
Page 1 of 254

Windows Certification Program
Hardware Certification Taxonomy & Requirements

December 2014

This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet Web site references, may change without notice.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes. © 2012 Microsoft. All

rights reserved.

Microsoft, Windows and Windows Server are trademarks of the Microsoft group of companies. UPnP™ is a

certification mark of the UPnP™ Implementers Corp. All other trademarks are property of their respective

owners.

Page 2 of 254

Microsoft Corporation Technical Documentation License Agreement

READ THIS! THIS IS A LEGAL AGREEMENT BETWEEN MICROSOFT CORPORATION ("MICROSOFT") AND THE

RECIPIENT OF THESE MATERIALS, WHETHER AN INDIVIDUAL OR AN ENTITY ("YOU"). IF YOU HAVE ACCESSED

THIS AGREEMENT IN THE PROCESS OF DOWNLOADING MATERIALS ("MATERIALS") FROM A MICROSOFT WEB

SITE, BY CLICKING "I ACCEPT", DOWNLOADING, USING OR PROVIDING FEEDBACK ON THE MATERIALS, YOU

AGREE TO THESE TERMS. IF THIS AGREEMENT IS ATTACHED TO MATERIALS, BY ACCESSING, USING OR

PROVIDING FEEDBACK ON THE ATTACHED MATERIALS, YOU AGREE TO THESE TERMS.

For good and valuable consideration, the receipt and sufficiency of which are acknowledged, You and Microsoft

agree as follows:

1. You may review these Materials only (a) as a reference to assist You in planning and designing Your product,

service or technology ("Product") to interface with a Microsoft Product as described in these Materials; and (b) to

provide feedback on these Materials to Microsoft. All other rights are retained by Microsoft; this agreement does

not give You rights under any Microsoft patents. You may not (i) remove this agreement or any notices from

these Materials, or (ii) give any part of these Materials, or assign or otherwise provide Your rights under this

agreement, to anyone else.

2. These Materials may contain preliminary information or inaccuracies, and may not correctly represent any

associated Microsoft Product as commercially released. All Materials are provided entirely "AS IS." To the extent

permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND

STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN

CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM.

3. If You are an entity and (a) merge into another entity or (b) a controlling ownership interest in You changes,

Your right to use these Materials automatically terminates and You must destroy them.

4. You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating

to these Materials. However, any Feedback you voluntarily provide may be used in Microsoft Products and related

specifications or other documentation (collectively, "Microsoft Offerings") which in turn may be relied upon by

other third parties to develop their own Products. Accordingly, if You do give Microsoft Feedback on any version

of these Materials or the Microsoft Offerings to which they apply, You agree: (a) Microsoft may freely use,

reproduce, license, distribute, and otherwise commercialize Your Feedback in any Microsoft Offering; (b) You also

grant third parties, without charge, only those patent rights necessary to enable other Products to use or interface

with any specific parts of a Microsoft Product that incorporate Your Feedback; and (c) You will not give Microsoft

any Feedback (i) that You have reason to believe is subject to any patent, copyright or other intellectual property

claim or right of any third party; or (ii) subject to license terms which seek to require any Microsoft Offering

incorporating or derived from such Feedback, or other Microsoft intellectual property, to be licensed to or

otherwise shared with any third party.

5. Microsoft has no obligation to maintain confidentiality of any Microsoft Offering, but otherwise the

confidentiality of Your Feedback, including Your identity as the source of such Feedback, is governed by Your

NDA.

6. This agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought

in the federal or state superior courts located in King County, Washington, and You waive any defenses allowing

the dispute to be litigated elsewhere. If there is litigation, the losing party must pay the other party’s reasonable

attorneys’ fees, costs and other expenses. If any part of this agreement is unenforceable, it will be considered

modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. This

agreement is the entire agreement between You and Microsoft concerning these Materials; it may be changed

only by a written document signed by both You and Microsoft.

Page 3 of 254

Release Notes

This publication of the Windows Hardware Certification Program Requirements provides an update to the

Windows 8 and Windows 8.1 Certification Program. These requirement changes are intended to relax the

Windows 8.1 system and device requirements and give our partners greater flexibility in designing and

differentiating their products in 2015.

It is important to understand the changes are to remove or modify the specific requirements listed under

Summary of Changes only. All other requirements will remain to support device interoperability, compatibility

with Windows, and application platform consistency. The tests associated with these removed or modified

requirements will remain in the HCK to aid in your testing and measurement of your system’s quality. A set of

HCK filters will be provided for the purposes of achieving a passing result needed for certification.

Page 4 of 254

Summary of Changes
The following changes are made in this updated document.

Requirement Change Type Summary of Changes

System.Fundamentals.TPM20.TPM20

Required

Removed Microsoft Windows will not require TPM 2.0

on Windows 8 and Windows 8.1 systems.

TPM 2.0 is required for connected standby

systems, and if implemented on non-

Connected Standby systems. The text of the

requirement moves to optional engineering

requirements in

System.Fundamentals.TPM20.TPM20.

System.Fundamentals.TPM20.TPM20 Modified Moved text from removed requirement

System.Fundamentals.TPM20.TPM2.0Required

to this one, and marked it as optional.

System.Fundamentals.TPM20.EKcerts Modified Changed title to make it if implemented. We

are not changing the enforcement date as the

requirement is no longer required, it is

optional.

The following changes have been made in April 2014.

Requirement Change

Type

Summary of Changes

System.Client.PowerManagement.BatteryLife Removed Requirement removed to allow for greater

flexibility in system design.

System.Client.PowerManagement.CaseTemperat

ure

Removed Requirement removed as it is no longer

relevant for current system design.

System.Client.SystemConfiguration.Windows8Re

quiredComponents

Modified Requirement modified to adjust required

internal storage free space.

System.Client.Webcam.VideoCaptureAndCamera Modified Requirement modified to allow for greater

flexibility in system design.

System.Fundamentals.DebugPort.SystemExposes

DebugInterface

Modified Requirement modified to provide additional

detail on separate debugging boards.

System.Fundamentals.StorageAndBoot.BootPerf

ormance

Modified Requirement modified to update eMMC

version and to adjust for related free space

changes.

Page 5 of 254

Release Notes .. 3

Summary of Changes ... 4

System Requirements .. 14

System.Client.Aero .. 14

System.Client.Aero.SystemsStartAeroTheme .. 14

System.Client.BluetoothController.Base .. 15

System.Client.BluetoothController.Base.4LeSpecification ... 16

System.Client.BluetoothController.Base.CS ... 16

System.Client.BluetoothController.Base.LEStateCombinations ... 16

System.Client.BluetoothController.Base.LEWhiteList ... 17

System.Client.BluetoothController.Base.NoBluetoothLEFilterDriver ... 17

System.Client.BluetoothController.Base.OnOffStateControllableViaSoftware.. 18

System.Client.BluetoothController.Base.RadioScanIntervalSettings ... 19

System.Client.BluetoothController.Base.SimultaneousBrEdrAndLeTraffic .. 19

System.Client.BluetoothController.Base.SystemsWithBluetoothImplementDeviceID ... 20

System.Client.BluetoothController.Base.WLANBTCoexistence.. 20

System.Client.BluetoothController.NonUSB .. 21

System.Client.BluetoothController.NonUSB.NonUsbUsesMicrosoftsStack.. 21

System.Client.BluetoothController.NonUSB.ScoSupport ... 21

System.Client.BluetoothController.USB ... 22

System.Client.BluetoothController.USB.ScoDataTransportLayer .. 22

System.Client.BrightnessControls ... 22

System.Client.BrightnessControls.BacklightOptimization ... 22

System.Client.BrightnessControls.BrightnessControlButtons .. 24

System.Client.BrightnessControls.SmoothBrightness ... 25

System.Client.Buttons .. 26

System.Client.Buttons.WindowsButtons ... 26

System.Client.CPU ... 27

System.Client.CPU.Compatibility .. 27

System.Client.CPU.MADT .. 28

System.Client.Digitizer.Base .. 29

System.Client.Digitizer.Base.DigitizersAppearAsHID ... 29

System.Client.Digitizer.Base.HighQualityDigitizerInput ... 30

System.Client.Digitizer.Pen .. 30

System.Client.Digitizer.Pen.100HzSampleRate .. 30

System.Client.Digitizer.Pen.ContactAccuracy ... 30

System.Client.Digitizer.Pen.HoverAccuracy ... 31

System.Client.Digitizer.Pen.PenRange ... 31

Page 6 of 254

System.Client.Digitizer.Pen.PenResolution .. 32

System.Client.Digitizer.Touch ... 32

System.Client.Digitizer.Touch.5TouchPointMinimum ... 32

System.Client.Digitizer.Touch.DigitizerConnectsOverUSBOrI2C... 33

System.Client.Digitizer.Touch.DigitizerJitter .. 33

System.Client.Digitizer.Touch.ExtraInputBehavior .. 34

System.Client.Digitizer.Touch.FieldFirmwareUpdatable ... 34

System.Client.Digitizer.Touch.HIDCompliantFirmware ... 34

System.Client.Digitizer.Touch.HighQualityTouchDigitizerInput .. 35

System.Client.Digitizer.Touch.HighResolutionTimeStamp .. 35

System.Client.Digitizer.Touch.InputSeparation .. 35

System.Client.Digitizer.Touch.NoiseSuppression .. 36

System.Client.Digitizer.Touch.PhysicalDimension... 36

System.Client.Digitizer.Touch.PhysicalInputPosition ... 37

System.Client.Digitizer.Touch.PowerStates .. 37

System.Client.Digitizer.Touch.ReportingRate ... 37

System.Client.Digitizer.Touch.ResponseLatency ... 38

System.Client.Digitizer.Touch.TouchResolution .. 38

System.Client.Digitizer.Touch.ZAxisAllowance ... 38

System.Client.Firewall .. 39

System.Client.Firewall.FirewallEnabled .. 39

System.Client.Firmware.UEFI.GOP .. 39

System.Client.Firmware.UEFI.GOP.Display ... 40

System.Client.Graphics .. 41

System.Client.Graphics.FullGPU .. 42

System.Client.Graphics.NoMoreThanOneInternalMonitor ... 42

System.Client.Graphics.SingleGPU .. 43

System.Client.Graphics.WDDM ... 43

System.Client.Graphics.WDDMSupportRotatedModes .. 45

System.Client.Graphics.Windows7.MinimumDirectXLevel .. 46

System.Client.Graphics.WirelessUSBDisplay ... 47

System.Client.MediaTranscode ... 47

System.Client.MediaTranscode.GlitchFreeRealtimeCommunication .. 48

System.Client.MediaTranscode.SystemTranscodeFasterThanRealTime .. 49

System.Client.MobileBroadBand .. 50

System.Client.MobileBroadBand.ClassDriver .. 50

System.Client.MobileBroadBand.ConcurrentRadioUsage ... 51

System.Client.MobileBroadBand.MobileBroadBand .. 51

System.Client.NearFieldProximity... 52

Page 7 of 254

System.Client.NearFieldProximity.ImplementingProximity ... 53

System.Client.NearFieldProximity.RangeOfActuation ... 53

System.Client.NearFieldProximity.TouchMark .. 54

System.Client.PCContainer .. 54

System.Client.PCContainer.PCAppearsAsSingleObject .. 55

System.Client.PrecisionTouchpad... 57

System.Client.PrecisionTouchpad.PrecisionTouchpad .. 57

System.Client.PrecisionTouchpad.RequiredForARM ... 59

System.Client.RadioManagement .. 59

System.Client.RadioManagement.HardwareButton ... 60

System.Client.RadioManagement.RadioMaintainsState .. 61

System.Client.RadioManagement.RadioManagementAPIHID .. 61

System.Client.RadioManagement.RadioManagerCOMObject .. 64

System.Client.RadioManagement.ConnectedStandby .. 65

System.Client.RadioManagement.ConnectedStandby.NoRadioStatusIndicatorLights ... 65

System.Client.ScreenRotation .. 66

System.Client.ScreenRotation.SmoothRotation .. 66

System.Client.Sensor .. 67

System.Client.Sensor.GNSSRFSensitivity .. 67

System.Client.Sensor.HumanProximitySensor .. 67

System.Client.Sensor.Integrated .. 68

System.Client.Sensor.Base ... 69

System.Client.Sensor.Base.ALSCalibrationTest ... 69

System.Client.Sensor.Base.DataEvents .. 70

System.Client.Sensor.Base.GNSSTestProperties .. 70

System.Client.Sensor.Base.PowerState .. 72

System.Client.Sensor.Base.SupportDataTypesAndProperties .. 73

System.Client.Sensor.Base.HID .. 78

System.Client.Sensor.Base.HID.ReportDescriptor ... 78

System.Client.SpecializedPC ... 79

System.Client.SpecializedPC.UniqueScenario ... 79

System.Client.SystemConfiguration .. 79

System.Client.SystemConfiguration.SysInfo .. 79

System.Client.SystemConfiguration.Windows7NeccessaryDevices .. 80

System.Client.SystemConfiguration.Windows8RequiredComponents .. 81

System.Client.SystemImage .. 82

System.Client.SystemImage.PushButtonReset ... 82

System.Client.SystemImage.SystemRecoveryEnvironment .. 83

System.Client.SystemPartition ... 84

Page 8 of 254

System.Client.SystemPartition.DiskPartitioning ... 84

System.Client.SystemPartition.OEMPartition .. 85

System.Client.Tablet ... 85

System.Client.Tablet.ColdBootLatency .. 86

System.Client.Tablet.RequiredHardwareButtons ... 86

System.Client.Tablet.Graphics .. 88

System.Client.Tablet.Graphics.MinimumResolution .. 88

System.Client.Tablet.Graphics.SupportAllModeOrientations ... 88

System.Client.UMPC.Graphics .. 89

System.Client.UMPC.Graphics.WDDM ... 89

System.Client.VideoPlayback.. 90

System.Client.VideoPlayback.GlitchfreeHDVideoPlayback ... 90

System.Client.VideoPlayback.GlitchfreePlayback .. 91

System.Client.VideoPlayback.WNGlitchfreeHDVideoPlayback ... 92

System.Client.Webcam ... 93

System.Client.Webcam.Device .. 93

System.Client.Webcam.PhysicalLocation .. 94

System.Client.Webcam.VideoCaptureAndCamera ... 95

System.Client.Webcam.NMSD ... 98

System.Client.Webcam.NMSD.NonMSDriver ... 98

System.Client.Webcam.Specification .. 98

System.Client.Webcam.Specification.CameraRequirements .. 98

System.Fundamentals.DebugPort .. 99

System.Fundamentals.DebugPort.SystemExposesDebugInterface ... 99

System.Fundamentals.DebugPort.USB .. 100

System.Fundamentals.DebugPort.USB.SystemExposesDebugInterfaceUsb ... 101

System.Fundamentals.Firmware ... 101

System.Fundamentals.Firmware.ACPI ... 102

System.Fundamentals.Firmware.ACPIRequired .. 104

System.Fundamentals.Firmware.FirmwareSupportsBootingFromDVDDevice ... 105

System.Fundamentals.Firmware.FirmwareSupportsUSBDevices ... 106

System.Fundamentals.Firmware.HardwareMemoryReservation.. 106

System.Fundamentals.Firmware.NoExternalDMAOnBoot .. 107

System.Fundamentals.Firmware.UEFIBitLocker ... 108

System.Fundamentals.Firmware.UEFIBootEntries .. 109

System.Fundamentals.Firmware.UEFICompatibility .. 110

System.Fundamentals.Firmware.UEFIDefaultBoot ... 111

System.Fundamentals.Firmware.UEFILegacyFallback ... 111

System.Fundamentals.Firmware.UEFISecureBoot .. 112

Page 9 of 254

System.Fundamentals.Firmware.UEFITimingClass ... 116

System.Fundamentals.Firmware.Update .. 117

System.Fundamentals.Firmware.Boot .. 118

System.Fundamentals.Firmware.Boot.EitherGraphicsAdapter .. 118

System.Fundamentals.Firmware.Boot.SystemWithBootDeviceGreaterThan... 118

System.Fundamentals.Firmware.CS .. 119

System.Fundamentals.Firmware.CS.CryptoCapabilities ... 119

System.Fundamentals.Firmware.CS.UEFISecureBoot.ConnectedStandby ... 122

System.Fundamentals.Firmware.CS.UEFISecureBoot .. 123

System.Fundamentals.Firmware.CS.UEFISecureBoot.Provisioning ... 124

System.Fundamentals.Firmware.TPR .. 124

System.Fundamentals.Firmware.TPR.UEFIEncryptedHDD .. 124

System.Fundamentals.Graphics .. 125

System.Fundamentals.Graphics.FirmwareSupportsLargeAperture ... 125

System.Fundamentals.Graphics.MicrosoftBasicDisplayDriver... 126

System.Fundamentals.Graphics.MultipleOperatingMode .. 126

System.Fundamentals.Graphics.NoRebootUpgrade ... 130

System.Fundamentals.Graphics.PremiumContentPlayback ... 130

System.Fundamentals.Graphics.Windows7.MultipleOperatingModes ... 131

System.Fundamentals.Graphics.Display .. 133

System.Fundamentals.Graphics.Display.MinimumResolutionandColorDepth .. 133

System.Fundamentals.Graphics.DisplayRender ... 133

System.Fundamentals.Graphics.DisplayRender.Performance ... 133

System.Fundamentals.Graphics.DisplayRender.StableAndFunctional... 140

System.Fundamentals.Graphics.HybridGraphics ... 141

System.Fundamentals.Graphics.HybridGraphics.MultiGPU ... 141

System.Fundamentals.Graphics.InternalDisplay .. 143

System.Fundamentals.Graphics.InternalDisplay.NativeResolution ... 143

System.Fundamentals.Graphics.MultipleDevice .. 143

System.Fundamentals.Graphics.MultipleDevice.Configure .. 144

System.Fundamentals.Graphics.MultipleDevice.SubsystemDeviceID.. 145

System.Fundamentals.Graphics.RenderOnly .. 146

System.Fundamentals.Graphics.RenderOnly.MinimumDirectXLevel ... 146

System.Fundamentals.HAL ... 147

System.Fundamentals.HAL.HPETRequired .. 147

System.Fundamentals.HAL.IfCSRTPresent... 148

System.Fundamentals.ImageVerification ... 148

System.Fundamentals.ImageVerification.ImageVerification ... 149

System.Fundamentals.Input ... 149

Page 10 of 254

System.Fundamentals.Input.I2CDeviceUniqueHWID ... 149

System.Fundamentals.Input.PS2UniqueHWID .. 150

System.Fundamentals.MarkerFile .. 150

System.Fundamentals.MarkerFile.SystemIncludesMarkerFile ... 150

System.Fundamentals.Network .. 151

System.Fundamentals.Network.NetworkListOffloads .. 151

System.Fundamentals.Network.PowerRequirements ... 152

System.Fundamentals.NX ... 153

System.Fundamentals.NX.SystemIncludesNXProcessor ... 153

System.Fundamentals.PowerManagement ... 154

System.Fundamentals.PowerManagement.DockUndock ... 154

System.Fundamentals.PowerManagement.MultiPhaseResume .. 154

System.Fundamentals.PowerManagement.PCResumesInTwoSeconds .. 155

System.Fundamentals.PowerManagement.PCSupportsS3S4S5 .. 156

System.Fundamentals.PowerManagement.PowerProfile ... 157

System.Fundamentals.PowerManagement.CS ... 157

System.Fundamentals.PowerManagement.CS.ConnectedStandby .. 157

System.Fundamentals.PowerManagement.CS.CSQuality ... 158

System.Fundamentals.PowerManagement.CS.FanOff ... 159

From the point of view of the OS, a platform has two strategies that it can use to implement fan control: 160

System.Fundamentals.PXE .. 162

System.Fundamentals.PXE.PXEBoot... 162

System.Fundamentals.Reliability .. 163

System.Fundamentals.Reliability.SystemReliability ... 163

System.Fundamentals.Security ... 163

System.Fundamentals.Security.DeviceEncryption .. 163

System.Fundamentals.Security.NoTDIFilterAndLSP .. 164

System.Fundamentals.SignedDrivers ... 164

System.Fundamentals.SignedDrivers.BootDriverEmbeddedSignature ... 165

System.Fundamentals.SignedDrivers.DigitalSignature .. 166

System.Fundamentals.SMBIOS ... 166

System.Fundamentals.SMBIOS.SMBIOSSpecification .. 166

System.Fundamentals.StorageAndBoot ... 168

System.Fundamentals.StorageAndBoot.BootPerformance.. 168

System.Fundamentals.StorageAndBoot.EncryptedDrive .. 170

System.Fundamentals.StorageAndBoot.SATABootStorage ... 171

System.Fundamentals.SystemAudio .. 172

System.Fundamentals.SystemAudio.Audio .. 172

System.Fundamentals.SystemAudio.HardwareVolumeControl ... 172

Page 11 of 254

System.Fundamentals.SystemAudio.MicrophoneLocation .. 173

System.Fundamentals.SystemAudio.NoiseOnTheSignal... 174

System.Fundamentals.SystemAudio.SystemEmploysAntiPop .. 175

System.Fundamentals.SystemAudio.SystemMicArray ... 176

System.Fundamentals.SystemAudio.SystemUsesHDAudioPinConfigs ... 177

System.Fundamentals.SystemAudio.3rdPartyDriver.. 178

System.Fundamentals.SystemAudio.3rdPartyDriver.UAA ... 178

System.Fundamentals.SystemPCIController ... 179

System.Fundamentals.SystemPCIController.PCIRequirements .. 179

System.Fundamentals.SystemPCIController.SystemImplementingRiserCard .. 180

System.Fundamentals.SystemUSB .. 181

System.Fundamentals.SystemUSB.EHCIToXHCIControllerTransitions .. 182

System.Fundamentals.SystemUSB.ExternalUSBonCSisEHCIorXHCI ... 182

System.Fundamentals.SystemUSB.SuperSpeedCapableConnectorRequirements ... 184

System.Fundamentals.SystemUSB.SuperSpeedPortsAreVisualDifferent .. 184

System.Fundamentals.SystemUSB.SuperSpeedTerminationRemainsOn ... 185

System.Fundamentals.SystemUSB.SystemExposesUSBPort .. 186

System.Fundamentals.SystemUSB.TestedUsingMicrosoftUsbStack... 187

System.Fundamentals.SystemUSB.USB3andUSB2PortsRoutedToSameXHCIController .. 188

System.Fundamentals.SystemUSB.USBDevicesandHostControllersWorkAfterPowerCycle 188

System.Fundamentals.SystemUSB.XhciBiosHandoffFollowsSpec ... 189

System.Fundamentals.SystemUSB.xHCICompatibleUnlessForApprovedTargetDesigns ... 190

System.Fundamentals.SystemUSB.XHCIControllerSaveState .. 190

System.Fundamentals.SystemUSB.XHCIControllersMustHaveEmbeddedInfo .. 191

System.Fundamentals.SystemUSB.xHCIControllerSupportMSIInterrupts .. 199

System.Fundamentals.SystemUSB.XhciSupportsMinimum31Streams .. 199

System.Fundamentals.SystemUSB.XhciSupportsRuntimePowerManagement.. 200

System.Fundamentals.SystemUSB.XHCIToEHCIControllerTransitions .. 200

System.Fundamentals.TPM.CS .. 201

System.Fundamentals.TPM.CS.ConnectedStandby ... 202

System.Fundamentals.TPM.NonCS ... 202

System.Fundamentals.TPM.NonCS.NonConnectedStandby ... 202

System.Fundamentals.TPM20 ... 203

System.Fundamentals.TPM20.EKCerts .. 203

System.Fundamentals.TPM20.TPM20 ... 204

System.Fundamentals.TrustedPlatformModule .. 207

System.Fundamentals.TrustedPlatformModule.TPMComplieswithTCGTPMMainSpecification 207

System.Fundamentals.TrustedPlatformModule.TPMEnablesFullUseThroughSystemFirmware 208

System.Fundamentals.TrustedPlatformModule.TPMRequirements ... 210

Page 12 of 254

System.Fundamentals.TrustedPlatformModule.Windows7SystemsTPM ... 212

System.Fundamentals.USBBoot ... 213

System.Fundamentals.USBBoot.BootFromUSB ... 213

System.Fundamentals.USBBoot.SupportSecureStartUpInPreOS ... 214

System.Fundamentals.USBDevice ... 215

System.Fundamentals.USBDevice.SelectiveSuspend .. 215

System.Fundamentals.WatchDogTimer .. 216

System.Fundamentals.WatchDogTimer.IfWatchDogTimerImplemented .. 216

System.Server.Base .. 217

System.Server.Base.64Bit .. 217

System.Server.Base.BMC ... 218

System.Server.Base.BMCDiscovery ... 219

System.Server.Base.Compliance .. 220

System.Server.Base.DevicePCIExpress... 220

System.Server.Base.ECC .. 221

System.Server.Base.Essentials ... 221

System.Server.Base.HotPlugECN ... 223

System.Server.Base.NoPATA ... 224

System.Server.Base.OSInstall .. 224

System.Server.Base.PCI23... 225

System.Server.Base.PCIAER ... 225

System.Server.Base.RemoteManagement ... 226

System.Server.Base.ResourceRebalance .. 227

System.Server.Base.ServerRequiredComponents .. 228

System.Server.Base.SystemPCIExpress ... 232

System.Server.DynamicPartitioning .. 232

System.Server.DynamicPartitioning.Application .. 232

System.Server.DynamicPartitioning.ApplicationInterface .. 233

System.Server.DynamicPartitioning.ConfigurationPersist .. 233

System.Server.DynamicPartitioning.Core .. 234

System.Server.DynamicPartitioning.ErrorEffect .. 235

System.Server.DynamicPartitioning.Firmware ... 235

System.Server.DynamicPartitioning.HotAddLocal ... 236

System.Server.DynamicPartitioning.HotAddReplace .. 236

System.Server.DynamicPartitioning.HotAddVisual.. 237

System.Server.DynamicPartitioning.HotReplacePU .. 237

System.Server.DynamicPartitioning.PartialHotAdd ... 238

System.Server.DynamicPartitioning.SoftwareStatus ... 238

System.Server.DynamicPartitioning.Subsystem .. 238

Page 13 of 254

System.Server.FaultTolerant .. 239

System.Server.FaultTolerant.Core ... 239

System.Server.Firmware.UEFI.GOP .. 240

System.Server.Firmware.UEFI.GOP.Display ... 240

System.Server.Firmware.VBE .. 242

System.Server.Firmware.VBE.Display ... 242

System.Server.Graphics .. 244

System.Server.Graphics.WDDM ... 244

System.Server.Graphics.XDDM ... 246

System.Server.Graphics.XDDM.No3DSupport ... 246

System.Server.PowerManageable ... 247

System.Server.PowerManageable.ACPIPowerInterface ... 247

System.Server.PowerManageable.PerformanceStates ... 248

System.Server.PowerManageable.RemotePowerControl ... 248

System.Server.RemoteFX .. 249

System.Server.RemoteFX.RemoteFX .. 249

System.Server.SMBIOS ... 249

System.Server.SMBIOS.SMBIOS... 249

System.Server.SVVP ... 251

System.Server.SVVP.SVVP .. 251

System.Server.SystemStress ... 251

System.Server.SystemStress.ServerStress .. 251

System.Server.Virtualization .. 252

System.Server.Virtualization.ProcessorVirtualizationAssist .. 252

System.Server.WHEA .. 252

System.Server.WHEA.Core ... 253

Page 14 of 254

System Requirements

System.Client.Aero
Desktop Windows Manager (DWM) is the desktop graphical user interface system that enables the Windows Aero

user interface and visual theme. This feature is required to be enabled for all Windows 7 systems, but the memory

bandwidth requirement applies to certain form factors.

Related Requirements System.Client.Aero.SystemsStartAeroTheme

System.Client.Aero.SystemsStartAeroTheme

Systems are capable of starting the Aero theme

Target Feature System.Client.Aero

Applies to Windows 7 Client x86, x64

Description

All Windows systems must be capable of starting the Aero theme, by meeting the following requirements. All

Windows systems must enable the Aero theme by default when running with a version of Windows that includes

Aero.

Requirements:

 All video hardware in all system form factors must support a minimum 32 bpp.

 All systems must meet the following DirectX requirements:

 All Windows 7 systems are required to either support the D3De9X interface and be Direct3D 9.x

compliant, OR support Direct3D 10 or greater.

 All Windows 7 systems except ultra-mobile form factor PCs are required to include graphics

hardware that supports Direct3D 10 or greater.

 All Windows 7 ultra-mobile form factor PCs are required to either support the D3De9X interface and

be Direct3D 9.x compliant, or support Direct3D 10 or greater.

 All systems must meet the following minimum video memory size requirements.

 For desktop that ship with a monitor and have one video port connector, all-in-one systems that do

not have a video port for a second monitor, and for all mobile and ultra mobile systems, the

following amount of total graphics memory (either discrete and/or total non-local) is required for

specified monitor resolutions. Monitor resolutions are expressed as total pixels (X dimension

multiplied by Y dimension):

 Resolution less than 1,310,720 (1280x1024) pixels include 64MB.

 Resolutions equal to or greater than 1,310,720 (1280x1024) pixels and equal to or less than

2,304,000 (1920x1200) pixels include 128MB.

 Resolutions greater than 2,304,000 (1920x1200) pixels include 256MB.

Page 15 of 254

 For desktop systems that do not ship with a monitor, a minimum of 128MB of total graphics

memory (either discrete and/or total non-local) memory is required.

 For all dual monitor capable desktop systems that ship with a monitor (systems with two physical

and operational monitor connections)

 Resolution less than 2,621,440 (1280x1024 by 2) pixels includes 128MB.

 Resolutions equal to or greater than 2,621,440 (1280x1024 by 2) pixels includes 256MB.

 For dual monitor capable desktop systems that do not ship with a monitor, 256MB of total graphics

memory (either discrete and/or total non-local) memory is required.

 Mobile and ultra mobile systems with dual monitor capabilities are excluded from the dual monitor

desktop requirements and are treated as single monitor systems. This is due to the different usage

models and that external monitor ports are often used in mirroring or "duplicate" mode.

 Systems must meet the following minimum video memory performance requirements, as measured by

WinSAT:

 Desktop systems must have a measured memory bandwidth of 1,600 megabytes per second (MB/s)

at a monitor resolution of 1,310,720 (equivalent to 1280x1024).

 Mobile systems and all-in-one designs must achieve a measured bandwidth of 1,600 megabytes per

second (MB/s) measured at the native resolution of the shipping panel.

 Ultra mobile systems have no minimum video memory performance requirement.

Design Notes:

Memory requirements described here are for usable or active connectors. Microsoft does not recommend

supporting fewer active connections than available connectors on a given system as this causes failed

expectations and poor user experience. If a system supports m connectors, but limits the number of active

connections to n (where n < m), then memory requirements are applicable for n connectors as long as there is no

way for a user to activate greater than n connections at any time.

Additional Information

Enforcement Date Jun. 01, 2007

System.Client.BluetoothController.Base
These requirements apply to systems that have generic Bluetooth controllers

Related

Requirements

 System.Client.BluetoothController.Base.4LeSpecification

 System.Client.BluetoothController.Base.CS

 System.Client.BluetoothController.Base.LEStateCombinations

 System.Client.BluetoothController.Base.LEWhiteList

 System.Client.BluetoothController.Base.NoBluetoothLEFilterDriver

 System.Client.BluetoothController.Base.OnOffStateControllableViaSoftware

 System.Client.BluetoothController.Base.RadioScanIntervalSettings

 System.Client.BluetoothController.Base.SimultaneousBrEdrAndLeTraffic

 System.Client.BluetoothController.Base.SystemsWithBluetoothImplementDeviceID

 System.Client.BluetoothController.Base.WLANBTCoexistence

Page 16 of 254

System.Client.BluetoothController.Base.4LeSpecification
If a system includes a Bluetooth controller it must support the Bluetooth 4.0 specification requirements

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The Bluetooth controller must comply with the Basic Rate (BR) and Low Energy (LE) Combined Core Configuration

Controller Parts and Host/Controller Interface (HCI) Core Configuration requirements outlined in the Compliance

Bluetooth Version 4.0 specifications.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.BluetoothController.Base.CS

Systems that support Connected Standby with Bluetooth controllers must ship with Microsoft's inbox Bluetooth stack

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems that support Connected Standby that ship with Bluetooth controllers must ship with Microsoft's inbox

Bluetooth stack.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.BluetoothController.Base.LEStateCombinations
Systems with Bluetooth Controllers must support a minimum set of LE state combinations

Target Feature System.Client.BluetoothController.Base

Page 17 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The Bluetooth controller must allow the spec LE state combinations (as allowed in section [Vol 6] Part B, Section

1.1.1 of the Bluetooth version 4.0 spec).

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.BluetoothController.Base.LEWhiteList
Systems with Bluetooth controllers must support a minimum LE white list size of 25 entries

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The Bluetooth controller on the System must support a minimum of 25 entries in its white list for remote Low

Energy (LE) devices.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.BluetoothController.Base.NoBluetoothLEFilterDriver
Bluetooth LE filter drivers are not allowed to load on BTHLEENUM.SYS

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

To ensure a uniform experience across Windows Store Apps using the Bluetooth LE (GATT) WinRT API, filter

drivers shall not be loaded on BTHLEENUM.SYS.

Additional Information

Page 18 of 254

Business Justification The GATT WinRT API provided for communication over Bluetooth LE is closely

coupled to the driver implementing GATT support for the inbox Bluetooth stack,

BTHLEENUM.SYS. All Windows Store Apps that use the Microsoft WinRT API for

GATT rely on this interface to be work as originally implemented, thus there shall not

be any 3rd party components that may intentionally or inadvertently affect this

interface.

Enforcement Date Jun. 26, 2013

System.Client.BluetoothController.Base.OnOffStateControllableViaSoftware

Bluetooth controllers’ On/Off state must be controllable via software

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

For Certifying Bluetooth controllers for Windows 8.1:

When turning the radio “off”, Bluetooth controllers shall be powered down to its lowest supported power state

and no transmission/reception shall take place. Windows will terminate Bluetooth activity by unloading the inbox

protocol drivers and their children, submitting the HCI_Reset command to the controller, and then setting the

controller to the D3 logical power state, allowing bus drivers to power down the radio as appropriate. The radio

can be completely powered off if a bus-supported method is available to turn the radio back on. No additional

vendor software control components will be supported.

On turning the radio back on, the Windows Bluetooth stack shall resume the device to D0, allowing bus drivers to

restart the device. The Windows Bluetooth stack shall then reinitialize the Bluetooth components of the

controller.

Bluetooth Radio Management in Windows 8.1 shall only be enabled for internal Bluetooth 4.0 controllers.

For Windows 8 Certified controllers on upgrade to Windows 8.1:

On upgrade to Windows 8.1, previous DLL support for Bluetooth 4.0 controllers shall be ignored and the

Bluetooth controller is expected to be, at a minimum, in a state where there is no transmission/reception from the

antenna.

For Certifying Bluetooth controllers for Windows 8 only:

The previous requirement remains unchanged.

Bluetooth controllers’ On/Off state shall be controllable via software as described in Bluetooth Software Radio

Switch The Off state is defined, at a minimum, as disabling the antenna component of the Bluetooth module so

there can be no transmission/reception. There must not be any hardware-only switches to control power to the

Bluetooth radio.

The radio must maintain on/off state across sleep and reboot.

Additional Information

Page 19 of 254

Business Justification The Windows 8.1 implementation of Bluetooth Radio Management provides for an

improved Radio Management experience while decreasing the work needed by our

IHV and OEM partners.

Enforcement Date Jun. 26, 2013

System.Client.BluetoothController.Base.RadioScanIntervalSettings
Bluetooth controllers must use radio scan interval values as set by Windows

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

To ensure a uniform experience that balances power usage with responsiveness for users in reconnect scenarios,

Bluetooth controllers must use the Page Scan Interval and LE Scan Interval values as set by Windows at all times.

Additional Information

Business Justification To ensure a uniform experience that balances power usage with responsiveness for

users in reconnect scenarios, Bluetooth controllers must use the Page Scan Interval

and LE Scan Interval values as set by Windows at all times.

Enforcement Date Jun. 26, 2013

System.Client.BluetoothController.Base.SimultaneousBrEdrAndLeTraffic
Bluetooth controllers must support simultaneous BR/EDR and LE traffic.

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Bluetooth controllers must allow the simultaneous use of both Basic Rate (BR)/Enhanced Data Rate (EDR) and Low

Energy (LE) radios.

Additional Information

Enforcement Date Jun. 26, 2013

Page 20 of 254

System.Client.BluetoothController.Base.SystemsWithBluetoothImplementDeviceID

Systems which support Bluetooth must implement the DeviceID profile, version 1.3

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems which support Bluetooth must include the Device ID record as specified in the DeviceID profile, version

1.3. This record shall contain the device's VID/PID.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.BluetoothController.Base.WLANBTCoexistence

Windows Systems that support both WLAN and Bluetooth must meet WLAN-BT Co-existence requirements.

Target Feature System.Client.BluetoothController.Base

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Windows Systems that support both WLAN and Bluetooth must meet WLAN-BT Co-existence requirements listed

below. The requirement is applicable to all WLAN devices across all bus types.

• Must meet 700kbps throughput on BT averaged over 2 minutes while connected to WLAN in

ExTSTA mode.

• Must not drop the connection with WLAN AP when BT is scanning for new devices.

• Must be able to scan simultaneously for both WLAN and BT networks.

• Must not regress the WLAN throughput expectations listed in WLAN device performance

requirement (Device.Network.WLAN.Base.MeetPerformanceReq) when BT is connected or is in

scanning mode.

• Must support all WLAN concurrency combinations listed in WLAN device concurrency requirement

(Device.Network.WLAN.WiFiDirect.SupportAtLeast2WiFiDirectPortsConcurrently) when BT is

connected or is in scanning mode.

Additional Information

Enforcement Date Jun. 26, 2013

Page 21 of 254

System.Client.BluetoothController.NonUSB
These requirements apply to systems that have non-USB Bluetooth controllers

Related Requirements System.Client.BluetoothController.NonUSB.NonUsbUsesMicrosoftsStack

 System.Client.BluetoothController.NonUSB.ScoSupport

System.Client.BluetoothController.NonUSB.NonUsbUsesMicrosoftsStack
Any platform using a non-USB connected BT controller must ship with MSFT's inbox BT stack

Target Feature System.Client.BluetoothController.NonUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Any platform using a non-USB connected BT controller must ship with MSFT's inbox BT stack

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.BluetoothController.NonUSB.ScoSupport

Any platform with a non-USB connected Bluetooth controller must use a sideband channel for SCO

Target Feature System.Client.BluetoothController.NonUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Any platform using a Non-USB connected Bluetooth controller must use sideband channel for SCO (eg. SCO

over an I
2
S/PCM interface)

Additional Information

Enforcement Date Mar. 01, 2012

Page 22 of 254

System.Client.BluetoothController.USB
These requirements apply to systems that have USB Bluetooth controllers

Related Requirements System.Client.BluetoothController.USB.ScoDataTransportLayer

System.Client.BluetoothController.USB.ScoDataTransportLayer

Bluetooth host controllers support the SCO data transport layer as specified in the Bluetooth 2.1+EDR specifications

Target Feature System.Client.BluetoothController.USB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

A System with a Bluetooth controller must comply with the Synchronous Connection Oriented (SCO)-USB

requirements that are outlined in the Specification of the Bluetooth System, Version 2.1 + Enhanced Data Rate

(EDR), Part A, Section 3.5.

Additional Information

Enforcement Date Jun. 01, 2006

System.Client.BrightnessControls
This section describes requirements systems with brightness controls.

Related Requirements System.Client.BrightnessControls.BacklightOptimization

 System.Client.BrightnessControls.BrightnessControlButtons

 System.Client.BrightnessControls.SmoothBrightness

System.Client.BrightnessControls.BacklightOptimization

WDDM 1.2 drivers must enable scenario based backlight power optimization to reduce backlight level used by

integrated panel .

Target Feature System.Client.BrightnessControls

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

• If WDDM driver supports scenario based backlight power optimization, it must indicate the

support by implementing the DXGK_BRIGHTNESS_INTERFACE2 interface

Page 23 of 254

• When Windows sets the current scenario by using the DxgkDdiSetBacklightOptimization function,

the WDDM driver is required to honor the intent of the scenario as follows:

o DxgkBacklightOptimizationDisable: Driver is required to completely disable all backlight

optimization.

o DxgkBacklightOptimizationDesktop: Driver is required to enable backlight optimization at a

lower aggressiveness level. Driver must optimize for scenarios like photo viewing, browser, and

Office documents.

o DxgkBacklightOptimizationDynamic: Driver is required to enable backlight optimization at a

higher aggressiveness level. Driver must optimize for scenarios like video playback and gaming.

o DxgkBacklightOptimizationDimmed: Driver is required to enable backlight optimization at a

higher aggressiveness level. Driver must make sure that the content on the screen is visible but

it need not be easily readable.

• Driver is allowed to dynamically change the aggressiveness level based on the content on the

screen

• Driver is required to handle Windows requests for change to brightness level (based on user input

or ambient light sensor) while keeping backlight optimization enabled

• Driver is required to gradually transition between aggressiveness levels.

o This is important in the case when user briefly invokes playback controls. At that time, Windows

will reset the scenario from DxgkBacklightOptimizationDynamic to

DxgkBacklightOptimizationDesktop. The transition must not be a step but must be gradual.

• WDDM driver is required to provide accurate information when Windows queries

DxgkDdiGetBacklightReduction

• Connecting additional display devices to the system must not impact the ability to perform

backlight optimization on the integrated panel of the system.

Additional Information

Business Justification Windows 8 is optimized for thin and light, touch based tablet devices. One of the key

attributes of such a device is a long battery life. On a device like this, one of the

largest consumers of power is the display backlight. The amount of power consumed

is directly proportional to the brightness level produced by the backlight. The

Windows hardware ecosystem has innovated in this area and designed algorithms to

consume less battery power by optimizing the backlight level in certain scenarios

without having a significant negative impact on the user experience. This can be

achieved by enhancing the colors of individual pixels to compensate for the lower

backlight level of the display. There are some scenarios where such an optimization

can be enabled without having a significant negative impact on the user experience.

The key characteristics of such a scenario are a series of rapidly changing frames. This

is typically seen in scenarios like video playback. Other possibilities are game

play. However, there is one challenge with this. Windows 8 has been designed to

provide a visually rich user experience. Enabling a power saving optimization like this

Page 24 of 254

during a scenario that requires a rich visual experience could have an undesired

impact on the user experience. In particular there are some scenarios which require

the best visual experience. For example, image viewing, Start page, graphics design,

etc. So this means that we need to establish a scenario based policy on whether or

not to enable such optimizations. The policy would need to balance the rich visual

experience against the desired battery life. This is called scenario based backlight

power optimization. This feature allows a graphics vendor to enable such

optimization at the right times and save batter power, without having significant

impact on the user experience.

Enforcement Date Jun. 26, 2013

System.Client.BrightnessControls.BrightnessControlButtons
Mobile systems that have brightness control function keys use standard ACPI events and support control of LCD

backlight brightness via ACPI methods in the system firmware

Target Feature System.Client.BrightnessControls

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The Windows® Mobility Center provides users with an LCD brightness control user interface. If the system

implements keys that are invisible to the operating system, these keys must use Advanced Configuration and

Power Interface (ACPI) methods. These keys must not directly control the brightness after Bit 2 of the _DOS

method has been set. This requires the implementation of ACPI brightness methods in the system firmware.

The following methods are required:

 _BCL

 _BCM

Bit 2 of the _DOS method must be disabled so that the system firmware cannot change the brightness levels

automatically.

The following methods are optional:

Support for the _BQC method is highly recommended but not required. Systems must map keys to the following

ACPI notification values:

 ACPI_NOTIFY_CYCLE_BRIGHTNESS_HOTKEY 0x85

 ACPI_NOTIFY_INC_BRIGHTNESS_HOTKEY 0x86

 ACPI_NOTIFY_DEC_BRIGHTNESS_HOTKEY 0x87

 ACPI_NOTIFY_ZERO_BRIGHTNESS_HOTKEY 0x88

Design Notes:

Page 25 of 254

The _BCL and _BCM methods in the firmware enable the operating system to query the brightness range and

values and to set new values. Refer to the ACPI 3.0 specification for more details.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.BrightnessControls.SmoothBrightness
Driver must support a smooth transition in response to all brightness change requests from Windows

Target Feature System.Client.BrightnessControls

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

1. All Windows 8 systems that support brightness control, are required to support smooth brightness

control

2. All Windows 8 systems are required to report 101 brightness levels to Windows. Brightness is reported

as a % so this means 0 to 100 levels, including 0 and 100. Internally the driver might support more

granular brightness control.

3. This is to ensure that Windows has the ability to make fine grained changes to the screen brightness.

However, the brightness slider UI might expose fewer levels through the slider because it might be

cumbersome for the user to adjust so many levels.

4. WDDM driver is required to implement smooth brightness control in the driver without depending on

the embedded controller (EC) for the smoothness.

5. WDDM driver is required to indicate support for smooth brightness control using the capability bit

defined in the DXGK_BRIGHTNESS_INTERFACE2 interface.

6. WDDM driver must enable/disable smooth brightness control based on state set using

DxgkDdiSetBrightnessState.

7. When Windows requests a change to brightness, driver is required to gradually change the brightness

level over time so that the change is not a step.

8. WDDM driver is allowed to select an appropriate slope for transition. However, the transition must

complete in less than 2s.

9. WDDM driver is allowed to alter the slope based on panel characteristics to ensure smoothness of

brightness control.

10. WDDM driver is required to start responding immediately to new brightness level requests. This must be

honored even if the system is already in the process of an existing transition. At such a time, the system

must stop the existing transition at the current level and start the new transition from the current

position. This will ensure that when a user is using the slider to manually adjust the brightness, the

brightness control is still responsive and not sluggish.

Page 26 of 254

11. WDDM driver is required to continue supporting smooth brightness control, even if content based

adaptive brightness optimization is currently in effect.

12. When WDDM driver is pnp started, it must detect the brightness level applied by the firmware and

smoothly transition from that level to the level set by Windows.

13. Connecting additional display devices to the system must not impact the ability to do smooth brightness

control on the integrated panel of the system.

14. Brightness levels are represented as a % in Windows. Therefore there is no absolute mapping between

brightness % level and physical brightness level. For Windows 8, the following is the guidance

Percent represented to Windows User Experience

0% Brightness level such that the contents of the screen

are barely visible to the user

100% Max brightness supported by panel

Additional Information

Business Justification Windows 8 is designed to provide a fluid user experience. There are many scenarios

in which the brightness level of the display is changed. This could be based on user

input, user action or based on some sensors. In all these cases, a sudden change to

the brightness level is jarring. Therefore it is valuable to provide a smooth brightness

transition to ensure a good user experience.

Enforcement Date Aug. 01, 2012

System.Client.Buttons
This section refers to requirements related to buttons.

Related Requirements System.Client.Buttons.WindowsButtons

System.Client.Buttons.WindowsButtons
All in one systems that can run on a battery must have a Windows button

Target Feature System.Client.Buttons

Applies to Windows 8.1 Client x86, x64

Description

The Windows button must have the Windows glyph as outlined in the Logo License Agreement. The Windows

button size must be large enough for the Windows Logo artwork as well as the required white space as defined in

the Logo License Agreement. The button can be any shape (for example: circular, square, or rectangular). The

Windows button can be placed anywhere on the system. Microsoft prefers that the button be integrated

centered along the bottom bezel, but the integration is at the choice of the OEM. It can be integrated on any

bezel or edge of the system.

Page 27 of 254

Additional Information

Business Justification These hardware buttons enable a navigation experience in the absence of a keyboard.

System builders should consider whether any type of dynamic feedback is required

for any capacitive buttons for visually impaired users.

Enforcement Date Jun. 26, 2013

System.Client.CPU
This section describes requirements for WOA SoC CPUs

Related Requirements System.Client.CPU.Compatibility

 System.Client.CPU.MADT

System.Client.CPU.Compatibility

System contains a Windows-8 compatible System on Chip Applications Processor

Target Feature System.Client.CPU

Applies to Windows 8 Client ARM (Windows RT)

 Windows 8.1 Client ARM (Windows RT 8.1)

Description

Details

The following are required.

Item Processor Attribute

Architecture ARMv7-A application profile with MP extensions

Cores 2 or more

ISA Thumb-2 ISA

Virtualization Not required

Security Extensions Not required

Interrupt Controller GIC

RTC Any RTC with appropriate UEFI and ACPI support which

conforms to Windows 8 requirements

//PlugAndPlay.WakeAlarmDevice

The minimum requirements are to get and set time, get

and set a wake alarm.

Debugging ARMv7-A CP14 debug coprocessor and CP15

performance monitors infrastructure

Memory-mapped debugging is not supported.

DMA For each system DMA controller, all channels in the

controller must be able to service all devices (request

Page 28 of 254

lines) connected to that controller.

All devices using DMA must support the maximum

physical address space of the CPU. We recommend

bus mastering for devices using DMA.

Caches Physically Indexed Physically Tagged (PIPT) Data Cache

PIPT and Virtually Indexed Physically Tagged (VIPT)

Instruction Cache

Performance Counter Invariant per-processor counter (recommended) or

Invariant platform counter

Minimum frequency is 1 MHz

Minimum rollover is 4 seconds

Clock Timer Per processor invariant timer (recommended) or an

invariant platform timer

Minimum frequency is 1 KHz

Always On Timer and counter Invariant platform counter and timer, they must remain

on at the lowest SoC power state

Profiling Timer Per processor timer

Scaling Source A timer with known frequency with less than 100 PPM

drift or Accurate EfiStall EFI boot service

Processor Clock And Power Gating The processor can enter halt state

The processor can be clock gated

The processor can be power gated

Processor Dynamic Frequency and Voltage Scaling

(DFVS)

SIMD and VFP NEON and VFPv3 D32

Windows will support only the ARMv7-A application profile, as described in the ARM Architecture Reference

Manual ARMv7-A Edition (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b/index.html).

Comments

 A counter is a readable register that can be used to measure elapsed time between reads, whereas a

timer is capable of generating an interrupt after a predetermined interval. They can both be

implemented in a single block or separately. The separation in this document is based on how they are

used by the OS, and doesn't necessarily imply implementation requirements.

 Accurate EFI stall is a stall implementation that synchronizes to the edge of a fixed frequency clock, such

that the additional delay introduced on top of any requested stall, is bounded by one clock cycle of that

fixed frequency clock.

 The requirement for multiple cores is based on implementations available at this writing. High

performance single-core processors may be approved on a case-by-case basis.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.CPU.MADT
ARM System must implement MP Start Protocol

Target Feature System.Client.CPU

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b/index.html

Page 29 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Details

 A system with an ARM processor must correctly implement the MP start protocol.

 The Multiple APIC Description Table (MADT) which is detailed in ACPI indicates the number of

processors in the system. The number of processors mentioned in MADT must match the number of

processors that Windows has enumerated using GetSystemInfo API.

 Details of the MP start protocol are available on request and will eventually be posted on MSDN.

 Details referenced above are currently in Appendix B of Minimum UEFI Requirements for SoC Platforms

ver. 0.92.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Base
Base feature for digitizer

Related Requirements System.Client.Digitizer.Base.DigitizersAppearAsHID

 System.Client.Digitizer.Base.HighQualityDigitizerInput

System.Client.Digitizer.Base.DigitizersAppearAsHID

Please refer to Device.Digitizer.DigitizersAppearAsHID

Target Feature System.Client.Digitizer.Base

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Base.DigitizersAppearAsHID

Additional Information

Enforcement Date Mar. 01, 2012

Page 30 of 254

System.Client.Digitizer.Base.HighQualityDigitizerInput

Please refer to Device.Digitizer.Base.HighQualityDigitizerInput

Target Feature System.Client.Digitizer.Base

Applies to Windows 7 Client x86, x64

Description

Please refer to Device.Digitizer.Base.HighQualityDigitizerInput

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Digitizer.Pen
Pen feature for digitizer

Related Requirements System.Client.Digitizer.Pen.100HzSampleRate

 System.Client.Digitizer.Pen.ContactAccuracy

 System.Client.Digitizer.Pen.HoverAccuracy

 System.Client.Digitizer.Pen.PenRange

 System.Client.Digitizer.Pen.PenResolution

System.Client.Digitizer.Pen.100HzSampleRate

Please refer to Device.Digitizer.Pen.100HzSampleRate

Target Feature System.Client.Digitizer.Pen

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Pen.100HzSampleRate

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Pen.ContactAccuracy
Please refer to Device.Digitizer.Pen.ContactAccuracy

Page 31 of 254

Target Feature System.Client.Digitizer.Pen

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Pen.ContactAccuracy

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Pen.HoverAccuracy
Please refer to Device.Digitizer.Pen.HoverAccuracy

Target Feature System.Client.Digitizer.Pen

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Pen.HoverAccuracy

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Pen.PenRange
Please refer to Device.Digitizer.Pen.PenRange

Target Feature System.Client.Digitizer.Pen

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Pen.PenRange

Additional Information

Page 32 of 254

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Pen.PenResolution

Please refer to Device.Digitizer.Pen.PenResolution

Target Feature System.Client.Digitizer.Pen

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Pen.PenResolution

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch
Windows Touch interface for digitizer devices.

