
Best-of-Breed UI Components

All trademarks or registered trademarks are property of their respective owners.

for the Desktop, Web and Your Mobile World

Free 30-Day Trial at
devexpress.com/trial

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2019 VOL 34 NO 3

C# Validation Logic
with Blazor............................14

 0319msdn_CoverTip_8x10.75.indd 1 0319msdn_CoverTip_8x10.75.indd 1 2/8/19 2:55 PM2/8/19 2:55 PM

http://www.devexpress.com/trial

 0119msdn_CoverTip_8x10.75.indd 2 0119msdn_CoverTip_8x10.75.indd 2 12/10/18 4:08 PM12/10/18 4:08 PM

http://www.devexpress.com/trial

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2019 VOL 34 NO 3

Full Stack C# with Blazor
Jonathan Miller.. 14

Parse the Command Line
with System.CommandLine
Mark Michaelis.. 20

Verify e-Documents with Smart Contracts
in Azure Blockchain Development Kit
Stefano Tempesta.. 26

Support Vector Machines Using C#
James McCaffrey.. 36

COLUMNS
DATA POINTS
A Peek at the EF Core Cosmos
DB Provider Preview, Part 2
Julie Lerman, page 6

THE WORKING
PROGRAMMER
Coding Naked: Naked Properties
Ted Neward, page 12

CUTTING EDGE
Hierarchical Blazor Components
Dino Esposito, page 44

TEST RUN
Neural Regression Using PyTorch
James McCaffrey, page 48

DON’T GET ME STARTED
Do As I Say, Not As I Do
David S. Platt, page 56

C# Validation Logic
with Blazor............................14

0319msdn_C1_v1.indd 1 2/6/19 11:28 AM

Faster Paths to
Amazing Experiences
Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts, &
other UI controls, plus visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | React | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel and Spreadsheet solution for
creating dashboards and reports without ever installing Excel

An end-to-end design-to-code platform with Indigo.Design

Best-of-breed charts for fi nancial services

Infragistics Ultimate 18.2
New Release

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

Get started today with a free trial:
Infragistics.com/Ultimate

Untitled-1 2 1/3/19 11:17 AM

http://www.Infragistics.com/Ultimate

Faster Paths to
Amazing Experiences
Infragistics Ultimate includes 100+ beautifully styled, high performance grids, charts, &
other UI controls, plus visual confi guration tooling, rapid prototyping, and usability testing.

Angular | JavaScript / HTML5 | React | ASP.NET | Windows Forms | WPF | Xamarin

Fastest grids & charts on the market for the Angular developer

The most complete Microsoft Excel and Spreadsheet solution for
creating dashboards and reports without ever installing Excel

An end-to-end design-to-code platform with Indigo.Design

Best-of-breed charts for fi nancial services

Infragistics Ultimate 18.2
New Release

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

Get started today with a free trial:
Infragistics.com/Ultimate

Untitled-1 3 1/3/19 11:17 AM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue
in November by 1105 Media, Inc., 6300 Canoga Avenue,
Suite 1150, Woodland Hills, CA 91367. Periodicals
postage paid at Woodland Hills, CA 91367 and at
additional mailing offices. Annual subscription rates
payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in
U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12.
Send orders with payment to: MSDN Magazine, File
2272, 1801 W.Olympic Blvd., Pasadena, CA 91199-2272,
email MSDNmag@1105service.com or call 866-293-3194
or 847-513-6011 for U.S. & Canada; 00-1-847-513-6011
for International, fax 847-763-9564. POSTMASTER: Send
address changes to MSDN Magazine, P.O. Box 2166,
Skokie, IL 60076. Canada Publications Mail Agreement
No: 40612608. Return Undeliverable Canadian Addresses
to Circulation Dept. or XPO Returns: P.O. Box 201,
Richmond Hill, ON L4B 4R5, Canada.

COPYRIGHT STATEMENT © Copyright 2019 by 1105
Media, Inc. All rights reserved. Printed in the U.S.A.
Reproductions in whole or part prohibited except by
written permission. Mail requests to "Permissions Editor,"
c/o MSDN Magazine, 2121 Alton Pkwy., Suite 240, Irvine,
CA 92606.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader's sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments in
the industry.

CORPORATE ADDRESS 1105 Media, Inc.
6300 Canoga Avenue, Suite 1150, Woodland Hills 91367
1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@Converge360.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International
Phone: 212-221-9595
E-mail: 1105reprints@parsintl.com
Web: 1105Reprints.com

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct.
Phone: (913) 685-1301
Email: jlong@meritdirect.com
Web: meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m.-5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
2121 Alton Pkwy., Suite 240, Irvine, CA 92606
Corporate Office (weekdays, 8:30 a.m.-5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
6300 Canoga Ave., Suite 1150, Woodland Hills, CA 91367
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

Chief Revenue Officer
Dan LaBianca

ART STAFF

Creative Director Jeffrey Langkau
Senior Graphic Designer Alan Tao

PRODUCTION STAFF

Print Production Manager Peter B. Weller
Print Production Coordinator Teresa Antonio

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Office Manager & Site Assoc. James Bowling

CLIENT SERVICES & DEMAND GENERATION

General Manager & VP Eric Choi
Senior Director Eric Yoshizuru
Director, IT (Systems, Networks) Tracy Cook
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Project Manager, Lead Generation Marketing
Mahal Ramos

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Mallory Bastionell
Senior Manager, Events Danielle Potts

Chief Executive Officer
Rajeev Kapur

Chief Financial Officer
Janet Brown

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Jennifer Mashkowski mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

MARCH 2019 VOLUME 34 NUMBER 3

magazine

0319msdn_Masthead_v2_2.indd 2 2/6/19 12:32 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
mailto:dlabianca@Converge360.com
mailto:1105reprints@parsintl.com
mailto:jlong@meritdirect.com
https://www.1105media.com
http://www.1105Reprints.com
http://www.meritdirect.com/1105

Untitled-8 1 2/4/19 3:02 PM

http://www.leadtools.com

msdn magazine4

Object-oriented programming (OOP) has stood as an aspirational
target for developers going back to Alan Kay and his Smalltalk pro-
gramming language in the 1980s. It’s hard to argue the benefits of
an object-oriented approach that features modular, reusable code
to speed development, ease maintenance and boost productivity.
And over the decades, we’ve seen object orientation adopted by
many of the most widely used programming languages and frame-
works, from C++ to Java to C#.

But as Ted Neward pointed out in his The Working Programmer
column at the beginning of the year (msdn.com/magazine/mt848703),
the ultimate promise of OOP remains to an extent unfulfilled. In
that column, he introduced Naked Objects (nakedobjects.org), an
architectural pattern developed by Richard Pawson that’s dedi
cated to the concept of behaviorally complete objects. Unlike most
mainstream OOP implementations, Naked Objects encapsulates
all the business logic as methods on domain entities. The devel-
oper doesn’t need to define views or controllers, and the UI is
generated automatically from metadata gathered, via reflection,
from objects at run time.

“I think every senior developer, once they discover reflection,
dreams or imagines building a system like this, which is why I think
Naked Objects is so instructive as a model to examine,” Neward
says. “It’s far more viable than most developers realize, and I think
part of what hurts it is that a lot of folks simply don’t know it exists.”

Naked Objects got its start as a Ph.D. thesis by Pawson, who was
inspired to explore deep object orientation after conversations with
Alan Kay in the early 1990s. Pawson saw that despite the clear bene-
fits, few commercial systems were being developed in OOP. And, he
says, “Those that were doing it weren’t getting the kind of dramatic
benefits that OOP promised. I was keen to understand why.”

His conclusion: Theoretical gains from a paradigm based on
behaviorally complete objects were offset by all the work needed
to create layers of code above and below the domain model in a
real application. In short, “the benefit of behaviorally complete
domain objects was lost in the added complexity,” Pawson says.

Naked Objects addresses these disconnects, while eliminating
the effort of creating and maintaining a UI layer, says Pawson. “You
get the benefit of a UI that is completely consistent in its operation,
even across a very complex domain model.”

You won’t find a lot of Naked Objects deployments, but they
do exist. The Irish Department of Social Protection has built
its enterprise systems on Naked Objects since 2004. Pawson
says the department has moved through three radically differ-
ent architectures without any change to the underlying domain
code—a Windows Presentation Foundation thick-client model, a
thin-client model running on ASP.MVC, and currently a single-
page application written in Angular and communicating with the
server via a RESTful API.

“Given the complexity of its business model—4,000-plus
domain classes!—that’s an extraordinary accomplishment,” he says.

Is Naked Objects likely to be on tap for your next project? Prob-
ably not. But as Pawson notes, it offers lessons for developers no
matter the engagement.

“Naked Objects makes it a lot easier to adhere to a number of prin-
ciples of sound software design,” says Pawson. “Domain-driven design,
separation of concerns, modularity and, above all, polymorphism.”

Those lessons are sure to be present in Neward’s ongoing Naked
Objects series. Be sure to check out his latest in this month’s issue.

Naked Ambition

MICHAEL DESMONDEditor’s Note

© 2019 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

The Irish Department of
Social Protection has built its
enterprise systems on Naked

Objects since 2004.

0319msdn_DesmondEdNote_v3_4.indd 4 2/6/19 12:29 PM

mailto:mmeditor@microsoft.com
http://msdn.com/magazine/mt848703
http://nakedobjects.org
http://msdn.microsoft.com/magazine

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:14 PM

mailto:sales@asposeptyltd.com
https://downloads.aspose.com

msdn magazine6

In the January 2019 Data Points column, I presented a first look
at the Cosmos DB Provider for EF Core. This provider is still in
preview and is expected to go live with the EF Core 3.0 release, so
it’s a good time to prepare for it in advance.

In that first part, you read about why there’s a NoSQL provider
for an ORM and learned how to perform some basic read and
write actions for individual objects and their related data as
defined by a simple model. Writing code that leverages this pro-
vider isn’t much different than working with the more familiar
relational database providers.

You also learned how EF Core can create a database and con-
tainers on the fly for pre-existing Azure Database accounts and
how to view the data in the cloud using the Cosmos DB extension
for Visual Studio Code.

I took a sidetrack in my February 2019 column (msdn.com/magazine/
mt833267) to take a look at the MongoDB API of Azure Cosmos
DB, although this isn’t related to EF Core. Now I’ll return to my
previous subject to share some of the other interesting discoveries
I made when exploring the EF Core Cosmos DB provider.

In this column, you’ll learn about some of the provider’s more
advanced features, such as configuring the DbContext to change
how EF Core targets Cosmos DB database containers, realizing
embedded documents with owned entities and using EF Core
logging to see the SQL along with other interesting processing
information generated by the provider.

More About Containers and EF Core Mappings
Containers, also known as collections in the Cosmos DB SQL and
Mongo DB APIs, are schema-agnostic groupings of items that are
the “fundamental units of scalability” for Cosmos DB. That is, you
can define throughput per container and a container can scale and
be replicated as a unit. As your data grows, designing models and
how they align with containers will impact performance and cost. If
you’ve used EF or EF Core, you’ll be familiar with the default that one
DbSet<TEntity> maps to one table in a relational database. Creating
a separate Cosmos DB container for each DbSet could be an expen-
sive default, however. But the default, as you learned in Part 1, is that
all of the data for a DbContext maps to a single container. And the
convention is that the container has the same name as the DbContext.

