

Microsoft Dynamics
®

 AX 2012

Deploying customizations

across Microsoft Dynamics

environments

White Paper

This white paper discusses best practices for deploying

customizations from one Microsoft Dynamics AX 2012

environment to another as part of the overall application life
cycle management process.

April 2014

microsoft.com/dynamics/ax

Robert Badawy, Senior PM

Send suggestions and comments about this document to

adocs@microsoft.com. Please include the white paper title with

your feedback.

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

2

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Table of Contents

Overview ... 4

Background ... 6
Terminology .. 6
Models and the model store ... 7
Element IDs... 7
Metadata artifacts and features.. 8

Scenarios... 9
Deploy models on a test environment ... 9

Prerequisites and user account privileges ... 9
Procedure for deploying models on a test environment ... 10
Models with conflicts... 12
Make changes on the test environment .. 12
Automation ... 12

Initialize a staging environment from a production system ... 13
Prerequisites ... 13
Procedure for initializing a staging environment from a production environment 14

Deploy models on the staging environment .. 14
Prepare to transfer metadata from staging to production ... 15

Procedure for exporting metadata from a staging system ... 15
Re-import all web content into the AOT .. 15
Export the model store ... 15
Export workflows ... 16
Export enhanced integration ports ... 16

Deploy metadata on the production environment .. 19
Prerequisites ... 19
Procedure for deploying metadata on the production environment ... 20
Import a model store with minimal downtime.. 21
Publish to other servers .. 21
Import workflows ... 22
Correct workflows .. 22
Import enhanced integration ports ... 22
Finalize the deployment .. 22

Recreate the staging environment from the production system .. 23
Example: Element ID conflict .. 23
Prerequisites ... 25
Procedure for recreating the staging environment from the production environment 26

Apply changes back to the development environment ... 27
Apply XPO files to a production environment .. 28

Migrating security between environments ..28
Scenario 1: Move security changes from production to staging ... 28
Scenario 2: Move security changes from staging to production ... 29

Recommended resources ..29
White papers ... 29
Technical reference .. 29

3

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Updates since initial publication ...30

Appendix ..31
Stop/start the AOS instance ... 31
User account privileges .. 31
Publish cubes .. 33
Create Role Centers ... 33
Publish Enterprise Portal content ... 33
Publish reports .. 33

Deploy reports by using Publish-AxReport ... 34
Deploy reports by running the AxDeploy Windows PowerShell script .. 34

Drain active users and close active sessions ... 34
Set the AOS instance to accept new client connections .. 35
Starting the AOS instance in “Single-user” mode .. 35

Method 1: Create a maintenance configuration .. 35
Method 2: Disable client configurations for your enterprise ... 35

4

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Overview

As part of the Microsoft Dynamics AX 2012 application life cycle, every implementation should include
separate Microsoft Dynamics AX environments, so that you can reliably manage changes and

customizations, and control what code ends up running on the production system.

The Microsoft Dynamics AX application life cycle relies on the following environments:

 Development environments – Microsoft Dynamics AX development environments typically

consist of multiple developers and multiple computers. Development environments are typical of

independent software vendors (ISV) and Microsoft partners working on large implementations.
Management of development environments is described in the white paper Change management

and TFS integration for multi-developer projects and is not within the scope of this document.

 Test environment – A test environment is an environment where Microsoft Dynamics AX
customizations and solutions, possibly from different vendors, are deployed, integrated, and

tested.

 Staging or pre-production environment – A staging environment is an environment that is

built based on the production environment and typically contains business data from the
production system. Microsoft Dynamics AX models and customizations are moved to a staging

environment after they have been integrated and tested on a test environment.

 Production environment – A production environment is the final environment that customers
are using to run their business.

This white paper describes scenarios and best practices for moving Microsoft Dynamics AX 2012

customizations across different environments while minimizing downtime of the production system.

Note: Changes have been made to this paper after it was initially published. For
details, see Updates since initial publication.

http://informationsource.dynamics.com/RFPServicesOnline/Rfpservicesonline.aspx?DocName=Change+management+and+TFS+integration+for+multi+developer+projects%7cQJ4JEM76642V-8-1186
http://informationsource.dynamics.com/RFPServicesOnline/Rfpservicesonline.aspx?DocName=Change+management+and+TFS+integration+for+multi+developer+projects%7cQJ4JEM76642V-8-1186

5

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

The following flowchart illustrates the application life cycle.

Development
environments

Test environment Staging environment

Production
environment

Develop solutions/
customizations

Deploy, test, make
changes

Initialize from production,
deploy, test, prepare for

production

Export model

Deploy, operate

Export model store, configuration

Recreate staging
environment

Disk repository
of released
Microsoft

Dynamics AX
models

Create builds

Apply changes back

Figure 1 Application life cycle

The preceding flowchart illustrates typical application life cycle management (ALM) scenarios. This

document describes many of these scenarios:

 Deploy models on a test environment.

 Initialize a staging environment from the production system.

 Deploy models on the staging environment.

 Prepare the staging system for production.

 Deploy on the production environment.

 Re-base the staging system from production.

 Apply changes back to the development environment.

 Apply XPO fixes on a production system.

We recommend that you first go through the background section of this document to familiarize
yourself with key concepts.

6

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Background

This section describes Microsoft Dynamics AX terms and concepts that relate to the deployment of

metadata. It provides background information to help you understand the scenarios and best practices
covered by this document.

Terminology

The following table explains the Microsoft Dynamics AX terms used in this document.

Term Definition

Metadata Information about the properties or structure of data. Metadata is typically

represented by elements in the Application Object Tree (AOT). The collection of all
metadata elements constitutes the Microsoft Dynamics AX application.

Layer (or application

layer)

A single layer of the Microsoft Dynamics AX 2012 application within a model store.

Elements in higher layers override elements in lower layers.

Model A set of elements in a given application layer. Each layer consists of one or more

models, of which one is a system-generated layer model.

Model element (or
element)

An element of the AOT. For example, a table definition is a model element; a form is
also a model element. Any one element in a layer belongs to exactly one model; that

is, no element in a layer can belong to two different models.

Model file (.axmodel) A model that has been exported from a model store. This file is the main vehicle for

metadata deployment in Microsoft Dynamics AX 2012.

Model store file
(.axmodelstore)

A complete model store that has been exported from the model database. The file
includes all metadata, compiled artifacts, CIL code, and security artifacts. The file is

used to move the entire application between environments with minimum downtime.

XPO file A development artifact containing the metadata of one or more elements exported

from the AOT. An XPO file is typically used to move metadata between developers.

