[image:]
The WDK Build Environment - 2
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The WDK Build Environment
June 8, 2009
Abstract
This paper provides information about the Windows® Driver Kit (WDK) build environment. It describes how the tools work to provide developers a better understanding of what occurs when a project is built. With a better understanding of the build process, developers can use the tools more effectively.
This paper is helpful for any developer, beginner to advanced, who writes drivers or test applications for any category of device. This paper assumes that the reader has a general understanding of how to build a driver, but would like more information about what the tools are doing during the build process.
This information applies for the following operating systems:
	Windows 7
	Windows Server® 2008
	Windows Vista®
	Windows Server 2003
	Windows XP
References and resources discussed here are listed at the end of this paper.
The current version of this paper is maintained on the Web at:
	http://www.microsoft.com/whdc/WDK_Build.mspx

Disclaimer: This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Document History
	Date
	Change
	
	
	

	June 8, 2009
	First publication

Contents
Introduction	4
WDK Build Tools and Operation	4
Setting Up the Build Environment	5
How the Build Process Works	6
Scanning the Project Files	6
Pass 0: Producing Source Code	9
Pass 1: Creating Object Files and Libraries	11
Pass 2: Creating Final Binaries	12
Optimizing the Order of Build Tasks	14
Techniques for Building Drivers	14
Building on a Multiprocessor Machine	14
Using Custom Build Steps	17
Code Optimization	18
Viewing Additional Information about the Build Process	18
Creating a Preprocessed Listing	18
Viewing Generated Assembly Code	20
Displaying the Build Environment Configuration	22
Viewing Verbose Linker Information	22
Storing Driver Package Files in a Specified Directory	23
New WDK Build Environment Features	24
Using the Default Separate Build Output Directories	24
Using Custom Build Output Directories	25
Using a Custom Object Root for Build Output	26
Placing Binary Files in a Custom Location	26
Placing Package Files Not Built during a Build	28
Summary of Build Output Macros and Parameters	30
Resources	31
Appendix. Sample Build Log	32

[bookmark: _Toc231982708]
Introduction
This paper describes the build process for drivers and associated applications that developers create by using the Windows® Driver Kit (WDK). The interfaces for the build tools are documented in the WDK. This paper provides information about how the tools work to give you a better understanding of what occurs when you build your project. This knowledge can help you troubleshoot build problems and give you greater control over the build process. For example, this paper helps you understand how the build process is organized into passes and how to place driver output files in custom locations.
[bookmark: _Toc231982709]WDK Build Tools and Operation
Table 1 provides a summary of the tools and files in the WDK build environment.
Table 1. Summary of Build Environment Components
	Description
	Component
	Consumes

	Build utilities
	build.exe
nmake.exe
	sources files, dirs files
makefile, makefile.def, makefile.inc

	File that controls the build environment
	SetEnv.bat
	

	Files that identify what is to be built
	dirs, sources, and makefile files
	

	Compiler
	cl.exe
	.cpp files, .c files, .h files

	Linker
	link.exe
	.obj files, .lib files

	Supporting tools
	midl.exe
rc.exe
binplace.exe
stampinf.exe
mofcomp.exe
	.idl files
.rc files

.inx files
.mof files

	Windows Auto Code Review (OACR) tool
	oacrcl.exe, oacrlink.exe
	oacr.ini, oacruser.ini

For descriptions of each of the build tools and files, see the WDK.
Beginning with the Windows 7 WDK, you are not required to supply a makefile for your project. You can specify all dependencies and macros in your sources files, and the rest is done in the makefile.def file that is included with the WDK. You can still create your own build rules by using a makefile.inc file.
The OACR tool is enabled by default in the Windows 7 WDK. OACR is a set of tools that use static analysis to find potential defects in your driver source code. The OACR programs are wrappers around the C/C++ compiler and the linker. For more information on OACR, see “Resources” at the end of this paper.
The following sections review how to set up the build environment and then discuss what occurs during the build process.
[bookmark: _Toc231982710]Setting Up the Build Environment
You open the build environment by using the following shortcut from the Start menu:
Start > All Programs > Windows Driver Kits > WDK_Version > Build Environments > Operating System > Build Environment

WDK_Version is the version of the WDK that you are using. Operating System is the version of Windows that your driver will run on. Build Environment specifies the target processor architecture for which you are building your driver and whether you are building a checked (debug) or a free (release) version of your driver.
For example, consider the following shortcut:
Start > All Programs > Windows Driver Kits > WDK 7001.0 > Build Environments > Windows Win7 > x86 Checked Build Environment

The preceding shortcut opens a build environment window for using the Windows 7 Release Candidate (RC) WDK to build the debug version of a driver to run on an x86 Windows 7 system. This shortcut runs the following command:
C:\Windows\System32\cmd.exe /k C:\WinDDK\7100.0.0\bin\setenv.bat C:\WinDDK\7100.0.0\ chk x86 Win7

The examples in this paper show 7100.0 as the version number for the WDK. Your version might vary, depending on which version of the WDK you use.
Each build environment shortcut opens a command window and runs the SetEnv.bat file that sets a number of environment variables. The shortcut you choose sets parameters for SetEnv.bat. The four mandatory switches are:
Root installation path for the WDK.
Type of build: chk (checked) or fre (free).
Processor architecture: x86, amd64, or ia64 (Itanium 64).
Operating system: WinXP, WinNET (Windows Server® 2003), WinLH (Windows Vista® or Windows Server 2008), and Win7 (Windows 7).

The following command-line parameters for SetEnv.bat are new in Windows 7:
oacr and no_oacr
The default is oacr, which enables the Windows OACR tool. You can change this parameter by editing the shortcut for your build environment.
separate_object_root
This parameter enables separate directories for target objects and binaries. You can change this parameter by editing the shortcut for your build environment. For more information, see “Storing Driver Package Files in a Specified Directory” later in this paper. Also see the WDK.

The SetEnv.bat file runs automatically when you open a build environment window to build a driver. Usually you can use the default values that SetEnv.bat sets for the environment variables. However, in some situations you might want to set different values for these parameters. To customize a build environment shortcut, make a copy of the shortcut from the Start menu and modify the copy for any of the four switches mentioned earlier.
[bookmark: _Toc231982711]How the Build Process Works
The Build utility—build.exe—performs its tasks in steps: a scanning phase that is followed by several other phases that are called passes (see Figure 1).

Figure 1. Steps in the build process
The Build utility completes each phase of the build before moving on to the next step.
The Build utility performs certain tasks in a given pass. For example, the Build utility typically compiles source files into object files during pass 1. For a small- or medium-sized project that resides in a single directory, the fact that the Build utility performs its steps in a set of distinct passes is insignificant. For more complicated projects, structuring the build tasks into separate passes enables the Build utility to better coordinate dependencies in the project when you use multiple threads.
Sometimes, especially when building a large project, the Build utility optimizes its actions and performs certain build tasks during a different pass than usual. For more information, see “Optimizing the Order of Build Tasks” later in this paper.
You can write scripts that you run before the Build utility runs (prebuild) or after the Build utility exits (postbuild). For example, you might run a script after a build completes to sign your driver. You can also add custom build steps during the build passes by defining them in your project’s sources and makefile.inc files.
The following sections describe what occurs in each step of the build process.
[bookmark: _Toc231982712]Scanning the Project Files
In its first step, the Build utility scans the project source tree and determines what targets must be built.
If a project is in a single directory, the Build utility gathers the information it needs from the sources file. The Build utility reads the sources file and records information from macros in the file such as TARGETNAME, TARGETTYPE, SOURCES, and INCLUDES.
If a project consists of files in a tree of directories, the Build utility scans the tree. When the Build utility finds a dirs file in a directory, it uses information in the DIRS and OPTIONAL_DIRS macros in the file to identify the subdirectories to scan. In each subdirectory, the Build utility gathers information from the sources file as described earlier. A subdirectory in a project source tree that contains a sources file is called a leaf directory or a leaf node of the project.
The OPTIONAL_DIRS macro describes directories that are not built all the time. For example, if a dirs file contains “DIRS=lib sauron driver” and ”OPTIONAL_DIRS=app”, then the command line “build –cz” builds the projects lib, sauron, and driver and the command line “build –cz app” builds the projects lib, sauron, driver, and app. With OPTIONAL_DIRS, you do not control the build order. You always build optional directories after you build required directories.
The Build utility scans the top-level directory and then recursively scans all subdirectories in dirs files. A project tree can be multiple levels deep. Each directory can have a dirs file or a sources file, but not both.
For each directory, the Build utility determines which passes are required to build each directory's targets and how to schedule the building of each directory. The scanning is a one-time step. The Build utility does not do any further scanning during subsequent build passes.
Figure 2 shows a sample set of directories for building the firefly project, which is a sample in the WDK.

Figure 2. Sample directories and files for a project
When you execute the build command in the root directory of the firefly project that is shown in Figure 2, the Build utility scans the files, beginning with that directory level. The firefly directory has a dirs file with a DIRS macro that specifies ”DIRS= lib sauron driver”. The dirs file indicates that subdirectories exist in the project. The Build utility scans the first subdirectory, scans the lib directory, and finds a sources file. The Build utility records the TARGETNAME and other information from the sources file, and then scans the rest of the subdirectories (sauron and driver). No other dirs files exist in the firefly project, so after the Build utility has scanned the lib, sauron, and driver directories, the scan is complete. The actual WDK firefly sample also has an app directory, but that directory is omitted in this example.
Note that when you first install the WDK, no dirs file exists in the firefly directory. The WDK samples ship this way to save space. The first time you run the Build utility in a samples directory, the WDK runs a makedirs utility that creates the main dirs file for the project.
When the scanning phase is complete, the Build utility has determined what passes are required to build the project targets and how the build activities will be scheduled. Figure 3 lists how the build might proceed for the firefly project in Figure 2.
Pass 0:

Run NMAKE for firefly\sauron project at pass 0 to run the tools:

Midl.exe->
Input: firefly\sauron\effects.idl
Output: effects.*

Midl.exe->
Input: firefly\sauron\isauron.idl
Output: isauron.*

Run NMAKE for firefly\driver project at pass 0 to run the tools:

mofcomp.exe->
Input: firefly\driver\firefly.mof, fireflymof.h
Output: firefly.bmf

Pass 1:

Run NMAKE for firefly\lib project at pass 1 to run the tools:

cl.exe->
Input : firefly\lib\luminous.cpp
Output :luminous.lib

Run NMAKE for firefly\sauron project at pass 1 to run the tools:

cl.exe->
Input: firefly\sauron*.c and *.h
Output: sauron.lib and sauron.exp (the import library for sauron.dll)

cl.exe->
Input: firefly\sauron\stdafx.h
Output: stdafx.pch and pch_hdr.src

Run NMAKE for firefly\driver project at pass 1 to run the tools:

cl.exe->
Input :firefly\driver*.c and *.h
Output: device.obj, driver.obj, wmi.obj vfeature.obj

rc.exe->
Input: firefly\driver\firefly.rc
Output: firefly.res

Stampinf.exe->
Input: firefly\driver\firefly.inx
Output: firefly.inf

Pass 2:

