

MTP Responder Development Guide
Windows Embedded CE 6.0 R3 Technical Article

Writers: Mark McLemore, Harold Drews

Technical Reviewer: Alex Bussmann, Kwan-Sub Shin, Vasu Pai

Published: December 2009

Applies To: Windows Embedded CE 6.0 R3

Abstract
Device Stage, introduced in Windows 7, helps users discover and use devices that are
connected to their personal computers. MTP Responder for Windows Embedded CE 6.0
R3 adds functionality to Windows Embedded CE 6.0 R3 that helps OEMs create devices
that are compatible with Device Stage. If you are creating a device that connects to a
computer running Windows 7 through a USB or TCP/IP connection, MTP Responder for
Windows Embedded CE 6.0 R3 gives you the necessary enhancements to build
Windows 7-compatible Device Stage support into your device.

As an OEM, you can build Windows Embedded CE 6.0 R3 devices that improve the
experience Windows 7 users have with their devices. For example, you can make it
easier for users to find the representation of their device on the computer, you can
provide users with information that improves their experience with the device, and you
can present the status information about the device and the tasks that users can
perform with the device, all in a consolidated view.

MTP Responder for Windows Embedded CE 6.0 R3 provides Media Transfer Protocol
(MTP) functionality to support Device Stage. Although MTP Responder does not support
media metadata transfer, it includes storage for MTP files and folders so that users can
browse and manage files on their devices and transfer files to and from their
computers.

You can modify and extend MTP Responder to support additional MTP commands and
properties. By using an MTP extension, you can define new MTP operations, properties,
and object formats that are not part of the MTP specification.

MTP Responder also prepares your device to meet the Windows Logo requirements for
devices in the Other Portable Devices category.

MTP Responder Development Guide 1

 Microsoft ©2009

Introduction
MTP Responder for Windows Embedded CE 6.0 R3 provides enhanced Media Transfer
Protocol (MTP) functionality to support Windows 7 Device Stage. Device Stage offers a
central location in Windows for your users to discover and use their devices. When you
include Device Stage support in your device, users can get detailed information about
the device, copy files to and from the device, run device-specific tasks, read a product
manual, and buy accessories for the device, all in one handy location. Device Stage
provides these capabilities without requiring the user to download or install software.
For more information about Device Stage, see the Windows Device Experience site
(http://go.microsoft.com/fwlink/?LinkId=132146).

Device Stage communicates with your device over MTP; therefore, a device must
implement MTP to support Device Stage. MTP enables an application on a computer, the
MTP initiator, to control a portable device, the MTP responder, and transfer digital
media content and metadata between the computer and the device. The MTP initiator
and the MTP responder communicate over a communications link, or MTP transport,
typically a USB or TCP/IP connection between the computer and the device. Devices
participate in Device Stage by implementing an MTP responder that can handle Device
Stage requests from an MTP initiator over one or more MTP transports. The MTP
responder functionality provided in this release is specifically designed to support the
MTP initiator that is included in Windows 7 for Device Stage.

This guide describes the Device Stage support provided by the MTP Responder, the
functionality of each MTP Responder catalog item, MTP Responder limitations, and
prerequisites for including MTP Responder in your device. A detailed step-by-step
Device Stage implementation section explains how to install MTP Responder, how to
configure device registry settings, how to add OEM Adaptation Layer (OAL) support,
how to create presentation elements, and how to test your device with Device Stage. A
section on the MTP Responder design helps you learn more about the MTP Responder
implementation, modify the provided source code to add customizations and
extensions, and download additional software development kits and programming
documentation for MTP and Device Stage development.

Device Stage Support
When you include MTP Responder for Windows Embedded CE 6.0 R3 in your device, you
can choose from one of two supported levels of Device Stage presentation: baseline or
custom. The baseline presentation is the simplest and most essential device
presentation level, while the custom presentation offers a richer set of features for
using your device.

Baseline presentation displays a device icon, some textual information about your
device, and basic status information. MTP Responder provisions your device to
communicate this essential information about the device and its contents to Device
Stage. Using this information, MTP Responder provides the following basic Device Stage
capabilities:

• View battery status Device Stage displays battery status information if your
device reports this information.

• View storage space Device Stage displays the amount of storage space
available on your device if your device reports this information.

http://go.microsoft.com/fwlink/?LinkId=132146�

MTP Responder Development Guide

 Microsoft ©2009

• Browse files File browsing capability lets a user manage files and folders on a
device using an Explorer window on the computer and transfer files between the
device and the computer.

These basic capabilities meet the minimum functionality requirements for Windows Log
certification for the Device Stage Other Portable Devices category. For more about
Device Stage categories, see the section Windows Logo Certification below. Your device
will automatically create a baseline presentation when you include MTP Responder
catalog items in your OS design, configure registry settings with information about your
device, and implement OAL support for battery and storage status.

The custom presentation extends the baseline presentation by adding enhancements
such as branding logos, additional presentation images, custom tasks for managing the
device, and links to provide users with access to product registration, support, manuals,
applications, and accessories. To create a custom presentation, you first configure your
device to support the baseline presentation, and then you create a device metadata
package for installation on the user’s computer to add additional end-user features. You
can also implement extra functionality in your device to support custom Device Stage
tasks as part of your custom presentation.

Windows Logo Certification
Windows classifies devices into categories, based on the functionality of the device. The
MTP functionality in MTP Responder for Windows Embedded CE 6.0 R3 meets Windows
Logo certification requirements for a new category of devices called Other Portable
Devices. This category includes portable navigation devices, consumer internet devices,
digital picture frames, e-book readers, portable gaming devices, and set-top boxes. The
Other Portable Devices category is a member of the Portable Devices class. The
Portable Devices class also contains categories for cellular phones, digital cameras, and
portable media players.

Each device category has unique requirements that a device must meet to be
compatible with Device Stage and qualify for a Windows Logo. The MTP components
included in MTP Responder for Windows Embedded CE 6.0 R3 fulfill requirements only
for the Other Portable Devices category; however, you can extend the included MTP
Responder source code to meet the requirements for other Windows device categories.

For more information about Windows Logo certification and the requirements for device
certification, see the Windows Logo Program
(http://go.microsoft.com/fwlink/?LinkId=8772).

MTP Responder Components
MTP Responder is comprised of several major functional blocks; the MTP Responder
Stack, MTP Storage, and MTP Transports. You select MTP Responder functionality from
the Catalog Items View in Platform Builder, where several new catalog items are
presented: MTP Responder (default), MTP Responder (minimal), MTP USB Transport,
and MTP IP Transport. You cannot select MTP Storage as a separate catalog item; it is
included only when you select the MTP Responder (default) catalog item. For more
information about catalog items, see the section Step 2 Add Device Stage Catalog
Items to Your OS Design.

http://go.microsoft.com/fwlink/?LinkId=8772�

MTP Responder Development Guide

 Microsoft ©2009

MTP Responder Stack
The MTP Responder Stack provides MTP router, dispatcher, and command handler
functionality to support Device Stage communication with the MTP initiator included in
Windows 7. The MTP Responder Stack communicates with the user’s computer through
one or more MTP transports; you can configure the MTP Responder Stack to use a USB
connection, a TCP/IP connection, or both. You add MTP Responder Stack functionality
by adding one of the MTP Responder Stack catalog items in the Catalog Items View of
Platform Builder. To support Device Stage, you must include the MTP Responder Stack
in your OS design.

MTP Storage
MTP Storage adds file browsing capability over MTP by storing information about MTP
objects on your device. MTP Storage is optional for Device Stage support; however, file
browsing over MTP is a minimum requirement for Windows Logo certification. For more
about Windows Logo certification, see Windows Logo Certification.

MTP Transports
The MTP USB Transport provides MTP connectivity between the device and the user’s
computer through a USB connection. The MTP IP Transport provides MTP connectivity
between the device and a user’s computer through a TCP/IP connection. You can use
one or both of these transports in your device, but you must enable at least one
transport to support Device Stage.

MTP transports can be used interchangeably. Users can copy files between the device
and a Windows 7 computer over a USB connection or a TCP/IP connection. Also, users
have the ability to perform the same file browsing and device management operations
over a TCP/IP connection to the device as with a USB connection.