Related Requirements System.Client.Digitizer.Touch.5TouchPointMinimum

 System.Client.Digitizer.Touch.DigitizerConnectsOverUSBOrI2C

 System.Client.Digitizer.Touch.DigitizerJitter

 System.Client.Digitizer.Touch.ExtraInputBehavior

 System.Client.Digitizer.Touch.FieldFirmwareUpdatable

 System.Client.Digitizer.Touch.HIDCompliantFirmware

 System.Client.Digitizer.Touch.HighQualityTouchDigitizerInput

 System.Client.Digitizer.Touch.HighResolutionTimeStamp

 System.Client.Digitizer.Touch.InputSeparation

 System.Client.Digitizer.Touch.NoiseSuppression

 System.Client.Digitizer.Touch.PhysicalDimension

 System.Client.Digitizer.Touch.PhysicalInputPosition

 System.Client.Digitizer.Touch.PowerStates

 System.Client.Digitizer.Touch.ReportingRate

 System.Client.Digitizer.Touch.ResponseLatency

 System.Client.Digitizer.Touch.TouchResolution

 System.Client.Digitizer.Touch.ZAxisAllowance

System.Client.Digitizer.Touch.5TouchPointMinimum

Please refer to Device.Digitizer.Touch.5TouchPointMinimum

Target Feature System.Client.Digitizer.Touch

Page 33 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.5TouchPointMinimum

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.DigitizerConnectsOverUSBOrI2C

Please refer to Device.Digitizer.Touch.DigitizerConnectsOverUSBOrI2C

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.DigitizerConnectsOverUSBOrI2C

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.DigitizerJitter
Please refer to Device.Digitizer.Touch.DigitizerJitter

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.DigitizerJitter

Additional Information

Enforcement Date Mar. 01, 2012

Page 34 of 254

System.Client.Digitizer.Touch.ExtraInputBehavior

Please refer to Device.Digitizer.Touch.ExtraInputBehavior

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.ExtraInputBehavior

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.FieldFirmwareUpdatable
Please refer to Device.Digitizer.Touch.FieldFirmwareUpdatable

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.FieldFirmwareUpdatable

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.HIDCompliantFirmware

Please refer to Device.Digitizer.Touch.HIDCompliantFirmware

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.HIDCompliantFirmware

Page 35 of 254

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.HighQualityTouchDigitizerInput
Please refer to Device.Digitizer.Touch.HighQualityTouchDigitizerInput

Target Feature System.Client.Digitizer.Touch

Applies to Windows 7 Client x86, x64

Description

Please refer to Device.Digitizer.Touch.HighQualityTouchDigitizerInput

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Digitizer.Touch.HighResolutionTimeStamp
Please refer to Device.Digitizer.Touch.HighResolutionTimeStamp

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.HighResolutionTimeStamp

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.InputSeparation

Please refer to Device.Digitizer.Touch.InputSeparation

Target Feature System.Client.Digitizer.Touch

Page 36 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.InputSeparation

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.NoiseSuppression

Please refer to Device.Digitizer.Touch.NoiseSuppression

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.NoiseSuppression

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.PhysicalDimension
Please refer to Device.Digitizer.Touch.PhysicalDimension

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.PhysicalDimension

Additional Information

Enforcement Date Mar. 01, 2012

Page 37 of 254

System.Client.Digitizer.Touch.PhysicalInputPosition

Please refer to Device.Digitizer.Touch.PhysicalInputPosition

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.PhysicalInputPosition

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.PowerStates
Please refer to Device.Digitizer.Touch.PowerStates

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.PowerStates

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.ReportingRate

Please refer to Device.Digitizer.Touch.ReportingRate

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.ReportingRate

Page 38 of 254

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.ResponseLatency
Please refer to Device.Digitizer.Touch.ResponseLatency

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.ResponseLatency

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.TouchResolution

Please refer to Device.Digitizer.Touch.TouchResolution

Target Feature System.Client.Digitizer.Touch

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.TouchResolution

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Digitizer.Touch.ZAxisAllowance
Please refer to Device.Digitizer.Touch.ZAxisAllowance

Target Feature System.Client.Digitizer.Touch

Page 39 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Please refer to Device.Digitizer.Touch.ZAxisAllowance

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Firewall
The requirements in this section describe what is required.

Related Requirements System.Client.Firewall.FirewallEnabled

System.Client.Firewall.FirewallEnabled

Systems enable a firewall solution by default

Target Feature System.Client.Firewall

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All systems must test and ship with firewall software solution enabled by default.

Design Notes:

The firewall can either be the inbox solution found under Security Center or a third party equivalent

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Firmware.UEFI.GOP
This section describes requirements for systems implementing UEFI firmware.

Related Requirements System.Client.Firmware.UEFI.GOP.Display

Page 40 of 254

System.Client.Firmware.UEFI.GOP.Display

System firmware must support GOP and Windows display requirements

Target Feature System.Client.Firmware.UEFI.GOP

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Every firmware on a Windows 8 client system must support the Graphics Output Protocol (GOP) as defined in

UEFI 2.3.1.

The display is controlled by the system UEFI before the WDDM graphics driver takes over. GOP must be available

when the Windows EFI boot manager loads. VBIOS is not supported. It is also required for prior UI, such as OEM

logo, firmware setup, or password prompt screens to enable GOP. During this time when the firmware is in

control, the following are the requirements:

Topology Selection

• UEFI must reliably detect all the displays that are connected to the POST adapter. The Pre-OS screen

can only be displayed on a display connected to the POST adapter.

• In case multiple displays are detected, UEFI must display the Pre-OS screen based on the following

logic

o System with an Integrated display(Laptop, All In One, Tablet): UEFI must display the Pre-OS

screen only on the integrated display

o System without an Integrated display (integrated display is shut or desktop system): UEFI must

display the Pre-OS screen on one display. UEFI must select the display by prioritizing the

displays based on connector type. The prioritization is as follows: DisplayPort, HDMI, DVI,

HD15, Component, S-Video. If there are multiple monitors connected using the same connector

type, the firmware can select which one to use.

Mode Selection

• Once UEFI has determined which display to enabled to display the Pre-OS screen, it must select the

mode to apply based on the following logic

o System with an Integrated display(Laptop, All In One, Tablet): The display must always be set to

its native resolution and native timing

o System without an Integrated display (desktop):

 UEFI must attempt to set the native resolution and timing of the display by obtaining

it from the EDID.

 If that is not supported, UEFI must select an alternate mode that matches the same

aspect ratio as the native resolution of the display.

 At the minimum, UEFI must set a mode of 1024 x 768

 If the display device does not provide an EDID, UEFI must set a mode of 1024 x 768

o The firmware must always use a 32 bit linear frame buffer to display the Pre-OS screen

o PixelsPerScanLine must be equal to the HorizontalResolution.

o PixelFormat must be PixelBlueGreenRedReserved8BitPerColor. Note that a physical frame buffer

is required; PixelBltOnly is not supported.

Page 41 of 254

Mode Pruning

• UEFI must prune the list of available modes in accordance with the requirements called out in

EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() (as specified in the UEFI specification version 2.1)

Providing the EDID

• Once the UEFI has set a mode on the appropriate display (based on Topology Selection), UEFI must

obtain the EDID of the display and pass it to Windows when Windows uses

the EFI_EDID_DISCOVERED_PROTOCOL (as specified in the UEFI specification version 2.1)to query

for the EDID.

o It is possible that some integrated panels might not have an EDID in the display panel itself. In

this case, UEFI must manufacture the EDID. The EDID must accurately specify the native timing

and the physical dimensions of the integrated panel

o If the display is not integrated and does not have an EDID, then the UEFI does not need to

manufacture an EDID

Additional Information

Business Justification Modern boot experience requires a pre-boot environment which is both fast and

visually appealing. The system UEFI controls the display before Windows takes over

the control. This means that the screen controlled by the firmware is the first thing

that the user sees. Therefore, it is very important that the user has a great user

experience at this stage. Some of the key goals are: Ensure that the screen is visible

on exactly one display. Display on a single screen ensures that it is easy for the

firmware to set a timing and that the UI is not scaled to fit multiple displays of

different sizes and aspect ratios. It is easier for the firmware to display on one display

instead of many. The native resolution is important in a number of Windows

scenarios: Native resolution provides the sharpest and most clear text. Booting the

system in native resolution eliminates the need to change modes during the boot

process. The frame buffer can be handed off between bios, boot loader, OS boot, and

display driver. The result of this is that the display does not flash during boot and

gives a more seamless boot experience. Providing the EDID to Windows is important

so that Windows can determine the physical dimensions of the display. Windows will

automatically scale its UI to be large on high DPI displays so that the text is large

enough for the user to see.

Enforcement Date Mar. 01, 2012

System.Client.Graphics
This section describes requirements for graphics devices in client PC systems.

Page 42 of 254

Related Requirements System.Client.Graphics.FullGPU

 System.Client.Graphics.NoMoreThanOneInternalMonitor

 System.Client.Graphics.SingleGPU

 System.Client.Graphics.WDDM

 System.Client.Graphics.WDDMSupportRotatedModes

 System.Client.Graphics.Windows7.MinimumDirectXLevel

 System.Client.Graphics.WirelessUSBDisplay

System.Client.Graphics.FullGPU

A Windows client system must have a "Full" graphics device and that device must be the post device.

Target Feature System.Client.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

WDDM 1.2 introduces multiple driver/device types: Full, Render only, and Display only. For a detailed description

of each, refer to the WDDM 1.2 specification or the Windows 8 WDDM 1.2 requirement

Device.Graphics.WDDM12.Base.

Each of these driver/device types are designed for specific scenarios and usage case. All client scenarios expect a

"full" graphics device. Also many applications assume that the post device is the "best" graphics devices and use

that device exclusively. For this reason, a Windows client system must have a "full" graphics driver/device that is

capable of display, rendering, and video.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Graphics.NoMoreThanOneInternalMonitor

Graphics driver must not enumerate more than one monitor as internal

Target Feature System.Client.Graphics

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The graphics driver must not enumerate more than one display target of the D3DKMDT_VOT_INTERNAL type on

any adapter.

Page 43 of 254

Design Notes:

For more information, see the Graphics guide for Windows 7 at http://go.microsoft.com/fwlink/?LinkId=237084.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Graphics.SingleGPU

ARM system may not include multiple GPUs

Target Feature System.Client.Graphics

Applies to Windows 8 Client ARM (Windows RT)

 Windows 8.1 Client ARM (Windows RT 8.1)

Description

An ARM system may not include multiple GPUs. All mode, power management and scenarios must be available

through this single GPU. So-called hybrid GPU solutions are not allowed.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Graphics.WDDM
All Windows graphics drivers must be WDDM

Target Feature System.Client.Graphics

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The Windows Display Driver Model (WDDM) was introduced with Windows Vista as a replacement to the

Windows XP Display Driver Model (XDDM). The WDDM architecture offers functionality to enable features such as

desktop composition, enhanced fault Tolerance, video memory manager, scheduler, cross process sharing of D3D

surfaces and so on. WDDM was specifically designed for modern graphics devices that are a minimum of

Direct3D 10 Feature Level 9_3 with pixel shader 2.0 or better and have all the necessary hardware features to

support the WDDM functionality of memory management, scheduling, and fault tolerance. WDDM for Windows

Vista was referred to as "WDDM v1.0". WDDM 1.0 is required for Windows Vista.

http://www.microsoft.com/whdc/device/display/graphicsguidewin7.mspx

Page 44 of 254

Windows 7 made incremental changes to the driver model for supporting Windows 7 features and capabilities

and is referred to as "WDDM v1.1" and is a strict superset of WDDM 1.0. WDDM v1.1 introduces support for

D3D11, GDI hardware acceleration, Connecting and Configuring Displays, DXVA HD, and other features. WDDM

1.1 is required for Windows 7.

Windows 8 also introduces features and capabilities that require graphics driver changes. These incremental

changes range from small changes such as smooth rotation, to large changes such as 3D stereo, and D3D11

video support. The WDDM driver model that provides these Windows 8 features is referred to as "WDDM v1.2."

WDDM v1.2 is a superset of WDDM 1.1, and WDDM 1.0.

WDDM v1.2 is required by all systems shipped with Windows 8. WDDM 1.0 and WDDM 1.1 will only be supported

with legacy devices on legacy systems. The best experience and Windows 8 specific features are only enabled by

a WDDM 1.2 driver. A WDDM driver that implements some WDDM 1.2 required features, but not all required

features will fail to load on Windows 8.

For Windows 8 XDDM is officially retired and XDDM drivers will no longer load on Windows 8 Client or Server.

Windows 8.1 introduces features and capabilities that require graphic driver changes. WDDMv1.3 brings

significant improvement in areas related to performance, power and reliability for Windows.

WDDMv1.3 is required by all systems shipped with Windows 8.1.

Below is a summary these WDDM versions:

Operating System Driver Models

Supported

D3D versions supported Features enabled

Windows Vista WDDM 1.0

XDDM on Server and

limited UMPC

D3D9, D3D10 Scheduling, Memory

Management, Fault

tolerance, D3D9 & 10

Windows Vista SP1 /

Windows 7 client pack

WDDM 1.05

XDDM on Server 2008

D3D9, D3D10, D3D10.1 + BGRA support in

D3D10, D3D 10.1

Windows 7 WDDM 1.1

XDDM on Server 2008 R2

D3D9, D3D10, D3D10.1,

D3D11

GDI Hardware

acceleration,

Connecting and

configuring Displays,

DXVA HD, D3D11

Windows 8 WDDM 1.2 D3D9, D3D10, D3D10.1,

D3D11, D3D11.1

Smooth Rotation,

3D Stereo,

D3D11 Video,

GPU Preemption,

TDR Improvements

Diagnostic Improvements,

Performance and Memory

usage Optimizations,

Power Management,

etc.

WDDM v1.2 also introduces new types of graphics drivers, targeting specific scenarios and is described below:

Page 45 of 254

1. WDDM Full Graphics Driver: This is the full version of the WDDM graphics driver that supports hardware

accelerated 2D & 3D operations. This driver is fully capable of handling all the render, display and video

functions. WDDM 1.0 and WDDM 1.1 are full graphics drivers. All Windows 8 client systems must have a

full graphics WDDM 1.2 device as the primary boot device.

2. WDDM Display Only Driver: This driver is only supported as a WDDM 1.2 driver and enables IHVs to

write a WDDM based kernel mode driver that is capable of driving display only devices. The OS handles

the 2D or 3D rendering using a software simulated GPU. Display only devices are only allowed on client

systems within a virtual machine session.

3. WDDM Render Only Driver: This driver is only supported as a WDDM 1.2 driver and enables IHVs to

write a WDDM driver that supports only rendering functionality. Render only devices are not allowed as

the primary graphics device on client systems.

Table below explains the scenario usage for the new driver types:

 Client Server Client running in a

Virtual

Environment

Server Virtual

Full Graphics Required as post

device

Optional Optional Optional

Display Only Not allowed Optional Optional Optional

Render Only Optional as non

primary adapter

Optional Optional Optional

Headless Not allowed Optional N/A N/A

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Graphics.WDDMSupportRotatedModes
If accelerometer is present, WDDM driver must support all rotated modes

Target Feature System.Client.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

On a system with an accelerometer, the WDDM driver is required to support all rotated modes for every

resolution enumerated for the integrated panel.

Page 46 of 254

 A WDDM driver is required to enumerate source modes for the integrated display. The WDDM driver

must support rotated modes (0,90,180 and 270) for every mode that it enumerates for the integrated

panel.

 The rotation is required to be supported even if the integrated panel is in a duplicate or extended

topology with another display device. For duplicate mode, it is acceptable to rotate all targets connected

to the rotated source. Per path rotation is allowed but not required.

Both the above mentioned requirements are optional for Stereo 3D capable resolutions.

Additional Information

Business Justification Windows 8 is designing some key experiences that depend on the ability of a user to

be able to rotate the physical device. For this experience, it is critical that the desktop

also rotate to be in sync with the device. Therefore the WDDM driver must support

rotation modes.

Enforcement Date Jun. 26, 2013

System.Client.Graphics.Windows7.MinimumDirectXLevel

All system display adapters or chipset complies with Direct3D 10 and DXGI feature sets or greater

Target Feature System.Client.Graphics

Applies to Windows 7 Client x86, x64

Description

For all systems, except ultra-mobile PC form-factor, all graphics hardware in the system must be at least Direct3D

10 or greater.

The graphics memory performance target for Direct3D 10 hardware is 1,600 MB/sec and will be measured by

using the AeroAT tool.

All features required by this specification must also be exposed including those features defined for the DXGI DLL.

The following list includes some of the required features called out in the Direct3D 10 specification:

 Geometry shader

 Stream output

 Integer instruction set

 New compressed formats

 Render to vertex buffer

 Render to cube map

 Render to volume

Additional Information

Page 47 of 254

Enforcement Date Dec. 01, 2009

System.Client.Graphics.WirelessUSBDisplay

System must not add support for non-traditional display connectors like USB and Wireless

Target Feature System.Client.Graphics

Applies to Windows 8 Client ARM (Windows RT)

 Windows 8.1 Client ARM (Windows RT 8.1)

Description

 Display devices (Monitor, LCD, TV, Projectors) are enumerated to Windows only via the WDDM Graphics

driver.

 Such display devices must be physically connected to a full WDDM graphics hardware that supports at

least DX 9.c in the hardware.

 Windows only supports a fixed set of display connectors as defined in WDDM as part of the

D3DKMDT_VIDEO_OUTPUT_TECHNOLOGY enumeration.

 The WDDM driver is required to accurately report the connection medium used to connect the display

device to the system.

 This enumeration does not include any support for display devices connected via USB port or a wireless

connection.

Additional Information

Business Justification Windows was designed to work with display devices physically connected to the

WDDM graphics adapter and the scan out taking place from the graphics memory.

However, based on the current design this is not possible for connectors like Wireless

or USB. This causes challenges in the area of: Premium content protection Dynamic

changes in available bandwidth (USB and Wireless bandwidth is shared with other

devices like storage, networking etc. and not dedicated to display scan out)User

experience related to discovery, pairing, usage It would require driver to driver

communication that is not currently supported Ability to display the screen in cases

where the WDDM graphics driver is not yet running (POST screen, bug check, PnP

Stop)Would require proprietary conversion from USB/Wireless to standard mediums

like HDMI, DVI as the standards for USB/Wireless display continue to stabilize

Enforcement Date Jun. 01, 2006

System.Client.MediaTranscode
Requirements describe the capabilities that are required for media transcode.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff546605(v=vs.85).aspx

Page 48 of 254

Related Requirements System.Client.MediaTranscode.GlitchFreeRealtimeCommunication

 System.Client.MediaTranscode.SystemTranscodeFasterThanRealTime

System.Client.MediaTranscode.GlitchFreeRealtimeCommunication
Glitch free real-time video communication

Target Feature System.Client.MediaTranscode

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

1. The system shall sustain two concurrent decoding/encoding pairs, 1 H.264 hardware encode/decode at

720p plus 1 H.264/VC-1 software encode/decode at 240p, in low latency mode glitch free for 1 hour.

2. The system shall sustain four concurrent decoding/encoding pairs, consisting of hardware H.264

decoding/encoding pairs at 540p, 360p and 240p plus 1 software H.264/VC-1 encode/decode at 240p, in low

latency mode glitch free for 1 hour.

3. The system shall sustain four concurrent hardware H.264 decoding/encoding pairs in low latency mode

in a glitch free manner for 1 hour with dynamic codec configuration changes every 5-20 sec. The codec

configuration changes include:

a. media type changes (resolution, profile, frame rate, sample aspect ratio) and

b. CodecAPI change (temporal layer count).

“Glitch-free” is defined as following: For encoder the time interval between IMFTransform::ProcessInput and

METransformHaveOutput must be within 25ms except that one frame can be encoded within 66ms in a per-10

second span. For decoder the time interval between Execute and output surface ready must be within 33ms.

Additional Information

Business Justification In video conference calls such as supported by Lync and Skype the clients usually

receive multiple video streams and are also capable of sending multiple video

streams. The reason for requiring to encode and send multiple video streams is

because the multiple receivers may request different resolutions or profiles and also

may be on different downlink bandwidth links. The three requirements address

several scenarios:

1. The client is sending an HD video stream and a low resolution video stream

to two different receiving endpoints and at the same time is receiving two video

streams. This requirement will ensure that there aren’t any noticeable glitches in the

video

2. The second requirement covers larger video conferences where there are

multiple receivers which all request different resolutions or all have very different

downlink speeds and thus require the sender to send out multiple video streams (e.g.

540p, 360p, 240p). Note that on purpose the resolution 720p is not included here as

the macro-block processing rate of the encoder should not be exceeded. If then yet

another video stream is needed then the application can use a software encoder to

generate the fourth stream. On the receiving side again the requirement is due to

Page 49 of 254

multiple videos being shown in the Lync client.

3. In video conference calls the requests of the receiving clients can change

significantly during the call e.g. if the video window of the client UI changes in size

and thus requires a different resolution, if the bandwidth changes significantly e.g. by

adding desktop sharing modality, if client leave or join the conference. To ensure that

the encoder/decoder handles these dynamic changes the third requirement will test

dynamic configuration changes.

Enforcement Date Jun. 26, 2013

System.Client.MediaTranscode.SystemTranscodeFasterThanRealTime

System is capable of transcoding faster than real time for multimedia scenarios, both on AC and DC power

Target Feature System.Client.MediaTranscode

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Required

Successfully transcode a Standard Definition (SD) video to another SD video from and to the following formats:

 MPEG2-PS SD to H264 SD 2 mbps

 VC1 SD to MPEG2 (TS&PS) SD 2 mbps

Successfully transcode a High Definition (HD) video to a Standard Definition video from and to the following

formats:

 H264 720p to MPEG2 (TS&PS) SD 2 mbps

 H264 720p to VC1 SD 2 mbps

Successfully transcode a High Definition (HD) video to another HD video from and to the following formats:

 VC1 720p to H264 720p 7 mbps

Optional

Successfully transcode a High Definition (HD) video to another HD video from and to the following formats:

 H264 1080p to H264 720p 7 mbps

 VC1 1080p to H264 720p 7 mbps

 H264 720p to MPEG2 (TS&PS) 720p 7 mbps

 H264 720p to VC1 720p 7 mbps

Page 50 of 254

Successfully transcode a High Definition (HD) video to another HD video from and to the following formats:

 H264 1080p to MPEG2 (TS&PS) 720p 7 mbps

Design Notes:

 MPEG-2 support is required on x86 and x64 architectures and operating systems only.

 See the Windows Driver Kit, Streaming Devices (Video and Audio), Hardware MFT Device Class and

Stream Class Minidrivers.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.MobileBroadBand
These are requirements for Mobile Broadband devices integrated in the systems.

Related Requirements System.Client.MobileBroadBand.ClassDriver

 System.Client.MobileBroadBand.ConcurrentRadioUsage

 System.Client.MobileBroadBand.MobileBroadBand

System.Client.MobileBroadBand.ClassDriver

USB interface based GSM and CDMA class of Mobile Broadband device firmware must comply with USB-IF's Mobile

Broadband Interface Model Specification.

Target Feature System.Client.MobileBroadBand

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

USB interface based GSM and CDMA class of Mobile Broadband device firmware implementation must comply

with the USB-IF's Mobile Broadband Interface Model (MBIM) Specification. No additional IHV drivers are needed

for the functionality of the device and the device must work with Microsoft's Mobile Broadband(MB) class driver

implementation. Note that Microsoft generic class driver doesn't support non-USB interface devices. Non-USB

based devices require device manufacturer's device driver compliant with MB driver model specification.

Additional Details:

Mobile Broadband Interface Model Specification: http://www.usb.org/developers/devclass_docs/MBIM10.zip

Mobile Broadband Driver Model Specification: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff560543(v=VS.85).aspx

http://www.usb.org/developers/devclass_docs/MBIM10.zip
http://msdn.microsoft.com/en-us/library/windows/hardware/ff560543(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff560543(v=VS.85).aspx

Page 51 of 254

Exceptions:

- Device models that are announced as End of life (EOL) as of December, 2011.

- Device models that are no longer in production line.

Note that above exceptions are applicable only if:

- devices are used in Windows 8 Client x86 and Windows 8 Client x64.

- devices are pre-certified for multiple operators (at least 20).

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.MobileBroadBand.ConcurrentRadioUsage
System Builders must ensure that the RF performance is optimized for Mobile Broadband, Wi-Fi and Bluetooth

radios running at the same time

Target Feature System.Client.MobileBroadBand

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

System Builders must ensure that the RF performance is optimized for Mobile Broadband, Wi-Fi and Bluetooth

radios running at the same time. Systems that enable internet connection sharing (tethering), multi-homing, and

network switching all require multiple radios to be active simultaneously. Systems should ensure high throughput,

high reliability, optimal power efficiency and minimum RF interference under these conditions regardless of the

system form factor.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.MobileBroadBand.MobileBroadBand

Systems that include Broadband support meet Windows requirements

Target Feature System.Client.MobileBroadBand

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Firmware Requirements

Page 52 of 254

USB based devices for GSM and CDMA technologies (3GPP/3GPP2 standards based) need to be firmware

compliant with the Mobile Broadband Interface Model specification. These devices need to be certified by the

USB Forum for compliance (when it becomes available for MB devices).

In addition to the above, firmware needs to support the features listed below as specified by NDIS.

Firmware Feature Requirement

No Pause on Suspend Required

USB Selective Suspend Required – If USB based

Radio Management Required

Wake on Mobile Broadband Required

Fast Dormancy Required

No additional Connection Manager software is required for the operation of mobile broadband devices.

Value-add Mobile Broadband Connection Managers, if implemented, need to implement the Mobile Broadband

API (http://msdn.microsoft.com/en-us/library/dd323271(VS.85).aspx).

Microsoft strongly recommends USB-based bus interfaces such as analog USB, HSIC (where applicable) and SSIC

(when available). Mobile Broadband stack in Windows 8 is designed to support only USB protocol based bus

interfaces. The following table summarizes the required mobile broadband features.

Attribute Requirement

Bus USB-HSCI (preferred) or USB

Systems must also comply with Mobile Broadband requirements, with:

 Devices MUST support 16 bitmap wake patterns of 128 bytes each.

 Devices MUST wake the system on register state change.

 Devices MUST wake the system on media connect.

 Devices MUST wake the system on media disconnect.

 GSM and CDMA class of Devices MUST wake the system on receiving an incoming SMS message.

 Devices that support USSD MUST wake the system on receiving USSD message.

 Devices MUST support wake packet indication. NIC should cache the packet causing the wake on

hardware and pass it up when the OS is ready for receives.

Mobile Broadband class of devices must support Wake on Mobile Broadband. It should wake the system on

above mentioned events. Note that wake on USSD is mandatory only if the device reports that it supports USSD.

Else it is optional. See the following MSDN documentation for more information on the SMS and register state

wake events.

 NDIS_STATUS_WWAN_REGISTER_STATE

 NDIS_STATUS_WWAN_SMS_RECEIVE

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.NearFieldProximity
Near Field Proximity is a set of short range wireless technologies to enable communication between a personal

computer and a device.

http://msdn.microsoft.com/en-us/library/dd323271(VS.85).aspx)

Page 53 of 254

Related Requirements System.Client.NearFieldProximity.ImplementingProximity

 System.Client.NearFieldProximity.RangeOfActuation

 System.Client.NearFieldProximity.TouchMark

System.Client.NearFieldProximity.ImplementingProximity
How/when to implement NFP technology

Target Feature System.Client.NearFieldProximity

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Any system that incorporates NFC technology (namely any technology that utilizes one or more of the air

interface specifications incorporated by the NFC Forum by reference as approved specifications) must provide an

NFP provider for that NFC implementation that meets the

Device.BusController.NearFieldProximity.ProviderImplementation and

Device.BusController.NearFieldProximity.NFCCertification requirements.

Any system that incorporates any NFP technology that implements the device driver interface specified by the

Device.BusController.NearFieldProximity.ProviderImplementation requirement must also provide an additional

NFP provider that implements both the Device.BusController.NearFieldProximity.ProviderImplementation and

Device.BusController.NearFieldProximity.NFCCertification requirements.

Any system that does not incorporate NFC technology and does not incorporate NFP technology that

implements the device driver interface specified by the

Device.BusController.NearFieldProximity.ProviderImplementation requirement need not meet NFP certification

requirements.

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.NearFieldProximity.RangeOfActuation
For devices using active radios, proximity technology meets range of actuation

Target Feature System.Client.NearFieldProximity

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

An NFP provider must support an effective operating volume to enable users to successfully use NFP technology

with Windows in 95 times out of 100 attempts for all tap and do scenarios. Refer to the most current version of

the 'Windows 8 Near Field Proximity Implementation Specification' document for detailed placement guidance, as

Page 54 of 254

well as acceptable, minimum, and maximum values for the required effective operating volume. The spec can be

found at:

http://go.microsoft.com/fwlink/?LinkId=237135

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.NearFieldProximity.TouchMark
If the system has a proximity technology then there must be a mark to indicate where to tap devices together.

Target Feature System.Client.NearFieldProximity

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

To help users locate and use the proximity technology, the use of a visual mark is required by, and is only

permitted for, NFC NFP providers (those NFP providers that implement air interface specifications incorporated

by the NFC Forum by reference as approved specifications).

Implementation can include but not limited to etching, inking and removable stickers. The mark that is used is at

the discretion of the system builder.

Additional Information

Business Justification The visual touch mark helps end users locate the antenna for NFC radio as the

placement of the radio can vary based off of the form factor.

Enforcement Date Jan. 03, 2012

System.Client.PCContainer
Starting with Windows 7, Windows is moving towards a device centric presentation of computers and

devices. Elements of the Windows user interface (UI), such as the Devices and Printers folder, will show the

computer and all devices that are connected to the computer. The requirements in this section detail what is

required to have the PC appear as a single object in the Windows UI.

Related Requirements System.Client.PCContainer.PCAppearsAsSingleObject

http://go.microsoft.com/fwlink/?LinkId=237135

Page 55 of 254

System.Client.PCContainer.PCAppearsAsSingleObject

Computers must appear as a single object in the Devices and Printers folder

Target Feature System.Client.PCContainer

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

Computers must appear as a single object in the Devices and Printers folder. Windows 7 and newer has a

platform layer which groups all functionality exposed by the computer into a single object. This object is referred

to as the computer device container. The computer device container must contain all of the device functions that

are located physically inside the computer chassis. This includes, but is not limited to, keyboards, touch-pads;

media control/media transport keys, wireless radios, storage devices, and audio devices. The computer device

container is used throughout the Windows platform and is visibly exposed to the user in the Devices and Printers

user interface. This requirement ensures a consistent and high quality user experience by enforcing the "one

object per physical device" rule in the Devices and Printers folder.

The computer must appear as a single device container in the Devices and Printers folder for the following

reason:

 Devices and Printers will be unable to provide a logical and understandable representation of the

computer to the user. Accurate information as to which devices are physically integrated with the

computer must be supplied to support this and dependent Windows features.

Design Notes:

Windows is moving towards a device centric presentation of computers and devices. The Devices and Printers

folder will show the computer and all devices that are connected to the computer. In Devices and Printers the

computer is represented by a single icon. All of the functionality exposed by the computer will be available

through this single icon object, providing one location for users to discover devices integrated with the computer

and execute specific actions on those integrated devices. To enable this experience, the computer must be able to

detect and group all computer integrated devices. (I.e. all devices physically inside the PC.) This requires that

computer integrated devices properly identify themselves as integrated components. This can be achieved by

indicating that the device is not removable from computer, properly configuring ACPI for the port to which the

device is attached, or creating a registry DeviceOverride entry for the device. (Note: Each bus type has different

mechanisms for identifying the removable relationship for devices attached to that bus. Refer to the

"Multifunction Device Support and Device Container Groupings in Windows 7" whitepaper for details.)

To group the functionality exposed by the computer into a single device container, Windows uses information

available in the device hardware, bus driver, and system UEFI or BIOS and Windows registry. The bus type to

which a given device is attached determines the heuristic Windows applies to group that device. The whitepaper

titled "Multifunction Device Support and Device Container Groupings in Windows 7," which can be found at

http://www.microsoft.com/whdc/Device/DeviceExperience/ContainerIDs.mspx, explains the heuristic for many bus

types, including:

 Universal Serial Bus (USB)

 Bluetooth

http://www.microsoft.com/whdc/Device/DeviceExperience/ContainerIDs.mspx

Page 56 of 254

 IP connected devices using Plug and Play Extensions (PnP-X)

 1394

 eSATA

 PCI Express (PCIe)

The Single Computer Display Object test (ComputerSingleDDOTest.exe) must be executed on the system to check

if this requirement has been met. The tool is available in Windows Logo Kit. The computer configuration for this

test is different for laptops and desktop computers:

 Laptops: No external devices (other than a monitor) can be attached to the laptop when the

ComputerSingleDDOTest.exe is run. If external devices of any type are attached the test will fail

automatically.

 Desktops (computers which require an external keyboard, mouse and monitor to be attached): Only a

keyboard, mouse and monitor can be attached to the desktop when the ComputerSingleDDOTest.exe is

run. If any devices other than these are attached the test will fail automatically.

The ComputerSingleDDOTest.exe will identify those devices which Windows was unable to group with the

computer device container. Determine the bus to which the indicated device is attached and follow the details in

the whitepaper to determine why the device was not correctly grouped with the computer.

The design changes required to group an internal device with the computer device container vary depending on

the bus to which the device is attached. Refer to the "Multifunction Device Support and Device Container

Groupings in Windows 7" whitepaper for details.

Testing Notes:

This requirement can be tested by using the Single Computer Display Object Test (ComputerSingleDDOTest.exe)

in the WLK. The computer configuration for this test is different for laptops and desktop computers:

 Laptops: No external devices can be attached to the laptop when the ComputerSingleDDOTest.exe is

run. If external devices of any type are attached the test will fail automatically.

 Desktops (computers which require an external keyboard, mouse and monitor to be attached): Only a

keyboard, mouse and monitor can be attached to the desktop when the ComputerSingleDDOTest.exe is

run. If any devices other than these are attached the test will fail automatically.

The following are examples of the output from the Single Computer Display Object Test, showing both an

unsuccessful and successful test pass. Both were executed on the same laptop computer. There were not any

devices attached to the laptop at the time the test was executed.

Unsuccessful test result:

In the failure case, the laptop has two USB devices which are detected as separate device containers from the

computer device container. These two devices are actually internal to the computer and connected to an internal

USB hub.

D:\Tools\ComputerSingleDDOTest>ComputerSingleDDOTest.exe -laptop

Start: SystemFund-0200: Computers must be represented by one icon in Device Center., TUID=0E7AEA02-2712-

422F-A9CD-FFBE470FD391

Found Device "USB Input Device". - This device should be part of the computer.

Page 57 of 254

Found Device "USB Composite Device". - This device should be part of the computer.

Error: 0x0, Error 0x00000000

 FAIL: Devices were found that are part of the computer but were reported

 as removable from the computer.

 File=__FILE__ Line=468

End: Fail, SystemFund-0200: Computers must be represented by one icon in Device

Center., TUID=0E7AEA02-2712-422F-A9CD-FFBE470FD391, Repro= D:\Tools\ComputerSingleDDOTest

\ComputerSingleDDOTest.exe

Summary: Total=1, Passed=0, Failed=1, Blocked=0, Warned=0, Skipped=0

Successful test result:

This is the same laptop as the unsuccessful test result above. The two USB devices are now grouped into the

computer device container. This was done by creating a DeviceOverride registry entry for each device. Various

options are available to achieve the correct grouping, depending on the bus type to which the device is attached.

See "Multifunction Device Support and Device Container Groupings in Windows 7" for details.

D:\Tools\ComputerSingleDDOTest>ComputerSingleDDOTest.exe -laptop

Start: SystemFund-0200: Computers must be represented by one icon in Device Center., TUID=0E7AEA02-2712-

422F-A9CD-FFBE470FD391

PASS: Devices were correctly reported as part of the computer.

End: Pass, SystemFund-0200: Computers must be represented by one icon in Device

Center., TUID=0E7AEA02-2712-422F-A9CD-FFBE470FD391, Repro=D:\Tools\ComputerSingl

eDDOTest\ComputerSingleDDOTest.exe

Summary: Total=1, Passed=1, Failed=0, Blocked=0, Warned=0, Skipped=0

Additional Information

Business Justification The devices and printers folder will be unable to provide a logical and

understandable representation of the PC without accurate information as to which

devices are physically integrated with the PC.

Enforcement Date Mar. 01, 2012

System.Client.PrecisionTouchpad
Precision Touchpad requirements applicable for Windows 8.1. Windows Precision Touchpads are a new class of

input device deeply integrated in to the Windows platform to provide a consistent, reliable and high-performing user

experience. A Windows precision touchpad is an integrated device that is internally connected as part of a

clamshell/convertible system or as part of an attachment that provides both keyboard and touchpad functionality.

Related Requirements System.Client.PrecisionTouchpad.PrecisionTouchpad

 System.Client.PrecisionTouchpad.RequiredForARM

System.Client.PrecisionTouchpad.PrecisionTouchpad

Precision Touchpad

Page 58 of 254

Target Feature System.Client.PrecisionTouchpad

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The following Precision Touchpad device level requirements must be met and verified upon integration into a

system. Please refer to the following Device.Input.PrecisionTouchpad requirements for full requirement details:

Device.Input.PrecisionTouchpad.Buffering

Device.Input.PrecisionTouchpad.BusType

Device.Input.PrecisionTouchpad.FieldFirmwareUpdateable

Device.Input.PrecisionTouchpad.ThirdPartyDrivers

Device.Input.PrecisionTouchpad.WakeFunctionality

Device.Input.PrecisionTouchpad.WakeSource

Device.Input.PrecisionTouchpad.Hardware.Bezel

Device.Input.PrecisionTouchpad.Hardware.ClickpadPress

Device.Input.PrecisionTouchpad.Hardware.PressurePadPress

Device.Input.PrecisionTouchpad.I2C.ActivePowerConsumption

Device.Input.PrecisionTouchpad.I2C.ActiveToIdleTimeout

Device.Input.PrecisionTouchpad.I2C.BusSpeed

Device.Input.PrecisionTouchpad.I2C.ColdBootLatency

Device.Input.PrecisionTouchpad.I2C.ConnectedStandbyPowerConsumption

Device.Input.PrecisionTouchpad.I2C.IdlePowerConsumption

Device.Input.PrecisionTouchpad.Performance.ActiveTouchdownLatency

Device.Input.PrecisionTouchpad.Performance.IdleTouchdownLatency

Device.Input.PrecisionTouchpad.Performance.MinSeparation

Device.Input.PrecisionTouchpad.Performance.PanLatency

Device.Input.PrecisionTouchpad.Performance.ReportRate

Device.Input.PrecisionTouchpad.Precision.DiagonalInputSeparation

Device.Input.PrecisionTouchpad.Precision.EdgeDetection

Device.Input.PrecisionTouchpad.Precision.HVInputSeparation

Device.Input.PrecisionTouchpad.Precision.InputResolution

Device.Input.PrecisionTouchpad.Precision.Linearity

Device.Input.PrecisionTouchpad.Precision.MotionJitter

Device.Input.PrecisionTouchpad.Precision.Position

Page 59 of 254

Device.Input.PrecisionTouchpad.Precision.StationaryJitter

Device.Input.PrecisionTouchpad.Reliability.FalseContacts

Device.Input.PrecisionTouchpad.Reliability.PowerStates

Device.Input.PrecisionTouchpad.USB.ActivePowerConsumption

Device.Input.PrecisionTouchpad.USB.BusSpeed

Device.Input.PrecisionTouchpad.USB.ColdBootLatency

Device.Input.PrecisionTouchpad.USB.IdlePowerConsumption

Device.Input.PrecisionTouchpad.USB.SelectiveSuspend

Device.Input.PrecisionTouchpad.USB.SleepPowerConsumption

Additional Information

Business Justification To ensure Precision Touchpads which are integrated into a system maintain the

expected user experience, bus, mechanical, performance, and reliability qualities.

Enforcement Date Jun. 26, 2013

System.Client.PrecisionTouchpad.RequiredForARM
If a system with an ARM processor has a touchpad, it must be a Precision Touchpad

Target Feature System.Client.PrecisionTouchpad

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

The precision touch pad on an ARM system must meet device requirements under the feature and sub features

Device.Input.PrecisionTouchPad.

Additional Information

Business Justification Windows precision touchpads provide a consistent user experience.

Enforcement Date Jun. 26, 2013

System.Client.RadioManagement
This feature contains requirements for buttons that control the management of any radios in a laptop or

Tablet/convertible PC. It also contains requirements for GPS radios, Near Field Proximity radios, and Bluetooth

radios that do not use the Windows native Bluetooth stack.

Page 60 of 254

Related Requirements System.Client.RadioManagement.HardwareButton

 System.Client.RadioManagement.RadioMaintainsState

 System.Client.RadioManagement.RadioManagementAPIHID

 System.Client.RadioManagement.RadioManagerCOMObject

System.Client.RadioManagement.HardwareButton

If a PC has a physical (hardware) button switch on a PC that turns wireless radios on and off, it must be software

controllable and interact appropriately with the Radio Management UI

Target Feature System.Client.RadioManagement

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

There does not need to be a hardware button for wireless radios on Windows 8 laptops or tablet/convertible PCs.

A wireless hardware button is one of the following:

• Toggle Button (Laptops and Tablets)

• Toggle Button with LED (Non-Connected standby supported laptops and tablets)

• A-B slider switch (Laptops and Tablets)

• A-B slider switch with LED (Non-Connected standby supported laptops and tablets)

When there is a hardware button for wireless radios there must not be more than one, and it must control all

the radios present in the computer.

An LED to indicate the state of the switch is optional. Please note that an LED indicating wireless status is not

allowed on systems that support connected standby. If an LED is present along with the button, it must behave as

defined below.

 There must only be one LED to indicate wireless status (i.e. there must be not one LED for Bluetooth, one

for Wi-Fi, etc.).

 If the global wireless state is ON, the LED must be lit.

 When the global wireless state is OFF, the LED must not be lit.

 When the button is pressed or switch is flipped, it must send a HID message that can be consumed by

the Radio Management API

 When the Radio Management API sends a HID message, the button or switch must receive the message

and change the state of the LED accordingly.

Additional Information

Page 61 of 254

Business Justification The radio management feature goal is to create a consistent and predictable

Windows experience for controlling all wireless capabilities on the PC that enables

global as well as granular control of the radios. The UI is tightly integrated with the

hardware switch so that the radio state is always accurate. The wireless hardware

button must meet this requirement in order to meet these goals.

Enforcement Date Mar. 01, 2012

System.Client.RadioManagement.RadioMaintainsState

Radio maintains on/off state across sleep and reboot power cycles

Target Feature System.Client.RadioManagement

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The state of the wireless radio must persist across sleep, reboot, user log off, user switching and hibernate.

Additional Information

Business Justification The radio management feature goal is to create a consistent and predictable

Windows experience for controlling all wireless capabilities on the PC that enables

global as well as granular control of the radios. The UI is tightly integrated with the

hardware switch so that the radio state is always accurate. The wireless hardware

button must meet this requirement in order to meet these goals.

Enforcement Date Mar. 01, 2012

System.Client.RadioManagement.RadioManagementAPIHID

Wireless hardware button must communicate the change of state to the Radio Management API using HID

Target Feature System.Client.RadioManagement

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

When the state of wireless radio switch changes, whether it is a slider A-B switch (with or without LED) or toggle

button (with or without LED), this HID-compliant hardware switch/button must expose the HID collections to be

consumed by the radio management API.

Toggle button must not change the state of the device radio directly.

Page 62 of 254

A-B switch can be wired directly to the radios and change their state as long as it communicates the change of

state to the Radio Management API using the HID driver and it changes the state in all radios present in the PC.

The HID usage IDs are:

Usage ID Usage Name Usage Type

0x0C Wireless Radio Controls CA

0xC6 Wireless Radio Button OOC

0xC7 Wireless Radio LED OOC

0xC8 Wireless Radio Slider Switch OOC

The collections are:

Button without LED (stateless button) – For laptops, tablets and convertibles

USAGE_PAGE (Generic Desktop) 05 01

USAGE (Wireless Radio Controls) 09 0C

COLLECTION (Application) A1 01

 LOGICAL_MINIMUM (0) 15 00

 LOGICAL_MAXIMUM (1) 25 01

 USAGE (Wireless Radio Button) 09 C6

 REPORT_COUNT (1) 95 01

 REPORT_SIZE (1) 75 01

 INPUT (Data,Var,Rel) 81 06

 REPORT_SIZE (7) 75 07

 INPUT (Cnst,Var,Abs) 81 03

END_COLLECTION C0

Button with LED – For laptops, tablets and convertibles that do NOT support connected standby

USAGE_PAGE (Generic Desktop) 05 01

USAGE (Wireless Radio Controls) 09 0C

COLLECTION (Application) A1 01

 LOGICAL_MINIMUM (0) 15 00

 LOGICAL_MAXIMUM (1) 25 01

 USAGE (Wireless Radio Button) 09 C6

 REPORT_COUNT (1) 95 01

 REPORT_SIZE (1) 75 01

 INPUT (Data,Var,Rel) 81 06

 REPORT_SIZE (7) 75 07

 INPUT (Cnst,Var,Abs) 81 03

 USAGE (Wireless Radio LED) 09 C7

 REPORT_SIZE (1) 75 01

 OUTPUT (Data,Var,Rel) 91 02

 REPORT_SIZE (7) 75 07

 OUTPUT (Cnst,Var,Abs) 91 03

END_COLLECTION C0

Slider Switch (without LED) - For laptops, tablets and convertibles

USAGE_PAGE (Generic Desktop) 05 01

USAGE (Wireless Radio Controls) 09 0C

Page 63 of 254

COLLECTION (Application) A1 01

 LOGICAL_MINIMUM (0) 15 00

 LOGICAL_MAXIMUM (1) 25 01

 USAGE (Wireless Radio Slider Switch) 09 C8

 REPORT_COUNT (1) 95 01

 REPORT_SIZE (1) 75 01

 INPUT (Data,Var,Abs) 81 02

 REPORT_SIZE (7) 75 07

 INPUT (Cnst,Var,Abs) 81 03

END_COLLECTION C0

Slider Switch with LED- Laptops, tablets and convertibles that do NOT support connected standby

USAGE_PAGE (Generic Desktop) 05 01

USAGE (Wireless Radio Controls) 09 0C

COLLECTION (Application) A1 01

 LOGICAL_MINIMUM (0) 15 00

 LOGICAL_MAXIMUM (1) 25 01

 USAGE (Wireless Radio Slider Switch) 09 C8

 REPORT_COUNT (1) 95 01

 REPORT_SIZE (1) 75 01

 INPUT (Data,Var,Abs) 81 02

 REPORT_SIZE (7) 75 07

 INPUT (Cnst,Var,Abs) 81 03

 USAGE (Wireless Radio LED) 09 C7

 REPORT_SIZE (1) 75 01

 OUTPUT (Data,Var,Rel) 91 02

 REPORT_SIZE (7) 75 07

 OUTPUT (Cnst,Var,Abs) 91 03

END_COLLECTION C0

LED Only (No button or slider) - Laptops, tablets and convertibles that do NOT support connected standby

USAGE_PAGE (Generic Desktop) 05 01

USAGE (Wireless Radio Controls) 09 0C

COLLECTION (Application) A1 01

 LOGICAL_MINIMUM (0) 15 00

 LOGICAL_MAXIMUM (1) 25 01

 USAGE (Wireless Radio LED) 09 C7

 REPORT_COUNT (1) 95 01

 REPORT_SIZE (1) 75 01

 OUTPUT (Data,Var,Rel) 91 02

 REPORT_SIZE (7) 75 07

 OUTPUT (Cnst,Var,Abs) 91 03

END_COLLECTION C0

Wireless radio LED must have a HID-compliant driver to reflect the state of the airplane mode switch located in

the user interface. Wireless radio LED only uses HID for output (no input since there is no button).

When the Radio Management API sends a HID message because the global wireless state (airplane mode) has

changed, the switch must consume this message and toggle the state.

For an A-B switch, the manufacturer's proprietary embedded controller must report the correct state of the switch

Page 64 of 254

at all times by sending a HID message to the HID driver, including every time the PC is turned on back on.

Reporting the state of the A-B switch when the computer is turned back on is especially important in the case

that the switch changed states while the PC was in states S3/S4/S5.

Additional Information

Business Justification The radio management feature goal is to create a consistent and predictable

Windows experience for controlling all wireless capabilities on the PC that enables

global as well as granular control of the radios. The UI is tightly integrated with the

hardware switch so that the radio state is always accurate. The wireless hardware

button must meet this requirement in order to meet these goals.

Enforcement Date Mar. 01, 2012

System.Client.RadioManagement.RadioManagerCOMObject

There must be a radio manager COM object which registers and interacts with the Radio Management API

Target Feature System.Client.RadioManagement

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems that include any of the following radio must create a radio manager COM Object for that radio:

 GPS

 Proximity-type radios such as NFC and TransferJet

 Bluetooth radio that doesn't use the Windows Native Bluetooth stack

Each radio that does not have an inbox radio manager must have its own IRadioInstance object and be

enumerable from IMediaRadioManager::IEnumRadioInstance. There is inbox support for WLAN, mobile

broadband and Bluetooth.

Verify IRadioInstance::GetRadioManagerSignature returns the media radio manager GUID.

RadioInstance::GetInstanceSignature must return device instance path.

The radio COM object manager must send and consume On and Off calls from the Radio Management API.

When the Airplane Mode switch is turned ON by the user, the Radio Management API calls the method

OnSystemRadioStateChange(), with the sysRadioState parameter equal to SRS_RADIO_DISABLED, in which case

the Media Radio Manager must record the current device radio state for later use and must set the radio state to

DEVICE_SW_RADIO_OFF.

When the Airplane Mode switch is turned OFF by the user, the Radio Management API calls the method

OnSystemRadioStateChange(), with the sysRadioState parameter equal to SRS_RADIO_ENABLED, in which case

the device radio associated with the radio instance managed by this Media Radio Manager must transition to a

previous device radio state (the last recorded state).

Page 65 of 254

Radio COM object manager must report radio instance within 100 milliseconds. Please note that this does not

mean that radio COM object manager has to be fully functional (ready to turning radio on/off); it just means that

radio COM object manager needs to report the presence of a radio within 100 milliseconds.

Users do NOT need administrator privileges to change the radio state. Any standard user must be able to change

the radio state.

Radio COM object manager must be able to change the state of the radio (on to off, or off to on) within 5

seconds.

Additional Information

Business Justification The radio management feature goal is to create a consistent and predictable

Windows experience for controlling all wireless capabilities on the PC that enables

global as well as specific control of the radios. The UI is tightly integrated with the

hardware switch so that the radio state is always accurate. The wireless hardware

button must meet this requirement in order to meet these goals.

Enforcement Date Jun. 26, 2013

System.Client.RadioManagement.ConnectedStandby
This feature contains requirements for buttons that control the management of any radios in a laptop or

Tablet/convertible PC. The radios that this requirement applies to are GPS

Related

Requirements

 System.Client.RadioManagement.ConnectedStandby.NoRadioStatusIndicatorLights

System.Client.RadioManagement.ConnectedStandby.NoRadioStatusIndicatorLight

s

Systems that support Connected Standby must not include a light indicating the status of the radios in the system

Target Feature System.Client.RadioManagement.ConnectedStandby

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

In order to conserve energy, systems that support connected standby cannot include a status indicator indicating

whether the radios are on.

Additional Information

Enforcement Date Mar. 01, 2012

Page 66 of 254

System.Client.ScreenRotation
Screen rotation is the act of a user rotating a system from landscape to portrait and vice versa. The requirements in

this section describe the behavior for the end user experience.

Related Requirements System.Client.ScreenRotation.SmoothRotation

System.Client.ScreenRotation.SmoothRotation

Systems with accelerometers perform screen rotation in 300 milliseconds and without any video glitches

Target Feature System.Client.ScreenRotation

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All Windows 8 systems with an accelerometer must have sufficient graphics performance to meet performance

requirements for screen rotation.

 A WDDM driver is required to enumerate source modes for the integrated display. The WDDM driver

must support rotated modes (0,90,180 and 270) for every mode that it enumerates for the integrated

panel.

 The rotation is required to be supported even if the integrated panel is in a duplicate or extended

topology with another display device. For duplicate mode, it is acceptable to rotate all targets connected

to the rotated source. Per path rotation is allowed but not required.

Both the above mentioned requirements are optional for Stereo 3D capable resolutions.

The following performance metrics must be met:

Time to first frame Glitching Length of screen rotation

300 milliseconds No glitching at 60 fps 300 milliseconds

Additional Information

Business Justification Graphics performance is critical to deliver a good end-user experience on Windows 8.

The performance of the HW subsystems and the graphics driver plays a big role in

that.

Enforcement Date Mar. 01, 2012

Page 67 of 254

System.Client.Sensor

Related Requirements System.Client.Sensor.GNSSRFSensitivity

 System.Client.Sensor.HumanProximitySensor

 System.Client.Sensor.Integrated

System.Client.Sensor.GNSSRFSensitivity

GNSS RF Sensitivity

Target Feature System.Client.Sensor

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

GPS device and antenna shall have Over the Air (OTA) acquisition sensitivity as -142 dB or better. For OTA

tracking sensitivity, it should be better than -145 dB.

Interference with other components in the system shall not cause degradation from these sensitivity goals.

Display, Camera, other radios e.g. NFC, Bluetooth, WiFi, Mobile Broadband are some of the potential components

which can cause interference. Active usage of such components shall not degrade GPS RF sensitivity.

Human hands holding the device one of the common positions shall not degrade GPS RF Sensitivity. Device shall

be able to maintain OTA acquisition sensitivity at -142 dBm and OTA tracking sensitivity of -145 dBm when the

system is held in common positions.

Additional Information

Business Justification Poor RF performance of the device or poor antenna selection, placement and wiring

of the antenna can prevent GPS devices from getting a fix even in good signal

conditions. GPS signals being weak when they reach to the ground and them being

very prone to interference make GPS RF sensitivity particularly important in order to

have well performing GPS devices.

Enforcement Date Jun. 26, 2013

System.Client.Sensor.HumanProximitySensor

System with human proximity sensor meets Windows requirements

Target Feature System.Client.Sensor

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 68 of 254

Description

Sensor Category: SENSOR_CATEGORY_BIOMETRIC

Sensor Type: SENSOR_TYPE_HUMAN_PROXIMITY

All human proximity class sensors need to ensure that they accurately report the following Data Types to be

seamlessly integrated with Windows (through the sensors platform).