Let’s take a look at defaults and see which ones you can control
with EF Core.

In the previous article, I let EF Core trigger a new database
and container to be created on the fly. I already had an Azure
account, targeted to the SQL API (which is what EF Core uses).
Geo-redundancy is enabled by default, but I’ve only configured
my account to use a single datacenter in the Eastern United States.
Therefore, by default, multi-region writes are disabled. So whatever
databases I add to this account, and any containers to those data-
bases, will follow those overarching specs controlled by the account.

In the first column, I had a DbContext named ExpanseDb-
Context. When configuring the ExpanseDbContext to use the
Cosmos provider, I specified that the database name should be
ExpanseCosmosDemo:

optionsBuilder.UseCosmos(endpointstring,accountkeystring, "ExpanseCosmosDemo")

The first time my code called Database.EnsureCreated on
an instance of ExpanseDbContext, the ExpanseCosmosDemo
database was created along with the default container, called
ExpanseDbContext, following the convention to use the name of
the DbContext class.

The container was created using the Azure Cosmos DB defaults
shown in Figure 1. Not shown in the figure is the indexing policy
configuration using the default, which is “consistent.”

These settings can’t be affected by EF Core. You can modify them
in the portal, using the Azure CLI or an SDK. This makes sense
because EF Core’s role is to read and write data. But one thing you

A Peek at the EF Core
Cosmos DB Provider Preview, Part 2

Data Points JULIE LERMAN

The EF Core Cosmos DB Provider is in preview. All information is subject to change.

Code download available at msdn.com/magazine/0319magcode.
Figure 1 Azure Cosmos DB Defaults for Creating a Container

0319msdn_LermanDPts_v5_6-9.indd 6 2/6/19 12:31 PM

http://msdn.com/magazine/mt833267
http://msdn.com/magazine/mt833267
http://msdn.com/magazine/0319magcode

Untitled-3 1 12/7/18 11:47 AM

http://www.devexpress.com/try

msdn magazine8 Data Points

can affect with EF Core is container names and mapping entities
to be stored in different containers.

You can override the default container name with the Has
DefaultContainerName method in OnConfiguring. For example,
the following will use ExpanseDocuments as the default name
instead of ExpanseDbContext:

modelBuilder.HasDefaultContainerName("ExpanseDocuments");

If you’ve determined that you want to split data into different
containers, you can map a new container name for particular
entities. Here’s an example that specifies the Ship entity from the
previous article into a container called ExpanseShips:

modelBuilder.Entity<Ship>().ToContainer("ExpanseShips");

You can target as many entities to a single container as you
want. The default container already demonstrates this. But you
could use ToContainer(“ExpanseShips”) with other entities, as
well, if you wanted.

What happens when you add a new container to an existing
database in this way? As I noted in Part 1, the only way to have
EF Core create a database or container is by calling context.Data
base.EnsureCreated. EF Core will recognize what does and doesn’t
already exist and create any new containers as needed.

If you change the default container name, EF will create the new
container and will work with that container going forward. But any
data in the original container will remain there.

Because Azure Cosmos DB doesn’t have the ability to rename
an existing container, the official recommendation is to move the
data into the new collection, perhaps with a bulk executor library,
such as the one at bit.ly/2RbpTvp. The same holds true if you change
the mapping for an entity to a different container. The original data
won’t be moved and you’ll be responsible for ensuring that the old
items are transferred. Again, it’s probably more reasonable to do
that one-time move outside of EF Core.

I also tested out adding graphs of Consortium with Ships
where the documents would end up in separate containers in the
database. When reading that data, I was able to write a query for
Consortia that eager-loaded its ship data, for example:

context.Consortia.Include(c=>c.Ships).FirstOrDefault()

EF Core was able to retrieve the data from the separate containers
and reconstruct the object graph.

Owned Entities Get Embedded
Within Parent Documents
In Part 1, you saw that related entities were stored in their own doc-
uments. I’ve listed the Expanse classes in Figure 2 as a reminder
of the example model. When I built a graph of a Consortium with
Ships, each object was stored as a separate document with foreign
keys that allow EF Core or other code to connect them back up
again. That’s a very relational concept, but because consortia and
ships are unique entities that have their own identity keys, this is
how EF Core will persist them. But EF Core does have an under-
standing of document database and embedded documents, which
you can witness when working with owned entities. Notice that the
Origin type doesn’t have a key property and it’s used as a property
of both Ship and of Consortium. It will be an owned entity in my
model. You can read more about the EF Core Owned Entity feature
in my April 2018 Data Points article at msdn.com/magazine/mt846463.

In order for EF Core to comprehend an owned type so that it
can map it to a database, you need to configure it either as a data
annotation or (always my preference) a fluent API configuration.
The latter happens in the DbContext OnConfiguring method as
I’m doing here:

modelBuilder.Entity<Ship>().OwnsOne(s=>s.Origin);
modelBuilder.Entity<Consortium>().OwnsOne(s=>s.Origin);

Here’s some code for adding a new Ship, along with its origin,
to a consortium object:

consortium.Ships.Add(new Ship{ShipId=Guid.NewGuid(),ShipName="Nathan Hale 3rd",
 Origin= new Origin {Date=DateTime.Now,
 Location="Earth"}});

When the consortium is saved via the ExpanseContext, the new
ship is also saved into its own document.

Figure 3 displays the document for that Ship with its Origin
represented as an embedded document. A document database

public class Consortium
{
 public Consortium()
 {
 Ships=new List<Ship>();
 Stations=new List<Station>();
 }
 public Guid ConsortiumId { get; set; }
 public string Name { get; set; }
 public List<Ship> Ships{get;set;}
 public List<Station> Stations{get;set;}
 public Origin Origin{get;set;}
}
public class Planet
{
 public Guid PlanetId { get; set; }
 public string PlanetName { get; set; }
}
public class Ship
{
 public Guid ShipId {get;set;}
 public string ShipName {get;set;}
 public int PlanetId {get;set;}
 public Origin Origin{get;set;}
}
public class Origin
{
 public DateTime Date{get;set;}
 public String Location{get;set;}
}

Figure 2 The Expanse Classes

{
 "ShipId": "e5d48ffd-e52e-4d55-97c0-cee486a91629",
 "ConsortiumId": "60ccb22d-4422-45b2-a54a-71fa240435b3",
 "Discriminator": "Ship",
 "PlanetId": 0,
 "ShipName": "Nathan Hale 3rd",
 "id": "c2bdd90f-cb6a-4a3f-bacf-b0b3ac191662",
 "Origin": {
 "ShipId": "e5d48ffd-e52e-4d55-97c0-cee486a91629",
 "Date": "2019-01-22T11:40:29.117453-05:00",
 "Discriminator": "Origin",
 "Location": "Earth"
 },
 "_rid": "cgEVAKklUPgCAAAAAAAAAA==",
 "_self": "dbs/cgEVAA==/colls/cgEVAKklUPg=/docs/
 cgEVAKklUPgCAAAAAAAAAA==/",
 "_etag": "\"0000a43b-0000-0000-0000-5c47477d0000\"",
 "_attachments": "attachments/",
 "_ts": 1548175229
}

Figure 3 A Ship Document with
an Origin Sub-Document Embedded

0319msdn_LermanDPts_v5_6-9.indd 8 2/6/19 12:31 PM

http://bit.ly/2RbpTvp
http://msdn.com/magazine/mt846463

9March 2019msdnmagazine.com

doesn’t need a sub-document to have a foreign key back with its
parent. However, the EF Core logic for persisting owned entities
does require the foreign key (handled by EF Core Shadow Prop-
erties) in order to persist owned entities in relational databases.
Therefore, it leverages its existing logic to infer the ShipId property
within the Origin sub-document.

EF Core also has the ability to map owned collections with the
OwnsMany mapping. In this case, you’d see multiple sub-documents
within the parent document in the database.

There’s a gotcha that will be fixed in EF Core 3.0.0 preview 2. EF
Core currently doesn’t understand null owned entity properties.
The other database providers will throw a runtime exception if
you attempt to add an object with a null owned entity property, a
behavior you can read about in the previously mentioned April 2018
column. Unfortunately, the Cosmos DB provider doesn’t prevent
you from adding objects in this state, but it’s not able to materialize
objects that don’t have the owned entity property populated. Here’s
the exception that was raised when I encountered this problem:

 "System.InvalidCastException: Unable to cast object of type
 'Newtonsoft.Json.Linq.JValue' to type 'Newtonsoft.Json.Linq.JObject'."

So if you see that error when trying to query entities that have
owned type properties, I hope you’ll remember that it’s likely a null
owned type property causing the exception.

Logging the Provider Activity
EF Core plugs into the .NET Core logging framework, as I covered in
my October 2018 column (msdn.com/magazine/mt830355). Shortly after
that article was published, the syntax for instantiating the LoggerFac-
tory was simplified, although the means of using categories and log
levels to determine what should get output in the logs didn’t change.
I reported the updated syntax in a blog post, “Logging in EF Core
2.2 Has a Simpler Syntax—More Like ASP.NET Core” (bit.ly/2UdSkuI).

When EF Core interacts with the Cosmos DB provider, it also
shares details with the logger. This means you can see all of the same
types of information in the logs that you can with other providers.

Keep in mind that CosmosDB doesn’t use SQL for inserting,
updating and deleting, as you’re used to doing with relational
databases. SQL is used for queries only, so SaveChanges won’t show
SQL in the logs. However, you can see how EF Core is fixing up
the objects, creating any needed IDs, foreign keys and discrimi-
nators. I was able to see all of this information when logging all of
the categories tied to the Debug LogLevel, rather than only filter-
ing on the database commands.

Here’s how I configured my GetLoggerFactory method to do
that. Notice the AddFilter method. Rather than passing a category
into the first parameter, I’m using an empty string, which gives
me every category:

private ILoggerFactory GetLoggerFactory()
{
 IServiceCollection serviceCollection = new ServiceCollection();
 serviceCollection.AddLogging(builder =>
 builder.AddConsole()
 .AddFilter("" , LogLevel.Debug));
 return serviceCollection.BuildServiceProvider()
 .GetService<ILoggerFactory>();
}

If I’d wanted to filter on just the SQL commands, I’d have passed
DbLoggerCategory.Database.Command.Name to give the correct

string for just those events instead of an empty string. This relayed
a lot of logging messages when inserting a few graphs and then
executing a single query to retrieve some of that inserted data. I’ll
include the full output and my program in the download that ac-
companies this column.

Some interesting tidbits from those logs include this information
about adding shadow properties where you can, in the case of this
provider, see the special Discriminator property being populated:

dbug: Microsoft.EntityFrameworkCore.Model[10600]
 The property 'Discriminator' on entity type 'Station' was created
in shadow state because there are no eligible CLR members with a matching
name.

If you’re saving data, after all of that fix-up is performed, you’ll
see a log message that SaveChanges is starting:

debug: Microsoft.EntityFrameworkCore.Update[10004]
 SaveChanges starting for 'ExpanseContext'.