Limitations
MTP Responder for Windows Embedded CE 6.0 R3 has several limitations with respect
to file formats, properties, synchronization, and storage, which are described below.
However, you can modify the provided MTP Responder source code to support
additional file properties and formats, add synchronization support, or replace the
included MTP Storage component with your own storage implementation. For more
information about these modifications, see the MTP Storage section of MTP Responder
Design.

File Formats and Properties
MTP Storage supports only two object formats: Undefined (files) and Association
(folders). Your device may store many different file formats (.mp3, .jpg, and so on),
but MTP Storage treats them all as Undefined format. As a result, MTP Responder
ignores media properties found in video and audio files.

• Properties that are specific to media files, such as Artist, Title, and Album Name
cannot be stored on the device.

• Windows Media Player cannot play files transferred over MTP from the device
because these files no longer have the properties that characterize media files.

MTP Responder Development Guide

 Microsoft ©2009

Windows Media Player only recognizes devices that support media file formats
and properties.

Although MTP Storage does not support media file properties, media files managed by
MTP Storage contain a minimum set of properties, such as the file name and file type,
that must be present for use over MTP connections.

File Synchronization
MTP Responder does not provide a mechanism for users to compare the contents of
files on the device with files on a computer or update files in either location based on
that comparison.

Closed Storage Implementation
Applications cannot access storage data that is created and managed by MTP Storage;
only MTP Responder Stack can access files and object metadata managed by MTP
Storage.

Prerequisites
To build support for Device Stage into your device by using MTP Responder for Windows
Embedded CE 6.0 R3, you use the tools that you normally use for Windows Embedded
CE Development. You use a few additional tools and software development kits to test
your Device Stage presentation and create and test device metadata packages.

Windows Embedded CE
To support Device Stage, you must use Windows Embedded CE 6.0 R3. Earlier releases
of Windows Embedded CE do not include support for Device Stage. MTP Responder for
Windows Embedded CE 6.0 R3 includes an MTP responder and related functionality that
is designed for servicing Windows 7 Device Stage requests.

You use the Visual Studio integrated development environment (IDE) with the Windows
Embedded CE Platform Builder toolset to design, create, build, test, and debug your
Windows Embedded CE-based run-time image. For more information about Windows
Embedded CE development and Platform Builder, see the Platform Builder User’s Guide
(http://go.microsoft.com/fwlink/?LinkId=178104).

Metadata Tools
To support the Device Stage custom presentation, you must assemble the files that
make up a Device Stage custom presentation into a device metadata package for
installation on the user’s computer (the baseline presentation does not require a device
metadata package). For more information about creating a device metadata package
for a custom device presentation, download the Windows Device Experience
Development Kit (http://go.microsoft.com/fwlink/?LinkId=178109).

Windows 7
Windows 7 provides an MTP initiator for testing your device in addition to the
environment for building and testing device metadata packages.

http://go.microsoft.com/fwlink/?LinkId=178104�
http://go.microsoft.com/fwlink/?LinkId=178109�
http://go.microsoft.com/fwlink/?LinkId=178109�

MTP Responder Development Guide

 Microsoft ©2009

Development Steps
To configure your Windows Embedded CE 6.0 R3 OS design to support Device Stage,
follow these steps.

1. Download and install MTP Responder for Windows Embedded CE 6.0 R3, available from
the Windows Embedded CE 6.0 Download Center
(http://go.microsoft.com/fwlink/?LinkId=179042).

2. Create a baseline Device Stage presentation, which displays some identifying information
about your device, your device icon, and a standard set of status elements and tasks.

a. Choose and include MTP Responder catalog items in your OS design.
b. Create a device icon image that represents your device.
c. Populate device registry keys with information about your device.
d. Develop your OEM Adaptation Layer (OAL) to support Device Stage status and task

elements.

3. Optionally, create a custom Device Stage presentation, which includes a user interface for
your device that installs on Windows 7.

a. Create a device metadata package that installs on the user’s computer.
b. Develop any custom tasks in your device to support your device metadata package.
c. Submit your device for Windows Logo certification.
d. Submit your device metadata package to Microsoft for signing.

When you complete steps 1 through 2 above, Device Stage generates a baseline
presentation for your device automatically. When you complete steps 1 through 3
above, Device Stage displays your device with a custom presentation. Windows Logo
certification and metadata signing are required only for a custom presentation.

If you create a custom presentation, you can add status displays and tasks that are
specific to your device, promote your brand by adding custom graphic elements, and
provide users with links to product enhancements, registration sites, support sites, and
product manuals. If you don’t create a user interface, then Device Stage shows the
baseline presentation for your device.

The steps below and the links to related Web sites, software development kits, and
additional documentation will help you prepare your device for Device Stage.

Device Stage Implementation
By using MTP Responder, you take advantage of the MTP class driver support provided
in Windows, thereby reducing the need to design, develop, and support a proprietary
device connectivity solution. You provide a user with a simpler connection experience
because no additional software installation is necessary to communicate with Windows.
To add Device Stage support to your device by using MTP Responder for Windows
Embedded CE 6.0 R3, follow these steps:

Step 1 Verify System Requirements
MTP Responder for Windows Embedded CE 6.0 R3 requires the following minimum
system configurations.

http://go.microsoft.com/fwlink/?LinkId=179042�

MTP Responder Development Guide

 Microsoft ©2009

Windows Vista
If your computer runs on 32-bit Windows Vista, the following hardware and software is
required.

Hardware Requirements
• Personal computer with a 933 MHz or faster processor (2 GHz recommended)

• 512 megabytes (MB) of RAM (1 GB recommended)

• 18 gigabytes (GB) of available space on installation drive

• 1 GB of available space on system drive

• DVD-ROM drive

• Monitor that supports 1024 x 768 screen resolution with 16-bit color

Software Requirements
• Microsoft Visual Studio 2005

• Visual Studio 2005 Service Pack 1

• Visual Studio 2005 Service Pack 1 Update for Windows Vista

• Windows Embedded CE 6.0 R3

Windows Embedded CE 6.0 is available from the Windows Embedded CE 6.0 Download
Center (http://go.microsoft.com/fwlink/?LinkId=179042).

Windows XP
If your computer runs on 32-bit Windows XP Service Pack 2, the following hardware
and software is required.

Hardware Requirements
• Personal computer with a 933 MHz or faster processor (2 GHz recommended)

• 512 megabytes (MB) of RAM (1 GB recommended)

• 18 gigabytes (GB) of available space on installation drive

• 1 GB of available space on system drive

• DVD-ROM drive

• Monitor that supports 1024 x 768 screen resolution with 16-bit color

Software Requirements
• Microsoft Visual Studio 2005

• Visual Studio 2005 Service Pack 1

• Windows Embedded CE 6.0 R3

Windows Embedded CE 6.0 is available from the Windows Embedded CE 6.0 Download
Center (http://go.microsoft.com/fwlink/?LinkId=179042).

http://go.microsoft.com/fwlink/?LinkId=179042�
http://go.microsoft.com/fwlink/?LinkId=179042�

MTP Responder Development Guide

 Microsoft ©2009

Step 2 Add Device Stage Catalog Items to Your OS
Design

To add Device Stage support to your OS design, add one or more of the following
catalog items and SYSGEN variables to your OS design. Use the MTP Responder
(default) catalog item unless you intend to modify or replace the provided transport
components. If you do not use MTP Responder (default), you must include MTP
Responder (minimal) and at least one transport or use equivalent components of your
own design.

Table 1 - SYSGENs

Catalog
item

SYSGEN variable Description

MTP
Responder
(default)

SYSGEN_MTP_RESPONDER Adds all Device Stage components:
MTP Responder Stack, MTP Storage,
and all MTP transports. Includes the
software components necessary to
add Device Stage support on a CE
6.0 R3 device.

MTP
Responder
(minimal)

SYSGEN_MTP_RESPONDER_MIN Adds only the MTP Responder stack;
does not add MTP Storage or MTP
transports.

MTP USB
Transport

SYSGEN_MTP_RESPONDER_USB Adds MTP over USB transport
functionality.

MTP IP
Transport

SYSGEN_MTP_RESPONDER_IP Adds MTP over IP transport
functionality.

For information about selecting catalog items, see Adding Catalog Items to an OS
Design (http://go.microsoft.com/fwlink/?LinkId=179330). For information about setting
SYSGEN variables, see Setting or Clearing a Sysgen Variable
(http://go.microsoft.com/fwlink/?LinkId=179331).

