

Resilience by design for

cloud services

A structured methodology for

prioritizing engineering investments

May 2013

Contents
Overview 2

Background 2

Benefits 4

How resilience modeling and analysis works 5

Implementation considerations 15

Call to action 17

Conclusion 17

Additional resources 19

Authors and contributors 19

Trustworthy Computing | Resilience by design for cloud services 2

Overview

Microsoft Trustworthy Computing (TwC) has collaborated with a number of cloud service teams

across Microsoft to develop an approach for increasing cloud service resiliency by identifying and

analyzing potential failures. This paper briefly frames the motivation and benefits of incorporating

robust resilience design into the development cycle. It describes Resilience Modeling and Analysis

(RMA), a methodology for improving resiliency adapted from the industry-standard technique

known as Failure Mode and Effects Analysis (FMEA)1, and provides guidance for implementation.

The primary goal of this paper is to equip cloud service engineers with a detailed understanding of

RMA, including the steps and templates used to complete the process, to enable easy and

consistent adoption.

Background

Software development has traditionally emphasized fault prevention, and because customers

operated the software, any failures were isolated to customers’ on-premises deployments. Today,

cloud services typically run as highly complex, distributed, “always available” systems that serve

many customers. Cloud systems are globally distributed, often built using commodity hardware,

and have inherent dependencies on third-party and partner services. The nature of the Internet

and global networking is that transient and even prolonged failures are quite common. So

engineers need to make a necessary mind shift to adopt Recovery-Oriented Computing (ROC)

practices,2 fully embrace the idea that failures will happen, and therefore incorporate coping

strategies into their service design and software to minimize the harmful effects of such failures.

The following figure shows a spectrum of failures, ranging from infrequent (natural environmental

disasters or man-made disasters) to common (software imperfections, hardware failures, or human

errors). Because common failures are inevitable, their occurrence and impact need to be factored

into the service during the design phase so that the software can be designed and built in a more

resilient way, and impact to users can be minimized.

1 Failure Mode and Effects Analysis is, also referred to as Failure Mode, Effects, and Criticality Analysis (FMECA).
2 “Recovery Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies”

 http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf

http://roc.cs.berkeley.edu/papers/ROC_TR02-1175.pdf

Trustworthy Computing | Resilience by design for cloud services 3

Figure 1. The spectrum of failure ranges from common failures to infrequently occurring failures. Failure is inevitable, so fault
tolerance techniques should be incorporated into the service design to reduce the impact when failures occur.

If we embrace the idea that failures are expected in the world of cloud services, engineers must

change their emphasis from designing to extend time between failures (TBF) to designing to

reduce time to recover (TTR) from failures. If failures are commonplace, the most important

objective is to detect them quickly and develop coping strategies that minimize their effects on

customers.

Concepts from the industry-standard process known as FMEA have been adapted to create a

Resilience Modeling and Analysis (RMA) methodology for cloud services teams at Microsoft. The

purpose of this methodology is to more effectively prioritize work in the areas of detection,

mitigation, and recovery from failures, all of which are significant factors in reducing TTR. By

completing RMA, an engineering team will have thought through many of the reliability issues in

depth and be better equipped to ensure that when failures occur, the impacts to customers are

minimized.

FMEA is a flexible framework for performing qualitative failure analysis in industrial and computing

systems. Potential failures are identified and the consequences of those failures are analyzed to

assess risk.

Software Hardware Human error

Natural disaster Data disruption Criminal activity

Fault tolerance
techniques

Disaster recovery
techniques

Trustworthy Computing | Resilience by design for cloud services 4

Benefits

Adopting RMA benefits cloud service engineering teams by encouraging the following best

practices, all of which can improve service reliability.

Address reliability issues early in design

The primary goal and benefit of RMA is to discover resilience gaps and explicitly design for their

detection and mitigation before code is committed to production (where it becomes costlier to

change and update). RMA can be codified in the development lifecycle and practiced by cloud

service engineering organizations to become an important core competency that will instill the

principles of ROC into engineering teams so they are consistently focused on reducing the time to

detect, mitigate, and recover from failures.

