

Create a Custom User Control in Silverlight for
Windows Embedded

Windows Embedded CE 6.0 R3 Technical Article

Published: September 2009

Applies To: Windows Embedded CE 6.0 R3

Abstract
You can create a custom user control that provides niche functionality and unique visual
characteristics by using the XRCustomUserControlImpl<Class[,Interface]> class
in Silverlight for Windows Embedded. For example, you might need a control that is
customized for a particular type of application, such as a control for navigating a map, a
control for browsing a three-dimensional menu, or a control that shows progress or
status using advanced visual indicators instead of a simple progress bar.

You define the appearance of a custom user control in XAML, implement its functionality
in C++ by using Platform Builder, and access it from the visual tree by using the
FindName method.

When you create a custom user control, you can reuse it across multiple Silverlight for
Windows Embedded applications.

The XRCustomUserControlImpl<Class[,Interface]> class is the current, supported
version of the template class for creating a custom user control. However, an earlier
version that is no longer supported, XRCustomUserControl<Interface,Class>, is
still documented in the reference.

Create a User Control in Silverlight for Windows Embedded 1

 Microsoft Corporation ©2009

Introduction
You can create a custom user control that provides niche functionality and unique visual
characteristics by using the XRCustomUserControlImpl<Class[,Interface]> class
in Silverlight for Windows Embedded.

When you create a custom user control, you can reuse it across multiple Silverlight for
Windows Embedded applications.

The XRCustomUserControlImpl<Class[,Interface]> class is the current, supported
version of the template class for creating a custom user control. However, an earlier
version that is no longer supported,XRCustomUserControl<Interface,Class>, is still
documented in the reference. The following methods of this class are no longer public
methods: Create, Initialize, IsInitialize. The current version has an additional
overloaded version of Register that you can use to register a control created entirely in
XAML, without any C++ code. This overload version of Register has the following
function signature:

static HRESULT Register(const WCHAR* pControlName, const WCHAR*

pNamespace)

Prerequisites
• A Silverlight for Windows Embedded application. For more information, see “Create

a Silverlight for Windows Embedded Application” in the Windows Embedded CE 6.0
R3 documentation.

How to Create a Custom User Control
Creating a custom user control in Silverlight for Windows Embedded is a six-step
process. First, you must define the graphical user interface (GUI) in XAML. Then, create
a source file in C++ for the custom user control. Then you can implement the custom
user control class. Then, you must register the control and add it to the visual tree.
Finally, build your application and OS. The process to create a custom user control is
described as follows.

Define the GUI for the Custom User Control in
XAML

Use Expression Blend 2 or another XAML editor to create a new .xaml file that contains
the GUI definition and the namespace declaration for the control. Then, to add the user
control to other .xaml files, you add its custom namespace declaration to the root
element. For more information about XAML namespaces, see MSDN. For more
information about doing this with Expression Blend 3, see the Microsoft Expression Web
site.

Note Silverlight for Windows Embedded does not support code-behind in C# for
user controls defined in XAML. If you have code-behind in C# for a Silverlight
custom user control that you would like to reuse, you can port it to the C++ class
that you create in this tutorial.

http://go.microsoft.com/fwlink/?LinkId=149691�
http://go.microsoft.com/fwlink/?LinkId=154604�
http://go.microsoft.com/fwlink/?LinkId=154604�

Create a User Control in Silverlight for Windows Embedded 2

 Microsoft Corporation ©2009

Create a C++ Source File for the Custom User
Control

In your application subproject in Platform Builder, create a C++ source file for your
user control that includes XamlRuntime.h and XRCustomControl.h.

If your application calls methods in the custom user control, you must create an
interface for the control in the sources file that derives from IXRCustomUserControl.
Then, define any custom methods or fields on the interface.

The following example template code provides a starting point for creating an interface:

_interface __declspec(uuid("{F01D249B-89EC-4134-9CF7-822CB326D5A3}"))

class ICustomCtrl : public IXRCustomUserControl

{

public:

 virtual HRESULT GetProperty() = 0;

};

As illustrated in the previous code, you must create a new unique identifier (ID) for the
interface by using the Guidgen tool and the __declspec keyword. For more
information, see __declspec at MSDN.

To obtain a unique ID for the __declspec keyword, do the following:

1. From the command prompt build window in Windows, change the directory to
C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools and then type
guidgen.

2. In the Create GUID dialog box, select 4 Registry Format, and then click Copy.
3. Open the new source file by double-clicking it in Solution Explorer, and then paste

the GUID into either the __declspec keyword, or into the second parameter of the
DEFINE_XR_IID macro.
Note You can also use the DEFINE_XR_IID macro to assign a unique ID to the
interface. DEFINE_XR_IID is described in the “DEFINE_XR_IID” topic in the
Windows Embedded CE 6.0 R3 documentation.

Implement the Custom User Control Class
Implement a custom user control class that inherits from the template wrapper class
XRCustomUserControlImpl<Class[,Interface]>.

If you created a custom interface in the previous step, the following must be true:

• The optional Interface parameter of the template must be the name of that
interface.

• The GUID you supply in the required __declspec keyword must be different
from the one you associated with the custom interface.