Step 3 Configure Registry Settings in Your OS
Design

To configure registry settings in your OS design to support Device Stage, modify the
datasync.reg file, which can be found at this location:

%_WINCEROOT%\public\datasync\oak\files\datasync.reg

Device Information
To identify and install the device in Windows, associate the device with a metadata
package on the computer, and display strings in Device Stage for a baseline
presentation, you must add the device information entries listed in Table 2 to the
registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\Responder

http://go.microsoft.com/fwlink/?LinkId=179330�
http://go.microsoft.com/fwlink/?LinkId=179330�
http://go.microsoft.com/fwlink/?LinkId=179331�

MTP Responder Development Guide

 Microsoft ©2009

Table 2 - Device Information Registry Settings

Name Type Default
Value

Description

DeviceModelName REG_SZ Windows
Embedded
Generic
Device

The device model name that MTP
uses to respond to
GetDeviceInfo requests, for
example, “Contoso GPS”.

DeviceFriendlyName REG_SZ Windows
Embedded
Generic
Device

The friendly name that MTP uses
to respond to
GetDevicePropDesc requests,
for example “Contoso GPS”.

ModelID REG_SZ Generated
if not
specified

A 128-bit GUID that associates a
device with a Device Stage
presentation, regardless of how
the device is connected to the
computer. For example,
“{52620BB4-2F18-4e92-9494-
A03A38719}”.

For more information about
hardware IDs and model IDs, see
the following documents in
the Windows Device Experience
Development Kit
(http://go.microsoft.com/fwlink/
?LinkID=178109):

• Windows 7 Device Stage
Portable Device Class
Development Guide

• Windows 7 Device Stage
Reference Guide

See also ModelID
(http://go.microsoft.com/fwlink/
?LinkID=179337).

If you do not specify the
ModelID, MTP Responder will
generate one for you. See the
note below for disabling ModelID.

DeviceVersion REG_SZ No default The version information that MTP
uses to respond to
GetDeviceInfo requests, for
example “1.2”.

http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=179337�

MTP Responder Development Guide

 Microsoft ©2009

FunctionalID REG_SZ Generated
if not
specified

The 128-bit GUID—permanent
for the life of the device—that
uniquely identifies an MTP device
that is connected via multiple
transports, for example
“{2BB4074E-E469-4d1d-A028-
615D91AA4D21}”.

For more information about the
functional ID, see the MTP
Device Services Extension
Specification (http://go.microsoft
.com/fwlink/?LinkID=178887).

If you do not specify the
functional ID, MTP Responder will
generate one for you at device
boot time. See the note below
for disabling FunctionalID.

ContainerID REG_SZ Generated
if not
specified

An identifier that informs
Windows 7 that multiple
functional device instances
actually originate from the same
physical device.

For more about container IDs,
see Multifunction Device Support
and Device Container Groupings
in Windows 7
(http://go.microsoft.com/fwlink/
?LinkID=158386).

If you do not specify the
ContainerID, MTP Responder will
generate one for you at device
boot time.

Note Device Stage displays your device as a “Composite (Multi-Transport) Device”
even if the device has only one MTP transport configured. Because MTP Responder
always reports a functional ID to the MTP initiator on the user’s computer (even if you
do not configure FunctionalID in the registry settings above), Device Stage assumes
that your device supports MTP connections over more than one transport. For more
about multi-transport devices, see Multi-Transport Devices in Windows 7
(http://go.microsoft.com/fwlink/?LinkID=179542).

To disable the FunctionalID or ModelID settings, modify the devicesettings.xml file,
which can be found at this location:

%_WINCEROOT%\public\datasync\oak\files\devicesettings.xml

http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=158386�
http://go.microsoft.com/fwlink/?LinkID=158386�
http://go.microsoft.com/fwlink/?LinkID=158386�
http://go.microsoft.com/fwlink/?LinkID=179542�

MTP Responder Development Guide

 Microsoft ©2009

In <DevicePropertiesSupported>, find the declarations for the FunctionalID and
ModelID properties.

<DevicePropertiesSupported>
 <Base>0x5001</Base> <!-- BATTERYLEVEL -->
 <Base>0xD301</Base> <!-- FUNCTIONID -->
 <Base>0xD302</Base> <!-- MODELID -->
 <Base>0xD401</Base> <!-- SYNCHRONIZATIONPARTNER -->
 <Base>0xD402</Base> <!-- DEVICEFRIENDLYNAME -->
 <Base>0xD405</Base> <!-- DEVICEICON -->
</DevicePropertiesSupported>

When you remove the FUNCTIONID element shown above, MTP Responder will not
report a functional ID to the MTP initiator, even if you specify the FunctionalID in the
registry. When you remove the MODELID element shown above, MTP Responder will
not report a model ID to the MTP initiator, even if you specify the ModelID in the
registry.

Transport Information
If you are using the MTP USB transport, you must set the product ID and vendor ID
(listed in Table 3) in the registry key:

HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\MTPUSBFn

Table 3 - USB Transport Registry Settings

Name Type Default
Value

Description

idProduct REG_DWORD 0x0622 A bus-specific product identifier
that associates a device with a
Device Stage presentation, for
example, DWORD:0622. For more
information, see USB Function
Client Driver Registry Settings
(http://go.microsoft.com/fwlink/?
LinkId=179334).

idVendor REG_DWORD 0x045E A vendor ID is the 4-digit vendor
code that the USB committee
assigns to the vendor. Remember
to change this value to your
vendor ID; 045E is reserved for
use by Microsoft.

For more information, see:

• Device Identification
Strings
(http://go.microsoft.com/f
wlink/?LinkId=146573)

• Identifiers for USB Devices
(http://go.microsoft.com/f

http://go.microsoft.com/fwlink/?LinkId=179334�
http://go.microsoft.com/fwlink/?LinkId=179334�
http://go.microsoft.com/fwlink/?LinkId=146573�
http://go.microsoft.com/fwlink/?LinkId=146573�
http://go.microsoft.com/fwlink/?LinkId=179341�

MTP Responder Development Guide

 Microsoft ©2009

wlink/?LinkID=179341)

• USB Function Client Driver
Registry Settings
(http://go.microsoft.com/f
wlink/?LinkID=179334)

To obtain a vendor ID, see
the USB Web site
(http://go.microsoft.com/fwlink/?
LinkID=119292).

See also Standard USB Identifiers
(http://go.microsoft.com/fwlink/?
LinkID=179342).

If you are using the MTP IP transport, you must set the product description and the
manufacturer URL (listed in Table 4) in the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\Responder

Table 4 - IP Transport Registry Settings

Name Type Default
Value

Description

ProductDescription REG_SZ Empty
String/NULL

The user-friendly description of
the device. For example,
“Portable Navigation Device with
4.3 inch screen”.

ManufacturerURL REG_SZ Empty
String/NULL

The URL for your company’s Web
site.

Storage Configuration
For the user to be able to browse files on the device from their computer, you must
define a single storage location for MTP objects (files and folders) on the device. You
can specify the root of your device or one of its subdirectories as the MTP storage
location.

To configure the MTP storage location on your device, configure the StorageRoot,
StorageDescription, VolumeIdentifier, and AccessCapability settings (listed in Table 5)
in the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\Responder

Table 5 - Storage Registry Settings

http://go.microsoft.com/fwlink/?LinkID=179334�
http://go.microsoft.com/fwlink/?LinkID=179334�
http://go.microsoft.com/fwlink/?LinkID=119292�
http://go.microsoft.com/fwlink/?LinkID=179342�

MTP Responder Development Guide

 Microsoft ©2009

Name Type Default
Value

Description

StorageRoot REG_SZ Generated
if not
specified

The path to the MTP storage
location. This path will appear
as the root of the device’s
storage in Device Stage.

If you do not specify the
default value, MTP Responder
will default to the My
Documents folder. If the My
Documents folder is not
available, MTP Responder will
use \MTPStorageRoot.

For more information about
storage representation on MTP
devices, see the MTP 1.0
Specification
(http://go.microsoft.com/fwlin
k/?LinkID=137101).

StorageDescription REG_SZ “MTP
Storage”

A human-readable string, for
example, “My Storage”.

VolumeIdentifier REG_SZ “MTP
Volume
Identifier”

A unique identifier, such as a
serial number. Only the first
128 characters are used to
identify the device, and they
must be unique for the device.