Data type Type Meaning

SENSOR_DATA_TYPE_HUMAN_PROXIMITY VT_R4 Distance between a human

and the computer, in meters.

Note: Sensor Connection Type = SENSOR_CONNECTION_TYPE_PC_INTEGRATED for hardware that is built-in to

the PC enclosure. Note that proximity sensors with connection type =

SENSOR_CONNECTION_TYPE_PC_ATTACHED can also be used for power management features (if integrated into

connected peripheral).

For detailed information regarding sensor driver development, please see the Sensors topic in the Device and

Driver Technologies section of the Windows Driver Kit (WDK).

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.Sensor.Integrated
If the system contains an internal sensor that is integrated with the Windows Sensor Platform, it must report itself to

the sensors platform as an integrated and correctly oriented sensor

Target Feature System.Client.Sensor

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

If a system contains the following sensors that are integrated with the Windows Sensor Platform, then each of

these sensors should report itself to the operating system as an internally integrated sensor.

Sensor Connection Type = SENSOR_CONNECTION_TYPE_PC_INTEGRATED

Required sensor objects exposed via sensor platform (Applies only to Tablet and Convertible-Tablet form-factors):

Sensor x86/x64 ARM

3D Accelerometer (SENSOR_TYPE_ACCELEROMETER_3D) Optional Optional

3D Gyrometer (SENSOR_TYPE_GYROMETER_3D) Optional Optional

3D Inclinometer (SENSOR_TYPE_INCLINOMETER_3D) Optional*** Optional***

3D Compass (SENSOR_TYPE_COMPASS_3D) Optional*** Optional***

Device Orientation (SENSOR_TYPE_AGGREGATED_DEVICE_ORIENTATION) Optional Optional

Ambient Light Sensor (SENSOR_TYPE_AMBIENT_LIGHT) Optional Optional

Required Sensor fusion** for PC-Integrated sensors (Applies only to Tablet and Convertible-Tablet form-factors):

Sensor x86/x64 ARM

Page 69 of 254

3D Compass

 3D accelerometer used for tilt compensation (required)

 3D Gyrometer used to enhance data rate and data integrity (required)

Optional*** Optional***

3D Inclinometer

 3D accelerometer and 3D Compass used to determine yaw, pitch, roll

(required)

 3D Gyrometer used to enhance data rate and data integrity (required)

Optional*** Optional***

Device Orientation

 3D accelerometer and 3D Compass used to formulate Rotation Matrix,

Quaternion (required)

 3D Gyrometer used to enhance data rate and data integrity (required)

Optional Optional

**Sensor fusion is the process of using data from multiple sensors to enhance existing sensor data, or to

synthesize new sensor data types from raw sensor data

*** 3D Compass and 3D Inclinometer are derived exclusively from the Device Orientation sensor in the

Windows Runtime. Either of these exposed to Win32 COM API will be overwritten at the WinRT layer.

In addition, each of these sensors should be correctly configured and calibrated with proper orientation (for

example: mounted in proper direction) as per the guidance specified for the specific sensor category as outlined

in related white papers and documents.

Sensors should not raise events when the system is stationary and the environment is not changing.

For detailed information regarding sensor driver development, see Sensor Driver Design Guide in the Device and

Driver Technologies section of the Windows Driver Kit (WDK).

Additional Information

Business Justification To ensure the internal sensor reports data in the standardized windows Data Types. If

a sensor does not report these data fields, it will not be treated as an internal sensor

and will not be exposed to applications.

Enforcement Date Aug. 01, 2012

System.Client.Sensor.Base
Base feature for requirements that are base and apply to all sensor types

Related Requirements System.Client.Sensor.Base.ALSCalibrationTest

 System.Client.Sensor.Base.DataEvents

 System.Client.Sensor.Base.GNSSTestProperties

 System.Client.Sensor.Base.PowerState

 System.Client.Sensor.Base.SupportDataTypesAndProperties

System.Client.Sensor.Base.ALSCalibrationTest
ALS Calibration Test

Target Feature System.Client.Sensor.Base

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

http://msdn.microsoft.com/library/windows/hardware/ff545810

Page 70 of 254

Description

ALS should report lux values within 10% accuracy when a 100-200 lux light source is aimed directly into the ALS

aperture. ALS should report lux values within 50% attenuation when the light source is aimed at an angle of 35

degrees from the ALS aperture

Additional Information

Business Justification There have been multiple cases where system designs did not account for “shadow

effects” which occur when the ALS aperture is either too deep or too small in

diameter. This causes incorrect light level readings which in turn cause Windows to

incorrectly dim the screen.

Enforcement Date Jun. 26, 2013

System.Client.Sensor.Base.DataEvents

Data Events

Target Feature System.Client.Sensor.Base

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

If a client sets the change sensitivity to 0, or when the change sensitivity is not applicable (e.g. for location), data

events shall not fire more often than 80% of the CRI . The device also shall not miss more than 5% of the data

reports , both for short (e.g. <= 1 sec) and long (e.g. > 1 minute) values of the current report interval.

Data events should not be fired if the current report interval and change sensitivity (when applicable) are not met.

Data events should not be fired at a rate less than the minimum report interval.

Additional Information

Business Justification If data events are not fired when change sensitivity or current report interval values

are satisfied there can be power and performance degradation. These tests make

sure that sensors fire data when they are expected to.

Enforcement Date Jun. 26, 2013

System.Client.Sensor.Base.GNSSTestProperties

Location GNSS Test Properties

Target Feature System.Client.Sensor.Base

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Page 71 of 254

Description

GPS devices shall support Assisted GPS (A-GPS). It is up to the device which A-GPS solution e.g. internet based,

mobile operator based solution to implement.

While the GPS driver can utilize the other devices on the system for enhancements e.g. faster Time-To-Fix (TTF),

GPS device shall continue to function when such devices are disabled, went into low power states or their radios

are turned off.

In order to enable AGPS testing and cold starting the device when needed, GNSS Drivers must support

SENSOR_PROPERTY_CLEAR_ASSISTANCE_DATA.

In order to allow turning on and turning off NMEA sentences in data reports, GNSS Driver must support

SENSOR_PROPERTY_TURN_ON_OFF_NMEA. NMEA lines shall not be included in data reports by default.

//{e1e962f4-6e65-45f7-9c36-d487b7b1bd34}

DEFINE_GUID(SENSOR_PROPERTY_TEST_GUID,

0XE1E962F4, 0X6E65, 0X45F7, 0X9C, 0X36, 0XD4, 0X87, 0XB7, 0XB1, 0XBD, 0X34);

DEFINE_PROPERTYKEY(SENSOR_PROPERTY_CLEAR_ASSISTANCE_DATA, 0XE1E962F4,

0X6E65, 0X45F7, 0X9C, 0X36, 0XD4, 0X87, 0XB7, 0XB1, 0XBD, 0X34, 2); //[VT_UI4]

DEFINE_PROPERTYKEY(SENSOR_PROPERTY_TURN_ON_OFF_NMEA, 0XE1E962F4,

0X6E65, 0X45F7, 0X9C, 0X36, 0XD4, 0X87, 0XB7, 0XB1, 0XBD, 0X34, 3); //[VT_UI4]

#define GNSS_CLEAR_ALL_ASSISTANCE_DATA 0x00000001

SENSOR_PROPERTY_

CLEAR_ASSISTANCE_DATA

(PID = 2)

VT_UI4

Write. The assistance data to be cleared.

Setting a value of GNSS_CLEAR_ALL_ASSISTANCE_DATA

signals the driver to clear all assistance data, including time,

almanac, ephemeris and last position.

WHCK tests can set this value to clear the assistance data

before a cold start test, AGPS tests or independently before

running simulator tests where time and location is

simulated. If A-GPS capabilities e.g. SUPL, LTO is supported,

driver can try to utilize them after this operation by using

the network connection. However, it should be in a state

where no assistance data is saved in the device or on the

system. Any assistance data elements shall be downloaded

again.

SENSOR_PROPERTY_TURN_ON_OFF_NMEA

(PID = 3)

VT_UI4

Read/Write. If set to TRUE, NMEA sentence shall be included in

data reports. If set to False, NMEA sentence shall not be

included in data reports.

WHCK tests can use this property to instruct the device to start

sending NMEA data or stop including it in data reports.

Additional Information

Business Justification In order to test Time-To-Fix performance characteristics of a GPS device e.g. whether

A-GPS is supported or Time-To-First-Fix after a “cold start”, it is needed to instruct

the driver to clear the assistance data. Since there is no user scenario for apps to clear

the assistance data, which will increase the time to fix, this is a test only property and

is not exposed via API.

Adding NMEA sentence with all data reports notably increases the data being passed

Page 72 of 254

to upper layers. SENSOR_PROPERTY_TURN_ON_OFF_NMEA allows the test app to ask

for inclusion of this data only when needed.

Enforcement Date Jun. 26, 2013

System.Client.Sensor.Base.PowerState

Power State

Target Feature System.Client.Sensor.Base

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

All sensors shall enter a low power state (D2 or D3) when all clients are disconnected and shall power up when a

client is connected.

GPS drivers shall support Idle Detection. The Location Sensor driver for a GPS device must transition the device to

the Sleep power mode whenever possible. If an app requests a report interval longer than 60 seconds, the

Location Sensor driver should transition the GPS device to D3 until the next fix is requested. The Location Sensor

driver must transition the GPS device to D0 with sufficient time to triangulate a fix and provide the app with

location data.

GPS devices shall implement the power and sensor states described in following table:

ASIC state on = position computation in progress

Inputs Outputs

Client

exists

Radio state Long CRI Position

reported

ASIC state Sensor state Power state

No Any Any Any Off - D3

Yes On No No On Initializing D0

Yes On No Yes On Ready D0

Yes Off Any Any Off Not available D3

Yes On Yes Any Off Ready D3

Yes On Yes Any On Ready D0

Additional Information

Business Justification If a sensor cannot enter a low power when all clients are disconnected, Windows will

not be able to achieve power savings.

If a sensor cannot power up when a client is connected, the machine cannot function

properly.

Enforcement Date Jun. 26, 2013

Page 73 of 254

System.Client.Sensor.Base.SupportDataTypesAndProperties

Sensor and Location Platform devices support the set of data types and properties as defined in this requirement.

Target Feature System.Client.Sensor.Base

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

All sensor devices that implement the Sensor Device Driver Interface must meet the following requirements. See

any additional requirements that are specific to the sensor type being tested. For detailed information regarding

sensor driver development, please see the Sensors topic in the Device and Driver Technologies section of the

Windows Driver Kit (WDK).

Required Properties

 Sensor devices should show accurate data. The data being provided must follow the guidelines

described in MSDN for each property and device type.

 These properties are queried using Device Driver Interfaces

ISensorDriver::OnGetSupportedSensorObjects, ISensorDriver::OnGetSupportedProperties() and

ISensorDriver::OnGetProperties(). Explicit type matching is required for data types and properties. The

types must be the same as in the charts below.

Property Data type Static Details

WPD_FUNCTIONAL_OBJECT_CATEGORY VT_CLSID Static

SENSOR_PROPERTY_TYPE VT_CLSID Static

SENSOR_PROPERTY_STATE VT_UI4 Not static

SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID VT_CLSID Static

SENSOR_PROPERTY_MANUFACTURER VT_LPWSTR Static

SENSOR_PROPERTY_MODEL VT_LPWSTR Static

SENSOR_PROPERTY_SERIAL_NUMBER VT_LPWSTR Static

SENSOR_PROPERTY_FRIENDLY_NAME VT_LPWSTR Static

SENSOR_PROPERTY_MIN_REPORT_INTERVAL VT_UI4 Static

SENSOR_PROPERTY_CONNECTION_TYPE VT_UI4 Static

Required Static Properties

 The following properties must not change value over time, so that the Sensor and Location Platform

(and applications) can use them to select and manage sensors. These properties are queried using

Device Driver Interfaces ISensorDriver::OnGetSupportedProperties() and

ISensorDriver::OnGetProperties().

 Data types for these properties must match those in the following chart.

 The properties must be implemented following the guidelines described in MSDN.

Settable Properties

 Applications can use settable properties to configure the driver (such as optimize for power or other

factors). Other settable properties can be exposed besides the following ones, but if this property is

exposed, it must be settable.

Page 74 of 254

 Setting SENSOR_PROPERTY_CURRENT_REPORT_INTERVAL <

SENSOR_PROPERTY_MIN_REPORT_INTERVAL does not change the current report interval and setting

SENSOR_PROPERTY_CHANGE_SENSITIVITY < 0 does not change the change sensitivity.

The sensor shall be able to handle changes to the current report interval and change sensitivity for a

single and multiple clients.

The sensor should be able to respond to a client asking to be removed from calculation of the effective

current report interval and change sensitivity. Clients can set CS to VT_NULL but there isn’t an API to be

removed. CRI/CS set by multiple clients needs to respect that most sensitive request.

 Sensors shall follow the current report interval and change sensitivity (when applicable) documentation

found on MSDN:

http://msdn.microsoft.com/en-us/library/windows/hardware/hh706201(v=vs.85).aspx

 GPS devices shall support property value for SENSOR_PROPERTY_MIN_REPORT_INTERVAL at one second

or less and be capable of sending events at this interval.

Sensor drivers and firmware must support and adhere to the following Settable Properties: in the Sensor API.

Property Data type Details

SENSOR_PROPERTY_CURRENT_REPORT_INTERVAL VT_UI4 Sets the minimum frequency (in

milliseconds) that a client wants to

receive data reports from the sensor.

This property should be tracked on a

per client basis.

SENSOR_PROPERTY_CHANGE_SENSITIVITY VT_UNKNOWN Sets the threshold of how much a

data field must change before an

event is fired.

The current report interval and change sensitivity retrieved must be within the tolerances listed below:

Single client (or multiple clients with only one client setting CRI):

Set Value Expected value

0 Default CRI

0< value <(Min CRI) Not changed, sensor reports error

(Min CRI) <= value

 (where value = (Min CRI)*N+T where T is

0<T<(Min CRI))

(Min CRI)*N <= value <= (Min CRI)*N + T where T is

0<T<(Min CRI)

Multiple clients:

Set Value Expected value

0 (Default CRI) No change if client set value greater than effective CRI.

New effective CRI if based on CRI set by other clients.

Effective CRI is smallest CRI of those set by clients but

>= Min CRI

0< value <(Min CRI) Not changed, sensor reports error

(Min CRI) <= value < effective CRI

 (where value = (Min CRI)*N+T where T is

0<T<(Min CRI))

(Min CRI)*N <= value <= (Min CRI)*N + T where T is

0<T<(Min CRI))

> effective CRI Not changed

Data Fields

Page 75 of 254

 Sensor devices are useful only when they report data. Each device must report at least one data field in

addition to SENSOR_DATA_TYPE_TIMESTAMP (VT_FILETIME). Data fields are exposed to the Sensor API

by using Device Driver Interface ISensorDriver::OnGetSupportedDataFields() and

ISensorDriver::OnGetDataFields().

 GPS testing shall be performed in availability of GPS signal.

 GPS devices shall provide accurate latitude, longitude and altitude values within the specified error

radius.

 GPS devices shall be able to report horizontal accuracy of 15 meters and vertical accuracy of 100 meters

at 95% of the time under clear sky conditions. This applies to both static or mobile test scenarios.

Clear sky conditions: GNSS satellites signals are received without obstruction from above or surrounding

environment down to an elevation mask of 5 degrees above the horizon. All signal levels consistent with

unobstructed signal levels at the ground and not to be lower than -131 dBm for 4 or more satellites.

 GPS devices shall be able to report speed in knots with +-20% accuracy.

 GPS devices shall be able to report true heading degrees with +-20% accuracy.

GPS Shall support the following data fields:

Data Field Type

SENSOR_DATA_TYPE_LATITUDE_DEGREES VT_R8

SENSOR_DATA_TYPE_LONGITUDE_DEGREES VT_R8

SENSOR_DATA_TYPE_ERROR_RADIUS_METERS VT_R8

SENSOR_DATA_TYPE_SATELLITES_USED_COUNT VT_I4

SENSOR_DATA_TYPE_ALTITUDE_ELLIPSOID_METERS VT_R8

SENSOR_DATA_TYPE_ALITITUDE_ELLIPSOID_ERROR_METERS VT_R8

SENSOR_DATA_TYPE_SPEED_KNOTS VT_R8

SENSOR_DATA_TYPE_TRUE_HEADING_DEGREES VT_R8

SENSOR_DATA_TYPE_NMEA_SENTENCE VT_LPWSTR

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW_STN_RATIO VT_VECTOR |

VT_UI1

Location may support the following data fields. If they are supported, they must be implemented

according to the guidelines in MSDN.

SENSOR_DATA_TYPE_ALTITUDE_SEALEVEL_METERS VT_R8

SENSOR_DATA_TYPE_MAGNETIC_HEADING_DEGREES VT_R8

SENSOR_DATA_TYPE_MAGNETIC_VARIATION VT_R8

SENSOR_DATA_TYPE_FIX_QUALITY VT_I4

SENSOR_DATA_TYPE_FIX_TYPE VT_I4

SENSOR_DATA_TYPE_POSITION_DILUTION_OF_PRECISION VT_R8

SENSOR_DATA_TYPE_HORIZONAL_DILUTION_OF_PRECISION VT_R8

SENSOR_DATA_TYPE_VERTICAL_DILUTION_OF_PRECISION VT_R8

Page 76 of 254

SENSOR_DATA_TYPE_SATELLITES_USED_PRNS VT_VECTOR | VT_UI1

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW VT_I4

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW_PRNS VT_VECTOR | VT_UI1

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW_ELEVATION VT_VECTOR | VT_UI1

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW_AZIMUTH VT_VECTOR | VT_UI1

SENSOR_DATA_TYPE_ADDRESS1 VT_LPWSTR

SENSOR_DATA_TYPE_ADDRESS2 VT_LPWSTR

SENSOR_DATA_TYPE_CITY VT_LPWSTR

SENSOR_DATA_TYPE_STATE_PROVINCE VT_LPWSTR

SENSOR_DATA_TYPE_POSTALCODE VT_LPWSTR

SENSOR_DATA_TYPE_ALTITUDE_SEALEVEL_ERROR_METERS VT_R8

SENSOR_DATA_TYPE_GPS_SELECTION_MODE VT_I4

SENSOR_DATA_TYPE_GPS_OPERATION_MODE VT_I4

SENSOR_DATA_TYPE_GPS_STATUS VT_I4

SENSOR_DATA_TYPE_GEOIDAL_SEPARATION VT_R8

SENSOR_DATA_TYPE_DGPS_DATA_AGE VT_R8

SENSOR_DATA_TYPE_ALTITUDE_ANTENNA_SEALEVEL_METERS VT_R8

SENSOR_DATA_TYPE_DIFFERENTIAL_REFERENCE_STATION_ID VT_I4

SENSOR_DATA_TYPE_SATELLITES_IN_VIEW_ID VT_VECTOR | VT_UI1

Missing Properties

 The device driver must correctly handle queries and sets for properties that a sensor device does not

support. This enables the Sensor and Location Platform to correctly notify applications when sensor

properties are missing.

 Drivers must return S_FALSE from Device Driver Interfaces ISensorDriver::OnGetProperties and

ISensorDriver::OnSetProperties if one or more of the requested properties is not present on the device.

 For each missing property the PropVariant for the requested property must have a type of VT_ERROR

and a value of HRESULT_FROM_WIN32(ERROR_NOT_FOUND). The driver can return valid values for

properties it does have alongside not-valid values.

The follow requirements ensure the sensor drivers that receive a certification can report data reliably, obey the

sensor driver state model and implement data timestamps correctly.

Reliability

 The driver must continue to operate after four hours of reporting data and "get data", "get property"

calls.

 The driver must continue to operate when readable/writeable properties are set and read.

 The driver must provide data and properties after completion of sleep/resume or hibernation/resume

cycle(s).

 The driver shall be able to handle concurrent PnP, radio (if GPS), power operations and multiple clients

entering and exiting.

Page 77 of 254

Timestamp

 The driver must report an accurate relative timestamp with each report.The timestamp shall be in

Coordinated Universal Time (UTC) format. This timestamp must be greater than the initial prompt to

provide a timestamp and must be less than or equal to the time the event is received.

Ready State Validation

Sensors shall not transition to the SENSOR_STATE_READY state until valid data is available.

Sensors must complete power-up initialization tasks and transition to the

SENSOR_STATE_READY after being opened by a client or resuming from system standby within

the following times:

Sensor Type Maximum time allowed to enter ready state

Accelerometer 1 second

Gyro meter 3 seconds

Compass 3 seconds

Inclinometer 3 seconds

Orientation sensor 5 seconds

GPS See following table

GPS Startup requirements under clear sky conditions

Startup type Time elapsed from

position request (in

seconds)

Acceptable sensor states Acceptable error

radius

Cold start 0 SENSOR_STATE_INITIALIZING n/a

45 SENSOR_STATE_READY Under 50 meters

Warm start (powered

off with assistance

data)

0 SENSOR_STATE_INITIALIZING n/a

10 SENSOR_STATE_READY Under 300 meters

20 SENSOR_STATE_READY Under 50 meters

Hot start 0 SENSOR_STATE_INITIALIZING or

SENSOR_STATE_READY depending

if fix was maintained

Under 300 meters

2 SENSOR_STATE_READY Under 50 meters

Cold Start TTFF: Time Unknown, Current ephemeris unknown, position unknown

If GPS device supports D3 Cold, it should be able to gracefully go into and wake from D3 Cold. The overhead

caused by waking form D3 Cold should not be more than 6 seconds for the First Fix after wake. This is in

comparison from the wake from D3 Hot.

Hot Start TTFF: Time known, Almanac known, Ephemeris known, Position within 100km of last fix

GPS devices shall be able to acquire first fix under two seconds when 1) The radio is on, 2) Flight Mode is off, and

3) Under clear sky conditions.

GPS devices under clear sky conditions shall be able to report position from a cold start within 45 seconds.

A-GPS devices shall be able to report position within 10 seconds with 100-300 meter accuracy and within 20

seconds with 30 meter or less accuracy.

Location device shall be in initializing state after it is enabled and change to ready after acquiring the current

position.

Location devices shall fire valid location data events with valid location data when in the ready state.

Page 78 of 254

Location devices shall not fire data events when the device is not in either ready state or initializing state.Accuracy

Requirements:

Sensor Accuracy requirement

Accelerometer +/- 0.1 G

Gyro +/- 10 degrees per second square

Inclinometer +/- 10 degrees

Compass +/- 10 degrees

Orientation Vector is +/- 15 degrees from true vector

Additional Information

Business Justification To ensure the sensor drivers that receive a logo meet a high quality bar, it is

necessary that the requirements include tests for the behavior of the device. The

proposed additions ensure that the driver can report data reliably, obey the sensor

driver state model and implement data timestamps correctly.

Enforcement Date Jun. 26, 2013

System.Client.Sensor.Base.HID
Base feature for HCK requirements relating to HID, such as FW testing or type validation.

Related Requirements System.Client.Sensor.Base.HID.ReportDescriptor

System.Client.Sensor.Base.HID.ReportDescriptor

HID Report Descriptor

Target Feature System.Client.Sensor.Base.HID

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

Any sensor device that uses the inbox SensorsHIDClassDriver.dll must be compliant with all recommendations in

the Sensors HID Annotation document (http://msdn.microsoft.com/library/windows/hardware/br259128.aspx). In

the course of executing the sensor, no ETW error events should be raised by the SensorsHIDClassDriver.dll.

Additional Information

Business Justification The HID sensor is widely used and the underlying firmware must be checked for

proper operation.

Enforcement Date Jun. 26, 2013

Page 79 of 254

System.Client.SpecializedPC
A Specialized PC (SPC) is a system that has been designed specifically for an enterprise vertical market or a niche

use case scenario which has an explicit design need to bypass or remove features required by certification.

Related Requirements System.Client.SpecializedPC.UniqueScenario

System.Client.SpecializedPC.UniqueScenario

Speclalized PCs are designed for unique scenarios

Target Feature System.Client.SpecializedPC

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A Specialized PC (SPC) is a system that has been designed specifically for an enterprise vertical market or a niche

use case scenario which has an explicit design need to bypass or remove features required by certification. An

SPC may still be certified, provided there is adequate disclosure of the ways the system departs from the

certification standards and it is clear what the end user impacts will be. A specialized PC is expected to meet all

other certification requirements except those explicitly required to meet the use case and disclosed.

An SPC may be allowed to fail certain Windows Certification Requirements which conflict with the design needs

of the specialized use. Details on the program are in the policy.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.SystemConfiguration
This feature and requirement defines the computers and devices that compose the system.

Related Requirements System.Client.SystemConfiguration.SysInfo

 System.Client.SystemConfiguration.Windows7NeccessaryDevices

 System.Client.SystemConfiguration.Windows8RequiredComponents

System.Client.SystemConfiguration.SysInfo

System information

Page 80 of 254

Target Feature System.Client.SystemConfiguration

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

A job in the Windows Hardware Certification Kit will collect information about the configuration of the

machine. This will include information on:

 CPU Speed

 RAM

 Storage

 Hardware Resources

 Devices components

 Drivers

 Software

Additional Information

Enforcement Date Mar. 01, 2012

System.Client.SystemConfiguration.Windows7NeccessaryDevices
Windows 7 systems includes necessary devices

Target Feature System.Client.SystemConfiguration

Applies to Windows 7 Client x86, x64

Description

All buses, devices, and other components in a system must meet their respective Windows 7 logo program

requirements and only use drivers that either are included with the Windows operating system installation media

or are digitally signed by Microsoft for Windows 7. Driver files that are not signed for Windows 7 may not be

included in the system image. Drivers submitted for the Windows 7 logo must be able to be digitally signed and

must meet the Microsoft guidelines as defined in the Windows Driver Kit, "WHQL Digital Signature."

For a system to receive a Windows 7 logo it must comply with the Windows 7 logo requirements defined for a

system and must include Windows 7 logo devices specified in Table B. These devices must comply with the

Windows logo requirements (unless an exception is explicitly noted) as defined on LogoPoint.

TABLE B: System requirements

Systems must include the devices designated as R (required).

 Logo

Group Sub Group Desktop All-in-One Mobile Ultra Mobile

Graphics (3) R R R R

Display Displays & Monitors (2) R R R

Page 81 of 254

Audio (1) I I I I

Storage (8) R R R R

Networking (6) R R R R

1) If audio is included in the system, it must meet all logo requirements.

2) Display on all-in-One and mobile systems must comply with requirements for Displays & Monitors.

3) Graphics solution in desktop, all-in-One and mobile systems must comply with requirements for graphics.

For Windows 7, desktop, mobile and all-in one systems must include a display adapter/chipset that

complies with Direct3D version 10 and WDDM 1.1 beginning December 1, 2009. Prior to December 1,

2009, WDDM v1.1 is Optional for a display adapter or chipset based on the Direct3D v9 hardware

architecture and shipping in a Windows 7 system (desktop, mobile or all-in-one). Ultra Mobile PCs are

required to ship with at least Direct3D version 9 and WDDM 1.0.

4) System must ship with a storage solution.

5) If system includes Audio it must be supported as a UAA compliant audio solution and be logo qualified.

6) Either WLAN or LAN device must be included in the system.

7) If any other devices are included in the system, they must be logo qualified for Windows 7

8) A storage drive is required for the OS. An optical disc drive is optional. Read only optical disc drives are still

allowed to be included in logo'd systems after June 1, 2010.

Additional Information

Business Justification Establishing a baseline configuration is important for the end user, as well as the

development community. All systems must have graphics and storage. Networking

is required in order to deploy updates to the system. All systems must also include a

way to debug the system as document under System.Fundamentals.DebugPort.

Enforcement Date Jun. 01, 2007

System.Client.SystemConfiguration.Windows8RequiredComponents

Windows 8 systems must include certain devices

Target Feature System.Client.SystemConfiguration

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

For all other Windows 8 systems, the table below lists the minimum required components to be present in a

system in order for it to be certified for Windows 8. All components must meet certification requirements and

pass device certification testing for Windows 8.

Onscreen displays for the monitor are allowed. They can only appear after the user has taken action such as

pressing a button. The inbox onscreen display cannot be duplicated.

Component

Required

Storage Space At least 10 GB of free space after completing OOBE on devices with greater

than 16 GB of internal storage

At least 5 GB of free space after completing OOBE on devices with 16 GB of

Page 82 of 254

internal storage or lower

Storage type Meet minimum Microsoft Windows Storage requirements

System

firmware

UEFI as defined in System.Fundamentals.Firmware requirements

Networking Ethernet or

Wi-Fi

Must be either a certified Ethernet or Wi-Fi adapter

Graphics GPU Minimum of Direct3D 10 Feature Level 9_3 and see

System.Fundamentals.Graphics.WDDM

Video

playback

See System.Client.VideoPlayback.WNGlitchfreeHDVideoPlayback

Minimum

resolution

See

System.Fundamentals.Graphics.Display.MinimumResolutionandColorDepth

Additional Information

Business Justification A Windows 8 system must include a network connection for browsing the Internet

and for services the system. This can either be Wi-Fi radio hardware for Internet and

local area network connectivity or an Ethernet adapter. The optimal physical screen

size allows for 720-p HD video playback. The video output can be VGA or support

any digital connection to connect to a monitor.

Enforcement Date Mar. 01, 2012

System.Client.SystemImage
The requirements in this section describe the level 2 quality of HW + SW + OEM image

Related Requirements System.Client.SystemImage.PushButtonReset

 System.Client.SystemImage.SystemRecoveryEnvironment

System.Client.SystemImage.PushButtonReset

ARM System includes push button reset to initial factory state

Target Feature System.Client.SystemImage

Applies to Windows 8.1 Client ARM (Windows RT 8.1)

Description

An ARM system shall include a recovery image file that is compatible with the Push Button Reset feature in

Windows 8. This recovery image file shall reside on a local recovery partition or on a separate bootable USB flash

drive which is packaged with the system, or both.

Page 83 of 254

If the recovery image file resides on a local recovery partition, the GPT partition shall be of type

PARTITION_BASIC_DATA_GUID, and shall include the GPT_ATTRIBUTE_PLATFORM_REQUIRED and

GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER attributes.

If the recovery image file resides on a separate bootable USB flash drive, the drive shall be configured to load the

Windows Recovery Environment when used as the boot device, and the recovery image file shall be stored in the

\Sources folder under the root of the drive.

The recovery image file shall meet the following requirements:

1. The recovery image file shall be in the Window image file format (.wim)

2. The recovery image file shall be named "install.wim" (or in the case of a split image, "install.swm",

"install2.swm", "install3.swm", and so on€¦)

3. The recovery image file shall contain the Windows image and applications preloaded on the system.

4. The Windows image in the recovery image file shall be configured to start Windows Welcome (instead

of Audit mode) when it boots for the first time.

5. The recovery image file shall be captured after the Windows image has completed the Specialize

configuration pass.

6. The Windows System Assessment Tests (WinSAT) results for the DWM test shall be prepopulated in the

Windows image in the recovery image file.

Additional Information

Business Justification Consumer electronics level of experience is expected. Users shall be able to refresh or

reset their systems quickly and reliably.

Enforcement Date Aug. 01, 2012

System.Client.SystemImage.SystemRecoveryEnvironment
System includes Windows Recovery Environment on a separate partition

Target Feature System.Client.SystemImage

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

A system must include a separate partition with a bootable Windows Recovery Environment image file

(winre.wim). The GPT partition should be of type PARTITION_MSFT_RECOVERY_GUID, includes the

GPT_ATTRIBUTE_PLATFORM_REQUIRED and GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER attributes, and

contains at least 50 megabytes (MB) of free space after the Windows Recovery Environment image file has been

copied to it.

Additional Information

Page 84 of 254

Business Justification Allows volume encryption features in Windows to be enabled on the operating

system volume without affecting the Windows Recovery Environment.

Enforcement Date Jun. 26, 2013

System.Client.SystemPartition
The requirements in this section describe the PC system partition configuration requirements.

Related Requirements System.Client.SystemPartition.DiskPartitioning

 System.Client.SystemPartition.OEMPartition

System.Client.SystemPartition.DiskPartitioning

Systems that ship with a Windows operating system must meet partitioning requirements

Target Feature System.Client.SystemPartition

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

A Windows 7 or Windows 8 system shipped in legacy BIOS mode and Master Boot Record (MBR) configured must

ship with a type 0x7 or type 0x27, active system partition in addition to the operating system partition (configured

as Boot, Page File, Crash Dump, etc.). This active system partition must be at least 100MB in size for Windows 7

systems. For Windows 8 systems, this active system partition must have at least 250MB of free space, above and

beyond any space used by required files. For Windows 7 systems, we similarly recommend that the active

partition have at least 250MB of free space for future upgrade to a new version of Windows. This additional

system partition can be used to host Windows Recovery Environment (RE) and OEM tools (provided by the OEM),

so long as the partition still meets the 250MB free space requirement.

Implementation of this partition allows support of current and future Windows features such as BitLocker, and

simplifies configuration and deployments.

Tools and documentation to implement split-loader configuration can be found in Windows OEM

Preinstallation Kit/Automated Installation Kit (OPK/AIK).

Additional Information

Business Justification If the system is not partitioned correctly for BitLocker, the feature will not work. The

user will not be able to turn the feature on as the feature has a dependency on

having this second partition. This second partition is also required for the recovery

story. When the owner of the platform loses cryptographic keys or experiences

encryption or disk corruption, then the owner of the platform will lose their data.

Page 85 of 254

Enforcement Date Jun. 01, 2006

System.Client.SystemPartition.OEMPartition

Windows systems with recovery & OEM partitions must meet partitioning requirements

Target Feature System.Client.SystemPartition

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

If a system includes a separate partition for recovery purposes or an OEM partition for any other purpose, this

separate partition must be identified with the GPT_ATTRIBUTE_PLATFORM_REQUIRED attribute. This attribute is

defined as part of the PARTITION_INFORMATION_GPT (http://msdn.microsoft.com/en-

us/library/aa365449(VS.85).aspx) structure.

For example:

 If this separate partition includes a bootable Windows Recovery Environment image file, the GPT

partition must be of type PARTITION_MSFT_RECOVERY_GUID and include the

GPT_ATTRIBUTE_PLATFORM_REQUIRED attribute.

 If this separate partition includes a recovery image used by Push Button Reset, the GPT partition must be

of type PARTITION_BASIC_DATA_GUID and include the GPT_ATTRIBUTE_PLATFORM_REQUIRED attribute.

Partitions which are identified with the GPT_ATTRIBUTE_PLATFORM_REQUIRED attribute must not be used for

storing user data (such as through data backup, for example).

Additional Information

Business Justification Allows volume encryption features in Windows 8 to be enabled on the operating

system and data volumes without affecting the OEM and recovery partitions.

Enforcement Date Mar. 01, 2012

System.Client.Tablet
The requirements apply to systems that are a tablet or tablet/convertible system.A tablet form factor is defined as a

standalone device that can combine the PC, display that is 17-inches or smaller and rechargeable power source in a

single chassis. A tablet does not include a permanently attached keyboard and pointing device but can be connected

to a port replicator, keyboard and/or clamshell dock. A convertible form factor is defined as a standalone device that

combines the PC, display that is 17-inches or smaller and rechargeable power source with a mechanically attached

keyboard and pointing device in a single chassis. A convertible can be transformed into a tablet where the attached

input devices are hidden or removed leaving the display as the only input mechanism.

http://msdn.microsoft.com/en-us/library/aa365449(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365449(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365449(VS.85).aspx

Page 86 of 254

Related Requirements System.Client.Tablet.ColdBootLatency

 System.Client.Tablet.RequiredHardwareButtons

System.Client.Tablet.ColdBootLatency

Time for I2C touch controller to respond

Target Feature System.Client.Tablet

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The time from when power is applied to an I2C touch controller to when the I2C controller is responding to

Human Interface Device (HID) commands and providing touch reports must not exceed 100 milliseconds.

Additional Information

Business Justification Windows 8 will support extremely fast resume on systems that support connected

standby. As touch is the primary input mechanism on connected standby capable

tablets, it is imperative that the I2C touch controller be available to respond to HID

commands and provide input reports almost immediately upon resume to ensure a

consistent user experience.

Enforcement Date Mar. 01, 2012

System.Client.Tablet.RequiredHardwareButtons

Tablet and Convertible PC must have four hardware buttons

Target Feature System.Client.Tablet

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Hardware buttons must generate an event when a button is pressed. Hardware buttons cannot launch any

customized user interface elements. Buttons refers to buttons or keys.

Customized user interface elements include overlays, pop-up dialogs, toasts or other transitory user interface

elements that appears over the Start screen, Windows Store apps, or desktop. They do not include Windows

Store apps or desktop apps. Examples:

 Showing customized overlay or a toast in response to the changed state of a keyboard key (for example:

Caps Lock, Num Lock).

Page 87 of 254

 Showing a customized overlay or a toast in response to the changed state of a touchpad.

The following user interactions are permitted:

 Using a designated button or hot key to launch a default mail client

 Using a designated button or hotkey to launch a default browser

 Using a designated button or hotkey to launch a desktop application

 Using a designated button or launch a Windows Store app associated with a file or protocol handler

 Showing a notification in response to a hardware error (for example: a problem docking or undocking

the system)

The following buttons must be implemented on a tablet or convertible PC:

Button Function

Power For Connected Standby machines, Power held for less

than 2 seconds places the system into standby mode;

press and hold for between two to ten seconds

displays the “Slide to Shutdown” UI. Press and hold for

10 or greater seconds shuts down the system.

If the machine does not support Connected Standby,

Power Places the system into standby mode; press and

hold for four seconds shuts down the system.

Windows Key Button Navigates to the Start Screen

Volume up and down Controls the audio volume in the PC

Windows Key Button + Volume Up Narrator starts automatically

Windows Key Button + Volume Down Screen Capture

Windows Key Button + Power Button Sends the Secure attention Sequence (SAS) signal for

bringing up the secure log in screen (Ctrl+Alt+Del)

A screen rotation lock button can be implemented. The rotation lock button can either be a press button or a

slider that is stateless as long as there is no mechanical position.

Volume Buttons

The volume control buttons must be a soft press button type. Volume may be implemented as a single physical

button, but must present two distinct interrupts via two distinct GPIO resources for SOCs, one for volume up and

one for volume down.

Power Button

The power button (and, if applicable, sleep button and lid switch devices) must be implemented using the ACPI

control method button definition described in sections 4.7.2.2.1.2, 4.7.2.2.2, and 4.7.4.2.1 of Advanced

Configuration and Power Interface Specification (http://www.acpi.info/spec.htm).

Windows Button

A Windows button is required on any battery powered touch-enabled system without integrated or permanently

attached keyboard, this includes small single hand (< 10”) tablets and large (< 17”) “moveable” all-in-ones. The

Windows button can only send the Windows key scan code. The Windows logo that goes on the button,

orientation and style guide are documented in the Logo License Agreement.

For tablets and convertibles of all screen sizes, the Windows button can be placed anywhere on the tablet. The

design should consider convenient placement for left and right-handed users. Swiping across the button must

not interfere with Windows gestures.

If the tablet is in a docking station with a keyboard, it is acceptable that the Windows button is covered by the

docking station.

If the system is a convertible, the buttons must be accessible in all configurations.

The Windows button toggles between the last app and the Start Screen.

Page 88 of 254

The preference is that the Windows button must be a soft press or mechanical button type. It is acceptable to

implement a capacitive button.

Additional Information

Business Justification These hardware buttons enable a navigation experience in the absence of a keyboard.

System builders should consider whether any type of dynamic feedback is required

for any capacitive buttons for visually impaired users.

Enforcement Date Jun. 26, 2013

System.Client.Tablet.Graphics
These requirements describe the graphics requirements for Tablet PCs.

Related Requirements System.Client.Tablet.Graphics.MinimumResolution

 System.Client.Tablet.Graphics.SupportAllModeOrientations

System.Client.Tablet.Graphics.MinimumResolution

Tablet PCs support minimum resolution and color

Target Feature System.Client.Tablet.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The minimum native resolution/color depth is 1024x768 at a depth of 32bits. The physical dimensions of the

display panel must match the aspect ratio the native resolution. The native resolution of the panel can be greater

than 1024 (horizontally) and 768 (vertically).

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Tablet.Graphics.SupportAllModeOrientations
Graphics drivers on Tablet systems are required to support all mode orientations

Target Feature System.Client.Tablet.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 89 of 254

Description

Graphics drivers on tablet systems are required to support all mode orientations for every resolution enumerated

for the integrated panel.

 A graphics driver is required to enumerate source modes for the integrated display. For each source

mode enumerated the graphics driver is required to support each orientation (0, 90, 180 and 270).

 Each orientation is required even if the integrated panel is in a duplicate or extended topology with

another display device. For duplicate mode, it is acceptable to rotate all targets connected to the rotated

source. Per path rotation is allowed but not required.

Both the above mentioned requirements are optional for Stereo 3D capable resolutions.

Additional Information

Business Justification Windows 8 is designing key experiences that depend on the ability of a user to be

able to rotate the physical device. For this experience, it is critical that the desktop

also rotate to be in sync with the device. Therefore the graphics driver must

support each orientation for each mode.

Enforcement Date Jun. 26, 2013

System.Client.UMPC.Graphics
This section describes requirements for graphics devices within ultra mobile pc client systems.

Related Requirements System.Client.UMPC.Graphics.WDDM

System.Client.UMPC.Graphics.WDDM
Display subsystem meets minimum GPU, memory, and resolution requirements for a Basic Windows experience on

Ultra Mobile PCs

Target Feature System.Client.UMPC.Graphics

Applies to Windows 7 Client x86, x64

Description

For Windows 7, Ultra Mobile PCs are required to ship with at least Direct3D10 Feature Level 9_3 and WDDM v1.1

 Minimum display resolution for ultra-mobile implementations is 800x600. 32 MB of memory available

for graphics, when native display resolution is configured to 1024x768 or less.

 A minimum color-depth of 32 bpp.

Page 90 of 254

A DirectX9.L-class GPU that supports Pixel Shader 2.0.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.VideoPlayback
The requirements in this section detail the abilities of the graphics subsystem and its ability to playback high

definition video content.

Related Requirements System.Client.VideoPlayback.GlitchfreeHDVideoPlayback

 System.Client.VideoPlayback.GlitchfreePlayback

 System.Client.VideoPlayback.WNGlitchfreeHDVideoPlayback

System.Client.VideoPlayback.GlitchfreeHDVideoPlayback

System is capable of playing protected and unprotected High-Definition content with no perceivable glitch during

playback on both AC and DC power modes

Target Feature System.Client.VideoPlayback

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

Description

Required

System is capable of playing back protected and unprotected high-definition video of the following profiles with

no perceivable glitch and user experience elements:

 720p WMV - Traditional Content

 720p WMV Video (7mbps at 16x9 aspect ratio), WMA Audio 192 kbps, 48khz, 2-chanel 16-bit

 1280x720 (720p) ~ 7Mbps at Aspect Ratio 16x9,Video: Windows Media Video 9 Advanced Profile,

Audio: Windows Media Audio 9 Professional at 384 kbps, 44.1 kHz, 2-channel 24-bit (A/V) 2-pass

CBR

 720p H.264 - Local and Internet Streaming

 720p H.264 high profile, 5mbps, AAC Audio 192 kbps, 48khz, 2-chanel 24-bit

 1080p H.264 - Local and Internet Streaming

 1080p H.264 high profile, 5mbps, AAC Audio 192 kbps, 48 kHz, 2-channel 24 bit

 For DXVA Video drivers, we expect 720p (H.264 and VC-1) core device creation + decoder creation time

< 50ms.

Page 91 of 254

Optional

System is capable of playing back high-definition video of the following profiles with no perceivable glitch:

 Premium TV Content

 TV 1080i 12mbps

 Complex Camera Content

 AVCHD 1080i 20-35 mbps, high frame rate

 AAC Audio 192 kbps, 48 kHz, 2-channel 24 bit

Design Notes:

If the system has any of the following configurations:

 Multiple GPU's

 Multiple output connections

 It is powered via an AC adapter and used away from an outlet using a rechargeable battery for

continuous operation when not plugged in

Then validation of this requirement must be done against each configuration that applies to the system.

Additional Information

Business Justification Windows has and will continue to move further into non-traditional PC locations,

such as the living room and other small form factor entertainment devices. This

movement will drive Windows further into scenarios historically provided by

dedicated consumer electronics devices. Consumers will increasingly expect their PCs

to provide the quality & reliability typically provided by dedicated consumer

electronics devices.

Enforcement Date Mar. 01, 2012

System.Client.VideoPlayback.GlitchfreePlayback
System is capable of playing High-Definition content with no perceivable glitch during playback

Target Feature System.Client.VideoPlayback

Applies to Windows 7 Client x86, x64

Description

System is capable of playing back high-definition video of the following profile with no perceivable glitch:

 1280x720 (720p) ~ 7Mbps at Aspect Ratio 16x9

 Audio: Windows Media Audio 9 Professional at 384 kbps, 44 kHz, 2-channel 24-bit (A/V) 2-pass CBR

Page 92 of 254

 Video: Windows Media Video 9 Advanced Profile

Additional Information

Business Justification Windows has and will continue to move further into non-traditional PC locations,

such as the living room and other small form factor entertainment devices. This

movement will drive Windows further into scenarios historically provided by

dedicated consumer electronics devices. Consumers will increasingly expect their PCs

to provide the quality & reliability typically provided by dedicated consumer

electronics devices. In order to provide compelling multimedia experiences, it is

critical for Windows to meet & exceed the digital media experiences provided by

current and future generation consumer electronics devices. In addition, user

feedback has shown the legacy multimedia capabilities of Windows have not

provided the quality multimedia processing that user’s expect.

Enforcement Date Mar. 01, 2012

System.Client.VideoPlayback.WNGlitchfreeHDVideoPlayback
System is capable of playing protected and unprotected High-Definition content with no perceivable glitch during

playback on both AC and DC power modes.

Target Feature System.Client.VideoPlayback

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Required

Video Playback

System is capable of playing back protected and unprotected high-definition video – with captions enabled and

disabled – for the following profiles with no audible or perceivable glitch. An audio or video glitch is measured

through event trace from Windows instrumentation that are fired by the operating system:

 VC1

0. Video: 1080p VC1, 18 Mbps, 30 FPS

1. Audio: WMA Pro, 2 channels, 128 Kbps, 44.1 KHz

 H.264 TV

2. Video: 1080p H.264, 18 Mbps, 30 FPS

3. Audio: AAC, 2 channel, 128 Kbps, 44.1 KHz

 H.264 Film

4. Video: 1080p H.264, 18 Mbps, 24 FPS

5. Audio: Dolby Digital Plus, 384 Kbps, 6 channel, 48 KHz

Page 93 of 254

 DirectX Core device creation + decoder creation time < 100ms for all required test content above.

Audio playback

System is capable of playing back the following protected and unprotected audio content profiles without

audible glitches. This requirement also applies when system is in connected standby (CS) state, if implemented,

and with audio offload enabled and disabled, if implemented.

 Audio: AAC, 192 Kbps, 2 channel, 48 KHz

 Audio: AAC, 192 Kbps, 2 channel, 44.1KHz

Optional

System is capable of playing back high-definition video of the following profiles with no perceivable glitch:

 Premium TV Content

a. TV 1080i 12mbps

 Complex Camera Content

b. AVCHD 1080i 20-35 mbps, high frame rate

c. AAC Audio 192 kbps, 48 kHz, 2-channel 24 bit

Additional Information

Business Justification Windows has and will continue to move further into non-traditional PC locations,

such as the living room and other small form factor entertainment devices. This

movement will drive Windows further into scenarios historically provided by

dedicated consumer electronics devices. Consumers will increasingly expect their PCs

to provide the quality & reliability typically provided by dedicated consumer

electronics devices.

Enforcement Date Jun. 26, 2013

System.Client.Webcam
These requirements apply to cameras integrated into the system.

Related Requirements System.Client.Webcam.Device

 System.Client.Webcam.PhysicalLocation

 System.Client.Webcam.VideoCaptureAndCamera

System.Client.Webcam.Device
Systems with camera must meet camera device requirements

Target Feature System.Client.Webcam

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 94 of 254

Description

If system has camera, it must meet the quality and requirements specified in the Device.Streaming.Webcam

requirements (when applicable), on the system seeking certification.

• Device.Streaming.Webcam.Base.AVStreamWDMAndInterfaceRequirements

• Device.Streaming.Webcam.Base.BasicPerf

• Device.Streaming.Webcam.Base.DirectShowAndMediaFoundation

• Device.Streaming.Webcam.Base.KSCategoryVideoCameraRegistration

• Device.Streaming.Webcam.Base.MultipleClientAppSupport

• Device.Streaming.Webcam.Base.SurpriseRemoval

• Device.Streaming.Webcam.Base.UsageIndicator

• Device.Streaming.Webcam.H264.H264Support

• Device.Streaming.Webcam.NonMSDriver.VideoInfoHeader2

• Device.Streaming.Webcam.USBClassDriver.UVC

• Device.Streaming.Webcam.USBClassDriver.UVCDriver

Note: If there are multiple cameras, one indicator is acceptable so long as all cameras can control the indicator.

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Webcam.PhysicalLocation
Systems with a camera must report the physical location of the camera

Target Feature System.Client.Webcam

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

For any camera device that is built into the chassis of the system and has mechanically fixed direction, the

firmware must provide the _PLD method and set the panel field (bits[69:67]) to the appropriate value for the

panel on which the camera is mounted. For example, "Front" indicates the camera view the user (webcam), while

"back" indicates that the camera views away from the end user (still or video camera).

In addition, bit 143:128 (Vertical Offset), and bits 159:144 (Horizontal Offset) must provide the relative location of

the camera with respect to the display. This origin is relative to the native pixel addressing in the display

component. The origin is the lower left hand corner of the display, where positive Horizontal and Vertical Offset

values are to the right and up, respectively. For more information see the ACPI version 5.0 Section 6.1.8 "Device

Configuration _PLD (Physical Device Location)".

All other fields in the _PLD are optional.

Additional Information

Page 95 of 254

Business Justification This enables developers the ability to write applications that take advantage of front

or rear facing cameras.

Enforcement Date Mar. 01, 2012

System.Client.Webcam.VideoCaptureAndCamera
Video capture and cameras meet requirements and can support Windows Capture Infrastructure

Target Feature System.Client.Webcam

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Scenarios

 Previewing through the camera locally (viewfinder)

 Taking a photo

 Recording a video

 Real-time Communication

This requirement applies to systems with non-USB built-in cameras.

Driver Model

A camera driver must be provided. AVStream is the required driver model.

AVStream driver is recommended to be a child driver of the WDDM driver. (IHV graphics driver must report the

child slot as a child of the graphics device in DxgkDdiQueryChildRelations with correct AcpiUid. Later IHV driver

should report the correct connect status in DxgkDdiQueryChildStatus.

AVStream Camera Driver shall be installed through device driver which meets the Windows security requirement.

The driver shall not crash or hang the OS, and shall disallow memory violations.

Driver shall support system memory.

Pins

The driver is required to expose the following pins types:

· Capture: Supporting PINNAME_VIDEO_CAPTURE pin category with NV12 format

· Image: Supporting PINNAME_IMAGE pin category with JPEG format (can be supported by IHV Plug-in

Model) and an uncompressed format (at least one of the following uncompressed formats: RGB32 or

NV12 – support for both formats are recommended for all resolutions). In addition, image pin must

support software trigger, VideoControlFlag_Trigger.

Optionally, the driver may expose

· Preview: Supporting PINNAME_VIDEO_PREVIEW pin category with NV12 format. (This is the video

streaming pin with lower priority and potentially lower resolution)

All of the pins must be able to

Page 96 of 254

· Operate both independently and in combination without interfering with each other.

· All streaming pins must support progressive format. The driver should set the interlace flag on the media

type and the sample correctly.

Performance

Recorded content using all media types exposed by the record pin must be glitch free. Glitch is defined as a

discontinuity in the stream that exceeds +/- half of a single frame duration between frames at light conditions

sufficient to achieve the maximum frame rate.

To achieve the maximum frame rate, where the resolution is the lesser of the maximum resolution exposed by the

image pin or 8MP, the driver must be able to

· Time to capture and deliver first photo <= 2500 ms at light conditions

· Or time to capture and deliver first video frame <= 2000 ms at light conditions

Controls

If camera supports any of the following control, it must expose the capability through the associated property in

Windows

· Basic Controls (synchronous)

o Brightness

o Contrast

o Hue

o White Balance

o Backlight Compensation

o Exposure Focus

o Zoom

· Extended Controls

o Extended Focus

o Photo Mode (async)

 Single Frame HDR

 Photo Sequence

 Normal

o Torch mode

o Flash State

o Scene mode (async)

o Face based controls

o Region of interest

o ISO Mode (async)

o Field of View

o Video stabilization

Page 97 of 254

o Warm Start

o EV Compensation

o Trigger Time

o Thumbnails

o Camera Angle Offset

Video Stabilization

If available, latency due to Image Stabilization shall not be more than one frame buffering in the “low” setting,

default should be off and should be controllable at the application level

Mirroring

The default state for mirroring must be "not mirrored".

Photo Sequence

If camera HW supports Photo Sequence, it must expose the capability through the Photo Mode property and

comply with the performance requirements

Lag between the user take photo request and when the actual sampled frame being captured must be

· Less than 300ms at light conditions sufficient to achieve the maximum frame rate.

The latency is defined between that time when the photo is triggered and the sample to be delivered to the

pipeline is captured (see performance).

Photo Sequence must be enabled by the device and driver to

· Support the same resolutions that are exposed in Normal mode

· Report the current frame rates possible in Photo Sequence Mode based on the current light conditions.