The following code shows a starting point for implementing a custom user control class:

class __declspec(uuid("{91C2F5FF-8FCC-4626-AC67-850283620C09}"))

CustomCtrl : public XRCustomUserControlImpl<CustomCtrl,ICustomCtrl>

{

http://go.microsoft.com/fwlink/?LinkId=163934�

Create a User Control in Silverlight for Windows Embedded 3

 Microsoft Corporation ©2009

public:

 static HRESULT GetXamlSource(XRXamlSource* pXamlSource)

 {

 // add implementation

 }

 static HRESULT Register(HINSTANCE hInstance)

 {

 // add implementation

 }

};

If you derived the control class from the wrapper class
XRCustomUserControlImpl<Class[,Interface]>, you must implement Register
and GetXamlSource.

In addition to Register and GetXamlSource, you can also define and implement any
additional methods, fields, or events that you want in your custom user control class
implementation. If you will register a dependency property or an attached property, you
can implement Get* and Set* methods that pass XRValue objects in their
parameters.

When you define a custom user control class that inherits from
XRCustomUserControlImpl<Class[,Interface]>, you must also provide custom
implementations of the Register and GetXamlSource methods.

Register Method
In your application’s WinMain procedure, after you retrieve the application instance
and, optionally, add a resource module, you will call your custom Register method.
Then, create the visual host by calling IXRApplication::ParseXaml.

At minimum, you must include code that calls the
XRCustomUserControlImpl::Register method in your implementation. This method
registers a custom user control by associating a specific element name, which was
defined in a specific XAML namespace with the x:Class attribute, with a specific
interface ID (IID). XRCustomUserControlImpl::Register is a static method and you
can call it without creating an instance of XRCustomUserControlImpl.

If the custom user control has a dependency property or an attached property, your
Register method implementation must also include code that registers the property. In
this case, the Register method implementation must obtain an application instance by
calling GetXRApplicationInstance and then call either
IXRApplication::RegisterAttachedProperty or
IXRApplication::RegisterDependencyProperty method, depending on the type of
property included.

Typically, you also implement a GetCustomProperty and SetCustomProperty
method in your control class that provides access to the value of the property.

Create a User Control in Silverlight for Windows Embedded 4

 Microsoft Corporation ©2009

The following example code shows an example implementation of the Register method
that is intended to be used in the declaration of your implementation of CustomCtrl.

Important For readability, the following code example does not contain security
checking or error handling. Do not use the following code in a production
environment.

static HRESULT Register()

 {

 HRESULT hr = S_OK;

 hr = XRCustomUserControlImpl::Register(__uuidof(CustomCtrl)),

L"CustomUserControl", L"clr-namespace:CustomUserControlNamespace");

 if (FAILED(hr))

 {

 goto Exit;

 }

 Exit:

 return hr;

}

GetXamlSource Method
Before you can parse and load the control into the visual tree, you have to call the
GetXamlSource method to get the source XAML file that defines the GUI for the control.
The GetXamlSource method retrieves the control-definition XAML file so that
Silverlight can parse its XAML and load the control into the visual tree.

You write this method so that the PFN_CREATE_CONTROL callback function can call it
internally when Silverlight parses XAML for the application. This callback function is
provided by the wrapper class.

At minimum, your GetXamlSource implementation must include code that populates
the XRXamlSource structure, which is supplied in the input parameter of this method,
with information about the source XAML for your control. To add this code, do one of
the following:

• Call the member function XRXamlSource.SetResource. This member function
takes an application instance returned by an earlier call to
GetXRApplicationInstance, a string that describes the XAML resource type, and
the ID of the resource, which is a .xaml file. If you define IDs for XAML resources in
a resource (.rc) file, you can convert the ID into a resource type by using the
MAKEINTRESOURCE macro inline. The following code example shows how to use
this member function in a GetXamlSource implementation.

Important For readability, the following code example does not contain
security checking or error handling. Do not use the following code in a
production environment.

#define RT_XAML L"XAML"

Create a User Control in Silverlight for Windows Embedded 5

 Microsoft Corporation ©2009

static HRESULT GetXamlSource(XRXamlSource* pXamlSource)

 {

 pXamlSource->SetResource(s_hInstance, RT_XAML,

MAKEINTRESOURCE(ID_XAML_2DLISTVIEW));

 return S_OK;

 }

• Call the member function XRXamlSource.SetFile. Using this approach, you can set
the source XAML file by providing the file name. The following code example shows
how to use this member function in a GetXamlSource implementation.

Important For readability, the following code example does not contain
security checking or error handling. Do not use the following code in a
production environment.

static HRESULT GetXamlSource(XRXamlSource* pXamlSource)

 {

 pXamlSource->SetFile(RESOURCE_DIR

L"CustomControlDefinition.xaml");

 return S_OK;

 }

Register the Custom User Control
To register the custom user control in your application startup code, call the Register
method you implemented before the application startup code calls
CreateHostFromXaml. Then, the wrapper class's default implementation of
PFN_CREATE_CONTROL calls GetXamlSource to provide the correct XAML file to
parse and load.