After the service is in production, continuing to apply the RMA methodology will enable the

engineering organization to apply any knowledge that is gained to the next engineering cycle.

Prioritize reliability-related work efforts

The key objective of RMA is to identify and produce a prioritized list of common reliability failures

relevant to a specific service. Participants gain an understanding that recovery from failures must

be emphasized over prevention of those failures. Complex cloud services are often subjected to

myriad failure conditions, and it is often difficult for teams to know where they should invest their

efforts to reduce the impact of those failures. This question is particularly troublesome for teams

whose services consume components or services from multiple first or third-party component

owners or service providers. RMA helps to prioritize and inform investment decisions in the areas

of detection, mitigation, and recovery.

Provide tangible outputs for other reliability efforts

The RMA process produces tangible outputs that can be used for other reliability-focused efforts.

Partner teams, service operations, and support personnel can gain a better understanding of how

the production software is instantiated by leveraging the component interaction diagram (CID),

created during the initial phase of the RMA process. It provides a different pivot than the standard

architectural or design diagrams that are frequently found in traditional development

specifications.

The prioritized failures list maps concretely to work items and code bugs. It is also an excellent

resource for the test organization to help develop test cases. These maps provide insight to places

in the system where fault injection3 practices could be best applied to validate the effectiveness of

failure mitigations.

3 The canonical example of fault injection testing is the Netflix resiliency tool known as Chaos Monkey.

Trustworthy Computing | Resilience by design for cloud services 5

How resilience modeling and analysis works

The resilience modeling and analysis (RMA) process is completed in four phases, which are shown

and described in the following figure and bullet points:

Figure 2. Phases of the RMA process

• Pre-work. Creates a diagram to capture resources, dependencies, and component interactions.

• Discover. Identifies failures and resilience gaps.

• Rate. Performs impact analysis.

• Act. Produces work items to improve resilience.

Pre-work

Two tasks are performed during this phase of the analysis. The first task is to create a component

interaction diagram (CID); the second task is to transfer all of the interactions from the diagram

into the RMA workbook template. The primary purpose of this phase is to capture all resources

and the interactions between those resources. These interactions will be used to focus the failure

enumeration in the Discover phase.

The two tasks in this phase must be completed before continuing to the Discover phase.

Task 1: Create the CID

It is critically important to the success of the RMA process to generate a high-quality and

comprehensive diagram in this task. If resources or interactions are missing from the diagram,

failures may be missed and the value of the exercise may be diminished. The developer(s) of the

modeled component resources in the diagram are the primary personnel who are needed for this

task.

Engineers may question how much detail is needed for the diagram, but there is no clear-cut rule

to follow. The answer will depend on whether the team has chosen to scope the exercise to an

end-to-end scenario, cloud service boundaries, or components.4 However, some general guidance

applies:

4 See the “Approach” subsection later in this paper for more information on scoping the exercise.

Discover Rate Act Pre-work

Trustworthy Computing | Resilience by design for cloud services 6

• Do not include physical hardware. Cloud services are typically composed of server roles, of which

there are usually multiple instances. In most cases, it is not productive to depict server

components such as disks, network cards, processors, and so on. Although failures do occur with

these components, both the impact and the frequency of these failures are well understood.

Should a failure of this type affect a resource’s ability to function, the effects will be seen in the

interaction from the caller of this resource in the form of an error or simply no response.

Similarly, network components such as routers, switches, and load balancers are all sources of

failure, but they need not be drawn on the diagram. More detail is provided in the following text

about how to capture the relevant failure information for these device/component types.

• Enumerating instances is important. The number of functional units is extremely important for

reliability modeling. Redundancy is one of the primary resiliency techniques applied at all layers

of a cloud service. The number of geographic regions where your service exists, the number of

data centers within a region, and the number of server roles and instances are all important

attributes to capture. This information is used to determine the likelihood that a given interaction

failure will affect customers.