AccessCapability REG_DWORD ACCESS_CA
PABILITY_R
EAD_WRITE
= 0

Identifies any write-protection
characteristics that globally
affect storage. You can set
AccessCapability to one of the
following values:

ACCESS_CAPABILITY_READ_
WRITE = 0

ACCESS_CAPABILITY_READ_O
NLY_WITHOUT_OBJECT_DELE
TION = 1

ACCESS_CAPABILITY_READ_O
NLY_WITH_OBJECT_DELETIO
N = 2

http://go.microsoft.com/fwlink/?LinkID=137101�
http://go.microsoft.com/fwlink/?LinkID=137101�

MTP Responder Development Guide

 Microsoft ©2009

Device Metadata Service
To transfer a custom presentation from the device to the computer when the device
first connects to the computer, you must modify the Path, ContentID, and Flags registry
settings (listed in Table 6) in the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\Responder\Metadata\<Loc
ale>

where <Locale> is the value from the Locale element in PackageInfo.xml in the
device metadata package.

Table 6 - Metadata Service Registry Settings

Name Type Default
Value

Description

Path REG_SZ No
default

The absolute path on the system to the
metadata package for the locale, for example
Hard Disk1\WDS Metadata.

ContentID REG_SZ No
default

A unique GUID string in the registry in CLSID
format (“{xxxx-…}”) that is assigned by the
Windows Logo signing process, for
example“{C23954F9-80A1-497d-AB9A-
EFE0EFCEAA9C}”.

Flags REG_DWORD No
default

1 to designate that this package has the
attribute <locale default=“true”> in the
PackageInfo.xml file in a device metadata
package; otherwise, 0 (zero).

For a list of locale identifier strings, see Locale Identifier Constants and Strings
(http://go.microsoft.com/fwlink/?LinkID=63026).

For more information about how Windows 7 uses the locales specified in device
metadata packages, see How to Localize Device Stage Experiences in the Windows 7
Device Stage Reference Guide in the Windows Device Experience Development Kit
(http://go.microsoft.com/fwlink/?LinkID=178109).

Step 4 Provide OAL Support for Device Stage
When a computer issues an MTP GetDeviceInfo request to your device, the MTP
Responder gets information about the device from the SystemParametersInfo
(http://go.microsoft.com/fwlink/?LinkID=179347) function.

To set that information, when you develop an OEM Adaptation Layer (OAL), you issue
adaptation layer I/O control codes (IOCTLs) to inform the kernel of information about
your device by calling the OEMIoControl
(http://go.microsoft.com/fwlink/?LinkID=179348) function on device startup. You use
the IOCTLS described below to set the manufacturer name and the device ID and add
support for the battery level and free storage displays.

http://go.microsoft.com/fwlink/?LinkID=63026�
http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=179347�
http://go.microsoft.com/fwlink/?LinkID=179348�

MTP Responder Development Guide

 Microsoft ©2009

Manufacturer Name
To set the manufacturer name, use the following code, where lpOutBuf is a pointer to a
buffer that contains the string representing your manufacturer name, and
lpBytesReturned is the number of bytes that you wrote to lpOutBuf.

OEMIoControl(
 IOCTL_HAL_GET_DEVICE_INFO,

 SPI_GETPLATFORMMANUFACTURER,

 4,
 lpOutBuf,

 lpBytesReturned)

Device ID
To set the device ID, use the following code, where lpOutBuf is a pointer to a buffer
that contains the string representing the device ID, and lpBytesReturned is the number
of bytes that you wrote to lpOutBuf.

OEMIoControl(
 IOCTL_HAL_GET_DEVICE_INFO,

 SPI_GETUUID,
 4,

 lpOutBuf,

 lpBytesReturned)

For more information about the device ID, see Device_ID
(http://go.microsoft.com/fwlink/?LinkID=179344) and How do I get the "right" Device
ID? (http://go.microsoft.com/fwlink/?LinkID=179345).

Battery Level
To add support for battery level, implement the
IOCTL_BATTERY_GETSYSTEMPOWERSTATUSEX2 control in your battery driver
code. This control returns a SYSTEM_POWER_STATUS_EX2 structure that reports the
battery level in the BatteryLifePercent field. Battery level is expressed as a
percentage, with a value ranging from 0 to 100. The value that your battery driver code
writes into BatteryLifePercent shows up as the battery level status for your device in
the Devices and Printers folder on the computer. You must also enable
SYSGEN_BATTERY to support battery level status in your device.

To retrieve the battery level from your device, Device Stage on the computer issues an
MTP GetDevicePropDesc request to the MTP Responder on your device. The MTP
Responder, in turn, calls the GetSystemPowerStatusEx2 function to determine the
current battery level to send back to Device Stage.

You must implement support for battery level status even if the device has no battery.
For example if the device must be connected to an A/C outlet to operate, you still must
implement support for battery level status. When plugged in to A/C power, the device
will indicate a power level of 100 percent. If you do not include

http://go.microsoft.com/fwlink/?LinkID=179344�
http://go.microsoft.com/fwlink/?LinkID=179345�
http://go.microsoft.com/fwlink/?LinkID=179345�

MTP Responder Development Guide

 Microsoft ©2009

GetSystemPowerStatusEx2 in your OS design, the device defaults to a power level of
100 percent.

For more information, see IOCTL_BATTERY_GETSYSTEMPOWERSTATUSEX2
(http://go.microsoft.com/fwlink/?LinkID=179349). For more about
GetSystemPowerStatusEx2, see GetSystemPowerStatusEx2
(http://go.microsoft.com/fwlink/?LinkID=179350).

Free Storage Space
Add support for free storage space status if you are implementing a device file system
for use with MTP Responder. To add support for free storage space status, ensure that
GetDiskFreeSpaceEx properly returns the total capacity and the amount of free
storage on your device.

To retrieve information about physical storage in your device, Device Stage issues an
MTP GetStorageInfo request to the MTP Responder in your device. The MTP
Responder, in turn, calls the GetDiskFreeSpaceEx function to determine the total
capacity and the amount of free space to send back to Device Stage. This function
returns information about the amount of space on the local file system of the device.
GetDiskFreeSpaceEx returns the total amount of space and the total amount of free
space; these quantities appear next to the image for your device in Device Stage.

For more information, see GetDiskFreeSpaceEx
(http://go.microsoft.com/fwlink/?LinkID=179351).

Step 5 Create a Presentation for Windows 7
You can either use the baseline presentation for Device Stage, which is the default, or
you can create a custom presentation.

Device Icon
When your device connects to a computer running Windows 7 for the first time, the
computer attempts to load an icon file from your device and then store this icon in a
Device Manager node on the computer. A device icon is recommended but not required
for a baseline presentation for devices in the Portable Devices category. For custom
presentations, the device icon is required in the metadata package, but it is not
required on the device.

To add an icon to your device:

1. Create an icon file in the .ico file format. See the instructions for creating icons in
the Windows 7 Device Stage Design Guide, which is in the Windows Device
Experience Development Kit (http://go.microsoft.com/fwlink/?LinkID=178109).

2. Give your device icon the following name: MTPdeviceicon.ico.
3. Copy MTPdeviceicon.ico to the \Windows directory during binary image build. For

more information about binary image build, see Binary Image Builder File
http://go.microsoft.com/fwlink/?LinkID=179354).

http://go.microsoft.com/fwlink/?LinkID=179349�
http://go.microsoft.com/fwlink/?LinkID=179350�
http://go.microsoft.com/fwlink/?LinkID=179351�
http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=179354�

MTP Responder Development Guide

 Microsoft ©2009

Baseline Presentation
The baseline presentation is a good choice if you do not want to develop a customized
metadata package and submit it to Microsoft to be signed. You can replace the baseline
presentation later with a custom presentation.

The baseline presentation contains:

• Status information from device drivers, such as battery level, storage space, storage
configuration.

• Information from the registry on your device, such as device friendly name, model
and manufacturer name.

• A device icon from the \Windows directory on the device.
The following figure shows a baseline presentation in the Device Stage window.

Figure 1 - Example Baseline Presentation

For more information about the Device Stage baseline presentation, see Windows 7
Device Stage Portable Device Class Development Guide in the Windows Device
Experience Development Kit (http://go.microsoft.com/fwlink/?LinkID=178109).

Custom Presentation
Custom presentations can include your company’s branding elements and custom tasks
that are specific to your device. When you build a custom presentation, you must
submit your device to Microsoft for Windows Logo certification. After your device is
certified, you can submit your metadata packages to Microsoft to be signed. Device
Stage only displays signed device metadata packages.