This is followed by messages about DetectChanges being called.
The provider will use internal API logic to add, modify or remove
the document in the relevant collection, but you won’t see any par-
ticular logs about that action. However, after these actions complete,
the logs will relay typical post-save steps such as the context updating
the state of the object that was just posted:

dbug: Microsoft.EntityFrameworkCore.ChangeTracking[10807]
 The 'Consortium' entity with key '{ConsortiumId: a4b0405e-a820-4806-
8b60-159033184cf1}' tracked by 'ExpanseContext' changed from 'Added' to
'Unchanged'.

If you’re executing a query, you’ll see a number of messages as EF
Core works out the query. EF Core starts by compiling the query
and then massages it until it arrives at the SQL that gets sent to the
database. Here’s a log message showing the final SQL:

dbug: Microsoft.EntityFrameworkCore.Database.Command[30000]
 Executing Sql Query [Parameters=[]]
 SELECT c
 FROM root c
 WHERE (c["Discriminator"] = "Consortium")

Waiting for Release
The EF Core Cosmos DB provider preview is available for EF Core
2.2+. I worked with EF Core 2.2.1 and and then, in order to see if I
noticed any changes, switched to the unreleased EF Core packages
in the latest preview of EF Core 3, version 3.0.0-preview.18572.1.

EF Core 3 is on the same release schedule as .NET Core 3.0, but
the latest information about the timing only says “sometime in
2019.” The official release of Preview 2 was announced at the end
of January 2019 in the blog post at bit.ly/2UsNBp6. If you’re interested
in this support for Azure Cosmos DB, I recommend trying it out
now and helping the EF team uncover any problems to make it a
more viable provider for you when it does get released.	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team
coach and consultant who lives in the hills of Vermont. You can find her presenting
on data access and other topics at user groups and conferences around the world.
She blogs at the thedatafarm.com/blog and is the author of “Programming Entity
Framework,” as well as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her Pluralsight courses
at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Andriy Svyryd

0319msdn_LermanDPts_v5_6-9.indd 9 2/6/19 12:31 PM

http://www.msdnmagazine.com
http://msdn.com/magazine/mt830355
http://bit.ly/2UdSkuI
http://bit.ly/2UsNBp6
www.twitter.com/julielerman
http://thedatafarm.com/blog

Developer Training Conferences and Events

NEW IN 2019!
On-Demand Session
Recordings for One Year!

Get access to all sessions (not
including Hands-On Labs or
Workshops) at each show for a
year. Learn more at vslive.com.

networking

sessions

hands-on
labs

tracks

SUPPORTED BY PRODUCED BY

magazine

Choose VSLive! For:
✔ In-depth developer training
✔ Unparalleled networking
✔ World-class speakers
✔ Exciting city adventures

speakers

Untitled-9 2Untitled-9 2 1/23/19 3:20 PM1/23/19 3:20 PM

https://www.vslive.com

August 12-16

Microsoft HQ

Join our Visual Studio Live!

experts at the Mothership for

5 days of developer training

and special Microsoft perks

unique to our other show

locations. Plus, we are

adding the ever-so popular

full-day Hands-On Labs to

the agenda in Redmond for

the first time this year!

Sept. 29-Oct. 3

Westin Gaslamp Quarter

Head to the heart of the

San Diego Gaslamp District

with Visual Studio Live!

this Fall as we immerse

ourselves with all things

for developers, including

several workshops,

sessions and networking

opportunities to

choose from.

October 6-10

Swissotel

Head to the Windy City

and join Visual Studio Live!

this October for 5 days

of unbiased, developer

training and bringing our

well-known Hands-On Labs

to the city for the first time.

ORLANDO

November 17-22

Royal Pacific Resort

at Universal

Visual Studio Live! Orlando is

a part of Live! 360, uniquely

offering you 6 co-located

conferences for one great

price! Stay ahead of the

current trends and advance

your career – join us for our

last conference of the year!

JOIN US IN 2019!

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

CONNECT WITH US

REGISTER NOW!
vslive.com/microsofthq

REGISTER NOW!
vslive.com/sandiego

REGISTER NOW!
vslive.com/chicago

DETAILS COMING SOON!

June 9-13

Hyatt Regency

Cambridge

Join Visual Studio Live!

for an amazing view of

Beantown, bringin g

our infamous speakers

for intense developer

training, Hands-On Labs,

workshops, sessions and

networking adventures to

the Northeast.

March 3-8

Bally’s Hotel & Casino

Visual Studio Live! kicks

off 2019 in the heart of Las

Vegas with 6 days of

hard-hitting Hands-On

Labs, workshops, 60+

sessions, expert speakers

and several networking

opportunities included!

Register to join us today!

REGISTER NOW!
vslive.com/lasvegas

LAST CHANCE TO REGISTER!

April 22-26

Hyatt Regency

For the first time in our

20-year history, Visual

Studio Live! is heading

down south to New Orleans

for intense developer

training, bringing our

hard-hitting sessions,

well-known coding

experts and unparalleled

networking to the Big Easy!

REGISTER NOW!
vslive.com/neworleans

REGISTER NOW!
vslive.com/boston

SAN JOSE

June 18-19

Microtek Training Center

San Jose

Develop and ASP.NET Core

2.x Service and Website

with EF Core 2.x in two

days with Visual Studio

Live!’s training seminar in

San Jose, CA. Expand your

knowledge and accelerate

your career today.

REGISTER NOW!
vslive.com/sanjose

Virt
ual

Cla
ss

ro
om

Ava
ila

ble

vslive.com #VSLIVE

Untitled-9 3Untitled-9 3 1/23/19 3:18 PM1/23/19 3:18 PM

https://www.vslive.com
https://www.vslive.com
https://www.vslive.com/lasvegas
https://www.vslive.com/neworleans
https://www.vslive.com/boston
https://www.vslive.com/sanjose
https://www.vslive.com/chicago
https://www.vslive.com/sandiego
https://www.vslive.com/microsofthq
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com/groups/visualstudiolive

msdn magazine12

Welcome back, NOFers. (I’ve decided that sounds better than call-
ing those who use naked objects “naked coders.”) In the last piece, I
started building out the domain model for my conference system,
which allowed me to store speakers, but it’s a pretty plain-vanilla
setup thus far. I haven’t done any of the sorts of things you’d normally
need to do, like verifying that first or last names aren’t empty, or
supporting a “topics” field that’s one of a bound set of options, and
so on. All of these are reasonable things to want to support in a UI
(as well as a data model), so if this “naked” approach is going to be
used for real-world scenarios, it needs to be able to do them, as well.

Fortunately, the NOF designers knew all that.

Naked Concepts
Let’s go back and talk about how NOF handles this in the general
case before I get into the specifics.

Remember, the goal of NOF is to keep from having to write UI
code that could otherwise be signaled using some aspect of the
domain objects themselves, and the best way to do that sort of
signaling is through the use of custom attributes. In essence, you
use NOF custom attributes to annotate various elements of the
domain object—properties and methods, for the most part—and
the NOF client understands, based on the presence of the attribute,
or data contained inside the attribute, that it has to customize the
UI for that object in some manner. Note that NakedObjects doesn’t
need to actually define many of these custom attributes, as they
come “for free” from the System.ComponentModel namespace in
the standard .NET distribution. Reusability!

However, sometimes it’s not quite as simple as “this should always
be the case.” For example, if certain properties have to be disabled
based on the internal state of the object (such as an “on-parental-leave”
property that needs to be disabled if an employee has no spouse or
children), then code will need to be executed, and that’s something
a custom attribute can’t provide. In those situations, NOF relies on
convention: specifically, NOF will look for particularly named meth-
ods on the class. If the parental-leave property is named OnLeave,

then the method that NOF will execute to determine whether to
disable the OnLeave property would be called DisableOnLeave.

Let’s see how this works out in practice.

Naked Speakers, Redux
Currently, the Speaker class has just three properties on it, First-
Name, LastName and Age. (That’s not counting the Id property,
which isn’t visible to the user, and the FullName property, which is
computed out of the FirstName and LastName properties; because
they aren’t user-modifiable, they’re not really of concern here. Yet.)
It wouldn’t make sense for this conference system to allow for empty
first or last names, and a negative age probably wouldn’t make
much sense, either. Let’s fix these first.

Specifying non-zero names is one of the easiest validations
to apply, because it’s a static one. There’s no complicated logic
required—the length of the strings supplied to each property has
to be greater than zero. This is handled by the StringLength attri-
bute on each property, like so:

[StringLength(100,
 ErrorMessage = "First name must be between 1 and 100 characters",
 MinimumLength = 1)]
public virtual string FirstName { get; set; }

[StringLength(100,
 ErrorMessage = "Last name must be between 1 and 100 characters",
 MinimumLength = 1)]
public virtual string LastName { get; set; }

That takes care of the empty-names problem.
Age is even easier, because I can use the Range custom attribute

to specify acceptable minimum and maximum age ranges. (Would
I really consider bringing in a speaker younger than 21? Possibly,
because I want to encourage school-age kids to speak, but anyone
younger than 13 would probably be a tough sell.) Applying the
Range attribute, then, would look like this:

[Range(13, 90, ErrorMessage = "Age must be between 13 and 90")]
public virtual int Age { get; set; }

Note that the StringLength and Range attributes also take an
ErrorMessageResourceName value, in case error messages are stored
in resources (which they should be, for easy internationalization).

Build, and run; notice how the UI will now automatically enforce
these constraints. Even better, to the degree possible, the constraints
will be enforced in the database, as well. Nifty!

In and of themselves, these attributes act essentially as data model
validations, with a small amount of UI to support them. However,
you often want to change up elements of the UI that have nothing
to do with data validation, as well. For example, currently, the

Coding Naked: Naked Properties

The Working Programmer TED NEWARD

Specifying non-zero names is
one of the easiest validations to
apply, because it’s a static one.

0319msdn_NewardWProg_v3_12-13.indd 12 2/6/19 12:27 PM

Spice Up Your Coding Skills in the Bayou
April 22-26, 2019 | Hyatt Regency New Orleans

#VSLive

Intense Developer
Training Conference
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

0319msdn_VSLive_Insert.indd 1 1/29/19 1:26 PM

MSDN_Insert_placement_7.625x5.indd 1 2/11/19 3:59 PM

https://www.vslive.com/neworleans

SUPPORTED BY PRODUCED BY

magazine

vslive.com/neworleans

Save $300
When You Register by March 22
Use Promo Code MSDN

 HOL01: Cross-Platform Mobile
Development in a Day with
Xamarin and Xamarin.Forms

 HOL02: Building a Modern
DevOps Pipeline on Microsoft
Azure with ASP.NET Core and
Azure DevOps

Learn more at vslive.com/neworleans

Enhance Your Learning
With Sunday Hands-On Labs

0319msdn_VSLive_Insert.indd 2 1/29/19 1:25 PM

MSDN_Insert_placement_7.625x5.indd 2 2/11/19 3:59 PM

https://www.vslive.com/neworleans

13March 2019msdnmagazine.com

attributes on the Speaker object are displayed in alphabetical order,
which doesn’t make a ton of sense. It would be far more realistic
(and useful) if the first value displayed was the full name, followed
by the individual fields for first name, last name and age (as well as
any other demographic information you need to capture and use).