Device must honor and not exceed the maximum frame rate set by the application.

· Support at minimum 4fps measured at lesser of the maximum resolution exposed by the image pin or

8MP.

· Provide at least 4 frames in the past at lesser of the maximum resolution exposed by the image pin or

8MP.

· Photo Sequence should be performed independently, regardless preview on/off.

· Provide frames continuously in Photo Sequence mode at lesser of the maximum resolution exposed by

the image pin or 8MP.

· Support thumbnails, upon request, at 1/2x, 1/4x, 1/8x, and 1/16x of the width and height of the original

image resolution.

· The JPEG image generated by the camera may optionally have EXIF metadata indicating the “flash fired”

information. EXIF information shall not include personally identifiable information, such as location,

unique ids, among others.

Additional Information

Enforcement Date Jun. 26, 2013

Page 98 of 254

System.Client.Webcam.NMSD
Webcam features

Related Requirements System.Client.Webcam.NMSD.NonMSDriver

System.Client.Webcam.NMSD.NonMSDriver

Systems with USB camera which are not using the inbox class driver must meet camera device requirements

Target Feature System.Client.Webcam.NMSD

Applies to Windows 8.1 Client x86, x64

Description

If system has camera, it must meet the quality and requirements specified in the Device.Streaming.Webcam

requirements (when applicable), on the system seeking certification.

• Device.Streaming.Webcam.Base.AVStreamWDMAndInterfaceRequirements

• Device.Streaming.Webcam.Base.BasicPerf

• Device.Streaming.Webcam.Base.DirectShowAndMediaFoundation

• Device.Streaming.Webcam.Base.KSCategoryVideoCameraRegistration

• Device.Streaming.Webcam.Base.MultipleClientAppSupport

• Device.Streaming.Webcam.Base.SurpriseRemoval

• Device.Streaming.Webcam.Base.UsageIndicator

• Device.Streaming.Webcam.H264.H264Support

• Device.Streaming.Webcam.NonMSDriver.VideoInfoHeader2

Additional Information

Enforcement Date Jun. 26, 2013

System.Client.Webcam.Specification
Video capture devices are cameras and audio/video input devices that bring streaming data into a PC. Cameras

that ware included in this section are those that take live streaming audio/video and individual still images and

either save the stream to the systems storage or to another computer.

Related Requirements System.Client.Webcam.Specification.CameraRequirements

System.Client.Webcam.Specification.CameraRequirements

Video capture and cameras must qualify and processing performance requirements

Target Feature System.Client.Webcam.Specification

Page 99 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

If a front or rear facing webcam is integrated in the system, then the following requirements apply:

Feature Specification

Frame Rate 15 FPS @ 200 lux

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.DebugPort
The ability to debug a system is crucial to supporting customers in the field and root-causing behavior in the

kernel. Requirements in this area support the ability to kernel debug a Windows system.

Related Requirements System.Fundamentals.DebugPort.SystemExposesDebugInterface

System.Fundamentals.DebugPort.SystemExposesDebugInterface
System exposes debug interface that complies with Debug Port Specification

Target Feature System.Fundamentals.DebugPort

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The next version of Windows will support several different debug transports. They are listed below in the

preferred order of implementation.

Hardware Debugging Transports

 Ethernet Network Interface Card from the supported list: http://msdn.microsoft.com/en-

us/library/windows/hardware/hh830880

 USB 3.0 - xHCI controller compliant to xHCI debug specification.

 1394 OHCI compliant Firewire controllers.

 USB2 OTG (on supported hardware for Windows, recommend XHCI debug instead).

 USB 2.0 EHCI debug (the debug enabled port must be user accessible).

http://msdn.microsoft.com/en-us/library/windows/hardware/hh830880
http://msdn.microsoft.com/en-us/library/windows/hardware/hh830880

Page 100 of 254

 Legacy Serial (16550 compatible programming interface).

ADDITIONAL REQUIREMENTS

FOR ALL OF THE ABOVE IMPLEMENTATIONS THE FOLLOWING MUST APPLY:

 There must be at least one user accessible debug port on the machine. It is acceptable on systems which

choose to not expose a USB port or any other acceptable port from the list above to instead require a

separate debugging board or device that provides the ability to debug via one (or more) of the

transports above. That device/board must terminate in the same standard port as would be used for the

transport if it were ‘onboard’ the machine. If this device is required it must be documented in the system

specifications, be user serviceable, be user installable on the machine, and available for sale from the

machine’s vendor.

 On retail PC platforms, it is strongly recommended that machines have 2 user accessible debug ports

from the above list. The secondary debug port is required to debug scenarios where the first debug port

is in use as part of the scenario. Microsoft is not responsible for debugging or servicing issues which

cannot be debugged on the retail platform, or reproduced on development platforms.

 SoC development or prototype platforms provided to Microsoft for evaluation must have a dedicated

debug port available for debugging. If the debug port is used for any scenarios that are expected to also

be used on retail shipping devices, in that case, there must be a secondary debug port available for

debugging. This is to ensure that SoC development platforms can be used to test and debug all

scenarios for all available transports, including USB host and function.

 All debug device registers must be memory or I/O mapped. For example, the debug device must not be

connected behind a shared bus such as SPI or I2C. This would prevent other devices on the same bus

from being debugged.

 When enabled, the debug device shall be powered and clocked by the UEFI firmware during preboot,

before transferring control to the boot block.

For additional information, see http://go.microsoft.com/fwlink/?LinkId=237141

Additional Information

Enforcement Date Jun. 01, 2006

System.Fundamentals.DebugPort.USB
The ability to debug a USB3 system is crucial to supporting customers in the field and root-causing behavior in the

kernel. Requirements in this area support the debugging capability for the xHCI controller based systems via a

debug registers. Every system that has xHCI controller and USB3 external port should support via this port.

Related Requirements System.Fundamentals.DebugPort.USB.SystemExposesDebugInterfaceUsb

http://go.microsoft.com/fwlink/?LinkId=237141

Page 101 of 254

System.Fundamentals.DebugPort.USB.SystemExposesDebugInterfaceUsb

USB 3 system exposes debug interface that complies with Debug Port Specification

Target Feature System.Fundamentals.DebugPort.USB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Systems that support USB 3 are required to have xHCI controller(s) compliant to the xHCI debug specification.

The xHCI controller(s) shall be memory mapped.

 There must be at least one user accessible USB 3.0 debug port on the machine.

 All USB 3.0 ports must protect against a short on the VBus pin such that if another USB host is

connected, the USB circuitry is not damaged.

 USB 3.0 hubs must not be integrated into the SoC or PCH/Southbridge.

For additional information, see http://go.microsoft.com/fwlink/?LinkId=58376

Additional Information

Business Justification The goal of this requirement is to ensure systems are debug-capable in the scenario

in which USB3 devices are being used.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware
This feature includes requirements specific to system firmware.

Related Requirements System.Fundamentals.Firmware.ACPI

 System.Fundamentals.Firmware.ACPIRequired

 System.Fundamentals.Firmware.FirmwareSupportsBootingFromDVDDevice

 System.Fundamentals.Firmware.FirmwareSupportsUSBDevices

 System.Fundamentals.Firmware.HardwareMemoryReservation

 System.Fundamentals.Firmware.NoExternalDMAOnBoot

 System.Fundamentals.Firmware.UEFIBitLocker

 System.Fundamentals.Firmware.UEFIBootEntries

 System.Fundamentals.Firmware.UEFICompatibility

 System.Fundamentals.Firmware.UEFIDefaultBoot

 System.Fundamentals.Firmware.UEFILegacyFallback

 System.Fundamentals.Firmware.UEFISecureBoot

 System.Fundamentals.Firmware.UEFITimingClass

http://go.microsoft.com/fwlink/?LinkId=58376

Page 102 of 254

 System.Fundamentals.Firmware.Update

System.Fundamentals.Firmware.ACPI

ACPI System Requirements

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All systems must meet the following ACPI table requirements.

ACPI Table Requirements

Root System Description Pointer (RSDP) Required

Root or Extended System Description Table (RSDT

or XSDT)

Required

Fixed ACPI Description Table (FADT) Revision 5 is required for Hardware-reduced ACPI

platforms and systems that support connected

standby platforms

Multiple APIC Description Table (MADT) Required

Core System Resources Description (CSRT) Required for ARM systems if non-Standard timers or

any shared DMA controllers are exposed to the OS

Debug Port Table (DBGP) Required. DBG2 table is required instead for

Hardware-reduced ACPI platforms and systems that

support connected standby platforms.

Differentiated System Description Table (DSDT) Required

DSDT Requirements

As per ACPI 4.0a, all devices in the ACPI namespace must include:

 A vendor-assigned, ACPI-compliant Hardware ID (_HID object).

 A set of resources consumed (_CRS object).

In addition, the following conditional requirements apply:

 If any devices in the namespace share the same Hardware ID, then each is required to have a distinct

Unique Identifier (_UID object).

 If any device in the namespace is enumerated by its parent bus (Plug and Play buses), the address of the

device on its parent bus (_ADR object) is required.

 If any device in the namespace is compatible with a Microsoft-provided driver, the Compatible ID (_CID

object) defined for that device type is required.

Page 103 of 254

General-Purpose Input/Output (GPIO) on an System that Supports Connected Standby

GPIO Controllers for pins used by Windows drivers or ASL control methods must appear as devices in the ACPI

namespace.

Devices in the namespace that are connected to GPIO pins on an enumerated controller device must:

 Include GPIO IO Connection resource descriptors in their _CRS for any GPIO I/O pins connected. Include

GPIO Interrupt Connection resource descriptors in their _CRS object for any GPIO interrupt pins

connected.

Simple Peripheral Bus (SPB) on an System that supports Connected Standby

SPB Controllers for connections used by Windows drivers or ASL control methods must appear as devices in the

ACPI namespace.

Devices in the namespace that are connected to an enumerated SPB controller device (UART, I2C, SPI) must

include SPB Connection resource descriptors in their _CRS for the SPB Connection(s) used.

Power Button

The power button, whether implemented as an ACPI Control Method Power Button or as part of the Windows-

compatible Button Array, must:

 Be able to cause the system to power-up when required.

 Generate the Power Button Override Event (Section 4.7.2.2.1.3 of the ACPI 4.0a specification) when held

down for 4 seconds.

Control Method Power Button

Systems dependent on built-in (or connected) keyboards/mice for input must conform to the ACPI Control

Method Power Button (Section 4.7.2.2.1.2 of the ACPI 4.0a Specification). In addition, systems that support

connected standby must:

 Implement the ACPI Control Method Power Button (Section 4.7.2.2.1.2 of the ACPI 4.0a Specification)

using a dedicated GPIO interrupt pin to signal button press events.

 Configure the power button's GPIO interrupt pin as a non-shared, wake-capable (ExclusiveAndWake)

GPIO interrupt connection resource.

 List the Power Button's GPIO interrupt connection resource in the ACPI Event Information (_AEI object)

of the GPIO controller device to which it is connected.

 Provide the event method (_Lxx or _Exx object) for the power button event under the GPIO controller

device in the ACPI namespace.

NOTE: For systems that require a separate driver to handle power button presses, it is acceptable to have that

Page 104 of 254

driver evaluate a control method that performs a Notify() on the Control Method Power Button device instead of

using the GPIO-based solution above.

Button Array-based Power Button

Touch-first (keyboard-less) systems must:

 Implement the Windows-compatible Button Array device.

 Connect the power button to a dedicated GPIO interrupt pin.

 Configure the power button's GPIO interrupt pin as a non-shared, wake-capable (ExclusiveAndWake),

Edge-triggered (Edge) GPIO interrupt connection resource, capable of interrupting on both edges

(ActiveBoth).

 List the power button's GPIO Interrupt connection resource first in the Button Array device's _CRS object.

NOTE: For systems that require a separate driver to handle power button presses, it is acceptable to have that

driver call the 5-Button array driver's power button event interface instead of using the GPIO-based solution

above.

Time and Alarm Device

All battery-powered systems which are not capable of supporting Connected Standby are required to implement

the Alarm capabilities of the ACPI Time and Alarm control method device.

Any system that supports Connected Standby that sets the "CMOS RTC Not Present" bit in the IAPC_BOOT_ARCH

flags field of the FADT must implement the device's Time capabilities.

Additional Information

Business Justification Devices and buses that are on the system must have an ACPI namespace to ensure

compatibility with Windows.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.ACPIRequired

System that support connected standby must contain required ACPI elements

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems that support connected standby contain a hardware abstraction layer (HAL) which is distinct from typical

PCs. Connected Standby systems also routinely include busses and devices which are not Plug and Play

compatible. In these cases, systems that support Connected Standby must include ACPI tables which conform to

Page 105 of 254

the Microsoft Windows 8 ACPI Specification for the following devices:

 USB

 GPIO

 Simple peripheral busses

 Human proximity sensor

 Ambient light sensor

 Storage and boot

 Core system resources

 Power firmware

 Boot firmware

 Runtime firmware

Additional Information

Business Justification Devices and buses that are on the system must have an ACPI namespace to ensure

compatibility with Windows.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.FirmwareSupportsBootingFromDVDDevice

System firmware supports booting from DVD device as defined by the El Torito specification

Target Feature System.Fundamentals.Firmware

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

The system firmware must support booting the system DVD. The system firmware or option ROM must support

the No-Emulation mode in the "El Torito" Bootable CD-ROM Format Specification, Version 1.0, for installing

Windows® from optical media, such as bootable DVD media. The primary optical device must be bootable. This

requirement applies to the primary optical storage and the primary bus to which the device is attached.

Additional Information

Enforcement Date Jun. 01, 2006

Page 106 of 254

System.Fundamentals.Firmware.FirmwareSupportsUSBDevices

System firmware provides USB boot support for USB keyboards, mouse, and hubs

Target Feature System.Fundamentals.Firmware

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

The system firmware must: Support USB keyboards and pointing devices during system boot, resume from

hibernate, and operating system setup and installation. Support USB input devices at least two levels of physical

hubs below the host controller. Support composite input devices by the boot protocol as defined in HID. For

Windows 8 systems, it is acceptable to enumerate, but not initialize all devices. If the device is accessed, it must

be fully initialize before proceeding.

The USB controller and USB devices must be fully enumerated when:

 Anything other than the Windows Boot Manager is at the top of the system boot order

 A boot next variable has been set to boot to something other than the Windows Boot Manager

 On a system where the Windows Boot Manager is at the top of the list, an error case has been hit, such

that the firmware fails over from the Windows Boot Manager to the next item in the list

 Resuming from hibernate, if the system was hibernated when booted from USB

 Firmware Setup is accessed.

Additional Information

Enforcement Date Jun. 01, 2006

System.Fundamentals.Firmware.HardwareMemoryReservation
System.Fundamentals.Firmware.HardwareMemoryReservation

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

This requirement limits the amount of memory that is reserved by the hardware (including drivers or firmware)

and not available to the OS or user applications on a system. Taking into consideration the changes required to

meet this requirement, it will be introduced in a phased manner. During the 2013 timeframe, the following interim

thresholds will apply

Page 107 of 254

 <=2GB systems – max of 3% of 2GB (61.5MB)

 2-3GB systems – max of 3% of 3GB (92.2MB)

 For all other systems, a max of 120MB

 If screen resolution exceeds 1366x768, an additional 8 bytes per pixel will be allowed. Note: The budgets

above are intended to cover 2 full screen video memory reservations for graphics drivers at 1366x768 at

32 bytes per pixel – 8MB. The adjustment above takes into consideration machines with higher

resolutions.

RAM Size Screen resolution Threshold

1GB 1366x768 61.5MB

2GB 1366x768 61.5MB

2GB 1920x1080 61.5MB + 8MB

3GB 1366x768 92.2MB

3GB 1920x1080 92.2MB + 8MB

4GB Any 120MB

Applies to Windows Client OS SKUs only [including Windows RT]

Design Notes:

 Hardware memory reservation is computed as the difference between the physical memory that is

mapped as visible to the Windows OS (excluding all device/firmware reservations) compared to the

installed RAM on the machine

 Installed memory is queried via Query GetPhysicallyInstalledSystemMemory() and OS visible memory is

queried via GlobalMemoryStatusEx() - ullTotalPhys

Post 2013, the following thresholds will apply:

 <=2GB systems – max of 2% of 2GB (41MB)

 2-3GB systems – max of 2% of 3GB (61.5MB)

 For all other systems, a max of 120MB

If screen resolution exceeds 1366x768, an additional 8 bytes per pixel will be allowed as described above.

Additional Information

Business Justification Hardware based memory reservations done early in boot limit the amount of visible

physical memory that is not available for the Operating system or user applications

throughout the lifetime of a machine and is especially significant for memory

constrained devices.

Enforcement Date Jun. 26, 2013

System.Fundamentals.Firmware.NoExternalDMAOnBoot

All external DMA ports must be off by default until the OS explicitly powers them through related controller(s).

Target Feature System.Fundamentals.Firmware

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

http://msdn.microsoft.com/en-us/library/windows/desktop/cc300158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa366589(v=VS.85).aspx

Page 108 of 254

The firmware must protect physical memory from unauthorized internal DMA (e.g. GPU accessing memory

outside of video-specific memory) and all unauthorized DMA-capable external ports prior to boot, during boot,

and until such time as the OS powers up DMA ports via related bridge controllers. When the device enters a low-

power state, DMA port device context must be saved, and restored upon returning to active state.

If the firmware has an option to enable and disable this protection, the shipping configuration must be with

protection enabled, and turning protection off must be protected, for example with platform authentication via

BIOS password.

Note that this requirement precludes the use of attached storage as boot media if it can only be accessed via an

external DMA-capable port.

Additional Information

Business Justification Required to protect BitLocker keys and other secrets in memory from disclosure to an

attacker.

Enforcement Date Jun. 26, 2013

System.Fundamentals.Firmware.UEFIBitLocker
A system with TPM that supports wired LAN in pre-OS must support the UEFI 2.3.1 EFI_DHCP4_PROTOCOL protocol

and the UEFI 2.3.1 EFI_DHCP6_PROTOCOL (and the corresponding service binding protocols)

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Systems which support TPM and wired LAN networking must support EFI_DHCP4_protocol,

EFI_DHCP4_SERVICE_BINDING_PROTOCOL, EFI_DHCP6_protocol, and EFI_DHCP6_SERVICE_BINDING_PROTOCOL

for wired LAN as defined in UEFI 2.3.1.

At pre-boot, BitLocker must be able to discover its Network Unlock provider on a Windows Deployment Server

(WDS) via DHCP, and unlock the OS volume after retrieving a secret from WDS.

Details

All UEFI systems with TPM present and a wired LAN port must support BitLocker Network Unlock . This requires

full DHCP support for wired LAN during preboot through a UEFI DHCP driver. Specifically, there must be UEFI

driver implementations for EFI_DHCP4_protocol, EFI_DHCP4_SERVICE_BINDING_PROTOCOL , EFI_DHCP6_protocol,

and EFI_DHCP6_SERVICE_BINDING_PROTOCOL for wired LAN, as defined in UEFI 2.3.1.

This requirement is "If Implemented" for Server systems and applies only if a Server system is UEFI capable

Additional Information

Page 109 of 254

Exceptions This requirement is exempt for systems that are configured with Wireless LAN only.

Business Justification Windows features must work as expected when the requisite hardware is present on a

Logo system. UEFI is the core prerequisite of the Windows 8 platform that enables

key features in security and performance.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.UEFIBootEntries

UEFI firmware honors software control over load option variables

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

UEFI systems must allow the Operating System to create both generic and device specific boot entries with

Messaging Device path, specifically USB Class Device Path (UEFI version 2.3 main specification section 9.3.5.9). The

firmware must respect these settings and not modify them once the OS has changed them. Furthermore, the

firmware must accurately report the boot entries to the OS.

Functional Notes:

If the device corresponding to a boot entry is not found, it is preferable for the system to proceed to the next

boot entry silently (i.e. without presenting an error message or requiring user intervention).

If the system is booted from an internal USB device and there is a USB class entry at the top of the boot order, the

system should first attempt to boot from external USB devices before attempting internal USB boot devices.

Design Notes:

The UEFI specification requires that the software bootmanager be allowed to do the boot order programming

(UEFI v. 2.3 Section 3.1.1 "Boot Manager Programming").

The firmware should interpret load options and device paths as specified in Section 9 "Protocols - Device Path

Protocol".

The UEFI specification describes the variables that must be modifiable at runtime in Section 3.2, table 10.

The UEFI specification is available at http://www.UEFI.org.

This requirement is "If Implemented" for Server systems and applies only if a Server system is UEFI capable

Additional Information

Exceptions If a system ships with a non-UEFI-compatible OS, this requirement does not apply.

Business Justification Currently boot order modification requires the user to manually change the firmware

http://www.uefi.org/

Page 110 of 254

boot order. This process varies dramatically between OEMs and models. Creating a

standardized programmatic way to modify boot order empowers both Microsoft and

third-party developers to enable new scenarios. This requirement is already part of

the spec and Intel's (the main contributor to the UEFI board as well as the creator of

the benchmark firmware implementation) UEFI implementation already complies with

the majority of this requirement and has announced that they will shortly upgrade

their firmware to fully comply with this requirement (they have a bug with generic

entries and boot from USB).

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.UEFICompatibility

System firmware must meet Windows Compatibility requirements

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All systems which ship with a UEFI-compatible OS must be compatible with the following sections of the UEFI

2.3.1 specification:

2.3, 3.1, 4.3, 6.1 ~ 6.5, 7.1~7.5, 8.1, 8.2, 9.1, 9.5, 11.2 ~ 11.4, 11.8, 11.9, 12.4, 12.7, 12.8, 12.9, 18.5, 21.1, 21.3, 21.5,

27.1~27.8.

Additional guidance listed in "UEFI Support and Requirements: Microsoft Windows Server 2008" document

(available at http://www.microsoft.com/whdc/system/platform/firmware/uefireg.mspx), if any, shall also be

required.

All Windows 8 systems must boot in UEFI mode by default. Other requirements may add additional sections of

compatibility to this list, but this is the baseline.

All systems, except servers, must be certified in UEFI mode without activating CSM. If a system is available with

32bit and/or 64bit UEFI, both configurations must be tested for certification. For server, certification in UEFI mode

is only required if UEFI is implemented.

OEMs may ship with CSM mode activated and the enterprise or government customer's licensed OS selection

when requested.

Additional Information

Enforcement Date Mar. 01, 2012

http://www.microsoft.com/whdc/system/platform/firmware/uefireg.mspx

Page 111 of 254

System.Fundamentals.Firmware.UEFIDefaultBoot

All client systems must be able to boot into UEFI boot mode and attempt to boot into this mode by default

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

The System firmware must be able to achieve UEFI mode boot by default. Such a system may also support

fallback to legacy BIOS mode boot for deploying OS images which do not support UEFI, if the user explicitly

selects that option in the pre-boot UEFI BIOS menu.

This requirement is "If Implemented" for Server systems.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.UEFILegacyFallback

System firmware must not fall back to legacy BIOS mode without explicit user action

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

If the system ships with a UEFI-compatible OS, system firmware must be implemented as UEFI and it must be able

to achieve UEFI boot mode by default. Such a system may also support fallback to legacy BIOS boot on systems

with OS which do not support UEFI, but only if the user selects that option in a pre-boot firmware user interface.

Legacy option ROMs also may not be loaded by default.

"Explicit User Action" means that end user (or in case of enterprise customer, the IT pro) must manually access the

pre-boot firmware configuration screen and change the setting. It may not ship in the BIOS mode by default and

programmatic methods which can be attacked by malware are not acceptable.

All systems with Class 2 UEFI must not fall back to legacy BIOS mode nor load legacy Option ROM's without

explicit user action within the pre-boot UEFI configuration UI."

An OEM may not ship a 64 bit system which defaults to legacy BIOS or loads legacy option ROMs if that system

ships with a UEFI-compatible OS.

When Secure Boot is Enabled, Compatibility Support Modules (CSM) must NOT be loaded. Compatibility Support

Modules are always prohibited on systems that support connected standby.

This requirement is "If Implemented" for Server systems and applies only if a Server system is UEFI capable

Page 112 of 254

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.UEFISecureBoot

All client systems must support UEFI Secure boot

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Note: These requirements are "If Implemented" for Server systems and apply only if a Server system supports

UEFI Secure Boot.

1. For the purposes of UEFI Secure Boot, the platform shall expose an interface to Secure Boot, whereby

the system firmware is compliant with the following sections and sub-sections of UEFI version 2.3.1

Errata C:

a. 7.1

b. 7.2

c. 7.2.1

d. 27.2

e. 27.5 - 27.8 (as further profiled below).

2. Secure Boot must ship enabled Configure UEFI Version 2.3.1 Errata C variables SecureBoot=1 and

SetupMode=0 with a signature database (EFI_IMAGE_SECURITY_DATABASE) necessary to boot the

machine securely pre-provisioned, and include a PK that is set and a valid KEK database. The system uses

this database to verify that only trusted code (for example: trusted signed boot loader) is initialized, and

that any unsigned image or an image that is signed by an unauthorized publisher does not execute. The

contents of the signature database is determined by the OEM, based on the required native and third-

party UEFI drivers, respective recovery needs, and the OS Boot Loader installed on the machine. The

following Microsoft-provided EFI_CERT_X509 signature shall be included in the signature database:

"CN=Microsoft Windows Production PCA 2011" and "Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc

1b 2b 3e 08 7b 80 d0 67 8d" which shall use the following SignatureOwner GUID: {77fa9abd-0359-4d32-

bd60-28f4e78f784b}, must also be included in the form of either an EFI_CERT_X509_GUID or

EFI_CERT_RSA2048_GUID type.

a. Note: Must NOT contain the following certificate: "CN=Microsoft Windows PCA 2010" and

"Cert Hash(sha1): c0 13 86 a9 07 49 64 04 f2 76 c3 c1 85 3a bf 4a 52 74 af 88"

http://www.uefi.org/specs/
http://www.uefi.org/specs/

Page 113 of 254

b. Note II: Windows Server systems may ship with Secure Boot disabled, but all other provisions of

this sub-requirement must be met

3. When Secure Boot is Enabled, Compatibility Support Modules (CSM) must NOT be loaded. Compatibility

Support Modules are always prohibited on Connected Standby systems.

4. The initial UEFI signature databases (db) shall be created with the

EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute stored in firmware flash

and may be updated only with an OEM-signed firmware update or through UEFI authenticated variable

write.

5. Support for the UEFI "forbidden" signature database (EFI_IMAGE_SECURITY_DATABASE1) must be

implemented.

6. The platform shall ship with an initial, possibly empty, "forbidden" signature database

(EFI_IMAGE_SECURITY_DATABASE1) created with the

EFI_VARIABLE_TIME_BASED_AUTHENTICATED_ACCESS attribute. When a signature is added to the

forbidden signature database, upon reboot, any image certified with that signature must not be allowed

to initialize/execute.

7. Secure Boot must be rooted in a protected or ROM-based Public Key. Secure Boot must be rooted

in an RSA public key with a modulus size of at least 2048 bits, and either be based in unalterable ROM or

otherwise protected from alteration by a secure firmware update process, as defined below.

8. Secure firmware update process. If the platform firmware is to be serviced, it must follow a secure

update process. To ensure the lowest level code layer is not compromised, the platform must support a

secure firmware update process that ensures only signed firmware components that can be verified

using the signature database (and are not invalidated by the forbidden signature database) can be

installed. UEFI Boot Services variables must be hardware-protected and preserved across flash updates.

The Flash ROM that stores the UEFI BIOS code must be protected. Flash that is typically open at reset (to

allow for authenticated firmware updates) must subsequently be locked before running any

unauthorized code. The firmware update process must also protect against rolling back to insecure

versions, or non-production versions that may disable secure boot or include non-production keys. A

physically present user may however override the rollback protection manually. In such a scenario

(where the rollback protection is overridden), the TPM must be cleared. Further, it is recommended that

manufacturers writing BIOS code adhere to the NIST guidelines set out in NIST SP 800-147

(http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf), BIOS Protection

Guidelines, which provides guidelines for building features into the BIOS that help protect it from being

modified or corrupted by attackers. For example, by using cryptographic digital signatures to

authenticate BIOS updates.

9. Signed Firmware Code Integrity Check. Firmware that is installed by the OEM and is either read-only

or protected by a secure firmware update process, as defined above, may be considered protected.

Systems shall verify that all unprotected firmware components, UEFI drivers, and UEFI applications are

signed using minimum RSA-2048 with SHA-256 (MD5 and SHA-1 are prohibited), and verify that UEFI

applications and drivers that are not signed as per these requirements will fail to run (this is the default

policy for acceptable signature algorithms). If an images signature is not found in the authorized

database, or is found in the forbidden database, the image must not be started, and instead, information

about it shall be placed in the Image Execution Information Table.

10. UEFI firmware and driver implementations must be resistant to malicious input from untrusted sources.

Incomplete input validation may result in buffer overflows, integer and pointer corruption, memory

overwrites, and other vulnerabilities, compromising the runtime integrity of authenticated UEFI

components.

11. Verify Signature of all Boot Apps and Boot Loaders. Upon power-on, the platform shall start

executing boot firmware and use public key cryptography as per algorithm policy to verify the signatures

of all images in the boot sequence up-to and including the Windows Boot Manager.

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

Page 114 of 254

12. Microsoft Key Encryption Key (KEK) is provisioned A valid Microsoft-provided KEK is included in the

KEK database. Microsoft provides the KEK in the form of either an EFI_CERT_X509_GUID or

EFI_CERT_RSA2048_GUID type signature. The Microsoft KEK signature uses the following

SignatureOwner GUID: {77fa9abd-0359-4d32-bd60-28f4e78f784b}.

13. PKpub verification. The PKpub key is owned by the OEM and stored in firmware flash. The private-key

counterpart to PKpub is PKpriv, which controls Secure Boot policy on all OEM-manufactured devices,

and its protection and use must be secured against un-authorized use or disclosure. PKpub must exist

and the operating system must be able to read the value and verify that it exists with proper key length.

14. No in-line mechanism is provided whereby a user can bypass Secure Boot failures and boot

anyway Signature verification override during boot when Secure Boot is enabled is not allowed. A

physically present user override is not permitted for UEFI images that fail signature verification during

boot. If a user wants to boot an image that does not pass signature verification, they must explicitly

disable Secure Boot on the target system.

15. UEFI Shells and related applications. UEFI Modules that are not required to boot the platform must

not be signed by any production certificate stored in "db", as UEFI applications can weaken the security

of Secure Boot. For example, this includes and is not limited to UEFI Shells as well as manufacturing, test,

debug, RMA, & decommissioning tools. Running these tools and shells must require that a platform

administrator disables Secure Boot.

16. Secure Boot Variable. The firmware shall implement the SecureBoot variable as documented in Section

3.2 "Globally Defined Variables' of UEFI Specification Version 2.3.1 Errata C"

17. On non-ARM systems, the platform MUST implement the ability for a physically present user to select

between two Secure Boot modes in firmware setup: "Custom" and "Standard". Custom Mode allows for

more flexibility as specified in the following:

 A.It shall be possible for a physically present user to use the Custom Mode firmware setup option to

modify the contents of the Secure Boot signature databases and the PK. This may be implemented

by simply providing the option to clear all Secure Boot databases (PK, KEK, db, dbx), which puts the

system into setup mode.

 B.If the user ends up deleting the PK then, upon exiting the Custom Mode firmware setup, the

system is operating in Setup Mode with SecureBoot turned off.

 C.The firmware setup shall indicate if Secure Boot is turned on, and if it is operated in Standard or

Custom Mode. The firmware setup must provide an option to return from Custom to Standard

Mode which restores the factory defaults. On an ARM system, it is forbidden to enable Custom

Mode. Only Standard Mode may be enabled.

18. Enable/Disable Secure Boot. On non-ARM systems, it is required to implement the ability to disable

Secure Boot via firmware setup. A physically present user must be allowed to disable Secure Boot via

firmware setup without possession of PKpriv. A Windows Server may also disable Secure Boot remotely

using a strongly authenticated (preferably public-key based) out-of-band management connection, such

as to a baseboard management controller or service processor. Programmatic disabling of Secure Boot

either during Boot Services or after exiting EFI Boot Services MUST NOT be possible. Disabling Secure

Boot must not be possible on ARM systems.

19. If the firmware is reset to factory defaults, then any customized Secure Boot variables are also

factory reset. If the firmware settings are reset to factory defaults, all custom-set variables shall be

erased and the OEM PKpub shall be re-established along with the original, manufacturer-provisioned

signature databases.

20. OEM mechanism exists to remediate failed EFI boot components up to and including the

Windows OS loader (bootmgr.efi). Images in the EFI boot path that fail Secure Boot signature

verification MUST not be executed, and the EFI_IMAGE_EXECUTION_INFO_TABLE entry for that

component shall be updated with the reason for the failure. The UEFI boot manager shall initiate

Page 115 of 254

recovery according to an OEM-specific strategy for all components up to and including Windows

bootmgr.efi.

21. A working Windows RE image must be present on all Windows 8 client systems The Windows

Recovery image must be present in the factory image on every Secure Boot capable system. To support

automated recovery and provide a positive user experience on Secure Boot systems, the Windows RE

image must be present and enabled by default. As part of the Windows 8 Trusted Boot work

enhancements have been made to Windows RE to allow optimized recovery from signature verification

failures in Secure Boot. OEMs must include Windows RE as part of their factory image on all Windows 8

client systems.

22. Firmware-based backup and restore. If the OEM provides a mechanism to backup boot critical files

(for example: EFI drivers and boot applications), it must be in a secure location only accessible and

serviceable by firmware. The OEM may provide the capacity via firmware or other backup store to store

backup copies of boot critical files and recovery tools. If such a store is implemented, the solution must

also have the capability to restore the target files onto the system without the need for external media

or user intervention. This is a differentiator for the OEM in failover protection, used if the Windows OS

loader (bootmgr.efi) or other boot critical components fail, preventing Windows native recovery

solutions to execute.

23. Firmware-based backup synchronization. Backup copies of boot critical components (for example: EFI

drivers and boot applications) stored in firmware must be serviced in sync with updates to same files on

the system If the system has the capability to store a backup copy of the Windows OS loader

(bootmgr.efi), and potentially other critical boot components, then the files must be serviced on the

same schedule as their counterparts in use on the live system. If the Windows OS loader is updated by

Windows Update, then the backup copy of bootmgr.efi stored in firmware must be updated on the next

boot.

24. All Windows 8 client systems must support a secondary boot path. For all Windows 8 systems

configured for Secure Boot, there must be an alternate boot path option that is followed by the firmware

in the event that the primary Windows OS loader fails. The second boot path may point either to the

default shadow copy installed by Windows to the system backup store (<EFI System

Volume>\EFI\Boot\boot<platform>.efi), or to a copy stored by the OEM firmware-based mechanism.

This alternate path could be a file in executable memory, or point to a firmware-based remediation

process that rolls a copy out of the OEM predetermined backup store.

25. All Windows 8 client systems must support a USB boot path for recovery purposes. For all

Windows 8 systems configured for Secure Boot, there is a last resort of booting from USB.

26. Supporting GetVariable() for the EFI_IMAGE_SECURITY_DATABASE (both authorized and forbidden

signature database) and the SecureBoot variable.

27. Supporting SetVariable() for the EFI_IMAGE_SECURITY_DATABASE (both authorized and forbidden

signature database), using an authorized KEK for authentication.

28. Reserved Memory for Windows Secure Boot UEFI Variables. A total of at least 64 KB of non-volatile

NVRAM storage memory must be reserved for NV UEFI variables (authenticated and unauthenticated, BS

and RT) used by UEFI Secure Boot and Windows, and the maximum supported variable size must be at

least 32kB. There is no maximum NVRAM storage limit.

29. During normal firmware updates the following must be preserved:

a. The Secure Boot state & configuration (PK, KEK, db, dbx, SetupMode, SecureBoot)

b. All UEFI variables with VendorGuid {77fa9abd-0359-4d32-bd60-28f4e78f784b}

c. A physically-present user who authenticates to the firmware may change, reset, or delete these

values

Page 116 of 254

30. The platform shall support EFI variables that are:

a. accessible only during the boot services or also accessible in the runtime phase;

b. non-volatile; and

c. possible to update only after proper authorization, for example, being properly signed.

The platform must support EFI variables with any valid combination of the following UEFI 2.3.1 variable attributes

set:

Copy

EFI_VARIABLE_NON_VOLATILE

EFI_VARIABLE_BOOTSERVICE_ACCESS

EFI_VARIABLE_RUNTIME_ACCESS

EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS

EFI_VARIABLE_APPEND_WRITE

EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS

Connected Standby systems must meet all of the requirements cited in both

"system.fundamentals.firmware.uefisecureboot" and

"system.fundamentals.firmware.uefisecureboot.connectedstandby".

The documents referenced in this document may be requested by contacting

http://go.microsoft.com/fwlink/p/?LinkId=237130.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.Firmware.UEFITimingClass

System firmware must expose timing and class information

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

• During POST, the firmware shall measure its own timing and record the duration of post, rounded to the

nearest mSec

• These timings shall measure tEnd of reset sequence (Timer value noted at beginning of BIOS

initialization - typically at reset vector) Handoff to OS Loader

A proposal for the structure of a table to record the duration of post is in review by ACPI committee and will be

published as soon as practical.

javascript:if%20(window.epx.codeSnippet)window.epx.codeSnippet.copyCode('CodeSnippetContainerCode_b4d37876-1035-4c17-a620-82f5d364b683');
http://go.microsoft.com/fwlink/p/?LinkId=237130

Page 117 of 254

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.Update
System firmware must meet the requirements in order to support system and/or device firmware updates using

firmware driver package.

Target Feature System.Fundamentals.Firmware

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The requirements are required on ARM systems and are if-implemented for other systems. These requirements

must be met by any system that updates system and/or device firmware using the Windows firmware driver

package mechanism.

• The ESRT table must define at least one firmware resource (ESRE) in the resource list, which must include

a system firmware resource.

• Only one system firmware resource can be defined in the ESRT.

• No two resources in the ESRT table are permitted to have the same firmware class GUID.

• ESRE must provide appropriate status code including success or failed firmware update attempt, on the

subsequent boot, to the OS.

• Firmware for every resource defined by the ESRT must be upgradable to a newer version

• Firmware version of a particular resource must not break compatibility with firmware versions of other

resources.

• Firmware must provide the lowest supported firmware version using the field

"LowestSupportedFirmwareVersion" in the ESRE table. Firmware must not allow rollback to any version

lower than the lowest supported version. Whenever a security related update has successfully been

made, this field must be updated to match the "FirmwareVersion" field in the ESRE. When the lowest

firmware version does not match the current firmware version, firmware must allow rollbacks to any

version between the current version and the lowest supported version (inclusive).

• Firmware must seamlessly recover from failed update attempts if it is not able to transfer control to the

OS after an update is applied.

Additional Information

Business Justification System and Device firmware updates will be applied uniformly across all products

running windows 8 and beyond

Page 118 of 254

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.Boot
This section describes boot requirements for all client systems.

Related Requirements System.Fundamentals.Firmware.Boot.EitherGraphicsAdapter

 System.Fundamentals.Firmware.Boot.SystemWithBootDeviceGreaterThan

System.Fundamentals.Firmware.Boot.EitherGraphicsAdapter

System firmware must be able to boot a system with onboard or integrated graphics and with multiple graphics

adapters

Target Feature System.Fundamentals.Firmware.Boot

Applies to Windows 7 Client x86, x64

Description

Systems with GPUs on the system board and mobile systems that can use a docking station with PCI slots must

provide a means in the system firmware setup utility to compel the system to use the onboard graphics device to

boot. This capability is required so the onboard graphics device can be used in a multiple-monitor configuration

and for hot undocking a mobile system.

If the system includes PCI, AGP, or PCI Express expansion slots, the system firmware must be able to boot a

system with multiple graphics adapters. The system BIOS must designate one device as the VGA device and

disable VGA on all other adapters. A system with an integrated graphics chipset and one or more discrete

graphics adapters must be able to disable the integrated graphics chipset if the integrated graphics chipset

cannot function as a non-VGA chipset.

Additional Information

Enforcement Date Jun. 01, 2006

System.Fundamentals.Firmware.Boot.SystemWithBootDeviceGreaterThan

Systems with a boot device with a capacity greater than 2.2 terabytes must comply with requirements

Target Feature System.Fundamentals.Firmware.Boot

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

Page 119 of 254

 Windows Server 2012 x64

Description

Systems with a boot device with a capacity greater than 2.2 terabytes must comply with the following

requirements:

 The system must be 64-bit.

 The system must comply with Extensible Firmware Interface (EFI) 1.10 on Intel Itanium systems, and with

native Unified Extensible Firmware Interface (UEFI) 2.0 or later on x64 systems.

 The system must comply with Advanced Configuration and Power Interface (ACPI) Specification version

4.0. Specifically, the system must be able to support legacy or Operating System-directed configuration

and Power Management (OSPM)/ACPI mode.

Additional Information

Business Justification Disk drive vendors are ready to ship greater than 2.2 TB disks into the market in 2010.

OEM vendors are also preparing greater than 2.2 TB boot solutions for their new

system platforms. To protect Microsoft® partners' investment and provide a good

user experience with a greater than 2.2 TB disk drive, Microsoft only supports a

greater than 2.2 TB boot scenario in UEFI systems. This certification requirement will

provide the general design guidance for system vendors and IHVs to develop

hardware, firmware and drivers that will support these disks.

Enforcement Date Dec. 01, 2010

System.Fundamentals.Firmware.CS
Connected standby systems have additional UEFI Secure Boot requirements.

Related Requirements System.Fundamentals.Firmware.CS.CryptoCapabilities

 System.Fundamentals.Firmware.CS.UEFISecureBoot.ConnectedStandby

System.Fundamentals.Firmware.CS.CryptoCapabilities

System that support Connected Standby must include cryptographic capabilities to meet customer expectations on

platform speed and performance

Target Feature System.Fundamentals.Firmware.CS

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Since all components in the boot path as well as many performance-critical OS subsystems will invoke

cryptographic functions, run-time performance of these functions is critical. The following requirements have

Page 120 of 254

been drafted to help ensure sufficient cryptographic capabilities are in place to meet customer expectations on

platform speed and performance

1. The platform must meet cryptographic performance requirements as stated in Table 1. The platform may

meet these requirements through any combination of hardware or software. The following general

remarks apply to all algorithms in Table 1:

a. The platform must pass the Windows Hardware Certification Kit test "Storage Performance

EMMC" with a "CPU Utilization Percentage" value of less than 20%. "CPU Utilization

Percentage" is the average CPU usage over the duration of the test for the entire system under

test.

b. Target performance must be achieved in a multi-threaded test. The number of threads will be

determined by querying the property named L"HardwareThreads" on the BCrypt provider

through the CNG BCryptGetProperty interface. The provider is required to return a DWORD

value in response. If the provider does not support this property, the test will run single-

threaded.

c. When cryptographic acceleration engines are used: Due to the overhead involved in

dispatching requests to hardware acceleration engines, it is recommended that small requests

be handled in software. Similarly, it is recommended that vendors consider using CPU-based

cryptography to improve throughput when all cryptographic acceleration engines are fully

utilized, idle capacity is available on the CPU, and the device is in a high-performance mode

(such as when connected to AC power).

2. ARM based platforms must implement the EFI_HASH_PROTOCOL from UEFI Industry Group, Unified

Extensible Firmware Interface Specification version 2.3.1 Errata B. The EFI_HASH_PROTOCOL

implementation must be accessible from Windows pre-Operating System code (i.e. in the Boot Services

phase of platform boot). Both the UEFI hash protocols EFI_HASH_ALGORITHM_SHA1_NOPAD_GUID

and EFI_HASH_ALGORITHM_SHA256_NOPAD_GUID must be supported, and the implementation must

support passing a Message at least 10 Mbytes long (Note: No padding must be applied at any point to

the input data).

3. To make entropy generation capabilities available to Windows pre-Operating System code, the platform

shall support the EFI_RNG_PROTOCOL for pre-Operating System read of at least 256 bits of entropy in a

single call (i.e. 256 bits of full entropy from a source with security strength of at least 256 bits). The

protocol definition can be found in Microsoft Corporation, "UEFI Entropy-Gathering Protocol,"
2
.

4. All cryptographic capabilities in accordance with Table 1 shall be accessible from the runtime OS in

kernel mode, through the interface specified in Microsoft Corporation, "BCrypt Profile for SoC

Acceleration,"
2
 .

5. OPTIONAL. It is recommended that the platform's cryptographic capabilities also be accessible from the

runtime OS in user mode, through the interface previously referenced in Requirement 4.

6. The OS interface library shall be implemented in such a way that when an unprivileged process is

operating on a given key in a given context, it shall not be able to access the key material or perform key

operations associated with other contexts.

7. OPTIONAL. It is highly recommended that the RNG capability of the platform be exposed through an

OS entropy source through the interface specified in Microsoft Corporation, "BCrypt Profile for SoC

Acceleration," previously referenced in Requirement 4.

Page 121 of 254

8. OPTIONAL. (Applies when a cryptographic acceleration engine is used) It should be possible to

maintain and perform cryptographic operations on at least three distinct symmetric keys or two

symmetric keys and one asymmetric key simultaneously in the acceleration engine.

Table 1: Algorithm-specific requirements. The "Category" column classifies algorithms as mandatory to

support at the software interface as per requirement 4 (M), or optional (O). Note that all algorithms that

are accelerated in hardware must also be exposed through the software interface.

Algorithm Category Modes Mandatory

Supported Key

Size(s)

Remarks

3-DES O ECB, CBC, CFB8 112, 168

AES M ECB, CBC, CFB8,

CFB128, CCM,

CMAC, GCM,

GMAC

128, 192, 256 Performance >= 60 MBytes/s for

AES-128-CBC and AES-128-ECB

encryption and decryption as

measured at the CNG kernel-

mode BCrypt interface when

processing 32 kByte blocks.

O CTR, XTS, IAPM 128, 192, 256

RSA O PKCS #1 v1.5,

PSS, OAEP

512 to 16384 in

8-byte

increments

Public key performance for 2048-

bit keys (and public exponent F4

(0x10001)) when verifying

PKCS#1v1.5 padded signatures,

measured at the kernel mode

BCrypt interface <=0.6

ms/verification.

ECC O ECDSA, ECDH 256 If implemented, must support

Elliptic curve P-256 defined in

National Institute for Standards

and Technology, "Digital

Signature Standard," FIPS 186-3,

June 2009.

SHA-1 O Performance

>60 Mbytes/s as measured at the

CNG kernel-mode BCrypt

interface when processing 4kByte

blocks.

HMAC-SHA1 O

SHA-256 O Performance

>60 Mbytes/s as measured at the

CNG kernel-mode BCrypt

interface when processing 4kByte

blocks.

HMAC SHA-256 O

RNG M Entropy source

with optional

FIPS 800-90-

based DRBG

 Security strength must be at least

256 bits
1
. Note that exposing this

functionality through the UEFI

Entropy-Gathering Protocol is

required (see Req 3) and

exposing it as an OS entropy

source is recommended (see Req

7).

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=903873

Page 122 of 254

1
The Connected Standby vendor shall supply documentation indicating, and allowing Microsoft to estimate, the

quality of the entropy source. The entropy shall be assessed using the min-entropy method of Appendix C of

National Institute for Standards and Technology, "Recommendation for Random Number Generation using

Deterministic Random Bit Generators," FIPS 800-90, March 2007 and must surpass or be equal to 256 bits before

the runtime OS starts.

2
This specification must be requested explicitly from Microsoft. To request the current version, please contact

http://go.microsoft.com/fwlink/?LinkId=237130.

Additional Information

Business Justification Core cryptographic functions are used in Windows to provide platform integrity as

well as protection of user data. Therefore, in order to have a safe and usable platform,

these cryptographic building blocks must achieve certain standards of security and

performance.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Firmware.CS.UEFISecureBoot.ConnectedStandby

All client systems that support Connected Standby must support UEFI Secure Boot

Target Feature System.Fundamentals.Firmware.CS

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

1. Connected-Standby systems must meet all of the requirements cited in this section and under

System.Fundamentals.Firmware.Uefisecureboot section.

2. Boot Integrity. Platform uses on-die ROM or One-Time Programmable (OTP) memory for storing initial

boot code and initial public key (or hash of initial public key) used to provide boot integrity, and

provides power-on reset logic to execute from on-die ROM or secure on-die SRAM.

3. Secure Boot launch of Windows 8 BootMgr must not require use of an Allowed DB entry other than the

Microsoft-provided EFI_CERT_X509 signature with "CN=Microsoft Windows Production PCA 2011" and

"Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b 3e 08 7b 80 d0 67 8d.

4. On ARM, the UEFI Allowed database ("db") must not contain any other entry than the Microsoft-

provided EFI_CERT_X509 signature with "CN=Microsoft Windows Production PCA 2011" and "Cert

Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b 3e 08 7b 80 d0 67 8d.

5. The policy for acceptable signature algorithms (and padding schemes) shall be possible to update. The

exact method for updating the policy is determined by each authority (for example: Microsoft

determines policies for binaries it is responsible for; SOC vendor for firmware updates). It is recognized

that the initial ROM code need not have an ability to update the initial signature scheme.

6. The platform shall maintain and enforce a policy with regards to signature authorities for firmware and

pre-Operating System components; the policy (and hence the set of authorities) shall be possible to

update. The update must happen either as a result of actions by a physically present authorized user or

by providing a policy update signed by an existing authority authorized for this task. On ARM platforms,

http://www.nist.gov/customcf/get_pdf.cfm?pub_id=50814
http://go.microsoft.com/fwlink/?LinkId=237130

Page 123 of 254

the physical presence alone is not sufficient. Signature authority (db or KEK) updates must be

authenticated on ARM platforms.

7. Upon power-on, the platform shall start executing read-only boot firmware stored on-die and use public

key cryptography as per algorithm policy to verify the signatures of all images in the boot sequence up-

to the Windows Boot Manager.

8. Protection of physical memory from unauthorized internal DMA (for example: GPU accessing memory

outside of video-specific memory) and all external DMA access to the SOC. The firmware shall enable

this protection as early as feasible, preferably within the initial boot firmware.

9. Optional.The memory containing the initial boot firmware (executing in SRAM) may be made

inaccessible upon jumping to the next validated stage of the boot sequence. The initial boot firmware

may remain inaccessible until power-on-reset is triggered.

10. The platform shall enforce policy regarding the replacement of firmware components. The policy must

include protection against rollback. It is left to the platform vendor to define the exact method for policy

enforcement, but the signature verification of all firmware updates must pass and the update must be

identified in such a manner that a later version of a component cannot, without proper authorization (for

example: physical presence), be replaced by an earlier version of the component where earlier and later

may be defined by a (signed) version number, for example.

11. Optional. The platform shall offer at least 112 logical eFuse bits to support platform firmware revision

control in accordance with the above requirement.

12. Physical Security Requirements. In retail parts, once the platform is configured for Production mode, the

hardware must disable all external hardware debug interfaces such as JTAG that may be used to modify

the platform's security state, and disable all hardware test modes and disable all scan chains. The

disabling must be permanent unless re-enablement unconditionally causes all device-managed keys

that impact secure boot, TPM, and storage security to be rendered permanently erased.

13. On ARM platforms Secure Boot Custom Mode is not allowed. A physically present user cannot override

Secure Boot authenticated variables (for example: PK, KEK, db, dbx).

14. Platforms shall be UEFI Class Three (see UEFI Industry Group, Evaluating UEFI using Commercially

Available Platforms and Solutions, version 0.3, for a definition) with no Compatibility Support Module

installed or installable. BIOS emulation and legacy PC/AT boot must be disabled.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.Firmware.CS.UEFISecureBoot
Connected standby systems have additional UEFI Secure Boot requirements.

Related Requirements System.Fundamentals.Firmware.CS.UEFISecureBoot.Provisioning

http://www.uefi.org/news/uefi_industry/UEFIEvaluationPlatforms.pdf
http://www.uefi.org/news/uefi_industry/UEFIEvaluationPlatforms.pdf

Page 124 of 254

System.Fundamentals.Firmware.CS.UEFISecureBoot.Provisioning

Systems are required to leave manufacturing provisioned with all cryptographic seeds and keys that are necessary to

prevent attachs

Target Feature System.Fundamentals.Firmware.CS.UEFISecureBoot

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

Description

Each device is required to leave manufacturing provisioned with all cryptographic seeds and keys that

are necessary to prevent attacks against the device’s Secure Boot, TPM and secure persistent storage

implementations. Seeds and symmetric keys shall be immutable, per-device-unique, and non-

predictable (random with sufficient length to resist exhaustive search; see NIST 800-31A for acceptable

key sizes).

The platform is required to implement a hardware interface and share documentation and tools as

specified in the ‘Hardware Security Testability Specification’ document (This document is available on

Connect).

This requirement is IF IMPLEMENTED for Server.

Additional Information

Enforcement Date Jan. 01, 2015

System.Fundamentals.Firmware.TPR
This feature includes requirements specific to system firmware with eDrive support.

Related Requirements System.Fundamentals.Firmware.TPR.UEFIEncryptedHDD

System.Fundamentals.Firmware.TPR.UEFIEncryptedHDD

Systems which ship with a self-encrypting hard drive as a storage device must support the UEFI 2.3.1

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL protocols and shall contain a non-OS partition that can be used

to store WinRE

Target Feature System.Fundamentals.Firmware.TPR

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Page 125 of 254

If self-encrypted drive support is implemented it must have a UEFI-compatible OS and contain system firmware

both conforming to system firmware logo requirements as defined in System.Fundamentals.Firmware and also

contain a separate WINRE partition.

BitLocker shall support self-encrypting drivers that conform to the eDrive Device Guidelines available on WHDC at

http://msdn.microsoft.com/en-us/library/windows/hardware/br259095

UEFI – Trusted Command Support in UEFI 2.3 + UEFI Mantis change number 616 or UEFI 2.3.1

Standard v2.3 + errata Bv2 www.uefi.org

Mantis Change Number 616 www.uefi.org (This is not part of v2.3)

All necessary partitions have to be created, managed individually pre/post encryption. The WINRE partition must

always be separate and outside of the OS/encryption partition.