Model store A collection of tables in the Microsoft Dynamics AX 2012 model database that house
the application metadata. The model store is analogous to the Application Object Data

(AOD) file share in Microsoft Dynamics AX 2009.

Common Intermediate

Language (CIL)

The Common Intermediate Language instruction set is part of the specification of the

Common Language Infrastructure from Microsoft and is more widely known as .NET.
An older name for CIL was Microsoft intermediate language (MSIL).

Transactional data Data that describes business transactions and the state of the business.

Configuration data Data concerning how Microsoft Dynamics AX 2012 is configured. This data includes the
following subcategories:

 Environment – Computer environment–specific data. An example of environment

data is the list of servers running Microsoft SQL Server Reporting Services that
Microsoft Dynamics AX 2012 is configured to use. If this data is moved, it needs to

be corrected to account for new server locations.

 System – Parameter settings for Application Object Server (AOS), such as the

databases to connect to, or for Enterprise Portal for Microsoft Dynamics AX forms.

 Application – Number sequences, invoicing profiles, or other data that relates
directly to the application.

Master data The critical data of a business, such as customer, product, location, employee, and

asset data. Master data falls into four general groupings: people, things, places, and

concepts. It also can be further categorized. For example, within the people grouping,
there are customer, employee, and salesperson categories. Within the things

grouping, there are product, part, store, and asset categories. Within the concepts
grouping, there are categories like contract, warrantee, and licenses categories.

Finally, within the places grouping, there are office location and geographic division

categories.

7

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Models and the model store

A model is a set of elements in a given layer. Each layer consists of one or more models. Each layer

contains at least one system-generated model. Every element in a layer belongs to only one model. In
other words, no element can belong to two models in the same layer, and every element must belong

to a model.

A model can be exported into a model file (.axmodel) by using either the AXUtil command-line utility
or Windows PowerShell cmdlets. To have access to these utilities, you must install the Microsoft

Dynamics AX 2012 Management Utilities component by using Setup. These utilities also let you import

a model file into a model store. Model files are the principal deployment artifact of Microsoft Dynamics
AX metadata.

Models are stored in the model store. The model store is stored in the Microsoft Dynamics AX model

database and includes all of the application’s metadata – that is, all model elements, including

customizations. The model store replaces the AOD files that were used in earlier versions of Microsoft
Dynamics AX. Model stores can be exported into a file (.axmodelstore). A model store file includes all

metadata, compiled artifacts, CIL code, and security artifacts of a Microsoft Dynamics AX application.

The file is used to move the entire application between environments with minimum downtime.

For more details about models and the model store in Microsoft Dynamics AX, see the following

TechNet articles: Models, Models, Layers, and the Model Store, and AxUtil and Windows PowerShell

Commands for Deploying Models.

Element IDs

When sharing metadata across environments, users must always consider Microsoft Dynamics AX

element IDs. Microsoft Dynamics AX elements are associated with corresponding business data based

on their element ID. Element IDs are specific to each installation and are sometimes referred to as
installation-specific IDs. In other words, the same method, class, or table may have a different

element ID in different installations. When two Microsoft Dynamics AX environments share copies of

the same business data (such as transaction, configuration, or master data), these environments also
need to share the same element IDs. This is typical of staging and production environments.

Model Store

Business Data

AX Element Metadata
AX Element

ID 1
Origin
GUID

Legacy ID

DataID1

Figure 2 Element IDs

http://msdn.microsoft.com/en-us/library/hh353677
http://technet.microsoft.com/en-us/library/hh335184
http://technet.microsoft.com/EN-US/library/hh456294
http://technet.microsoft.com/EN-US/library/hh456294

8

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Element IDs are usually assigned when the user installs a model file or imports an XPO file. When the

user installs a complete model store, element IDs are equal to the ones stored in the model store file.
Some elements also have a LegacyID property that is used for backward compatibility with previous

Microsoft Dynamics AX versions. LegacyID values are also stored in model files and XPO files.

Furthermore, all elements with an element ID also have a property named OriginGUID. This property
is set when an element is created, and it remains static for the lifetime of the element. This property

lets you rename or update an element in the future without having to assign it a new element ID.

During the import of model files and XPO files, element IDs are assigned based on the following rules

in the following order:

1. If an element already exists that has the same OriginGUID value as the imported element,

replace the existing element, and reuse its element ID.

2. If an element already exists that has the same Type, Name, and ParentID values as the
imported element, replace the existing element, and reuse its ID.

3. Else, if the imported element has a LegacyID value > 0, and the same LegacyID value is

available on the target system, set the element ID to be equal to LegacyID.

4. Else, assign a new installation-specific ID from a guaranteed free range that does not collide with

any LegacyID values:

1. For fields that are in tables that use table inheritance, use an ID number that is greater than
20000.

2. For fields that are not in tables that use table inheritance, use an ID number that is greater

than 60000.

3. For indexes, use an ID number that is greater than 60000.

4. For all other elements, use an ID number that is greater than 1000000.

To maintain installation-specific element IDs when you share metadata between Microsoft Dynamic AX

environments, users must strictly follow specific procedures; otherwise, IDs can become randomized,
and business data integrity can be affected. Microsoft Dynamics AX environments do not need to

share common element IDs unless they need to share business data.

For more details about element IDs, see Maintaining Installation-Specific Element IDs and Element
Handles.

Metadata artifacts and features

There are three artifact types that enable the sharing of Microsoft Dynamics AX metadata between

environments: XPO files, model files, and model store files. AOD files have been deprecated in
Microsoft Dynamics AX 2012 (see Code Upgrade Overview (White paper)).

 XPO files are development artifacts. They are typically used to move metadata between

development environments.

 Model files are deployment artifacts and are the recommended vehicle for distributing solutions

to customers, and for deploying builds on a test or staging environment.

 Model store files contain the metadata of your entire application, including element IDs and all
other element metadata. Model store files are recommended when you deploy a solution from a

staging environment to a production environment. When using model store files, you must

maintain common element IDs between the source and target systems, as described later in this

document.

http://technet.microsoft.com/EN-US/library/hh352326.aspx
http://technet.microsoft.com/EN-US/library/hh352326.aspx
http://technet.microsoft.com/en-us/library/hh272874.aspx

9

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

The following table describes features of these three artifact types.

 XPO files Model files Model store files

Installation tool Microsoft MorphX AXUtil.exe or Windows
PowerShell cmdlets

AXUtil.exe or Windows
PowerShell cmdlets

The files can be
uninstalled.