While this could certainly become the “Welp, that was fun, time
to break down and build our own UI” moment, it doesn’t need
to—this is a common requirement, and NOF has it covered, via
the MemberOrder attribute. Using this attribute, I can establish an
“order” in which attributes should appear in the UI. So, for exam-
ple, if I want the FullName attribute to appear first in the UI, I use
MemberOrder and pass in the relative ordinal position “1,” like so:

[Title]
[MemberOrder(1)]
public string FullName { get { return FirstName + " " + LastName; } }

Next, I’d like to display first name, last name and age, but here I
can begin to run into a problem. As I add new fields to this class
over time (say, “middle name” or “email”), trying to keep all the
ordinal positions in order can be tricky—if I move LastName to
position 5, I have to go find everything 5 (and after) and bump
each one to get the right positions. That’s a pain.

Fortunately, MemberOrder has a nifty little trick to it: The position
itself can be a floating-point value, which allows fields to be “grouped,”
so that now I can mark “FirstName,” “LastName,” and “Age” as ordinal
positions “2.1,” “2.2,” and “2.3,” respectively, which essentially means
that group “2” can be demographic information, and any new demo-
graphic information about the Speaker only requires reshuffling of
the members in that particular group, as Figure 1 shows.

Note that there’s nothing really special about the values them-
selves—they’re used relative to one another and don’t represent any
particular location on the screen. In fact, I could’ve used 10, 21, 22
and 23, if I wanted to. NOF is careful to point out that these values
are compared lexicographically—string-based comparisons—and
not numerically, so use whichever scheme makes sense to you.

What if users aren’t sure whether Age is in years or in days? It
may seem completely obvious to you, but remember, not every-
body looks at the world the same way. While it’s probably not a
piece of information that needs to be present on the UI overtly, it
should be something that you can signal to the user somehow. In
NOF, you use the “DescribedAs” attribute to signal how the prop-
erty should be described, which typically takes the form of a tooltip
over the input area. (Remember, though, a given NOF client might
choose to use a different way to signal that; for example, if a NOF

client emerges for phones, which are touch-centric, tooltips don’t
work well for that format. In that situation, that hypothetical NOF
client would use a different mechanism, one more appropriate for
that platform, to describe the property.)

And Speakers need a bio! Oh, my, how could I forget that—that’s
like the one time speakers get to write exclusively about themselves
and all the amazing things they do! (That’s a joke—if it’s one thing
speakers hate most of all, it’s writing their own bio.) Bio is an easy
attribute to add to the class, but most bios need to be more than just
a word or two, and looking at the UI generated by NOF so far, all of
the other strings are currently single-line affairs. It’s for this reason
that NOF provides the “MultiLine” attribute, to indicate that this field
should be displayed in a larger area of text entry than the typical string.

But I need to be careful about, in this case, a speaker’s biog-
raphy, because free-form input offers the possibility for abuse: I
might want/need to screen out certain words from appearing lest
people get the wrong impression about the conference. I simply
can’t have speakers at my show if their biographies include words
like COBOL! Fortunately, NOF will allow for validation of input
by looking for, and invoking, methods on the Speaker class that
match a Validate[Property] convention, like so:

[MemberOrder(4)]
[StringLength(400, ErrorMessage = "Keep bios to under 400 characters, please")]
public virtual string Bio { get; set; }
public string ValidateBio(string bio)
{
 if (bio.IndexOf("COBOL") > -1)
 return "We are terribly sorry; nobody wants to hear that";
 else
 return "";
}

Wrapping Up
NOF has a pretty wide variety of options available to describe a
domain object in terms that make it easier to automatically render
the appropriate UI to enforce domain limitations, but thus far the
model here is pretty simple. In the next piece, I’ll examine how NOF
can handle a more complicated topic, that of relationships between
objects. (Speakers need to be able to specify Topics they speak on,
for example, and most of all, the Talks they propose.) But I’m out
of space for the month, so in the meantime … Happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor.
He has written a ton of articles, authored and co-authored a dozen books, and
speaks all over the world. Reach him at ted@tedneward.com or read his blog at
blogs.tedneward.com.

Thanks to the following technical expert who reviewed this article:
Richard Pawson

[MemberOrder(2.1)]
[StringLength(100,
 ErrorMessage = "First name must be between 1 and 100 characters",
 MinimumLength = 1)]
public virtual string FirstName { get; set; }

[MemberOrder(2.2)]
[StringLength(100,
 ErrorMessage = "Last name must be between 1 and 100 characters",
 MinimumLength = 1)]
public virtual string LastName { get; set; }

[Range(13, 90, ErrorMessage = "Age must be between 13 and 90")]
[MemberOrder(2.3)]
public virtual int Age { get; set; }

Figure 1 Grouping Fields

In and of themselves, these
attributes act essentially as data
model validations, with a small
amount of UI to support them.

0319msdn_NewardWProg_v3_12-13.indd 13 2/6/19 12:27 PM

mailto:ted@tedneward.com
http://www.msdnmagazine.com
http://blogs.tedneward.com

msdn magazine14

Full Stack C# with Blazor

Blazor, Microsoft’s experimental
framework that brings C# into the
browser, is the missing piece in the C#
puzzle. Today, a C# programmer can
write desktop, server-side Web, cloud,
phone, tablet, watch, TV and IoT appli-
cations. Blazor completes the puzzle,
allowing a C# developer to share code
and business logic right into the user’s
browser. This is a powerful ability and
a gigantic productivity improvement
for C# developers.

In this article, I’m going to demon-
strate a common-use case for code
sharing. I’ll demonstrate how to share
validation logic between a Blazor cli-
ent and a WebAPI server application.
Today it’s expected that you validate the
input not only on the server but also
in the client browser. Users of modern
Web applications expect near-real-time
feedback. The days of filling out a long
form and clicking Submit only to see
a red error returned are mostly behind us.

A Blazor Web application running inside the browser can share
code with a C# back-end server. You can place your logic in a shared
library and utilize it on the front and back ends. This has a lot of
benefits. You can put all the rules in one place and know that they
only have to be updated in one location. You know that they’ll
really work the same because they’re the same code. You save a
bunch of time in testing and troubleshooting issues where the
client and server logic aren’t always quite the same.

Perhaps most notable, you can use one library for validation on
both the client and the server. Traditionally, a JavaScript front end
forces developers to write two versions of validation rules—one
in JavaScript for the front end and another in the language used
on the back end. Attempts to solve this mismatch involve compli-
cated rules frameworks and additional layers of abstraction. With
Blazor, the same .NET Core library runs on the client and server.

Blazor is still an experimental framework, but it’s moving forward
quickly. Before building this sample, make sure you have the correct
version of Visual Studio, .NET Core SDK and Blazor language ser-
vices installed. Please review the Getting Started steps on blazor.net.

Creating a New Blazor Application
First, let’s create a new Blazor application. From the New Project dialog
box click ASP.NET Core Web Application, click OK, then select the
Blazor icon in the dialog box shown in Figure 1. Click OK. This will
create the default Blazor sample application. If you’ve experimented
with Blazor already, this default application will be familiar to you.

C#

Jonathan C. Miller

This article discusses:
•	Creating a new Blazor application and a shared library project to

house common C# code for client and server
•	Creating a validation engine that shares logic in the browser and

on the back end

Technologies discussed:
Blazor, C#, ASP.NET Core

Figure 1 Choosing a Blazor Application

0319msdn_MillerBlazor_v3_14-19.indd 14 2/6/19 12:27 PM

http://www.blazor.net

15March 2019msdnmagazine.com

The shared logic that validates business rules will be demonstrated
on a new registration form. Figure 2 shows a simple form with
fields for First Name, Last Name, Email and Phone. In this sample,
it will validate that all the fields are required, that the name fields
have a maximum length, and that the e-mail and phone number
fields are in the correct format. It will display an error message
under each field, and those messages will update as the user types.
Last, the Register button will only be enabled if there are no errors.

Shared Library
All of the code that needs to be shared between the server and
Blazor client will be placed in a separate shared library project.
The shared library will contain the model class and a very simple
validation engine. The model class will hold the data fields on the
registration form. It looks like this:

public class RegistrationData : ModelBase
{
 [RequiredRule]
 [MaxLengthRule(50)]
 public String FirstName { get; set; }

 [RequiredRule]
 [MaxLengthRule(50)]
 public String LastName { get; set; }

 [EmailRule]
 public String Email { get; set; }

 [PhoneRule]
 public String Phone { get; set; }

}

The RegistrationData class inherits from a ModelBase class,
which contains all of the logic that can be used to validate the rules
and return error messages that are bound to the Blazor page. Each
field is decorated with attributes that map to validation rules. I
chose to create a very simple model that feels a lot like the Entity
Framework (EF) Data Annotations model. All of the logic for this
model is contained in the shared library.

The ModelBase class contains methods that can be used by
the Blazor client application or the server application to deter-
mine if there are any validation errors. It will also fire an event
when the model is changed, so the client can update the UI. Any
model class can inherit from it
and get all of the validation engine
logic automatically.

I’ll start by first creating a new
ModelBase class inside of the
SharedLibrary project, like so:

public class ModelBase
 {
}

Errors and Rules
Now I’ll add a private dictionary
to the ModelBase class that con-
tains a list of validation errors.
The _errors dictionary is keyed
by the field name and then by the
rule name. The value is the actual
error message to be displayed. This
setup makes it easy to determine

if there are validation errors for a specific field and to retrieve the
error messages quickly. Here’s the code:

private Dictionary<String, Dictionary<String, String>> _errors =
 new Dictionary<string, Dictionary<string, string>>();

Now I’ll add the AddError method for entering errors into the
internal errors dictionary. AddError has parameters for fieldName,
ruleName and errorText. It searches the internal errors dictionary
and removes entries if they already exist, then adds the new error
entry, as shown in this code:

private void AddError(String fieldName, String ruleName, String errorText)
{
 if (!_errors.ContainsKey(fieldName)) { _errors.Add(fieldName,
 new Dictionary<string, string>()); }
 if (_errors[fieldName].ContainsKey(ruleName))
 { _errors[fieldName].Remove(ruleName); }
 _errors[fieldName].Add(ruleName, errorText);
 OnModelChanged();
}

Finally, I’ll add the RemoveError method, which accepts the field-
Name and ruleName parameters and searches the internal errors
dictionary for a matching error and removes it. Here’s the code:

private void RemoveError(String fieldName, String ruleName)
{
 if (!_errors.ContainsKey(fieldName)) { _errors.Add(fieldName,
 new Dictionary<string, string>()); }
 if (_errors[fieldName].ContainsKey(ruleName))
 { _errors[fieldName].Remove(ruleName);
 OnModelChanged();
 }
}

The next step is to add the CheckRules functions that does the
work of finding the validation rules attached to the model and
executing them. There are two different CheckRules functions:
One that lacks a parameter and checks all rules on all fields, and a
second that has a fieldName parameter and only validates a specific
field. This second function is used when a field is updated, and the
rules for that field are validated immediately.