If WinRE is on the system partition, the size is 350MB. If it’s not the system partition, then it’s 300MB. This is

assuming MBR layout. (For GPT, WinRE is always separate from the ESP, hence 300MB.)

This requirement is “If Implemented” for Server systems and applies only if a Server system is UEFI capable

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics
Base for Graphics on Systems

Related Requirements System.Fundamentals.Graphics.FirmwareSupportsLargeAperture

 System.Fundamentals.Graphics.MicrosoftBasicDisplayDriver

 System.Fundamentals.Graphics.MultipleOperatingMode

 System.Fundamentals.Graphics.NoRebootUpgrade

 System.Fundamentals.Graphics.PremiumContentPlayback

 System.Fundamentals.Graphics.Windows7.MultipleOperatingModes

System.Fundamentals.Graphics.FirmwareSupportsLargeAperture

32-bit and 64-bit system firmware supports large aperture graphic adapters

Target Feature System.Fundamentals.Graphics

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Page 126 of 254

The system firmware (BIOS/UEFI) must support large aperture graphics adapters. The 32-bit system firmware

(BIOS/UEFI) must be able to support at least 256 MB aperture. On 64-bit systems the firmware (BIOS/UEFI) must

be able to support at least 1GB aperture.

A system that supports multiple graphics adapters must ensure sufficient resources for each adapter. For example

on a 32bit system with 4 graphics adapters, each adapter must receive at least 256MB memory resources each on

the PCI bus.

Additional Information

Business Justification The purpose of this requirement is to ensure that sufficient memory resources can be

allocated on the PCI bus for large memory graphics adapters so that the system will

successfully boot. This is to enable support for graphics adapters with larger size of

memory that can be accessed over the bus by the host CPU.

Enforcement Date Jun. 01, 2006

System.Fundamentals.Graphics.MicrosoftBasicDisplayDriver

System is compatible with the Microsoft Basic Display Driver

Target Feature System.Fundamentals.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The System must boot in a mode where the frame buffer used by the Microsoft basic display driver is displayed

whenever the Microsoft display driver writes to the frame buffer. No other driver is involved to accomplish this

output. The frame buffer must be linear and in BGRA format.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Graphics.MultipleOperatingMode

If a Windows 8 system has Multiple GPU's, the graphics and system test must pass in every "Operating Mode"

Target Feature System.Fundamentals.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 127 of 254

Description

Multiple GPU features must meet all Graphics and System requirements and pass all tests in all available GPU

operating modes.

Windows certification tests are designed to ensure supported core Windows experiences work correctly, the

system is reliable and that developers can count on graphics APIs conforming to the specification. In a single GPU

system, these features are validated by the graphics device tests and system tests.

Multiple GPU systems introduce special cases or modes that require special testing considerations. Multiple GPU's

increases the complexity of the overall system and may expose the Windows system to unsupported features

without careful analysis and testing.

For the purpose of certification, there are three types of GPU features:

1. Supported Features - these features were considered in the Windows design scenarios, are explicitly

allowed, are tested by the Hardware Certification Kit, and can receive certification upon submission of

the results.

2. Features that require an addendum to certify - these features do not have explicit support by Microsoft

in the OS runtimes, API's or kernel, but may be certified by IHVs and used in certified systems if the

conditions placed on their use are met by the IHVs and OEMs. The Windows OS is usually unaware of

these features. However, Microsoft recognizes these features may be designed and supported by the

IHV in a manner not contrary to the Windows scenarios, and if the partners commit to supporting these

features over the lifetime of the system, Microsoft will not block their use. The Microsoft graphics

technical representative can provide additional information when it is unclear if a feature outside the

Windows supported designs would be certifiable with an addendum or not allowed.

3. Not allowed Features - these are features which create unavoidable scenarios running counter to

Windows experience expectations, do not meet certification requirements and would prevent the system

from getting certification.

Microsoft makes no guarantee that features other than Supported Features (type 1 above) work correctly, or will

continue to work correctly after patches, service packs or OS upgrades. Such features may appear to work

correctly under test conditions but may fail catastrophically at some point in the future. These changes can result

in unpredictable behavior or application failures, particularly as the OS and applications evolve and expose

discrepancies.

To assure no Windows features fail and to assure end-users that their experience will be reliable for the life of a

product, the hardware manufacturers and the system manufacturers who are shipping a Windows feature that

requires an addendum (type 2 above) must carry the responsibility for testing, supporting and servicing any

divergence from supported features. To be certified, the device's additional quality assurance and future support

will be documented using the addendum process.

Upon agreement of the terms of this Addendum the OEM:

1. Declares the intent to ship a feature that is not supported by Microsoft Windows

2. Declares no Windows features fail as a result of the feature.

3. Upon evidence of a passing submission of the system, the addendum may be extended to the system.

The conditions of the addendum are:

Page 128 of 254

1. Company will, or will require the responsible IHV partner to, thoroughly test Affected Company

Product(s) with the objective to proactively detect and correct potential issues, and in any event before

any delivery of an update to the Affected Company Products.

2. Monitor the reliability of the Windows unsupported feature using telemetry including but not limited to

telemetry data provided by Microsoft.

3. Upon discovery of a failure through telemetry or Microsoft notification, develop and timely distribute via

Windows Update fixes for any end-user issues resulting in (1) Windows feature, application or kernel

failures, (2) failures in third party Windows Store-style apps running on Windows, or (3) failures in

Microsoft products including but not limited to Internet Explorer, Windows Live and Microsoft Office

which are attributable to the Affected Company Product(s). Timely means within no more than 3

months after a failure is discovered and for (1) above, at least 3 months before a patch, a service pack or

a future Windows operating system becomes available, for (2) above, at least 3 months before a fix or a

new or updated release of the affected app becomes available, and for (3) above, at least 3 months

before a patch, a service pack or a future release of the affected Microsoft products becomes available.

4. Company will enter into a separate agreement with the relevant Affected Company Product IHV to bind

IHVs to the support obligations as described above.

5. Microsoft, in collaboration with the IHV, may continue to update and distribute a driver for the device

beyond the addendum commitment.

The following guidelines detail some specific situations and typical problems this requirement is intended to

address. This is not a comprehensive list of possible problematic situations. Other situations may be addressed in

a successful addendum request for a specific Windows unsupported feature.

1. Multiple GPUs are not allowed on ARM platforms. Windows has chosen to not allow or support multiple

GPU systems for the Windows 8 release on ARM based systems. Multiple GPU solutions would

introduce additional complexity, and potential for untested features. For Windows 8 all ARM based

systems must be configured with a single GPU only.

2. In features where multiple GPUs are allowed, the system must meet the minimum performance

requirements in every mode that can be configured. Performance requirements are described in this

requirement (System.Fundamentals.Graphics.DisplayRender.Performance). A system certification

submission will need to include the system level performance related results with a submission for both

GPUs.

3. Projection is a key Windows scenario, and the ability to clone the laptop lid to an external monitor with

Win+P is a basic expectation of the end user. All mobile system must be able to "clone" or "extend" by

using the Win+P key to the external port most likely used with a projector.

4. A system must correctly support the WDDM 1.2 "seamless boot" and bugcheck, PnP Start/Stop

functionality:

a. The "post" GPU must meet the seamless boot requirements as described in requirements

Device.Graphics.WDDM12.Display.DisplayOutputControl,

System.Client.Firmware.UEFI.GOP.Display, and

System.Fundamentals.Graphics.InternalDisplay.NativeResolution

b. PnP stop of the WDDM driver or a bugcheck must cause the frame buffer to be seamlessly

handed off to the OS as described in requirement

Device.Graphics.WDDM12.Display.PnpStopStartSupport

Page 129 of 254

5. Microsoft tests and validates the graphics API's to ensure conformance with the D3D

specification/MSDN documentation. The graphics features and capabilities are always available once

they have been enumerated. Applications are designed with these expectations, that the GPU device and

capabilities are fixed for the runtime of the application. A system where these expectations are not true

is not allowed.

6. Windows supports surprise removals of the GPU only with hibernate. All other cases are not allowed. A

system must not use a GPU that could be "surprise removed" in these other cases. An example of a

feature that may result in unexpected surprise removal is a GPU in a docking station.

7. Heterogeneous multiple GPU solutions can be allowed, however systems shipping with heterogeneous

devices must have been certified with all GPUs present. For system certification purposes heterogeneous

should be considered a Windows unsupported feature, requiring an addendum.

8. Linked Display Adapter features have two operating modes: Linked, and Unlinked. Certification of

devices that can be used in an LDA configuration must submit for certification with at least 1 device

configured in the LDA feature and 1 device configured unlinked. This is to ensure that all expected

Windows features pass in both modes.

9. Features involving an i-GPU with a secondary d-GPU require an addendum to be certified.

10. Lastly "Switchable Graphics solutions" where the display output is moved from one GPU to another GPU

are not allowed.

The below table summarizes the above in a tabular format

GPU Feature Type ARM

 platforms

All Other platforms

Single GPU Windows Supported Windows Supported

Homogeneous (Same Vendors) Not Allowed Windows Supported

Heterogeneous (Diff Vendors) Not Allowed Requires addendum

Linked Adapter Not Allowed Windows Supported

i- GPU with a Secondary d-GPU Not Allowed Requires addendum

Switchable Graphics Not Allowed Not Allowed

Design Notes:

The following are definitions of multiple GPU variations used in this requirement.

Homogeneous: A homogeneous multiple GPU feature consists of two or more GPUs from the same GPU vendor,

using the same graphics driver. All GPUs are always on. Each GPU is visible to the application and there is no

coordination between adapters and display output is not shared or switched between adapters.

Linked Adapter: A linked adapter (LDA) feature has two or more identical GPUs from the same vendor, which

share the graphics workload. In an LDA feature an application will access one GPU, but the work is distributed by

the driver across multiple GPUs. Typically the application is not even aware of the existence of the multiple GPU's.

Examples are AMD CrossfireX and NVIDIA SLI.

Heterogeneous: A heterogeneous feature consists of two or more GPUs where there is no coordination between

the adapters, and display output is not shared or switched between the adapters. The GPUs usually are from

different GPU vendors although they may be from the same vendor. All GPUs are always on. In a heterogeneous

feature each GPU is visible to the application.

i- GPU with a Secondary d-GPU: Integrated GPU (i-GPU) with a Secondary Discrete GPU (d-GPU) has the

integrated GPU sharing computation and rendering with an additional discrete adapter. In this case the two

GPUs may have different drivers and even be from different vendors. In this feature, displays are not switched

between the adapters; the main display is always physically connected via the i-GPU. Examples are NVIDIA

Optimus, AMD Hybrid PowerXpress and AMD Enduro.

Page 130 of 254

Switch-able Graphics: A Switch-able Graphics feature is two or more GPUs from either the same vendor or

different vendors where the responsibility for display output to any monitor changes from one processor to the

other, typically via a MUX. This feature is not allowed in Windows 8 systems and above.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Graphics.NoRebootUpgrade

Graphics drivers must be upgradable without a reboot of the system

Target Feature System.Fundamentals.Graphics

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The WDDM driver model has supported rebootless upgrade since Windows Vista. For Windows 8 all systems

must support the upgrade of graphics driver package without requiring the system to reboot.

For example the graphics driver package includes the graphics driver and all associated utilities and services.

Additional Information

Business Justification Windows 8 has removed XDDM which means the system is now always running a

WDDM Driver. This means rebootless upgrade is now possible in all systems. This

requirement is to ensure: A user is now able to accept a driver update without

interrupting their activity. This provides a more modern experience. On server

platforms reboots impact server availability.

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics.PremiumContentPlayback

Protected Environment Signature requirement

Target Feature System.Fundamentals.Graphics

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Page 131 of 254

Systems must be capable of premium (i.e., protected) audio or video content playback. If one or more (Audio

Processing Objects) APOs are provided in the audio driver, the APOs must be able to load successfully without

disabling the Audio Device Graph as a protected process.

Additional Information

Exceptions This is if-implemented for Windows 8.1 Server as audio and video is not required

components. If the server contains either an audio or full video component then this

requirement is required.

Business Justification Premium content playback using Windows Store apps require display driver and

Audio Processing Object binaries to be properly signed as required by Windows

Protected Environment license program. Playback fails if a required driver binary does

not meet this requirement leading to poor user experience.

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics.Windows7.MultipleOperatingModes

If a Windows 7 system has Multiple GPU’s, the graphics and system test must pass in every "Operating Mode"

Target Feature System.Fundamentals.Graphics

Applies to Windows 7 Client x86, x64

Description

A system with multiple GPU's must meet logo requirements and pass testing in all available GPU modes.

Multi-GPU system may have one or more integrated and/or discrete display adapters.

A Hybrid/Switchable system must transition between GPU modes only on user consent. GPU mode transitions are

triggered manually by the end-user unless it is completely transparent to the user with no visible effects. On

initiation of the GPU switch, the Multiple GPU system must display an indication to the end-user to show which

GPU mode they are currently in and running applications must not be stopped without user notification or

consent. It is also possible to create a Pre-consent list by which the customer can chose to that the "dialog box"

that came up during a mode switch be automatically for the particular scenario.

If a system running in any multi-GPU mode is connected to an external display, the system must be able to

transition into a Clone mode or Extended Desktop mode through CCD. Recommended time for CCD mode

change should not be longer than an equivalent desktop mode change- preferably less than 5 seconds. If the

system is connected to an external display device through an output connector who's GPU was powered off,

recommended time for GPU switching should not be longer than a preferred time of 10 seconds so the user

doesn't think the system is hung or not functioning properly.

A multi-GPU system may have one or more integrated and/or one or more discrete display adapters. A multi-GPU

system may have display adapters which do not support standard VGA. However, at least the boot device must

be able to support standard VGA and the ability to reset to standard VGA resolutions from higher resolutions

when needed. The hardware and system firmware must support VESA modes to allow at least the minimum

desktop resolution for Windows by using the system VGA driver.

To reset a device sufficiently implies that the device is fully functional as a VGA device. It must be fully functional

Page 132 of 254

when programmed via the video system firmware and when programmed directly through standard VGA

registers.

Mobile Platforms only:

Mobile Multi-GPU systems must support Connecting and Configuring Displays (CCD). A Multi-GPU system may

have one or more integrated and/or one or more discrete display adapters. Any display adapter which exposes an

output connector to which a display device could be connected must be able to support all CCD functionality as

specified in the WDDM 1.1 specification.

On systems with multiple GPUs, the laptop lid target must not be reported as "connected" on more than one

graphics adapter at any given time.

Design Notes:

The following are some examples of GPU operating modes.

Linked Adapter: A linked adapter (LDA) configuration has two or more GPUs from the same vendor that are

sharing the graphics workload. In a LDA configuration an application will access one GPU, but the work is

distributed by the driver across multiple GPUs. Typically the application is not even aware of the existence of the

multiple GPU’s. Examples are NVidia SLI and AMD Crossfire.

Heterogeneous: A heterogeneous configuration consists of two or more GPUs from different GPU vendors. In a

heterogeneous configuration each GPU is visible to the application.

Switch-able Graphics: A Switch-able Graphics configuration is two or more GPUs from either the same vendor or

different vendors where the primary purpose is to provide multiple power/performance modes for the GPU.

Examples are AMD PowerExpress, and NVIDIA Hybrid power.

The following is an example of a Hybrid switch.

When the customer unplugs the system and the GPU will switch from dGPU to iGPU, the customer has a choice to

select "do not ask again for this type of GPU transition" (wording to be reviewed by Usability team later). And all

future unplug will initiate a GPU switch without a dialog box.

Additional Information

Business Justification The purpose of this requirement is to ensure core Windows usage scenarios work

correctly in each GPU mode of the system. This requirement was put in place because

there have been instances where the GPUs have passed certification, but once

integrated into the system, the overall system would fail fundamental scenarios. One

example of such a failure was a multi-GPU laptop that could not project in one of its

GPU operating modes. The system had to be reconfigured manually into another

operating mode by the end user. However the end user had no way of understanding

or determining why the laptop was failing to project. This problem was made even

worse by the fact that the system was shipped by the OEM in a mode that could not

project, and the OEM software regularly placed the laptop in to the mode where the

laptop could not project, even after the user had discovered the root cause.

Enforcement Date Mar. 01, 2012

Page 133 of 254

System.Fundamentals.Graphics.Display
The requirements in this section are enforced on any graphics device implementing display portion of the WDDM.

Related Requirements System.Fundamentals.Graphics.Display.MinimumResolutionandColorDepth

System.Fundamentals.Graphics.Display.MinimumResolutionandColorDepth

System minimum resolution and color depth

Target Feature System.Fundamentals.Graphics.Display

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Minimum resolution/color depth is 1024x768 at a depth of 32bits on each output simultaneously.

Additional Information

Exceptions Tablet PC systems

Enforcement Date Mar. 01, 2012

System.Fundamentals.Graphics.DisplayRender
The requirements in this section are enforced on any graphics device implementing display and render portion of the

WDDM.

Related Requirements System.Fundamentals.Graphics.DisplayRender.Performance

 System.Fundamentals.Graphics.DisplayRender.StableAndFunctional

System.Fundamentals.Graphics.DisplayRender.Performance
A Windows 8 system has sufficient graphics performance to provide a good user experience for mainstream

application scenarios on both A/C and battery power

Target Feature System.Fundamentals.Graphics.DisplayRender

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

Page 134 of 254

 Windows Server 2012 x64

Description

Good graphics performance is crucial for all Windows 8 systems because users expect a smooth and responsive

experience with their mainstream applications.

All Windows 8 systems must have sufficient graphics performance to meet performance requirements and

metrics for a collection of scenarios that represent mainstream applications.

The tests encompass both high-level scenarios with Internet Explorer, including CSS animations, Windows Shell,

and DirectX mini-scenarios.

The high-level scenarios represent end-user perceived performance for commonly used applications.

The DirectX scenarios are mini-apps with graphically rich content representing real world workloads. These mini-

apps measure graphics performance using a number of common primitives that provide a proxy for real world

productivity application performance.

Metrics

The following are the metrics that are measured for the applicable scenarios and used to determine the

performance of a system.

Time to First Frame for each application

Time measured from process launch to first present hitting the screen. This measurement is done as a warm start.

FPS

Frames per second achieved while painting the contents of the window in a rendering loop

Memory Score

Memory score measures the total memory cost of graphics for a scenario. To calculate memory score, the driver is

evaluated for memory being consumed in several scenarios. The benchmark aggregates results from different

memory metrics (detailed later in this document) to arrive to a final score for the scenario.

The memory benchmark is comprised of the following six scenarios:

 Idle

 Present

 Textures

 Buffers

 Surfaces

 Upload

Glitching

For scenarios with animations, users expect smooth animations at 60 Hz. This metric looks for the total number of

frames missed and number of concurrent frames missed. This is done by measuring the present events for every

vsync periods between start and end of animations ignoring the first and last incomplete vsync period. The metric

measurement also verifies that DWM glitches are zero.

Design Notes

These tests run on battery power only if the system is a laptop or tablet/convertible. If the system is a desktop,

the tests are run on A/C only.

The following scenarios are instrumented and have goals for the metrics described:

DirectX scenario tests

Scenario test Metrics

 Time to first frame goals Glitching FPS

Page 135 of 254

Blank Direct2D App

Tests the bare minimum time and resources

required to just get Direct2D loaded and a

putting a blank windows up.

200 milliseconds

Note:

The time to create the user

mode and kernel mode device

by the driver should be 30

milliseconds or less for this

test. The UMD and KMD

creation times are part of the

time to first frame

measurements.

not

applicable

not

applicable

Direct2D Brush

Draw a bitmap with the following brush types:

• Bitmap brush with different extend

modes (clamp, wrap and mirror)

• Solid color brush

• Gradient brush

o Linear gradient

o Radial gradient

• Image brush

200 milliseconds for bitmap

brush, solid color brush, and

gradient brush; 300

milliseconds for image brush

No

glitching

at 60 fps

60 FPS

Direct2D Bitmaps with perspective transforms

Render a set of bitmaps with perspective

transform applied.

300 milliseconds No

glitching

at 60 fps

60 FPS

Direct2D Layers

Composite images and primitives using D2D

layers

300 milliseconds No

glitching

at 60 fps

60 FPS

Text

Tests include:

• Rendering text on full screen.

• It cycles between different rendering

modes and glyph run sizes

300 milliseconds No

glitching

at 60 fps

60 FPS

Pan and Zoom

Rendering a 21 MegaPixel image and performing

pan and zoom operations at the native resolution

of the display.

300 milliseconds No

glitching

at 60 FPS

60 FPS

Panning through small images with effects

Test render a set of unique 200 x 200 pixel

images that have image effects applied at the

native resolution of the display, and pan through

them in a continuous loop.

300 milliseconds No

glitching

at 60 FPS

60 FPS

Page 136 of 254

Vector Graphics

Rendering animations of complex vector

graphics with Direct2D.

Note that if the underlying GPU supports feature

level 11.1, then more content is rendered.

Direct2D takes advantage of Target Independent

Rasterization, which should provide

corresponding rendering speed increases.

300 milliseconds No

glitching

at 60 FPS

60 FPS

Internet Explorer

 Load and render content representative

of dynamic HTML5 content from a local

on disk cache.

Content representative of dynamic HTML5 + CSS

content.

N/A No

glitching

at 60 fps

60 FPS

Bandwidth test

The GPU bandwidth is evaluated by measuring the time it takes the GPU to compose the client area of a single

application with simple content (for example: no overlap, no glass) at the native resolution of the panel. The test

doesn't try to achieve peak bandwidth measurement under ideal circumstances, but is meant to measure a real

world scenario that includes other necessary overhead such as setting up the hardware, context switching the

GPU from the application context to the DWM context and reporting completion of the rendering operation

through interrupt/fence mechanism.

The goal for passing the Bandwidth test is dependent on the native resolution of the panel. The bandwidth is

required to be sufficient to performat least 7.5 memory I/O operations per pixel at 60 FPS (or 450 *

resolution.width * resolution.height * resolution.bpp). For example, this translates to the required bandwidth for

the two common resolutions listed below:

Resolution Required Bandwidth

1366x768 1.8 GB/sec

1920x1080 3.6 GB/sec

The test multiplies the number of pixels by7.5to provide for7.5 32-bit memory operations per pixel. If the

measured bandwidth is greater than the required bandwidth, the test passes.

GPU bandwidth is measured with the following scenarios:

1. The DWM composes a single texture. This causes the GPU to perform the following memory operations

per pixel:

o 1 32-bit read

o 1 32-bit write

2. The DWM composes N textures with a pixel shader which samples from N textures. This causes the GPU

to perform the following memory operations per pixel:

o N 32-bit reads

o 1 32-bit write

The number of textures tested (N) is the set {2, 3}.

3. The DWM composes 3 primitives in 3 separate rendering operations:

Page 137 of 254

 An opaque constant color is written. This causes the GPU to perform the following memory operations

per pixel:

 1 32-bit write

 A transparent texture is composed on top (with alpha blending enabled). This causes the GPU to

perform the following memory operations per pixel:

 2 32-bit reads

 1 32-bit write

 A second transparent texture is composed on top (with alpha blending enabled). This causes the GPU to

perform the following memory operations per pixel:

 2 32-bit reads

 1 32-bit write

In aggregate, this scenario performs 4 reads and 3 writes per pixel.

4. The DWM composes an opaque solid color primitive followed by a transparent textured primitive. A 16-

bit depth buffer is used, which causes the transparent primitive to be completely occluded. This causes

the GPU to perform the following memory operations per pixel:

o 2 16-bit reads

o 1 16-bit write

o 1 32-bit write

5. An application renders a single BC (block compressed) texture onto a full-screen surface. This causes the

GPU to perform the following memory operations per pixel:

o 1 4-bit (BC1) or 8-bit read (BC2/BC3)

o 1 32-bit write

To account for time spent decompressing BC textures, the goal for this scenario is adjusted to be the

same as the goal for the scenario that reads from a 32-bit texture (scenario 1).

6. An application composes 2 textures with a pixel shader which samples from both textures. 1 texture uses

the DXGI_FORMAT_R8_UNORM pixel format, while the other texture uses the

DXGI_FORMAT_R8G8_UNORM pixel format. This causes the GPU to perform the following memory

operations per pixel:

o 1 8-bit read

o 1 16-bit read

o 1 32-bit write

To account for time spent doing computation in the pixel shader, the goal for this scenario is adjusted to

be the same as the goal for the scenario that reads from a single 32-bit texture (scenario 1).

Memory Benchmark Test

The memory benchmark is comprised of the following six scenarios:

 Idle

 Present

 Textures

 Buffers

 Surfaces

 Upload

Page 138 of 254

For each of the rendering scenarios, the goals are established by calculating:

 2MB allowed for OS overhead

 +2MB allowed for driver overhead per GPU in a link for x86 and x64 platforms; +1MB per GPU in a link

allowed for ARM platforms. The number of linked GPUs on a system is determined and multiplied by the

system-determined size per GPU to determine the total driver overhead allowed.

 +Size of surfaces explicitly created by application + 7.5% for alignment and padding in the case of non-

power of two surfaces.

 +4KB overhead per surface created on 32-bit platforms; +8KB overhead per surface on 64-bit platforms.

 Except for the Present scenario, the rendering scenario targets are rounded to the next half-megabyte

boundary.

Idle

The Idle scenario represents the memory cost of the driver shortly after boot on a minimal desktop with no

application running other than the standard OS processes and the benchmark itself.

The score is comprised of two elements:

 Memory footprint of the driver itself in memory (non-paged code and data page)

 Outstanding resource allocation by driver (pool, contiguous memory, mdl, locked memory) excluding

video memory and limited to the kernel mode driver.

The goal for the memory footprint is to be less than 10 MB and the goal for the outstanding resource allocation is

to be less than 10 MB. The final benchmark idle score is less than the following:

 x86 Goal ARM Goal x64 Goal

Idle Less than 20 MB Less than 20 MB Less than 20 MB

Note that the benchmark only takes into account the final score.

Present

The present scenario represents the base memory cost of a simple D3D device.

The test creates a 300x300 window, clears its back buffer and z-buffer, then present. When taking into account

window decoration, the client area of the application is 284x261 on a default desktop.

The goal for a single GPU in this scenario is computed as follows:

 2MB OS Overhead

 +2MB Allowed for driver / GPU overhead (x86/x64); +1MB (ARM)

 +284x261*4*1.075 DWM Redirection surface

 +284x261*4*1.075 Application Back Buffer

 +284x261*2*1.075 Application Z-Buffer (D16)

 +3 * 4096 For surface overhead (ARM/x86); +3 * 8192 (x64)

 Goal: less than 3.8MB (ARM), less than 4.8MB (x86/x64)

Textures

The textures scenario evaluates the memory overhead of creating large number of texture objects.

In addition to the resources described in the Present scenario, this scenario creates 5000 textures of 128x128

pixels using a few different pixel formats. The application renders with each texture to ensure they are referenced

in the scenario.

The goal for a single GPU in this scenario is computed as follows:

 4.8MB base cost (x86/x64); 3.8MB base cost (ARM)

 +5000*128*128*BytesPerPixel for surface memory

 +5000*4096 for surface overhead (ARM/x86); +5000*8192 (x64)

The following table lists the goals for each combination of platform and pixel format:

Page 139 of 254

Format x86 Goal (MB) x64 Goal ARM Goal

DXGI_FORMAT_R8G8B8A8_UNORM 336.8 356.4 335.8

DXGI_FORMAT_BC1_UNORM 63.4 82.9 62.4

DXGI_FORMAT_BC2_UNORM 102.5 122.0 101.5

DXGI_FORMAT_BC3_UNORM 102.5 122.0 101.5

DXGI_FORMAT_R8_UNORM 102.5 122.0 101.5

DXGI_FORMAT_R8G8_UNORM 180.6 200.1 179.6

Buffers

The buffers scenario represent the memory overhead of creating large number of small vertex buffers.

In addition to the resources described in the Present scenario, this scenario creates 5000 vertex buffer of 16320

bytes. The application renders with each of the vertex buffer to ensure they are referenced in the scenario.

The goal for a single GPU in this scenario is computed as follows:

 4.8MB base cost (x86/x64); 3.8MB (ARM)

 +5000*16536 for surface memory

 +5000*4096 for surface overhead (ARM/x86); +5000*8192 (x64)

 Goal: less than 102.5MB (ARM), less than 103.5MB (x86), less than 123MB (x64)

Surfaces

The surfaces scenario represents the memory overhead a hypothetical desktop system would hit if all GDI

bitmaps were converted to DX surfaces.

In addition to the resources described in the Present scenario, this scenario creates a large number of surfaces of

various size and pixel depth. The file SimpleD3D10\surfaces.txt contains a snapshot (width * height * bpp) for all

GDI bitmap in existence on a particular busy system. The test creates and uses surfaces of the size and pixel depth

specified in this file.

The goal for a single GPU in this scenario is computed as follows:

 4.8MB base cost (x86/x64); 3.8MB (ARM)

 +143372288*1.075 for surface memory

 +1581*4096 for surface overhead (ARM/x86); +1581*8192 (x64)

 Goal: less than 157MB (ARM), less than 158MB (x86), less than 164.5MB (x64)

See the Perl script ParseSurfaceList.pl in the memory benchmark directory to see how surface memory is

computed from the PerfX\MemoryBenchmark\SimpleD3D10\Media\surface.txt file.

Upload

The upload scenario represents the memory overhead involved when uploading large amount of data to the GPU.

This ensures that the driver doesn't allocate too many staging surfaces and that staging surfaces are offered as

part of the upload. The test allow up to 4MB of staging to be allocated, all of it must be offered.

In addition to the resources described in the Present scenario, this scenario creates 100 textures of 512x512 of

format DXGI_FORMAT_R8G8B8A8_UNORM and DEFAULT usage with some initial data. These textures are

updated after first render with 512x512 data to verify that the data upload path does not incur additional driver

overhead.

The goal for a single GPU in this scenario is computed as follows:

 4.8MB base cost (x86/x64); 3.8MB (ARM)

 +1MB initial data allocated by test

 +100*512*512*4 for surface memory

 +100*4096 for surface overhead (ARM/x86); +100*8192 (x64)

 (Offered memory is automatically subtracted, up to 4MB).

 Goal: less than 105.5MB (ARM), less than 106.5MB (x86), less than 107MB (x64)

Goal Summary

Page 140 of 254

The table below summarizes the goals for each of the scenario for all platforms.

Scenario Limit ARM (MB) Limit x86 (MB) Limit x64 (MB)

Idle 20 20 20

Present 3.8 4.8 4.8

Textures 336 337 356.5

Buffers 102.5 103.5 123

Surfaces 157 158 164.5

Upload 105.5 106.5 107

Design Notes

If the system has any of the following configurations:

 Multiple GPUs

 It is powered via an AC adapter and used away from an outlet using a rechargeable battery for

continuous operation when not plugged in

Then validation of this requirement must be done against each configuration that applies to the system.

If the system has support for connecting multiple displays, then the validation of this requirement must be done

against the primary display used for the HCK system configuration.

Additional Information

Exceptions If implemented on Server should there be a Display only or Full WDDM graphic

devices in the system.

Business Justification Graphics performance is critical to deliver a good end-user experience on Windows 8.

The performance of the HW subsystems and the graphics driver plays a big role in

that. The impact can be felt by the user in the following way: High memory footprint

impacts overall scalability of desktop based DX usage Long Device creation time

affects the application launch time Driver has much higher CPU overhead in typical

usage leading to poor experience on a typical workload.

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics.DisplayRender.StableAndFunctional
Display device functions properly and does not generate hangs or faults under prolonged stress

Target Feature System.Fundamentals.Graphics.DisplayRender

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Page 141 of 254

Description

The system must run under prolonged stress without generating hangs or faults.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Graphics.HybridGraphics
Hybrid Graphics Feature

Related Requirements System.Fundamentals.Graphics.HybridGraphics.MultiGPU

System.Fundamentals.Graphics.HybridGraphics.MultiGPU
Hybrid Graphics

Target Feature System.Fundamentals.Graphics.HybridGraphics

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

New systems shipping in Windows 8 that expect to be hybrid capable must adhere to the following requirements:

 A Microsoft supported hybrid system can only be composed as one integrated GPU(iGPU) and one

discrete GPU(dGPU)

 Cannot have more than two GPUs

 Both GPU’s must be DX11.0 or higher

 Both GPU’s driver must be WDDM1.3 or higher

 Both GPUs must implement the new standard allocation type added to the KM and associated UM DDIs

to support cross adapter shared surfaces.

 If each GPU has separate standard drivers, then they must be independent of each other and can be

updated independently without breaking hybrid functionality

 The dGPU must be equal or higher performance than the iGPU

 The iGPU is the adapter that has outputs

 The dGPU adapter is one that

0. sets the new discrete hybrid cap added to the WDDM 1.3 driver

1. has no outputs

All other multi-GPU configurations do not get Microsoft hybrid support. They will be treated the same way as

defined by the “System.Fundamentals.Graphics.MultipleOperatingMode” requirement.

D-list requirements

This is the list of applications maintained by the dGPU IHV for choosing a GPU for an app to run in hybrid mode

or not.

Page 142 of 254

 The D-list DLL can be loaded into a process and queried at most once during D3D initialization

 The DLL size must be under 200KB

 The DLL must be able to return the GPU selection choice within 4ms

Power Management Requirements

Following are the power management requirements for the discrete GPU participating in a hybrid configuration:

 The driver is required to register for runtime power management

 The driver needs to register certain power components based on the following scenarios

Device does not

require D3

transitions

 DXGK_POWER_COMPONENT_ENGINE component for each GPU engine

(node)

 A DXGK_POWER_COMPONENT_D3_TRANSITION component with one F

state

Device requires D3

transitions and has

no self-refresh

memory

 A DXGK_POWER_COMPONENT_D3_TRANSITION component with two F states

 DXGK_POWER_COMPONENT_ENGINE component for each GPU engine (node)

 A DXGK_POWER_COMPONENT_MEMORY component for each memory

segment.

If TransitionalLatency of this component is > 200us, component must also have

DXGK_POWER_COMPONENT_FLAGS::DriverCompletesFStateTransition flag set

Device requires D3

transitions and has

self-refresh memory

 A DXGK_POWER_COMPONENT_D3_TRANSITION component with two F states

 DXGK_POWER_COMPONENT_ENGINE component for each GPU engine (node)

 A DXGK_POWER_COMPONENT_MEMORY component for every memory

segment and with the DXGK_POWER_COMPONENT_FLAGS::ActiveInD3 flag set.

This component must report 2 F States and TransitionalLatency of F1 state

must be 0

 One DXGK_POWER_COMPONENT_MEMORY_REFRESH component for the

adapter. Also, the driver must leave space in dependency array for all device

engines

 Transitional Latency reported for each component must not be greater than max. Latency tolerance for

that component is specified in the table below:

 Latency tolerance

Engine (monitor ON)

 Initial state

 After 200 ms of idle time

 No context on the engine

0.08 ms

15 ms

30 ms

Engine (monitor OFF)

 Initial state

 After 200 ms of idle time

 No context on the engine

 2 ms

 50 ms

100 ms

Memory

 Active context exists

 No active context exists

15 ms

30 ms

Memory refresh

 Initial state

 No active context exists

 Monitor off and no active context exists

0.08 ms

30 ms

80 ms

D3 transition

 Initial state

 After 10 s of all engines idle time

 No active context

 Monitor off and (no active context or all engines idle for 60 s)

0.08 ms

 15 ms

200 ms

250 ms

Page 143 of 254

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics.InternalDisplay
Base for Graphics on Systems

Related Requirements System.Fundamentals.Graphics.InternalDisplay.NativeResolution

System.Fundamentals.Graphics.InternalDisplay.NativeResolution

Systems with integrated displays must use native resolution by default

Target Feature System.Fundamentals.Graphics.InternalDisplay

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

A system with an integrated display must support the native resolution of the display and use native resolution as

the default.

An "integrated" display is any display that is built into the system. A laptop lid is an example of an integrated

display.

Windows is designed to work best in native resolution.

This requirement applies to systems that use UEFI or BIOS.

Additional Information

Business Justification This requirement ensure that a Windows system can boot into the preferred native

resolution without screen flashing or other artifacts

Enforcement Date Jun. 26, 2013

System.Fundamentals.Graphics.MultipleDevice
Requirements which apply to systems with more than one graphics device.

Related Requirements System.Fundamentals.Graphics.MultipleDevice.Configure

 System.Fundamentals.Graphics.MultipleDevice.SubsystemDeviceID

Page 144 of 254

System.Fundamentals.Graphics.MultipleDevice.Configure

On a system with multiple graphics adapters, system firmware will allow the user to configure the usage of the

adapters

Target Feature System.Fundamentals.Graphics.MultipleDevice

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

On a system with multiple graphics adapters, the system firmware (BIOS, UEFI, etc), must provide the user with

the ability to modify the following settings:

• Enable/Disable any adapter

o The firmware must offer the user the ability to select which adapter is enabled or disabled

o At any given time at least one adapter, that supports POST, must be enabled

o If the user enables an adapter, and the system only supports one active adapter at a time, then

all other adapters must be disabled

o If the only enabled adapter is not detected, the firmware will, fallback to the integrated adapter.

If there is no integrated adapter, then fallback to the first adapter found on the first bus

• Select the adapter to be used as POST device

o Firmware must only allow the user to select one adapter as the POST device.

o System is allowed to POST only on an adapter that cannot be physically removed from the

system.

o At any given time at least one adapter, that supports POST, must be enabled

o If multiple adapters that support POST are enabled, the firmware must provide the user an

option to select which one will be used for POST

Additional Information

Business Justification It is possible that the user has multiple graphics adapters connected to the system. In

such a case the user might want to selectively use only a subset of the graphics

adapters. Windows depends on the POST adapter for the following

scenarios: Windows setup always runs on the POST adapter Pre-OS environment

always runs on the POST adapter In case there is no hardware specific WDDM driver

available, the Microsoft Basic Display driver will be installed on the POST adapter

Enforcement Date Jun. 26, 2013

Page 145 of 254

System.Fundamentals.Graphics.MultipleDevice.SubsystemDeviceID
Hybrid/Switchable Graphics systems that support multiple discrete graphics adapters or chipset combination must

use the same Subsystem ID

Target Feature System.Fundamentals.Graphics.MultipleDevice

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Multiple GPU Graphics configurations that support multiple discrete graphics adapters or chipset combination

must use the same Subsystem ID for each device in the configuration.

Multiple GPU Graphics systems are permitted to have heterogeneous graphics solutions in certain circumstances,

thus allowing different VEN IDs.

The Multiple GPU configurations which combine GPUS from different vendors must have the same SUBSYS ID to

indicate the driver packages intended for a Multiple GPU system. Should the same device be used as a single

device in another system, that instance of the device must use a different unique 4part PNPid.

Examples:

1. The integrated GPU and the Discrete GPU may have different VEN ID and DEV ID, but must have the same

SSID. for example:

Display Devices

Card name: InField GFX

Manufacturer: OutStanding

Chip type: RUOK Family

DAC type: Integrated RAMDAC

Device Key: Enum\PCI\VEN_AAAA&DEV_EEEE&SUBSYS_9025104D&REV_A1

Display Devices

Card name: Rocking Fast GFX

Manufacturer: Awesome Chips

Chip type: 10Q Family

DAC type: Internal

Device Key: Enum\PCI\VEN_BBBB&DEV_DDDD&SUBSYS_9025104D&REV_07

2. The GPUs that is used in a Switchable machine must use a different SSID if also used in a non-switchable

machine. For example:

Display Devices

Page 146 of 254

Card name: InField GFX

Manufacturer: OutStanding

Chip type: RUOK Family

DAC type: Integrated RAMDAC

Device Key: Enum\PCI\VEN_AAAA&DEV_EEEE&SUBSYS_9999104D&REV_A1

Note that the OutStanding InField GFX in #1. Is the same as the one stated in #2; however, although they are the

same hardware, they must have a different SSID.

Additional Information

Business Justification This is required to identify system as being a hybrid GPU through Online Crash

Analysis.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Graphics.RenderOnly
Requirements which apply to a graphics device only implementing WDDM Render DDI's

Related Requirements System.Fundamentals.Graphics.RenderOnly.MinimumDirectXLevel

System.Fundamentals.Graphics.RenderOnly.MinimumDirectXLevel
Render Only device on client or server system must be Direct3D 10 capable or greater.

Target Feature System.Fundamentals.Graphics.RenderOnly

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

If a client or server system includes a render only device, the device must be Direct3D 10 capable or greater. This

device can only be supported by a WDDMv1.2 Render Only Driver. Render Only devices are not allowed as the

primary graphics device on client systems. All Windows 8 client systems must have a full graphics WDDM v1.2

device as the primary boot device.

Additional Information

Business Justification Over the years there has been an increasing focus on General-purpose computing on

graphics processing units (GPGPU) scenarios for doing vast amount of complex

mathematical or graphical operations. Some of the common examples of this are

graphics rendering for animation, database processing, financial & astronomical

calculations and oil and gas exploration. The use of GPGPU has proven benefits in

Page 147 of 254

performance, power consumption and cost.

Enforcement Date Mar. 01, 2012

System.Fundamentals.HAL
This feature defines Hardware Abstraction Layer (HAL) requirements for systems.

Related Requirements System.Fundamentals.HAL.HPETRequired

 System.Fundamentals.HAL.IfCSRTPresent

System.Fundamentals.HAL.HPETRequired

System provides a high-precision event timer

Target Feature System.Fundamentals.HAL

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

This requirement was formally known as SYSFUND-0005

Systems must implement a High Precision Event Timer (HPET) that complies with the following points of the Intel

Architecture Personal Computer (IA-PC) HPET Specification:

 The main counter frequency must be greater than or equal to 10 MHz and less than or equal to 500

MHz

 The main counter must monotonically increase, except on a roll-over event.

 The main counter and comparators must be at least 32 bits wide.

 The main counter must have at least three comparators.

 All of the comparators must be able to fire aperiodic, "one-shot" interrupts.

 At least one of the comparators must be able to fire periodic interrupts.

 Each comparator must be able to fire a unique and independent interrupt.

 HPET must support edge triggering interrupts.

 Timer interrupts must not be shared in LegacyIRQRouting mode.

Additional Information

Business Justification This timer is necessary for platforms and the operating system. Existing timers cannot

provide the resolution that is necessary for existing and future applications. With this

Page 148 of 254

timer, time-sensitive applications, such as multimedia applications, have the support

to make high-quality applications.

Enforcement Date Jun. 01, 2008

System.Fundamentals.HAL.IfCSRTPresent

Signed HAL extensions are required for timers and DMA controllers that are not supported in-box

Target Feature System.Fundamentals.HAL

Applies to Windows 8 Client ARM (Windows RT)

 Windows 8.1 Client ARM (Windows RT 8.1)

Description

For platforms that don't implement the ARM defined Generic Interval Timer (GIT), the platform should have CSRT

table with resource groups that describe the timer resources. In addition, The OS image on the platform must

contain Microsoft signed HAL extensions that are properly linked to the entries in the CSRT, and these HAL

extensions must register the following minimum timer resources required by Windows:

 a timer (minimum resolution of one millisecond),

 a counter (Minimum resolution 1 usec),

 an always on timer (must also be registered with a resolution of at least one millisecond), and

 an always on counter (registered with a resolution of a least 1 millisecond)

If the platform includes a system (shared) DMA controller, the CSRT must include the entries to describe this

controller. In addition, the OS image on the platform must contain Microsoft signed HAL extensions that are

properly linked to these entries in the CSRT, and these HAL extensions must register the DMA resources required

by Windows: at least one DMA Controller, and all DMA Channels for each registered DMA Controller.

Additional Information

Business Justification The information in the tables helps Windows identify the HAL extension module(s)

that need to be loaded to support the hardware implemented on the platform. The

HAL extension gets information from these tables on how the core system resources

are implemented and configured on this platform, to accommodate any variations

among platforms.

Enforcement Date Mar. 01, 2012

System.Fundamentals.ImageVerification
This feature defines Hardware Abstraction Layer (HAL) requirements for systems.

Related Requirements System.Fundamentals.ImageVerification.ImageVerification

Page 149 of 254

System.Fundamentals.ImageVerification.ImageVerification

All ARM systems must run the Image Verification Tool

Target Feature System.Fundamentals.ImageVerification

Applies to Windows 8 Client ARM (Windows RT)

 Windows 8.1 Client ARM (Windows RT 8.1)

Description

MANDATORY. All ARM systems must also run the Image Verification Tool.

Additional Information

Business Justification This requirement is needed to ensure all binaries in the image are Microsoft signed.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Input
Requirements in this section apply to HID devices that are integrated in the system.

Related Requirements System.Fundamentals.Input.I2CDeviceUniqueHWID

 System.Fundamentals.Input.PS2UniqueHWID

System.Fundamentals.Input.I2CDeviceUniqueHWID

I2C connected HID devices must have a Unique HWID along with a HID compatible ID

Target Feature System.Fundamentals.Input

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All I2C connected HID devices must have a unique HWID and a HID compatible ID that will allow WU to identify

the device (when needed) and allow drivers to be loaded from WU.

Design Notes: See Microsoft published HID I2C protocol specification (link not provided yet)

Additional Information

Exceptions This requirement is only enforced for HID I2C devices and not generalized for SPB.

Page 150 of 254

Enforcement Date Mar. 01, 2012

System.Fundamentals.Input.PS2UniqueHWID

All PS/2 connected devices (such as internal keyboards) must have a unique hardware ID

Target Feature System.Fundamentals.Input

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

All PS/2 connected devices (such as touchpads and keyboards) must have a unique hardware ID that enables the

third party driver to ship with WU.

Design Notes: See Microsoft unique hardware ID whitepaper

http://www.microsoft.com/whdc/device/input/mobileHW-IDs.mspx

Additional Information

Business Justification This requirement is needed to enable third-party touchpad drivers to be eligible for

WU. A unique hardware ID will enable the system to determine the corrected driver

needed for a particular device and download it through WU

Enforcement Date Jun. 01, 2012

System.Fundamentals.MarkerFile
A marker file" is used to help associate WER data with specific computer models. Requirements in this section

describe the syntax for the "marker file.""

Related Requirements System.Fundamentals.MarkerFile.SystemIncludesMarkerFile

System.Fundamentals.MarkerFile.SystemIncludesMarkerFile
System includes marker file

Target Feature System.Fundamentals.MarkerFile

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

http://www.microsoft.com/whdc/device/input/mobileHW-IDs.mspx

Page 151 of 254

Description

The marker file gives additional information regarding the maker of the PC system and model. This information is

used to collect and distribute On-line Crash Analysis information. The marker file is a text file with a .mrk

extension. The .MRK filename must be under 256 characters in length including the path. The characters must be

letters, numbers, periods, hyphens, commas and parentheses.

The marker file format is:

For companies with PCI Vendor IDs:

VendorID_CompanyName_Division_Marketing Model Name_other info.MRK

For companies without a PCI Vendor ID

CompanyName_Division_Marketing Model Name_other info.MRK

Each column is separated by the underscore '_' character. The values in each column are

VendorID = The PCI vendor ID for the PC manufacturer.

CompanyName = Name of the company go here. This should be consistent for each marker file.

Division = this represents the division within the company. If your company doesn't not have divisions please put

'na.'

Marketing Model Name = product name the system will be shipped as. This should be the same as the marketing

name entered at the time of logo submission.

Other info = optional ad can be added by putting more underscores. The additional fields may be used for

identifying any other critical information about the system.

Optionally, the _I field can be used as a part number that can be used to link the marketing model name to.

Design Notes:

The marker file goes in the c:\windows\system32\drivers folder.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Network
These are system level requirements that may impact the integration with a type of network device.

Related Requirements System.Fundamentals.Network.NetworkListOffloads

 System.Fundamentals.Network.PowerRequirements

System.Fundamentals.Network.NetworkListOffloads

Wireless LAN networking device on systems that support Connected Standby must support NDIS 6.30 and support

offloads

Target Feature System.Fundamentals.Network

Page 152 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The following requirements apply to wireless LAN devices.

WLAN Devices must support the following features:

Feature Requirement

No Pause on Suspend Required

D0 offload Required

USB Selective Suspend Required- If USB based

Network List offload Required

Wi-Fi PSM Required

Wi-Fi Direct Required

Radio Management Required

WPS 2.0 Required

WoWLAN Required

Systems that support Connected Standby require the use of an NDIS 6.30 Ethernet driver. The device must

support the features listed below:

Feature Required

Wakeup on LAN Yes

D0 & D3 Protocol Offloads (Protocols Jun. 26,

2013)

Yes

Interrupt Moderation Yes

OS-programmable packet filtering Yes

Additional Information

Business Justification Wi-Fi Network List Offload is a feature where certain Wi-Fi profile information is

offloaded to the NIC firmware to allow the Wi-Fi NIC to perform logic that optimizes

the power efficiency and connectivity of a given system. It helps improve the

scanning and connection timings.

Enforcement Date Mar. 01, 2012

System.Fundamentals.Network.PowerRequirements

All physical network devices in a system (inclusive of docking stations) must meet device certification criteria for

power management requirements

Target Feature System.Fundamentals.Network

Page 153 of 254

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Support of this feature is Required.

All physical network devices included in a system (inclusive of docking stations) must meet the device-level power

management requirements for that specific device type.

Example: If an Ethernet device is included in a Connected Standby capable system or associated dock, that

Ethernet device must meet the power management requirements for Connected Standby regardless of whether

the individual device certification was achieved when tested on a Connected Standby capable system or not.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.NX
NX is a feature that allows marking of memory pages as executable or non-Executable. This allows the CPU to help

prevent execution of malicious data placed into memory by an attacker.

Related Requirements System.Fundamentals.NX.SystemIncludesNXProcessor

System.Fundamentals.NX.SystemIncludesNXProcessor
Systems must ship with processors that support NX and include drivers that function normally

Target Feature System.Fundamentals.NX

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

To ensure proper device and driver behavior in systems all drivers must operate normally with Execution

Protection Specifically, drivers must not execute code out of the stack, paged pool and session pool. Additionally,

drivers must not fail to load when Physical Address Extension (PAE) mode is enabled, a requirement for operation

of NX.

In addition, the system firmware must have NX on and data execution prevention (DEP) policy must not be set to

"always off."

Additional Information

Page 154 of 254

Business Justification Microsoft Windows offers a number of defensive enhancements designed to protect

customers. This technology prevents code from executing in data segments.

Enforcement Date Mar. 01, 2012

System.Fundamentals.PowerManagement
Power management is a feature that turns the PC off or into a lower power state. Requirements in this section

describes requirements around power management.

Related Requirements System.Fundamentals.PowerManagement.DockUndock

 System.Fundamentals.PowerManagement.MultiPhaseResume

 System.Fundamentals.PowerManagement.PCResumesInTwoSeconds

 System.Fundamentals.PowerManagement.PCSupportsS3S4S5

 System.Fundamentals.PowerManagement.PowerProfile

System.Fundamentals.PowerManagement.DockUndock
System supports docking and undocking across a hibernate transition

Target Feature System.Fundamentals.PowerManagement

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

For systems which ship with a dock, the system must be able to hibernate and resume when changing from the

docked to undocked state or the undocked to the docked state. This is not limited to, but should include that the

memory map should not change when docking or undocking the system.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.PowerManagement.MultiPhaseResume
Storage subsystem supports multi-phase resume from Hibernate

Target Feature System.Fundamentals.PowerManagement

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

Page 155 of 254

 The driver and hardware subsystems for the boot storage device must support multi-phase resume from

Hibernate. In order to do this, the system must be able to maintain the system's ability to identify definitively all

of the memory needed on resume. This is not limited to, but should include that:

 Any crashdump filters/minifilters that must support read

 No WHEA pshed plugins are installed

 Hypervisor is not enabled

Additional Information

Exceptions The boot storage device is booted from a USB bus.

Enforcement Date Mar. 01, 2012

System.Fundamentals.PowerManagement.PCResumesInTwoSeconds
System resumes from ACPI S3 state in less than specified time

Target Feature System.Fundamentals.PowerManagement

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

The total system Standby (S3) resume time from CPU execution to resume complete, as measured by Windows®

system tracing, must be two seconds or less. Total system resume time equals the sum of the system firmware S3

re-initialization time and Windows device initialization time, but does not include user mode initialization.

"Resume complete" is defined as the point at which all system devices have completed their S0 power I/O

Request Packet (IRP), but does not include the time required for devices to complete their D0 IRP or to become

fully functional. A power test tool that includes arming and processing system trace events for resume time will

be included in the WDK and will be used to test system resume time.

Exceptions:

 Systems equipped with FBDIMM memory must complete S3 resume in 7 seconds or less.

 Systems with dual symmetrical CPU sockets must complete S3 resume in 3 seconds or less.

 Systems equipped with internal USB hub (excluding USB root hub) devices must complete S3 resume in

at most 2 seconds plus the time required for the USB hub devices to initialize*.

Design Notes:

See "Windows On/Off Transitions Solutions Guide" at the following website:

http://go.microsoft.com/fwlink/?LinkId=61994

The test for this requirement will automatically detect USB hub devices. USB hub devices are defined as USB-

enumerated devices with Plug and Play (PnP) compatible hardware IDs that contain the string "USB\Class_09".

The initialization time for each USB hub device will be calculated as the time required for the Microsoft USB hub

functional device object (FDO) driver to receive and complete the S0 IRP for the USB hub device. The test will

http://go.microsoft.com/fwlink/?LinkId=61994

Page 156 of 254

subtract this initialization time for each USB hub device from the total system resume time. The result must be

less than 2 seconds.

