
Performance Tuning in
SQL2005

孙巍

技术总监

北京中达金桥技术服务有限公司

收听本次课程需具备的条件

• SQL Engine
• CPU
• Memory
• IO

Level 300

Agenda

• Introduction
• Common causes of performance issues

– Resource bottleneck

Introduction

• Goal
– General methodology for perf tuning

• Tools
– Perfmon
– Profiler
– Dynamic Management Views (DMVs)
– DBCC commands

Performance Diagnostics

• Resource Bottleneck
– CPU
– Memory
– IO

SQL Engine Overview

Deadlock
Monitor

S
Q

LO
S

 H
osting A

P
I

Scheduling
Memory Manager

Buffer
Pool

Lock
Manager

Synchronization
Services

Resource
Monitor

Lazy
Writer

SQLOS API

I/O

S
Q

LO
S

 A
P

I Storage Engine

E
xternal C

om
ponents (C

LR
 / M

D
A

C
)

SQLOS

Scheduler
Monitor

Protocols

Query Compilation and Execution Engines

= thread

CPU Bottleneck
• High CPU usage or usage jump

– Find out from Perfmon or Taskmgr
• Find out queries use most CPU

select top 50
sum(qs.total_worker_time) as TotalCPUTime,
sum(qs.execution_count) as TotalExecutionCount,
count(*) as NumberOfStatements,
qs.plan_handle
from sys.dm_exec_query_stats qs
group by qs.plan_handle
order by sum(qs.total_worker_time) desc

Common causes for high CPU
usage: recompile

• Excessive compilation/recompilation
– Compilation: produce query execution plan
– Recompilation: to update query plan
– SQL2000 recompiles the whole stored procedure;

SQL2005 can do statement level recompile
• What triggers recompile?

– Schema change; Statistics change; Set option
change

– Deferred compile; temp table change; SP created
with RECOMPILE or option used

Common causes for high CPU
usage: recompile

• How to detect excessive recompilation
– Perfmon counters

• Batch Requests/sec
• SQL Compilations/sec
• SQL Recompilations/sec
• Ration of recompile to batch requests should be

very low

Common causes for high CPU
usage: recompile

• How to detect excessive recompilation (cont.)
– SQL Trace

• SP:Recompile & SQL:StmtRecompile event
• provide more information

ObjectID, Spid, Start time, sqlhandle, Text Data
• Can query trace data

Select spid, StartTime, Textdata, EventSubclass, ObjectID, DatabaseID,
SQLHandle

from fn_trace_gettable ('e:\recompiletrace.trc' , 1)
where EventClass in(37,75,166)
// EventClass 37 = Sp:Recompile, 75 = CursorRecompile,

166=SQL:StmtRecompile
• Showplan XML For Query Compile

Common causes for high CPU
usage: recompile

• How to detect excessive recompilation (cont.)
– Dynamic Management Views (DMVs)

• Find the top 25 recompiled stored procedures
select top 25

SQLText.text, sql_handle, plan_generation_num,
execution_count, dbid, objectid

from sys.dm_exec_query_stats a
Cross apply sys.dm_exec_sql_text(sql_handle) as SQLText

where plan_generation_num >1
order by plan_generation_num desc

• Find the time used for query optimization
Select * from sys.dm_exec_query_optimizer_info

Common causes for high CPU
usage: recompile

• Resolution for excessive recompile
– If it’s due to set option change

• Avoid change set option in SP; minimize change during
connection

– If it’s on temp table
• Lower recompile threshold for temp table
• Change temp table to use table variable or use KEEP PLAN

query hint
– Use qualified name to avoid recompilation and

ambiguity
• Select * from dbo.table1

Common causes for high CPU
usage: recompile

• Resolution for excessive recompile (cont.)
– If it’s due to deferred compile

• Avoid interleave DML and DDL statements
• Avoid use DDL in conditional clause like IF

– Run Database Tuning Advisor to see if any indexing
changes improve the compile time and the execution
time of the query

– Review query and SP using recompile option
• Try to limit recompile to statement level in SQL2005