Add the Custom User Control to the Visual Tree
If you want to reuse the custom user control from C++ code in Silverlight applications,
add an instance of the custom user control to the visual tree at run time in C++. Do
this after you have prepared the Silverlight visual tree, which is described in Step 4 in
the topic “Create a Silverlight for Windows Embedded Application” in the Windows
Embedded CE 6.0 R3 documentation.

To create a custom user-control instance and add it to the visual tree

1. Initialize an object variable using the class type of the custom user control.

ICustomCtrl* pControl = NULL;

2. Call IXRApplication::CreateObject to convert the class you registered with the
Register method into an object and to return a reference to the new object.

pApplication->CreateObject(__uuidof(CustomCtrl), &pControl);

3. (Optional) To locate this object by Name after you add it to the visual tree, call
SetName.

4. Define the new object instance by using its methods.

Create a User Control in Silverlight for Windows Embedded 6

 Microsoft Corporation ©2009

XRThickness Margin = {25, 25, 100, 200};

pControl->SetMargin(&Margin);

pControl->SetCustomPropValue(100);

pControl->SetName(L"ControlInstance1");

5. Attach delegates to the object so it can respond to events.
6. Obtain an IXRFrameworkElement smart pointer to the root of the visual tree. The

custom user control will be integrated with the layout system in Silverlight and
displayed in the graphical window. When you use a smart pointer, you don’t have to
call Release when you are done with it.

IXRFrameworkElementPtr pRoot;

pVisualHost->GetRootElement(&pRoot);

7. Locate the name of the panel element on which UI elements are positioned, such as
an IXRPanel-derived object.

8. Find the element in the tree. On the root element, call
IXRFrameworkElement::FindName, passing in the desired panel element's
name, and an object pointer to reference the panel.

IXRCanvasPtr pCanvas;

pRoot->FindName(L"MainCanvas", &pCanvas);

9. Retrieve the panel's IXRUIElementCollection collection by calling
IXRPanel::GetChildren.

IXRUIElementCollection* pCollection;

pCanvas->GetChildren(&pCollection);

10. Add the custom user control instance to the collection by calling the collection's
inherited method IXRCollection<In_T, Out_T>::Add.

pCollection->Add(&pControl, NULL)

To retrieve a custom user control instance from the visual tree

1. Obtain an IXRFrameworkElement smart pointer to the root of the visual tree.
When you use a smart pointer, you don’t have to call Release when you are done
with it.

IXRFrameworkElementPtr pRoot;

pVisualHost->GetRootElement(&pRoot);

2. Initialize an object variable using the class type of the custom user control.

CustomCtrl* pControl;

3. Find the control in the tree. On the root element, call
IXRFrameworkElement::FindName, passing in the desired control's name and an
object variable to receive the pointer.

pRoot->FindName(L"ControlInstance1", &pControl);

4. Execute functionality of the custom user control or change its property values by
using the object pointer to call methods implemented control class.

// retrive a control template from a list box

Create a User Control in Silverlight for Windows Embedded 7

 Microsoft Corporation ©2009

IXRControlTemplatePtr pListBoxControlTemplate);

pListBox->GetTemplate(&pListBoxControlTemplate);

// set this as the control template for the user control

pControl->SetTemplate(&pListBoxControlTemplate);

Build the Application and Your OS Design
In Solution Explorer, expand Subprojects, right-click the subproject you created,
and click Build (build).

The build progress is displayed in the Output tab of the Output window.

For more information, see “Use Subprojects in an OS Design” in the Windows
Embedded CE 6.0 R3 documentation.

Rebuild the run-time image, and download it to the device through the connection that
you have already configured.

For more information, see “Build a Run-Time Image” and “Download a Run-Time
Image” in the Windows Embedded CE 6.0 R3 documentation.

Conclusion
After you have completed this tutorial, you will have a custom user control that uses
XAML to define its appearance, is implemented in C++, and is accessible from the
visual tree by using the FindName method. You can reuse your custom user control
across multiple Silverlight for Windows Embedded applications.

Custom controls provide a way for you to design and implement a unique control that
meets the particular needs of a Silverlight application for a Windows Embedded CE
powered device.

To reuse your custom control, you can create another C++ instance of the custom user
control in a Silverlight for Windows Embedded application.

For more information:

Windows Embedded Web site

http://www.microsoft.com/windows/embedded/default.mspx�

Create a User Control in Silverlight for Windows Embedded 8

 Microsoft Corporation ©2009

Copyright
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of
this document does not give you any license to these patents, trademarks, copyrights,
or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, Windows and the Windows logo, Expression Blend, and Silverlight are
trademarks of Microsoft group of companies.

The names of actual companies and products mentioned herein may be the trademarks
of their respective owners.

	Create a Custom User Control in Silverlight for Windows Embedded
	Abstract
	Introduction
	Prerequisites
	How to Create a Custom User Control
	Define the GUI for the Custom User Control in XAML
	Create a C++ Source File for the Custom User Control
	Implement the Custom User Control Class
	Register Method
	GetXamlSource Method

	Register the Custom User Control
	Add the Custom User Control to the Visual Tree
	Build the Application and Your OS Design

	Conclusion