Additional Information

Business Justification This requirement continues Microsoft® investment in driving fast system S3 resume

performance. Fast system startup is a fundamental performance attribute required to

enable key platforms and scenarios including laptop and Slate PCs, battery life, power

management, media center, and small office/home office (SOHO) servers. Fast system

startup is also part of the InstantOn initiative.

Enforcement Date Jun. 01, 2006

System.Fundamentals.PowerManagement.PCSupportsS3S4S5
Systems support S3, S4 and S5 states

Target Feature System.Fundamentals.PowerManagement

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A desktop or mobile system installed with a client operating system must support the S3 (Sleep), S4 (Hibernate)

and S5 (Soft-off) states. Every system must support wake from all implemented sleep states. Wake from S5 is only

required from the power button.

A mobile system installed with a client operating system must support either S3 (Sleep) or Connected

Standby. Systems that support Connected Standby must also support S4 (Hibernate).

If a USB host controller is implemented on the system, then at least one external port on the controller must

support wake-up capabilities from S3. If the system contains multiple USB host controllers, all host controllers

integrated on the system board (that is, not add-on cards) must support wake-up from S3. USB host controllers

are not required to support wake-up when a mobile system is running on battery power.

Server systems are not required to implement S3, S4, or S5 states. If a server system does implement S3, S4 or S5

states, they must work correctly.

Power Management is an important aspect of good user experience. The system should be able to control what

devices to put into a sleep state when not being used. All devices must comply with the request from the system

to go into a sleep state and not veto the request thereby putting an additional drain on the power source.

Additional Information

Page 157 of 254

Enforcement Date Jun. 01, 2006

System.Fundamentals.PowerManagement.PowerProfile

System must report form factor via power management profile

Target Feature System.Fundamentals.PowerManagement

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The Preferred_PM_Profile in the FADT table must be set to one of the values based on the form factor of the

system as outlined in the ACPI specification version 5.0. This value shall not be unspecified (0).

Design Notes:

For more information see page 119 of the ACPI specification version 5.0.

Additional Information

Business Justification OSPM must be able to detect the form factor in order to optimize power policy

defaults and tag anonymous system usage telemetry data.

Enforcement Date Mar. 01, 2012

System.Fundamentals.PowerManagement.CS
Power management is a feature that turns the PC off or into a lower power state. Requirements in this section

describes requirements around power management for systems that support connected standby.

Related Requirements System.Fundamentals.PowerManagement.CS.ConnectedStandby

 System.Fundamentals.PowerManagement.CS.CSQuality

 System.Fundamentals.PowerManagement.CS.FanOff

System.Fundamentals.PowerManagement.CS.ConnectedStandby
System supports the connected standby power profile must set the FACP flags

Target Feature System.Fundamentals.PowerManagement.CS

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 158 of 254

Description

The follow bits must be set in the FACP flags:

FACP - Field Bit Len. Bit Offset Description

LOW_POWER_S0_IDLE_CAPABLE 1 21 This flag indicates

if the system

supports low

power idle states in

the ACPI S0 state.

A value of one (1)

indicates that the

platform supports

sufficiently low S0

idle power such

that transitions to

the S3 state are

not

required. OSPM

may interpret a

one in a manner

that it favors

leaving the

platform in the S0

state with many

devices powered

off over the S3

state when the

user is no longer

interacting with the

platform.

Reserved 10 22 Reserved for future

use.

Additional Information

Business Justification A separate capability for the connected standby feature is required because platforms

may both expose the ACPI S3 and S4 idle states and be capable of ultra-low S0 idle

power. Similarly, the platform form factor is insufficient to determine if the platform

is capable of connected standby as notebook, desktops and server platforms may

eventually all become systems that support connected standby.

Enforcement Date Mar. 01, 2012

System.Fundamentals.PowerManagement.CS.CSQuality

Systems that support Connected Standby must meet reliability standards for Runtime Power Management

Target Feature System.Fundamentals.PowerManagement.CS

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 159 of 254

Description

Systems that support Connected Standby must meet minimal reliability standards as tested for this requirement.

The test associated with this requirement will exercise any installed Power-Engine Plug-In (PEP), installed device

drivers and platform firmware.

Design Notes

To help ensure the reliability of a system that supports connected standby, the system will be subjected to the

following tests:

 Connected Standby Stress with IO

 Runtime Power Focused Stress with IO

These tests will be run while Driver Verifier is enabled with standard settings.

These tests will also be run separately with the Driver Verifier Concurrency Testing setting.

If a PEP device is enumerated in ACPI namespace and the system does not have a PEP loaded, the test will fail.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.PowerManagement.CS.FanOff

If a connected standby system has a fan, the fan must be off while the system is connected standby.

Target Feature System.Fundamentals.PowerManagement.CS

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All Connected Standby systems have requirements regarding thermal regardless of processor architecture and

form factor. These requirements are tested for in the HCK.

1. All CS systems must have at least one thermal zone.

2. At least one thermal zone has critical shutdown temperature defined.

3. Each thermal zone must report actual temperature on the sensor.

4. All CS systems with fans must expose its activity to the OS.

5. All CS systems with fans must keep the fan off while in “Sleep” or Connected Standby state.

Active Cooling

Page 160 of 254

From the point of view of the OS, a platform has two strategies that it can use to implement fan control:

1. Implement one or more ACPI thermal zones with active trip points to engage/disengage the fan.

The Windows Thermal Framework supports active cooling devices at a very basic level. The only

device supported inbox is an ACPI fan, and it can only be controlled with on/off signal.

2. Implement a proprietary solution to control the fan (via drivers, an embedded controller, etc.).

While Windows does not control the behavior of proprietary solutions for fans, Windows does

support fan notifications to thermal manager for all implementations including embedded

controllers so that diagnostic information and telemetry can be collected. Thus fan exposure to the

OS is required for all Connected Standby systems and strongly recommended for all others.

Note that the implementation for active cooling is completely separate from the passive cooling mitigations

discussed above.

ACPI Thermal Zone Controlled Fans

Windows supports the ACPI 1.0 D-state based fan definition. Please refer to the ACPI spec for details. Thus the

control is limited to fan on/off. The driver for the fan is provided in acpi.sys.

• The temperature sensor reads the temperature has crossed a trip point and issues Notify(0x80) on the

associated thermal zone.

• The thermal zone reads the temperature with the _TMP control method and compares the temperature

to the active trip points (_ACx) to decide whether the fan needs to be on or off.

• The OS puts the fan device in D0 or D3 which causes the fan to turn on or off.

Multiple Speed Fan in ACPI

In order to achieve multiple speeds for a fan using ACPI 1.0, there are two options:

1. The thermal zone can contain multiple “fans”, when only one physical fan exists. Having more “fans” on

at one time translates to faster fan speed. Please see Section 11.7.2 in the ACPI 5.0 specification for an

example of this option.

2. When the fan is on, it can decide for itself how fast to spin. Systems with embedded controllers, for

example, can choose this option.

Proprietary Solution for Fans

Windows needs to be able to detect fan activity with either implementation. When a platform uses the ACPI

thermal model, Windows is responsible for turning the fan on and off and therefore already knows when it is

active. When a proprietary solution is used to control the fan, Windows needs notification that the fan is running.

To enable this, Windows will support a partial subset of the ACPI 4.0 fan extensions, outlined in Table 6.

Feature Description Supported

_FST Returns the fan’s status. yes

Notify(0x80) Indicates the fan’s status has changed. yes

_FIF Returns fan device information. no

_FPS Returns a list of fan performance states. no

_FSL Sets the fan performance state (speed). no

Table 6: ACPI 4.0 fan object support in Windows

Windows will use the _FST object to determine if the fan is running (Control field is nonzero) or off (Control field

is zero). Windows will also support Notify(0x80) on the fan device as an indication that _FST has changed and

needs to be reevaluated.

Page 161 of 254

A fan that implements the _FST object is not required to be in a thermal zone’s _ALx device list, but it is allowed to

be. This allows for a hybrid solution, where a fan is typically controlled by a third party driver, but can be

controlled by the OS thermal zone if the third party driver is not installed. If a fan is in an _ALx device list and is

engaged by the thermal zone (placed in D0), the _FST object is required to indicate a non-zero Control value.

For all fans, Windows will determine the state of the fan using the following algorithm:

1. If a fan is in D0 (as a result of a thermal zone’s _ACx trip point being crossed), it is engaged.

2. If a fan is in D3 and does not support the ACPI 4.0 extensions, it is disengaged.

3. If a fan is in D3 and supports the ACPI 4.0 extensions, the OS will check _FST’s Control field for a non-

zero value to see if the fan is engaged

Fan Presence

A platform indicates that there is a fan on the system by including a fan device (PnP ID PNP0C0B) in the ACPI

namespace. Windows will take the presence of this device as an indication that the system has a fan, and the

absence of this device as an indication that the system has no fan.

Connected Standby Specific Guidance

The Windows Thermal Management Framework is a part of the kernel and ships with all Windows systems. Thus,

the material above applies to all machines. However, various types of machines require additional guidance more

specific to Connected Standby.

Connected Standby brings the smartphone power model to the PC. It provides an instant on, instant off user

experience that users have come to expect on their phone. And just like on the phone, Connected Standby

enables the system to stay fresh, up-to-date, and reachable whenever a suitable network is available. Windows 8

supports Connected Standby on low-power platforms that meet specific Windows Certification requirements.

Connected-Standby capable systems are highly mobile devices in a thin and light form factor. Further, Connected

Standby systems are always on and in the ACPI S0 state. In order to deliver a robust and reliable customer

experience, the entire system —from the mechanical design to firmware and software implementation— must be

designed with critical attention to thermal characteristics.

The system must include a temperature sensor for the SoC at a minimum.

Processor Throttling

The PPM communicates the maximum, desired and minimal performance levels to the PEP. Under thermal

throttling conditions, the maximum performance level should equal the throttling performance requested by the

thermal manager. The PEP then sets the CPU’s physical voltage and frequency based on the PPM’s performance

level requirements.

Design Notes

For more information, please see the Thermal Guide document.

Additional Information

Exceptions This requirement only applies to connected standby systems.

Business Justification From a user perspective, the machine appears “off”. When the system is in connected

standby, users expect it to be equivalent to the “sleep” action. Thus the fan is

expected to never come on, just as in traditional machines during sleep. If the fan

does come on, users may hear it and/or feel the hot air circulating and think that the

computer has a bug. Therefore, the fan must not come on while running a realistic

Page 162 of 254

Connected Standby workload in a standard lab environment.

Enforcement Date Jan. 01, 2014

System.Fundamentals.PXE
The Preboot Execution Environment (PXE) is an environment to boot computers using a network interface.

Related Requirements System.Fundamentals.PXE.PXEBoot

System.Fundamentals.PXE.PXEBoot

Remote boot support for PXE complies with BIOS Boot Specification 1.01 or EFI boot manager

Target Feature System.Fundamentals.PXE

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All systems are required to be PXE capable. The system must support booting from the network as defined in

BIOS Boot Specification, Version 1.01, Appendix C, or as controlled by the EFI boot manager. This requirement is

exempt for systems that are configured with Wireless LAN only.

Systems shipping with a UEFI compatible operating system and supporting PXE boot must support IPV4 PXE and

IPV6 PXE booting as defined in UEFI 2.3.1.

UNDI must support :

 a DUID-UUID per IEFT draft

 (http://tools.ietf.org/html/draft-narten-dhc-duid-uuid-01)

 DHCP6, DUID-UUID, IPv6

IPV4 multicast

Design Notes:

Microsoft recommends that the implementation of accessing PXE be consistent with BIOS Boot Specification,

Version 1.01, and Appendix C.

Additional Information

http://tools.ietf.org/html/draft-narten-dhc-duid-uuid-01

Page 163 of 254

Enforcement Date Jun. 01, 2006

System.Fundamentals.Reliability
These are for reliability tests content from the former DEVFUND category.

Related Requirements System.Fundamentals.Reliability.SystemReliability

System.Fundamentals.Reliability.SystemReliability

Drivers in a system must be reliable

Target Feature System.Fundamentals.Reliability

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All drivers in a system must pass all requirements under Device.DevFund.Reliabilty. All systems will need to pass

Common Scenario stress, sleep stress with IO and Enable/Disable with IO.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.Security
Additional TDI filter driver and LSP requirements related to security.

Related Requirements System.Fundamentals.Security.DeviceEncryption

 System.Fundamentals.Security.NoTDIFilterAndLSP

System.Fundamentals.Security.DeviceEncryption
Systems that support connected standby must support device encryption

Target Feature System.Fundamentals.Security

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 164 of 254

Description

Systems that support connected standby must meet the security requirements to support enablement of Device

Encryption. OEMs must not block the enablement of Device Encryption when deploying the OS images unless the

device is pre-provisioned with a third-party disk encryption solution. Device Encryption will be enabled on these

systems to ensure that user data is protected. As pre-requisites for Device Encryption, connected standby systems

must meet requirements for TPM and Secure Boot as outlined in System.Fundamentals.TPM20 and

System.Fundamentals.Firmware.CS.UEFISecureBoot.ConnectedStandby.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.Security.NoTDIFilterAndLSP

No TDI filters or LSPs are installed by the driver or associated software packages during installation or usage

Target Feature System.Fundamentals.Security

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

There can be no use of TDI filters or LSPs by either kernel mode software or drivers, or user mode software or

drivers.

Additional Information

Business Justification Use of TDI filters and LSPs increase attack surface, and will therefore no longer be

supported for future OS releases.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SignedDrivers
This feature checks for signed drivers.

Related Requirements System.Fundamentals.SignedDrivers.BootDriverEmbeddedSignature

 System.Fundamentals.SignedDrivers.DigitalSignature

Page 165 of 254

System.Fundamentals.SignedDrivers.BootDriverEmbeddedSignature

Boot drivers must be self-signed with an embedded signature

Target Feature System.Fundamentals.SignedDrivers

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All boot start drivers must be embedded-signed using a Software Publisher Certificate (SPC) from a commercial

certificate authority. The SPC must be valid for kernel modules. Drivers must be embedded-signed through self-

signing before the driver submission.

Design Notes:

For more information about how to embedded-sign a boot start driver, see "Step 6: Release-Sign a Driver Image

File by Using an Embedded Signature" at the following website:

 http://www.microsoft.com/whdc/winlogo/drvsign/kmcs_walkthrough.mspx

After the file is embedded-signed, use SignTool to verify the signature. Check the results to verify that the root of

the SPC's certificate chain for kernel policy is "Microsoft Code Verification Root." The following command line

verifies the signature on the toaster.sys file:

 Signtool verify /kp /v amd64\toaster.sys

 Verifying: toaster.sys

 SHA1 hash of file: 2C830C20CF15FCF0AC0A4A04337736987C8ACBE3

 Signing Certificate Chain:

 Issued to: Microsoft Code Verification Root

 Issued by: Microsoft Code Verification Root

 Expires: 11/1/2025 5:54:03 AM

 SHA1 hash: 8FBE4D070EF8AB1BCCAF2A9D5CCAE7282A2C66B3

 ...

 Successfully verified: toaster.sys

 Number of files successfully Verified: 1

 Number of warnings: 0

 Number of errors: 0

In the Windows Hardware Certification Kit, this requirement will be tested by using the Embedded Signature

Verification test.

Additional Information

Business Justification Boot drivers must be embedded-signed in order to work properly with the boot

process.

http://www.microsoft.com/whdc/winlogo/drvsign/kmcs_walkthrough.mspx

Page 166 of 254

Enforcement Date Jun. 01, 2007

System.Fundamentals.SignedDrivers.DigitalSignature

System must contain logo qualified devices

Target Feature System.Fundamentals.SignedDrivers

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All buses, devices and other components in a system must meet their respective Windows Hardware Certification

Requirements and use drivers that either are included with the Windows operating system installation media or

are digitally signed by Microsoft through the Windows Hardware Certification Program that match the Windows

OS version being submitted for and shipping with.

For example, if a logo qualifying a system for Windows 7, then all drivers on the system must be signed by

Microsoft for Windows 7 or be drivers that ship on the Windows 7 media. All devices in the system would also

need to be logo qualified or certified for Windows 7. This requirement applies to all versions of Microsoft

Windows.

All devices and drivers need to be fully installed, and does not contain any problem codes.

Additional Information

Enforcement Date Jun. 01, 2006

System.Fundamentals.SMBIOS
System Management BIOS (SMBIOS) requirements defines data structures in the system firmware which allows a

user or application to store and retrieve information about the computer.

Related Requirements System.Fundamentals.SMBIOS.SMBIOSSpecification

System.Fundamentals.SMBIOS.SMBIOSSpecification
System firmware support for SMBIOS complies with the SMBIOS specification

Target Feature System.Fundamentals.SMBIOS

Page 167 of 254

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

The system firmware must implement support for SMBIOS that complies with System Management BIOS

Reference Specification, Version 2.4 or later. The SMBIOS implementation must follow all conventions and include

all required structures and fields as indicated in the SMBIOS Specification, Section 3.2, and follow all conformance

requirements as indicated in Section 4. Bit 2 in the BIOS Characteristics Extension Byte 2 field must be set (Section

3.3.1.2.2 of the specification). The length of the Type 1 (System Information) table must be at least 1Bh bytes

(includes SKU Number and Family fields from Version 2.4 of the specification).

Additionally, the following fields must have non-Null values that accurately describe the computer system or

computer system component:

 (Table 0, offset 04h) BIOS Vendor

 (Table 0, offset 08h) BIOS Release Date

 (Table 0, offset 14h) BIOS Major Release Version
1

 (Table 0, offset 15h) BIOS Minor Release Version
1

 (Table 1, offset 04h) System Manufacturer
2

 (Table 1, offset 05h) System Product Name
2

 (Table 1, offset 08h) Universal Unique ID number

 (Table 1, offset 19h) System SKU Number
2

Microsoft recommends that the following fields have non-Null values that accurately describe the computer

system or computer system component:

 (Table 0, offset 05h) BIOS Version

 (Table 0, offset 16h)Embedded Controller Major Release Version
3

 (Table 0, offset 17h) Embedded Controller Minor Release Version
3

 (Table 1, offset 06h) System Version

 (Table 1, offset 1Bh) System Family
2

 (Table 2, offset 04h) Base Board Manufacturer

 (Table 2, offset 05h) Base Board Product

 (Table 2, offset 06h) Base Board Version

1
These fields must not have values equal to 0FFh.

2
These fields gain prominence as fields which will be used for identifying unique system configurations for

telemetry and servicing. The Manufacturer, Product Name, SKU Number and Family fields must not be longer

than 64 characters in length. Avoid leading or trailing spaces or other invisible characters.
3
If the system has a field upgradeable embedded controller firmware; these values should not be equal to 0FFh.

Page 168 of 254

Design Notes: SKU Number has been moved to a required field in order to improve telemetry reporting. We

encourage the OEM to be careful to fill in Manufacturer consistently and to fill in SKU Number with a value that

can identify what the OEM considers a unique system configuration for telemetry and servicing.

Additional Information

Business Justification It is important to do everything possible to ensure that Windows removes privacy-

related information such as machine GUID, Serial Number and Asset Tag before

adding SMBIOS data to crash dumps.

Enforcement Date Jun. 01, 2006

System.Fundamentals.StorageAndBoot
This section summarizes the requirements for storage and boot devices.

Related Requirements System.Fundamentals.StorageAndBoot.BootPerformance

 System.Fundamentals.StorageAndBoot.EncryptedDrive

 System.Fundamentals.StorageAndBoot.SATABootStorage

System.Fundamentals.StorageAndBoot.BootPerformance

Boot Devices in systems that support Connected Standby must meet these requirements

Target Feature System.Fundamentals.StorageAndBoot

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

The following requirements apply to Boot Devices in systems that support Connected Standby.

In addition to SATA and USB, Windows platform supports SD and eMMC based storage. An eMMC device may be

used as either a system (boot) disk or as a data disk but an SD device can only be used as a data disk.

Flash Type Boot Data Disk

eMMC 4.5+ Yes Yes

SD 2.0 or 3.0 No Yes

ACPI interfaces must specify whether the storage device is internal or external and whether or not it is removable

or fixed.

Page 169 of 254

_RMV must be defined in ACPI namespace for any embedded devices attached to an SD host controller, where 0

is defined as non-removable. _RMV may optionally be defined for external slots as 1.

The following parameters must be defined within the “Storage Class-Specific Information” to be returned by the

ACPI _DSM method for an SD/eMMC Storage Controller:

 Number of Sockets

 Socket Addresses

Support GPIO card detection on SD/eMMC Storage Controller.

When using eMMC as the primary boot device, the eMMC memory must be hardware partitioned such that the

boot critical portion of the EFI Firmware resides in an area of the device that is not accessible by Windows.

The CPU Vendor and/or Firmware Provider must furnish the software tools needed to maintain and update the

firmware.

The following requirements are applicable to boot storage media and are tested with the smaller of 2% or 1GB

free space:

Feature Span Size Specification

Power

Max Idle Power - <= 5 mW

Random Performance

4KB Write IOPs 1 GB >= 200

*5 GB >= 50

†10 GB >= 50

64KB Write IOPs 1 GB >= 25

4KB Read IOPs *5 GB >= 2000

†10 GB >= 2000

4KB 2:1 read/write mix IOPs 1 GB >= 500

* 5GB >= 140

†10 GB >= 140

Sequential Performance

Write speed (64KB I/Os) *5 GB >= 40 MB/s

†10 GB >= 40 MB/s

Write speed (1MB I/Os) *5 GB >= 40 MB/s

†10 GB >= 40 MB/s

Read speed (64KB I/Os) *5 GB

>= 60 MB/s

‡>= (120 MB/s)

†10GB >= 60 MB/s

Page 170 of 254

‡>= (120 MB/s)

Device I/O Latency

Max Latency - < 500 milliseconds

*Applies only to devices with 16 GB of internal storage or lower.

†Applies only to devices with greater than 16 GB of internal storage.

‡Applies only if the device is HS200 capable.

Additional I/O Latency requirement:

Maximum of 20 seconds sum-total of user-perceivable I/O latencies over any 1 hour period of a user-

representative workload, where a user-perceivable I/O is defined as having a latency of at least 100 milliseconds.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.StorageAndBoot.EncryptedDrive

Systems which ship with a Encrypted Drive as a boot storage device must support security command protocols in

order to make sure the data at rest is always protected.

Target Feature System.Fundamentals.StorageAndBoot

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

The following requirements apply if Encrypted Drive (System.Fundamentals.StorageAndBoot.EncryptedDrive)

support is implemented for a UEFI based client system or server systems:

1. The system MUST have a TPM 1.2 or TPM 2.0.

2. The system MUST implement the EFI_STORAGE_SECURITY_COMMAND_PROTOCOL from either:

a. Trusted Command Support in UEFI 2.3 + UEFI Mantis change number 616 or

b. UEFI 2.3.1

3. The implementation of the Trusted Computing Group Platform Reset Attack Mitigation Specification

(http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigati

on_specification_version_10) MUST unconditionally issue TPer Reset (OPAL v2.0 in section 3.2.3) for all

scenarios whenever memory is cleared.

http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10

Page 171 of 254

4. The EFI_STORAGE_SECURITY_COMMAND_PROTOCOL and the TPer Reset command MUST be included

in the base UEFI image (not in a separate image of a UEFI driver).

5. The system MUST enumerate all Encrypted Drives and TPer Reset MUST be issued prior to executing any

firmware code not provided by the platform manufacturer in the base UEFI image.

6. The TPer Reset MUST be issued regardless of whether the TPM has had ownership taken or not.

 Note: The TPer Reset action will occur later in the boot process than the memory clear action because it has a

dependency on the EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.

Additional Information

Business Justification Support for BitLocker with Encrypted Drives (when Encrypted Drives are used with

BitLocker, booting the system to the Windows Logon prompt automatically unlocks

bands through BitLocker authentication process. To help ensure BitLocker'd data at

rest is protected, the bands must be locked if the system is power cycled)

Enforcement Date Mar. 01, 2012

System.Fundamentals.StorageAndBoot.SATABootStorage

System with SATA boot storage must meet requirements

Target Feature System.Fundamentals.StorageAndBoot

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

AHCI Host Controllers using Windows for boot support must be compliant with the AHCI specification.

Host Controller Interface

Revision

AHCI

1.1, 1.2, 1.3

System with SATA controller must enable AHCI mode support.

Externally connected SATA devices (eSATA) are not supported for boot storage.

When SATA is used as the primary boot device, to ensure reliability and prevent inadvertent erasure of the

firmware that may cause the device to become inoperable, the boot critical portion of the UEFI firmware must

reside on a separate storage device that is not accessible by the host Operating System. The CPU Vendor and/or

Firmware Provider must furnish the software tools needed to maintain and update the firmware.

When used in systems that support connected standby, the SATA device must meet the power requirements

stated in the section for System.Fundamentals.StorageAndBoot.BootPerformance.

Additional Information

Page 172 of 254

Enforcement Date Aug. 01, 2012

System.Fundamentals.SystemAudio
This section contains all of the audio requirements for PCs

Related Requirements System.Fundamentals.SystemAudio.Audio

 System.Fundamentals.SystemAudio.HardwareVolumeControl

 System.Fundamentals.SystemAudio.MicrophoneLocation

 System.Fundamentals.SystemAudio.NoiseOnTheSignal

 System.Fundamentals.SystemAudio.SystemEmploysAntiPop

 System.Fundamentals.SystemAudio.SystemMicArray

 System.Fundamentals.SystemAudio.SystemUsesHDAudioPinConfigs

System.Fundamentals.SystemAudio.Audio

Systems contain audio devices that conform to Windows Logo requirements

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Systems need to conform to all audio device requirements

Additional Information

Exceptions If audio is implemented in the PC, then this requirement must be met.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemAudio.HardwareVolumeControl
System with user exposed hardware audio volume control(s) uses approved control method to report status

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

Page 173 of 254

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

This requirement was formerly known as SYSFUND-0057.

Non-slate/convertible systems that implement an integrated hardware volume control must use one of the

following volume controls methods:

 Volume knob widget as defined in the Intel High Definition (HD) Audio Specification

 PS/2 scan codes as defined in Keyboard Scan Code Specification

 HID controls as defined in HID Audio Controls and Windows

For Slate and Convertible PCs a slider or knob is not acceptable. The volume control button must either be a

rocker or two button combination with one button raising the volume level while the other lowers it.

Design Notes:

Specifically for HD Audio implementations (see the referred specifications for the other two solutions); the HD

Audio specification outlines how a codec can send an unsolicited response to software whenever a volume

button is pressed or whenever a rotary quadrature encoder provides a pulse to the volume knob widget pins on

the HD Audio codec. It is also possible to use an ADC and get the volume position data from an analog volume

pot control, but the rotary quadrature encoder pulse method is recommended. The HD Audio specification

specifies two methods of using the volume knob widget: direct and indirect. Microsoft recommends using the

indirect method to ensure the best user experience with the Windows operating system.

Additional Information

Exceptions Audio volume buttons are required for Slate PCs and convertibles. If other systems

and keyboards include audio volume controls then they must meet this requirement.

Business Justification Consistent volume experience for our users is important to succeed in the field where

consumer electronics parity is paramount. It is important that the Audio Engine and

Automatic echo cancellation feature knows exactly what is going on between the

audio device and the speakers. If there are any unknown (analog) changes to the

audio signal after it leaves the control of the OS this will cause user confusion and

lead to different UX on different PC systems.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemAudio.MicrophoneLocation
Microphone Location Reporting Requirement

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Page 174 of 254

Description

1. All active onboard fixed-position single element microphones and onboard fixed-position microphone

arrays (multiple combined elements) on a system must be simultaneously available for independent

capture.

2. Systems with no onboard fixed-position microphone arrays, but with multiple onboard fixed-position

microphones (e.g. Front/Back), AND no combined microphone, must have exactly one with GeoLocation

= “Front” (which will be set as the default microphone on that system).

3. Systems with multiple onboard fixed-position microphone arrays must have exactly one with

GeoLocation = “Front.”

4. Mic arrays with “n” elements must deliver RAW audio to the system. The RAW format must have “n”

channels, and data must come directly from the mic elements, free of signal processing.

5. If a microphone and a camera are physically co-located onboard then stated location information for

each must match.

6. For devices with multiple onboard fixed-position microphones or multiple arrays, the names of these

endpoints should be unique on the system. To specify a unique name, there are a few different methods

using KSPROPERTY_PIN_NAME, IPinName and .inf pin description name GUID registration. Here are

links that show how to implement these methods:

a. KSPROPERTY_PIN_NAME

http://msdn.microsoft.com/en-us/library/windows/hardware/ff565203(v=vs.85).aspx/

b. IPinName

http://msdn.microsoft.com/en-us/library/windows/hardware/ff536837(v=vs.85).aspx

c. Friendly Names for Endpoints

http://msdn.microsoft.com/en-us/library/windows/hardware/ff536394(v=vs.85).aspx

Additional Information

Exceptions This requirement is for mobile and all-in-one form factors. Desktop machines are

exempt.

Business Justification Microphones may be found in various physical locations on any given device. In

order to insure that systems and apps are able to programmatically understand

where these mics are located and select the proper mic for a particular scenario,

these requirements are needed.

Enforcement Date Jun. 26, 2013

System.Fundamentals.SystemAudio.NoiseOnTheSignal

Noise on the signal from the audio device generated by system components is -80dB FS or better

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

http://msdn.microsoft.com/en-us/library/windows/hardware/ff565203(v=vs.85).aspx/
http://msdn.microsoft.com/en-us/library/windows/hardware/ff536837(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff536394(v=vs.85).aspx

Page 175 of 254

Description

This requirement was formerly known as sysfund-0048.

When measuring the audio signal on any line level audio output from the system, the audio noise level created by

all of the components in the system must be minus 80dB FS regardless of PC system activity. This includes audio

passed to replicate line level audio outputs in docking stations or port replicators. This requirement does not

apply to audible acoustic noise from a system measured in air next to a PC system but rather to the analog noise

generated on the audio signals generated by the system's streaming audio device by system components during

various levels of system activity.

Design Notes: During various system loads such as high CPU usage, hard-disk activity, and CD or DVD playback,

or mouse activity, network activity must not interfere with audio fidelity. The types of noise that typically create

problems are mostly caused by ground loops; however, electromagnetic interference is also possible. The metric

can be based either on the dynamic range or frequency response.

Additional Information

Business Justification Improving PC audio fidelity is important to support the media usage scenarios.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemAudio.SystemEmploysAntiPop

System employs anti-pop measures on all system audio outputs

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

This requirement was formerly known as SYSFUND-0050

System employs one or more of the below anti-pop measures during power-up and power-down and all

supported power state changes such as hibernate and stand-by; · Power supply is bipolar. · system firmware mute

audio outputs during power-up sequence. · System employs tuned ramp-up of analog voltage supply circuit and

VRef filter capacitor. · The various audio outputs on a system are off by default, by using switch or relay

techniques and turned on only after an appropriate delay after power is applied to the system audio device (2-

7s). This delay avoids the audible and sometimes very destructive pop/click caused by unipolar power supplies in

today's PC. This requirement does not apply to primary chassis internal speaker, commonly used for PC Beep

notifications.

Design Notes:

To ensure the outputs are off during power state changes, external anti-pop circuitry can be

Page 176 of 254

Additional Information

Business Justification Pops and clicks have been a problem in the PC space forever and is basically a direct

result of the unipolar and otherwise inadequate power supplies used in PCs.

Attempting to mask the pops with switches or relays external to the audio device is a

band aid solution but short of changing the power supplies of all PCs is the best we

can hope to do. Pops and clicks during power state transitions can severely damage

highly sensitive and expensive audio speaker equipment and with the PC moving into

the living room in larger numbers we want to ensure the PC behaves as nicely as

other CE equipment when turned on or put into the various sleep modes.

Enforcement Date Jun. 26, 2013

System.Fundamentals.SystemAudio.SystemMicArray
If the system includes microphone array hardware then it exposes the array to the Microsoft class drivers through

defined methods

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

This requirement was formerly known as SYSFUND-0067.

Systems that include microphone array hardware must implement these according to the requirements as

described in the "Microsoft Microphone Array Design" white paper. The array characteristics must be exposed to

the Microsoft UAA class drivers through methods defined in the design guidelines and/or specification for each

supported audio technology.

If the microphone array is implemented through USB, see the Microsoft UAA USB Audio Design Guidelines and

the microphone array white paper outlining how to expose the array geometry in the descriptors of the USB

audio device.

Depending on specific array geometry, report array characteristics by using the Windows audio device property

set designed to expose the array geometry. See the Mic Array white paper for this info.

Design Notes:

The Microphone Array software support in Windows requires the array to meet certain design guidelines as

outlined in the Microsoft Mic Array design guidelines. The guidelines have exact metrics for the array geometries

but there is tolerance built into the windows mic array support.

The mic array needs to report its geometry to windows accurately.

Mic Array Whitepaper: http://www.microsoft.com/whdc/device/audio/micarrays.mspx

http://www.microsoft.com/whdc/device/audio/micarrays.mspx

Page 177 of 254

Audio Device Technologies for Windows http://www.microsoft.com/whdc/device/audio/default.mspx

Additional Information

Exceptions If a Microphone array is implemented then it must meet this requirement.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemAudio.SystemUsesHDAudioPinConfigs
System uses the HD Audio device pin configuration registers to expose logical devices supported by the Windows

UAA HD Audio class driver

Target Feature System.Fundamentals.SystemAudio

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Enabling the Microsoft UAA HD Audio class driver to create a number of HD Audio logical audio devices is

important to ensure a great standard experience when third-party drivers are not available. This is done by

adhering to the Microsoft HD Audio pin configuration programming guidelines and exposing the following

devices divided into areas based on audio device hardware functionality resources.

Resource scenario #1: HD Audio device with hardware resources that support one independent render and one

independent capture stream. The pin configurations must expose the following devices:

 1 independent output (speaker, headphone, redirected headphone or line out)

 1 independent input (microphone in, line in, mixed/muxed microphone in, or mixed/muxed line in)

Resource scenario #2: HD Audio device with hardware resources that support two independent render and two

independent capture streams. The pin configurations must expose the following devices:

 2 independent outputs (speaker, headphone, redirected headphone or line out)

 2 independent inputs or 1 independent input and 1 mixed/muxed input (microphone in or line in)

Resource scenario #3: HD Audio device with hardware resources that support four or more independent render

and two or more independent capture streams (SYSFUND-0047 compliant). The pin configurations must expose

the following devices:

 1 multi-channel independent output (speaker, redirected headphone or line out)

 1 independent output (speaker, headphone or line out)

 2 independent inputs or 1 independent input and 1 or more mixed/muxed inputs (microphone in or line

in)

http://www.microsoft.com/whdc/device/audio/default.mspx

Page 178 of 254

Resource scenario #4: HD Audio device with hardware resources that supports digital output (SPDIF or HDMI)

output and/or digital (SPDIF or HDMI) input in addition to either of the first three resource scenarios (SYSFUND-

0047 compliant). The pin configurations must expose the following devices in addition to the device required by

the corresponding resource scenario:

 1 independent digital output such as SPDIF or HDMI

 1 independent digital input (if solution has this capability) such as SPDIF or HDMI

For front panel audio jacks on a desktop or the side/front panel jacks on a mobile platform, at least one of the

jacks must be defined as a Headphone output in the HD Audio codec's pin configuration register by the

system firmware and function as such as the default behavior.

Design Notes: Independent resource is defined as a stream that can pass through the device without affecting

any other exposed device in the system/codec.

See the Pin Configuration Guidelines for High Definition Audio Devices white paper at

http://go.microsoft.com/fwlink/?LinkId=58572.

Additional Information

Business Justification Without properly configured pin register defaults the Microsoft UAA HD Audio class

driver will not be able to deliver a base level audio experience in the absence of a 3rd

party driver. The justification for the class driver: System Integrators, OEMs/ODMs;

Independent Hardware Vendors can depend on Microsoft provided drivers to cover

Operating system upgrades & installs, older or unsupported hardware, value

products, SKUs where stability and security are imperative. For end users, there is

guaranteed audio support on upgrade or clean Windows installation. It provides

option for stable, secure audio when advanced features are not required.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemAudio.3rdPartyDriver
The requirements and tests in this section are related to audio devices in a system that use a third party driver.

Related Requirements System.Fundamentals.SystemAudio.3rdPartyDriver.UAA

System.Fundamentals.SystemAudio.3rdPartyDriver.UAA
Audio device is compliant with one of the appropriate technology specifications supported by the UAA initiative

Target Feature System.Fundamentals.SystemAudio.3rdPartyDriver

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

http://go.microsoft.com/fwlink/?LinkId=58572

Page 179 of 254

 Windows Server 2012 x64

Description

Audio devices in systems must comply with Device.Audio.3rdPartyDriver.UAA.

Additional Information

Enforcement Date Sep. 17, 2008

System.Fundamentals.SystemPCIController
These requirements describe the requirements for a PCI or PCI Express controller in a system

Related Requirements System.Fundamentals.SystemPCIController.PCIRequirements

 System.Fundamentals.SystemPCIController.SystemImplementingRiserCard

System.Fundamentals.SystemPCIController.PCIRequirements

System devices and firmware meet PCI requirements

Target Feature System.Fundamentals.SystemPCIController

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All PCI Express devices must comply with the PCI Base Express Specification 1.1 unless specified otherwise below.

Reverse bridge implementations as defined in Appendix A of the PCI Express to PCI/PCI-X Bridge

Specification are not supported in Windows

A reverse bridge will not be supported if it adheres to the guidelines and recommendations as defined in

Appendix A of the PCI Express to PCI/PCI-X Bridge Specification, Revision 1.0.

System firmware disables the extended (non-VC0) virtual channels in PCI Express devices

The system firmware sets the VC enable bit (PCI Express Base Specification, Revision 1.0a, Section 7.11.7, "VC

Resource Control Register: bit 31") to 0 for all extended (non-VC0) virtual channels in all PCI Express devices. This

requirement does not apply to PCI Express High Definition Audio controllers, which use class code 04 and

subclass code 03.Because extended support for VC hardware is optional, this requirement addresses the scenario

in which incompatible VC hardware implementations might cause system reliability, stability, and performance

issues.

Hardware vendors are encouraged to work with Microsoft to define the future direction of extended virtual

channel support.

Page 180 of 254

System firmware for PCI-X Mode 2 capable and PCI Express systems implements MCFG table for

configuration space access

PCI-X Mode 2-capable and PCI Express systems must implement the MCFG ACPI table in PCI Firmware

Specification, Revision 3.0.The configuration space of PCI-X Mode 2 and PCI Express devices must be accessible

through the memory-mapped configuration space region defined in this table.

PCI-to-PCI bridges comply with PCI-to-PCI Bridge Architecture Specification

All PCI-to-PCI bridges must comply with PCI-to-PCI Bridge Architecture Specification, Revision 1.2.

Virtual bridges that comply with PCI Express also comply with PCI-to-PCI Bridge Architecture Specification

PCI Express Base Specification, Revision 1.0a, virtual bridges must comply with PCI-to-PCI Bridge Architecture

Specification, Revision 1.1.

In addition, VGA 16-bit decode (Section 3.2.5.18, "Bridge Control Register, bit 4") and SSID and SSVID (Section

3.2.5.13) from PCI-to-PCI Bridge Architecture Specification, Revision 1.2, must also be supported.

SSID and SSVID support is not required until January 1, 2011. If implemented, SSID and SSVID must meet the

specification.

SSVID is not required for PCIe to PCI/PCI-X bridges.

Mobile system can assign distinct IRQs for at least six PCI devices

Mobile systems must be able to assign at least six distinct interrupts for devices with a PCI configuration header.

Note that if the system supports MSI, any devices that implement MSI can be counted against this minimum.

x64-based system provides 64-bit support in PCI subsystem

For x64-based systems, all PCI bridges on the system board must support dual-access cycle (DAC) for inbound

access, and DAC-capable devices must not be connected below non-DAC-capable bridges, such as on adapter

cards.

All new 64-bit adapters must be DAC capable.

This DAC requirement does not apply to outbound accesses to PCI devices. However, for systems in which DAC is

not supported on outbound accesses to PCI devices, the system firmware must not claim that the bus aperture

can be placed above the 4-GB boundary.

Additional Information

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemPCIController.SystemImplementingRiserCard
System board implementing a riser card provides a unique ID for the riser

Target Feature System.Fundamentals.SystemPCIController

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

The system firmware for a system board that supports any type of enumerable riser card, such as AMR, ACR, and

CNR, must include the following support:

Page 181 of 254

 Detecting and enumerating each function on that type of riser device.

 Representing each function on that device so the relevant Windows bus enumerator (such as a PCI bus

enumerator) can detect it and then locate and install appropriate drivers.

For any riser card, the system firmware must provide a unique PCI SID assigned by the codec manufacturer. This

requirement is identical to current requirements for audio and modem devices on a PCI add-on card. However,

these riser cards are system-board devices, so the PCI SID must reflect that of the system-board manufacturer.

If an OEM chooses a riser card and driver from any riser card driver manufacturer, the system firmware must

populate the fields as follows:

 The PCI SVID must reflect the VID that the PCI-SIG assigned to that OEM.

 The SID must be unique for each AC '97 device configuration. For example, for a MoM, MR, or AMR

device, each SID must be unique.

If an OEM chooses a system board from a manufacturer that works with one or more codecs, the following

applies:

 The SVID must reflect the VID that the PCI-SIG assigned to that system-board manufacturer.

 The SID must be unique for each AC '97 codec and device configuration. For example, for a MoM, MR, or

AMR device, each SID must be unique.

 For an AMR device, the system firmware must properly implement the detection algorithm from Intel to

verify that the hardware on an AMR or MR extension is actually present.

Similar provisions exist in the CNR and ACR specifications.

Design Notes:

See the Intel documents for AC '97 at http://go.microsoft.com/fwlink/?LinkId=50733.

Additional Information

Business Justification Required by the PCI-sig and we rely on this to load the right drivers. Drivers overall,

including Windows Update, would not work without this.

Enforcement Date Jun. 01, 2006

System.Fundamentals.SystemUSB
This section contains requirements for systems with USB host controllers.

Related

Requirement

s

 System.Fundamentals.SystemUSB.EHCIToXHCIControllerTransitions

 System.Fundamentals.SystemUSB.ExternalUSBonCSisEHCIorXHCI

 System.Fundamentals.SystemUSB.SuperSpeedCapableConnectorRequirements

 System.Fundamentals.SystemUSB.SuperSpeedPortsAreVisualDifferent

 System.Fundamentals.SystemUSB.SuperSpeedTerminationRemainsOn

 System.Fundamentals.SystemUSB.SystemExposesUSBPort

 System.Fundamentals.SystemUSB.TestedUsingMicrosoftUsbStack

http://go.microsoft.com/fwlink/?LinkId=50733

Page 182 of 254

 System.Fundamentals.SystemUSB.USB3andUSB2PortsRoutedToSameXHCIController

 System.Fundamentals.SystemUSB.USBDevicesandHostControllersWorkAfterPowerCycle

 System.Fundamentals.SystemUSB.XhciBiosHandoffFollowsSpec

 System.Fundamentals.SystemUSB.xHCICompatibleUnlessForApprovedTargetDesigns

 System.Fundamentals.SystemUSB.XHCIControllerSaveState

 System.Fundamentals.SystemUSB.XHCIControllersMustHaveEmbeddedInfo

 System.Fundamentals.SystemUSB.xHCIControllerSupportMSIInterrupts

 System.Fundamentals.SystemUSB.XhciSupportsMinimum31Streams

 System.Fundamentals.SystemUSB.XhciSupportsRuntimePowerManagement

 System.Fundamentals.SystemUSB.XHCIToEHCIControllerTransitions

System.Fundamentals.SystemUSB.EHCIToXHCIControllerTransitions

System firmware handles hand off of transition from xHCI USB controller to eHCI USB controller

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

If implemented, system firmware may support switching a port between an EHCI or XHCI controller. However

only 1 controller may be active and identified to the OS for each USB port, and this controller may be switched

only at boot time. Unless the XHCI controller is explicitly disabled in BIOS, the system firmware or a software filter

driver must detect if the OS supports XHCI during boot, and if the OS supports XHCI, it must re-route the USB

ports to the XHCI controller.

Design Note:

To test this requirement, the user will need to plug in both a USB 3.0 and a USB 2.0 device into each USB 3.0 port

that supports routing to the EHCI controller. Confirm that Windows 8 detects these devices as connected to the

XHCI controller.

Additional Information

Business Justification If the system ships with the USB compatibility mode for legacy OS enabled,this

compatibility mode must be disabled for Windows 8, so that users will realize the

benefits of the XHCI controller.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.ExternalUSBonCSisEHCIorXHCI

External USB ports on system that support connected standby must be EHCI or XHCI

Page 183 of 254

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

USB host controllers on systems that support Connected Standby must implement xHCI (eXtensible Host

Controller Interface) or EHCI (Enhanced Host Controller Interface). Legacy companion controllers (UHCI/OHCI)

are not supported.

All exposed ports must support all speeds slower than the maximum speed of the host controller, to enable

support of legacy devices including keyboards and mice.

Required Speed Support EHCI Port (USB 2.0) XHCI Port (USB 3.0)

Low-Speed Yes Yes

Full-Speed Yes Yes

Hi-Speed Yes Yes

Super-Speed No Yes

Transaction translators (TTs), integrated with the EHCI host controller, are not standardized, but the

Windows EHCI driver supports several implementations of a controller- integrated TT. The supported integrated

TT implementation must be identified in ACPI using the _HRV hardware revision for the USB controller. Please

contact the USB team to determine if your implementation is supported and for more information about which

_HRV value should be reported.

If the USB EHCI controller does not feature an integrated TT, any externally exposed ports must be routed

through an embedded rate-matching hub.

For improved power efficiency and performance, USB Host Controllers on systems that support Connected

Standby are recommended to be at least USB 3.0 compatible, with an XHCI controller integrated into the SoC or

chipset. The operating system supports standard EHCI and XHCI controllers including debug registers.

USB Host Controller Interface Recommendation

UHCI/OHCI Companion Controllers Not-supported

EHCI Supported

XHCI (including debug capability) Supported and Recommended

Additional Information

Business Justification For improved power efficiency and performance, Windows will not support legacy

UHCI and OHCI controllers on systems that support Connected Standby. This

requirement also ensures that USB keyboard and Mice will work as expected when

connected to the USB port. USB 3.0 ports connected to a standard XHCI controller

automatically satisfy this requirement.

Enforcement Date Jun. 01, 2012

Page 184 of 254

System.Fundamentals.SystemUSB.SuperSpeedCapableConnectorRequirements
Each exposed SuperSpeed capable connector supports SuperSpeed, high, full and low speed USB devices routed

through its xHCI controller

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

xHCI Controllers are backwards compatible with SuperSpeed, high, full, and low speed USB devices. Backwards

compatible is defined as all USB devices enumerate and function at their intended speeds. More than one xHCI

controller may be present on a system as long as the SuperSpeed capable ports are correctly routed. EHCI

controllers may also be present on the system, however SuperSpeed capable ports should not be routed through

them.

Additional Information

Business Justification This requirement ensures that low, full, and high speed devices continue to work as

xHCI controllers become more prevalent in systems.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.SuperSpeedPortsAreVisualDifferent
Systems with SuperSpeed Ports and non-SuperSpeed ports must have visual differentiation between the two types of

ports

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Version update: In the second paragraph changed a should to must.

If the system under test has exposed mixed ports (both SuperSpeed and non-SuperSpeed ports, such as USB 2.0

ports, exposed to the user)the SuperSpeed ports must be visually distinguishable from the non-SuperSpeed

ports.

Page 185 of 254

Non-SuperSpeed ports must not be marked blue as blue is reserved in the USB 3.0 specification (Section 5.3.1.3)

as an optional marking for SuperSpeed ports.

Additional Information

Business Justification The intent of this requirement is to allow users to be able to clearly distinguish their

SuperSpeed ports on a mixed port system to get optimal performance from their

SuperSpeed devices. Note that we are only asking for this differentiation if both types

of ports are exposed to the user.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.SuperSpeedTerminationRemainsOn

SuperSpeed termination remains on once power is applied to the bus, unless the OS explicitly removes it.

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Once the system firmware applies power to the bus, for all xHCI ports, the SuperSpeed termination remains on

unless the OS explicitly removes it.

Design note:

To test this requirement, the user will need to plug in a USB 3.0 peripheral device (that is, a non-hub). The device

must meet the following requirement. Given these circumstances:

 Device is connected to a USB 3.0 connector

 Device is operating at USB 2.0

 The connector's SuperSpeed termination transitions from Disabled to Enabled, but there is NOT a USB

2.0 reset

The test may fail if the peripheral device connects over USB 3.0 under these circumstances, because such a device

cannot be used to validate this requirement. The device must wait for a USB 2.0 reset before attempting to

connect over USB 3.0. For more information about the expected behavior of peripheral devices, see section

10.16.1 of the Universal Serial Bus 3.0 Specification.

Page 186 of 254

Additional Information

Business Justification If SuperSpeed terminations are removed, the device enumerates over USB 2.0 and

there is a delay for the device to be re-enumerated over USB 3.0.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.SystemExposesUSBPort
Systems are recommended to expose at least one user-accessible USB port

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems are recommended to expose at least one external USB host port. If a system exposes such port, the

following requirement applies:

For the best experience with Windows, systems that expose such port are recommended to have an externally

accessible standard USB A port. This allows users to connect their existing USB devices, without an adapter.

Standard USB A ports can also be used as a kernel debug port, to expose standard USB EHCI Host debug, USB

XHCI host debug, or USB function debugging.

While USB 2.0 capable controllers are acceptable, USB 3.0 XHCI host controllers are preferred. The USB ports must

fully comply with the USB 3.0 or USB 2.0 specification. USB 3.0 connectors must properly support 900mA USB 3.0

devices, and 500 mA USB 2.0 and 1.1 devices. USB 2.0 ports must properly support 500 mA USB 2.0 and 1.1

devices.

Windows supports several dual-role (OTG) USB controllers with an EHCI compliant host controller

implementation. These dual-role controllers can be used primarily in host mode with the inbox Windows USB

controller drivers. When properly configured, several of these supported dual-role controllers can be used as a

kernel debug transport in function mode.

If the system's form factor is too thin to expose a standard USB A port, it is acceptable to expose a micro-A/B

port. See the table below for the complete list of options.

It is optional to include adapter that converts the port from micro USB to USB A. If you bundle an adapter, the

adapter speed must match that of the USB host controller. For example, if the host controller is a USB 3.0 xHCI

controller, then the adapter must support USB 3.0. This adapter enables a user to connect a standard USB device

to the micro-USB A/B port or proprietary docking port and port and must ground the USB ID pin of the port.

External USB Ports Recommendation

Standard USB A Port(s) Recommended

Micro-USB A/B (Host + Function debug) Port Supported

Micro-USB B Port + 1 or more Standard USB A Port Supported

Proprietary Docking Port with USB Host and/or

debug Functionality

Supported

Page 187 of 254

Mini-USB A, A/B or B Port Not Supported

Proprietary USB Host Port Not Supported

Micro-USB A/B Port + 1 or more Standard USB A

Port

Not Supported

Whatever USB port type is chosen, it must be correctly described in ACPI with the _UPC (USB Port Capabilities)

package type parameter as defined in the ACPI 4.0a specification, section 9.13. This information allows Windows

to determine when a micro-A/B port is exposed, and ID pin detection is necessary.

A simple Standard USB A male to Micro USB B female adapter can be used to expose USB function or XHCI host

debug transport from a Standard USB-A port. This adapter must prevent shorts on the VBus line by removing the

VBus line completely or by having a 1kOhm resistor inline with the VBus line. It is strongly recommended that the

standard USB A port provide built-in protection against a short on the VBus line. This can occur if the USB port is

connected to another host when it is not properly configured in debug mode.

If there is a standard USB A (host) port in addition to a micro-USB B (function debug) port, the USB ports must be

connected to separate USB controllers. Thus, the micro-USB B (function) port can be connected to a USB OTG

controller in function mode while the standard USB A (host) port would be connected to a USB host controller.

If the micro-USB B port provides no additional functionality beyond debugging, it must be hidden in the battery

compartment or behind a easily removable cover. In order to comply with USB-IF requirements, VBUS must not

be asserted on the micro-A/B port until the resistance to ground of the ID pin of the micro-USB A/B port is less

than 10 Ohms. This will prevent a short-circuit when a user connects a micro-USB B cable to another USB host,

such as a desktop. Alternatively, the port can implement short protection circuitry for VBus.

Additional Information

Business Justification Allowing users to use their existing USB devices is a differentiating feature of

Windows. The micro-USB port or proprietary docking port allow thinner form factors

to be designed.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.TestedUsingMicrosoftUsbStack

Systems with xHCI Controllers must be tested with Microsoft's xHCI Stack installed

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems with Extensible Host Controller Interface (xHCI) Controllers must be tested with Microsoft's xHCI Stack

installed and enabled.

Additional Information

Page 188 of 254

Business Justification All USB host controllers must be compatible with the Microsoft inbox driver stack.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.USB3andUSB2PortsRoutedToSameXHCIControll

er

Systems which have xHCI controllers, should route the USB 3.0 (Super Speed) and 2.0 port corresponding to each

connector to the same xHCI Controller

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

For systems that have xHCI controllers, any 2.0 and 3.0 (SuperSpeed) ports that are share a connection point must

be routed to the same xHCI controller. This requirement applies to all USB connection points, whether they are

externally visible or not.

This would explicitly prevent "companion controller" implementation of xHCI controllers in systems.

Companion controller implementation for xHCI should be avoided because it can cause device issues such as bug

checks, bad device states as well as devices going missing as well as provide a bad user experience. xHCI drivers

should be able to handle all device speeds and types and thus a companion controller should not be necessary

when integrating an xHCI controller into a system.

Please see design notes for additional information.

Design Notes:

Referenced in the xHCI v1.x specification, section 4.24.2.2

Additional Information

Business Justification This reduces the risk of a system crash due to fast switch of devices between USB

ports.