No, but elements can be
individually deleted.

Yes No

The files can be signed. No Yes No

Element IDs are preserved

in the target model store.

All elements that already

exist in the model store

preserve their IDs (XPO
files don’t contain IDs).

For new elements, new

IDs are generated.

All elements that already

exist in the model store

preserve their IDs. For
new elements, new IDs

are generated.

All element IDs on the

target system become

equal to the IDs stored in
the model store file.

Compilation is required
after installation.

Yes Yes No

CIL generation is required

after installation.

Yes Yes No

Scenarios

This section describes common ALM scenarios.

Deploy models on a test environment

This section describes the recommended procedure for deploying Microsoft Dynamics AX models to a

test environment. In this document, a test system is defined as a system used to do full functional and

integration testing of a customer solution that consists of one or more Microsoft Dynamics AX models.
It is important that you perform clean deployments on a test system in order to obtain reliable test

results.

To deploy customizations on a test system, we recommend that you use model files. You can use
either the AXUtil command-line utility or Windows PowerShell to import model files. For more

information, see AxUtil and Windows PowerShell Commands for Deploying Models.

Prerequisites and user account privileges

The following components should be available on the test computer:

 Microsoft Dynamics AX client

 Local AOS instance or connectivity to a remote AOS instance

 Connectivity to the database that contains the Microsoft Dynamics AX model store

 Microsoft Dynamics AX Management Utilities

In addition, the user account performing the deployment should have elevated privileges, as described

in the User account privileges section of the appendix.

http://technet.microsoft.com/EN-US/library/hh456294

10

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Procedure for deploying models on a test environment

The following flowchart illustrates the procedure for deploying your models on a test environment.

Publish to Servers
(when applicable)

Deploy and Compile

Prepare Environment for Deployment

Drain users,
reject new

clients

Close active
sessions

Stop all AOS
instances

Create Role
Centers from

AOT

Publish
Enterprise

Portal
content

Publish
reports

Publish cubes

Delete
current

version of
your models

Start single
AOS

Synchronize
database

Stop the AOS
Import new
version of

your models

Start single
AOS

Compile the
application,
including CIL

Synchronize
database

Start

End

Start all AOS
instances

Figure 3 Overview of the recommended deployment procedure on a test environment

11

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

The following are the recommended core steps to deploy Microsoft Dynamics AX models on your test

system:

Note:

 This procedure deletes the existing instances of your models in order to enable a clean

deployment. This means that business data will also be deleted. Element IDs are not maintained
when models are deleted; therefore, we recommend that you use test data that you can import

after each deployment.

 If you decide not to delete models from a test system, we recommend that you treat it like a

staging environment, as described later in this document.

1. Drain users and close active sessions.

2. Stop the AOS instance.

3. Delete the current instance of your models. Use the following commands. For more information,
see How To: Remove (Uninstall) a Model.

Tool Command

AXUtil AxUtil delete /model:ModelName

Windows PowerShell Uninstall-AXModel

4. Start the AOS instance.

5. Synchronize the business database (that is, perform a database synchronization). At the command
line, run the following command:

ax32.exe startupcmd=synchronize

6. Stop the AOS instance.

7. Import the model files. Import the models in ascending order of layers. An ISV model must be

imported before a CUS model. For models that belong to the same layer, the order should be

based on inter-model dependencies. For example, if ModelB depends on elements in ModelA,
import ModelA first. Use the following commands. For more information, see How to Export and

Import a Model.

Tool Command

AXUtil Axutil import /file:ModelName.axmodel

Windows PowerShell Install-AXModel

8. Start the AOS instance.

9. Compile the application. This step includes CIL compilation.

10. Synchronize the business database (that is, perform a database synchronization). At the command

line, run the following command:

ax32.exe startupcmd=synchronize

11. Publish the following to servers, if applicable:

 Publish cubes.

 Create Role Centers.

 Publish Enterprise Portal content.

 Publish reports.

12. Start all other AOS instances, if applicable.

http://technet.microsoft.com/EN-US/library/hh433514.aspx
http://technet.microsoft.com/EN-US/library/hh352314.aspx
http://technet.microsoft.com/EN-US/library/hh352314.aspx

12

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

13. Import test data, when applicable, by using System administration > Common > Data

export/import > Import. Alternatively, at the command line, run the following command:

Ax32.exe –startupcmd=autorun_c:\configuration.xml

The following is an example of a configuration.xml file where DAT is the company ID you are
importing to:

<xml version=”1.0” ?>

<AxaptaAutoRun

 exitWhenDone="false"

 version="4.0"

 logFile="c:\temp\AXAutorun.log">

<DataImport companyId="DAT" file="c:\temp\testdata.dat" />

</AxaptaAutoRun>

Models with conflicts

If the installation of a model causes a conflict with another model on the same layer, we recommend

that you rerun the import, and that you use the -Conflict Push option to push the elements that
cause the conflicts to the related update layer. You can then resolve the conflicts. For more

information, see How to: Resolve Conflicts After Importing a Model.

When you resolve conflicts, we recommend that you resolve them in the model element itself (on the
model layer) rather than in the update layer. You can then export the updated versions of your models

to enable a clean deployment on a different system.

In some cases, you may not want to modify the original model, because it may be a signed ISV

model. In that case, we recommend that you create your own “conflict resolution” model on a higher
layer. After creating a conflict resolution model, you will be able to install the original models with the

–Conflict Overwrite option and then install your own conflict resolution model. For more information

about how to work with models, see Working with Models in AOT.

Make changes on the test environment

If you make changes to your model elements on the test environment to resolve a conflict or fix a

bug, finalize your changes as follows:

 If your models were developed in-house on separate development environments, export the

changed elements into XPO files. These XPO files should be imported on a development computer

(and checked in to source control, if applicable), so that they make it into the next build of your

solution.

 Export the changed models into new model files by using the AXUtil export command or the

Windows PowerShell cmdlet Export-Axmodel. For more information, see How to Export and

Import a Model. The exported models can then be deployed on your staging environment.

Automation

Microsoft has released Windows PowerShell scripts to help you automate the deployment of a

Microsoft Dynamics AX build that can be used to deploy models on a test system. The scripts are
described in the Windows PowerShell scripts: Deploy a Microsoft Dynamics AX build section of the

white paper Change management and TFS integration for multi-developer projects. The scripts are

available for download from the Windows PowerShell gallery.