Run NMAKE for firefly\driver project at pass 2 to run the tools:

Link.exe(oacrlink.exe)->
Input: firefly\driver\obj…\device.obj, driver.obj, wmi.obj vfeature.obj
Output:firefly.sys

Run NMAKE for firefly\sauron project at pass 2 to run the tools:

Link.exe(oacrlink.exe)->Input: firefly\sauron\obj…\sauron.lib and firefly\lib\obj\luminous.lib Output: sauron.dll

Rc.exe->
Input:firefly\sauron\saurondll.rc
Output:saurondll.res
Figure 3. Sample build task list for the firefly project
As shown in Figure 3, the build activities are organized by build pass. The Build utility determines what must be done during which passes, based on the types of the files in the project and on macros and other directives. The Build utility maintains the list of build tasks internally and does not write it to a file.
Based on the list of tasks, the Build utility runs a new instance of NMAKE for each project in the source tree for each pass. NMAKE calls the necessary tools to build the project, as shown in Figure 3. At the end of each pass, the Build utility waits for all instances of NMAKE to complete before it starts the next build pass. For more information on the NMAKE utility, see “Resources.”
During the scan phase, the Build utility also creates an _objects.mac text file for each leaf node in the project (or one _objects.mac file if the project is in a single directory). The _objects.mac file is a text file that contains the object dependencies for each platform, including the library path and the output path. For more information about the _objects.mac file, see the WDK.
After the Build utility has a complete task list for the project to be built, it begins to build the project.
[bookmark: _Toc231982713]Pass 0: Producing Source Code
In pass 0, the Build utility produces source code. The Build utility runs NMAKE in any directory that requires that source code be created. NMAKE might call one or more of the following tools during pass 0:
Microsoft Interface Description Language (MIDL) compiler (Midl.exe).
Other WDK support tools such as the Stamp INF tool (Stampinf.exe) and Managed Object Format (MOF) compiler (Mofcomp.exe).
The BinPlace utility (Binplace.exe) to place files.
The Build utility does not usually call BinPlace during pass 0, but it will do so if, for example, you use the PASS0_BINPLACE macro in a sources file. For more information about the BinPlace utility, see ”Storing Driver Package Files in a Specified Directory” later in this paper.

For the sample driver in Figure 2, the Build utility runs NMAKE in the sauron directory during pass 0, passing the build pass number and certain other parameters to NMAKE. In turn, NMAKE calls Midl.exe to generate .h, .c, and .tlb (type library) files. Example 1 shows the information that is written to the build log for compiling effects.idl during pass 0.
The ellipses (”...”) in the log excerpt represent lines of the build log that are omitted from this example to save space and to focus on the driver compilation tasks. The lines starting with ”//” were added to the log excerpt for explanation; they do not appear in the actual build log file.
...
//Start building firefly\sauron on Proc2 (the running thread is designated by 2>)
2>Building generated files in c:\winddk\7100.0\src\hid\firefly\sauron *************
2>'nmake.exe /nologo BUILDMSG=Stop. -i BUILD_PASS=PASS0 NOLINK=1 PASS0ONLY=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\sauron'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\sauron
//Start Midl.exe for firefly\sauron\effects.idl at Pass0 on Proc2
2> midl /Zp8 /IC:\WinDDK\7100.0\inc\atl30 /I..\shared /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\crt /char unsigned /ms_ext /c_ext /proxy c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects_p.c /dlldata c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\dlldata.c /iid c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects_i.c /tlb c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects.tlb /header c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects.h /cpp_cmd
/DNTDDI_VERSION=0x06010000 /Di386 /D_X86_ /D_WCHAR_T_DEFINED /no_stamp /nologo -sal /win32 -target NT60 effects.idl
...
Example 1. Build log excerpt that shows midl compilation in pass 0
As shown in Example 1, the Build utility runs NMAKE and specifies that the BUILD_PASS is PASS0 and that the directory is sauron. The Build utility determines the parameters to NMAKE from rules in the project makefiles and sources files.
The ”2>” at the beginning of some of lines in the example indicates a thread number for the NMAKE process. This build was executed on a multiprocessor machine, and the Build utility used multiple threads. All threads write to the same build log file, so in a full build log on a multiprocessor machine you see multiple interleaved tasks. You can use the thread numbers at the beginning of the line numbers to help identify the interleaved tasks.
NMAKE calls Midl.exe with the correct parameters and the files that will be generated. In this example, the files are effects .c, .h and .tlb and isauron .c, .h, and .tlb.
For a complete build log for building this sample, see the “Appendix.”
By default, the build log, (build*.log) is placed in the working directory from which you run the build command.
When the Build utility completes all pass 0 tasks for a source tree, it moves on to pass 1.
[bookmark: _Toc231982714]Pass 1: Creating Object Files and Libraries
In pass 1, the Build utility compiles source code into object files and libraries.
During pass 1, the Build utility runs NMAKE in any directory that requires object files or libraries to be created. If a sources file contains the PRECOMPILE*=1 macro, then precompiled headers are built during pass 1. NMAKE might call one or more of the following tools during pass 1:
The C/C++ compiler (Cl.exe).
The Resource compiler (Rc.exe).
Other WDK support tools such as the Stampinf.exe and Mofcomp.exe.
The BinPlace utility (BinPlace.exe) to place files.
The Build utility calls BinPlace during pass 1 if you use the PASS1_BINPLACE macro in a sources file. For more information about the BinPlace utility, see “Storing Driver Package Files in a Specified Directory .”

The Build utility runs NMAKE, which runs the C/C++ compiler. For performance reasons, the Build utility internally splits pass 1 into two separate calls to NMAKE: pass 1a and pass 1b. All source compilation is done in pass 1a, and library creation is done in pass 1b. When the build is running in a single thread, it does not split pass 1 into two parts.
The compiler might be called through the OACR wrapper (Oacrcl.exe).
The resource compiler compiles .rc files into .res files, which are then linked into the final image as the resources.
Table 2 lists some common types of files that are built during pass 1.
Table 2. Common File Types Created During Pass 1
	TARGETTYPE value in sources file
	Description
	Files input to
pass 1
	Files created by pass 1
	Is target complete after pass 1?

	LIBRARY
	Static library
	.h, .c, .cpp
	.lib
	Yes

	DYNLINK
	Dynamic link library or user-mode driver
	.h, .c, .cpp
	.lib
(import library)
	No

	DRIVER
	Kernel-mode driver
	.h, .c
	.obj
	No

For example, for the sample project shown in Figure 2, the Build utility runs NMAKE in the driver subdirectory during pass 1. NMAKE calls the compiler to generate the object files. Example 2 shows the information that is written to the build log for compiling the driver files.
...
// Processing firefly\driver at pass 1 on Proc1
1>Compiling (NoSync) c:\winddk\7100.0\src\hid\firefly\driver *************
1>'nmake.exe /nologo BUILDMSG=Stop. -i BUILD_PASS=PASS1 NOLINK=1 PASS1_NOLIB=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
...
\\ Continue building firefly\driver at pass 1 on Proc1
...
1>Copyright (C) Microsoft Corporation. All rights reserved.
1> C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl @c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\cl.rsp
1>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
1>Copyright (C) Microsoft Corporation. All rights reserved.
1>cl /Fo"c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386/"
1> /FC
... \\ other switches deleted to save space
1> /wd4627
1> /typedil-
1> /FIC:\WinDDK\7100.0\inc\api\warning.h
1> .\driver.c .\device.c .\wmi.c .\vfeature.c
1>driver.c
1>device.c
1>wmi.c
1>vfeature.c
...
// Continue firefly\driver
1>Compiling c:\winddk\7100.0\src\hid\firefly\driver *************
...

Example 2. Build log excerpt that shows driver compilation in pass 1
As shown in Example 2, The Build utility runs NMAKE in thread 1 and specifies that BUILD_PASS is PASS1 and the directory is driver. NMAKE calls the OACR wrapper for the compiler (Oacrcl.exe) that, in turn, calls the compiler (Cl.exe).
When the Build utility completes all pass 1 tasks for the project, it moves on to pass 2.
[bookmark: _Toc231982715]Pass 2: Creating Final Binaries
In pass 2, the Build utility links objects and libraries into final binaries.
During pass 2, the Build utility runs NMAKE in any project that requires final binaries to be created. NMAKE might call one or more of the following tools during pass 2:
Linker (Link.exe).
Resource compiler (Rc.exe).
BinPlace utility (BinPlace.exe), to place files.

The linker might be called through the OACR wrapper (Oacrlink.exe).
The build tools usually call the resource compiler in pass 1, but they might call it in pass 2, particularly for PROGRAM and DRIVER targets. Linking when the .res file is “hot” in the file system cache improves build times.
The Build utility calls BinPlace during pass 2 if PASS2_BINPLACE or TARGET_DESTINATION macros are defined in a sources file. For more information about the BinPlace utility, see “Storing Driver Package Files in a Specified Directory” later in this paper.
Table 3 lists some common types of files that are built during pass 2.
Table 3. Common File Types Created during Pass 2
	TARGETTYPE value in sources file
	Description
	Files input to
pass 2
	Files created by pass 2