Enforcement Date Dec. 01, 2010

System.Fundamentals.SystemUSB.USBDevicesandHostControllersWorkAfterPower

Cycle
All USB devices and host controllers work properly upon resume from sleep, hibernation or restart without a forced

reset of the USB host controller

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

Page 189 of 254

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All USB devices and host controllers work properly upon resume from sleep, hibernation or restart without a

forced reset of the USB host controller

Design Notes: Registry key ForceHCResetOnResume documented at the KB below is not needed for devices to

function properly upon resume in Windows 7 or newer.

http://support.microsoft.com/kb/928631

Note that a known set of currently existing devices do require a forced reset upon resume, these devices should

be covered in a list kept by the OS which will reset these devices upon resume. The goal of this requirement is to

ensure that this list of devices which need a reset to appear after resume does not grow and that devices can

properly handle sleep state transitions without being reset.

A reset of the entire USB Host Controller results in significantly increased time that it takes for all USB devices to

become available after system resume since there could be only one device at address 0 at a time, this

enumeration has to be serialized for all USB devices on the bus. We have also seen that resetting the host

controller can lead to an illegal SE1 signal state on some host controllers, which in turn can cause some USB

devices to hang or drop off the bus. Moreover, devices cannot maintain any private state across sleep resume as

that state will be lost on reset.

Additional Information

Business Justification This registry value was created as a fix for devices that were not coming back upon

resume.

Enforcement Date Dec. 01, 2010

System.Fundamentals.SystemUSB.XhciBiosHandoffFollowsSpec

xHCI BIOS handoff follows specification

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

For all xHCI controllers exposed to the OS, the system firmware must follow the BIOS handoff procedure defined

in section 4.2.2.1 of the XHCI specification.

Additional Information

Business Justification Driver software expects the BIOS to perform handoff compliant to specification.

Enforcement Date Mar. 01, 2012

http://support.microsoft.com/kb/928631

Page 190 of 254

System.Fundamentals.SystemUSB.xHCICompatibleUnlessForApprovedTargetDesig

ns

System that support Connected Standby must implement SuperSpeed ports as defined in the xHCI and SuperSpeed

specification or use approved EHCI reference design

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Systems that support Connected Standby that have USB connectors must enable USB 3 capabilities as defined in

the SuperSpeed and xHCI specification or they must use approved EHCI reference design for USB 2 capabilities.

Additional Information

Business Justification USB ports on the system enhance the end user experience so they can use their

peripherals with the system and having an XHCI USB host controller would be able to

take full advantage of the latest USB 3.0 devices.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.XHCIControllerSaveState

xHCI controllers correctly save and restore state, or else indicates an error

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Refer to sections 4.23.2.1, 5.4.1, and 5.4.2 of the xHCI specification version 1.0, plus any applicable errata. Upon

completion of the Controller Restore State operation, if the controller has not successfully restored its internal

state to the appropriate state, then it must set the Save/Restore Error bit to '1'. Errors could be due to power loss

during low system power states, or other conditions.

Testability/how to test: Simplest way to test (uses usbxhci): Connect a device to xHCI, suspend/resume the

system, look for ETW errors such as "Slot not enabled" in the resume path.

To get better coverage (uses compliance stack):

1. Have no devices enumerated

Page 191 of 254

2. Read number of device slots

3. Send an Enable Slot command for each device slot

4. Attempt one extra Enable Slot command€”it should return "No slots available"

5. Save state

6. Put the system in a low power state and wake it

7. Restore state

8. Attempt one extra Enable Slot command€”it should return "No slots available"

9. Disable all previously-enabled slots (should succeed)

Additional Information

Business Justification Software is tolerant of this error if it is reported by the hardware in accordance with

the spec. If the error is not reported, further unexpected errors will occur later,

because the host controller driver will continue to have an incorrect view of the state

of the host controller. No performant mitigations exist that cover all ways in which a

controller could fail silently; therefore we will test for some failures in the HCK, and

publish this requirement to highlight the importance of the error mechanism for

save/restore state.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.XHCIControllersMustHaveEmbeddedInfo
Systems with xHCI controllers must have embedded ACPI information for port routing

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Please reference ACPI specification version 4.0.

The ACPI namespace hierarchy for USB devices should exactly match the devices hierarchy enumerated by

Windows operating system.

All connectable USB ports are required to have a _PLD object. In addition, two fields in the _PLD object: Group

token (Bit 86:79) and Group Position (Bit 94:87) should be correctly defined for all USB connection points,

including those that are not visible externally (which should be indicated by setting bit 64 to zero).

Page 192 of 254

No two USB connection points should have identical combination of Group token and Group Position. If two

ports are sharing a connection point, they should have identical _PLD objects.

This information helps define the mapping of USB ports to uniquely identifiable connection points. The Windows

USB 3.0 stack will use this information to determine which ports are tied to the same connection points. Any USB

port that does not have a _PLD object will be assumed to be not connectable and not visible (i.e. it is not being

used at all). The definition of connectable port as per ACPI 4.0 spec (section 9.13), is a port on which either a user

can connect a device OR there is an integrated device connected to it.

Please see design notes for additional information on how to implement this requirement.

Design Notes:

Example

This example is based on xHCI Spec (Version .95) Appendix D. The hardware configuration is exactly the same as

in that Appendix. The ACPI representation of that hardware configuration differs in this example; those

differences are highlighted.

The following is an example of the ACPI objects defined for an xHCI that implements a High-speed and

SuperSpeed Bus Instance that are associated with USB2 and USB3 Protocol Root Hub Ports, respectively. The xHCI

also supports an integrated High-speed hub to provide Low- and Full-speed functionality. The External Ports

defined by the xHC implementation provide either a USB2 data bus (i.e. a D+/D- signal pair) or a SuperSpeed (or

future USB speed) data bus (i.e. SSRx+/SSRx- and SSTx+/SSTx-signal pairs).

Where:

 The motherboard presents 5 user visible connectors C1 - C5.

 Motherboard connectors C1 and C2 support USB2 (LS/FS/HS) devices.

 Motherboard connectors C3, C4 and C5 support USB3 (LS/FS/HS/SS) devices.

 The xHCI implements a High-speed Bus Instance associated with USB2 Protocol Root Hub ports, e.g.

HCP1 and HCP2 are High-speed only, i.e. they provide no Low- or Full-speed support.

 The xHCI presents 7 External Ports (P1 - P7).

 External Port 1 (P1) is HS only and is not visible or connectable.

 External Ports 2 - 5 (P2 - P5) support LS/FS/HS devices.

 P2 is attached to motherboard USB2 connector C1.

 P3 is attached to motherboard USB2 connector C2.

 P4 is attached to the USB 2.0 logical hub of the Embedded USB3 Hub on the motherboard.

The USB 2.0 logical hub supports the LS/FS/HS connections for 2 ports (EP1 - EP2)

 The USB 2.0 connections of motherboard hub ports EP1 and EP2 are attached to

motherboard connectors C3 and C4 respectively, providing the LS/FS/HS support for the

USB3 connectors.

 P5 is attached to motherboard connector C5, providing the LS/FS/HS support to the motherboard

USB3 connector C5.

 External Port 6 (P6) is attached to the SuperSpeed logical hub of the Embedded USB3 Hub on the

motherboard. The SuperSpeed logical hub supports the SS connections of 2 ports (EP1 - EP2).

 The SuperSpeed connections of motherboard hub ports EP1 and EP2 are attached to motherboard

connectors C3 and C4 respectively, providing the SS support for the USB3 connectors.

 External Port 7 (P7) is attached to motherboard connectors C5, providing the SS support for the

USB3 connector.

 The xHCI implements 4 internal HS Root Hub ports (HCP1 - HCP4), 2 High-speed and 2 SuperSpeed.

 Internal Port 1 (HCP1) maps directly to External Port 1 (P1).

Page 193 of 254

 Internal Port 2 (HCP2) is attached to a HS Integrated Hub. The Integrated Hub supports 4 ports (IP1

- IP4).

 Ports 1 to 4 (IP1-IP4) of the Integrated Hub attach to External Ports 2 to 5 (P2-P5),

respectively.

 Internal Ports 3 and 4 (HCP3, HCP4) attach to External Ports 6 and 7 (P6, P7), respectively.

 All connectors are located on the back panel and assigned to the same Group.

 Connectors C1 and C2 are USB2 compatible and their color is not specified. Connectors C3 to C5 are

USB3 compatible and their color is specified.

 External Ports P1 - P5 present a USB2 data bus (i.e. a D+/D- signal pair). External Ports P6 and P7 present

a SuperSpeed data bus (i.e. SSRx+/SSRx- and SSTx+/SSTx- signal pairs).

Scope(_SB) {

 Device(PCI0) {

// Host controller (xHCI)

Device(USB0) {

// PCI device#/Function# for this HC. Encoded as specified in the ACPI

// specification

Name(_ADR, 0xyyyyzzzz)

// Root hub device for this HC #1.

Device(RHUB) {

Name(_ADR, 0x00000000) // must be zero for USB root hub

// Root Hub port 1 (HCP1)

Device(HCP1) {// USB0.RHUB.HCP1

Name(_ADR, 0x00000001)

// USB port configuration object. This object returns the system

// specific USB port configuration information for port number 1

Name(_UPC, Package() {

0x01,// Port is connectable but not visible

0xFF,// Connector type (N/A for non-visible ports)

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

} // Device(HCP1)

// Root Hub port 2 (HCP2)

Device(HCP2) {// USB0.RHUB.HCP2

Name(_ADR, 0x00000002)

Name(_UPC, Package() {

0xFF,// Port is connectable

0x00,// Connector type - (N/A for non-visible ports)

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// Even an internal connection point should have a _PLD and

// provide a valid Group Token and Position

Name(_PLD, Buffer(0x10) {

0x00000081,// Revision 1,

// color width height ignored for non-visible connector

0x00000000,// connector type ignored for non-visible connector

Page 194 of 254

0x00808000,// Not User visible, Panel, position shape ignored,

// Group Token = 1, Group Position = 1

// This is the group of all internal connectors.

// Each connector should have a unique position in this

// group

0x00000000})// Ignored for non-visible connectors

//

// There is no separate node for the integrated hub itself

//

// Integrated hub port 1 (IP1)

Device(IP1) {// USB0.RHUB.HCP2.IP1

// Address object for the port. Because the port is

// implemented on integrated hub port #1, this value must be 1

Name(_ADR, 0x00000001)

Name(_UPC, Package() {

0xFF,// Port is connectable

0x00,// Connector type - Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x00000081,// Revision 1, Ignore color

// Color (ignored), width and height not

0x00000000,// required as this is a standard USB 'A' type

// connector

0x00800c69,// User visible, Back panel, Center, left,

// shape = vert. rect, Group Token = 0,

// Group Position 1 (i.e. Connector C1)

0x00000003})// ejectable, requires OPSM eject assistance

} // Device(IP1)

// Integrated Hub port 2 (IP2)

Device(IP2) {// USB0.RHUB.HCP2.IP2

// Address object for the port. Because the port is

// implemented on integrated hub port #2, this value must be 2

Name(_ADR, 0x00000002)

Name(_UPC, Package() {

0xFF,// Port is connectable

0x00,// Connector type - Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x00000081,// Revision 1, Ignore color

// Color (ignored), width and height not

0x00000000,// required as this is a standard USB 'A' type

// connector

0x01000c69,// User visible, Back panel, Center, Left,

// Shape = vert. rect, Group Token = 0,

// Group Position 2 (i.e. Connector C2)

0x00000003})// ejectable, requires OPSM eject assistance

} // Device(IP2)

// Integrated Hub port 3 (IP3)

Device(IP3) { // USB0.RHUB.HCP2.IP3

// Address object for the port. Because the port is implemented

Page 195 of 254

// on integrated hub port #3, this value must be 3

Name(_ADR, 0x00000003)

// Must match the _UPC declaration for USB0.RHUB.HCP3 as

// this port shares the connection point

Name(_UPC, Package() {

0xFF,// Port is not connectable

0x00,// Connector type - (N/A for non-visible ports)

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// Even an internal connection point should have a _PLD and

// provide a valid Group Token and Position.

// Must match the _PLD declaration for USB0.RHUB.HCP3 as

// this port shares the connection point

Name(_PLD, Buffer(0x10) {

0x00000081,// Revision 1,

// color width height ignored for non-visible connector

0x00000000,// connector type ignored for non-visible connector

0x01008000,// Not User visible, Panel, position shape ignored,

// Group Token = 1, Group Position = 2

// This is the group of all internal connectors.

// Each connector should have a unique position in this

// group

0x00000000})// Ignored for non-visible connectors

//

// There is no separate node for the embedded hub itself

//

// Motherboard Embedded Hub 2.0 Logical Hub port 1 (EP1)

Device(EP1) {// USB0.RHUB.HCP2.IP3.EP1

Name(_ADR, 0x00000001)

// Must match the _UPC declaration for

// USB0.RHUB.HCP3.EP1 as this port provides

// the LS/FS/HS connection for C3

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB

// 'A' type connector

0x01800c69,// User visible, Back panel, Center,

// Left, shape = vert.

// rect, Group Token = 0,

// Group Position 3

//(i.e. Connector C3)

0x00000003})// ejectable, requires OPSM eject

// assistance

} // Device(EP1)

// Motherboard Embedded Hub 2.0 Logical Hub port 2 (EP2)

Device(EP2) {// USB0.RHUB.HCP2.IP3.EP2

Page 196 of 254

Name(_ADR, 0x00000002)

// Must match the _UPC declaration for

// USB0.RHUB.HCP3.EHUB.EP2 as this port provides

// the LS/FS/HS connection for C4

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB

// 'A' type connector

0x02000c69,// User visible, Back panel, Center,

// Left, Shape = vert.

// rect, Group Token = 0,

// Group Position 4 (i.e. Connector C4)

0x00000003})// ejectable, requires OPSM eject

//assistance

} // Device(EP2)

} // Device(IP3)

// Integrated hub port 4 (IP4)

Device(IP4) { // USB0.RHUB.HCP2.IP4

Name(_ADR, 0x00000004)

// Must match the _UPC declaration for USB0.RHUB.HCP4 as

// this port provides the LS/FS/HS connection for C5

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB 'A' type

// connector

0x02800c69,// User visible, Back panel, Center, Left,

// Shape = vert. rectangle, Group Token = 0,

// Group Position 5 (i.e. Connector C5)

0x00000003})// ejectable, requires OPSM eject assistance

} // Device(IP4)

} // Device(HCP2)

// Root Hub port 3 (HCP3)

Device(HCP3) {

Name(_ADR, 0x00000003)

// Must match the _UPC declaration for USB0.RHUB.HCP2.IP3 as

// this port shares the connection point

Name(_UPC, Package() {

0xFF,// Port is connectable

Page 197 of 254

0x00,// Connector type - (N/A for non-visible ports)

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// Even an internal connection point should have a _PLD and

// provide a valid Group Token and Position.

// Must match the _PLD declaration for USB0.RHUB.HCP2.IP3 as

// this port shares the connection point

Name(_PLD, Buffer(0x10) {

0x00000081,// Revision 1,

// color width height ignored for non-visible connector

0x00000000,// connector type ignored for non-visible connector

0x01008000,// Not User visible, Panel, position shape ignored,

// Group Token = 1, Group Position = 2

// This is the group of all internal connectors.

// Each connector should have a unique position in this

// group

0x00000000})// Ignored for non-visible connectors

//

// There is no separate node for the embedded hub itself

//

// Motherboard Embedded Hub SS Logical Hub port 1 (EP1)

Device(EP1) {// USB0.RHUB.HCP3.EP1

Name(_ADR, 0x00000001)

// Must match the _UPC declaration for

// USB0.RHUB.HCP2.IHUB.IP3.EHUB.EP1 as this port

// provides the SS connection for C3

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB

// 'A' type connector

0x01800c69,// User visible, Back panel, Center,

// Left, shape = vert.

// rect, Group Token = 0,

// Group Position 3

//(i.e. Connector C3)

0x00000003})// ejectable, requires OPSM eject

// assistance

} // Device(EP1)

// Motherboard Embedded Hub SS Logical Hub port 2 (EP2)

Device(EP2) {// USB0.RHUB.HCP2.EP2

Name(_ADR, 0x00000002)

// Must match the _UPC declaration for

// USB0.RHUB.HCP3.IP3.EP2 as this port

// provides the SS connection for C4

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

Page 198 of 254

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB

// 'A' type connector

0x02000c69,// User visible, Back panel, Center,

// Left, Shape = vert.

// rect, Group Token = 0,

// Group Position 4 (i.e. Connector C4)

0x00000003})// ejectable, requires OPSM eject

// assistance

} // Device(EP2)

} // Device(HCP3)

// Root Hub port 4 (HCP4)

Device(HCP4) {// USB0.RHUB.HCP4

Name(_ADR, 0x00000004)

// Must match the _UPC declaration for USB0.RHUB.HCP2.IP4 as

// this port provides the SS connection for C5

Name(_UPC, Package() {

0xFF,// Port is connectable

0x03,// Connector type - USB 3 Type 'A'

0x00000000,// Reserved 0 - must be zero

0x00000000})// Reserved 1 - must be zero

// provide physical connector location info

Name(_PLD, Buffer(0x10) {

0x0072C601,// Revision 1, Color valid

// Color (0072C6h), width and height not

0x00000000,// required as this is a standard USB 'A' type

// connector

0x02800c69,// User visible, Back panel, Center, Left,

// Shape = vert. rect, Group Token = 0,

// Group Position 5 (i.e. Connector C5)

0x00000003})// ejectable, requires OPSM eject assistance

} // Device(HCP4)

} // Device(RHUB)

} // Device(USB0)

//

// Define other control methods, etc.

} // Device(PCIO)

} // Scope(_SB)

Additional Information

Business Justification We need this info to be correct so we know which of the available ports are

SuperSpeed capable. We'll use this to direct the user to the correct port when they

connect a SuperSpeed device.

Page 199 of 254

Enforcement Date Dec. 01, 2010

System.Fundamentals.SystemUSB.xHCIControllerSupportMSIInterrupts

xHCI Controllers support MSI and/or MSI-X interrupts

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

USB xHCI host controllers (eXtensible Host Controller Interface) in systems must support and use MSI and/or MSI-

X interrupts as defined in section 6.8 of the PCI Local Bus Specification Revision 3.0 and Section 5.2.6 of the xHCI

specification.

Additional Information

Business Justification This is to ensure compliance with the industry specification

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.XhciSupportsMinimum31Streams
xHCI controller must support at least 31 primary streams per endpoint

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Refer to the eXtensible Host Controller Interface specification, section 4.12.2.

This requirement is for the MaxPSASize in the HCCPARAMS to be set to 4 at the minimum to enable ultimate data

transfer rate with UAS devices.

Storage devices based on the USB Attached SCSI Protocol (UASP) will utilize streams to achieve faster data

transfer rates. To enable the best experience with these devices, every xHCI controller will need to support at least

31 primary streams.

Page 200 of 254

Additional Information

Business Justification USB based storage devices based must be USB Attached SCSI Protocol (UASP) and

will utilize streams to achieve faster data transfer rates.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.XhciSupportsRuntimePowerManagement
All USB xHCI host controllers support runtime power management including, if implemented, runtime wake

Target Feature System.Fundamentals.SystemUSB

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

All USB xHCI host controllers in the system must support runtime power management, as required by the

eXtensible Host Controller Interface specification, version 1.0, Section 4.15.

Runtime is defined as the system working state (S0), including the Connected Standby sub-state of S0 if

Connected Standby is supported.

Power management of the host controller encompasses software-initiated idle power down (controller low power

state such as D3), software-initiated power up, and, optionally, hardware-initiated wake signaling.

For each xHCI controller that is reported to support runtime wake signaling, the controller must be able to wake

itself successfully upon any of the following events:

A) Any suspended port detecting device wake signaling, or

B) Any port detecting connect, disconnect, or overcurrent, when the corresponding PORTSC Wake on Xxx bit is

set to '1'.

For more details, see Section 4.15 of the xHCI specification.

The system plays a role in delivering xHCI wake signals properly. Therefore, the system must correctly report, via

ACPI, whether each xHCI controller is capable of waking at runtime. This information must be reported in the

ACPI _S0W object.

Additional Information

Business Justification USB Power Management is critical to battery life.

Enforcement Date Mar. 01, 2012

System.Fundamentals.SystemUSB.XHCIToEHCIControllerTransitions

Once the power is applied to the bus, the SuperSpeed termination remains on unless the OS explicitly removes it

Target Feature System.Fundamentals.SystemUSB

Page 201 of 254

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Once the power is applied to the bus, the SuperSpeed termination remains on unless the OS explicitly removes it.

System firmware supporting EHCI<->xHCI mode switch enter xHCI mode properly and are always in xHCI mode

when Windows 8 boots.

"Properly" is defined as:

1) select xHCI

2) transition USB bus from VBUS off to VBUS enabled

3) leave connectors' SuperSpeed terminations enabled for the entire time between steps 2 and 4

4) handoff xHCI to the OS.

Design note:

To test this requirement, the user will need to plug in a USB 3.0 peripheral device (that is, a non-hub). The device

must meet the following requirement. Given these circumstances:

 Device is connected to a USB 3.0 connector

 Device is operating at USB 2.0

 The connector's SuperSpeed termination transitions from Disabled to Enabled, but there is NOT a USB

2.0 reset

The test may fail if the peripheral device connects over USB 3.0 under these circumstances, because such a device

cannot be used to validate this requirement. The device must wait for a USB 2.0 reset before attempting to

connect over USB 3.0. For more information about the expected behavior of peripheral devices, see section

10.16.1 of the Universal Serial Bus 3.0 Specification.

Additional Information

Business Justification The purpose is that the controller manufacturers need to implement UEFI or BIOS

handoff per spec. So if system builders configured a system firmware setting to use

xhci the controller will follow the configuration appropriately and not switch back to

ehci

Enforcement Date Mar. 01, 2012

System.Fundamentals.TPM.CS
Systems that support Connected Standby must also have a TPM.

Page 202 of 254

Related Requirements System.Fundamentals.TPM.CS.ConnectedStandby

System.Fundamentals.TPM.CS.ConnectedStandby

Connected Standby systems must implement TPM v2.0

Target Feature System.Fundamentals.TPM.CS

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Connected Standby systems must implement a TPM 2.0 solution that meets the requirements called out in

System.Fundamentals.TPM20.TPM20.

Connected Standby systems must record measurements into PCR [7] as specified in Appendix A of the Microsoft

Corporation, "Trusted Execution Environment EFI Protocol, Draft 1.00 dated March 2nd, 2012"
1
 document.

1
This specification must be requested explicitly from Microsoft. To request the current version, please check for its

availability on the Microsoft Connect site and if not available, please contact

http://go.microsoft.com/fwlink/?LinkId=237130.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.TPM.NonCS
Non CS Devices can have TPM20 or TPM12 but should report themselves as non AOAC devices.

Related Requirements System.Fundamentals.TPM.NonCS.NonConnectedStandby

System.Fundamentals.TPM.NonCS.NonConnectedStandby

Requirements for all systems that are not connected standby

Target Feature System.Fundamentals.TPM.NonCS

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

http://go.microsoft.com/fwlink/?LinkId=237130

Page 203 of 254

Description

All systems that implement TPM1.2 and not connected standby are required to satisfy:

System.Fundamentals.TrustedPlatformModule.TPMRequirements

All systems that implement TPM2.0 and not connected standby are required to satisfy:

System.Fundamentals.TPM20.TPM20

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.TPM20
A Trusted Platform Module (TPM) is a microchip designed to provide basic security related functions. Requirements

in this area reflect the required TPM version and compatibility with Windows Bitlocker.

Related Requirements System.Fundamentals.TPM20.EKCerts

 System.Fundamentals.TPM20.TPM20

 System.Fundamentals.TPM20.TPM20Required

System.Fundamentals.TPM20.EKCerts
If the TPM contains a full endorsement KEY certificate, then it must be stored in the TPM NV RAM as described in the

TCG PC Client Specific Implementation Specification for Conventional BIOS, section 7.4.5.

Target Feature System.Fundamentals.TPM20

Applies to Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

Description

If a TPMs contains a full Endorsement Key (EK) certificate stored in the TPM NV RAM it must do so as described

in the TCG PC Client Specific Implementation Specification for Conventional BIOS, section 7.4.5: TCG_FULL_CERT.

The NV RAM index used for storing the EK certificate must be pre-defined and created with the value of

0x01c00002. If a nonce or template is used to create an EK Certificate which is different from the defaults used by

Windows, the same must be specified in the TPM NVRAM under the index of 0x01c00003 for the EK nonce and

under the index of 0x01c00004 for the template.

TPM Artifact NV Index Required

EK Certificate 0x01c00002 Yes

EK nonce 0x01c00003 Optional, required only if non-

default values are used

EK template 0x01c00004 Optional, required only if non-

default values are used

The EK certificate must be written to the TPM NVRAM in such a way that the action of Clearing the TPM does not

delete the EK certificate.

Page 204 of 254

The certificate must have the EKU specified that indicates that it is indeed an EK Certificate. The OID used for this

purpose should be "2.23.133.8.1".

The EK certificate could also be signed using ECDSA. The supported ECC curves for this purpose are NIST 256, 384

and 521. Note that the Endorsement Key is still a RSA 2048 bit key.

The EK certificate must contain an AIA extension that contains the URL for the issuing CA Certificate in the

certificate chain. AIA extension (Authority information access locations) must also be present in each non-root

cert in the chain with URLs that make the issuing CA certificate (any intermediate CA certs or the root CA cert) –

all discoverable and retrievable when starting only with a single EK cert. For more information on AIA extension,

please refer to http://technet.microsoft.com/en-us/library/cc753754.aspx.

Note: The EK certificate may be created by the TPM manufacturer or the Platform manufacturer.

Additional Information

Enforcement Date Jan. 01, 2015

System.Fundamentals.TPM20.TPM20

Requirements for all systems that implement the TPM 2.0 specification

Target Feature System.Fundamentals.TPM20

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

For a system that implements TPM 2.0, the platform must comply with the following requirements:

1. The platform shall implement all "Required" features in the table below. "Recommended" entries are for

specific configurations.

Integrity

Feature

SOC Hardware Functionality Required Recommended

Trusted

Execution

Environment3

Isolated Storage

Availability of storage for storing long term secrets. This

storage must not be possible to modify by the OS without

detection by pre-Operating System components.

X

Secure (isolated from runtime OS) storage of:

• Values (such as an endorsement primary seed) that

survive complete platform power off as well as

firmware updates

• Values (such as a NV counters) that survive complete

platform power off but do not necessarily survive

firmware updates (in this case these values shall be

X

http://technet.microsoft.com/en-us/library/cc753754.aspx

Page 205 of 254

reset to a random value)

• Values (such as the Platform Configuration Registers)

that survive platform power-down to the equivalent of

ACPI S3 if TPM2_Shutdown(TPM_SU_STATE) is called

but may be lost on further power-down.

Platform

Attestation

 Boot measurements recorded in the Platform

Configuration Registers for all firmware code loaded

after the establishment of the Core Root of Trust for

Measurement.

X

 Implementation of PCRs 0 through 23 for SHA-1,

dedicated to the same boot measurements as TPM

1.2.

X

 Support for SHA-1, SHA-256, AES-128, , and RSA-2048

algorithms.
X

 Robustness against side channel attacks including

Differential Power Analysis (DPA) and Electromagnetic

Emanations (EM)

X

2. A platform that does not support a separate, and from the main CPU(s) isolated, cryptographic

processing unit must support a Trusted Execution Mode. The Trusted Execution Mode must have a

higher privilege level than the Normal Execution Mode, giving it access to data and code not

available to the Normal Execution Mode.

3. During the boot sequence, the boot firmware/software shall measure all firmware and all software

components it loads after the core root of trust for measurement is established. The measurements

shall be logged as well as extended to platform configuration registers in a manner compliant with

the following requirements.

4. The measurements must be implemented such that it reliably and verifiably allows a third party to

identify all components in the boot process up until the point either the boot finished successfully

or when software with a exploited vulnerability was loaded (for example, if the third component

loaded includes an exploited vulnerability, then values for the first, second, and third component in

the trusted boot log correctly reflect the software that loaded but any values after that may be

suspect). To achieve this, the trusted execution environment must provide a mechanism of signing

the values of the registers used for Trusted Boot. The interface to the signature ("attestation")

mechanism shall comply with the requirements defined in Microsoft Corporation, "Trusted

Execution Environment ACPI Profile, 1.0 dated March 2, 2012".

5. The system shall include a trusted execution environment supporting the command set defined in

Microsoft Corporation, "TPM v2.0 Command and Signature Profile, 1.0 dated March 2, 2012."

6. The system shall support the interface specified in Microsoft Corporation, "Trusted Execution

Environment ACPI Profile, 1.0 dated March 2, 2012".

7. The system shall support the interface and protocol specified in Microsoft Corporation, "Trusted

Execution Environment EFI Protocol, 1.0 dated March 2, 21012," with the exception of the PCR[7]

measurements specified in Appendix A of that document.

8. The system is required to support measurements into PCR [7] as specified in Appendix A of

Microsoft Corporation, "Trusted Execution Environment EFI Protocol,.1.0 dated March 2, 2012"

specification. The UEFI firmware update process must also protect against rolling back to insecure

firmware versions, or non-production versions that may disable secure boot or include non-

production keys. A physically present user may however override the rollback protection manually.

In such a scenario (where the rollback protection is overridden), the TPM must be cleared.

Note: Bitlocker attempts to utilize PCR7 for better user experience and to limit PCR brittleness.

If Secure Boot launch of Windows 8 BootMgr requires use of an Allowed DB entry other than

the Microsoft-provided EFI_CERT_X509 signature with "CN=Microsoft Windows Production PCA

2011" and "Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b 3e 08 7b 80 d0 67 8d, then

Bitlocker will not be able to utilize PCR7. It is therefore recommended that the only Allowed DB

entry for Secure Boot are Microsoft-provided EFI_CERT_X509 signature with "CN=Microsoft

Page 206 of 254

Windows Production PCA 2011" and "Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b

3e 08 7b 80 d0 67 8d.

9. Platform firmware must ensure invariance of PCRs 0, 2, and 4 across power cycles in the absence of

changes to the platform's static core root of trust for measurements (SRTM). Platform firmware

must ensure invariance of PCR[7] if implemented as specified in Microsoft Corporation, "Trusted

Execution Environment EFI Protocol,.1.0 dated March 2, 2012" across power cycles in the absence of

changes to the platform's static core SRTM. Attaching a (non-bootable) USB to the platform or

attaching the platform to a docking station shall not cause changes to the SRTM.

10. If the platform does not support clearing the TPM 2.0 endorsement hierarchy (for example, using

TPM2_ChangeEPS), an Endorsement Kit (EK) certificate must be provisioned in the TPM NV RAM.

11. Execution of the TPM 2.0 command TPM2_NV_Increment must not require an open object slot.

12. TPM must meet performance requirements as stated below:

Prior to exit boot services, TPM shall complete extend operations within 20msec. After exit boot

services, TPM Extend operations shall complete within 20mS when a TPM is not in a lower power

state. If a TPM is in a low power state Extend operations shall complete in 20mS after the TPM has

exited its low power state.

The following section is optional when implementing TPM 2.0.

All client SKUs ship TPM 2.0 with SHA2 PCR banks. (Note: It is acceptable to ship TPMs with a single switchable

PCR bank that can be utilized for both SHA 1 and SHA 2 measurements.)

All x86/x64 devices equipped with TPM 2.0 can optionally have in the UEFI bios a switch to turn off the TPM

device.

Support of ECC algorithms in TPM 2.0 (Note: the TPM library specification requires the support of

TPM_ALG_ECDSA and TPM_ALG_ECDH if a TPM implements the TPM_ALG_ECC curve hence are part of

requirements) TPM_ECC_NIST_P256 curve should be supported, as specified in Table 8 of TPM library specification

Part 2

The following commands for TPM 2.0 to support ECC. These were “recommended” in Windows 8 requirements

(details can be found in TCG TPM library specification Part 3)

1. TPM2_ECDH_KeyGen

2. TPM2_ECDH_ZGen

3. TPM2_ECC_Parameters

4. TPM2_Commit

Design Notes

Microsoft uses the term TPM 2.0 for what is also known as TCG TPM.Next.

These requirements may also be met through sealed storage/sealed key blobs that, upon unseal, are held in

isolated storage.

The specifications must be requested explicitly from Microsoft. To acquire the current version, first check for its

availability on the Microsoft Connect site. If it is not available, contact

http://go.microsoft.com/fwlink/?LinkId=237130.

http://go.microsoft.com/fwlink/?LinkId=237130

Page 207 of 254

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.TrustedPlatformModule
A Trusted Platform Module (TPM) is a microchip designed to provide basic security related functions. Requirements

in this area reflect the required TPM version and compatibility with Windows Bitlocker.

Related

Requirement

s

 System.Fundamentals.TrustedPlatformModule.TPMComplieswithTCGTPMMainSpecificati

on

 System.Fundamentals.TrustedPlatformModule.TPMEnablesFullUseThroughSystemFirmwa

re

 System.Fundamentals.TrustedPlatformModule.TPMRequirements

 System.Fundamentals.TrustedPlatformModule.Windows7SystemsTPM

System.Fundamentals.TrustedPlatformModule.TPMComplieswithTCGTPMMainSpe

cification
A system that implements a Trusted Platform Module (TPM) 1.2 must include a TPM that complies with the TCG

TPM Main Specification, Version 1.2, Revision 103 (or a later revision), parts 1, 2 and 3.

Target Feature System.Fundamentals.TrustedPlatformModule

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

Description

A system that implements a Trusted Platform Module (TPM) 1.2 must include a TPM that complies with the TCG

TPM Main Specification, Version 1.2, Revision 103 (or a later revision), parts 1, 2 and

3. (http://www.trustedcomputinggroup.org/resources/tpm_main_specification)

The TPM must meet the following additional requirements:

• The time required for the TPM to perform all the self-testing performed by the TPM_ContinueSelfTest

command must be less than 1 second.

• If the TPM receives a command, after receipt of the TPM_ContinueSelfTest command, but prior to the

completion of the TPM_ContinueSelfTest self-test actions, it must not return TPM_NEEDS_SELFTEST.

• The TPM's monotonic counter must be designed to increment at least twice per a platform boot cycle.

• The TPM must implement the TPM_CAP_DA_LOGIC capability for the TPM_GetCapability command.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Page 208 of 254

• By default, the TPM dictionary attack logic must permit at least 9 authorization failures in an a 24 hour

time period before entering the first level of defense. Small durations of lockout for less than five

seconds are acceptable within a 24 hour period with 9 authorization failures if the TPM leaves the

lockout state automatically after five seconds elapses. Alternately, the default system image must

contain non-default software anti-hammering settings which correspond to TPM default behavior. (In

the Windows 8 OS the settings can be seen by running gpedit.msc then expanding the following in the

left tree view: Local Computer Policy\Computer Configuration\Administrative

Templates\System\Trusted Platform Module Services. The values to customize are: Standard User

Lockout Duration, Standard User Individual Lockout Threshold, and Standard User Total Lockout

Threshold.)

• The TPM dictionary attack logic must not permit more than 5000 authorization failures per a year.

• To help platform manufacturers achieve as fast of a boot as possible, the shorter the

TPM_ContinueSelfTest execution time, the better.

• It is recommended platform manufacturers provide information about the TPM's dictionary attack logic

behavior in customer documentation that includes explicit steps to recover after the TPM enters a locked

out state.

• It is recommended the TPM state when shipped is enabled and activated.

Note: Windows uses more TPM functionality than previous releases so Windows Certification Tests for the TPM

are more extensive.

Additional Information

Enforcement Date Mar. 01, 2012

System.Fundamentals.TrustedPlatformModule.TPMEnablesFullUseThroughSystem

Firmware
Systems with Trusted Platform Modules enable full use of the TPM including system firmware enhancements

Target Feature System.Fundamentals.TrustedPlatformModule

Applies to Windows 7 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A system that implements a Trusted Platform Module 1.2 (TPM) must support specific system

firmware enhancements. The system firmware code must participate in a measured chain of trust that is

established for the pre-operating system boot environment at each power cycle. The system firmware code must

support the protected capabilities of the TPM v1.2 and must maintain the SRTM chain of trust.

Page 209 of 254

For a system that implements a Trusted Platform Module (TPM) 1.2, the platform must comply with the following

specifications:

• The TCG Platform Reset Attack Mitigation Specification Version 1.00, Revision .92 or later. Revision

1.00 is strong encouraged, including implementation of detecting an orderly OS

shutdown(http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_

attack_mitigation_specification_version_10).

• The TCG Physical Presence Interface Specification Version 1.0 Revision 1.00 or later

(http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification).

• The TCG PC Client Work Group PC Client Specific TPM Interface Specification (TIS) Version 1.20

Revision 1.00 or later. Implementing version 1.21 or later is strongly

encouraged. The TPM must implement the memory mapped space described in the

specification. (http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_s

pecific_tpm_interface_specification_tis)

• If the platform implements UEFI firmware, it must implement

o The TCG EFI Platform Specification Version 1.20, Revision 1.00 or later,

(http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification_version_120_

revision_10).

o The TCG EFI Protocol Version 1.20, Revision 1.00 or later,

http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_version_120_revision_10.

• If the platform implements conventional BIOS, it must implement the PC Client Workgroup Specific

Implementation Specification for Conventional BIOS, Version 1.20, Revision 1.00 or later. Note:

Implementing the errata version 1.21 is strongly recommended.

(http://www.trustedcomputinggroup.org/resources/pc_client_work_group_specific_implementation_

specification_for_conventional_bios_specification_version_12)

• The TCG ACPI General Specification Version 1.00, Revision 1.00

(http://www.trustedcomputinggroup.org/resources/server_work_group_acpi_general_specification_v

ersion_10).

• The Windows Vista BitLocker Client Platform Requirements, dated May 16, 2006, or later, available

at http://go.microsoft.com/fwlink/?LinkId=70763. For conventional BIOS systems instead of the PCR

measurements listed in the Windows Vista BitLocker Client Platform Requirements, a system may

implement the PCR measurements defined in the TCG PC Client Workgroup Specific

Implementation Specification for Conventional BIOS, Version 1.21, Revision 1.00.

Design Notes:

The TPM provides a hardware root of trust for platform integrity measurement and reporting. The TPM also

provides operating system independent protection of sensitive information and encryption keys.

Additional Information

http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigation_specification_version_10
http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification
http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interface_specification_tis
http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification_version_120_revision_10
http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification_version_120_revision_10
http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification_version_120_revision_10
http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_version_120_revision_10
http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_version_120_revision_10
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_specific_implementation_specification_for_conventional_bios_specification_version_12
http://www.trustedcomputinggroup.org/resources/pc_client_work_group_specific_implementation_specification_for_conventional_bios_specification_version_12
http://www.trustedcomputinggroup.org/resources/server_work_group_acpi_general_specification_version_10
http://www.trustedcomputinggroup.org/resources/server_work_group_acpi_general_specification_version_10
http://www.trustedcomputinggroup.org/resources/server_work_group_acpi_general_specification_version_10
http://go.microsoft.com/fwlink/?LinkId=70763

Page 210 of 254

Exceptions If a TPM is implemented in the system, then the requirement must be met.

Enforcement Date Mar. 01, 2012

System.Fundamentals.TrustedPlatformModule.TPMRequirements
System implementing TPM 1.2 must meet requirements

Target Feature System.Fundamentals.TrustedPlatformModule

Applies to Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

For a system that implements a Trusted Platform Module (TPM) 1.2, the platform must comply with the following

specifications:

1. The PC Client Work Group Platform Reset Attack Mitigation Specification, Version 1.0 Version 1.00,

Revision 1.00 or later,

http://www.trustedcomputinggroup.org/resources/pc_client_work_group_platform_reset_attack_mitigati

on_specification_version_10.

2. The TCG Physical Presence Interface Specification Version 1.2, Revision 1.00,

http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interface_specification.

3. The TCG PC Client Work Group PC Client Specific TPM Interface Specification (TIS) Version 1.21 Revision

1.00 or later

(http://www.trustedcomputinggroup.org/resources/pc_client_work_group_pc_client_specific_tpm_interfa

ce_specification_tis).

4. If the platform implements UEFI firmware, it must implement

a. The TCG EFI Platform Specification Version 1.20, Revision 1.0 or later,

http://www.trustedcomputinggroup.org/resources/tcg_efi_platform_specification_version_120_r

evision_10.

b. The TCG EFI Protocol Version 1.20, Revision 1.00 or later,

http://www.trustedcomputinggroup.org/resources/tcg_efi_protocol_version_120_revision_10.

5. If the platform implements conventional BIOS, it must implement the PC Client Workgroup Specific

Implementation Specification for Conventional BIOS, Version 1.20, Revision 1.00 or later. Note: The

errata version 1.21 is strongly recommended instead.

(http://www.trustedcomputinggroup.org/resources/pc_client_work_group_specific_implementation_speci

fication_for_conventional_bios_specification_version_12).

6. The TCG ACPI General Specification Version 1.00, Revision 1.00,

http://www.trustedcomputinggroup.org/resources/server_work_group_acpi_general_specification_versio

n_10.

7. Windows Vista BitLocker Client Platform Requirements, dated May 16, 2006, or later

(http://go.microsoft.com/fwlink/p/?LinkId=70763). For conventional BIOS systems instead of the PCR

measurements listed in the Windows Vista BitLocker Client Platform Requirements, a system may

implement the PCR measurements defined in the TCG PC Client Workgroup Specific Implementation

Specification for Conventional BIOS, Version 1.21, Revision 1.00.

And the system MUST meet the following additional requirements:

Page 211 of 254

1. Platform firmware must ensure invariance of PCRs 0, 2 and 4 and also PCR 7 if implemented as specified

in Appendix A of the Microsoft Corporation, "Trusted Execution Environment EFI Protocol, 1.00 dated

March 2nd, 2012" document across power cycles in the absence of changes to the platform's static root

of trust for measurements (SRTM). Attaching a (non-bootable) USB to the platform or attaching the

platform to a docking station shall not cause changes to the SRTM.

2. If the platform is a server platform, it must reserve PCRs 8 through 15 for OS use. (Note: The same

requirement is true for client platforms.)

3. The platform must implement the memory mapped space for the TPM interface (for example, legacy

port based I/O is not sufficient).

4. The system firmware must perform Physical Presence Interface operations when the platform is

restarted. It is strongly recommended the system firmware performs Physical Presence Interface

operations also after shutdown. (Specifically, the Physical Presence Interface Specification Version 1.2,

section 2.1.4: Get Platform-Specific Action to Transition to Pre-OS Environment must return a value of 2:

Reboot.) (This requirement allows remote administrators to perform Physical Presence Operations

without needing to be physically present to turn the platform back on.)

5. The default configuration for the system must have the NoPPIProvision flag specified in the TCG Physical

Presence Interface Specification, section 2: Physical Presence Interface set to TRUE.

6. The default system firmware configuration must allow the OS to request Physical Presence operations 6,

7, 10, and 15. Note: The operations are described in Table 2 of the TCG Physical Presence Interface

Specification Version 1.2, Revision 1.00.

7. If the system implements the NoPPIClear flag it should do so as specified in the TCG Physical Presence

Interface Specification, section 2: Physical Presence Interface. The platform should either provide a

system firmware configuration setting to change the flag or implement physical presence operations 17

and 18. Note: The operations and the NoPPIClear flag are described in Table 2 of the TCG Physical

Presence Interface Specification Version 1.2, Revision 1.00. (Implementing this flag helps facilitate

automated testing of the physical presence interface during Windows certification testing and permits

managed environments to completely automate TPM management from the OS without physical

presence if an enterprise decides to set the NoPPIClear flag.)

8. The system firmware must implement the _DSM Query method (function index 0) in addition to the

Physical Presence Interface methods defined in the TCG Physical Presence Interface Specification, section

2: ACPI Functions. (Please refer to the Advanced Configuration and Power Interface Specification

Revision 5.0 for an implementation example of the _DSM Query method.)

9. The system firmware must implement the _DSM Query method (function index 0) in addition to the

Memory Clear Interface method defined in the TCG Platform Reset Attack Mitigation Specification,

section 6: ACPI _DSM Function. (Please refer to the Advanced Configuration and Power Interface

Specification Revision 5.0 for an implementation example of the _DSM Query method.)

10. The system firmware must implement the auto detection of clean OS shutdown and clear the memory

overwrite bit as defined in the TCG Platform Reset Attack Mitigation Specification, section 2.3: Auto

Detection of Clean Static RTM OS Shutdown. Exception: If the system is able to unconditionally clear

memory during boot without increasing boot time, the system may not implement the auto detection

(however the pre-boot and ACPI interface implementations are still required).

11. When the system is delivered to an end customer, the TPM permanent flag TPM_PF_NV_LOCKED must

be set to TRUE. (This requirement is for systems. For motherboards the flag may be set to FALSE when

delivered to the platform manufacturer, however instructions/tools must advise platform manufacturers

to set the flag to TRUE before delivery to end customers.)

12. When the system is delivered to an end customer, the TPM permanent flag TPM_PF_NV_

PHYSICALPRESENCELIFETIMELOCK must be set to TRUE. (This requirement is for systems. For

motherboards the flag may be set to FALSE when delivered to the platform manufacturer, however

instructions/tools must advise platform manufacturers to set the flag to TRUE before delivery to end

customers.)

13. The system must contain a full Endorsement Key (EK) certificate stored in the TPM NV RAM as described

in the TCG PC Client Specific Implementation Specification for Conventional BIOS, section 7.4.5:

TCG_FULL_CERT. The NV RAM index used for storing the EK certificate must be the pre-defined and

reserved index TPM_NV_INDEX_EKCert as defined the TPM Main Specification, Part 2, section 19.1.2:

Page 212 of 254

Reserved Index Values. As recommended in the TCG PC Client Specific Implementation Specification for

Conventional BIOS, section 4.2.1: TPM Main Specification Reserved Indexes, the D bit attribute must be

set for the index. (Note: The certificate may be created by the TPM manufacturer or the platform

manufacturer.) Exception: If the system supports generation of a new EK it is not required (but is still

strongly recommended) to have an EK certificate.

14. The system firmware must ship with the TPM enumerated by default. (This means the ACPI device object

for the TPM must be present by default in the system ACPI tables.)

15. The system firmware must support clearing the TPM from within a setup menu.

16. At least 256 bytes of TPM NVRAM must be reserved (and available) for OS use.

17. The firmware must issue the TPM_ContinueSelfTest during boot such that the self-test completes before

the OS loader is launched.

a. If the TPM device performs the self-test synchronously, the firmware TPM driver should be

optimized to issue the command to the device but allow the boot process to proceed without

waiting for the return result from the TPM_ContinueSelfTest command. If the firmware TPM

driver receives a subsequent command, it should delay the subsequent command until the

TPM_ContinueSelfTest command completes instead of aborting the TPM_ContinueSelfTest

command.)

b. A recommendation is to start the self-test before some action which takes at least one second

but does not have a dependency on the TPM.

18. The platform may or may not issue the TPM_ContinueSelfTest upon resume from S3 (sleep).

19. The ACPI namespace location for the TPM device object must only depend on the System Bus, ISA or PCI

bus drivers provided by Microsoft. The System Bus does not have an ID, but is identified as _SB. The ISA

bus device IDs may be PNP0A00 or PCI\CC_0601. The PCI bus device IDs may be PNP0A03 or

PCI\CC_0604. In addition, the TPM device object may also depend on these generic bridges, containers

or modules: PNP0A05, PNP0A06 and ACPI0004. No other device dependencies are permitted for the

ACPI namespace location for the TPM device object.

20. Optional. The platform is recommended to support measurements into PCR [7] as specified in Appendix

A of Microsoft Corporation, "Trusted_Execution_Environment_EFI_Protocol, 1.00 dated March 2, 2012"

specification, The UEFI firmware update process must also protect against rolling back to insecure

firmware versions, or non-production versions that may disable secure boot or include non-production

keys. A physically present user may however override the rollback protection manually. In such a

scenario (where the rollback protection is overridden), the TPM must be cleared.

Note: Bitlocker utilizes PCR7 for better user experience and limit PCR brittleness. If Secure Boot launch of

Windows BootMgr requires use of an Allowed DB entry other than the Microsoft-provided EFI_CERT_X509

signature with "CN=Microsoft Windows Production PCA 2011" and "Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9

eb dc 1b 2b 3e 08 7b 80 d0 67 8d, Bitlocker will then not be able to utilize PCR7. It is recommended that the only

Allowed DB entry for Secure Boot are Microsoft-provided EFI_CERT_X509 signature with "CN=Microsoft Windows

Production PCA 2011" and "Cert Hash(sha1): 58 0a 6f 4c c4 e4 b6 69 b9 eb dc 1b 2b 3e 08 7b 80 d0 67 8d.

"Trusted Execution Environment EFI Protocol, 1.00 dated March 2, 2012" specification must be requested explicitly

from Microsoft. To acquire the current version, first check for its availability on the Microsoft Connect site. If it is

not available, contact http://go.microsoft.com/fwlink/?LinkId=237130.

Additional Information

Enforcement Date Jun. 26, 2013

System.Fundamentals.TrustedPlatformModule.Windows7SystemsTPM
Systems with Trusted Platform Modules use TPM family 1.2 Revision 85 or later

Page 213 of 254

Target Feature System.Fundamentals.TrustedPlatformModule

Applies to Windows 7 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A system that implements a Trusted Platform Module (TPM) must include a TPM that complies with the TPM

Main Specification, Version 1.2 Revision 85 (or later), and the TPM Interface Specification, Version 1.2 (or later). In

particular, the TPM must implement the memory mapped space required by these specifications. The TPM

provides a hardware root of trust for platform integrity measurement and reporting. The TPM also provides

operating system independent protection of sensitive information and encryption keys.

Design Notes:

See TCG TPM Specification, Version 1.2, and TCG PC Client TPM Interface Specification, Version 1.2, both available

at http://go.microsoft.com/fwlink/?LinkId=58380.

Additional Information

Business Justification A hardware-based security chip and measurable Static Root of Trust for Measurement

(SRTM), provided by the v1.2 TPM along with system firmware with secure features, is

a necessary feature that enables Windows boot integrity (an integrity check of core

system files) on every boot and restart. In addition, the v1.2 TPM enables stronger,

hardware-based protection of sensitive Windows key material. The TPM also enables

full volume encryption, which protects the hibernation file, swap files, registry, .INF

files, settings, temporary files, and desktop content stored on the fully encrypted

volume.

Enforcement Date Mar. 01, 2012

System.Fundamentals.USBBoot
The feature and requirements are about being able to boot from a USB device.

Related Requirements System.Fundamentals.USBBoot.BootFromUSB

 System.Fundamentals.USBBoot.SupportSecureStartUpInPreOS

System.Fundamentals.USBBoot.BootFromUSB

System firmware supports booting from all exposed USB 1.x, 2.x, and 3.x ports

Target Feature System.Fundamentals.USBBoot

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

http://go.microsoft.com/fwlink/?LinkId=58380

Page 214 of 254

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

System BIOS or UEFI firmware must by default:

 Support booting through USB 1.x on OHCI controllers

 support booting through USB 2.x on EHCI controllers

 support booting through USB 1.x, 2.x, and 3.x on XHCI controllers.

 Support these on all exposed USB ports up to a hub depth of 3.

The system must also support booting Windows PE images from a USB 2.0 device by using extended INT 13 or

UEFI native interface in less than 90 seconds.

Design Notes:

OEMs are encouraged to test the boot functionality by creating a bootable USB flash drive with WinPE. See the

OPK for details. Vendors may license WinPE (at no charge). For information, send an e-mail to

licwinpe@microsoft.com.

Additional Information

Business Justification Booting from USB 1.x and 2.x has been a Logo requirement since Windows Vista.

Now with USB 3.x entering the market, we need to update this requirement to keep

up with modern technologies. Boot from USB is important for BitLocker Recovery as

well as booting from WinPE.

Enforcement Date Jan. 01, 2010

System.Fundamentals.USBBoot.SupportSecureStartUpInPreOS

Systems support secure startup by providing system firmware support for writing to and reading from USB flash

devices in the pre-operating system environment

Target Feature System.Fundamentals.USBBoot

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

mailto:licwinpe@microsoft.com

Page 215 of 254

On all UEFI systems and all systems that implement a TPM, the system must support BitLocker recovery and

strong authentication scenarios. This is accomplished by enabling enumeration and full-speed reading/ writing of

data (such as key backup and recovery information) from and to a USB mass storage class device, and the UEFI

firmware will provide an instance of the block I/O protocol for access to these USB devices.

Design Notes:

See the USB Mass Storage Class Bulk-Only Transport and the USB Mass Storage Class UFI Command

specifications, downloadable from http://go.microsoft.com/fwlink/?LinkId=58382.

Additional Information

Business Justification One of the Secure Startup recovery scenarios requires writing a Recovery Key to a

USB flash device and reading it back if the user has to recover the data stored on the

encrypted volume on the system hard drive. Also, one of the Secure Startup two-level

authentication scenarios requires writing a Startup Key to a USB flash device and

reading it back again at system boot time.

Enforcement Date Mar. 01, 2012

System.Fundamentals.USBDevice
These requirements apply to USB devices that are integrated into a system.

Related Requirements System.Fundamentals.USBDevice.SelectiveSuspend

System.Fundamentals.USBDevice.SelectiveSuspend
All internally connected USB devices must support selective suspend by default

Target Feature System.Fundamentals.USBDevice

Applies to Windows 8 Client x86, x64, ARM (Windows RT)

 Windows 8.1 Client x86, x64, ARM (Windows RT 8.1)

Description

Selective suspend is an important power saving feature of USB devices. Selective suspension of USB devices is

especially useful in portable computers, since it helps conserve battery power.

If a USB device is internally connected, the device driver must enable selective suspend by default. Every USB

device driver must place the device into selective suspend within 60 seconds of no user activity. This timeout

should be as short as possible while maintaining a good user experience. The selective suspend support can be

verified by reviewing the report generated by the powercfg -energy command.