A custom presentation contains:

• Status information, which is the same as in the baseline presentation, unless you
add custom status information.

http://go.microsoft.com/fwlink/?LinkID=178109�
http://go.microsoft.com/fwlink/?LinkID=178109�

MTP Responder Development Guide

 Microsoft ©2009

• Information from XML files in a device metadata package that you create for your
device.

The following figure shows a custom presentation in the Device Stage window that
includes branding elements and custom tasks.

Figure 2 - Example Custom Presentation

For information about creating metadata packages that drive Custom Device Stage
presentations, see the Windows Device Experience Development Kit
(http://go.microsoft.com/fwlink/?LinkID=178109).

Step 6 Test Your Presentation
You can test your presentation on a computer running Windows 7.

Baseline
Use the following steps to verify that your baseline presentation functions as expected.

To test a baseline presentation

1. Connect your device to the computer using a USB cable.
2. If Device Stage does not launch, click Start and then click Devices and Printers.
3. In the Devices and Printers folder, identify the icon and text that represent your

device.
4. Right-click the icon and click Properties.
5. On the General tab, verify that the displayed text is correct, and then click Cancel.
6. In the Devices and Printers folder, double-click the icon for your device.
7. In the Device Stage window, verify that the icon and text appear as you intended.

http://go.microsoft.com/fwlink/?LinkID=178109�

MTP Responder Development Guide

 Microsoft ©2009

Custom
Device Stage only displays device metadata packages that have been signed by
Microsoft. To test a custom metadata package, you must put Windows into a special
test-signing mode.

To put Windows into test-signing mode

1. Click Start and type cmd (do not press Enter)
2. In the list of search results, right-click cmd.exe, and then click Run as

Administrator.
3. In the command window, type Bcdedit -set testsigning ON and then press

Enter. For more about this boot configuration setting, see TESTSIGNING Boot
Configuration Option (http://go.microsoft.com/fwlink/?LinkId=179113)

4. Restart your computer.
The text “Test Mode Windows 7” displays on the desktop when Windows is in test-
signing mode.

To test a custom presentation

1. Copy the device metadata package to
C:\ProgramData\Microsoft\Windows\DeviceMetadataStore\<Locale>, where
<Locale> is the value from the Locale element in PackageInfo.xml in the device
metadata package.
Note ProgramData is a hidden folder.

2. Follow steps 1-7 for the baseline presentation, above.
3. Verify that all the graphic elements, status displays, and tasks that you added to the

device metadata package are displayed.
4. Verify that the status elements display correct values for your device.
5. Verify that all the tasks function as you expect.

6. Test all the links in your presentation.

Step 7 Complete Windows Logo Testing
You can have your device certified for the Windows logo if the device is in any of the
following Device Stage Other Portable Devices categories.

• Portable navigation devices

• Consumer internet devices

• Digital picture frames

• E-book readers

• Portable gaming devices

• Set-top boxes

To qualify for Windows Logo certification, these devices must support battery level
status and free storage status and provide functionality to browse files. In addition,
there are requirements for devices in each category that you must meet to pass
Windows Logo testing. For more information, see the Windows Logo site
(http://go.microsoft.com/fwlink/?LinkId=8772).

http://go.microsoft.com/fwlink/?LinkId=179113�
http://go.microsoft.com/fwlink/?LinkId=179113�
http://go.microsoft.com/fwlink/?LinkId=8772�

MTP Responder Development Guide

 Microsoft ©2009

Step 8 Submit Your Presentation to Windows
Quality Online Services

See the Windows Quality Online Services site
(http://go.microsoft.com/fwlink/?LinkID=179356) to submit your custom metadata
package to Microsoft to be signed.

MTP Responder Design
MTP Responder for Windows Embedded CE 6.0 R3 is based on the MTP responder in the
Windows 7 Portable Device Enabling Kit (DEK) for MTP, Version 7R2. This kit contains
the source code for the reference implementations of an MTP initiator and an MTP
responder. We derived MTP Responder from the reference MTP responder in this kit,
adding functionality so that Windows Embedded CE 6.0 R3 devices support Device
Stage operations.

MTP Responder Structure
The following figure shows the two major functional blocks of the MTP Responder: the
MTP Responder Stack and MTP Storage.

Figure 3 - MTP Responder

The MTP Responder Stack implements the core MTP operations, events, properties, and
object formats of the Media Transfer Protocol (MTP). The MTP Responder Stack also
implements an extension to the MTP specification that provides support for MTP Device
Services. As shown on the left side of Figure 3, the MTP Responder Stack communicates
with an MTP initiator through either a USB or TCP/IP connection. For MTP operations

http://go.microsoft.com/fwlink/?LinkID=179356�

MTP Responder Development Guide

 Microsoft ©2009

that require access to files, metadata, or device properties, the MTP Responder Stack
calls MTP Storage (shown at the bottom of Figure 3) to process these requests. When
you add the MTP Responder (default) or MTP Responder (minimal) catalog items to your
OS design, you include the MTP Responder Stack.

MTP Storage provides support for device files and folders so that users can browse and
manage files on the device from a computer and copy files between the device and a
computer. MTP Storage supports the MTP file formats, properties, and commands that
are required for Device Stage. When you add the MTP Responder (default) catalog item
to your OS design, you automatically include MTP Storage.

MTP Responder Stack
The MTP Responder Stack is made up of several subcomponents, as shown above in
Figure 3.

• Transport Controls data transport across a USB or TCP/IP connection with the MTP
initiator. MTP Responder for Windows Embedded CE 6.0 R3 includes two transports, one
for USB and one for network connectivity.

• Router Routes MTP commands from each transport to the dispatcher, using the command
lookup table to map each command to a route through the dispatcher and command
handlers.

• Command Lookup Table Describes the route that an MTP command will take through the
dispatcher and command handlers.

• Dispatcher Forwards MTP commands from the router to the appropriate command
handler. In addition, if an MTP operation includes input data from the MTP initiator, the
dispatcher routes the data for that operation to the command handler.

• Command Handler Implements the handler routines that process the various MTP
operations supported by the MTP Responder. Each command handler processes a
particular MTP operation.

MTP Responder includes source code for a number of general-purpose functions that are
used extensively by the MTP Responder Stack. These general-purpose functions are
referred collectively as the platform services layer (PSL).

For more information about the MTP Responder Stack and the platform services layer,
see the Media Transfer Protocol Porting Kit
(http://go.microsoft.com/fwlink/?LinkID=59975).

Source Code Modification
You can modify or extend the provided MTP Responder Stack implementation to add
Device Stage features that are specific to your device. For example, you can add MTP
Device Services extensions to support device tasks for features such as credentials
provisioning or device firmware upgrade. You can also create your own event handlers
to report transfer progress or device connection and disconnection. In some cases, you
may find it necessary to customize the MTP Responder Stack to make performance or
resource optimizations unique to your device or to add support for a new MTP transport
protocol. To make custom modifications and extensions to the MTP Responder Stack for
your device, see the MTP Responder common source code at the following location:

%_WINCEROOT%\public\datasync\oak\mtp\common\MTP

http://go.microsoft.com/fwlink/?LinkID=59975�

MTP Responder Development Guide

 Microsoft ©2009

The source files at the location above are derived from the MTP responder reference
implementation that is included in the Portable Device Enabling Kit; this implementation
is not specific to Windows Embedded CE. These files include the core MTP Responder
Stack functionality:

• MTP dispatcher
• MTP router
• MTP common command handler functionality
• MTP core command handler
• MTP command lookup table
• Common code to support MTP transports
• Support for USB, TCP/IP, and other transports
• Message queue library
• MTP format and properties library
• MTP event manager and event handlers
• MTP performance logger

In addition, MTP Responder Stack source code that is specific to Windows Embedded CE
6.0 R3 is available at the following location:

%_WINCEROOT%\public\datasync\oak\wince\src\MTP

These source files implement MTP extensions that integrate the MTP Responder Stack
with Windows Embedded CE 6.0 R3:

• Functionality to report Device Stage information back to the MTP initiator, such as device
product description, manufacturer name, serial number, model ID, device icon, and battery
level.

• Platform Service Layer functionality that is unique to Windows Embedded CE, including
atomic functions, debug utilities, memory management, thread management, timer
utilities, sockets, and message queues.