• Include all dependencies. Cloud services have many dependencies, from name resolution, to

authentication, to data processing and storage. Often these services are provided by systems

that are not owned by the cloud service team but are critical to the proper functioning of the

service. Each of these dependency systems should be represented on the diagram, with the

appropriate interactions between them and your cloud service components clearly depicted.

However, the composition of dependency systems can be hidden by drawing them on the

diagram as a single shape outside of the data center (if the service is available over the Internet)

or as a single shape within each data center (if the service is provided locally in the data center).

If service level agreement (SLA) information is known for the dependency system, this should be

noted on the diagram as well.

Most teams have a service diagram that is based on design or architecture documents. In addition,

teams that already practice security threat modeling as described in the Microsoft Security

Development Lifecycle (SDL)5 will have Level 0 data flow diagrams to refer to. Both types of

diagrams are good starting points; however, they often lack some—or all—of the interactions

required for a complete CID. Trustworthy Computing has created sample CID documents6 to help

teams build their own CID. These sample documents include many shapes and connections to

provide visual cues that will help teams analyze failures later in the process. The following figure is

a sample CID for a simple cloud service named Contoso,7 a cloud service that collects information

from Internet clients, transforms the information using a third party service, and stores the final

data in the cloud.

5 Microsoft Security Development Lifecycle (SDL) www.microsoft.com/sdl
6 See the “Additional resources” section at the end of this paper for links to sample documents.
7 This diagram does not use all of the shapes that are available in the CID Visio stencil; however, the full Visio stencil contains a

complete legend with a description of every shape.

http://www.microsoft.com/sdl

Trustworthy Computing | Resilience by design for cloud services 7

Figure 3. Sample component interaction diagram (CID)

The following figures provide a closer look at some of the shapes that provide visual cues for

brainstorming about failures during the Discover phase:

• Interaction arrows and numbers. The most important pieces of information are the component

interactions, which are analyzed in the Discover phase to explore all of the different failures that

might be encountered. The interactions are all labeled with a number that will be transferred into

the RMA workbook.

Trustworthy Computing | Resilience by design for cloud services 8

• Certificates. The certificate shape is used to

highlight instances where certificates are

required. Certificate related failures are frequent

sources of failure. Notice how the certificates in

the diagram are color-coded to match the

corresponding interaction.

• Yield sign. The yield sign denotes that this

resource employs throttling, which indicates a

caller may encounter failures on interactions

with this resource when there is an intentional

slowing of the service.

• Cache. Notice the local cache shape in green,

which is included inside the receiver instances.

Caching is a common mitigation against

failures, and in this case, if the Receiver Service

cannot succeed (via interaction #7) to store

results in the database, it will cache the data

locally until the connection to the database is

restored.

• Fault domains. The following sample diagram depicts server roles of various types. Each role

type uses special labeling to capture information about different fault domains. The concept of

fault domains will be familiar to anyone who has developed cloud services on Windows Azure. A

user chooses the number of fault domains for their role instances, and the underlying Windows

Azure infrastructure ensures the role instances are striped across server racks, switches, and

routers such that a failure in a lower-level infrastructure layer does not affect more than one fault

domain. When discussing failures for role instances, this information is important because it

directly influences the breadth of impact that a failure of this type will have on an Azure role

type.

Trustworthy Computing | Resilience by design for cloud services 9

For cloud services built in a traditional data center

hosting model, it is possible to apply this same

concept of fault domains to the underlying

infrastructure to assess impacts to the server role. In

addition, it is possible to gauge the level of impact

of failures in those components by simply noting

the number of fault domains for each type.

In this diagram, notice all receiver server role

instances are connected to one router pair, one

load balancer pair, and are striped across five rack

switches. This information helps convey the impact

to the receiver role should a failure occur in any of

these infrastructure layers.