Important: These scripts delete from your model database the current versions of the specified

models, as well as all business data affected by the models. Do not use them in environments in which

you need to maintain element IDs and business data, such as a staging environment.

http://technet.microsoft.com/en-us/library/hh446521.aspx
http://technet.microsoft.com/en-us/library/hh404125.aspx
http://technet.microsoft.com/EN-US/library/hh352314.aspx
http://technet.microsoft.com/EN-US/library/hh352314.aspx
http://informationsource.dynamics.com/RFPServicesOnline/Rfpservicesonline.aspx?DocName=Change+management+and+TFS+integration+for+multi+developer+projects%7cQJ4JEM76642V-8-1186
http://gallery.technet.microsoft.com/scriptcenter/Build-and-deploy-for-b166c6e4

13

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Initialize a staging environment from a production system

This section describes the recommended procedure for initializing the model store of the staging

environment from the production system. This section assumes that both the staging and production
environments have already been set up with a standard Microsoft Dynamics AX installation.

The Microsoft Dynamics AX model store and model store files (.axmodelstore) contain all the metadata

elements that define a Microsoft Dynamics AX application. Environments that are initialized from the
same model store will have common element IDs and can therefore share copies of the same business

data, such as master, configuration, and transactional data. Using model store files to move metadata

will also enable minimum downtime when you move from staging to production.

If you use model store files to move metadata between two environments, it is critical to preserve

common element IDs between both environments. To preserve common IDs between staging and

production, adhere to the following guidelines:

 Initialize the model store of the staging system by importing the model store file from the
production environment.

 Do not import new elements (by using XPOs or model files) or create new elements on the

production system; otherwise, they will have a different element ID than they have on the staging
system.

 Do not delete and re-import models to avoid generating new element IDs. Instead, import models

without deleting the existing ones to update the metadata.

 Do not import a model store to the staging environment from a source other than the production

system’s model store.

If you do not follow these guidelines, you will have to recreate the staging environment from the
production environment.

Prerequisites

The user account that you are using to import and export metadata needs certain security privileges

on both environments. These are described in the User account privileges section of the appendix.

14

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Procedure for initializing a staging environment from a production environment

Initialize Staging Environment from Production

Export model
store of
staging

system to
backup file

Export model
store of

production
system

Import the
production
model store

file to the
staging
system

Start AOS on
staging
System

Synchronize
database on

staging
system

Stop AOS on
Staging
System

Start

End

Figure 4 Overview of the recommended procedure for initializing the staging model store

The following are the recommended core steps to initialize the staging model store from the
production system:

1. Stop the AOS instance on the staging system.

2. Export the model store from the staging system into a backup file.

3. Export the model store from the production environment into a model store file.

4. Import the production model store file to the staging system.

5. Start the AOS instance on the staging system.

6. Synchronize the database on the staging system.

For more information, see How to: Export and Import a Model Store.

Deploy models on the staging environment

This section describes the recommended procedure for deploying metadata on a staging environment.
The procedure is similar to the procedure for deploying models on a test environment described

earlier, with one important difference: on a staging environment that shares common element IDs

with the production system, it is essential to maintain element IDs. Therefore, when deploying model

files, do not delete the current instance of your models (Skip step 3 of the procedure for
deploying models on a test environment, described above). Deleting a model and re-importing

a new version of it will generate new element IDs, whereas importing a new version of the model on

top of the existing one will maintain element IDs.

http://technet.microsoft.com/EN-US/library/hh433530.aspx

15

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Prepare to transfer metadata from staging to production

After configuration and testing are completed on the staging system, you must export the metadata

and configuration data in preparation for deployment to the production environment.

Procedure for exporting metadata from a staging system

Export metadata and configuration data on staging system

Export
workflows

Export
integration

points

Export model
store

Start End

Figure 5 Overview of the export procedure

Re-import all web content into the AOT

Web content in Enterprise Portal may have been modified by using Microsoft SharePoint Server. To

ensure that any changes are reapplied to your model store, you must import the web content back

into the AOT before exporting the model store.

1. Open the AOT on the source environment.

2. Expand the Web > Web Menu Items > URLs node in the AOT.

3. For each URL that has been modified, right-click the item, and then click Import Page.

Export the model store

To export the metadata, use the AXUtil exportstore command or the Windows PowerShell Export-

AXModelStore cmdlet. These commands migrate the entire metadata store. For more information,

see How To: Export and Import a Model Store.

AXUtil

AXUtil exportstore -file:%AxModelStoreFile% -s:"%SourceDataBaseServer%" -

db:"%ModelDataBaseName%" -verbose

Example:

AXUtil exportstore -file:myapplication.axmodelstore -s:machine1\MSSQLSERVER -db:axmodeldb

Windows PowerShell

Export-AXModelStore -file "$AxModelStoreFile" -Server "$SourceDataBaseServer" -Database

"$ModelDataBaseName" -Details -verbose

http://technet.microsoft.com/EN-US/library/hh433530.aspx

16

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Export workflows

Workflows must be exported and imported by using the workflow editor. By using this method, users
can select workflows from the workflow list page and export them to XML files.

Note: This step assumes that the staging and the target (production) environment have common

element IDs; otherwise, additional steps may be needed on the target system to correct the object

IDs, depending on the complexity of the workflows.

1. Open the Microsoft Dynamics AX client on the source environment.

2. Open the workflow list page for the workflow that you want to export (for example, click Travel

and expense > Setup > Travel and expense workflows).

3. Select the workflow that you want to export, and then click Versions.

4. In the Workflow version dialog box, select a version of the workflow, and then click Export on

the toolbar.

5. In the Export to dialog box, type the file name, and then click OK.

6. Repeat steps 1 through 5 for each workflow that you need to export.

Export enhanced integration ports

Basic ports within Microsoft Dynamics AX 2012 are stored as metadata and will be automatically
deployed when a model store is deployed. Enhanced integration ports are stored as data and must be

exported by using the data export/import utility. The first time a deployment is performed, you will

need to create definition groups for the inbound and outbound ports. These definition groups can be
reused for future deployments.

1. Click System administration > Common > Data export/import > Definition groups. Click

New.

2. Enter a name and description for the definition group.

3. Click Clear to clear all values on the Options and Include table groups tabs, and then click OK.

4. Click Select tables. In the Name of table list, type or select AifInboundPort.

5. Select Apply criteria and Specify related tables to make the Export criteria and Select

related tables buttons available.

6. Click Select related tables. In the Select related tables form, set the value of Select table
relationship levels to include to 2.