• Implementation of the MTP status service; generation of reports about battery level and
storage space by calling OAL functions (such as GetDiskFreeSpaceEx), returning the results
to the MTP initiator.

• Implementation of the MTP device metadata service.
• MTP transport functionality for Windows Embedded CE USB and network devices.

The MTP Responder source code is written in ANSI C. Depending on your objectives and
the extent of the modifications or extensions that you want to make to the MTP
Responder, you can modify any or all of these source code locations.

Programming References
Several resources are available to help you understand the MTP Responder Stack
implementation and to guide you in making modifications to the MTP Responder source
code.

For more information about the MTP responder reference implementation, see
the Media Transfer Protocol Porting Kit
(http://go.microsoft.com/fwlink/?LinkID=59975).

For more about MTP operations, events, properties, and formats, see the MTP 1.0
Specification (http://go.microsoft.com/fwlink/?LinkID=137101).

http://go.microsoft.com/fwlink/?LinkID=59975�
http://go.microsoft.com/fwlink/?LinkID=137101�
http://go.microsoft.com/fwlink/?LinkID=137101�

MTP Responder Development Guide

 Microsoft ©2009

For more about MTP Device Services extensions, see the MTP Device Services Extension
Specification (http://go.microsoft.com/fwlink/?LinkID=178887).

For more information about the DEK, see the Windows 7 Portable Device Enabling Kit
(http://go.microsoft.com/fwlink/?LinkID=178864).

MTP Storage
The MTP metadata database that comes with the device enabling kit (DEK) is
implemented as an in-memory cache that holds the metadata for MTP objects while the
device is powered on. This implementation is not suitable for an actual MTP responder
(device) for two main reasons:

• It does not store object metadata persistently; when the responder (a device) is
powered off, the metadata is deleted. MTP Storage uses the file system to
persist all objects shown in Table 7 - MTP Storage Object Properties except for
the Persistent Unique Object Identifier.

• It does not take into account memory usage on devices; storing all object
metadata in memory can consume prohibitive amounts of device memory,
possibly destabilizing the device.

Therefore, MTP Responder for Windows Embedded CE 6.0 R3 includes a custom MTP
storage implementation that you can use as provided for production devices. With this
functionality, devices can communicate with computers running Windows XP, Windows
Vista, or Windows 7, although only Windows 7 has the Device Stage user interface.

MTP Storage Design
MTP Storage uses the same APIs to communicate with the MTP Responder Stack as the
metadata database in the DEK. Unlike the metadata database in the DEK, storage in
MTP Responder for Windows Embedded CE 6.0 R3 has three important requirements:

• It must have a small memory footprint.

• It must store only file and folder metadata.

• It must use the object metadata that is inherently stored in the MTP file system.
This metadata persists between MTP sessions and between device power cycles.

Because of these requirements, MTP Storage allocates storage for MTP object metadata
in two parts:

• A set of in-memory hash tables store object handles and file paths for MTP
objects. Because they are created anew each time that an MTP session is
created, object handles can be assigned to a non-persistent storage. Object
handles are only viable while an MTP session is active and are the only MTP
metadata property that is stored in the hash tables. This keeps the memory
consumption of the hash tables to a minimum.

• All MTP object properties for files of the Undefined format except object handles
are stored in the MTP file system and retrieved as needed. This design reduces
processor cycles and memory consumption that would be required to load object
metadata for each MTP session. Because this data is stored in the MTP file
system, it remains on the device after the end of an MTP session and after the
device is powered off. Unlike object handles, all the other properties of MTP

http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=178887�
http://go.microsoft.com/fwlink/?LinkID=178864�

MTP Responder Development Guide

 Microsoft ©2009

objects do not change between MTP sessions unless they are modified outside
the MTP session. For example, a user modifies the content of an MTP store on a
removable memory card, such as a Secure Digital (SD) card, by plugging the
card directly into a computer and modifying its contents.

MTP Storage Implementation
MTP Storage provides functionality with which users browse and manage files on a
device and transfer files between a device and a computer. The implementation of file
formats, file properties, and MTP commands is limited to those that are required to
achieve this functionality.

This functionality also qualifies devices for Windows Logo certification in the new Other
Portable Devices category. All categories of devices besides Other Portable Devices
require support for file formats, properties, and commands that are not included in the
provided MTP storage implementation. You can expand the provided code and add
support for additional MTP formats, properties, and commands to qualify your device in
other categories. For more information about the requirements that devices must meet
to qualify for a Windows logo, create an account on the Windows Quality Online
Services site (http://go.microsoft.com/fwlink/?LinkID=179356) and see Prepared
Requirements Reports (http://go.microsoft.com/fwlink/?LinkID=179359).

To implement MTP storage in the OS design on your device

1. Specify the storage location (see the section MTP Storage Location).

2. Specify the registry value for the HashBucketCount setting.

3. Specify the registry value for the MaxCustomHeapSize setting.

MTP Storage Object Formats
The MTP storage implementation in MTP Responder for Windows Embedded CE 6.0
R3 supports only two MTP object formats: Undefined (files that support a minimum set
of properties) and Association (folders). The device may store many file formats (.mpg,
.jpg, and so on), but all file formats on the device will behave as MTP objects with the
Undefined format.

The following conditions apply:

• Any files that a user adds to a device become MTP objects with the Undefined
format.

• File formats other than Undefined behave as Undefined format files after being
transferred to the device.

• All file formats on the device have only the MTP object properties that are
required for files of the Undefined format, plus additional properties supported in
the DEK, which are listed below.

For example, an audio file on the initiator (a computer) typically has metadata
associated with it (such as artist, rating, and album name) that is stored separately
from the file and, in some cases, also within the file. The audio-specific metadata that is
separate from the file will not be copied to the device because MTP storage does not
support storing properties for files that are not of the Undefined format. MTP Storage
cannot access metadata that is stored inside files.

http://go.microsoft.com/fwlink/?LinkID=179356�
http://go.microsoft.com/fwlink/?LinkID=179356�
http://go.microsoft.com/fwlink/?LinkID=179359�
http://go.microsoft.com/fwlink/?LinkID=179359�

MTP Responder Development Guide

 Microsoft ©2009

Windows Media Player (WMP) cannot synchronize with or in any other way interact with
the MTP files on the device because the files no longer have any of the properties that
characterize media files. You can add support for media file formats by replacing the
hash tables with your own database and interfacing it to the MTP Responder code.

MTP files of the Undefined format support only a specific subset of MTP object
properties. For more information about MTP file formats and their properties, see the
MTP 1.0 Specification.

The Association object format corresponds to a folder on a computer. There are two
types of Association objects in MTP, Undefined and Generic. MTP storage supports only
the Generic association type. For more information, see the MTP 1.0 Specification.

MTP Storage Object Properties
The MTP storage provided with MTP Responder for Windows Embedded CE 6.0 R3
includes only the file properties that the MTP protocol requires for all file formats and
additional properties that are supported in the DEK. MTP properties for specialized file
formats, such as media files, are not included. The following table lists the object
properties that are supported by the MTP storage implementation.

Table 7 - MTP Storage Object Properties

Object property MTP
Datacode

Description

StorageID 0xdc01 The storage area on the device where the
object is stored.

In MTP storage, you designate only one
StorageID on the device for the folders shared
for MTP access. All MTP objects on the device
have the same StorageID.

Object Format 0xdc02 An object’s format determines the properties
that it will support.

The format is either 0x3000 (file) or 0x3001
(folder), stored implicitly in the MTP file system
on the device.

ProtectionStatus 0xdc03 The status is either 0x0000 (No Protection) or
0x8001 (Read-only data); the mapping
depends on whether the object is marked read-
only in the MTP file system.

Object Size 0xdc04 The size of the data component of the object, in
bytes. This property is ignored for folders.

Object File Name 0xdc07 The file name of the object, including the
extension but not the path.

MTP Responder Development Guide

 Microsoft ©2009

Parent Object 0xdc0b The object handle of the parent folder, which
must be an object of the format Association
(0x3001). If the object is at the root, this value
is 0xffffffff.

Persistent Unique
Object Identifier

0xdc41 Although called the persistent unique object
identifier (PUOID) in the MTP specification, the
PUOID is not persistent between sessions in the
MTP Storage implementation.

The PUOID is a 128-bit version of the object
handle. It is not used by the computer. It
cannot be used to manage synchronization of
data on the computer.