Implementation Notes:

When devices enter selective suspend mode, they are limited to drawing a USB specification defined 2.5mA of

current from the USB port. It is important to verify that devices can quickly resume from selective suspend when

they are required to be active again.

http://go.microsoft.com/fwlink/?LinkId=58382

Page 216 of 254

For example, when selectively suspended, a USB touchpad must detect be able to detect a user's touch and signal

resume without requiring the user to press a button. Some devices can lose the ability to detect a wake event

when limited to the selective suspend current, 500 microamps per unit load, 2.5mA max. These devices, such as a

USB Bluetooth module, must be self-powered, not relying solely on the USB bus for power. By drawing power

from another source, the device can detect wake events

For more information about enabling selective suspend for HID devices, please refer to this MSDN article

http://msdn.microsoft.com/en-us/library/ff538662(VS.85).aspx

For more information about how to implement selective suspend in a driver, please refer to this white paper:

http://www.microsoft.com/whdc/driver/wdf/USB_select-susp.mspx

To specify a port that is internal (not user visible) and can be connected to an integrated device, the ACPI

properties _UPC.PortIsConnectable byte must be set to 0xFF and the _PLD.UserVisible bit must be set to 0. More

details are available on MSDN.

Additional Information

Business Justification Many devices, such as fingerprint readers and other kinds of biometric scanners, only

require power intermittently. Suspending such devices, when the device is not in use,

reduces overall power consumption. More importantly, any device that is not

selectively suspended may prevent the USB host controller from disabling its transfer

schedule, which resides in system memory. DMA transfers by the host controller to

the scheduler can prevent the system's processors from entering deeper sleep

states. All connected USB devices must be selective suspended before the host

controller can become idle. Thus, it is extremely important that USB devices expected

to be connected for prolonged periods of time implement selective suspend

correctly, especially embedded devices "inside the plastic."

Enforcement Date Mar. 01, 2012

System.Fundamentals.WatchDogTimer
A watchdog timer is a device that provides basic watchdog support to a hardware timer exposed by the Microsoft

hardware watchdog timer resource table.

Related Requirements System.Fundamentals.WatchDogTimer.IfWatchDogTimerImplemented

System.Fundamentals.WatchDogTimer.IfWatchDogTimerImplemented

If a Watch Dog Timer is implemented and exposed through a WDRT (supported for versions prior to Windows 8) or

WDAT (required for Windows 8 and later versions), it must meet Windows compatibility and functionality

requirements

Target Feature System.Fundamentals.WatchDogTimer

Applies to Windows 7 Client x86, x64

 Windows 8 Client x86, x64

http://msdn.microsoft.com/en-us/library/ff538662(VS.85).aspx
http://www.microsoft.com/whdc/driver/wdf/USB_select-susp.mspx
http://msdn.microsoft.com/en-us/library/ff553550(v=VS.85).aspx

Page 217 of 254

 Windows 8.1 Client x86, x64

 Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Hardware watchdog timer monitors the OS, and reboots the machine if the OS fails to reset the watchdog The

watchdog must meet the requirements and comply with the specification in http://MSDN.microsoft.com/en-

us/windows/hardware/gg463320.aspx

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base
Basic requirements for server systems

Related Requirements System.Server.Base.64Bit

 System.Server.Base.BMC

 System.Server.Base.BMCDiscovery

 System.Server.Base.Compliance

 System.Server.Base.DevicePCIExpress

 System.Server.Base.ECC

 System.Server.Base.Essentials

 System.Server.Base.HotPlugECN

 System.Server.Base.NoPATA

 System.Server.Base.OSInstall

 System.Server.Base.PCI23

 System.Server.Base.PCIAER

 System.Server.Base.RemoteManagement

 System.Server.Base.ResourceRebalance

 System.Server.Base.ServerRequiredComponents

 System.Server.Base.SystemPCIExpress

System.Server.Base.64Bit

A server system can natively run a 64-bit version of Windows Server

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

http://msdn.microsoft.com/en-us/windows/hardware/gg463320.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463320.aspx

Page 218 of 254

Description

A server system must be able to natively support and run a 64-bit Windows Server operating system.

Devices in a server system must also have 64-bit drivers available for 64-bit operation.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.BMC

Baseboard management controller solution must meet requirements

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Baseboard management controller (BMC) hardware that uses the Microsoft provided IPMI driver and service

provider must comply with the Intelligent Platform Management Interface (IPMI) Specification, Version 1.5

Document (Revision 1.1, February 20, 2002, 6/1/04 MARKUP) or later.

The BMC must be connected to the system through a Keyboard Controller Style (KCS) Interface. The BMC and its

KCS interface must be discoverable through ACPI, as prescribed in Appendix C3 of the IPMI V1.5 specification.

Support for interrupt is optional for the BMC. If interrupt is supported, the BMC:

 Must not be shared with other hardware devices.

 Must support the Set Global Flags command.

The BMC driver must support PnP and Power Management according to the minimum device fundamental

requirements defined in the Windows Logo Program requirements.

The driver must be compliant to the kernel-mode driver framework (KMDF) component of the Windows Driver

Framework (WDF) for the Microsoft Windows family of operating systems. A legacy driver, for backward

compatibility reasons, must be Windows Driver Model (WDM) compliant.

The driver must provide a WMI interface, including Timeout Configuration through RequestResponseEx() which is

defined in the ipmidrv.mof file of the WMI interface.

Page 219 of 254

The driver must have support for ACPI Control:

 HARDWARE ID - IPI0001

 COMPATIBLE ID - IPI0001 optional

 _SRV - 1.5 or 2.0 IPMI

 _CRS/_PRS - Format of resources: A single 2-byte or two 1-byte each I/O port or memory mapped I/O

The driver must call the Windows ACPI driver to get the above listed ACPI data.

Support for interrupt is optional in the driver, if supported the IPMI driver must:

 Assign only one interrupt

 Not share interrupts

 Handle disabling of non-communication interrupts that the driver does not fully support through the Set

Global Flags command.

 Be capable of handling both communication and non-communication interrupts.

Design Notes:

To prevent interrupt storm, the driver enables BMC interrupt when it starts and disables BMC interrupt supports

when stops by using the "Set BMC Global Enables" IPMI command. The field needs to set is the bit [0] - Receive

Message Queue interrupt. However, this bit is shared for KCS communication interrupt and KCS non-

communication, so the driver needs to be able to properly handle both interrupts.

A KCS communication interrupt is defined as an OBF-generated interrupt that occurs during the process of

sending a request message to the BMC and receiving the corresponding response. It's also encountered during

the course of processing a GET_STATUS/ABORT control code.

A KCS non-communication interrupt is defined as an OBF-generated interrupt that occurs when the BMC is not in

the process of transferring message data or getting error status. This will typically be an interrupt that occurs

while the interface is in the IDLE_STATE].

Additional Information

Enforcement Date Jun. 01, 2009

System.Server.Base.BMCDiscovery
Baseboard Management Controller is discoverable and enumerable

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Page 220 of 254

A system that has a baseboard management controller (BMC) present must expose it for discovery and

enumeration by Windows through Plug-and-Play (PnP) methods appropriate for its device interface. If the BMC is

connected to the system through a non-PnP legacy link such as the keyboard controller style (KCS) interface, its

resources must be exposed through SMBIOS or ACPI for discovery and enumeration by Windows.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.Compliance
Server system includes components and drivers that comply with Windows Hardware Certification Program

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All buses, devices, and other components in a system must meet their respective Windows Hardware Certification

Program requirements and use drivers that are either included with the Windows® operating system installation

media or that Microsoft® has digitally signed.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.DevicePCIExpress
Server system includes storage and network solutions that use PCI Express architecture

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Page 221 of 254

A server system must use PCI Express connectivity for all the storage and network devices installed in the system.

The devices may either be adapters installed in PCI Express slots or chip down directly connected to the system

board. This requirement does not apply to integrated devices that are part of the Southbridge chipset.

Additional Information

Enforcement Date Jun. 01, 2008

System.Server.Base.ECC

System memory uses ECC or other technology to prevent single-bit errors from causing system failure

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server systems must support error correction code, memory mirroring, or another technology that can detect and

correct at least a single-bit memory error. The system memory and cache must be protected with ECC) or other

memory protection. All ECC or otherwise protected RAM, visible to the operating system must be cacheable. The

solution must be able to detect at least a double-bit error in one word and to correct a single-bit error in one

word, where "word" indicates the width in bits of the memory subsystem. A detected error that cannot be

corrected must result in a system fault.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.Essentials

Windows Storage Server 2008 R2 Essentials system meets requirements.

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Page 222 of 254

Description

Windows Storage Server 2008 R2 Essentials systems must meet the following requirements:

· Flash memory, if present, must meet the following requirements:

· Minimum of 256 MB

· The system must be able to boot from the flash memory

· The flash memory must be updateable

· Up to 2, One Gigabit Ethernet Adapters (10/100/1000baseT PHY/MAC)

· System is required to have two or more USB ports that must at a minimum support the following scenarios:

· Server Recovery and Factory Reset

· Uninterruptable Power Supply (UPS)

· External USB hard drives

NOTE: In order to support the above scenarios, the following features are necessary:

· USB 2.0 functionality must comply with Enhanced Host Controller Interface Specification for Universal Serial Bus

2.0.

· EHCI host controllers must comply with the Enhanced Host Controller Interface Specification.

· USB 2.0 functionality must comply with the power management requirements in USB 2.0 or later.

Recommended: USB 3.0 ports, which if included must have USB 3.0 drivers present in the image and recovery

image.

· System must have internal RS-232 port, an internal RS-232 header, or use USB debugging. External RS-232 ports

are not allowed.

· System must implement power button as follows:

o When the power button is pressed for less than 4 seconds, the server system must shut down gracefully (in

other words, the hardware notifies the software, which initiates a shut down).

o When the power button is pressed for more than 4 seconds, the server system must force a shut down (power

off).

· System must have BIOS boot order configured as follows:

o In normal operation, the primary hard drive must be the first boot device.

o In recovery mode, the boot order must be:

· External USB Flash

· USB CD/DVD

· Internal Flash (if implemented)

· Internal DVD/Blu-ray (if HDMI is implemented)

· System must provide Server System Status indicator light

o The Server System Status indicator must use one color, or method, to indicate that the server system is booting

and another to indicate that the operating system has booted.

o Each status must be clearly visible

· System can only have an external video connector for HDMI with restricted media playback or for system

maintenance that requires video for management. If video out is included in a device that does not include an

HDMI interface or is not required for system maintenance, a cap must be provided with the video out disabled.

· When creating the user for enabling HDMI Out User the OEMs should make sure that:

· The HDMI out user password must be randomly generated for each server. Please follow the steps in the HDMI

Out document in order to create random password

· It is recommended that the HDMI Out user not be an administrator.

· HDMI output must be configured as follows:

· HDMI Out port must be physically located on the system

· HDMI output can only display a media playback application (once server is booted).

· HDMI output cannot be used to display the server Dashboard or Desktop

· OEM should disable the HDMI Out port until Initial Configuration is complete. This prevents users from seeing

the Initial Configuration on HD display

· A remote control must be provided to control the media playback application

Page 223 of 254

· An application must be provided in the server Dashboard that does the following:

· Provide UI for controlling video output resolution, audio, and for controlling video (and music) playback.

· OEMs must configure the HDMI output as the primary display.

· HDMI hardware and software must pass Windows Display Device logo testing.

· DirectX 9 graphics device with WDDM 1.0 or higher driver on the Windows Home Server

· System must meet Windows Logo driver certification requirements for Windows Server 2008 R2.

· System may offer hardware or software based RAID as long as end user management is enabled and system can

be recovered in the case of one or more drives failing.

Recommended:

· Systems are allowed to have optical drives as follows:

o DVD and Blu-Ray optical drives allowed for media playback (HDMI) and other applications

o OEMs can choose to ship slot load or tray load optical drives

o Optical drive is required to use SATA

o Optical drive must not have external audio output (front mounted headphone/audio jack)

· Systems may optionally include a wireless network adapter in addition to the required wired NIC. If

implemented, the wireless network adapter must meet the following requirements:

o Wireless NIC must be IEEE 802.11 compliant

o Recommended configuration: 802.11n

o No restrictions on antenna design/implementation

o A server Dashboard based wireless configuration application must be provided

o A wired network adapter is required for installation.

Additional Information

Enforcement Date Jun. 01, 2011

System.Server.Base.HotPlugECN
Server system that supports native Hot Plug functionality meets requirements defined in Hot-Plug ECN No. 31

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A server system must meet requirements defined in the PCI Hot-Plug ECN No. 31 if it supports hot-plug of PCI

Express devices or adapters; for example as an inherent behavior of a dynamically hardware partitionable design,

or in the form of either Express Module or a comparable hot-plug PCI Express I/O option design.

Additional Information

Page 224 of 254

Enforcement Date Aug. 31, 2007

System.Server.Base.NoPATA

Persistent storage devices on servers classified as Hard Disk Drives must not be PATA

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Persistent storage devices classified as Hard Disk Drives, either fixed or removable, must not be controlled by any

of the following: Parallel Advanced Technology Attachment (also known as Parallel ATA, PATA, IDE, EIDE, or

ATAPI) controllers, to include RAID versions of these devices. PATA controllers of any kind may only be connected

to CD, DVD or other storage devices not classified as hard disk drives.

Parallel Advanced Technology Attachment (also known as Parallel ATA, PATA, IDE, EIDE, or ATAPI) controllers, to

include RAID versions of these devices, do not support the ability to hot remove a hard disk drive from the

system should a hard disk drive fail and need to be replaced. This forces the system to be unavailable for long

periods.

Parallel Advanced Technology Attachment (also known as Parallel ATA, PATA, IDE, EIDE, or ATAPI) controllers, to

include RAID versions of these devices, do not support the ability to hot remove a hard disk drive from the

system should a hard disk drive fail and need to be replaced. This forces the system to be unavailable for long

periods.

Additional Information

Enforcement Date Jun. 01, 2009

System.Server.Base.OSInstall

Server system includes a method for installing the operating system for emergency recovery or repair

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Page 225 of 254

Description

The server system must provide a method for installing the operating system for emergency repair support. The

following are examples of possible solutions:

 PXE support

 Internal or externally attached, bootable, rewriteable DVD.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.PCI23
PCI or PCI-X devices in a server system comply with PCI Local Bus Specification, Revision 2.3 unless otherwise noted

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server system includes only PCI 2.3 compliant PCI or PCI-X devices unless exemptions are noted by an individual

requirement.

Additional Information

Enforcement Date Jun. 01, 2008

System.Server.Base.PCIAER

Windows Server 8 systems may implement AER (Advanced Error Reporting) as provided by the platform and

specified in PCI Express Base Specification version 2.1 and ACPI Specification 3.0b

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Server System vendors which elect to set the Advanced Error Reporting (AER) bit (0x3) in the PCI _OSC table in

the system BIOS must implement the following:

· The _HID value on the root bus of the system must be PNP0A08, so that the operating system can discover

the devices are PCI Express and support AER.

· To use PCI AER with Windows the system must report _OSC control in the device and the _SB/PC10 objects

Page 226 of 254

in ACPI. The following bits must be enabled:

 · 0x0 - PCI Express Native Hot Plug

 · 0x1 - Hot Plug Control

 · 0x3 - Advanced Error Reporting (AER)

 · 0x4 - PCI Express reliability structure control

· The MCFG ACPI table in PCI Firmware Specification, Revision 3.0b, so that the operating system can access

the AER Capability registers in the PCIe extended configuration space.

Design Notes:

This is an If Implemented requirement for Server system vendors. There is no Windows Server 8 requirement

to provide AER_OSC to give control to the operating system, and systems may implement a "firmware first" error

policy.

Additional Information

Enforcement Date Jan. 01, 2012

System.Server.Base.RemoteManagement

Server system supports remote, headless, out of band management capabilities

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server systems must provide the capability of being managed without the operating system being present, or

when the operating system is not fully functional.

The system must provide the following remote, headless, out of band management capabilities:

 Power up the server

 Power off the server

 Reset the server

 Provide access to Windows Server Emergency Management Services on the server

 View system Stop errors on the server

The following are not required if the system is a pedestal/standalone system with 8GB or less max RAM that was

logo'd for Windows Server 2003 prior to December 31, 2007.

 Change BIOS settings of the server

 Select which operating system to start on the server

Page 227 of 254

The above capabilities can be provided using any combination of the following methods:

 Serial port console redirection

 Service processor

 BIOS redirection

 Baseboard Management Controller

 Other management device

This requirement addresses the minimum capabilities required for headless server support.

Design Notes:

Console redirection can be forced with a setup command-line switch,

[/emsport:{com1|com2|usebiossettings|off}

/emsbaudrate:baudrate]

EMS Setup, SPCR and EFI or BIOS redirection settings can be configured per the information at

http://msdn2.microsoft.com/en-us/library/ms791506.aspx.

See the Microsoft Headless Server and Emergency Services Design specifications and the IPMI specification at

http://go.microsoft.com/fwlink/?linkid=36699.

See service processor console redirection details at http://go.microsoft.com/fwlink/?LinkId=58372.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.Base.ResourceRebalance

Server device drivers must support Resource Rebalance requests

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A system wide resource rebalance can be executed on Windows Server. One case where this occurs is when a

processor is dynamically added to a server. Device drivers must honor the resource rebalance flow and the plug

and play requests that are dispatched as part of the flow. Device Drivers must queue all IO requests during the

resource rebalance operation.

http://msdn2.microsoft.com/en-us/library/ms791506.aspx
http://www.microsoft.com/whdc/system/platform/server/default.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/04aa0d33-f24a-4f63-8977-bfab15706c8a1033.mspx

Page 228 of 254

Additional Information

Enforcement Date Jun. 01, 2007

System.Server.Base.ServerRequiredComponents
Server system must include necessary devices and functionality

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server systems must include the following devices or functionality;

Device or

Functionality

Requirement Comments

IO Bus and

Devices

System.Server.Base.SystemPCIExpress PCI Express

Root

 System.Fundamentals.SystemPCIController.PCIRequirements Various PCI

Specification

reqts

 System.Server.Base.PCI23 Various PCI

Specification

reqts

 System.Server.Base.HotPlugECN Hot Plug

ECN #31

 System.Server.Base.PCIAER PCI AER

system

requirement

 Device.Devfund.Server.PCIAER PCI AER

device

requirement

Memory 2008 – 1 TB, 2008 R2- 2TB, 2012 - 4 TB, Server Next - 4TB (subject to revision

at RTM)

Maximum

supported

memory

 512 MB Minimum

supported

memory

 System.Server.Base.ECC ECC

Processor System.Server.Virtualization.ProcessorVirtualizationAssist Hyper-V

Page 229 of 254

support

 1.4 GHz 64-bit Minimum

supported

processor

speed

 2008 – 64, 2008 R2- 256, 2012 - 640, Server Next - 640 Logical Processors

(this is subject to revision at RTM)

Maximum

supported

processor

count

Storage System.Server.Base.DevicePCIExpress PCI Express

 System.Server.Base.NoPATA IDE, EIDE,

ATAPI,

Parallel ATA

not allowed

 System.Fundamentals.Firmware.Boot.SystemWithBootDeviceGreaterThan No 2.2 TB

Boot HD

support for

BIOS-based

systems

Network Device.Network.LAN.Base 1GigE and

minimum

off-load

requirement

 System.Server.Base.DevicePCIExpress PCI Express

Install System.Fundamentals.Firmware.FirmwareSupportsBootingFromDVDDevice El Torito

Remote Boot System.Fundamentals.PXE.PXEBoot PXE or UEFI

Recovery System.Server.Base.OSInstall For example:

DVD, PXE

Debug System.Fundamentals.DebugPort.SystemExposesDebugInterface For example:

COM, USB,

1394

Remote & OOB

Mngmt

System.Server.Base.RemoteManagement For example:

BMC, Service

Processor

adapter

High Precision

Timer

System.Fundamentals.HAL.HPETRequired

WHEA System.Server.WHEA.Core

SMBIOS System.Fundamentals.SMBIOS.SMBIOSSpecification

 System.Server.SMBIOS.SMBIOS

Video System.Server.Graphics.WDDM Use MS-

provided

driver, or

Page 230 of 254

provide

either

Display only

or full

WDDM

driver

 System.Fundamentals.Graphics.MicrosoftBasicDisplayDriver Video

minimums,

1024 x 768 x

32 bits per

pixel, VESA

timing and

compliance

RemoteFX System.Fundamentals.Firmware.SystemCanBootWithEitherGraphicsAdapter BIOS

support for

multiple

adapters

 System.Fundamentals.Graphics.MultipleGPUOperatingMode Functionality

of multiple

GPUs

requirement

Marker file System.Fundamentals.MarkerFile.SystemIncludesMarkerFile Marker file

for OCA

Single container System.Client.PCContainer.PCAppearsAsSingleObject Computer

appears as

single object

in Devices

and Printers

folder

The following devices or functionality are not required for Server Systems

2. Bus Controllers & Ports

a. HD Audio

b. Cardbus & PCMCIA

c. IEEE 1394

d. Secure Digital

3. Connectivity

e. Bluetooth

f. Cardbus & PCMCIA

g. ExpressCard

h. IEEE 1394

i. Infrared

Page 231 of 254

j. Parallel [sysfund-0221] & Serial

k. Wireless USB

4. Network

l. ISDN

m. TCP Chimney NIC

5. Display

n. Auxiliary Displays

6. Input

o. Smart Card Reader

7. Streaming Media & Broadcast

p. Broadcast Receiver

q. Decoder

r. Encoder

s. Video Capture

8. TPM

t. TPM. If implemented, must meet requirements.

u. USB write for BitLocker Recovery

9. Watchdog Timer (WDT)

10. Baseboard Management Controller (BMC)

11. Enhanced Power Management Additional Qualification

12. Dynamic Partitioning Additional Qualification,

13. Fault Tolerance Additional Qualification

14. High Availability Additional Qualification

15. Power Management concerning S3, S4 and S5 system states support

Additional Information

Enforcement Date Jun. 26, 2013

Page 232 of 254

System.Server.Base.SystemPCIExpress

Server system supports PCI Express natively

Target Feature System.Server.Base

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server systems are required to support a PCI Express root complex as a connection of the I/O system to the CPU

and memory must comply with the requirements defined in the PCI Express 1.0a (or 1.1) Base Specification and

PCI Local Bus Specification, Revision 2.3. If discrepancies exist, the PCI Express Base Specification takes

precedence.

Additional Information

Enforcement Date Jun. 01, 2008

System.Server.DynamicPartitioning
This feature defines dynamic partitioning requirements of server systems. This feature is not required of all server

systems.

Related Requirements System.Server.DynamicPartitioning.Application

 System.Server.DynamicPartitioning.ApplicationInterface

 System.Server.DynamicPartitioning.ConfigurationPersist

 System.Server.DynamicPartitioning.Core

 System.Server.DynamicPartitioning.ErrorEffect

 System.Server.DynamicPartitioning.Firmware

 System.Server.DynamicPartitioning.HotAddLocal

 System.Server.DynamicPartitioning.HotAddReplace

 System.Server.DynamicPartitioning.HotAddVisual

 System.Server.DynamicPartitioning.HotReplacePU

 System.Server.DynamicPartitioning.PartialHotAdd

 System.Server.DynamicPartitioning.SoftwareStatus

 System.Server.DynamicPartitioning.Subsystem

System.Server.DynamicPartitioning.Application
Servers that support hardware partitioning must supply partition management software as a Windows application

running on a Windows operating system.

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

Page 233 of 254

 Windows Server 2012 x64

Description

Servers that support hardware partitioning must provide partition manager software, which provides the user

interface administrators will use to configure hardware partitions. This software must be offered as a Windows

application running on a Windows operating system.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.ApplicationInterface
Servers that support hardware partitioning must supply partition management software that provides a GUI and a

scripting capability for partition management

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Servers that support hardware partitioning must supply partition management software that includes support for

a graphical user interface for manual partition management and a scripting capability for remote or automated

partition management.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.ConfigurationPersist

Servers that support hardware partitioning must support persistence of hardware partition configuration information

across a reboot and power cycle

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Page 234 of 254

Description

The hardware partition configuration on a server that supports hardware partitioning must persist across a

reboot, hibernate, resume, and power cycle of the partition or the server. This requirement assumes that no

partition change was initiated while the partition was down.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.Core
Systems that support Dynamic Hardware Partitioning must meet requirements

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Systems must meet the requirements listed below and pass the Dynamic Hardware Partitioning test in the

Windows Logo Kit in order to be listed in the Windows Server Catalog as supporting Dynamic Partitioning.

System.Server.DynamicPartitioning.HotAddLocal

System.Server.DynamicPartitioning.ErrorEffect

System.Server.DynamicPartitioning.ConfigurationPersist

System.Server.DynamicPartitioning.Subsystem

System.Server.DynamicPartitioning.PartialHotAdd

System.Server.DynamicPartitioning.HotReplacePU

System.Server.DynamicPartitioning.Application

System.Server.DynamicPartitioning.Firmware

System.Server.DynamicPartitioning.ApplicationInterface

System.Server.DynamicPartitioning.SoftwareStatus

System.Server.DynamicPartitioning.HotAddReplace

System.Server.DynamicPartitioning.HotAddVisual

Additional Information

Enforcement Date Dec. 01, 2007

Page 235 of 254

System.Server.DynamicPartitioning.ErrorEffect

Errors detected in a hardware partition on servers that support hardware partitioning cause no operating system-

detectable effects on other partitions

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Hardware (which includes firmware) or software errors that occur within the boundary of a hardware partition on

a server that supports hardware partitioning must not affect the operating system environment within other

hardware partitions.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.Firmware
Servers that support hardware partitioning must provide server description and partitioning flows in firmware that

comply with the Dynamic Hardware Partitioning Requirements Specification

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

System firmware on a server that supports hardware partitioning provides the ACPI server description,

handshaking during partitioning events, and initialization of hardware that is to be added to a partition and must

be provided in compliance with the Hot Replace Flow and Requirements and the Hot Add Flow and Requirements

specifications.

For access to these specifications, send e-mail to DPFB@Microsoft.com.

Additional Information

Enforcement Date Jun. 01, 2006

mailto:DPFB@Microsoft.com

Page 236 of 254

System.Server.DynamicPartitioning.HotAddLocal

Hardware components on a server that supports hardware partitioning that are within a unit that is hot added to a

partition cannot be accessible from other hardware partitions

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Processors, memory, and I/O components within any unit that is hot added to an existing hardware partition on a

server that supports hardware partitioning must not be directly accessible by software running in any other

hardware partition.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.HotAddReplace

Servers that support hardware partitioning must support hot addition of processors, memory, and I/O and hot

replace of processor and memory subsystems

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Servers that support hardware partitioning must support hot addition and hot replacement of all operating

system-supported component types. Hot-add PU-supported component types are processors, memory, and I/O.

Hot replace- supported component types are processors and memory subsystems.

Additional Information

Enforcement Date Jun. 01, 2006

Page 237 of 254

System.Server.DynamicPartitioning.HotAddVisual

Servers that support hardware partitioning must provide visual user indication of the status of hot-add events if no

software-based notification is provided

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Servers that support one or more hot-add component features must provide a visual indication of the status of

each hot-add event if no partition management software is provided

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.HotReplacePU

In servers that support dynamic partitioning, hot replacement PUs must have equal and compatible hardware

resources to the PU being replaced

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

A processor or memory PU used as a replacement on a server that supports dynamic partitioning must have

equal and compatible hardware resources to the PU being replaced; that is, the same processor type and

stepping and the same memory configuration.

Additional Information

Enforcement Date Jun. 01, 2006

Page 238 of 254

System.Server.DynamicPartitioning.PartialHotAdd

Partial success of a hot-add action on a server that supports dynamic partitioning does not affect the stability of the

partition or server

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Components associated with a hot-add action on a server that supports dynamic partitioning that fails to start (a

parked component) must not have a detrimental effect on other components in the PU, partition, or server.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.SoftwareStatus

Servers that support hardware partitioning must supply partition management software that provides the user with

status for each hot-add or hot-replace event

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Servers that support hardware partitioning must supply partition management software. Status of a hot-add or

hot-replace event is made available by the Windows operating system in the affected partition. The PM software

must provide visual indication of this status to the PM administrator.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.DynamicPartitioning.Subsystem

On servers that support dynamic partitioning, I/O subsystems are provided in a different partition unit to processors

and memory subsystems

Page 239 of 254

Target Feature System.Server.DynamicPartitioning

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

To enable success of the hot replace feature, I/O subsystems must be implemented in a different PU to

processors and memory subsystems on servers that support dynamic partitioning.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.FaultTolerant
This feature defines fault tolerant requirements of server systems

Related Requirements System.Server.FaultTolerant.Core

System.Server.FaultTolerant.Core
Systems supporting Fault Tolerant operations must meet requirements

Target Feature System.Server.FaultTolerant

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Systems must meet the requirements listed below and pass the Fault Tolerance test in the Windows Hardware

Certification Kit in order to be listed in the Windows Server Catalog as having Fault Tolerance.

A Fault Tolerant set [FT set] of systems is a grouping of systems that provide redundancy for every hardware

component in a single system of the FT set and can mask any hardware failure such that network-connected

clients are not impacted by the hardware failure, such as by loss of connectivity due to network timeout to the FT

set due to the host name, domain name, MAC address or IP address, and the services or applications hosted on

the FT set, becoming unavailable to those network connected clients. Additionally, an FT set appears to network-

connected clients as one system with a single host name, domain name, MAC address or IP address, and unique

instances of services or applications.

An FT set must include system clocks that operate in actual lockstep, i.e., there is only one clock domain for the FT

set, or virtual lockstep, i.e., the clocks in the systems that comprise the FT set are synchronized at regular intervals

of much less than one second. This allows the FT set to always respond to exactly the same interrupts at exactly

Page 240 of 254

the same time, and thus be executing exactly the same instructions and have exactly the same state at all times,

thus providing the required redundancy.

An FT set is able to resynchronize, i.e., make identical, operating system images after a hardware failure in one

system of the FT set is corrected, such that network-connected clients are not impacted by the resynchronization,

such as by loss of connectivity due to network timeout to the FT set due to the host name, domain name, MAC

address or IP address, and the services or applications hosted on the FT set, becoming unavailable to those

network connected clients. The correction of the problem may be by replacement or repair of the failed hardware

component, or if the hardware failure is transient, may be cleared by a system reset that forces the re-initialization

of all the devices in the system that is part of the FT set.

FT systems may disable or not include devices which could cause asynchronous interrupts to occur such that one

system in the FT redundant set had to respond to an interrupt to which the other system(s) of the FT set did not

experience. Examples of such devices would be monitoring devices [thermal, voltage, etc.], or external devices

that would allow a user to inadvertently interrupt or access only one system in an FT set, such as a CD/DVD

device, keyboard, mouse, etc.

Additional Information

Enforcement Date Dec. 01, 2007

System.Server.Firmware.UEFI.GOP
This section describes requirements for systems implementing UEFI firmware.

Related Requirements System.Server.Firmware.UEFI.GOP.Display

System.Server.Firmware.UEFI.GOP.Display
System firmware must support GOP and Windows display requirements

Target Feature System.Server.Firmware.UEFI.GOP

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

If the system firmware supports UEFI, it may chose to additionally support the Graphics Output Protocol (GOP). If

the Graphics Output Protocol (GOP) is supported is must be as defined in UEFI 2.3.1.

During this time when the firmware is in control, the following are the requirements:

Topology Selection

• UEFI must reliably detect all the displays that are connected to the POST adapter. The Pre-OS screen

can only be displayed on a display connected to the POST adapter.

Page 241 of 254

• In case multiple displays are detected, UEFI must display the Pre-OS screen based on the following

logic

o System with an Integrated display(Laptop, All In One, Tablet): UEFI must display the Pre-OS

screen only on the integrated display

o System without an Integrated display (integrated display is shut or desktop system): UEFI must

display the Pre-OS screen on one display. UEFI must select the display by prioritizing the

displays based on connector type. The prioritization is as follows: DisplayPort, HDMI, DVI,

HD15, Component, S-Video. If there are multiple monitors connected using the same connector

type, the firmware can select which one to use.

Mode Selection

• Once UEFI has determined which display to enabled to display the Pre-OS screen, it must select the

mode to apply based on the following logic

o System with an Integrated display(Laptop, All In One, Tablet): The display must always be set to

its native resolution and native timing

o System without an Integrated display (desktop):

 UEFI must attempt to set the native resolution and timing of the display by obtaining

it from the EDID.

 If that is not supported, UEFI must select an alternate mode that matches the same

aspect ratio as the native resolution of the display.

 At the minimum, UEFI must set a mode of 1024 x 768

 If the display device does not provide an EDID, UEDI must set a mode of 1024 x 768

o The firmware must always use a 32 bit linear frame buffer to display the Pre-OS screen

o PixelsPerScanLine must be equal to the HorizontalResolution.

o PixelFormat must be PixelBlueGreenRedReserved8BitPerColor. Note that a physical frame buffer

is required; PixelBltOnly is not supported.

Mode Pruning

• UEFI must prune the list of available modes in accordance with the requirements called out in

EFI_GRAPHICS_OUTPUT_PROTOCOL.QueryMode() (as specified in the UEFI specification version 2.1)

Providing the EDID

• Once the UEFI has set a mode on the appropriate display (based on Topology Selection), UEFI must

obtain the EDID of the display and pass it to Windows when Windows uses

the EFI_EDID_DISCOVERED_PROTOCOL (as specified in the UEFI specification version 2.1)to query for

the EDID.

• It is possible that some integrated panels might not have an EDID in the display panel itself. In this case,

UEFI must manufacture the EDID. The EDID must accurately specify the native timing and the physical

dimensions of the integrated panel

• If the display is not integrated and does not have an EDID, then the UEFI does not need to manufacture

an EDID

Additional Information

Page 242 of 254

Business Justification Modern boot experience requires a preboot environment which is both fast and

visually appealing. The system UEFI controls the display before Windows takes over

the control. This means that the screen controlled by the firmware is the first thing

that the user sees. Therefore, it is very important that the user has a great user

experience at this stage. Some of the key goals are:Ensure that the screen is visible on

exactly one display. Display on a single screen ensures that it is easy for the firmware

to set a timing and that the UI is not scaled to fit multiple displays of different sizes

and aspect ratios. It is easier for the firmware to display on one display instead of

many. The native resolution is important in a number of Windows scenarios:Native

resolution provide the sharpest and most clear text. Booting the system in native

resolution eliminates the need to change modes during the boot process. The frame

buffer can be handed off between bios, boot loader, OS boot, and display driver. The

result of this is that the display does not flash during boot and gives a more seamless

boot experience. Providing the EDID to Windows is important so that Windows can

determine the physical dimensions of the display. Windows will automatically scale its

UI to be large on high DPI displays so that the text is large enough for the user to

see.

Enforcement Date Mar. 01, 2012

System.Server.Firmware.VBE
The requirements in this section are enforced on any graphics device with firmware supporting VBE and driver is

implementing display portion of the WDDM.

Related Requirements System.Server.Firmware.VBE.Display

System.Server.Firmware.VBE.Display
System firmware that supports VBE must comply with the Windows Display requirements

Target Feature System.Server.Firmware.VBE

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

If a system firmware supports VBE for display control then it must meet the following requirements:

The display is controlled by the video device firmware before the WDDM graphics driver takes over. During this

time when the firmware is in control, the following are the requirements:

Topology Selection

• Video device firmware must reliably detect all the displays that are connected to the POST adapter.

The Pre-OS screen can only be displayed on a display connected to the POST adapter.

• In case multiple displays are detected, video device firmware must display the Pre-OS screen based

on the following logic:

Page 243 of 254

o System with an integrated display(Laptop, All In One, Tablet/Convertible): Video device

firmware must display the Pre-OS screen only on the integrated display

o System without an integrated display (integrated display is shut or desktop system): Video

device firmware must display the Pre-OS screen on one display. The video device firmware

must select the display by prioritizing the displays based on connector type. The prioritization is

as follows: DisplayPort, HDMI, DVI, HD15, Component, S-Video. If there are multiple monitors

connected using the same connector type, the firmware can select which one to use.

Mode Selection

• Once video device firmware has determined which display to enabled to display the Pre-OS screen,

it must select the mode to apply based on the following logic

o System with an Integrated display(Laptop, All In One, Tablet/Convertible): The display must

always be set to its native resolution and native timing

o System without an Integrated display (desktop):

 The video device firmware must attempt to set the native resolution and timing of the

display by obtaining it from the EDID

 If that is not supported, the video device firmware must select an alternate mode that

matches the same aspect ratio as the native resolution of the display.

 At the minimum, the video device firmware must set a mode of 1024 x 768

 If the display device does not provide an EDID, UEDI must set a mode of 1024 x 768

o The video device firmware must always use a 32 bit linear frame buffer to display the Pre-OS

screen

o PixelsPerScanLine must be equal to the HorizontalResolution.

o PixelFormat must be PixelBlueGreenRedReserved8BitPerColor. Note that a physical frame buffer

is required; PixelBltOnly is not supported.

Mode Pruning

• The video device firmware must provide a list of modes to Windows when Windows uses the

Function 01h (Return VBE Mode Information) as specified in the VESA BIOS Extension Core

Functions Standard Version 3.0

• The video device firmware must prune the modes as appropriate. It should only enumerate the

modes that are supported in the EDID of the display that is currently active. It is not required to

support all the resolutions supported in the EDID

• The video device firmware must support 800 x 600 and 1024 x 768

• All modes must be progress at 60 Hz

Providing the EDID

Page 244 of 254

• Once the video device firmware has set a mode on the appropriate display (based on Topology

Selection), video device firmware must obtain the EDID of the display and pass it to Windows when

Windows uses command 15h (Display Data Channel) as specified in the VESA BIOS Extension Core

Functions Standard Version 3.0

o It is possible that some integrated panels might not have an EDID in the display panel itself. In

this case, video device firmware must manufacture the EDID. The EDID must accurately specify

the native timing and the physical dimensions of the integrated panel

o If the display is not integrated and does not have an EDID, then the video device firmware does

not need to manufacture an EDID

Additional Information

Business Justification The video device firmware controls the display before Windows takes over the

control. This means that the screen controlled by the video device firmware is the first

thing that the user sees. Therefore, it is very important that the user has a great user

experience at this stage. Some of the key goals are: Ensure that the screen is visible

on exactly one display. Display on a single screen ensures that it is easy for the

firmware to set a timing and that the UI is not scaled to fit multiple displays of

different sizes and aspect ratios. It is easier for the firmware to display on one display

instead of many. The native resolution is important in a number of Windows

scenarios: Native resolution provide the sharpest and most clear text. Booting the

system in native resolution eliminates the need to change modes during the boot

process. The frame buffer can be handed off between bios, boot loader, OS boot, and

display driver. The result of this is that the display does not flash during boot and

gives a more seamless boot experience. Providing the EDID to Windows is important

so that Windows can determine the physical dimensions of the display. Windows will

automatically scale its UI to be large on high DPI displays so that the text is large

enough for the user to see.

Enforcement Date Mar. 01, 2012

System.Server.Graphics
Base for Graphics on Server Systems

Related Requirements System.Server.Graphics.WDDM

System.Server.Graphics.WDDM
All Windows graphics drivers must be WDDM

Target Feature System.Server.Graphics

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Page 245 of 254

Description

The Windows Display Driver Model (WDDM) was introduced with Windows Vista as a replacement to the

Windows XP Display Driver Model (XDDM). The WDDM architecture offers functionality to enable features such as

desktop composition, enhanced fault Tolerance, video memory manager, scheduler, cross process sharing of D3D

surfaces and so on. WDDM was specifically designed for modern graphics devices that are a minimum of

Direct3D 10 Feature Level 9_3 with pixel shader 2.0 or better and have all the necessary hardware features to

support the WDDM functionality of memory management, scheduling, and fault tolerance. WDDM for Windows

Vista was referred to as "WDDM v1.0". WDDM 1.0 is required for Windows Vista.

Windows 7 made incremental changes to the driver model for supporting Windows 7 features and capabilities

and is referred to as "WDDM v1.1" and is a strict superset of WDDM 1.0. WDDM v1.1 introduces support for

D3D11, GDI hardware acceleration, Connecting and Configuring Displays, DXVA HD, and other features. WDDM

1.1 is required for Windows 7.

Windows 8 also introduces features and capabilities that require graphics driver changes. These incremental

changes range from small changes such as smooth rotation, to large changes such as 3D stereo, and D3D11

video support. The WDDM driver model that provides these Windows 8 features is referred to as "WDDM v1.2"

WDDM v1.2 is a superset of WDDM 1.1, and WDDM 1.0.

WDDM v1.2 is required by all systems shipped with Windows 8. WDDM 1.0 and WDDM 1.1 will only be supported

with legacy devices on legacy systems. The best experience, and Windows 8 specific features are only enabled by

a WDDM 1.2 driver. A WDDM driver that implements some WDDM 1.2 required features, but not all required

features will fail to load on Windows 8.

For Windows 8 XDDM is officially retired and XDDM drivers will no longer load on Windows 8 Client or Server.

Windows 8.1 introduces features and capabilities that require graphic driver changes. WDDMv1.3 brings

significant improvement in areas related to performance, power and reliability for Windows.

WDDMv1.3 is required by all systems shipped with Windows 8.1.

Below is a summary these WDDM versions:

Operating System Driver Models

Supported

D3D versions supported Features enabled

Windows Vista WDDM 1.0

XDDM on Server and

limited UMPC

D3D9, D3D10 Scheduling, Memory

Management, Fault

tolerance, D3D9 & 10

Windows Vista SP1 /

Windows 7 client pack

WDDM 1.05

XDDM on Server 2008

D3D9, D3D10, D3D10.1 + BGRA support in

D3D10, D3D 10.1

Windows 7 WDDM 1.1

XDDM on Server 2008 R2

D3D9, D3D10, D3D10.1,

D3D11

GDI Hardware

acceleration,

Connecting and

configuring Displays,

DXVA HD, D3D11

Windows 8 WDDM 1.2 D3D9, D3D10, D3D10.1,

D3D11, D3D11.1

Smooth Rotation,

3D Stereo,

D3D11 Video,

GPU Preemption,

TDR Improvements

Diagnostic Improvements,

Performance and Memory

usage Optimizations,

Power Management,

Page 246 of 254

etc.

WDDM v1.2 also introduces new types of graphics drivers, targeting specific scenarios and is described below:

• WDDM Full Graphics Driver: This is the full version of the WDDM graphics driver that supports hardware

accelerated 2D & 3D operations. This driver is fully capable of handling all the render, display and video

functions. WDDM 1.0 and WDDM 1.1 are full graphics drivers. All Windows 8 client systems must have a

full graphics WDDM 1.2 device as the primary boot device.

• WDDM Display Only Driver: This driver is only supported as a WDDM 1.2 driver and enables IHVs to

write a WDDM based kernel mode driver that is capable of driving display only devices. The OS handles

the 2D or 3D rendering using a software simulated GPU.

• WDDM Render Only Driver: This driver is only supported as a WDDM 1.2 driver and enables IHVs to

write a WDDM driver that supports only rendering functionality. Render only devices are not allowed as

the primary graphics device on client systems.

Table below explains the scenario usage for the new driver types:

 Client Server Client running in a

Virtual

Environment

Server Virtual

Full Graphics Required as post

device

Optional Optional Optional

Display Only Not allowed Optional Optional Optional

Render Only Optional as non

primary adapter

Optional Optional Optional

Headless Not allowed Optional N/A N/A

Additional Information

Enforcement Date Jun. 26, 2013

System.Server.Graphics.XDDM
Server Systems with a graphics device implementing a driver based on the XDDM

Related Requirements System.Server.Graphics.XDDM.No3DSupport

System.Server.Graphics.XDDM.No3DSupport

Server system graphics solution is based on XDDM unless 3D acceleration is supported

Page 247 of 254

Target Feature System.Server.Graphics.XDDM

Applies to Windows Server 2008 Release 2 x64

Description

A stand alone server system must support the Windows XP display driver model (XDDM) at a minimum. If 3D

acceleration is implemented, the driver must be based on the Windows display driver model (WDDM). For more

details on how to implement a WDDM based driver, Please refer to the relevant WDK documentation.

Additional Information

Enforcement Date Jun. 26, 2013

System.Server.PowerManageable
This feature defines power manageable requirements of server systems

Related Requirements System.Server.PowerManageable.ACPIPowerInterface

 System.Server.PowerManageable.PerformanceStates

 System.Server.PowerManageable.RemotePowerControl

System.Server.PowerManageable.ACPIPowerInterface
Power manageable servers support the power metering and budgeting ACPI interface

Target Feature System.Server.PowerManageable

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server provides support for reading system level power consumption and reading and writing the system power

budget for the server using the 'Power Supply, Metering, and Budgeting Interface' in the ACPI 4.0 specification.

The system power budget provides a supported range that the budget can be set to where the minimum budget

value is lower than the maximum budget value. The power meter supports a range of averaging intervals such

that the minimum averaging interval is one second or lower and the maximum averaging interval is five minutes

or higher. To align with the specification, the sampling interval for the power meter must be equal to or less than

the minimum averaging interval.

Additional Information

Enforcement Date Jun. 01, 2009

Page 248 of 254

System.Server.PowerManageable.PerformanceStates
If processor(s) in a server system support performance states, the server provides mechanisms to makes these states

available to Windows

Target Feature System.Server.PowerManageable

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

If the processors on the server support performance states, the server provides firmware mechanisms to pass

control of processor performance states to Windows. This mechanism must be enabled by default on the server.

Additional Information

Enforcement Date Jun. 01, 2006

System.Server.PowerManageable.RemotePowerControl
Power manageable server provides a standards based remote out-of-band interface to query and control the power

of the system

Target Feature System.Server.PowerManageable

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 x86, x64,

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Power manageable server provides an out of band remote management interface from the server's Baseboard

Management Controller (BMC) that is complaint with the IPMI, DCMI, or SMASH (via WS-MAN) 'Power State

Management Profile' to query the power state, power on or off (soft off) the server remotely.

This is a requirement for the Power Manageable Additional Qualification for Windows Server.

More detail on the SMASH profile can be found on the Distributed Management task Force web site at -

http://www.dmtf.org/standards/published_documents/DSP1027.pdf

Additional Information

http://www.dmtf.org/standards/published_documents/DSP1027.pdf

Page 249 of 254

Enforcement Date Jun. 26, 2013

System.Server.RemoteFX
This feature defines RemoteFX requirements of server systems

Related Requirements System.Server.RemoteFX.RemoteFX

System.Server.RemoteFX.RemoteFX

Server systems supporting RemoteFX must meet requirements

Target Feature System.Server.RemoteFX

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Servers must meet the following requirements:

 CPU SLAT- the CPU must support SLAT. This requirement will assist in the performance in the RemoteFX

virtualization scenarios.

 GPU requirements - must be WDDM GPUs that support Direct3D11. These requirements apply to only

the GPUs intended to support RemoteFX workloads.

 Homogenous GPUs for RemoteFX- workloads - the GPUs that are intended to run RemoteFX workloads

must be the same GPU running the same hardware driver.

Additional Information

Enforcement Date Jun. 26, 2013

System.Server.SMBIOS
This feature defines SMBIOS requirements of server systems

Related Requirements System.Server.SMBIOS.SMBIOS

System.Server.SMBIOS.SMBIOS

System firmware must fully and accurately implement SMBIOS structures of type 16 and of type 17

Target Feature System.Server.SMBIOS

Page 250 of 254

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

System firmware must fully and accurately implement SMBIOS structures of type 16 (description of physical

memory arrays) and of type 17 (description of memory devices), as permitted by the SMBIOS specification.

Implementation of other SMBIOS memory description structures - Types 19, 20 and 37 - are optional.

A JEDEC compliant DRAM DIMM supports Serial Presence Detect (SPD). Through this mechanism and defined

standards, the module can be identified in terms of its manufacturer, serial number and other useful information.

The JEDEC standards require specific data to reside in the lower 128 bytes of an EEPROM located on the memory

module. Programming of this EEPROM is normally done by vendors of DRAM DIMMs at their origin of

manufacture, and can optionally be redone afterward to meet their OEMs' specifications or retailers' requirements

for branding purposes while going through distribution channels.

The system firmware (BIOS or UEFI) probes and extracts this information from the DIMM via its SMBus interface.

The system firmware uses this information to configure the memory controller. System firmware that supports

SMBIOS V2.4 or later, conveys the above DIMM specific information to the operating systems and running

applications via a series of SMBIOS structures ("tables") for memory descriptions. These SMBIOS structures also

describe the system memory topology, geometry and characteristics. Those are briefly described here for

reference purposes and can be found in the current SMBIOS V2.5 Specification (September 5, 2006):

• Physical Memory Array (Type 16) containing information on Location, Use and Error Correction

Types; pages 51-52.

• Memory Array Mapped Address (Type 19) containing address mapping for a Physical Memory Array

(one structure is present for each contiguous address range described); page 56.

• Memory Device (Type 17) containing information on Form Factor, Type and Type Detail; pages 52-

54

• Memory Device Mapped Address (Type 20) containing address mapping to a device-level

granularity (one structure is present for each contiguous address range described); page 56.

• Memory Channel (Type 37) containing correlation between a Memory Channel and its associated

Memory Devices (each device presents one or more loads to the channel); page 68. This support in

the system firmware will:

o Allow the customers to manage their server memory components as deployed IT assets, and to

maintain a comprehensive understanding of their investment of these assets in terms of RAS

abilities and cost of ownership.

o Allow server and data center management solutions to exploit this information in their

diagnostic tools and methods for better RAS abilities.

o Enable certain classes of ISV products (RAM disk, etc.) to exploit this information for better

performance and functionalities on Windows platforms.

Additional Information

Enforcement Date Jun. 01, 2009

Page 251 of 254

System.Server.SVVP
This feature defines requirements for the SVVP program

Related Requirements System.Server.SVVP.SVVP

System.Server.SVVP.SVVP

Products participating in the Server Virtualization Validation Program must meet requirements

Target Feature System.Server.SVVP

Applies to Windows Server 2012 R2 x64

 Windows Server 2012 x64

Description

Server platforms participating in the Server Virtualization Validation Program must meet the requirements called

out here: http://www.windowsservercatalog.com/svvp.aspx.

Additional Information

Enforcement Date Jan. 01, 2011

System.Server.SystemStress
This feature defines system stress requirements of server systems

Related Requirements System.Server.SystemStress.ServerStress

System.Server.SystemStress.ServerStress
Server system must function correctly under stress

Target Feature System.Server.SystemStress

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Server system must operate correctly under long-haul, non-deterministic, high stress conditions. The hardware

and software components of the Server system must not cause data corruption, hangs, leaks, memory resource

fragmentation, crashes, or have impacts on other components of the system. Server systems must be able to

http://www.windowsservercatalog.com/svvp.aspx

Page 252 of 254

reliably shutdown and restart while under stress to prevent unnecessary and unplanned downtime.

This will be tested using stress tools that emulate loads which may be placed upon a Windows Server system

Additional Information

Enforcement Date Jan. 01, 2011

System.Server.Virtualization
This feature defines virtualization requirements of server systems

Related Requirements System.Server.Virtualization.ProcessorVirtualizationAssist

System.Server.Virtualization.ProcessorVirtualizationAssist

Processors in the server support virtualization hardware assists

Target Feature System.Server.Virtualization

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

All processors in the server must support one of the following processor virtualization hardware assist

technologies:

 Intel VT technology

 AMD-V technology

Details on specific requirements for each of these technologies are available in the Windows Server 2008

Virtualization Requirements document.

For access to the Windows Server 2008 Virtualization Requirements document, send e-mail to

lhvrtreq@microsoft.com.

Additional Information

Enforcement Date Jun. 01, 2007

System.Server.WHEA
This feature defines WHEA requirements of server systems

mailto:lhvrtreq@microsoft.com

Page 253 of 254

Related Requirements System.Server.WHEA.Core

System.Server.WHEA.Core

Server enables reporting of system hardware errors to the operating system

Target Feature System.Server.WHEA

Applies to Windows Server 2012 R2 x64

 Windows Server 2008 Release 2 x64

 Windows Server 2012 x64

Description

Servers are required to provide mechanisms to enable reporting or communication of corrected and uncorrected

system hardware errors that are available on the server to the operating system. The platform may perform

thresholding of corrected errors.

The minimal set of error sources are:

* IA64 - Machine Check Exception, Corrected Machine Check, Corrected Platform Error, INIT, PCI Express AER

* X86-64 - Machine Check Exception, Corrected Machine Check, Non Maskable Interrupt, PCI Express AER, BOOT

errors.

An interface must be provided on the server to facilitate persistence of error records. The interface must preserve

the error records across a server reboot and power cycle. At a minimum, the platform must provide enough

storage space for one uncorrectable error record. Options to implement this interface are described in the WHEA

Platform Design Guide.

Windows Server provides an OSC mechanism to indicate the presence of WHEA in the OS. The server must honor

these mechanisms and enable WHEA flows when the OSC is detected. Optional mechanisms are provided to

enable the firmware to process error events from specified error sources before handing control off to WHEA and

to communicate this behavior to the OS. This helps avoid conflicts on software handling of hardware error events.

These mechanisms are described in the WHEA Platform Design Guide.

Servers must support WHEA-defined interfaces for software insertion of a subset of hardware error conditions

into the platform to enable WHEA validation. The injection mechanism must support the injection of one fatal

uncorrected and one corrected error; each injectable error is injected using one of the error sources on the

platform, and using the signaling mechanism specified for that error source. Options to provide this interface are

described in the WHEA Platform Design Guide.

For access to the WHEA Platform Design Guide, send e-mailto WHEAFB@Microsoft.com.

Additional Information

Enforcement Date Jun. 01, 2009

mailto:WHEAFB@Microsoft.com

Page 254 of 254