After the component interaction diagram is completed, the engineering team can move on to the

second task in the Pre-work phase.

Task 2: Transfer the interactions from the diagram to the RMA workbook

The second task in the Pre-work phase transfers the interaction numbers from the CID into the

RMA workbook to create the master list of interactions, which is used during the Discover phase to

enumerate various failure types that might be encountered during each interaction.

The numbered interactions are entered into the RMA workbook. The required information includes

the ID, a short name (usually specifying the caller and the responder), and a description of the

interaction itself. The following workbook example includes information from the diagram for the

Contoso service, which was discussed earlier in Task 1.

ID Component/ Dependency

Interaction

Interaction description

1 Internet Client -> Ingestion

Service

End-user clients connect via the internet-facing endpoint of the Contoso Azure Service

Ingestion web roles and upload data.

2 Ingestion Roles -> Azure

Storage Table

Ingestion Instances store the client's uploaded data in Azure Storage Table.

3 Ingestion Roles -> Azure

Storage Queue

Ingestion Instances send a message to the Azure Storage Queue with a pointer to the client's

data stored in Azure Storage Table.

4 Receiver Roles -> Azure

Storage Queue

Receiver Instances pull the message off the Azure Storage Queue which contains a pointer to

the client's data stored in Azure Storage Table.

5 Receiver Roles -> Azure

Storage Table

Receiver Instances pull the client's uploaded data from the Azure Storage Table.

6 Receiver Roles -> External

Processing

Receiver Instances push the client's uploaded data to the External Processing Service for data

transformation.

7 Receiver Roles -> Azure

SQL Database

Receiver Instances push the client's transformed data to Azure SQL Database.

Figure 4. Interactions columns of the RMA workbook (sample)

Trustworthy Computing | Resilience by design for cloud services 10

After completing the CID and recording all of its component interaction information into the RMA

workbook, the engineering team is ready to begin the next phase of the RMA process, the Discover

phase.

Discover

The purpose of the Discover phase is to enumerate and record potential failures for every

component interaction. This phase is a facilitated brainstorming session that is generally most

effective when all engineering disciplines actively participate. Developers are critical participants for

this exercise because of their intimate knowledge of system behavior when failures occur.

Information that should be recorded in the RMA workbook during this exercise includes:

• Interaction ID. Determined in the Pre-work phase.

• Interaction name. Determined in the Pre-work phase.

• Failure short name. A short name for the failure type.

• Failure description. A longer description of the failure.

• Response. Information about error handling, alerting, and mitigation(s)/restoration efforts

associated with this failure.

Information in the Response column will be used to analyze the effects of each failure in the Rate

phase, so it is very important to capture all of the information described in the preceding list.

The following example is for the Contoso service, which is referenced throughout this paper.

ID Component/

Dependency

Interaction

Failure Short

Name

Failure Description Response

2 Ingestion Roles

-> Azure

Storage Table

Existence::Name

resolution

Azure Storage

Table may fail to

resolve in DNS for

prolonged periods.

Ingestion Instances will cache client data locally on virtual disk

until name resolution is restored for Azure Storage Table.

Local cache will persist during VM reboot but would be lost

upon VN destruction. ContosoMon alerting system will fire a

SEV1 alert for name resolution errors to Azure Storage table.

Human interaction will be required if condition persists

beyond local queue lengths.

2 Ingestion Roles

-> Azure

Storage Table

Latency::No

response

Azure Storage

Table may fail to

respond for

prolonged periods

to all Ingestion

Role instances.

Ingestion instances will cache client data locally on virtual disc

until Azure Storage Table becomes responsive. Local cache

will persist during VM reboot but would be lost upon VM

destruction. ContosoMon alerting system will fire a SEV1 alert

for name resolution errors to Azure Storage Table. Human

Interaction will be required if condition persists beyond local

queue lengths.

Figure 5. Columns of the RMA workbook used during the failure brainstorming exercise.