The CheckRules function uses reflection to find the list of attri-
butes attached to a field. Then, it tests each attribute to see if it’s a type
of IModelRule. When an IModelRule is found, it calls the Validate
method and returns the result, as shown in Figure 3.

Next, I add the Errors function. This function takes a field name
as a parameter and returns a string that contains the list of errors

Figure 2 Registration Form

0319msdn_MillerBlazor_v3_14-19.indd 15 2/6/19 12:27 PM

http://www.msdnmagazine.com

msdn magazine16 C#

for that field. It uses the internal _errors dictionary to determine
if there are any errors for that field, as shown here:

public String Errors(String fieldName)
{
 if (!_errors.ContainsKey(fieldName)) { _errors.Add(fieldName,
 new Dictionary<string, string>()); }
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 foreach (var value in _errors[fieldName].Values)
 sb.AppendLine(value);

 return sb.ToString();
}

Now, I need to add the HasErrors function, which returns true if
there are any errors on any field of the model. This method is used
by the client to determine if the Register button should be enabled.
It’s also used by the WebAPI server to determine if the incoming
model data has errors. Here’s the function code:

public bool HasErrors()
{
 foreach (var key in _errors.Keys)
 if (_errors[key].Keys.Count > 0) { return true; }
 return false;
}

Values and Events
It’s time to add the GetValue method, which takes a fieldname
parameter and uses reflection to find the field in the model and
return its value. This is used by the Blazor client to retrieve the
current value and display it in the input box, as shown right here:

public String GetValue(String fieldName)
{
 var propertyInfo = this.GetType().GetProperty(fieldName);
 var value = propertyInfo.GetValue(this);

 if (value != null) { return value.ToString(); }
 return String.Empty;
}

Now add the SetValue method. It uses reflection to find the field
in the model and update its value. It then fires off the CheckRules

method that validates all the rules on the field. It’s used in the Blazor
client to update the value as the user types in the input textbox.
Here’s the code:

public void SetValue(String fieldName, object value)
{
 var propertyInfo = this.GetType().GetProperty(fieldName);
 propertyInfo.SetValue(this, value);
 CheckRules(fieldName);
}

Finally, I add the event for ModelChanged, which is raised when
a value on the model has been changed or a validation rule has been
added or removed from the internal dictionary of errors. The Blazor
client listens for this event and updates the UI when it fires. This is
what causes the errors displayed to update, as shown in this code:

public event EventHandler<EventArgs> ModelChanged;

protected void OnModelChanged()
{
 ModelChanged?.Invoke(this, new EventArgs());
}

This validation engine is admittedly a very simple design
with lots of opportunities for improvement. In a production-
business application, it would be useful to have severity levels for
the errors, such as Info, Warning and Error. In certain scenarios,
it would be helpful if the rules could be loaded dynamically from
a configuration file without the need to modify the code. I’m not
advocating that you create your own validation engine; there are
a lot of choices out there. This one is designed to be good enough
to demo a real-world example, but simple enough to make it fit
into this article and be easy to understand.

Making the Rules
At this point, there’s a RegistrationData class that contains the form
fields. The fields in the class are decorated with attributes such as
RequiredRule and EmailRule. The RegistrationData class inherits
from a ModelBase class that contains all the logic to validate the
rules and to notify the client of changes. The last piece of the vali-
dation engine is the rule logic itself. I’ll explore that next.

I start by creating a new class in the SharedLibrary called IModel
Rule. This rule consists of a single Validate method that returns
a ValidationResult. Every rule must implement the IModelRule
interface, as shown here:

public class MaxLengthRule : Attribute, IModelRule
{
 private int _maxLength = 0;
 public MaxLengthRule(int maxLength) { _maxLength = maxLength; }

 public ValidationResult Validate(string fieldName, object fieldValue)
 {
 var message = $"Cannot be longer than {_maxLength} characters";
 if (fieldValue == null) { return new ValidationResult() { IsValid = true }; }

 var stringvalue = fieldValue.ToString();
 if (stringvalue.Length > _maxLength)
 {
 return new ValidationResult() { IsValid = false, Message = message };
 }
 else
 {
 return new ValidationResult() { IsValid = true };
 }
 }
}

Figure 4 The MaxLengthRule Class

public void CheckRules(String fieldName)
{
 var propertyInfo = this.GetType().GetProperty(fieldName);
 var attrInfos = propertyInfo.GetCustomAttributes(true);
 foreach (var attrInfo in attrInfos)
 {
 if (attrInfo is IModelRule modelrule)
 {
 var value = propertyInfo.GetValue(this);
 var result = modelrule.Validate(fieldName, value);
 if (result.IsValid)
 {
 RemoveError(fieldName, attrInfo.GetType().Name);
 }
 else
 {
 AddError(fieldName, attrInfo.GetType().Name, result.Message);
 }
 }
 }
}

public bool CheckRules()
{
 foreach (var propInfo in this.GetType().GetProperties(
 System.Reflection.BindingFlags.Public |
 System.Reflection.BindingFlags.Instance))
 CheckRules(propInfo.Name);

 return HasErrors();
}

Figure 3 The CheckRules Function

0319msdn_MillerBlazor_v3_14-19.indd 16 2/6/19 12:27 PM

/update/2019/03
www.componentsource.com

DevExpress DXperience 18.2 from $1,439.99
A comprehensive suite of .NET controls and UI libraries for all major Microsoft dev platforms.

• WinForms – New Sunburst Chart, O� ce Navigation UX, SVG O� ce 2019 skins

• WPF – New Gantt control, improved Data Filtering UX and App Theme Designer

• ASP.NET & MVC – New Adaptive Layouts, improved Rich Text Editor and Spreadsheet

• Reporting – Vertical Band support, Free-hand drawing and improved Report wizards

• JavaScript – New HTML/Markdown WYSIWYG editor, Improved Grid and TreeList performance

BEST SELLER

© 1996-2019 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

USA
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

We accept purchase orders.
Contact us to apply for a credit account.

Europe (Ireland)
ComponentSource
Unit 1E & 1F
Core B, Block 71
The Plaza, Park West
Dublin 12
Ireland

Europe (UK)
ComponentSource
The White Building
33 King’s Road
Reading, Berkshire
RG1 3AR
United Kingdom

Asia Pacific
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan

www.componentsource.com

(888) 850-9911
Sales Hotline - US & Canada:

PBRS (Power BI Reports Scheduler) from $9,811.51
Date & time Scheduling for Power BI reports with one Power BI License.

• Exports reports to PDF, Excel, Excel Data, Word, PowerPoint, CSV, JPG, HTML, PNG and ePub

• Send reports to email, printer, Slack, Google Sheets, folder, FTP, DropBox & SharePoint

• Uses database queries to automatically populate report � lters, email addresses & body text

• Adds � exibility with custom calendars e.g. 4-4-5, holidays, “nth” day of the month, etc.

• Responds instantly by � ring o� reports when an event occurs e.g. database record is updated

NEW RELEASE

LEADTOOLS Medical Imaging SDKs V20 from $4,995.00 SRP

Powerful DICOM, PACS, and HL7 functionality.

• Load, save, edit, annotate & display DICOM Data Sets with support for the latest speci� cations

• High-level PACS Client and Server components and frameworks

• OEM-ready HTML5 Zero-footprint Viewer with 3D rendering support and DICOM Storage Server

• Medical-speci� c image processing functions for enhancing 16-bit grayscale images

• Native libraries for .NET, C/C++, HTML5, JavaScript, WinRT, iOS, OS X, Android, Linux, & more

BEST SELLER

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Untitled-2 1 1/29/19 1:32 PM

http://www.componentsource.com

msdn magazine18 C#

public interface IModelRule
{
 ValidationResult Validate(String fieldName, object fieldValue);
}

Next, I create a new class in the SharedLibrary called Validation
Result, which consists of two fields. The IsValid field tells you
whether the rule is valid or not, while the Message field contains
the error message to be displayed when the rule is invalid. Here’s
that code:

public class ValidationResult
{
 public bool IsValid { get; set; }
 public String Message { get; set; }
}

The sample application uses four different rules, all of which are
public classes that inherit from the Attribute class and implement
the IModelRule interface.

Now it’s time to create the rules. Keep in mind that all valida-
tion rules are simply classes that inherit from the Attribute class
and implement the IModelRule interface’s Validate method. The
max-length rule in Figure 4 returns an error if the text entered is

longer than the specified maxi-
mum length. The other rules, for
Required, Phone and Email, work
similarly, but with different logic
for the type of data they validate.

Creating the Blazor
Registration Form
Now that the validation engine is
complete in the shared library, it
can be applied to a new registra-
tion form in the Blazor application.
I start by first adding a reference
to the shared-library project from
the Blazor application. You do this
from the Solution window of the
Reference Manager dialog box, as
shown in Figure 5.

Next, I add a new navigation link to the application’s NavMenu.
I open the Shared\NavMenu.cshtml file and add a new Registra-
tion Form link to the list, as shown in Figure 6.

Finally, I add the new RegistrationForm.cshtml file in the Pages
folder. You do this with the code shown in Figure 7.

The cshtml code in Figure 7 includes four <TextInput> fields
inside the <form> tag. The <TextInput> tag is a custom Blazor
component that handles the data binding and error-display logic
for the field. The component only needs three parameters to work:

• �Model field: Identifies the class it’s data-bound to.
• �FieldName: Identifies the data member to data bind to.
• �DisplayName field: Enables the component to display

user-friendly messages.
Inside the @functions block of the page, the code is minimal.

The OnInit method initializes the model class with some test data
inside it. It binds to the ModelChanged event and calls the Check-
Rules method to validate the rules. The ModelChanged handler
calls the base.StateHasChanged method to force a UI refresh. The
Register method is called when the Register button is clicked, and
it sends the registration data to a back-end WebAPI service.

The TextInput component contains the input label, the input text-
box, the validation error message and the logic to update the model
as the user types. Blazor components are very simple to write and
provide a powerful way to decompose an interface into reusable
parts. The parameter members are decorated with the Parameter
attribute, letting Blazor know that they’re component parameters.

The input textbox’s oninput event is wired to the OnFieldChanged
handler. It fires every time the input changes. The OnFieldChanged
handler then calls the SetValue method, which causes the rules for
that field to be executed, and the error message to be updated in
real time as the user types. Figure 8 shows the code.

Validation on the Server
The validation engine is now wired up and working on the client.
The next step is to use the shared library and the validation engine
on the server. To do this, I start by adding another ASP.NET Core
Web Application project to the solution. This time I choose API

<div class=@(collapseNavMenu ? "collapse" : null) onclick=@ToggleNavMenu>
 <ul class="nav flex-column">
 <li class="nav-item px-3">
 <NavLink class="nav-link" href="" Match=NavLinkMatch.All>
 Home
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="counter">
 Counter
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="fetchdata">
 Fetch data
 </NavLink>

 <li class="nav-item px-3">
 <NavLink class="nav-link" href="registrationform">
 Registration Form
 </NavLink>

</div>

Figure 6 Adding a Registration Form Link

Figure 5 Adding a Reference to the Shared Library

0319msdn_MillerBlazor_v3_14-19.indd 18 2/6/19 12:27 PM

19March 2019msdnmagazine.com

instead of Blazor in the New ASP.NET Core Web Application
dialog box shown in Figure 1.