Common causes for high CPU
usage: inefficient query plan

• SQL server optimizer tries to find a plan
for the fastest response time

• Hash join and sort operation can be CPU
intensive

• Nested loop join is usually IO bound
• Inaccurate estimation for cardinality of

operators could result inefficient plan

Common causes for high CPU
usage: inefficient query plan

• How to detect
– Find queries use most cumulative CPU

through dm_exec_query_stats
– Look for CPU intensive operators through

dm_exec_cached_plans
– Use Profiler to check for Performance

Statistics trace event

Common causes for high CPU
usage: inefficient query plan

• Resolution
– Use Database Tuning Advisor to see if it produces

any index recommendations
– Avoid bad cardinality estimates

• Write query with WHERE clause to narrow down
• Run UPDATE STATISTICS
• Modify query

– SQL2005 has new plan guide for query hints
• OPTION (OPTIMIZE FOR)
• OPTION (FORCE ORDER)
• OPTION (USE PLAN)

Common causes for high CPU
usage: Intra-Query Parallelism

• A parallel query plan uses multiple threads to
process the query, to take advantage of multiple
CPUs

• Can be custom configured using
– Server level: max degree of parallelism option
– Per query level: OPTION (MAXDOP) hint

• Situation could change after parallel plan is
chosen
– New CPU intensive query could come in
– Shorter CPU time slice

Common causes for high CPU
usage: Intra-Query Parallelism

• How to detect:
– Perfmon:

• Process - % Processor Time – sqlservr.exe
– DMVs:

• Find query plans that may run in parallel
select p.*, q.*, cp.plan_handle
from sys.dm_exec_cached_plans cp

cross apply sys.dm_exec_query_plan(cp.plan_handle) p
cross apply sys.dm_exec_sql_text(cp.plan_handle) as q

where
cp.cacheobjtype = 'Compiled Plan' and
p.query_plan.value('declare namespace
p="http://schemas.microsoft.com/sqlserver/2004/07/showplan";

max(//p:RelOp/@Parallel)', 'float') > 0

Common causes for high CPU
usage: Intra-Query Parallelism

• How to detect: (cont.)
– DMVs:

• Only parallel query could use more CPU time than
the elapsed time

• Find such queries
select qs.sql_handle, qs.statement_start_offset,

qs.statement_end_offset, q.dbid, q.objectid, q.number,
q.encrypted, q.text

from sys.dm_exec_query_stats qs
cross apply sys.dm_exec_sql_text(qs.plan_handle) as q

where qs.total_worker_time > qs.total_elapsed_time

Common causes for high CPU
usage: Intra-Query Parallelism

• How to detect: (cont.)
– SQL Traces:

• Showplans that have Parallelism operators
Select EventClass, StmtText
from ::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)
Where StmtText LIKE '%Parallelism%'

• Parallel query use more CPU time than the elapsed time
Select EventClass, StmtText
from ::fn_trace_gettable('c:\temp\high_cpu_trace.trc', default)
Where EventClass in (10, 12)

-- RPC:Completed, SQL:BatchCompleted
And CPU > Duration/1000

-- CPU is in milliseconds, Duration in microseconds

Common causes for high CPU
usage: Intra-Query Parallelism

• Resolution
– parallel plan is chosen when it exceeds the cost threshold of

parallelism
– Use the Database Tuning Advisor to reduce the cost of query
– Avoid inaccurate cardinality estimate

• No MISSING STATS warnings in showplan output
• Run UPDATE STATISTICS
• Limit usage of query construct which optimizer can’t estimate

accurately
– Multiple table valued function, CLR function, table variables,

– Rewrite query in more efficient way

Memory Bottleneck

• Memory architecture overview
– Terms:

• Virtual Address Space
• Page file
• Physical Memory
• AWE

Memory Bottleneck

• Tools
– Perfmon
– DMVs
– DBCC MEMORYSTATUS
– Taskmgr
– Event Viewer, application & system logs

Memory Bottleneck
• Different types of memory pressure

– External memory pressure
• Use Taskmgr tool, under performance tab
• “Available Physical Memory” < 50MB
• Check Page File size

– Total commit charge amount exceeds physical memory
– Page file size is over 2 times of physical memory