	DYNLINK
	DLL or user-mode driver
	.lib, obj
	.dll

	PROGRAM
	User-mode application
	.obj, .lib
	.exe

	DRIVER
	Kernel-mode driver
	.obj, lib
	.sys

The files that are input to pass 2 might not all be created during the same build and might reside in different directories.
For an example of pass 2 processing, consider the sample driver in Figure 2. During pass 2, the Build utility runs NMAKE in the driver directory. NMAKE calls the linker to generate the binaries. Example 3 shows the information in the build log for linking the driver binary.
As shown in Example 3, Build runs NMAKE on Processor 1 and specifies that the BUILD_PASS is PASS2 and the directory is driver. NMAKE calls the OACR wrapper for the linker (oacrlink.exe) which, in turn, calls the linker to generate the driver binary. The /out linker parameter specifies the output file name for the generated binary. For more information about the location of build output files, see “Storing Driver Package Files in a Specified Directory.”
When the Build utility completes all of the pass 2 tasks for the project, the build is finished.
...
1>Linking for c:\winddk\7100.0\src\hid\firefly\driver *************
1>'nmake.exe /nologo BUILDMSG=Stop. -i BUILD_PASS=PASS2 LINKONLY=1 NOPASS0=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
...
\\ Start Linking for firefly\driver at pass 2 on Proc1
1> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink		 /out:c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.sys /machine:ix86 @c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\lnk.rsp
...
\\ Continue linking of firefly\driver\all .obj at pass 2 on Proc1
1>Microsoft (R) Incremental Linker Version 9.00.30729.207
1>Copyright (C) Microsoft Corporation. All rights reserved.
1>/MERGE:_PAGE=PAGE
1>/MERGE:_TEXT=.text
1>/SECTION:INIT,d
... \\ other switches deleted to save space
1>/out:c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.sys
1>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.res
1>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\driver.obj
1>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\device.obj
1>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\wmi.obj
1>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\vfeature.obj
1>C:\WinDDK\7100.0\lib\win7\i386\BufferOverflowK.lib
1>C:\WinDDK\7100.0\lib\win7\i386\ntoskrnl.lib
1>C:\WinDDK\7100.0\lib\win7\i386\hal.lib
1>C:\WinDDK\7100.0\lib\win7\i386\wmilib.lib
1>C:\WinDDK\7100.0\lib\wdf\kmdf\i386\1.9\WdfLdr.lib
1>C:\WinDDK\7100.0\lib\wdf\kmdf\i386\1.9\WdfDriverEntry.lib
1>C:\WinDDK\7100.0\lib\win7\i386\hidparse.lib
...
Example 3. Build log excerpt that shows driver linking in pass 2
[bookmark: _Optimizing_the_Order][bookmark: _Toc231982716]Optimizing the Order of Build Tasks
The previous sections describe a build process during which the build tools always perform certain tasks during specific passes. Sometimes, however, the Build utility optimizes the building of your project and runs certain tasks in a different pass than usual. For example, you might notice in your log file that the Build utility called NMAKE, which called the compiler to compile a file during pass 2 instead of pass 1. The Build utility might rearrange the order of build tasks for a project to improve build speed and to optimize resource usage. No matter how the Build utility rearranges the order of the build tasks, it always preserves dependencies.
For a complete example of a build log, see the “Appendix.” This build log includes the complete firefly project, including the flicker application. For the firefly\app directory, the Build utility optimizes its tasks and runs both the compiler and the linker in pass 2.
[bookmark: _Toc231982717]Techniques for Building Drivers
The following sections provide additional information about certain aspects of the build process, such as building on a multiprocessor machine and using custom build steps.
[bookmark: _Toc231982718]Building on a Multiprocessor Machine
For most projects, you can use the WDK build environment on a multiprocessor machine without making any changes to your files. However, if you have dependencies between directories within a single build pass, you must identify those dependencies in your sources file. Dependencies between directories that are not in a single build pass do not need any special attention, because the Build utility automatically manages dependencies across build passes.
How the Build Utility Works with Multiple Processors
The SetEnv.bat files that are included with the WDK set the BUILD_MULTIPROCESSOR environment variable to 1. With this setting, the Build utility uses the same number of threads as available processors when processing each build pass. The /Mx option on the build command overrides the BUILD_MULTIPROCESSOR variable and instructs the Build utility to use x threads when processing each build pass. The Windows 7 WDK is the first WDK to set multiprocessing by default. Previous versions of the WDK defaulted to uniprocessor mode.
When you run the Build utility on a multiprocessor machine, the Build utility ensures that all the tasks from one build pass complete before it starts the next build pass. You are not required to specify any synchronization to ensure that, for example, a library that is produced in pass 1 is completed before being included in the creation of a driver .sys file during pass 2.
Specifying Dependencies in a Build Pass
The one situation where you must modify your sources files for building on a multiprocessor machine is when you must synchronize the building of components in different directories during the same build pass. For example, if you are building two static libraries where one library depends on the other, you must identify that dependency to the Build utility.
To specify such a dependency, use an Xxx_PRODUCES macro in your sources file to identify a component that another component uses. Then use an Xxx_CONSUMES macro to identify a dependency on another component that is built during the same build pass. An Xxx_PRODUCES macro can have one or more matching Xxx_CONSUMES macros. Table 4 lists the macros for identifying dependencies in each build pass.
Table 4. Xxx_PRODUCES and Xxx_CONSUMES Macros
	Build Pass
	Xxx_PRODUCES macro
	Xxx_CONSUMES macro

	Pass 0
	BUILD_PASS0_PRODUCES
	BUILD_PASS0_CONSUMES

	Pass 1
	BUILD_PRODUCES
	BUILD_CONSUMES

	Pass 2
	BUILD_PASS2_PRODUCES
	BUILD_PASS2_CONSUMES

The Build utility matches producers with consumers by matching the string in the macros. For example, consider the sample project in Figure 4.

Figure 4. Sample project with a build dependency
Example 4 shows excerpts from the sources files for the sample project in Figure 4.
;sources file for Geometry library
...
TARGETNAME = Geometry
TARGETTYPE = LIBRARY
BUILD_PRODUCES = geometry_lib
SOURCES = \
	 Cos.c \
	 Sin.c
...

;sources file for Math library
...
TARGETNAME = Math
TARGETTYPE = LIBRARY
BUILD_CONSUMES = geometry_lib
SOURCES = Math.c
OBJLIBFILES = $(OBJ_PATH)\..\Geometry\$(O)\geometry.lib
...

;sources file for Plot project
...
TARGETNAME = Plot
TARGETTYPE = DRIVER
SOURCES = Plot.c
TARGETLIBS = $(OBJ_PATH)\..\Geometry\$(O)\Math.lib
...

Example 4. Sources files with a build dependency
In the preceding example, the Math library that is built during pass 1 depends on the Geometry library that is also built during pass 1. The BUILD_PRODUCES and BUILD_CONSUMES macros identify this dependency to the Build utility.
When dependencies exist within a build pass, the order of the directories in your dirs files is important. You must list the directories for prerequisite components before the directories for components that consume them. In the preceding example, you must list the Geometry directory in the dirs file before the Math directory. The Build utility searches dirs files depth-first to find all directories with sources files. If your project source tree is multiple layers deep, make sure that a depth-first search will find any prerequisite components before components that consume them.
If the Build utility encounters an Xxx_CONSUMES macro before it encounters a matching Xxx_PRODUCES macro, it ignores the Xxx_CONSUMES macro. If a component is missing dependent components at link time, the linker generates an error.
Listing dependent components in the correct order in your dirs files does not eliminate the need to explicitly specify the dependencies within a build pass. You must still identify dependencies in your sources files using Xxx_PRODUCES and Xxx_CONSUMES macros so that the Build utility can optimize the processing of dependent components on a multiprocessor machine.
[bookmark: _Toc231982719]Using Custom Build Steps
You can run a custom build step during any build pass by using an NTTARGETFILEx macro in your sources file and providing a makefile.inc file. The macro identifies that a custom build step is required and the makefile.inc file provides the information for performing the custom build step.
The NTTARGETFILE0, NTTARGETFILE1, and NTTARGETFILE2 macros identify custom build steps for each of the three build passes. For more information on how to use these macros, see the WDK.
We recommend that you use one of the preceding macros and do not use the NTTARGETFILES macro. The NTTARGETFILES macro does not specify the build pass during which the custom build step should be performed, so the Build utility tries to build the custom target during every pass. In this situation, you must add conditional code to your sources file if the custom step is not relevant to all build passes.
You can use a makefile.inc file to define steps to build header files that subdirectories require, to generate additional files such as text files, to copy or delete files, or to perform any other driver-specific build steps. Figure 5 illustrates how the build components work together.

Figure 5: Initiating a custom build step
As shown in Figure 5, the Build utility runs NMAKE and passes the path to the project makefile. The project makefile includes the system-supplied makefile.def file. If the project does not supply a makefile, which is optional beginning with the Windows 7 WDK, then the Build utility passes NMAKE the path to makefile.def. The makefile.def file includes makefile.new, which includes the project sources file. In this example, the project sources file contains an NTTARGETFILEx macro, which directs makefile.def (through makefile.new) to look for makefile.inc in the project directory. The makefile.inc file contains the information for the custom build step.
[bookmark: _Toc231982720]Code Optimization
The WDK provides build environments for producing checked (debug) builds to use during development and free (release) builds to generate final versions of your code. By default, the WDK build environment enables code optimization in a free build and disables code optimizations in a checked build.
The WDK uses a macro to disable code optimizations in a checked build. To disable code optimizations in a free build, add the following macro to your sources file:
MSC_OPTIMIZATION=/Od /Oi

You seldom disable code optimizations in a free build. However, this macro is useful if you must disable code optimizations in just one part of a large project.
You can use the following platform-specific macros in your sources file to override the WDK build environment setting for MSC_OPTIMIZATION:
386_OPTIMIZATION
IA64_OPTIMIZATION
AMD64_OPTIMIZATION

For example, you could specify 386_OPTIMIZATION=/Od in your sources file to disable code optimization on 386 platforms.
If you want to do source-level debugging, use a checked build that disables code optimization. Debugging optimized code can be extremely difficult.
[bookmark: _Toc231982721]Viewing Additional Information about the Build Process
This section describes techniques for gathering additional information about how the WDK build tools build your project.
[bookmark: _Toc231982722]Creating a Preprocessed Listing
A preprocessed listing of a source file can help you debug problems such as errors in macros and duplicate structure definitions. You can create a preprocessed listing by specifying the .pp file extension to the NMAKE command. In the resulting output, you can see the structures, where they are defined, and whether NMAKE retrieved headers from the correct location. To create a preprocessed listing, run the following command in a WDK build environment window:
nmake source-file-name.pp

The NMAKE utility calls the C/C++ preprocessor and sets a rule that directs the preprocessor to create a preprocessed listing. For example, if you have a source file that is named toaster.c, you can create a preprocessed listing of that source file by running the following command:
nmake toaster.pp

Preprocessing adds line numbers to the preprocessed listing file. You can use these line numbers to determine whether NMAKE retrieved headers from the correct location and which #define directives and structures it added.
Preprocessing also adds #line directives to the output file at the beginning and end of each included file and around lines that were removed by preprocessor directives that specify conditional compilation.
The preprocessed listing file is identical to the original source file, except that the compiler carries out all preprocessor directives and performs macro expansions. The #line directives are the line numbers relative to the file that they are in. Each #include is like a copy-and-paste of the included file into the main source file at the line where the #include directive is located.
Example 5 shows an excerpt from the preprocessor listing created by the ”nmake toaster.pp” command that was run on the toaster sample driver in the WDK. During preprocessing, the compiler includes a portion of the wdftypes.h header file, starting at line 61. Blanks lines in a .pp file represent blank lines or comments in the original source file.
...
#line 61 "c:\\winddk\\7100.0\\inc\\wdf\\kmdf\\1.9\\wdftypes.h"

typedef enum _WDF_TRI_STATE {
 WdfFalse = 0,
 WdfTrue = 1,
 WdfUseDefault = 2,
} WDF_TRI_STATE, *PWDF_TRI_STATE;

typedef PVOID WDFCONTEXT;

typedef struct WDFDEVICE_INIT *PWDFDEVICE_INIT;

typedef struct _WDF_OBJECT_ATTRIBUTES *PWDF_OBJECT_ATTRIBUTES;

...
Example 5. Sample preprocessor listing (excerpt from toaster.pp)
Example 6 shows an excerpt from the wdftypes.h header file, beginning at line 61.
...
//
// Do not create an invalid value for this enum in case driver writers // mix up the usage of WdfFalse/FALSE and WdfTrue/TRUE.
//
typedef enum _WDF_TRI_STATE {
 WdfFalse = FALSE,
 WdfTrue = TRUE,
 WdfUseDefault = 2,
} WDF_TRI_STATE, *PWDF_TRI_STATE;

typedef PVOID WDFCONTEXT;

//
// Forward declare structures needed later header files
//
typedef struct WDFDEVICE_INIT *PWDFDEVICE_INIT;

typedef struct _WDF_OBJECT_ATTRIBUTES *PWDF_OBJECT_ATTRIBUTES;
...
Example 6. Excerpt from the wdftypes.h header file
Note that the blank lines and comment lines in the wdftypes.h header file in Example 6 result in blank lines in the toaster.pp file in Example 5.
[bookmark: _Toc231982723]Viewing Generated Assembly Code
You can create a listing of the assembly code that the compiler generates from your source code. This listing contains both the source code and the generated assembly code, which enables you to see line numbers, functions, and assembly code that can be helpful during debugging. To create an assembly code listing, issue the following command in the WDK build environment window:
nmake source-file-name.cod

Another way to generate a .cod file is to add the “/Fc” switch to your compile command line.
For example, if you have a source file that is named queue.cpp in the UMDF toaster project, you can generate an assembly listing of that file by running the following command:
nmake queue.cod

The NMAKE utility calls the compiler, and the compiler generates the assembly code listing.
Example 7 shows an excerpt from the queue.cod file that shows the source code and the generated assembly code.
...