Once the new API project is created, I add a reference to the shared
project, just as I did in the Blazor client application (see Figure 5).
Next, I add a new controller to the API project. The new control-
ler will accept the RegistrationData call from the Blazor client, as
shown in Figure 9. The registration controller runs on the server
and is typical of a back-end API server. The difference here is that
it now runs the same validation rules that run on the client.

The registration controller has a single POST method that
accepts the RegistrationData as its value. It calls the HasErrors
method, which validates all the rules and returns a Boolean. If
there are errors, the controller returns a BadRequest response;
otherwise, it returns a success response. I’ve intentionally left out
the code that would save the registration data to a database so I

can focus on the validation scenario. The shared validation logic
now runs on the client and server.

The Big Picture
This simple example of sharing validation logic in the browser and
the back end barely scratches the surface of what’s possible in a full-
stack C# environment. The magic of Blazor is that it allows the army
of existing C# developers to build powerful, modern and responsive
single-page applications with a minimal ramp-up period. It allows
businesses to reuse and repackage existing code so it can run right
in the browser. The ability to share C# code among browser, desktop,
server, cloud and mobile platforms will greatly increase developer
productivity. It will also allow developers to deliver more features
and more business value to customers faster.	 n

Jonathan Miller is a senior architect. He’s been developing products on the Microsoft
stack for a decade and programming on .NET since its inception. Miller is a full-
stack product developer with expertise in front-end technologies (Windows Forms,
Windows Presentation Foundation, Silverlight, ASP.NET, Angular/Bootstrap),
middleware (Windows services, Web API), and back ends (SQL server, Azure).

Thanks to the following technical expert for reviewing this article:
Dino Esposito

@using SharedLibrary

<label>@DisplayName</label>
<input type="text" class="form-control" placeholder="@DisplayName"
 oninput="@(e => OnFieldChanged(e.Value))"
 value="@Model.GetValue(FieldName)" />
<small class="form-text" style="color:darkred;">@Model.Errors(FieldName)
 </small>

@functions {

 [Parameter]
 ModelBase Model { get; set; }

 [Parameter]
 String FieldName { get; set; }

 [Parameter]
 String DisplayName { get; set; }

 public void OnFieldChanged(object value)
 {
 Model.SetValue(FieldName, value);
 }
}

Figure 8 Updating the Error Message

[Route("api/Registration")]
[ApiController]
public class RegistrationController : ControllerBase
{
 [HttpPost]
 public IActionResult Post([FromBody] RegistrationData value)
 {
 if (value.HasErrors())
 {
 return BadRequest();
 }
 // TODO: Save data to database
 return Created("api/registration", value);
 }
}

Figure 9 The Registration Controller

@page "/registrationform"
@inject HttpClient Http
@using SharedLibrary

<h1>Registration Form</h1>

@if (!registrationComplete)
{
 <form>
 <div class="form-group">
 <TextInput Model="model" FieldName="FirstName" DisplayName="First Name" />
 </div>
 <div class="form-group">
 <TextInput Model="model" FieldName="LastName" DisplayName="Last Name" />
 </div>
 <div class="form-group">
 <TextInput Model="model" FieldName="Email" DisplayName="Email" />
 </div>
 <div class="form-group">
 <TextInput Model="model" FieldName="Phone" DisplayName="Phone" />
 </div>

 <button type="button" class="btn btn-primary" onclick="@Register"
 disabled="@model.HasErrors()">Register</button>
 </form>
}
else
{
 <h2>Registration Complete!</h2>
}

@functions {
 bool registrationComplete = false;
 RegistrationData model { get; set; }

 protected override void OnInit()
 {
 base.OnInit();
 model = new RegistrationData() { FirstName =
 "test", LastName = "test", Email = "test@test.com", Phone = "1234567890" };
 model.ModelChanged += ModelChanged;
 model.CheckRules();
 }

 private void ModelChanged(object sender, EventArgs e)
 {
 base.StateHasChanged();
 }

 async Task Register()
 {
 await Http.PostJsonAsync<RegistrationData>(
 "https://localhost:44332/api/Registration", model);
 registrationComplete = true;
 }
}

Figure 7 Adding the RegistrationForm.cshtml File

0319msdn_MillerBlazor_v3_14-19.indd 19 2/6/19 12:27 PM

http://www.msdnmagazine.com

msdn magazine20

Going all the way back to. NET Framework 1.0, I’ve been
astounded that there’s been no simple way for developers to parse
the command line of their applications. Applications start execu-
tion from the Main method, but the arguments are passed in as an
array (string[] args) with no differentiation between which items in
the array are commands, options, arguments and the like.

I wrote about this problem in a previous article (“How to Con-
tribute to Microsoft Open Source Software Projects,” msdn.com/
magazine/mt830359), and described my work with Microsoft’s Jon
Sequeira. Sequeira has lead an open source team of developers to
create a new command-line parser that can accept command-line
arguments and parse them into an API called System.Command-
Line, which does three things:

• �Allows for the configuration of a command line.
• �Enables parsing of command-line generic arguments (tokens)

into distinct constructs, where each word on the command
line is a token. (Technically, command-line hosts allow for
the combining of words into a single token using quotes.)

• �Invokes functionality that’s configured to execute based on
the command-line value.

The constructs supported include commands, options, arguments,
directives, delimiters and aliases. Here’s a description of each construct:

Commands: These are the actions that are supported by the
application command line. Consider, for example, git. Some of
the built-in commands for git are branch, add, status, commit and
push. Technically, the commands specified after the executable
name are, in fact, subcommands. Subcommands to the root com-
mand—the name of the executable itself (for example, git.exe)—
may themselves have their own subcommands. For instance, the
command “dotnet add package” has “dotnet” as the root command,
“add” as a subcommand and “package” as the subcommand to add
(perhaps call it the sub-subcommand?).

Options: These provide a way to modify the behavior of a
command. For example, the dotnet build command includes the
--no-restore option, which you can specify to disable the restore
command from running implicitly (and instead relying on prior
execution of the restore command). As the name implies, options
are generally not a required element of a command.

Arguments: Both commands and options can have associated
values. For example, the dotnet new command includes the tem-
plate name. This value is required when you specify the new
command. Similarly, options may have values associated with
them. Again, with dotnet new, the --name option has an argument
for specifying the name of the project. The value associated with a
command or option is called the argument.

Directives: These are commands that are cross-cutting for all appli-
cations. For example, a redirect command can force all output (stderr
and stdout) to go into an .xml format. Because directives are part of

E S S E N T I AL .NE T

Parse the
Command Line with
System.CommandLine
Mark Michaelis

This article discusses:
•	System.CommandLine—a new API for parsing the command

line that launches an application
•	Support for self-contained applications, including on Linux

Technologies discussed:
.NET Core, System.CommandLine

0319msdn_MichaelisNET_v3_20-25.indd 20 2/6/19 12:26 PM

http://msdn.com/magazine/mt830359
http://msdn.com/magazine/mt830359

21March 2019msdnmagazine.com

the System.CommandLine framework, they’re included automatically,
without any effort on the part of the command-line interface developer.

Delimiters: The association of an argument to a command or an
option is done via a delimiter. Common delimiters are space, colon
and the equal sign. For example, when specifying the verbosity of
a dotnet build, you can use any of the following three variations:
--verbosity=diagnostic, --verbosity diagnostic or --verbosity:diagnostic.

Aliases: These are additional names that can be used to identify
commands and options. For example, with dotnet, “classlib” is an
alias for “Class library” and -v is an alias for “--verbosity.”

Prior to System.CommandLine, the lack of built-in parsing
support meant that when your application launched, you as the
developer had to analyze the array of arguments to determine
which corresponded to which argument type, and then correctly
associate all of the values together. While .NET includes numerous
attempts at solving this problem, none has emerged as a default
solution, and none scales well to support both simple and complex
scenarios. With this in mind, System.CommandLine was developed
and released in alpha form (see github.com/dotnet/command-line-api).

Keep Simple Things Simple
Imagine that you’re writing an image conversion program that
converts an image file to a different format based on the output
name specified. The command line could be something like this:

imageconv --input sunrise.CR2 --output sunrise.JPG

Given this command line (see “Passing Parameters to the .NET
Core Executable” for alternative command-line syntax), the
imageconv program will launch into the Main entry point, static
void Main(string[] args), with a string array of four corresponding
arguments. Unfortunately, there’s no association between --input
and sunrise.CR2 or between --output and sunrise.JPG. Neither is
there any indication that --input and --output identify options.

Fortunately, the new System.CommandLine API provides a
significant improvement on this simple scenario, and does so in
a way I haven’t previously seen. The simplification is that you can
program a Main entry point with a signature that matches the
command line. In other words, the signature for Main becomes:

static void Main(string input, string output)

That’s right, System.CommandLine enables the automatic conversion
of the --input and --output options into parameters on Main, replacing
the need to even write a standard Main(string[] args) entry point. The

only additional requirement is to reference an assembly that enables
this scenario. You can find details on what to reference at itl.tc/syscmddf,
as any instructions provided here are likely to be quickly dated once
the assembly is released on NuGet. (No, there’s no language change
to support this. Rather, when adding the reference, the project file is
modified to include a build task that generates a standard Main meth-
od with a body that uses reflection to call the “custom” entry point.)

Furthermore, arguments aren’t limited to strings. There’s a host
of built-in converters (and support for custom converters) that
allow you, for example, to use System.IO.FileInfo for the param-
eter type on input and output, like so:

static void Main(FileInfo input, FileInfo output)

As described in the article section, “System.CommandLine
Architecture,” System.CommandLine is broken into a core mod-
ule and an app provider module. Configuring the command line
from Main is an App Model implementation, but for now I’ll just
refer to the entire API set as System.CommandLine.

The mapping between command-line arguments and Main
method parameters is basic today, but still relatively capable for
lots of programs. Let’s consider a slightly more complex imageconv
command line that demonstrates some of the additional features.
Figure 1 displays the command-line help.

The corresponding Main method that enables this updated
command line is shown in Figure 2. Even though the example
has nothing more than a fully documented Main method, there
are numerous features enabled automatically. Let’s explore the
functionality that’s built-in when you use System.CommandLine.

The first bit of functionality is the help output for the command
line, which is inferred from the XML comments on Main. These
comments not only allow for a general description of the program

imageconv:
 Converts an image file from one format to another.