17

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

7. Clear the check boxes for the ExtCodeTable and BarcodeSetup tables.

18

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

8. Click Select all remaining levels, and then click Close.

9. Click Export criteria. In the Criteria field, select the name AifInboundPort, and then click OK.

19

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

10. Repeat steps 1 through 9 to create a second definition group for outbound ports. Repeat the same

process, but use AifOutboundPort as the root table, and set the export criteria to filter on the
name AifOutboundPort.

11. To export the data, click System administration > Common > Data export/import > Export

to.

12. On the General tab, select the definition group that you want to use for the export.

13. Enter the name and location of the file that you want to export the data to on a local or network

share, and then click OK.

Deploy metadata on the production environment

This section describes the recommended procedure for deploying metadata and configuration data on

a production environment. It assumes that the production environment and the staging environment

share common element IDs.

Prerequisites

Before you deploy metadata, the following components should be available on the production

computer:

 Microsoft Dynamics AX client

 Local AOS instance or connectivity to a remote AOS instance

 Connectivity to the database that contains the Microsoft Dynamics AX model store

 Microsoft Dynamics AX Management Utilities

The user account that you are using to install the model store needs elevated security privileges.

These are described in the User account privileges section of the appendix.

20

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Procedure for deploying metadata on the production environment

Finalize Deployment

Publish to Servers (when applicable)

Deploy Metadata

Prepare Environment for Deployment

Drain users,
reject new

clients

Close active
sessions

Stop all AOS
instances

Create Role
Centers from

AOT

Publish
Enterprise

Portal
content

Publish cubes

Clean up old
model

schema (if
applicable)

Accept new
clients on

AOS

Start all AOS
instances

End
Import model

store with
minimum
downtime

Start single
AOS

Start AX
client

Synchronize
database

Start

Import configuration data (when applicable)

Import
integration

ports

Import
workflows

Publish
reports

Figure 6 Overview of the recommended deployment procedure on the production system

Note: The recommended procedure uses model store files; however, it is also possible to deploy
individual model files on the production environment. If you use model files to deploy metadata to a

production system, remember the following points:

 More downtime will be necessary.

 Element IDs may be different. In this case, the production environment may not be able to share

all business data with the staging environment.

 Follow the deployment procedure on staging environments described earlier in this document.

 If you import workflows, you will need to make some corrections (described in the section Correct

workflows).

21

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Import a model store with minimal downtime

Import the model store that was exported from the staging system into the production environment.
To reduce downtime, we recommend that you import the metadata into a new schema next to the old

one, and then switch to the active schema. This methodology lets users continue using the system

until the AOS instance needs to be restarted so that the new schema can be applied. The steps for

importing the new schema can be done before users are drained. For more information, see How to:
Export and Import a Model Store.

Import a model store by using AXUtil

1. Run the schema command to create a new schema.

AXUtil schema /schemaname:%NewSchema% /db:%TargetModelDatabase%

2. Import the model store into the temporary schema.

AXUtil importstore /file:%AxModelStoreFile% /schemaname:%NewSchema%
/db:%TargetModelDatabase%

3. When all users are out of the system, stop the AOS instance. At the command line, run the

following command:

sc \\%AOSServer% stop %AOSInstance%

Example:

sc \\computername stop AOS60$01

4. Apply the changes to the model store to move from the temporary schema to the dbo
schema.

AXUtil importstore /apply:%NewSchema% /db:%TargetModelDatabase% /verbose

Import a model store by using Windows PowerShell

1. Run the schema command to create a new schema.

Initialize-AXModelStore -SchemaName "$NewSchema" -Database "$TargetModelDatabase" -

Details

2. Import the model store into the temporary schema.

Import-AXModelStore -File "$AxModelStoreFile" -SchemaName "$NewSchema" -Database

"$TargetModelDatabase" -Details

3. When all users are out of the system, stop the AOS instance.

Set-Service -computername $AOSServer -name $AOSInstance -status stopped

4. Apply the changes to the model store to move from the temporary schema to the dbo

schema.

Import-AXModelStore -Apply "$NewSchema" -Database "$TargetModelDatabase" -Details

Publish to other servers

The installation is not completed unless the metadata for cubes, Enterprise Portal, and report servers
has also been deployed. For more information, see the following procedures in the appendix:

 Publish cubes

 Create Role Centers

 Publish Enterprise Portal content

 Publish reports

http://technet.microsoft.com/EN-US/library/hh433530.aspx
http://technet.microsoft.com/EN-US/library/hh433530.aspx

22

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Import workflows

Workflows are imported by using the workflow editor in the Microsoft Dynamics AX client, as follows:

1. Open the Microsoft Dynamics AX 2012 client.

2. Open the workflow list page for the workflow that you are going to import. For example, click

Travel and expense > Setup > Travel and expense workflows.

3. Click Import.

4. In the Import dialog box, select the file name, and then click OK.

5. Repeat steps 1 through 4 for all workflows that you want to import.

Correct workflows

If you deployed the metadata by using models files or XPOs instead of the model store file, the

element IDs may have changed, and the workflows may need to be corrected.

1. If you have a parent workflow that contains sub-workflows, you need to re-link the sub-workflow
to the parent workflow:

1. Open the parent workflow in the workflow editor.

2. Select the sub-workflow element.

3. In the Properties window, select the appropriate sub-workflow and its field.

4. Save the parent workflow.

2. If you have a header workflow that contains line item workflows, you need to re-link line item

workflows to the header workflow:

1. Open the header workflow in the workflow editor.

2. Select the line-item workflow element.

3. In the Properties window, select the appropriate line-item workflow.

4. Save the header workflow.

3. Repeat steps 1 and 2 for all workflows that you want to import.

Import enhanced integration ports

Import the enhanced integration ports by going to System administration > Common > Data

export/import > Import and selecting the .dat file that you previously created.

Finalize the deployment

After the customizations are verified as working on the production environment, you must finalize the
deployment.

1. Clean up the old metadata schema.

If you used the BackupSchema parameter when you imported the model store, you created a
backup of the initial model store. When you are satisfied with the new model store, you should

delete the backup schema.

AXUtil

AXUtil schema /drop:%OldSchema% /db:%TargetModelDatabase%

Windows PowerShell

Initialize-AXModelStore -Drop "$OldSchema" -Database "$TargetModelDatabase"

23

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

2. Set the AOS instance to accept new clients. For more information, see the following procedure in

the appendix: Set the AOS instance to accept new client connections.

3. Restart all production AOS instances.

Recreate the staging environment from the production system

When the staging and production systems do not share common element IDs, model store files cannot

be used to deploy metadata. You must recreate the staging system from the production system to
enable model store file deployment.