?OnRead@CQueue@@UAGXPAUIWDFIoQueue@@PAUIWDFIoRequest@@K@Z PROC ; CQueue::OnRead, COMDAT

; 222 : {

 00000	8b ff		 npad	 2
 00002	55		 push	 ebp
 00003	8b ec		 mov	 ebp, esp
__annotation$73771:

; 223 : Trace(TRACE_LEVEL_INFORMATION,"%!FUNC!");

 00005	a1 00 00 00 00	 mov	 eax, DWORD PTR _WPP_GLOBAL_Control
 0000a	3d 00 00 00 00	 cmp	 eax, OFFSET _WPP_GLOBAL_Control
 0000f	74 1e		 je	 SHORT $LN3@OnRead
 00011	f6 40 1c 01	 test	 BYTE PTR [eax+28], 1
 00015	74 18		 je	 SHORT $LN3@OnRead
 00017	80 78 19 04	 cmp	 BYTE PTR [eax+25], 4
 0001b	72 12		 jb	 SHORT $LN3@OnRead
 0001d	68 00 00 00 00	 push	 OFFSET _WPP_Queue_cpp_Traceguids
 00022	6a 0c		 push	 12			; 0000000cH
 00024	ff 70 14	 push	 DWORD PTR [eax+20]
 00027	ff 70 10	 push	 DWORD PTR [eax+16]
 0002a	e8 00 00 00 00	 call	 _WPP_SF_@16
$LN3@OnRead:

; 224 :
; 225 : //
; 226 : // No need to check for zero-length reads.
; 227 : //
; 228 : // The framework queue is created with the flag bAllowZeroLengthRequests = FALSE.
; 229 : // FALSE indicates that the framework completes zero-length I/O requests instead
; 230 : // of putting them in the I/O queue.
; 231 : //
; 232 :
; 233 : //
; 234 : // TODO: Put your Read request processing here
; 235 : //
; 236 :
; 237 : pRequest->CompleteWithInformation(S_OK, SizeInBytes);

 0002f	ff 75 14	 push	 DWORD PTR _SizeInBytes$[ebp]
 00032	8b 45 10	 mov	 eax, DWORD PTR _pRequest$[ebp]
 00035	8b 08		 mov	 ecx, DWORD PTR [eax]
 00037	6a 00		 push	 0
 00039	50		 push	 eax
 0003a	ff 51 20	 call	 DWORD PTR [ecx+32]

; 238 :
; 239 : return;
; 240 :
; 241 : }

 0003d	5d		 pop	 ebp
 0003e	c2 10 00	 ret	 16			; 00000010H
?OnRead@CQueue@@UAGXPAUIWDFIoQueue@@PAUIWDFIoRequest@@K@Z ENDP ; CQueue::OnRead
Example 7. Sample .cod file that shows generated assembly for queue.cpp
In an assembly listing file, the source code lines are preceded by ”; line-number :”, such as ”; 239 : return” in Example 7. A line of generated assembly code contains the byte offset (such as 0003e), the OpCode or machine code for the instruction, and the mneumonic for the assembly instructions (mov, push, call, and so on). For a C++ source file, the .cod file also shows the “mangled” function names such as the one in Example 7 for the OnRead callback function.
[bookmark: _Toc231982724]Displaying the Build Environment Configuration
You can obtain information about the current configuration of your build environment by running nmake with the /P option. This command displays the values of environment variables and macros in SetEnv.bat, values of macros in your sources file, and the values of inference rules such as the number of processors that are used during the build. When you specify the /P option, NMAKE outputs information to standard output but does not build the project.
To capture the output in a file, run the following command in your WDK build environment window, with your context set to the directory where your project makefile resides:
nmake /P >build-config-output-file

The NMAKE utility writes a large amount of information to standard output. We recommend that you specify an output file name to write the listing to a file.
Example 8 shows an excerpt of the output that is generated by running nmake /P on the toaster sample driver in the WDK.
...
MSC_WARNING_LEVEL = $(MSC_WARNING_LEVEL) $(COMPILER_WX_SWITCH)
 /W4
NUMBER_OF_PROCESSORS = 2
_NT_TARGET_VERSION_WIN7 = 0x601
 0x601

// The following line shows where build output will go
 OBJ_PATH = c:\winddk\7100.0\src\general\toaster\kmdf\func\featured
 $(MAKEDIR)

// This is the directory for binplaced binaries
TARGET_DESTINATION = wdf

USE_OBJECT_ROOT = 1
 ATL_INC_PATH = C:\WinDDK\7100.0\inc
 SDK_LIB_DEST = C:\WinDDK\7100.0\lib\win7
 SDK_INC_PATH = C:\WinDDK\7100.0\inc\api
...
Example 8. Sample build configuration listing
Example 8 shows that the toaster project is built by using warning level W4, on two processors, and generates a target that runs on Windows 7. The OBJ_PATH specifies where build stores the output files, and the TARGET_DESTINATION indicates that the BinPlace feature is used to place the binary files in a directory that is named wdf.
[bookmark: _Toc231982725]Viewing Verbose Linker Information
You might have questions such as the following when you build a target:
Why did the linker pull in function Xxx from that object?
Why did the linker use function Yyy from library B instead of from library A?
Why was function Zzz not included in the final image?
What libraries are searched to produce this image?
What switches and objects are in the image?

You can use the VERBOSE linker option to obtain information to answer these questions. To set the verbose flag, run the following command in the WDK build environment window before you run the build:
set LINKER_FLAGS=$(LINKER_FLAGS) /VERBOSE

Example 9 shows an excerpt from a build log for the toaster sample in the WDK when it was built with the verbose linker output enabled.
...
Searching C:\WinDDK\7100.0\lib\win7\i386\ntoskrnl.lib:
1> Found _memset
1> Referenced in toaster.obj
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
1> Found _memcpy
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
1> Found __imp__ExFreePoolWithTag@8
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
1> Found __imp__IoWMIWriteEvent@4
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
1> Found __imp__KeQuerySystemTime@4
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
1> Found __imp__ExAllocatePoolWithTag@12
1> Referenced in wmi.obj
1> Loaded ntoskrnl.lib(ntoskrnl.exe)
...
Example 9. Sample verbose linker output in the build log
The verbose linker output in Example 9 shows that the linker found the memset and memcopy functions in the ntoskrnl.lib library.
[bookmark: _Storing_Driver_Package][bookmark: _Toc231982726]Storing Driver Package Files in a Specified Directory
When you build a project, the build tools place the output files in a subdirectory of your project directory unless you specify a different location. By default, the build tools create two levels of subdirectories that have the following name:
obj[fre|chk]_OS_build-architecture\processor-type

The build tools use $(O) to refer to this two-level subdirectory.
For example, you might run a checked build of the WDK KMDF toaster sample in the src\general\toaster\kmdf\func\featured directory. If you build the driver for Windows 7 on an x86 machine, the build tools place the build output in the following directory under the base directory of the WDK installation:
src\general\toaster\kmdf\func\featured\objchk_win7_x86\i386

The build tools refer to this directory by using the following variable:
$(OBJ_PATH)\$(O)

The OBJ_PATH is the path to the directory where your sources file and makefile reside (also called the current working directory). In the preceding example, the OBJ_PATH is src\general\toaster\kmdf\func\featured, and O is objchk_win7_x86\i386.
The new separate_object_root build parameter in Windows 7 enables you to specify an alternate location for the build output files. By using separate_object_root, you can keep your source directory tree clean and control where your build output files are placed.
The following sections describe how the build tools place the build output files and how you can control the placement of these files.
[bookmark: _Toc231982727]New WDK Build Environment Features
The WDK build environment in the Windows 7 WDK includes two new optional features:
Separate object root.
All build output files, including object files and binary files, can be placed in a separate directory tree.
Separate binary root.
All binaries and associated package files can be placed in a separate directory tree.

These two features enable your source tree to be immutable and possibly placed on an external, read-only disk. These features also make it easier to clean up the output from a particular build.
The separate object root feature specifies a location outside the source tree for placing all build output. For more information on using a separate object root, see “Using the Default Separate Build Output Directories” and “Using Custom Build Output Directories” later in this paper.
The separate binary root specifies a uniform target destination to place binaries in a common directory. To place files in a separate binary root, you can use BinPlace.exe either from a command line or by using macros in the sources file (TARGET_DESTINATION and possibly PASSn_BINPLACE). For more information on using a separate binary root, see “Placing Binary Files in a Custom Location” and “Placing Package Files Not Built during a Build” later in this paper.
[bookmark: _Using_the_Default][bookmark: _Toc231982728]Using the Default Separate Build Output Directories
When you use the Windows 7 WDK to build projects, you can direct the build tools to place the output files in a separate location by setting the new separate_object_root parameter. Setting this parameter enables a group of macros that control the placement of output files. To set this parameter, edit your WDK build environment shortcut in the Start menu and add separate_object_root to the SetEnv.bat command line. To display the value of the separate_object_root parameter, run the set command in your WDK build environment window with no parameters. If the separate_object_root parameter is enabled, the set command displays ”separate_object_root=TRUE”.
If separate_object_root is specified in your WDK build environment shortcut, SetEnv.bat defines two related macros, OBJECT_ROOT and _NTTREE, when you open a build window:
OBJECT_ROOT = %BASEDIR%.obj
_NTTREE= \ %BASEDIR%.binaries\%DDK_TARGET_OS%\%BUILD_ARCH%%DDKBUILDENV%