• Need to identify processes consuming most memory
– Use Taskmgr tool, under process tab, mem usage column
– Use Perfmon, select Process under Performance Object, select

Working Set performance counter
– Doesn’t show AWE memory

Memory Bottleneck
• Different types of memory pressure

– Internal memory pressure
• Memory distribution inside SQL server
• DBCC MEMORYSTATUS

Buffer Counts Buffers
------------------------------ --------------------
Committed 201120
Target 201120
Hashed 166517
Reserved Potential 143388
Stolen Potential 173556
External Reservation 0
Min Free 256
Visible 201120
Available Paging File 460640

• Target is # of 8K pages buffer pool deems optimal
• Buffer pool usually is the largest memory consumer under load

Memory Bottleneck
• Different types of memory pressure

– Internal memory pressure (cont.)
• Other components use buffer pool for small memory

allocations
• If allocation > 8Kb, use the multi-page allocator interface

(memory outside of buffer pool)
select type, sum(multi_pages_kb)
from sys.dm_os_memory_clerks
where multi_pages_kb != 0
group by type

• COM objects and linked servers use memory from outside of
the buffer pool

• Need to investigate if multi-page allocation >200MB

Memory Bottleneck
• Internal memory pressure (cont.)

– Memory consumption by all components
select * from sys.dm_os_memory_clerks

– Use script to show major consumers
Total allocated/reserved: 1763 Kb

Component Mem allocated/reserved, Mb
--
MEMORYCLERK_SQLBUFFERPOOL 1585
Other 177
Component Mem allocated/reserved, Mb
--
MEMORYCLERK_SQLBUFFERPOOL 1585
USERSTORE_TOKENPERM 78
MEMORYCLERK_SOSNODE 32
CACHESTORE_SQLCP 15
USERSTORE_SCHEMAMGR 14

Memory Bottleneck
• Internal memory pressure (cont.)

– Ring buffer DMV
select record from sys.dm_os_ring_buffers
where ring_buffer_type =
'RING_BUFFER_RESOURCE_MONITOR'

– Track Out Of Memory conditions
select record from sys.dm_os_ring_buffers
where ring_buffer_type = 'RING_BUFFER_OOM'

– Sample record
<Record id="7301" type="RING_BUFFER_OOM" time="345640123">
<OOM>
<Action>FAIL_VIRTUAL_COMMIT</Action>
<Resources>4096</Resources>
</OOM>

Memory Bottleneck

• Internal memory pressure (cont.)
– With low memory condition

• Buffer pool shrinks
• Turns on low memory notification for other

components
– Query RING_BUFFER_MEMORY_BROKER

select * FROM sys.dm_os_ring_buffers WHERE
ring_buffer_type =
'RING_BUFFER_MEMORY_BROKER'

Memory Bottleneck

• Internal memory pressure (cont.)
– Virtual address space consumption

• Find available memory in all free regions
SELECT SUM(Size*Free)/1024

AS [Total avail mem, KB]
FROM VASummary WHERE Free <> 0

• Get size of largest available region
SELECT CAST(MAX(Size) AS INT)/1024

AS [Max free size, KB]
FROM VASummary WHERE Free <> 0

• If largest region < 4MB, likely VM pressure

Memory Bottleneck
• Trouble shooting for common memory errors

– Is server under external memory pressure?
– Collect performance monitor counters for SQL Server: Buffer

Manager, SQL Server: Memory Manager
– Verify memory configuration parameters (sp_configure)

• ‘min memory per query’, ‘min/max server memory’,
• ‘awe enabled’, ‘Lock pages in memory’ privilege

– Is server under internal memory pressures?
– DBCC MEMORYSTATUS
– Check workload (# of concurrent sessions, # of queries)

Memory Bottleneck

• Common memory errors
– 701: There is insufficient system memory to run this

query
– Indicates a failed memory allocation
– Need to check for server memory distribution
– Solution:

• Remove external memory pressure
• Increase server max memory setting
• Free caches

Memory Bottleneck

• Common memory errors (cont.)
– 802: There is insufficient memory available in

the buffer pool
– May not indicate out of memory
– Buffer pool memory could be used by other

components
– Troubleshooting and solution:

• Similar to 701 error

Memory Bottleneck

• Common memory errors (cont.)
– 8628: A time out occurred while waiting to

optimize the query. Rerun the query
– Indicates failed memory acquisition during

query compilation
– Troubleshooting and solution:

• Use general troubleshooting steps
• DBCC memorystatus
• Reduce workload if possible

Memory Bottleneck
• Common memory errors (cont.)