A facilitator is needed to ensure the failure brainstorming meeting is productive and captures the

right level of detail. The CID will be used and referenced throughout the meeting and will typically

be the only thing shown to participants during this phase. The facilitator will record the various

failures that are identified during the meeting in the RMA workbook.

Trustworthy Computing | Resilience by design for cloud services 11

A good practice to follow for the brainstorming meeting is to limit the time to no more than 90

minutes to avoid fatigue and a resulting decline in quality. If after 90 minutes not all of the

interactions have been examined for failure, experience has shown it is better to stop and schedule

a second session to complete this phase.

Although the brainstorming can begin on any interaction (such as one that everyone agrees

routinely suffers from reliability issues), it is best to begin at the logical starting point of a scenario

and then follow the natural order of interactions from there. The facilitator will lead the participants

through the brainstorming activity of identifying the large majority of possible failures. A little

structure in this phase will go a long way toward ensuring the exercise is efficient and still

comprehensive. To help the facilitator, Trustworthy Computing developed a list (shown in the

following figure) of common failures that can be used to help guide the conversation in a

repeatable manner for each interaction.

Figure 6. Table of failure categories for use during the Discover phase

Trustworthy Computing | Resilience by design for cloud services 12

The categories are listed in a logical sequence of potential component interactions. For example,

when Component A makes a request to Resource B, issues may be encountered in the following

logical sequence:

1. Resource B may not exist or cannot be found. If it is found,

2. Component A may not successfully authenticate with B. If it does authenticate,

3. Resource B may be slow or not respond to the request Component A issued,

and so on.

The preceding list is not intended to be an exhaustive catalog of all possible failures. However, if

participants think about these failures for every interaction and review each category in this

structured manner, recording the results is easier and entire classes of failures will less likely be

missed.

One very important point to consider during this exercise is that failures in RMA do not equate to

root cause. There may be multiple root causes that can lead to a failure of a resource and cause it

to appear to be offline. However, in all such cases, the behavior that is encountered by the caller is

the same—the resource is offline. The underlying root cause has no bearing on how the caller will

respond. Nevertheless, it may be beneficial to record various root causes of a failure type in the

Failure Description column for later use when determining the likelihood of the failure type.

After failures are fully enumerated for all component interactions, the engineering team is ready to

move on to the Rate phase.

Rate

The purpose of the Rate phase is to analyze and record the effects that could result from each of

the enumerated failures in the Discover phase. The details that were recorded for each failure type

in the Response column will provide most of the context needed to complete this task. This

exercise will result in a list of calculated risk values for every failure type, which will be used as input

for the Act phase.

Again, as in the Discover phase, the facilitator will lead a meeting that includes the same people

that took part in enumerating the failures. As before, we recommend this meeting be no more

than 90 minutes in length. Typically, the facilitator will display the workbook on a projection screen

as they populate the remaining data for each failure type using information from this meeting.

The RMA workbook has several drop-down selection columns that will be populated during this

phase. The following figure provides a closer look at each of these columns.

Trustworthy Computing | Resilience by design for cloud services 13

Figure 7. Columns of the RMA workbook used during the failure effects analysis exercise

The Risk column is a calculated value derived from the other five columns. The idea behind this

calculation is to assess risk as the product of the failure impact and likelihood. Likelihood is a

straightforward concept represented by a single value in the workbook (selected from the

Likelihood drop-down list). However, the impact of a failure can be decomposed into several

elements.

The RMA process is used to evaluate the impact of potential failures during product design in

much the same way that a problem management team might assess the impact of an outage for a

cloud service already in production. The following key questions are routinely asked about the

impact of an outage:

 What were the discernible effects to the user or business-critical process? Was this outage a

minor annoyance or performance impact, or was this outage something that prevented key user

scenarios from completing? What was the depth of impact?

 How large was the scope of the impact? Were only a few customers or transactions affected, or

was the scope of impact widespread? What was the breadth of impact?