The OBJECT_ROOT macro defines the root of a directory tree for storing all output that the build generates, including object files, binaries, INF files, catalog files and other output files. The _NTTREE macro defines the root of a directory tree for storing final files to be packaged. The BinPlace utility copies the binary files from OBJECT_ROOT to _NTTREE.
By default, both directory trees are located under the current WDK installation directory, which is represented by BASEDIR. The other variables in the _NTTREE definition specify the operating system and the target machine architecture on which the resulting binary files run and whether it is a free or checked build.
For example, if you enable separate_object_root and then open a WDK build environment window to run a free build of a project for Windows 7 on an x86 machine, SetEnv.bat defines these macros as follows:
OBJECT_ROOT = %BASEDIR%.obj
_NTTREE = %BASEDIR%.binaries\Win7\x86fre

The build tools use OBJECT_ROOT to define the path to the object files, as follows:
$(OBJECT_ROOT)\$(OBJ_PATH)\$(O)

The project package files are placed under _NTTREE .
For example, if you run a free build of the KMDF toaster driver sample in the WDK (located in src\general\toaster\kmdf\func\featured) for Windows 7 that is running on AMD64 machines with separate_object_root enabled, the build tools place the build output files in the following directories:
All build output files:
C:\WinDDK\7100.0.obj\src\general\toaster\kmdf\func\featured\objfre_win7_amd64\amd64
Project package files:
C:\WinDDK\7100.0.binaries\Win7\amd64fre

Using the default separate object root locations when you build WDK sample drivers keeps your build output files out of the WDK sample source tree and places them in convenient locations for testing and investigation.
[bookmark: _Using_Custom_Build][bookmark: _Toc231982729]Using Custom Build Output Directories
The default separate object root directories are appropriate for projects where the source files are in the WDK tree. However, you should specify your own separate object root directory for projects that are not part of the WDK.
[bookmark: _Toc231982730]Using a Custom Object Root for Build Output
In addition to setting separate_object_root, with the Windows 7 WDK you can also specify your own location for your build output files. You redefine the OBJECT_ROOT macro by issuing a command such as the following in the WDK build environment window:
set OBJECT_ROOT = c:\myobjectroot

The build tools now place your build output files in subdirectories under the new OBJECT_ROOT directory. This includes object files, intermediate files, binary files, and other files that the build tools generate. The complete name of the build output directory is as follows:
$(OBJECT_ROOT)\$(OBJ_PATH)\$(O)

For example, for an AMD64 checked build of a project in d:\src\myproject, with OBJECT_ROOT set to c:\myobjectroot, the build tools place your build output files in the following directory:
c:\myobjectroot\src\myproject\objchk_win7_amd64\amd64

In this example, OBJECT_ROOT is c:\myobjectroot, OBJ_PATH is \src\myproject, and O is objchk_win7_amd64\amd64. Note that the output files are placed on the c: drive, as specified by OBJECT_ROOT, not on the d: drive with the source files.
When you define OBJECT_ROOT, use all lowercase letters. If you use mixed case, the build tools convert the text to lowercase.
By enabling separate_object_root and defining your own OBJECT_ROOT, you can keep your build output files out of your source tree and in an easily-located directory.
[bookmark: _Placing_Binary_Files][bookmark: _Toc231982731]Placing Binary Files in a Custom Location
In addition to using the OBJECT_ROOT macro to specify a custom location for all your build output files, you can also use the _NTTREE macro to specify a custom location for your project package files that is separate from the rest of the build output. By using _NTTREE together with the TARGET_DESTINATION macro, you can place your project package files under a separate binary root and avoid having to manually navigate and pick up the files for your driver package from various directories. The build tools call the BinPlace utility to copy files from the build output files directory to the specified binary location.
The BinPlace utility has been included in the WDK for a long time, but only with a command-line interface. However, with the build tools in the Windows 7 WDK, you can have the build tools run the BinPlace utility through macros in your sources file. The rest of this section focuses on using macros to cause the build tools to run the BinPlace utility. For information on using BinPlace from the command line, see the WDK.
A common reason for why you might be required to use BinPlace is that you must have multiple files in a package to run tests. You can direct the BinPlace utility to conveniently place all these files in one directory. For example, for a device driver package you might be required to place the driver file, the INF file, the co-installer, and the catalog file in a single directory. The benefits of using BinPlace include the following:
BinPlace creates a binplace.log file with the source and destination of each file that it copies.
You can use BinPlace to copy any number of files into the desired directories.
BinPlace can be run automatically by using macros in a sources file.
You are not required to manually run a BinPlace command each time that you build your project.

To run BinPlace through macros in your sources file, follow these steps:
1.	Set the separate_object_root parameter in your build shortcut, as described in “Using the Default Separate Build Output Directories” earlier in this paper.
This enables you to have a separate directory tree for project package files in addition to a separate directory tree for the rest of your build output files.
2.	Define _NTTREE and OBJECT_ROOT in your WDK build environment window.
Setting a custom value for _NTTREE specifies a separate directory tree for your project package files. To redefine the _NTTREE macro, issue a command such as the following in the WDK build environment window:
	set _NTTREE = c:\mybinaryroot
3.	Specify a TARGET_DESTINATION macro in your sources file.
Include the TARGET_DESTINATION macro in your sources file to specify a subdirectory under the _NTTREE root. If the TARGET_DESTINATION macro is defined, the build tools copy TARGETNAME files from the build output location to the following directory:
	$(_NTTREE)\$(TARGET_DESTINATION)
For example, if the _NTTREE macro is set to c:\mybinaryroot and the TARGET_DESTINATION macro is set to mybin in the sources file, the build tools place the TARGETNAME binary files in the following directory:
	c:\mybinaryroot\mybin

By using _NTTREE together with TARGET_DESTINATION, you can direct the BinPlace utility to place your project package files in a separate directory. The build tools call the BinPlace utility to copy files from the build output directories to the specified directories.
Depending on how many different TARGET_DESTINATION values you define in all your projects, you can place your project package files in one subdirectory under _NTTREE or in a hierarchy of subdirectories. You can use _NTTREE and TARGET_DESTINATION to create a flat directory structure for your build packages or to create a more complex directory structure, depending on your specific needs. You can define one TARGET_DESTINATION for each sources file.
The Build utility ignores the TARGET_DESTINATION macro if separate_object_root is not enabled. You can instrument your sources files for binplacing files, and then choose whether to use that feature when you run a particular build of the project based on whether you enable separate_object_root.
The BinPlace utility creates a log file that is named binplace.log and places it in a directory that the BINPLACE_LOG environment variable specifies. SetEnv.bat sets BINPLACE_LOG to %_NTTREE%\build_logs when you open a build command window. If you customize _NTTREE, you should also customize the BINPLACE_LOG environment variable to specify a directory for the BinPlace log file.
Using _NTTREE with TARGET_DESTINATION places only TARGETNAME binaries. For information on binplacing other files, see the following section, “Placing Package Files Not Built during a Build.”
Using the BinPlace utility through macros places files in the desired directories, but it does not strip symbol files or split files. Use the BinPlace utility from the command line if you must strip or split files.
[bookmark: _Placing_Package_Files][bookmark: _Toc231982732]Placing Package Files Not Built during a Build
Some of the files that you must place in a project package, such as INF files and catalog files, are not TARGETNAME binaries. To place files that are not TARGETNAME binaries, enable separate_object_root in the WDK build environment shortcut and use PASSn_BINPLACE macros in your sources file. The value of n can be 0, 1, or 2 and specifies the build pass during which the files should be placed.
If you enable separate_object_root and you include a PASSn_BINPLACE macro in your sources file, the Build utility runs the BinPlace utility at the end of pass n to copy the specified files to the desired location. You can specify PASSn_BINPLACE macros for one or more passes. The BinPlace utility copies the specified files from the OBJECT_ROOT directories and places them in the appropriate directory under the _NTTREE location.
You must specify the destination location for files that are placed by using PASSn_BINPLACE macros. You can either specify a general TARGET_DESTINATION in your sources file or specify an explicit destination in the PASSn_BINPLACE macro by using the -:DEST option.
The BinPlace utility uses the following rules to determine the file destination:
By default, BinPlace uses the destination that is specified by a TARGET_DESTINATION macro in your sources file.
A PASSn_BINPLACE macro can specify a -:DEST option to override the TARGET_DESTINATION.
If the sources file does not contain a TARGET_DESTINATION, the PASSn_BINPLACE macro must explicitly specify a destination by using the -:DEST option.
Built-in destination values, such as ”retail”, can be used with the ‑:DEST option and with TARGET_DESTINATION. For a list of these values, see the WDK.
If you override TARGET_DESTINATION by specifying the -:DEST option in a PASSn_BINPLACE macro, the new destination value stays in force for the duration of that macro unless it is changed with another -:DEST option. For example, you can specify ”-:DEST dest1 file1 file2” to place two files to a specific destination or you can specify ”-:DEST dest1 file1 -:DEST dest2 file2” to place two files to separate destinations.

Example 10 shows a sources file that places the INF file for the WDK KMDF toaster sample driver.
TARGETNAME=wdffeatured
TARGETTYPE=DRIVER

KMDF_VERSION_MAJOR=1

INF_NAME=wdffeatured

INCLUDES = $(INCLUDES);..\..\inc;..\shared

NTTARGETFILE1=$(OBJ_PATH)\$(O)\$(INF_NAME).inf

PASS1_BINPLACE=$(NTTARGETFILE1)

NTTARGETFILE0 = $(OBJ_PATH)\$(O)\toaster.bmf

#
List of source files to compile.
#
SOURCES=		\
	toaster.rc	\
	toaster.c	\
	 power.c	\
	 wmi.c

C_DEFINES=

TARGET_DESTINATION=wdf

Example 10. Sample sources file that uses PASS1_BINPLACE
In Example 10, NTTARGETFILE1 generates a custom target, which is the INF file. The sources file in Example 10 has three targets:
The wdffeatured.sys driver, which is identified by the TARGETNAME macro.
The wdffeatured.inf file (a custom target).
The toaster.bmf file (a custom target).

The example BinPlaces two of the targets:
wdffeatured.sys
Because a TARGET_DESTINATION is specified, the Build utility places any TARGETNAME targets to that destination.
wdffeatured.inf
The PASS1_BINPLACE macro causes the Build utility to call the BinPlace utility at the end of pass 1 for the INF file. The binplace macro does not specify an explicit destination, so the INF is placed to the TARGET_DESTINATION.