– 8645: A time out occurred while waiting for memory
resources to execute the query. Rerun the query

– Indicates many concurrent memory intensive queries
being executed on the server
• Sort (order by), join and parallel queries are memory

intensive
– Troubleshooting and solution:

• Use general troubleshooting steps
• Identify problematic queries
• Check sp_configure parameters

IO Bottleneck
• How to detect

– Perfmon
• PhysicalDisk Object: Avg. Disk Queue Length > 2
• Avg. Disk Sec/Read > 0.12, Avg. Disk Sec/Write > 0.12
• %Disk Time > 50%
• Avg. Disk Reads/Sec > 85%, Avg. Disk Writes/Sec > 85%

– Adjustment for RAID
• Raid 0 -- I/Os per disk = (reads + writes) / number of disks

Raid 1 -- I/Os per disk = [reads + (2 * writes)] / 2
Raid 5 -- I/Os per disk = [reads + (4 * writes)] / number of disks
Raid 10 -- I/Os per disk = [reads + (2 * writes)] / number of disks

IO Bottleneck
• How to detect (cont.)

– Latch wait
• Physical IO wait when reading and writing buffer pages

select wait_type, waiting_tasks_count, wait_time_ms
from sys.dm_os_wait_stats
where wait_type like 'PAGEIOLATCH%'
order by wait_type

• Output
wait_type waiting_tasks_count wait_time_ms signal_wait_time_ms
--------------- -------------------- -------------------- --------------------
PAGEIOLATCH_DT 0 0 0
PAGEIOLATCH_EX 1230 791 11
PAGEIOLATCH_KP 0 0 0
PAGEIOLATCH_NL 0 0 0
PAGEIOLATCH_SH 13756 7241 180
PAGEIOLATCH_UP 80 66 0

IO Bottleneck
• How to detect (cont.)

– Pending IO request
select database_id, file_id, io_stall,io_pending_ms_ticks,
scheduler_address
from sys.dm_io_virtual_file_stats(NULL, NULL)t1,

sys.dm_io_pending_io_requests as t2
where t1.file_handle = t2.io_handle

– Pending IO request
Database_id File_Id io_stall io_pending_ms_ticks scheduler_address
6 1 10804 78 0x0227A040
6 1 10804 78 0x0227A040
6 2 101451 31 0x02720040

IO Bottleneck
• Resolution:

– Find out queries generating most IO
select top 5 (total_logical_reads/execution_count) as

Avg_logical_reads,
(total_logical_writes/execution_count) as

Avg_logical_writes,
(total_physical_reads/execution_count) as Avg_physical_reads,
Execution_count, statement_start_offset, sql_handle,

plan_handle
from sys.dm_exec_query_stats
order by (total_logical_reads + total_logical_writes)/execution_count

Desc
– Examine IO intensive query plans

• Choose better plan to minimize IO
• Use Database Tuning Advisor

IO Bottleneck

• Resolution:
– Check memory configuration

• Buffer Cache hit ratio
• Page Life Expectancy
• Checkpoint pages/sec
• Lazywrites/sec

– Increase IO bandwidth
• Add more disk drives and replace with faster drives
• Add faster or additional disk controller

Q&A

• A lot of information
• See BOL DMV documentation
• Contents in this slide will be published as

white paper at www.microsoft.com

获取更多MSDN资源

• MSDN中文网站
http://www.microsoft.com/china/msdn

• MSDN中文网络广播
http://www.msdnwebcast.com.cn

• MSDN Flash
http://www.microsoft.com/china/newsletter/case/
msdn.aspx

• MSDN开发中心
http://www.microsoft.com/china/msdn/Developer
Center/default.mspx

Question & Answer
如需提出问题，请单击“提问”按钮并在

随后显示的浮动面板中输入问题内容。一
旦完成问题输入后，请单击“提问”按钮。