Usage:
 imageconv [options]

Options:
 --input The path to the image file that is to be converted.
 --output The target name of the output after conversion.
 --x-crop-size The X dimension size to crop the picture.
 The default is 0 indicating no cropping is required.
 --y-crop-size The Y dimension size to crop the picture.
 The default is 0 indicating no cropping is required.
 --version Display version information

Figure 1 Sample Command Line for imageconv

/// <summary>
/// Converts an image file from one format to another.
/// </summary>
/// <param name="input">The path to the image file that is to be
 converted.</param>
/// <param name="output">The name of the output from the conversion.
 </param>
/// <param name="xCropSize">The x dimension size to crop the picture.
 The default is 0 indicating no cropping is required.</param>
/// <param name="yCropSize">The x dimension size to crop the picture.
 The default is 0 indicating no cropping is required.</param>
public static void Main(
 FileInfo input, FileInfo output,
 int xCropSize = 0, int yCropSize = 0)

Figure 2 Main Method Supporting the Updated imageconv
Command Line

Fortunately, the new
System.CommandLine

API provides a significant
improvement on this simple

scenario, and does so in a way I
haven’t previously seen.

0319msdn_MichaelisNET_v3_20-25.indd 21 2/6/19 12:26 PM

http://www.msdnmagazine.com
http://github.com/dotnet/command-line-api
http://itl.tc/syscmddf

msdn magazine22 Essential .NET

(specified in the summary XML comment),
but also for the documentation on each
argument using parameter XML comments.
Leveraging the XML comments requires
enabling doc output, but this is configured
automatically for you when referencing
the assembly that enables configuration
via Main. There’s built-in help output with
any of three command-line options: -h, -?,
or --help. For example, the help displayed
in Figure 1 is automatically generated by System.CommandLine.

Similarly, while there’s no version parameter on Main, System.Com
mandLine automatically generates a --version option that outputs
the assembly version of the executable.

Another feature, command-line syntax verification, detects if a
required argument (for which no default is specified on the parameter)
is missing. If a required argument isn’t specified, System.Command
Line automatically issues an error that reads, “Required argument
missing for option: --output.” Although somewhat counterintuitive,
by default options with arguments are required. However, if the
argument value associated with an option isn’t required, you can
leverage C# default parameter value syntax. For example:

int xCropSize = 0

There’s also built-in support for parsing options regardless of
the sequence in which the options appear on the command line.
And it’s worth noting that the delimiter between the option and
the argument may be a space, a colon or an equal sign by default.
Finally, Camel casing on Main’s parameter names is converted
to Posix-style argument names (that is, xCropSize translates to
--x-crop-size on the command line).

If you type an unrecognized option or command name,
System.CommandLine automatically returns a command-line
error that reads, “Unrecognized command or argument ….” How-
ever, if the name specified is similar to an existing option, the error
will prompt with a typo correction suggestion.

There are some built-in directives available to all command-line
applications that use System.CommandLine. These directives are
enclosed in square brackets and appear immediately following
the application name. For example, the [debug] directive triggers
a breakpoint that allows you to attach a debugger, while [parse]
displays a preview of how tokens are parsed, as shown here:

imageconv [parse] --input sunrise.CR2 --output sunrise.JPG

In addition, automated testing via an IConsole interface and
TestConsole class implementation is supported. To inject the
TestConsole into the command-line pipeline, add an IConsole
parameter to Main, like so:

public static void Main(
 FileInfo input, FileInfo output,
 int xCropSize = 0, int yCropSize = 0,
 IConsole console = null)

To leverage the console parameter, replace invocations to Sys-
tem.Console with the IConsole parameter. Note that the IConsole
parameter will be set automatically for you when invoked directly
from the command line (rather than from a unit test), so even
though the parameter is assigned null by default, it shouldn’t have
a null value unless you write test code that invokes it that way.
Alternatively, consider putting the IConsole parameter first.

One of my favorite features is support for tab completion, which
end users can opt into by running a command to activate it (see
bit.ly/2sSRsQq). This is an opt-in scenario because users tend to be
protective of implicit changes to the shell. Tab completion for
options and command names happens automatically, but there’s
also tab completion for arguments via suggestions. When config-
uring a command or option, the tab completion values can come
from a static list of values, such as the q, m, n, d or diagnostic values
of --verbosity. Or they can be dynamically provided at run time,
such as from REST invocation that returns a list of available NuGet
packages when the argument is a NuGet reference.

Using the Main method as the specification for the com-
mand line is just one of several ways that you can program using
System.CommandLine. The architecture is flexible, allowing other
ways to define and work with the command line.

The System.CommandLine Architecture
System.CommandLine is architected around a core assembly that
includes an API for configuring the command line and a parser
that resolves the command-line arguments into a data structure.
All the features listed in the previous section can be enabled via
the core assembly, except for enabling a different method signature
for Main. However, support for configuring the command line,
specifically using a domain-specific language (such as a Main like
method) is enabled by an app model. (The app model used for the
Main like method implementation described earlier is code-named
“DragonFruit.”) However, the System.CommandLine architecture
enables support for additional app models (as shown in Figure 3).

For example, you could write an app model that uses a C# class
model to define the command-line syntax for an application. In such
a model, property names might correspond to the option name and
the property type would correspond to the data type into which to

Figure 3 System.CommandLine Architecture

Class
Model

Core
(System.CommandLine)

docoptConfigure from Main ...

App Models not created yet.

imageconv app Your App

The mapping between
command-line arguments and

Main method parameters is basic
today, but still relatively capable

for lots of programs.

0319msdn_MichaelisNET_v3_20-25.indd 22 2/6/19 12:26 PM

http://bit.ly/2sSRsQq

Untitled-4 1Untitled-4 1 12/6/18 12:05 PM12/6/18 12:05 PM

http://www.gdpicture.com

msdn magazine24 Essential .NET

convert an argument. In addition, the model might leverage attri-
butes to define aliases, for example. Alternatively, you could write a
model that parses a docopt file (see docopt.org) for the configuration.
Each of these app models would invoke the System.CommandLine
configuration API. Of course, developers might prefer to call
System.CommandLine directly from their application rather than
via an app model, and this approach is also supported.

Making the Complex Possible
Earlier, I mentioned that the functionality for keeping simple
things simple was basic. This is because enabling command-line
parsing via the Main method still lacks some features that some
might consider important. For example, you can’t configure a
(sub) command or an option alias. If you encounter these lim-
itations, you can build your own app model or call into the Core
(System.CommandLine assembly) directly.

System.CommandLine includes classes that represent the
constructs of a command line. This includes Command (and
RootCommand), Option and Argument. Figure 4 provides some
sample code for invoking System.CommandLine directly and
configuring it to accomplish the basic functionality defined in the
help text of Figure 1.

In this example, rather than rely on a Main app model to define the
command-line configuration, each construct is instantiated explic-
itly. The only functional difference is the addition of aliases for each
option. Leveraging the Core API directly, however, provides more
control than what’s possible with the Main like approach.

For example, you could define subcommands, like an image-
enhance command that includes its own set of options and arguments
related to the enhance action. Complex command-line programs
have multiple subcommands and even sub-subcommands. The
dotnet command, for example, has the dotnet sln add command,
where dotnet is the root command, sln is one of the many subcom-
mands, and add (or list and remove) is a child command of sln.

The final call to InvokeAsync implicitly sets up many of the
features automatically including:

public static async Task<int> Main(params string[] args)
{
 RootCommand rootCommand = new RootCommand(
 description: "Converts an image file from one format to another."
 , treatUnmatchedTokensAsErrors: true);

 MethodInfo method = typeof(Program).GetMethod(nameof(Convert));

 rootCommand.ConfigureFromMethod(method);
 rootCommand.Children["--input"].AddAlias("-i");
 rootCommand.Children["--output"].AddAlias("-o");

 return await rootCommand.InvokeAsync(args);
}

Figure 5 Using Method-First Approach to
Configure System.CommandLine

System.CommandLine includes
classes that represent the

constructs of a command line.

using System;
using System.CommandLine;
using System.CommandLine.Invocation;
using System.IO;

...

public static async Task<int> Main(params string[] args)
{
 RootCommand rootCommand = new RootCommand(
 description: "Converts an image file from one format to another."
 , treatUnmatchedTokensAsErrors: true);

 Option inputOption = new Option(
 aliases: new string[] { "--input", "-i" }
 , description: "The path to the image file that is to be converted."
 , argument: new Argument<FileInfo>());
 rootCommand.AddOption(inputOption);

 Option outputOption = new Option(
 aliases: new string[] { "--output", "-o" }
 , description: "The target name of the output file after conversion."
 , argument: new Argument<FileInfo>());
 rootCommand.AddOption(outputOption);

 Option xCropSizeOption = new Option(
 aliases: new string[] { "--x-crop-size", "-x" }
 , description: "The x dimension size to crop the picture.
 The default is 0 indicating no cropping is required."
 , argument: new Argument<FileInfo>());
 rootCommand.AddOption(xCropSizeOption);

 Option yCropSizeOption = new Option(
 aliases: new string[] { "--y-crop-size", "-y" }
 , description: "The Y dimension size to crop the picture.
 The default is 0 indicating no cropping is required."
 , argument: new Argument<FileInfo>());
 rootCommand.AddOption(yCropSizeOption);

 rootCommand.Handler =
 CommandHandler.Create<FileInfo, FileInfo, int, int>(Convert);

 return await rootCommand.InvokeAsync(args);
}

static public void Convert(
 FileInfo input, FileInfo output, int xCropSize = 0, int yCropSize = 0)
{
 // Convert...
}

Figure 4 Working with System.CommandLine Directly

When specifying command-line arguments in combination
with the dotnet run command, the full command line would be:

dotnet run --project imageconv.csproj -- --input sunrise.CR2
 --output sunrise.JPG

If you’re running dotnet from the same directory in which the
csproj file was located, however, the command line would read:

dotnet run -- --input sunrise.CR2 --output sunrise.JPG

The dotnet run command uses the “--” as the identifier, indicating
that all other arguments should be passed to the executable for it
to parse.

Starting with .NET Core 2.2, there’s also support for
self-contained applications (even on Linux). With a self-contained
application, you can launch it without using dotnet run and
instead just rely on the resulting executable, like so:

imageconv.exe --input sunrise.CR2 --output sunrise.JPG

Obviously, this is expected behavior to Windows users.

Passing Parameters to
the .NET Core Executable

0319msdn_MichaelisNET_v3_20-25.indd 24 2/6/19 12:26 PM

http://www.docopt.org

Untitled-2 1 1/8/19 10:52 AM

• �Directives for parse and debug.
• �The configuration of the help and version options.
• �Tab completion and typo corrections.

There are also separate extension methods for each feature if
finer-grain control is necessary. There are also numerous other
configuration capabilities exposed by the Core API. These include:

• �Handling tokens that are explicitly unmatched by the configuration.
• �Suggestion handlers that enable tab completion, returning a

list of possible values given the current command-line string
and the location of the cursor.

• �Hidden commands that you don’t want to be discoverable us-
ing tab completion or help.

In addition, while there are lots of knobs and buttons to control
the command-line parsing with System.CommandLine, it also pro-
vides a method-first approach. In fact, this is what’s used internally
to bind to the Main like method. With the method-first approach
you can use a method like Convert at the bottom of Figure 4 to
configure the parser (as shown in Figure 5).

In this case, notice that the Convert method is used for the initial
configuration and then you navigate the root command’s object
model to add aliases. The Children indexable property contains
all the options and commands attached to the root command.