 How long did it take a person or automated system to become aware of the failure? What was

the time to detect (TTD)?

 Once detected, how long did it take to recover the service and restore functionality? What was

the time to recover (TTR)8?

These questions apply to potential failures in the RMA workbook, and they map respectively to the

columns Effects, Portion affected, Detection, and Resolution.

8 TTR is the time it takes to restore functionality to the customer, not necessarily the time it takes for the failure to be completely fixed.

Trustworthy Computing | Resilience by design for cloud services 14

It is important for the engineering team to remember that all of the columns are completely

independent of one another. The facilitator should ensure that evaluations of the Effects and

Portion affected columns in particular are not conflated during the exercise. For example, it is

perfectly reasonable to expect a team to analyze a failure that would result in only a slight

degradation of service quality while affecting practically every user of the system. Conversely, the

team could be analyzing a failure that affects only a single user (or tiny fraction of the total

transactions being processed) in the service, but such a failure might have very serious

consequences in terms of data integrity, including data loss.

The numerical calculation of the Impact and Likelihood columns is fixed in the model; the drop-

down values are fixed to three choices9 (four in the case of Effects). However, teams can change

the associated text of the drop-down selections to better reflect characteristics of their cloud

service. For example, the Detection column defaults of Less than 5 min, Between 5 min and 15 min,

and More than 15 min can be changed by a team with a service failure detection time that is nearly

instantaneous to Less than 50 milliseconds, Between 50 milliseconds and 500 milliseconds, and More

than 500 milliseconds, respectively. At the beginning of the Rate phase, the drop-down selections

for all of these columns should be reviewed.

When the effects analysis is done, the Rate phase is complete. The team now has a prioritized list

of failures to use as input for the Act phase.

Act

The purpose of this final phase is to take action on the items discovered during the resilience

modeling portion of the RMA process and make tangible investments to improve the reliability of

the cloud service.

The risk ranking of the failures captured in the RMA workbook during the Rate phase provides

guidance on the priority of potential engineering investments. You can create tracking items by

evaluating all of the high and medium-risk failures, and then generate work items for engineering

resources. Sometimes it is possible to transform high-risk failures into medium-risk failures by

reducing the time to detect (TTD) or time to recover (TTR) values. Many improvements in these two

areas can be achieved by making investments in, or changes to, monitoring systems. Work items

may also be called out for instrumentation and telemetry, detection and monitoring, and

mitigations to address specific root causes or accelerate recovery. Work items can also introduce

new test cases, which will need to be factored into the test harness for the service. Work items may

also result in requests for architectural changes if RMA is performed early enough in the design

stage.

As mentioned earlier, one of the ancillary benefits of RMA is that it produces artifacts that can be

beneficial to those beyond the feature crew, such as on-call support personnel or operations

9 The drop-down choices are expressed as low, medium, high to enable teams to make the selection quickly without becoming mired in

precision calculations.

Trustworthy Computing | Resilience by design for cloud services 15

personnel. By compelling the engineering team to revalidate the architecture and design during

the Pre-work phase, the CID will often provide additional insights beyond the current design,

architecture, or as-built diagrams that are typically in use today.

The test organization can use the RMA workbook to target fault injection testing, because it

captures metadata about the quality of a component interaction’s response to failure in the cloud

service. Any component that incorporates failure mitigations could be a target for fault injection to

verify the quality and effectiveness of those mitigations.

Implementation considerations

RMA is a streamlined and simple approach for teams to use to increase the resilience of their cloud

service by identifying and analyzing potential failures. Although implementation of the process is

flexible in a number of areas, teams should carefully consider the topics of timing, approach, roles,

and responsibilities before beginning.

Timing

If your team is accustomed to performing security threat modeling as described in the Microsoft

Security Development Lifecycle, you will already have a good sense of the cadence of RMA. Similar

to the recommendations for security threat modeling, Trustworthy Computing recommends

revisiting your resilience model every six months (no less than, and definitely at least once

annually), whenever making significant architectural or functionality changes, or when suffering live

site issues that prevent you from consistently meeting your customer availability goals.