Even if the staging environment was originally based on the model store of the production system,

scenarios such as the following may lead to a loss of element ID commonality:

 Importing new elements (by using XPOs or model files) or creating new elements on the

production system

 Deleting and reinstalling models, which will regenerate new element IDs

 Installing a model store on the staging environment from a source other than the original model
store

When the two environments don’t have common element IDs, importing a model store on the

production environment may cause ID conflicts or errors during database synchronization. Follow the
next procedure to recover from this condition.

Example: Element ID conflict

The following illustrates one way that element ID conflicts can arise:

1. First, initialize the staging system model store from the production system.

2. On the staging environment, install some customizations that include new elements (Object1).

Staging System

Model Store

Data ID1

Production System

Model Store

Object1 AXID1

24

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

3. On the production system, import the model that contains Object1. Because this is a new object

that does not already exist in the production system, Microsoft Dynamics AX may give the object
an ID that is different from the ID in the source system.

Staging System

Model Store

Data ID1

Production System

Model Store

Object1 AXID1 Object1 AXID2.axmodel

4. Someone runs the production system and adds some data, which creates transactional records
that reference AXID2.

Staging System

Model Store

Data ID1

Production System

Model Store

Object1 AXID1 Object1 AXID2

Data ID2

5. Make another customization on the staging system, and deploy the entire model store on
production for minimal downtime. To do this, import the model store file, which includes the IDs.

Staging System

Model Store

Data ID1

Production System

Model Store

Object1' AXID1 Object1 AXID2.axmodelstore

Data ID2

Conflict!

Unfortunately, we will run into conflicts, because the IDs in the two systems are different.

25

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Prerequisites

Before you deploy metadata, the following components should be available on the staging computer:

 Microsoft Dynamics AX client

 Local AOS instance or connectivity to a remote AOS instance

 Connectivity to the database that contains the Microsoft Dynamics AX model store

 Microsoft Dynamics AX Management Utilities

The user account that you are using to install and export metadata needs elevated security privileges

on both environments. These are described in the User account privileges section of the appendix.

26

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Procedure for recreating the staging environment from the production

environment

Publish to Servers
(Staging)

Re-base Staging Metadata from Production

Prepare Staging System

Drain users,
reject new

clients

Close active
sessions

Stop all AOS
instances

Create Role
Centers from

AOT

Publish
Enterprise

Portal
content

Publish
reports

Publish cubes

Staging: Export
your model(s) to

backup model
file(s) **

Production
system:

Export model
store

Staging:
Import

production
model store to

staging

Staging:
Import backup

model files

Staging: Start
the AOS

Staging:
Compile the
application,
including CIL

Staging:
Synchronize

database

Start

End

Staging: Set
AOS to

accept new
clients

Figure 7 Overview of the recommended procedure for re-basing the staging system from
production

27

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Note: This procedure assumes that the version of the application on the staging environment is newer

than the one on production, which requires backing up then re-importing models.

1. Drain users, and close the active session on the staging system. For details, see the following

procedure in the appendix: Drain active users and close active sessions.

2. On the staging system, stop the AOS instance.

3. On staging system, export your custom models to model files. For more information, see How to

export and import a model.

4. On the production system, export the model store. For more information, see How to export and

import a model store.

5. On the staging system, import model store file from step 4.

6. On the staging system, import model files from step 3.

7. Start the AOS instance.

8. On the staging system, compile the application, including CIL.

9. On the staging system, run database synchronization.

10. On the staging system, publish to servers, if applicable. For more information, see the following
procedures in the appendix:

 Publish cubes

 Create Role Centers

 Publish Enterprise Portal content

 Publish reports

11. On the staging system, start all other AOS instances.

Apply changes back to the development environment

If you make metadata changes directly to the staging or production system, we recommend that you

export these changes as XPO files and load them to the development environment.

1. Export your changes to an XPO file.

2. On a Microsoft Dynamics AX development environment, start the Microsoft Dynamics AX client in

the desired layer, and select the appropriate model as your current model.

3. Load the XPO from step 1.

4. If your Microsoft Dynamics AX installation is integrated with a version control system such as
Team Foundation Server (TFS), follow these steps:

 If the XPO contains new elements, add these elements to version control.

 Check all changed elements in to version control.

http://technet.microsoft.com/EN-US/library/hh352314
http://technet.microsoft.com/EN-US/library/hh352314
http://technet.microsoft.com/EN-US/library/hh433530
http://technet.microsoft.com/EN-US/library/hh433530

28

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Apply XPO files to a production environment

It is possible to use XPO files to quickly apply fixes from a partner or customer developer to a

Microsoft Dynamics AX staging or production environment. When you do so, it is important to consider
the following information.

Element ID commonality

When you load an XPO file that contains new elements on a Microsoft Dynamics AX environment
(staging or production), the new elements are assigned new element IDs. If the same XPO is

applied on another environment, the two environments will have different IDs for the same

element. When the staging and production environments have different IDs for common elements,

model store files cannot reliably be used as a deployment vehicle between the two environments.
In this case, you may need to re-create the staging system based on the model store of the

production environment.

Layers and customized elements

When an XPO is loaded, all elements in the XPO are applied to the current layer (specified by the

Microsoft Dynamics AX client configuration). However, if the XPO contains elements that are

customized in a higher layer than the current layer, the changes are applied to the highest layer,
and therefore the elements will end up in a model that may be different from what the user

intended.

For example, Table1 exists in the SYS layer and is also customized in the CUS layer. If you start
Microsoft Dynamics AX in the ISV layer and load an XPO that adds a new field to Table1, the new

field is applied to the CUS layer of Table1, not to the ISV layer.

Therefore, we do not recommend that you use XPO files when applying fixes to middle layers,

such as the ISV layer. Use model files instead.

Migrating security between environments

Changes to the behavior of roles, duties, and privileges also change the metadata stored in the AOT.

These changes are reflected in the model that the person making the change is working in.

Important: The metadata stored in the AOT contains the information about the behavior of security
roles, but user-to-role mapping information is stored in the business database. To move user-to-role

mapping information, you must use Microsoft Dynamics AX data import/export to migrate the UserInfo

and SecurityUserRole tables from the business database.

People in the following roles are most likely to modify security:

 Security administrators with the responsibility for making changes to the security objects by using

the Microsoft Dynamics AX client.

Changes made by the security administrator are most likely to be stored in the USR model.

 Microsoft Dynamics AX developers.