Name 0xdc44 The value returned for a file is the file name
without path or extension. For a folder, the
value returned is the folder name without the
path. The value that is sent by Windows when
creating an object is ignored.

Non-Consumable 0xdc4f Indicates whether the object was transferred to
the portable media player for storage only and
is not available to be consumed (for example,
played) by the portable device.

The device returns 1 for files and 0 (zero) for
folders. Windows does not send any values for
this property, but such values would be ignored
if sent.

Date Created 0xdc08 The date and time when the object was
created; this value maps to the value in the
MTP Responder file system on the device.

Date Modified 0xdc09 The date and time when the object was last
altered; this value maps to the value in the file
system.

Hidden 0xdc0d Identifies whether an object is displayed to
users or is hidden and only used by
applications. This value maps to the value in
the MTP Responder file system.

Association Type 0xdc05 Describes the kind of collection. A value of 1
indicates that the Association Type is a generic
folder, which is the only Association Type that
MTP storage supports.

This value is not ever sent by Windows. MTP
Storage ignores any values sent, returns 1 for

MTP Responder Development Guide

 Microsoft ©2009

folder, and returns 0 (zero) for a file.

AssociationDesc 0xdc06 Provides additional information about the
Association Type.

MTP Storage ignores any values sent, returns 0
(zero) for either a file or a folder. This value is
never sent by Windows.

For more information about MTP properties, see the MTP 1.0 Specification.

MTP Storage Commands
MTP command functionality in MTP Responder for Windows Embedded CE 6.0 R3 is
confined to commands that are necessary to support file browsing and management on
the device and to transfer files between a device and a computer. The following table
describes the commands used by MTP Storage.

Table 8 - MTP Storage Commands

MTP Command Description

OpenSession Opens a new MTP session for communication between
the computer and device.

CloseSession Closes an active session.

GetStorageIDs Retrieves a list of storage IDs for the storage areas on
the device.

GetStorageInfo Retrieves a StorageInfo data set that describes a
storage area on the device.

GetNumObjects Retrieves a count of the number of MTP objects that
are stored on the device.

GetObjectHandles Retrieves an array of object handles that the computer
can use to access the MTP objects that are stored on
the device.

GetObjectInfo Retrieves the ObjectInfo data set for the specified MTP
object on the device.

GetObject Retrieves the binary data component of the specified
object on the device.

DeleteObject Deletes an object or set of objects from the device.

SendObjectInfo Sends an ObjectInfo data set to the device to prepare
it to receive a new object.

SendObject Sends the binary data component of an MTP object to
the device.

FormatStore Provides a quick way to purge the device of all content.
Using this command is faster than individually deleting
each of the objects in the store.

MTP Responder Development Guide

 Microsoft ©2009

SetObjectProtection Sets the write-protection status for the data object that
is referred to in the first parameter to the value
indicated in the second parameter.

MoveObject Changes the location of an object on the device by
changing the storage on which it is stored, changing
the location in which it is located, or both.

CopyObject Causes the device to create a copy of the target object
and place that copy in a location that is indicated by
the parameters of this operation.

UpdateObjectPropertyList Sets the property list for a particular object that will be
updated with a new binary object. Use this command
to replace the binary data of an existing object.

DeleteObjectPropList Removes the properties specified in the
DeleteObjectPropList data set from the specified object
or objects. If a property is not removable, it is returned
to its default value.

GetObjectPropsSupported Retrieves a list of object properties that the device
supports for a class of MTP objects that share a
particular object format.

GetObjectPropDesc Retrieves an ObjectPropDesc data set that describes a
particular property of a class of MTP objects that share
a particular object format.

GetObjectPropValue Retrieves the current value of an object property.

SetObjectPropValue Sets the current value of an object property.

GetObjectPropList Retrieves an ObjectPropList data set that contains a list
of property values from the device.

SetObjectPropList Sets a list of property values in the device.

SendObjectPropList Sends an ObjectPropList data set to the device to
prepare the device to receive a new object.

For more information about MTP commands, see the MTP 1.0 Specification.

File Transfer Messages
In MTP Responder for Windows Embedded CE 6.0 R3, the only file format supported on
the device is Undefined. If a user attempts to copy files that are not of the Undefined
format to the device, the user’s computer may display a message indicating that the
version of Windows and the version of Windows Media Player (WMP) that are installed
on the user’s computer have detected that the device does not support the format of
the files for which transfer has been initiated.

The following table lists the responses of the operating system when a user initiates a
copy operation that includes files whose format is other than Undefined.

Table 9 - MTP Storage File Transfer Messages

MTP Responder Development Guide

 Microsoft ©2009

Windows Operating system/WMP
version

Behavior

Windows XP/WMP 10 An error message appears. The file copy is not
allowed. A user must upgrade to WMP version
11 for Windows XP to be able to copy files
whose format is not Undefined.

Windows XP/WMP 11 No message appears; the files copy
successfully.

Windows Vista/WMP 11 No message appears; the files copy
successfully.

Windows 7/WMP 12 A message appears with each initiated file copy
operation indicating that the user’s computer
has detected that the device does not support
the format of the files for which transfer has
been initiated. Users can choose to dismiss the
message and copy the file. When multiple files
are being copied, users can choose not to
receive a message for each file in the copy
operation.

MTP Storage Location
In MTP Storage, you designate only a single storage location on the device for MTP
objects of the Undefined or Association format (see the section Storage Configuration).
The computer will display only the contents of the designated MTP storage location.
There is no mechanism that prevents all files of the Undefined format in the designated
MTP storage location on the device from being displayed on the computer. For example,
if you designate “\” as the MTP storage location on the device, then all files of the
Undefined format in the “\Windows” directory will be displayed on the computer.

You can designate the MTP Storage location to be on removable storage, for example a
Secure Digital (SD) card. However, there are no provisions in the code to detect that a
removable storage device has been removed. As a result, discrepancies may exist
between the contents of the designated MTP storage and the displayed contents on the
computer. For example, a user removes an SD card from the device, inserts it into a
slot on the computer and modifies its contents. If the user reinserts the card into the
device while the same MTP session is active, then the computer will still display the
original list of files, even though the files in the MTP storage location have changed.

Because you can designate only a single storage location for MTP objects, you cannot
designate a subdirectory such as \DeviceStorage and also designate an SD card such as
\Flash1 as the MTP Storage location. Support for multiple MTP Storage locations is not
implemented. It is also not possible to associate two paths on the device to a single
designated MTP Storage location.

Optimization
You can modify settings for the MTP storage to optimize it for your device, for example
to manage memory usage and to optimize performance. To configure registry settings

MTP Responder Development Guide

 Microsoft ©2009

in your OS design to support Device Stage, modify the datasync.reg file, which can be
found at this location:

%_WINCEROOT%\public\datasync\oak\files\datasync.reg

Specifying the Size of the Hash Tables
You specify the size of the hash tables to optimize the tables’ load and to control the
number of collisions. We recommend that you specify the size of the hash table so that
the maximum number of expected entries uses no more than 65% of the tables’
capacity. If the load increases beyond this capacity, the number of collisions typically
begins to rise significantly. In this case, hash collisions are added to a list so that the
search performance moves from O(1) to O(m) where m is the size of the linear chain to
be searched for the entry.

To change the hash table size, modify the HashBucketCount registry value (see Table
10) in the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\ObjectStore

Table 10 – HashBucketCount

Name Type Default
value

Description

HashBucketCount REG_DWORD 1000 You specify the number of hash
buckets to allocate to the hash tables
with this registry value. You may want
to increase or decrease the amount of
memory allocated to the hash tables
depending on the storage capacity of
your device, the scenarios that your
device supports, or other factors.

For more information about registry settings for MTP storage, see the section Storage
Configuration.

Specifying the Size of the Private Heap
You can specify the size of the private heap that stores file and folder name strings to
help prevent out-of-memory conditions on your device. When you specify the size of
the private heap, consider how many files your users will store on the device and how
often your users will rename, delete, or move files. For example, users may be more
likely to rename photos than audio files.

To change the size of the private heap, modify the MaxCustomHeapSize registry value
(see Table 11) in the registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\MTP\ObjectStore

Table 11 – MaxCustomHeapSize

MTP Responder Development Guide

 Microsoft ©2009

Name Type Default
value

Description

MaxCustomHeapSize REG_DWORD 100000 Controls the size of the private
strings heap. The private heap
memory is reserved and then
allocated dynamically from the
reserved block. You specify the size
of the reserved block in bytes.