For new services, or services undergoing a major revision, teams should consider implementing

RMA after the architecture has been mapped out and the initial design has been proposed but

before most of the coding has been completed. It is more cost-effective to design resilience into

the service rather than to react to failures after the service is already in operation. Cloud service

teams that are already in production should consider implementing RMA immediately; there is no

need to wait until the next major service revision to start applying the RMA methodology. The

prioritized failure list that is generated by the RMA process provides a wealth of opportunities for

making targeted investments in instrumentation, detection, mitigation, and recovery, many of

which may be implemented quickly. Furthermore, the knowledge gained from conducting the

analysis on a product currently in production will be highly valuable as input for future planning

and development cycles. Many teams with services that are already in production are also

interested in fault injection. The outputs of the RMA process provide excellent input for fault

injection testing to validate the effectiveness of the current failure mitigation techniques.

Approach

RMA is flexible enough to apply to any facet of a cloud service. Consider each of the following

variations in scope when determining the time investment you are willing to make in RMA:

Trustworthy Computing | Resilience by design for cloud services 16

• End-to-end scenario. Service reliability should be evaluated from the customers’ perspective.

Consequently, teams often want to focus on failures that affect key user work streams or ones in

which the organization may be most affected by reliability-related incidents. If you apply this

approach, you will prioritize reliability-related engineering investments, which are regarded as

being important to the consumers of the service. However, end-to-end scenarios commonly

traverse many components and service boundaries. To reduce the need to secure participation

from so many people across many different teams, the scenario can be divided into sub-

scenarios to achieve the desired level of efficiency.

• Cloud service boundaries. Teams are often most worried about reliability-related issues at the

boundaries of their cloud service. These boundaries are the intersection points between their

cloud service components and third-party or partner-supplied services. The RMA exercise can be

scoped such that all service integration points are modeled for failures. The benefit of this

approach is that these integration points are typically where services are often most susceptible

to failures. In addition, this approach usually requires fewer participants to complete the exercise.

The downside to this approach is that certain components comprising key user scenarios or

business-critical work streams may not be modeled sufficiently.

• Component by component. A third option that teams can choose is to target RMA at a small

number of components of the cloud service at one time. Typically, teams will start with

components that are experiencing the most reliability issues (if the service is already in

production), or with a component for which they want to gain reliability awareness early in the

design phase. Scoping the RMA exercise to a single cloud service component has the benefit of

requiring fewer participants and can be completed at lower cost. This approach is similar to

modeling cloud service boundaries, but at the component level. Key work streams that span

multiple components get complete coverage when each component team completes RMA over

time. However, additional analysis of how the components interact is needed to ensure

detection, mitigation, and recovery efforts are complementary at each integration point.

Roles and responsibilities

The RMA exercise is most effective when representatives from all engineering disciplines are

included in the process, which enables varied perspectives from each role to be expressed during

the various RMA phases. Including all engineering disciplines will help ensure a more

comprehensive outcome.

There is one discipline that absolutely must participate in the RMA process, and that is the

development discipline. Typically, developers (or component owners) are best suited to speak to

the details of how a system will behave when a failure is encountered.

A facilitator should drive the process from start to finish and assign work items to others at the end

of the process. This person can be from any discipline, but must possess the ability to carefully

guide the conversations between the various engineering disciplines so the work items assigned at

the conclusion of the exercise produce the greatest reliability-related gains while consuming the

fewest possible resources to do so.

Trustworthy Computing | Resilience by design for cloud services 17

Call to action

Embrace the engineering principles associated with recovery-oriented computing.

Incorporate RMA into your software development lifecycle: model failures and the effects of those

failures, decide which failures must be addressed by following the process described in this paper,

and make the necessary engineering investments to mitigate high priority risks.