Changes made by developers are most likely to be stored in the CUS or VAR models.

It is essential that the security administrator and developer collaborate to make security changes.

Scenario 1: Move security changes from production to staging

We recommend that you migrate security changes from the production to the staging environment

before making further changes in the staging environment.

Follow the steps in the section Recreate the staging environment from the production system.

29

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

The advantage of this approach is that all the changes made from the production environment are

brought over to staging and can be tested, compiled etc. in the staging environment before they are
reapplied. Note that changes that were made in the production environment by an administrator

cannot be uniquely identified in the staging environment.

Scenario 2: Move security changes from staging to production

To ensure that recent security changes made by the administrator will not be lost in the production
system, we recommend that you back up the changes from the production environment, apply the

changes from the staging environment to the production environment, and then recent security

changes to the production environment

When you deploy on production, instead of the step where you import the staging model store, do the

following:

1. Back up the security changes from the production environment by exporting the USR model from

the USR layer of the production system (or the layer in which the security administrator made the
changes).

2. Import the model store of the staging system that contains changes to security artifacts.

3. Reapply the original production security changes by importing the USR model file from step 1.

4. Recompile the production environment.

Recommended resources

White papers

 Code Upgrade Overview (White paper)

 Change management and TFS integration for multi-developer projects (White paper)

 Data Migration for Microsoft Dynamics AX 2012 (White paper)

Technical reference

 Models, Layers and the Model Store

 Deploying Customizations and Solutions by using Models and the Model Store

 Working with Models in the AOT

http://technet.microsoft.com/en-us/library/hh272874.aspx
http://informationsource.dynamics.com/RFPServicesOnline/Rfpservicesonline.aspx?DocName=Change+management+and+TFS+integration+for+multi+developer+projects%7cQJ4JEM76642V-8-1186
http://technet.microsoft.com/EN-US/library/hh943505
http://technet.microsoft.com/en-us/library/hh335184
http://technet.microsoft.com/EN-US/library/hh335181.aspx
http://technet.microsoft.com/en-us/library/hh404125

30

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Updates since initial publication

The following table lists changes made to this document after it was initially published.

Date Change

April 2014 Updated text in several flowcharts to make them easier to follow.

Updated steps in the Procedure for recreating the staging environment from the
production environment section to correct an error.

February 2013 Updated the section Models with conflicts:

 Defined a test system and clarified some recommendations in the

deployment procedure in a test environment.

 Clarified the difference between the model database and the business
database because they were split in Microsoft Dynamics AX 2012 R2.

Added the section Migrating security between environments.

October 2011 Updated to be organized around Application Lifecycle Management scenarios.

Added section describing how to apply XPO files to production environment.

July 2011 Initial publication

31

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Appendix

Stop/start the AOS instance

 To start the AOS instance from the command line, run the following command:

sc \\AOShostname start %AOSinstance%

Example:

sc \\computername start AOS60$01

 To stop the AOS instance from the command line, run the following command:

sc \\AOShostname stop %AOSinstance%

 To start the AOS service from Windows PowerShell, run the following cmdlet:

Set-Service -computername %AOSHostname% -name %AOSInstance% -status running

 To stop the AOS service from Windows PowerShell, run the following cmdlet:

Set-Service -computername %AOSHostname% -name %AOSInstance% -status stopped

User account privileges

Before you deploy models, the following components should be available on the computer:

 Microsoft Dynamics AX client

 Local AOS instance or connectivity to a remote AOS instance

 Connectivity to the database that contains the Microsoft Dynamics AX model store

 Microsoft Dynamics AX Management Utilities

We recommend that you create a dedicated account for performing deployments, because deployment

accounts require elevated privileges. The Windows account that you use to perform the deployment

must meet the following requirements:

 It must be able to start and run the Microsoft Dynamics AX client.

 It must have permissions to start and stop every AOS service on the Microsoft Dynamics AX

environment.

 It must be able to execute AXUtil.exe or the AXUtilLib.PowerShell cmdlet module. This requires

that it have read and execute access to the folder <Microsoft Dynamics AX installation

folder>\ManagementUtilities.

 It must have administrative permissions on the local computer.

 It must be a member of the Microsoft Dynamics AX role System administrator.

 If you are working with Enterprise Portal, the account must be able to run on the server that runs

Enterprise Portal. The account must have the following rights:

 Microsoft SharePoint Server farm administrator

 Membership in the local Administrators group on the server that runs Enterprise Portal

 If you are working with Reporting Services, the account must have the following rights on the
server that runs Reporting Services:

 System Administrator rights in Reporting Services

 Membership in the local Administrators group on the server that runs Reporting Services

file://AOShostname
file://AOShostname

32

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

 It must be given privileges in the Microsoft Dynamics AX model database by running the AXUtil

grant command or the Windows PowerShell Grant-AXModelStore cmdlet.

Note: If you are running under the same account as the AOS Service account, you do not need to

run the grant command. We recommend that you use a different account to deploy

customizations, and that you run the grant command for it.

Run AXUtil grant or Windows PowerShell Grant-AXModelStore

To run the AXUtil grant command against a model database, the deployment account must be a

member of the following SQL Server roles on the Microsoft Dynamics AX model database server:

 Server role securityadmin

 Database role accessadmin

To grant these SQL Server privileges, you must be a member of the SysAdmin server role on the

database instance. You can have a SQL Server system administrator grant you the privileges. If
you are a member of the SysAdmin server role, use SQL Server Management Studio or the

following commands to grant the rights to the account:

osql -S %SQLAdministrator% -E -Q "EXEC sp_addsrvrolemember @loginame =
N'%DeploymentAccount%', @rolename = N'securityadmin'" -d master

osql -S %SQLAdministrator% -E -Q "EXEC sp_addrolemember N'db_accessadmin',

N'%DeploymentAccount%'" -d %DatabaseName%

After the account has the correct privileges, you can execute the AXUtil grant command or the

Windows PowerShell Grant-AXModelStore cmdlet.

To grant access by using AXUtil

1. Open a Command Prompt window, and navigate to the <Microsoft Dynamics AX installation
folder>\ManagementUtilities folder.

2. Run the following command:

AXUtil grant -aosaccount::%account% -s:%SourceDataBaseServer% -
db:%SourceModelDataBaseName%

Here, %account is the account that you are granting privileges to. The -s and -db parameters

are included in the command to clearly specify which database and server you are granting
access to.

Example:

AXUtil grant -aosaccount:: domainname\alias -s:hostname\SQLInstance -db:AXModelDB

To get help with AXUtil commands

 Run the following command:

AXUtil.exe /?