This sample does not place the toaster.bmf target because it is used to generate another file but it is not included on its own in the driver package.
For example, if you run an x86 free build of the WDK KMDF toaster sample for Windows 7 with separate_object_root enabled, the build tools place the wdffeatured.sys and the wdffeatured.inf files in the following location:
$(_NTTREE)\$(TARGET_DESTINATION)

By using the default value for _NTTREE and the TARGET_DESTINATION=wdf as defined in the sources file, this location would be the following:
C:\WinDDK\7100.0.binaries\Win7\x86fre\wdf

For an example of how to use the TARGET_DESTINATION and PASSn_BINPLACE macros and for further information, see the WDK sample files in \src\general\build. For descriptions of the macros and utilities, see the WDK.
[bookmark: _Toc231982733]Summary of Build Output Macros and Parameters
Table 5 provides a summary of the parameters, macros, and environment variables that are relevant to the placement of build output files.
Table 5. Parameters and Macros for Storing Driver Package Files
	Name
	Type
	Description

	separate_object_root
	build parameter
	Enables a group of macros (OBJECT_ROOT, _NTTREE, and PASSn_BINPLACE) for storing output files in separate locations.
Set by adding it to the build shortcut.

	BASEDIR
	environment variable
	In the WDK, sets the root directory of the WDK installation.

	OBJECT_ROOT
	macro
	Defines the root of a directory tree for storing all output that a build generates.
Only used if separate_object_root is enabled.
Set in the build command window.

	OBJ_PATH
	macro
	Defines the path to the directory where the project sources file and makefile reside or to the current working directory.

	_NTTREE
	macro
	Defines the root of a directory tree for storing binary files and other package files.
Only used if separate_object_root is enabled.
Set in the build command window.

	TARGET_DESTINATION
	macro
	Defines a subdirectory under _NTTREE that is the destination for BinPlace files.
Include in sources file.

	NTTARGETFILEn
	macro
	Specifies a custom build step for build pass n.
Include in sources file.

	PASSn_BINPLACE
	macro
	Specifies files that the BinPlace utility places at the end of build pass n.
Only used if separate_object_root is enabled.
Include in sources file.

	BINPLACE_LOG
	environment variable
	Specifies a custom location for the binplace.log file.

