringing you a FREE virtual event on one of the most
anticipated software releases—SharePoint 2010—now
available On-Demand from the convenience of your office.

PLATINUM SPONSORS

GOLD SPONSOR

SILVER SPONSORS

TM

Project3 11/10/09 1:23 PM Page 1

www.SharePointVCX.com

msdn magazine96 Concurrent Affairs

to implement your own parallel sorting algorithm on top of Task
Parallel Library.

One-to-Many Transformation
A projection converts every input element into exactly one output
element. Using a fi lter, you can convert every input element into
zero or one output elements. But what if you want to be able to
generate an arbitrary number of outputs from each input? PLINQ
supports that case as well through the SelectMany operator. Here’s
an example:

IEnumerable<int> inputSeq = ...
int[] results =
 inputSeq.AsParallel()
 .SelectMany(input => ComputeResults(input))
 .ToArray();

Th is code calls ComputeResults on every element in the input se-
quence. Each ComputeResults returns an IEnumerable type (for exam-
ple, an array) that contains zero, one, or multiple results. Th e output of
the query contains all the results returned by the Compute Results calls.

Because this pattern is a little less intuitive than the other
patterns in this article, let’s take a look at a concrete example of its
use. Th e one-to-many pattern could implement a search algorithm
for a problem such as the familiar N-Queens problem (fi nd all place-
ments of queens on a chessboard so that no two queens attack each
other). Th e input sequence would be a sequence of chessboards
with a few queens already in place. Th en you would use a query
with the SelectMany operator to fi nd all N-Queens solutions that
can be reached starting from any of the initial states in the input:

IEnumerable<ChessboardState> initStates = GenerateInitialStates();
ChessboardState[] solutions =
 initStates.AsParallel()
 .SelectMany(board => board.FindAllSolutions())
 .ToArray();

More Complex Queries
Th e PLINQ patterns discussed in this article are all short query
snippets, generally with one or two operators. Of course, diff erent
patterns can be used together in one query. Th e following query
combines a fi lter, a projection and independent actions:

int[] src = Enumerable.Range(0, 100).ToArray();
src.AsParallel()
 .Where(x => ExpensiveFilter(x))
 .Select(x => ExpensiveFunc(x));
 .ForAll(x => { ExpensiveAction(x); });

PLINQ will effectively parallelize this query regardless of
whether the filtering, projection and side-effect actions are about
the same cost, or if one of them dominates the execution time.
And like LINQ to Objects, PLINQ does not materialize the result
set aft er each operator. So, PLINQ won’t execute the Where for the
entire sequence, store the fi ltered sequence, do the Select and fi nally
the ForAll. Operations are combined as much as possible, and in
simpler queries a worker will “fl ow” an input element through the
entire query before moving on to the next element.

In addition to combining the parallel patterns with one
another, you can combine them with any of the LINQ operators.
PLINQ strives to maintain parity with LINQ to Objects, so all
LINQ operators are available. Even though PLINQ will execute
just about any LINQ-to-Objects query, it does not necessarily

make the query faster. Some operators and query shapes do not
parallelize well, if at all. Ideally, the most computationally expen-
sive part of the query should have the form of one of the parallel
patterns from this article.

One thing to be aware of is that in some complex queries,
PLINQ decides to execute parts of the query sequentially instead
of using potentially expensive algorithms needed for parallel
execution. Th at may not be what you want, especially if your query
contains an expensive delegate that would dominate the execution
time anyway. In this code sample, PLINQ decides to execute the
ExpensiveFunc() delegates sequentially:

int[] src = Enumerable.Range(0, 100).ToArray();
int[] res = src.AsParallel()
 .Select(x => ExpensiveFunc(x))
 .TakeWhile(x => x % 2 == 0)
 .ToArray();

You can solve this issue in two ways. You can give PLINQ a
hint to execute the query in parallel, even if potentially expensive
algorithms have to be used:

int[] src = Enumerable.Range(0, 100).ToArray();
int[] res = src.AsParallel()
 .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
 .Select(x => ExpensiveFunc(x))
 .TakeWhile(x => x % 2 == 0)
 .ToArray();

Or you can decompose the query so that PLINQ executes only
the expensive part of the query and LINQ to Objects executes the
rest. You can use the AsSequential operator in a PLINQ query to
get subsequent operators to bind to LINQ to Objects:

int[] src = Enumerable.Range(0, 100).ToArray();
int[] res = src.AsParallel()
 .Select(x => ExpensiveFunc(x))
 .AsSequential()
 .TakeWhile(x => x % 2 == 0)
 .ToArray();

Make the Most of PLINQ
Writing multicore applications can be hard, but it does not always
have to be. PLINQ is a useful tool to have in your toolbox to speed
up data-parallel computations when you need to. Remember the
patterns, and use them appropriately in your programs.

IGOR OSTROVSKY is a software development engineer on the Parallel
Computing Platform team at Microsoft . He is the primary developer for PLINQ.

THANKS to the following technical experts for reviewing this article:
Michael Blome

In addition to combining the
parallel patterns with

one another, you can combine
them with any of the

LINQ operators.

Project1 11/12/09 11:21 AM Page 1

www.FarPointSpread.com

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

• Rapid dashboard development

• Flexible integration and customization

• The latest Silverlight 3.0 technology

Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries.

Project1 11/12/09 10:14 AM Page 1

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, December 2009
	Contents
	Toolbox
	CLR Inside Out
	Cutting Edge
	Test Run
	Generation Test
	Code Cleanup
	Data Access
	Team System
	Extreme ASP.NET
	Windows with C++
	Going Places
	Concurrent Affairs