To grant access by using Windows PowerShell

1. On the Start menu, point to Administrative Tools, and then click Microsoft Dynamics AX

2012 Management Shell.

2. Execute the following cmdlet:

Grant-AXModelStore -aosaccount %account% -Server "$SourceDataBaseServer" -

Database:"$SourceModelDataBaseName"

Here, %account% is the account that you are granting privileges to. The -Server and -
Database parameters can be included in the command to clearly specify which database

server and model store database name you are granting access to.

33

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Example:

Grant-AXModelStore -aosaccount domainname\alias -Server hostname -Database AXModelDB

To get help with Windows PowerShell cmdlets

 Execute the following cmdlet:

Get-Help <CmdletName> -full

Publish cubes

To deploy cubes, follow these steps:

1. Click Tools > Business Analysis > SQL Server Analysis Wizard.

2. Click Next.

3. Click Deploy.

4. Select a project from the AOT drop-down menu, and then click Next.

5. Click Deploy the Project, click Create New Database, and then click Next.

6. The deployment window opens, which may take a few minutes. Click Next.

Create Role Centers

To create Role Centers, follow these steps:

1. Open the Microsoft Dynamics AX 2012 client.

2. Click System administration, and then click User profiles.

3. Click File > New to create a new role.

4. Enter a profile ID and description for the role.

5. Select the Role Center from the drop-down menu.

6. Click Add user or Bulk add users.

7. Select the user IDs to add, and then click OK.

Publish Enterprise Portal content

Enterprise Portal web content can be deployed either from the AOT or programmatically by using the
AxUpdatePortal.exe command-line utility, which is installed together with the Management Utilities by

using Setup.

 All web content can be updated at the same time by using the following command:

AxUpdatePortal.exe -updateall -websiteurl %SiteUrl%

 Individual web content items can be deployed by specifying their location in the AOT:

AxUpdatePortal.exe -updatewebcomponent -treenodepath %TreeNodePath% -websiteurl
%SiteUrl%

 Additionally, proxies and DLLs can be deployed by using the following command:

AXUpdatePortal.exe -proxies -websiteurl %SiteUrl%

Publish reports

Reports are a part of the model store. To deploy reports, you first import the model store or model file

containing the reports, and then deploy the reports by using Windows PowerShell cmdlets or scripts.

34

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Deploy reports by using Publish-AxReport

Run the following Windows PowerShell cmdlet:

Publish-AxReport -Id $ConfigId -ReportName "ReportName"

Here, $ConfigID refers to a configuration ID that was defined in Microsoft Dynamics AX. To view these

configuration IDs, open Microsoft Dynamics AX and then open the Report servers form. (Click System

administration > Setup > Business intelligence > Reporting Services > Report servers.) To
deploy reports to the desired Reporting Services instance, enter the configuration ID that is associated

with that instance.

ReportName is the name of the report to deploy.

To deploy all reports, you can substitute * for ReportName in the preceding command.

Deploy reports by running the AxDeploy Windows PowerShell script

The AxDeployReports.ps1 script can be used to deploy all reports from the AOT to the report servers.
To run the script, navigate to the <Microsoft Dynamics AX installation folder>\ManagementUtilities

folder, open a Command Prompt window, and run the following command:

AxDeployReports.ps1 <ConfigID> <LogFilePath>

Here, <ConfigID> specifies the Reporting Services instance to use (as in previous section), and
<LogFilePath> specifies the location where the logs should be stored.

Drain active users and close active sessions

To prepare for AOS downtime, start the process of draining active users by rejecting new client
connections. For more information, see Drain users from an AOS.

1. Click System administration > Common > Users > Online users.

2. On the Server instances tab, select the AOS instance that you want to perform maintenance on.

3. Click Reject new clients.

4. When you are prompted, click OK to stop the AOS instance from accepting new client connections.

After 5 minutes, all users receive a message informing them that they must save their work,

because the administrator is shutting down the AOS instance. No new client connections are
accepted during this time. The server forces client sessions to close after they have been idle for

2 minutes. Client sessions for administrators are never closed. When the number of clients that

are connected to the AOS instance is displayed as 0 (zero), you can perform maintenance on the
server.

5. Stop load balancers, if applicable. This will prevent new service clients from connecting.

6. Restart all Reporting Services servers. This will force the Reporting Services servers to recycle
their idle connections.

7. Open a page on the Enterprise Portal site. This will force SharePoint Server to recycle its idle

connections.

It is important to note that ending the sessions for active users will cause them to lose data. Be sure
that you have followed the preceding steps before you stop any active client sessions.

To close active client sessions for each AOS instance, use the Online users form.

1. Click System administration > Common > Users > Online users.

2. On the Client instances tab, select the active sessions.

3. Click End sessions.

Be sure also to end the sessions for web users.

http://technet.microsoft.com/en-us/library/hh433538.aspx

35

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

Set the AOS instance to accept new client connections

To set the AOS instance to accept new client connections, follow these steps:

1. Click System administration > Common > Users > Online users.

2. On the Server instances tab, select the AOS instance that you want to perform maintenance on.

3. Click Accept new clients.

Starting the AOS instance in “Single-user” mode

Although an AOS instance in Microsoft Dynamics AX 2012 can be set to reject new incoming client
sessions, this setting is reset when the AOS instance restarts. During maintenance, it is important to

prevent other users from connecting to the system. You can use AOS and client configurations to

prevent other users from connecting.

Method 1: Create a maintenance configuration

You can create a separate AOS and client configuration for use by the deployment administrator.

1. Use the server configuration utility to create a copy of the active configuration.

2. Change the TCP/IP and WSDL ports to different values.

3. Use the client configuration utility to create a copy of the active client configuration.

4. Change the TCP/IP and WSDL ports to the values used for the server configuration.

During maintenance, change the AOS and maintenance client to use these configurations. This will
prevent users from connecting to the maintenance AOS instance.

Method 2: Disable client configurations for your enterprise

If you have configured the client across your enterprise to start by using configuration files that are
stored on a central file share, you can revoke read access to these files for everyone except the

deployment administrator. This will prevent users from starting the Microsoft Dynamics AX 2012

client.

36

DEPLOYING CUSTOMIZATIONS ACROSS MICROSOFT DYNAMICS ENVIRONMENTS

This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet Web site
references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or
should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and
use this document for your internal, reference purposes. You may modify this document for your internal, reference purposes.

© 2013 Microsoft Corporation. All rights reserved.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your

people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a

way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