[bookmark: _Resources][bookmark: _Toc231982734]Resources
For answers to any questions about the WDK build environment, send e‑mail to wdkteam@microsoft.com.
This section lists resources for the WDK build environment.
MSDN
Tools for Building Drivers
http://msdn.microsoft.com/en-us/library/ms797164.aspx
Windows Auto Code Review (OACR)
http://msdn.microsoft.com/en-us/library/dd445214.aspx
NMAKE Reference
http://msdn.microsoft.com/en-us/library/dd9y37ha.aspx
Kits and Tools
Windows 7 WDK
The Windows 7 WDK contains the header files, build environment, and documentation for building drivers.
http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx
[bookmark: _Appendix_A_–][bookmark: _Toc231982735]Appendix. Sample Build Log
The following is an annotated build log that illustrates the information that you might see in a build log. This log was generated from a free build of the firefly sample in the WDK that was built for Windows 7 running on x86 machines. Important lines are highlighted in color. Lines that start with “//” are added here for explanation, but are not part of the actual log file.
This build was executed on a multiprocessor machine. The “>1” and “>2” marks indicate the two different threads that ran on the two processors.
BUILD: Examining c:\winddk\7100.0\src\hid\firefly directory tree for files to compile.
oacr invalidate wdksamples:x86fre /autocleanqueue
// Start building firefly\driver
1>Building generated files in c:\winddk\7100.0\src\hid\firefly\driver *************
1>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS0 NOLINK=1
PASS0ONLY=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
// Start building firefly\sauron
2>Building generated files in c:\winddk\7100.0\src\hid\firefly\sauron *************
2>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS0 NOLINK=1
PASS0ONLY=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\sauron'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\sauron
// Start makefile.inc in firefly\driver at pass 0
1> mofcomp -B:c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf firefly.mof
// Start Midl.exe for firefly\sauron\effects.idl at pass 0
2> midl /Zp8 /IC:\WinDDK\7100.0\inc\atl71 /I..\shared /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\crt /char unsigned /ms_ext /c_ext /proxy c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects_p.c /dlldata c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\dlldata.c /iid c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects_i.c /tlb c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects.tlb /header c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\effects.h /cpp_cmd C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl -DUNICODE -D_UNICODE /DNTDDI_VERSION=0x06010000 /Di386 /D_X86_ /D_WCHAR_T_DEFINED /no_stamp /nologo -sal /win32 -target NT60 effects.idl
1>Microsoft (R) MOF Compiler Version 6.1.7017.0
1>Copyright (c) Microsoft Corp. 1997-2006. All rights reserved.
1>Parsing MOF file: firefly.mof
1>MOF file has been successfully parsed
1>Storing Binary MOF data in c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf
1>Done!
1> wmimofck c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf
// Continue with idl processing at pass 0
2>Processing .\effects.idl
1>Microsoft (R) WDM Extensions To WMI MOF Checking Utility Version 1.50.0000
1>Copyright (c) Microsoft Corp. 1997-2000. All rights reserved.
1>Binary mof file c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf expanded to 1232 bytes
1> wmimofck -hc:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\fireflymof.h c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf
1>Microsoft (R) WDM Extensions To WMI MOF Checking Utility Version 1.50.0000
1>Copyright (c) Microsoft Corp. 1997-2000. All rights reserved.
1>Binary mof file c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.bmf expanded to 1232 bytes
2>effects.idl
2>Processing C:\WinDDK\7100.0\inc\api\oaidl.idl
2>oaidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\objidl.idl
2>objidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\unknwn.idl
2>unknwn.idl
2>Processing C:\WinDDK\7100.0\inc\api\wtypes.idl
2>wtypes.idl
2>Processing C:\WinDDK\7100.0\inc\api\basetsd.h
2>basetsd.h
2>Processing C:\WinDDK\7100.0\inc\api\guiddef.h
2>guiddef.h
2>Processing C:\WinDDK\7100.0\inc\api\ocidl.idl
2>ocidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\oleidl.idl
2>oleidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\servprov.idl
2>servprov.idl
2>Processing C:\WinDDK\7100.0\inc\api\urlmon.idl
2>urlmon.idl
2>Processing C:\WinDDK\7100.0\inc\api\msxml.idl
2>msxml.idl
// Start processing firefly\sauron\isauron.idl at pass 0
2> midl /Zp8 /IC:\WinDDK\7100.0\inc\atl71 /I..\shared /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\crt /char unsigned /ms_ext /c_ext /proxy c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\isauron_p.c /dlldata c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\dlldata.c /iid c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\isauron_i.c /tlb c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\isauron.tlb /header c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\isauron.h /cpp_cmd C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl -DUNICODE -D_UNICODE /DNTDDI_VERSION=0x06010000 /Di386 /D_X86_ /D_WCHAR_T_DEFINED /no_stamp /nologo -sal /win32 -target NT60 isauron.idl
2>Processing .\isauron.idl
2>isauron.idl
2>Processing C:\WinDDK\7100.0\inc\api\oaidl.idl
2>oaidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\objidl.idl
2>objidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\unknwn.idl
2>unknwn.idl
2>Processing C:\WinDDK\7100.0\inc\api\wtypes.idl
2>wtypes.idl
2>Processing C:\WinDDK\7100.0\inc\api\basetsd.h
2>basetsd.h
2>Processing C:\WinDDK\7100.0\inc\api\guiddef.h
2>guiddef.h
2>Processing C:\WinDDK\7100.0\inc\api\ocidl.idl
2>ocidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\oleidl.idl
2>oleidl.idl
2>Processing C:\WinDDK\7100.0\inc\api\servprov.idl
2>servprov.idl
2>Processing C:\WinDDK\7100.0\inc\api\urlmon.idl
2>urlmon.idl
2>Processing C:\WinDDK\7100.0\inc\api\msxml.idl
2>msxml.idl
// Continue processing of firefly\driver at pass 1
1>Compiling (NoSync) c:\winddk\7100.0\src\hid\firefly\driver *************
1>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS1 NOLINK=1
PASS1_NOLIB=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
// Start processing of firefly\lib at pass 1
2>Compiling (NoSync) c:\winddk\7100.0\src\hid\firefly\lib *************
2>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS1 NOLINK=1
MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\lib'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\lib
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl @c:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386\cl.rsp
// Start the resource compiler for firefly\driver at pass 1
1> rc.exe -l 409 -DSXS_PROCESSOR_ARCHITECTURE="""x86""" -DSXS_TARGET="""firefly.sys""" -DSYSTEM_COMPATIBLE_ASSEMBLY_NAME="""Microsoft.Windows.SystemCompatible""" -DLSYSTEM_COMPATIBLE_ASSEMBLY_NAME=L"""Microsoft.Windows.SystemCompatible""" -DSXS_ASSEMBLY_VERSION="""""" /r /fo c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.res /D_X86_=1 /Di386=1 /DSTD_CALL /DCONDITION_HANDLING=1 /DNT_UP=1 /DNT_INST=0 /DWIN32=100 /D_NT1X_=100 /DWINNT=1 /D_WIN32_WINNT=0x0601 /DWINVER=0x0601 /D_WIN32_IE=0x0800 /DWIN32_LEAN_AND_MEAN=1 /DDEVL=1 /D__BUILDMACHINE__=WinDDK /DFPO=0 /DNDEBUG /D_DLL=1 /DNDEBUG /DNTDDI_VERSION=0x06010000 /Ic:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\ddk /IC:\WinDDK\7100.0\inc\ddk /IC:\WinDDK\7100.0\inc\wdf\kmdf\1.9 /IC:\WinDDK\7100.0\inc\crt .\firefly.rc
// Continue building firefly\lib at pass 1
2>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>cl /Fo"c:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386/"
2> /FC
2> /MT
2> /U_MT
2> /Ii386
2> /I.
2> /I..\shared
2> /Ic:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\WDKSamples\inc
2> /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\internal\WDKSamples\inc
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\crt
2> /D_X86_=1
2> /Di386=1
2> /DSTD_CALL
2> /DCONDITION_HANDLING=1
2> /DNT_UP=1
2> /DNT_INST=0
2> /DWIN32=100
2> /D_NT1X_=100
2> /DWINNT=1
2> /D_WIN32_WINNT=0x0601
2> /DWINVER=0x0601
2> /D_WIN32_IE=0x0800
2> /DWIN32_LEAN_AND_MEAN=1
2> /DDEVL=1
2> /D__BUILDMACHINE__=WinDDK
2> /DFPO=0
2> /DNDEBUG
2> -DUNICODE
2> -D_UNICODE
2> /DNTDDI_VERSION=0x06010000
2> /c
2> /Zc:wchar_t-
2> /Zl
2> /Zp8
2> /Gy
2> /Gm-
2> /W4
2> /WX
2> /WX
2> /Gz
2> /hotpatch
2> /EHs-c-
2> /GR-
2> /GF
2> /GS
2> /Z7
2> /Oxs
2> /Oy-
2> /Z7
2> /DKMDF_MAJOR_VERSION_STRING=01
2> /DKMDF_MINOR_VERSION_STRING=009
2> /wd4603
2> /wd4627
2> /typedil-
2> /FIC:\WinDDK\7100.0\inc\api\warning.h
2> .\luminous.cpp
2>luminous.cpp
// Continue building firefly\driver at pass 1
1>Microsoft (R) Windows (R) Resource Compiler Version 6.1.6908.0
1>Copyright (C) Microsoft Corporation. All rights reserved.
1> C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl @c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\cl.rsp
1>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
1>Copyright (C) Microsoft Corporation. All rights reserved.
1>cl /Fo"c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386/"
1> /FC
1> /Ii386
1> /I.
1> /Ic:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386
1> /Ic:\winddk\7100.0\WDKSamples\inc
1> /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386
1> /Ic:\winddk\7100.0\internal\WDKSamples\inc
1> /IC:\WinDDK\7100.0\inc\api
1> /IC:\WinDDK\7100.0\inc\api
1> /IC:\WinDDK\7100.0\inc\ddk
1> /IC:\WinDDK\7100.0\inc\ddk
1> /IC:\WinDDK\7100.0\inc\wdf\kmdf\1.9
1> /IC:\WinDDK\7100.0\inc\crt
1> /D_X86_=1
1> /Di386=1
1> /DSTD_CALL
1> /DCONDITION_HANDLING=1
1> /DNT_UP=1
1> /DNT_INST=0
1> /DWIN32=100
1> /D_NT1X_=100
1> /DWINNT=1
1> /D_WIN32_WINNT=0x0601
1> /DWINVER=0x0601
1> /D_WIN32_IE=0x0800
1> /DWIN32_LEAN_AND_MEAN=1
1> /DDEVL=1
1> /D__BUILDMACHINE__=WinDDK
1> /DFPO=0
1> /DNDEBUG
1> /D_DLL=1
1> /DNDEBUG
1> /DNTDDI_VERSION=0x06010000
1> /c
1> /Zc:wchar_t-
1> /Zl
1> /Zp8
1> /Gy
1> /Gm-
1> -cbstring
1> /W3
1> /WX
1> /Gz
1> /hotpatch
1> /EHs-c-
1> /GR-
1> /GF
1> /GS
1> /Zi
1> /Oxs
1> /Oy-
1> /Zi
1> /Fdc:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\
1> /DKMDF_MAJOR_VERSION=1
1> /DKMDF_MINOR_VERSION=9
1> /DKMDF_MAJOR_VERSION_STRING=01
1> /DKMDF_MINOR_VERSION_STRING=009
1> /wd4603
1> /wd4627
1> /typedil-
1> /FIC:\WinDDK\7100.0\inc\api\warning.h
1> .\driver.c .\device.c .\wmi.c .\vfeature.c
1>driver.c
1>device.c
1>wmi.c
// Continue with firefly\lib at pass 1 – the result is Luminous.lib
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink /lib /out:c:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386\Luminous.lib /IGNORE:4198,4010,4037,4039,4065,4070,4078,4087,4089,4221 /WX /nodefaultlib /machine:ix86 @c:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386\lib.rsp
1>vfeature.c
2>Microsoft (R) Library Manager Version 9.00.30729.207
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>c:\winddk\7100.0\src\hid\firefly\lib\objfre_win7_x86\i386\luminous.obj
// Continue firefly\sauron at pass 1
2>Compiling (NoSync) c:\winddk\7100.0\src\hid\firefly\sauron *************
2>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS1 NOLINK=1
MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\sauron'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\sauron
1>Generating Code...
2>C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl /Ii386 /I. /IC:\WinDDK\7100.0\inc\atl71 /I..\shared /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\crt /D_X86_=1 /Di386=1 /DSTD_CALL /DCONDITION_HANDLING=1 /DNT_UP=1 /DNT_INST=0 /DWIN32=100 /D_NT1X_=100 /DWINNT=1 /D_WIN32_WINNT=0x0601 /DWINVER=0x0601 /D_WIN32_IE=0x0800 /DWIN32_LEAN_AND_MEAN=1 /DDEVL=1 /D__BUILDMACHINE__=WinDDK /DFPO=0 /DNDEBUG /D_DLL=1 /D_MT=1 -DUNICODE -D_UNICODE /DNTDDI_VERSION=0x06010000 /D_ATL_STATIC_REGISTRY /c /Zc:wchar_t- /Zl /Zp8 /Gy /Gm- /W4 /WX /WX /Gz /hotpatch /EHsc /GR /GF /GS /Zi /Oxs /Oy- /Zi /Fdc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\ /DKMDF_MAJOR_VERSION_STRING=01 /DKMDF_MINOR_VERSION_STRING=009 /wd4603 /wd4627 /typedil- /FIC:\WinDDK\7100.0\inc\api\warning.h /YlSAURON /Ycstdafx.h /Fpc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.pch /Fo"c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.obj" /Tp
// Generate precompiled headers for firefly\sauron
2>#include "stdafx.h"
2>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>cl
2> /Ii386
2> /I.
2> /IC:\WinDDK\7100.0\inc\atl71
2> /I..\shared
2> /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\WDKSamples\inc
2> /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\internal\WDKSamples\inc
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\crt
2> /D_X86_=1
2> /Di386=1
2> /DSTD_CALL
2> /DCONDITION_HANDLING=1
2> /DNT_UP=1
2> /DNT_INST=0
2> /DWIN32=100
2> /D_NT1X_=100
2> /DWINNT=1
2> /D_WIN32_WINNT=0x0601
2> /DWINVER=0x0601
2> /D_WIN32_IE=0x0800
2> /DWIN32_LEAN_AND_MEAN=1
2> /DDEVL=1
2> /D__BUILDMACHINE__=WinDDK
2> /DFPO=0
2> /DNDEBUG
2> /D_DLL=1
2> /D_MT=1
2> -DUNICODE
2> -D_UNICODE
2> /DNTDDI_VERSION=0x06010000
2> /D_ATL_STATIC_REGISTRY
2> /c
2> /Zc:wchar_t-
2> /Zl
2> /Zp8
2> /Gy
2> /Gm-
2> /W4
2> /WX
2> /WX
2> /Gz
2> /hotpatch
2> /EHsc
2> /GR
2> /GF
2> /GS
2> /Zi
2> /Oxs
2> /Oy-
2> /Zi
2> /Fdc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\
2> /DKMDF_MAJOR_VERSION_STRING=01
2> /DKMDF_MINOR_VERSION_STRING=009
2> /wd4603
2> /wd4627
2> /typedil-
2> /FIC:\WinDDK\7100.0\inc\api\warning.h
2> /YlSAURON /Ycstdafx.h /Fpc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.pch /Fo"c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.obj"
2>pch_hdr.src
// Continue building firefly\driver at pass 1
1>Compiling c:\winddk\7100.0\src\hid\firefly\driver *************
1>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS1 NOLINK=1
MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
1> copy .\firefly.inx c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.inf
1> 1 file(s) copied.
1> stampinf -f c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.inf -a x86 -k 1.9
1>Using version information from C:\WinDDK\7100.0\inc\api\ntverp.h
1>Stamping c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.inf [Version] section with DriverVer=03/23/2009,6.1.7100.0
// Continue compiling firefly\sauron at pass 1
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl @c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\cl.rsp
2>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>cl /Fo"c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386/"
2> /FC
2> /Ii386
2> /I.
2> /IC:\WinDDK\7100.0\inc\atl71
2> /I..\shared
2> /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\WDKSamples\inc
2> /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386
2> /Ic:\winddk\7100.0\internal\WDKSamples\inc
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\api
2> /IC:\WinDDK\7100.0\inc\crt
2> /D_X86_=1
2> /Di386=1
2> /DSTD_CALL
2> /DCONDITION_HANDLING=1
2> /DNT_UP=1
2> /DNT_INST=0
2> /DWIN32=100
2> /D_NT1X_=100
2> /DWINNT=1
2> /D_WIN32_WINNT=0x0601
2> /DWINVER=0x0601
2> /D_WIN32_IE=0x0800
2> /DWIN32_LEAN_AND_MEAN=1
2> /DDEVL=1
2> /D__BUILDMACHINE__=WinDDK
2> /DFPO=0
2> /DNDEBUG
2> /D_DLL=1
2> /D_MT=1
2> -DUNICODE
2> -D_UNICODE
2> /DNTDDI_VERSION=0x06010000
2> /D_ATL_STATIC_REGISTRY
2> /c
2> /Zc:wchar_t-
2> /Zl
2> /Zp8
2> /Gy
2> /Gm-
2> /W4
2> /WX
2> /WX
2> /Gz
2> /hotpatch
2> /EHsc
2> /GR
2> /GF
2> /GS
2> /Zi
2> /Oxs
2> /Oy-
2> /Zi
2> /Fdc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\
2> /DKMDF_MAJOR_VERSION_STRING=01
2> /DKMDF_MINOR_VERSION_STRING=009
2> /wd4603
2> /wd4627
2> /typedil-
2> /FIC:\WinDDK\7100.0\inc\api\warning.h
2> /Yustdafx.h
2> /Fpc:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.pch
2> .\saurondll.cpp .\sauron.cpp
2>saurondll.cpp
2>sauron.cpp
2>Generating Code...
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink /lib /out:c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\SAURON.lib @c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\lib.rsp
// Generate import library for firefly\sauron at pass 1
2>Microsoft (R) Library Manager Version 9.00.30729.207
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>/IGNORE:4198,4010,4037,4039,4065,4070,4078,4087,4089,4221
2>/WX
2>/nodefaultlib
2>/machine:ix86
2>/def:SauronDll.def
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\saurondll.obj
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\sauron.obj
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.obj
2> Creating library
c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\SAURON.lib and object
c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\SAURON.exp
// Compiling firefly\app at pass 2
1>Compiling and Linking c:\winddk\7100.0\src\hid\firefly\app *************
1>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS2 LINKONLY=1
NOPASS0=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\app'
1>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\app
// Linking firefly\driver at pass 2
2>Linking for c:\winddk\7100.0\src\hid\firefly\driver *************
2>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS2 LINKONLY=1
NOPASS0=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\driver'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\driver
1>BUILDMSG: _NT_TARGET_VERSION SET TO WINXP
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink
/out:c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.sys /machine:ix86
@c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\lnk.rsp
1> C:\WinDDK\7100.0\Bin\x86\oacr\oacrcl @c:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386\cl.rsp
2>Microsoft (R) Incremental Linker Version 9.00.30729.207
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>/MERGE:_PAGE=PAGE
2>/MERGE:_TEXT=.text
2>/SECTION:INIT,d
2>/OPT:REF
2>/OPT:ICF
2>/IGNORE:4198,4010,4037,4039,4065,4070,4078,4087,4089,4221
2>/INCREMENTAL:NO
2>/release
2>/NODEFAULTLIB
2>/WX
2>/debug
2>/debugtype:cv,fixup,pdata
2>/version:6.1
2>/osversion:6.1
2>/functionpadmin:5
2>/safeseh
2>/pdbcompress
2>/STACK:0x40000,0x1000
2>/driver
2>/base:0x10000
2>/subsystem:native,6.01
2>/entry:FxDriverEntry@8
2>/out:c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.sys
2>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\firefly.res
2>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\driver.obj
2>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\device.obj
2>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\wmi.obj
2>c:\winddk\7100.0\src\hid\firefly\driver\objfre_win7_x86\i386\vfeature.obj
2>C:\WinDDK\7100.0\lib\win7\i386\BufferOverflowK.lib
2>C:\WinDDK\7100.0\lib\win7\i386\ntoskrnl.lib
2>C:\WinDDK\7100.0\lib\win7\i386\hal.lib
2>C:\WinDDK\7100.0\lib\win7\i386\wmilib.lib
2>C:\WinDDK\7100.0\lib\wdf\kmdf\i386\1.9\WdfLdr.lib
2>C:\WinDDK\7100.0\lib\wdf\kmdf\i386\1.9\WdfDriverEntry.lib
2>C:\WinDDK\7100.0\lib\win7\i386\hidparse.lib
// Continue compiling firefly\app at pass 2
1>Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.30729.207 for 80x86
1>Copyright (C) Microsoft Corporation. All rights reserved.
1>cl /Fo"c:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386/"
1> /FC
1> /Ii386
1> /I.
1> /I..\shared
1> /Ic:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386
1> /Ic:\winddk\7100.0\WDKSamples\inc
1> /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386
1> /Ic:\winddk\7100.0\internal\WDKSamples\inc
1> /IC:\WinDDK\7100.0\inc\api
1> /IC:\WinDDK\7100.0\inc\api
1> /IC:\WinDDK\7100.0\inc\crt
1> /D_X86_=1
1> /Di386=1
1> /DSTD_CALL
1> /DCONDITION_HANDLING=1
1> /DNT_UP=1
1> /DNT_INST=0
1> /DWIN32=100
1> /D_NT1X_=100
1> /DWINNT=1
1> /D_WIN32_WINNT=0x0501
1> /DWINVER=0x0501
1> /D_WIN32_IE=0x0603
1> /DWIN32_LEAN_AND_MEAN=1
1> /DDEVL=1
1> /D__BUILDMACHINE__=WinDDK
1> /DFPO=0
1> /DNDEBUG
1> /D_DLL=1
1> /D_MT=1
1> -DUNICODE
1> -D_UNICODE
1> /DNTDDI_VERSION=0x05010200
1> /DPSAPI_VERSION=1
1> /c
1> /Zc:wchar_t-
1> /Zl
1> /Zp8
1> /Gy
1> /Gm-
1> /W4
1> /WX
1> /WX
1> /Gz
1> /hotpatch
1> /EHs-c-
1> /GR-
1> /GF
1> /GS
1> /Zi
1> /Oxs
1> /Oy-
1> /Zi
1> /Fdc:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386\
1> /DKMDF_MAJOR_VERSION_STRING=01
1> /DKMDF_MINOR_VERSION_STRING=009
1> /wd4603
1> /wd4627
1> /typedil-
1> /FIC:\WinDDK\7100.0\inc\api\warning.h
1> .\firefly.cpp
1>firefly.cpp
// Linking firefly\sauron at pass 2
2>Linking for c:\winddk\7100.0\src\hid\firefly\sauron *************
2>'nmake.exe /nologo BUILDMSG=Stop. –i BUILD_PASS=PASS2 LINKONLY=1
NOPASS0=1 MAKEDLL=1 MAKEDIR_RELATIVE_TO_BASEDIR=src\hid\firefly\sauron'
2>BUILDMSG: Processing c:\winddk\7100.0\src\hid\firefly\sauron
// Linking firefly\app at pass 2
1> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink
/out:c:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386\flicker.exe /machine:ix86
@c:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386\lnk.rsp1>Microsoft (R) Incremental Linker Version 9.00.30729.207
1>Copyright (C) Microsoft Corporation. All rights reserved.
1>/MERGE:_PAGE=PAGE
1>/MERGE:_TEXT=.text
1>/SECTION:INIT,d
1>/OPT:REF
1>/OPT:ICF
1>/IGNORE:4198,4010,4037,4039,4065,4070,4078,4087,4089,4221
1>/INCREMENTAL:NO
1>/release
1>/NODEFAULTLIB
1>/WX
1>/debug
1>/debugtype:cv,fixup,pdata
1>/version:6.1
1>/osversion:6.1
1>/functionpadmin:5
1>/safeseh
1>/nxcompat
1>/merge:.rdata=.text
1>/pdbcompress
1>/STACK:0x40000,0x2000
1>/tsaware
1>/dynamicbase
1>/subsystem:console,5.01
1>/base:0x400000
1>/entry:mainCRTStartup
1>c:\winddk\7100.0\src\hid\firefly\app\objfre_win7_x86\i386\firefly.obj
1>c:\winddk\7100.0\lib\wxp\i386\advapi32.lib
1>c:\winddk\7100.0\lib\wxp\i386\kernel32.lib
1>c:\winddk\7100.0\lib\wxp\i386\msvcrt_winxp.obj
1>C:\WinDDK\7100.0\lib\crt\i386\msvcrt.lib
1>c:\winddk\7100.0\src\hid\firefly\app\..\lib\objfre_win7_x86\i386\luminous.lib
1>c:\winddk\7100.0\lib\wxp\i386\ole32.lib
1>c:\winddk\7100.0\lib\wxp\i386\oleaut32.lib
1>c:\winddk\7100.0\lib\wxp\i386\wbemuuid.lib
1>c:\winddk\7100.0\lib\wxp\i386\sehupd.lib
// Resource compilation and linking for firefly\sauron at pass 2
2> rc.exe -l 409 -DSXS_PROCESSOR_ARCHITECTURE="""x86""" -DSXS_TARGET="""SAURON.DLL""" -DSYSTEM_COMPATIBLE_ASSEMBLY_NAME="""Microsoft.Windows.SystemCompatible""" -DLSYSTEM_COMPATIBLE_ASSEMBLY_NAME=L"""Microsoft.Windows.SystemCompatible""" -DSXS_ASSEMBLY_VERSION="""""" -n /r /fo c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\saurondll.res /D_X86_=1 /Di386=1 /DSTD_CALL /DCONDITION_HANDLING=1 /DNT_UP=1 /DNT_INST=0 /DWIN32=100 /D_NT1X_=100 /DWINNT=1 /D_WIN32_WINNT=0x0601 /DWINVER=0x0601 /D_WIN32_IE=0x0800 /DWIN32_LEAN_AND_MEAN=1 /DDEVL=1 /D__BUILDMACHINE__=WinDDK /DFPO=0 /DNDEBUG /D_DLL=1 /D_MT=1 -DUNICODE -D_UNICODE /DNTDDI_VERSION=0x06010000 /D_ATL_STATIC_REGISTRY /IC:\WinDDK\7100.0\inc\atl71 /I..\shared /Ic:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386 /Ic:\winddk\7100.0\WDKSamples\inc /Ic:\winddk\7100.0\WDKSamples\inc\objfre_win7_x86\i386 /Ic:\winddk\7100.0\internal\WDKSamples\inc /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\api /IC:\WinDDK\7100.0\inc\crt .\saurondll.rc
2>Microsoft (R) Windows (R) Resource Compiler Version 6.1.6908.0
2>Copyright (C) Microsoft Corporation. All rights reserved.
2> C:\WinDDK\7100.0\Bin\x86\oacr\oacrlink
/out:c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\SAURON.DLL /machine:ix86
@c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\lnk.rsp2>Microsoft (R) Incremental Linker Version 9.00.30729.207
2>Copyright (C) Microsoft Corporation. All rights reserved.
2>/MERGE:_PAGE=PAGE
2>/MERGE:_TEXT=.text
2>/SECTION:INIT,d
2>/OPT:REF
2>/OPT:ICF
2>/IGNORE:4198,4010,4037,4039,4065,4070,4078,4087,4089,4221
2>/INCREMENTAL:NO
2>/release
2>/NODEFAULTLIB
2>/WX
2>/debug
2>/debugtype:cv,fixup,pdata
2>/version:6.1
2>/osversion:6.1
2>/functionpadmin:5
2>/safeseh
2>/nxcompat
2>/merge:.rdata=.text
2>/pdbcompress
2>/dynamicbase
2>/STACK:0x40000,0x1000
2>/dll
2>/base:@C:\WinDDK\7100.0\bin\coffbase.txt,SAURON
2>/subsystem:windows,6.01
2>/entry:_DllMainCRTStartup@12
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\stdafx.obj
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\SAURON.exp
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\saurondll.res
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\saurondll.obj
2>c:\winddk\7100.0\src\hid\firefly\sauron\objfre_win7_x86\i386\sauron.obj
2>C:\WinDDK\7100.0\lib\atl\i386\atls.lib
2>C:\WinDDK\7100.0\lib\atl\i386\atlthunk.lib
2>C:\WinDDK\7100.0\lib\crt\i386\msvcrt.lib
2>C:\WinDDK\7100.0\lib\win7\i386\advapi32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\comctl32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\kernel32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\ole32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\oleaut32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\user32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\gdi32.lib
2>C:\WinDDK\7100.0\lib\win7\i386\uuid.lib
2>C:\WinDDK\7100.0\lib\win7\i386\wbemuuid.lib
2>c:\winddk\7100.0\src\hid\firefly\sauron\..\lib\objfre_win7_x86\i386\luminous.lib

