
移动端开发技术的应用与比较

Agenda

• Architecting Mobile App

• Apache Cordova

• Xamarin

• Cordova vs. Xamarin

Sweet spot for the successful mobile
enterprise

+

+

-

Client development trends

WebNative

Client development trends

Web

Native

Apps dominate the mobile web

80% 86%

20% 14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2013 2014

Time Spent in Apps vs. Browser

Apps Web

Low investment for more capabilities

Capabilities

D
e
v
e
lo

p
e
r

In
v
e
s
tm

e
n
t

Web App

Hybrid App

Native App

Supported Platforms
Native Windows Store + browser / hybrid

Supported Platforms
Native Windows Store / Windows Phone / Desktop support +
Native iOS / Android through Xamarin and C#

Supported Platforms
Most OS, but code re-usage via standard C++ subset language

Highest abstraction level

Flexible abstraction level

Lowest abstraction level
C++

Native Client Apps
Microsoft Technology choices

Silo
Approach:

Build the
Same
Apps Multiple
Times

The Silo approach: Build native apps multiple
times
Multiple teams and multiple code bases are expensive and slow

Great apps delivered to the user’s choice
of device

Development agility hampered by multiple
code bases and fragment toolsets

End user
experience

Better TCO, productivity and
Developer Experience

+

+

-

✗

Write Once,
Run Anywhere
Approach

Lowest
Common
Denominator

Browser
Fragmentation

• App Generation.
• Web Browser in a

Native Wrapper +
Cordova APIs.

The write-once-run-anywhere
approach
HTML Hybrid scenarios (Semi-native apps) like PhoneGap (i.e.
Cordova)

E
n
d
 u

s
e
r

e
x
p
e
ri
e
n
c
e

Developer experience

Development agility hampered by HTML5
implementations fragmentation and
insufficient tooling

Lowest common denominator apps with
poor performance✗

Benefits of cross platform
development

• Improved reuse of code.
• Less duplicated work.
• Easier to maintain code base.
• Better consistency in implementations.
• Leveraging of existing skills on different platforms.
• Lower development cost.
• Quicker to market for multiple platforms.

Native Wrapper

What is Apache
Cordova?

• Open-source framework

• Hosted webview

• Single, shared codebase deployed
to all targets

• Plugins provide a common
JavaScript API to access device
capabilities

<webview>

Your JavaScript App

Cordova Plugin JS API

Cordova @ MS Open Tech
• MS Open Tech devs contribute to Cordova

• We released the Visual Studio Tools for Apache Cordova

• Included in Cordova 4.0.0: npm install –g cordova

• Updated the ‘windows’ platform
• Support now for Universal Apps

• Windows Phone 8.1 & Windows 8.1

• Native JS/HTML5 development

• does NOT use Webview

• Local Security context vs. Web security context
• JavaScript Dynamic Content Shim for Windows apps

• https://github.com/MsopenTech/winstore-jscompat

• Windows Phone 8

• Webview control

Visual Studio Tools for Apache Cordova















Supported Platforms

Android
• Uses Android SDK installed locally
• Android emulator, Ripple, real device

iOS
• Uses agent running on a MAC with Xcode tools installed
• Ripple

Windows Store
• Device Visual Studio is running on
• Simulator
• Remote debugging

Windows Phone
• Emulator (Hyper-V based)
• Real device

Publish & Manage Your App: Pick your deployment!

Deploy to your enterprise
via Windows Intune

Manage distribution & version updates

Deploy to the public via
Windows Store, Google Play
or the Apple Store

Reach the widest audience possible

Where are Microsoft going
with this?• Cordova contributions

• Improve the support matrix for most popular plugins
• Support for Windows Platform

• Stay in the browser longer
• Cordova Browser Platform
• Evolve the Ripple emulator

• Interoperability with other tools
• CLI
• Frameworks (e.g. Ionic)
• Grunt, Bower, etc.

• Better coding & debug experiences
• Intellisense for popular frameworks
• TypeScript

What is Xamarin?