Demonstrate the value of applying RMA in your environment by refocusing the engineering

resources that are reclaimed by virtue of not having to continuously respond to failures, and apply

them to the design and subsequent delivery of customer-facing innovation at an even faster pace

than before.

Share the RMA experience with other engineering teams who have not yet made the leap, and

help them understand how to apply the methodology and benefit from the productivity gains just

as you have.

Conclusion

Cloud computing can be characterized as a complex ecosystem that consists of shared

infrastructure and loosely coupled but tightly-integrated dependencies between applications, many

of which will be outside the provider’s direct control. As the adoption of cloud-based services

continues to grow, customer expectations for utility-grade service availability remain high, despite

the obvious challenges associated with delivering a reliable experience 24 hours a day, seven days

a week, and 365 days a year.

In spite of rigorously applying well-known enterprise-based software design practices, testing

components during development, and implementing redundant infrastructure and replicated

copies of data, interruptions will inevitably occur. There is mounting evidence that being able to

avoid failure altogether is a flawed assumption; media articles continue to appear that describe

failures of popular cloud services, and cloud service providers routinely supply explanations of what

went wrong, why it went wrong, and how they plan to avoid future occurrences. Yet similar failures

continue to happen.

Software architects must embrace the notion that underlying computing resources can—and most

certainly will—simply disappear without warning, and potentially for long periods. Simply stated,

software architects need to accept this new era of unpredictability and design accordingly.

The methodology described in this paper has proven to be highly effective in helping cloud service

engineering teams understand how to cope with persistent reliability-related threats. It can also

Trustworthy Computing | Resilience by design for cloud services 18

help prioritize the necessary engineering investments intended to reduce—or even eliminate—the

impact of those threats from the customers’ perspective.

The primary benefit of adopting RMA versus a more targeted approach comprised of only fault

modeling and root cause analysis is that the cloud service design team emerges from the exercise

with a more comprehensive analysis based on the deep exploration of every aspect of the service

being built. The results of the RMA process provide the team with a deeper understanding of

where the known failure points are, what the impact of the known failure modes is likely to be, and

most importantly, the order in which to tackle these potential risks to produce the most reliable

outcome in the shortest amount of time.

We know service interruptions are inevitable. We are designing and building our services using

methodologies like RMA to help minimize the impact to customers when such interruptions occur.

Trustworthy Computing | Resilience by design for cloud services 19

Additional resources

Guidance for resilient cloud architecture on Azure

- Windows Azure architectural guidance: www.windowsazure.com/en-

us/develop/net/architecture/

- FailSafe (on Channel 9): channel9.msdn.com/series/failsafe

Recovery-oriented computing: roc.cs.berkeley.edu/

Templates

- component interaction diagram (CID): aka.ms/CID

- Sample RMA workbook: aka.ms/RMAworkbook

Trustworthy Computing reliability: www.microsoft.com/reliability

Authors and contributors

DAVID BILLS – Microsoft Trustworthy Computing

SEAN FOY – Microsoft Trustworthy Computing

MARGARET LI – Microsoft Trustworthy Computing

MARC MERCURI – Microsoft Consulting Services

JASON WESCOTT – Microsoft Trustworthy Computing

© 2013 Microsoft Corp. All rights reserved.

This document is provided "as-is." Information and views expressed in this document, including URL

and other Internet Web site references, may change without notice. You bear the risk of using it. This

document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes. Licensed under

Creative Commons Attribution-Non Commercial-Share Alike 3.0 Unported.

http://www.windowsazure.com/en-us/develop/net/architecture/
http://www.windowsazure.com/en-us/develop/net/architecture/
http://channel9.msdn.com/series/failsafe
http://roc.cs.berkeley.edu/
http://aka.ms/CID
http://aka.ms/RMAworkbook
http://www.microsoft.com/reliability
http://creativecommons.org/licenses/by-nc-sa/3.0/