Preventing Out-of-Memory Conditions
If the file system is extremely large and a user is traversing the depth and breadth of
all directories on the device, then the user may reach the limits for in-memory storage
of file path mapping to object handles.

When a user only browses files, memory will be consumed to keep track of the mapping
of object handles to files and folders after a number of files and folders have been
browsed.

When a user deletes, renames, or moves a large number of files, it alters the
performance of the data structure and likely reduces the maximum number of files and
folders that can be actively enumerated. Consider the following description of the
memory implementation to guide your decisions for configuring the hash tables and
private heap on your device.

• There is a fixed number of buckets in the hash tables, which you can specify.

• Each entry in a hash table must be allocated when inserted (these are small
objects). MTP storage uses the global process heap for this task, and you cannot
configure its size.

• There is a private heap that stores file name and folder name strings, whose size
you can configure.

• When a user browses files and file enumeration occurs, MTP storage adds new
entries to the private heap.

• When a user moves or renames a file, MTP storage adds a “delete” and a
“create” entry to the private heap (causing minor fragmentation).

• When a user copies a file, MTP storage adds a single “create” entry to the
private heap.

• When a user deletes a file, MTP storage may add many “delete” entries to the
private heap (causing minor to major fragmentation).

If you find that your device encounters out-of-memory conditions when executing its
scenarios, try increasing the values specified in the registry for HashBucketCount and
MaxCustomHeapSize as indicated above. Increasing the value for HashBucketCount will
improve performance because, for any given number of files, there will be fewer in each
bucket that must be enumerated for file operations. Increasing the value for
MaxCustomHeapSize will help prevent out-of-memory conditions. However, increasing
the value for either HashBucketCount or MaxCustomHeapSize will consume more
memory on the device.

MTP Responder Development Guide

 Microsoft ©2009

MTP Storage Modifications or Replacement
If you want to modify the provided MTP storage implementation to include support for
additional MTP object formats (files, folders, and so on), for additional MTP object
properties, or for additional MTP commands, then you will need to make substantial
modifications to the code. For example, to add support for file formats such as JPEG,
MP3, or MPEG, or object properties such as Artist, Image Bit Depth, or Video Bit Rate
you must replace the hash tables with another database and revise the code that
interfaces the database to the MTP Responder stack.

If your devices and scenarios require support for file formats, file properties, or MTP
commands that are not included in the MTP storage implementation, you can either:

• Replace the hash tables with your own database solution, for example a SQL CE
database, and modify the provided code in MTP Responder for Windows
Embedded CE 6.0 R3.

• Replace the hash tables with your own database solution, for example a SQL CE
database, and author code that interfaces your database to the MTP Responder
code in MTP Responder for Windows Embedded CE 6.0 R3.

For more about source code modifications, see the section Modifying the Provided Code.
If you only need to support browsing, management, and transfers of Undefined format
files for your device, then you can use MTP Storage in Windows Embedded CE 6.0 R3 as
provided. You can add support for additional file formats, properties, or commands
when using your own database if you want your device to qualify in a Windows Logo
category besides Other Portable Devices.

Modifying the Provided Code
If you want to modify the MTP Storage code, the following libraries in the Windows
Embedded CE 6.0 R3 platform code contain the bulk of the functionality that you may
want to customize or extend:

%_WINCEROOT%\public\datasync\oak\mtp\wince\src\MTPObjectStoreShim

%_WINCEROOT%\public\datasync\oak\mtp\wince\src\MTPObjectStoreDB

Your code modifications may extend to files in other directories, depending on your
objectives and the extent of the modification you want to make.

Replacing MTP Storage with Your Database
You can include the MTP Responder (minimal) and USB/IP transport support in your
Device Stage OS design while omitting MTP Storage. With this option, you separately
add your own database that you have interfaced to the MTP Responder code. See the
section Step 2 Add Device Stage Catalog Items to Your OS Design.

Conclusion
Device Stage presents a graphical interface that makes it easy for users to find and use
applications and services for their device when it is connected to a computer running
Windows 7. MTP Responder for Windows Embedded CE 6.0 R3 provides the functionality
for the device to communicate with Device Stage.

You can choose to implement a baseline presentation or a custom presentation for your
device in Device Stage. The baseline presentation provides the most essential device

MTP Responder Development Guide

 Microsoft ©2009

features and is simple to set up, whereas the custom presentation offers additional
device features but it requires you to develop a device metadata package.

Because the MTP Responder code is available for modification, you can extend MTP
Responder to support additional file formats and properties, add file synchronization, or
replace the included MTP Storage component with your own storage implementation.

MTP Responder for Windows Embedded CE 6.0 R3 includes an MTP Storage component
that you can use for production devices. You can configure MTP Storage settings to
optimize performance and memory usage for your device, or you can modify the
provided source code to integrate your own storage implementation to support MTP
media file functionality that is not included in this implementation.

You can modify and extend the MTP Responder Stack to support additional MTP
commands and properties. An MTP extension can define new MTP operations,
properties, and object formats that are not part of the MTP specification.

Implementation of MTP Responder also prepares your device to meet the Windows Logo
requirements for devices in the Other Portable Devices category.

Additional Resources
To learn more about Windows 7 Device Stage, see the following links.

• Windows Team Blog – The Device Experience in Windows 7
(http://go.microsoft.com/fwlink/?LinkID=179365)

• Windows Device Experience (http://go.microsoft.com/fwlink/?LinkId=132146)

• Windows Device Experience Development Kit
(http://go.microsoft.com/fwlink/?LinkId=178109)

• Windows Logo Program
(http://go.microsoft.com/fwlink/?LinkId=8772).

To learn more about Windows Embedded, see the following link.

• Windows Embedded Web site (http://go.microsoft.com/fwlink/?LinkId=25589)

http://go.microsoft.com/fwlink/?LinkID=179365�
http://go.microsoft.com/fwlink/?LinkId=132146�
http://go.microsoft.com/fwlink/?LinkId=178109�
http://go.microsoft.com/fwlink/?LinkId=8772�
http://go.microsoft.com/fwlink/?LinkId=25589�

MTP Responder Development Guide

 Microsoft ©2009

Copyright
This document is provided “as-is.” Information and views expressed in this document,
including URL and other Internet Web site references, may change without notice. You
bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No
real association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in
any Microsoft product. You may copy and use this document for your internal, reference
purposes.

© 2009 Microsoft. All rights reserved.

	MTP Responder Development Guide
	Abstract
	Introduction
	Device Stage Support
	Windows Logo Certification
	MTP Responder Components
	MTP Responder Stack
	MTP Storage
	MTP Transports

	Limitations
	File Formats and Properties
	File Synchronization
	Closed Storage Implementation

	Prerequisites
	Windows Embedded CE
	Metadata Tools
	Windows 7

	Development Steps

	Device Stage Implementation
	Step 1 Verify System Requirements
	Windows Vista
	Hardware Requirements
	Software Requirements

	Windows XP
	Hardware Requirements
	Software Requirements

	Step 2 Add Device Stage Catalog Items to Your OS Design
	Step 3 Configure Registry Settings in Your OS Design
	Device Information
	Transport Information
	Storage Configuration
	Device Metadata Service

	Step 4 Provide OAL Support for Device Stage
	Manufacturer Name
	Device ID
	Battery Level
	Free Storage Space

	Step 5 Create a Presentation for Windows 7
	Device Icon
	Baseline Presentation
	Custom Presentation

	Step 6 Test Your Presentation
	Baseline
	Custom

	Step 7 Complete Windows Logo Testing
	Step 8 Submit Your Presentation to Windows Quality Online Services

	MTP Responder Design
	MTP Responder Structure
	MTP Responder Stack
	Source Code Modification
	Programming References

	MTP Storage
	MTP Storage Design
	MTP Storage Implementation
	MTP Storage Object Formats
	MTP Storage Object Properties
	MTP Storage Commands
	File Transfer Messages
	MTP Storage Location
	Optimization
	Specifying the Size of the Hash Tables
	Specifying the Size of the Private Heap
	Preventing Out-of-Memory Conditions

	MTP Storage Modifications or Replacement
	Modifying the Provided Code
	Replacing MTP Storage with Your Database

	Conclusion