Extension to Visual Studio
• iOS, Android apps entirely

within Visual Studio

• Compiles .NET/C# code to

native platforms

• Visual Studio ALM and IDE

capabilities fully available

Build apps faster
• Leverage skills

• Reuse code and binaries

with flexibility

• Fully native user interfaces

•

• iOS

• Android

• Windows Phone

• Windows Store

•

• ReSharper

• Team Foundation Server

• Your favorite code
coverage and profiling
tools

Visual Studio Integration

•

• Emulators

• Devices

•

• Status

• Logs

• List of devices

•

Visual Studio Integration

•

•

• Xamarin Studio

• Visual Studio

•

•

•

Android Designer

•

•

•

•

•

iOS Designer

Windows APIs

Microsoft.Phone Microsoft.Networking Windows.Storage Windows.Foundation Microsoft.Devices

System.Data System.Windows System.Numerics System.Core System.ServiceModel

System.Net System System.IO System.Linq System.Xml

C#

iOS – 100% API Coverage

MapKit UIKit iBeacon CoreGraphics CoreMotion

System.Data System.Windows System.Numerics System.Core System.ServiceModel

System.Net System System.IO System.Linq System.Xml

C#

Android – 100% API Coverage

Text-to-speech ActionBar Printing Framework Renderscript NFC

System.Data System.Windows System.Numerics System.Core System.ServiceModel

System.Net System System.IO System.Linq System.Xml

C#

Native Performance: How it works

• Xamarin.iOS does full Ahead Of
Time (AOT) compilation to produce
an ARM binary for Apple’s App
Store.

• Xamarin.Android takes advantage

of Just In Time (JIT) compilation on

the Android device.

How Xamarin.Forms works

Shared App Logic in C#

At runtime, each Xamarin.Forms page and its
controls are mapped to platform-specific native user
interface elements

iOS C# UI Android C# UI

Shared App Logic

Windows C# UI

Use a single API to generate native,
platform-specific user interfaces

Pages

Content MasterDetail Navigation Tabbed Carousel

Layouts

Stack Absolute Relative Grid ContentView ScrollView Frame

Controls
ActivityIndicat

or
BoxView Button DatePicker Editor

Entry Image Label ListView Map

OpenGLView Picker ProgressBar SearchBar Slider

Stepper TableView TimePicker WebView EntryCell

ImageCell SwitchCell TextCell ViewCell

Shared Projects

Choosing a Code Sharing Option
• Shared Projects / File Linking

• Reuse the same files in multiple projects
• Can use conditional compilation

(i.e. #if)

• Portable Class Libraries
• Reuse your past investments in .NET code
• Common Denominator only
• Common code only, no #if conditionals

• Combo Approach
• Not mutually exclusive, use both in same

solution
• e.g. Shared Project with Xamarin.Forms + UI

code, combined with shared non-UI code in PCL

Why Cordova?

72%
62%

34%
28% 27% 24% 20%

9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Source: Kendo UI Developer Survey 2013

Why Xamarin?

• High performance application that can access native API
• Strong typed and object oriented development to support you flexible

architecture
• Drag and Drop user interface development. If you are Windows Developer, no

need to learn JS or HTML. You can build using drag and drop style for IOS or
Android.

• Xaml UI and adaptive layout.
• Based on Mono runtime and totally open source.

Picking between Xamarin and
Apache Cordova

Xamarin is generally better when you:
• Xamarin.Forms can help you implement device specified UI
• Have .Net developers especially UWP developers
• Need a high performing, native looking app like a game

Cordova with Visual Studio is generally better when you:
• Want to share more UI between platforms, with fewer native looking elements.
• Share UI assets with a mobile website
• Have HTML / JS developers
• Are OK with a somewhat less smooth UI on older Android and iOS devices, or

don’t plan on supporting older Android

No matter what’s your choice.
Visual Studio 2015 offers both and

FREE!

Thanks