June 8, 2009
© 2009 Microsoft Corporation. All rights reserved.
oleObject1.bin
build.exe

Pass 1

Pass 2

Before build.exe
starts

Scan

After build.exe
exits

Pass 0

image2.emf
dirs

luminous.cpp

makefile

sources

lib

src\hid\firefly

driver

makefile

makefile.inc

sources

vfeature.c

vfeature.h

wmi.c

wmi.h

device.c

device.h

driver.c

firefly.h

firefly.inx

firefly.mof

firefly.rc

magic.h

sauron

Sauron.rgs

Saurondll.cpp

Saurondll.def

Saurondll.rc

sources

StdAfx.cpp

StdAfx.h

dlldata.c

effects.h

effects.idl

iSauron.idl

makefile

resource.h

Sauron.cpp

Sauron.h

image3.emf
dirs

Cos.c

Sin.c

makefile

sources

Geometry

src\drawing

Plot

Plot.c

Plot.inx

Plot.rc

makefile

makefile.inc

sources

Math

Math.c

makefile

sources

image4.emf
makefile

sources

makefile.inc

nmake

build

...

NTTARGETFILEn=

…

…

!INCLUDE ...makefile.new

...

makefile.def

Project directory

!INCLUDE … makefile.def

…

!INCLUDE ...sources

...

makefile.new

// custom steps

WDK bin directory

oleObject2.bin
makefile

sources

makefile.inc

...
NTTARGETFILEn=
…

…
!INCLUDE ...makefile.new
...

makefile.def

Project directory

nmake

build

!INCLUDE … makefile.def

…
!INCLUDE ...sources
...

makefile.new

// custom steps

WDK bin directory

image1.emf
build.exe

Pass 0 Pass 1 Pass 2 Scan

Before

build.exe

starts

After

build.exe

exits

image5.png
l., Windows