Wrapping Up
I’m very excited about the functionality available in System.Com-
mandLine. The fact that achieving the simple scenarios explored

here requires so little code is marvelous. Furthermore, the amount
of functionality achieved—including things like tab completion,
argument conversion and automated testing support, just to name
a few—means that with little effort you can have a fully functioning
command-line support in all of your dotnet applications.

Finally, System.CommandLine is open source. That means if
there’s functionality missing that you require, you can develop
the enhancement and submit it back to the community as a pull
request. A couple things I would personally love to see added are
support for not always specifying the option or command names
on the command line and relying instead on the position of the
arguments to imply what the names are. Additionally, it would be
great if you could declaratively add an additional alias (such as short
aliases) when using the Main like or method-first approach.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief techni-
cal architect and trainer. He has been a Microsoft MVP for more than two
decades, and a Microsoft Regional Director since 2007. Michaelis serves on sev-
eral Microsoft software design review teams, including C#, Microsoft Azure,
SharePoint and Visual Studio ALM. He speaks at developer conferences and
has written numerous books including his most recent, “Essential C# 7.0 (6th
Edition)” (itl.tc/EssentialCSharp). Contact him on Facebook at facebook.com/
Mark.Michaelis, on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis
or via e-mail at mark@IntelliTect.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Kevin Bost, Kathleen Dollard, Jon Sequeira

0319msdn_MichaelisNET_v3_20-25.indd 25 2/6/19 12:26 PM

mailto:mark@IntelliTect.com
http://www.lightningChart.com/ms
www.twitter.com/markmichaelis
http://IntelliTect.com/Mark
www.facebook.com/Mark.Michaelis
www.facebook.com/Mark.Michaelis
http://itl.tc/EssentialCSharp

msdn magazine26

The introduction of smart contracts in blockchain
networks has created a business logic tier that was missing in the
early iterations of blockchain. Smart contracts offer the ability to
apply conditional logic to transactions before they’re executed.
Still, smart contracts can operate only on data that’s stored on
the blockchain digital ledger. Business processes, however, rarely
run in isolation. They often need data integration with external
systems and devices.

For example, processes may include transactions initiated on
a distributed ledger that employs data sourced from an external
system, service or device. External systems may be required to
react to events raised by smart contracts in response to validation
logic. This article describes how to automate document sign and
verify workflows in SharePoint using the recently released Azure
Blockchain Development Kit (aka.ms/bcdevkit) for persisting files’
hash and metadata on a blockchain digital ledger.

Azure Blockchain Development Kit
The release of the Azure Blockchain Development Kit, built on
Microsoft’s serverless technology, represents a milestone in the
adoption of blockchain technologies in the enterprise space. Thanks
to the Blockchain Development Kit, you can now build solutions
that seamlessly integrate blockchain with the best of Microsoft
and third-party software applications. As mentioned on its release
notes, the initial version of the kit prioritizes capabilities related
to three key themes: connecting interfaces, integrating data and
systems, and deploying smart contracts and blockchain networks.

Connection includes communication channels such as mobile
and Web, SMS and voice, as well as IoT devices and even chat bots.
Integration with line-of-business applications spans multiple sys-
tems, including SharePoint, OneDrive for Business, Dynamics 365,
open source, and any API-enabled platforms, as well as legacy
protocols like file systems, FTP servers, or SQL databases. The
deployment of smart contracts and blockchain networks will help
mainstream blockchain technology in enterprise software devel-
opment, and introduce governance and DevOps to the blockchain
software development practice.

Blockchain Development Kit works in combination with Azure
Logic Apps and Flow, which provide a visual design environment
for workflows that include more than 200 connectors to Microsoft
and third-party systems and services. In concert, they dramatically
simplify the development of end-to-end blockchain applications

BLOCKC HAIN

Verify e-Documents
with Smart Contracts
in Azure Blockchain
Development Kit
Stefano Tempesta

This article discusses:
•	Signing and verification of electronic documents on a blockchain

•	Integration of SharePoint with Azure Blockchain Workbench
using the Blockchain Development Kit

Technologies discussed:
Blockchain, Smart Contract, Azure Blockchain Development Kit

0319msdn_TempestaBlock_v4_26-33.indd 26 2/6/19 12:38 PM

http://aka.ms/bcdevkit

27March 2019msdnmagazine.com

that access on- and off-chain data, handle events generated by the
digital ledger, and leverage the Azure ecosystem for a seamless
and integrated solution. Let’s explore a practical application in the
context of enterprise content management.

Signing Digital Assets
With blockchain, you can imagine a world in which documents
are embedded in digital code and stored in transparent, shared
databases, where they’re protected from deletion, tampering and
revision. In this world every agreement, every process, every task,
and every payment would have a digital record and signature that
could be identified, validated, stored, and shared. Intermediaries
like lawyers, brokers and institutions might no longer be necessary.
Individuals, organizations, and machines would freely transact and
interact with one another with little friction. This is the immense
potential of blockchain.

The potential application of content decentralization and distri-
bution is enormous. With a single, immutable and verifiable record
store, people will own their digital identity and records—think of
identity or residence documents, medical records, educational or
professional certificates and licenses. All these documents and
their metadata can be issued on the blockchain and be digitally
signed. No more fake certifications, no more degree mills, no more
“photoshopped” papers.

Students, for example, may apply for further study, a job, or
immigration to another country; and in the process may be
required to prove their level of study or knowledge of language to
attend university. Entities like recruiters, employers, governments

and universities can verify the student’s creden-
tials without relying on central authorities—in
just minutes, and with no other intermediaries.

Figure 1 describes the mentioned scenario.
Certificates are issued by an authority, such as
an education institute (1), stored on a centralized
document management server (2), or on a distrib-
uted file system like IPFS (ipfs.io) and signed with
a cryptographic function. I’ll go into more about
IPFS later in the article. The content hash and
certificate’s metadata hash are then stored on the
blockchain digital ledger (3) and attached to the
user’s digital identity as a smart contract address
that stores this information (4). This represents a
sort of unique authenticity token, which identifies
the document in a non-questionable way.

A common pattern is to generate a unique hash
of the digital asset and a unique hash of the meta-
data that describes it. Those hashes are then stored

on a blockchain. If authenticity of a document is ever questioned,
the off-chain file can be re-hashed at a later time and that hash com-
pared to the on-chain value. If the hash values match, the document
is authentic, but if just a character in a document is modified, the
hashes won’t match, making obvious that a change has occurred.

Build the Signing Logic App Flow
Let’s look at a potential implementation of this workflow using
Azure Logic App. The Logic App flow will generate a document
and metadata hashes, and store the former on SharePoint and the
latter on an Ethereum network, using the Ethereum connector
available as part of the Azure Blockchain Development Kit. The
calculation of the hash value is done in an Azure Function built on
the .NET runtime stack. The function is based on the HTTP trigger
template, and it will be run as soon as it receives an HTTP request.

public static class ComputeHashFunction
{
 [FunctionName("ComputeHashFunction")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Function,
 "get", "post", Route = null)] HttpRequest req, ILogger log)
 {
 string requestBody =
 await new StreamReader(req.Body).ReadToEndAsync();

 string hash = ComputeHash(requestBody);

 return (ActionResult)new OkObjectResult(hash);
 }

 private static string ComputeHash(string data)
 {
 // Create a SHA256 hash
 using (SHA256 sha256 = SHA256.Create())
 {
 byte[] bytes = sha256.ComputeHash(Encoding.UTF8.GetBytes(data));

 // Convert the byte array to a string
 return Encoding.UTF8.GetString(bytes);
 }
 }
}

Figure 2 The ComputeHashFunction

Figure 1 The Signing Actors and Process

Authenticity
Token

Stores

1

2

3

4

Smart Contract
Address

IPFS

Content Hash
Metadata Hash

Issues & SignsIssues & Signs

The potential application of
content decentralization and

distribution is enormous.

0319msdn_TempestaBlock_v4_26-33.indd 27 2/6/19 12:38 PM

http://www.msdnmagazine.com
https://ipfs.io

Untitled-1 2 11/1/18 11:26 AM

http://demos.textcontrol.com

Untitled-1 3 11/1/18 11:26 AM

http://demos.textcontrol.com

msdn magazine30 Blockchain

The code in Figure 2 implements the ComputeHashFunction
Azure Function for computing a hash using the SHA256 algo-
rithm. After reading the request body in the Run method, the
function computes the hash using the SHA256 library available in
the System.Security.Cryptography namespace. The hash value is
returned as a UTF8-encoded string.

The Logic App flow is triggered when a new document is
uploaded to a SharePoint site. This event is handled by one of the
“When a file is created …” actions on the SharePoint connector
(as depicted in Figure 3). To configure this action, after entering
your authentication credentials for SharePoint, you have to spec-
ify the site address of the SharePoint site to monitor for new files,
and the specific folder where files are uploaded. You can also set
the frequency of polling this folder and checking for new files. A
reasonable setting is to check once per minute.

The next step in the flow is, as already anticipated, the hashing
of the uploaded file’s content and metadata. As I’ve implemented
the hashing function as an Azure Function, all you need to invoke
this function is the Choose an Azure function action
from the Azure Functions connector. Once you se-
lect ComputeHashFunction from the list of available
functions, you’ll be prompted to specify the request
body that will be passed to the function itself. This is
a JSON object that will be transferred in input to the
function, obtaining its hash value as output. I’ve defined
the following attributes as file metadata, as shown in
Figure 4: contentType, etag, id, name and path.

The previous step is needed to hash the file metadata.
Now I must hash also the entire file content, to preserve
it in an immutable state in the blockchain network. As
before, add another Choose an Azure function action

from the Azure Functions connector, but this time,
instead of the several file attributes, pick File Content.

Once you’ve obtained the hash values for both
file metadata and file content, it’s time to store it on
the blockchain network. For this purpose, I’m using
Azure Blockchain Workbench (aka.ms/abcworkbench) as
the runtime environment for smart contracts running
on Ethereum. Blockchain Workbench is expected to
support multiple blockchain platforms, but for now
I’ll stick to Ethereum.

Access to the digital ledger can be obtained by sending
a message to the Azure Service Bus deployed as part of
the Blockchain Workbench solution. An external system
like a Logic App action can communicate with a smart
contract hosted in Blockchain Workbench by sending
a message to Service Bus. The message is picked by the
Blockchain Workbench runtime and a new block-
chain transaction is created, containing the message.

Communication with Ethereum can happen only by generating a
transaction that invokes a smart contract, as depicted in Figure 5.

To send a message from a Logic App flow to Service Bus you
can use the Send message action on the Service Bus connector. A
connection to an Azure Service Bus is identified by a connection
name and a connection string. You can enter any convenient name

as connection name, and you obtain the Service Bus connection
string from the Azure Portal where it’s deployed. The message to
send to the Service Bus also requires the following parameters:

• �requestId: A unique identifier for the request generated by
the Logic App action

• �processedDateTime: Timestamp of the request being sent
• �userChainIdentifier: User address in the deployed

Ethereum network
• �applicationName: Name of the smart contract being

invoked on Ethereum
• �workflowName: Name of the workflow being invoked on

Blockchain Workbench

Figure 4 Attributes in the Request Body for the Hash Function

Figure 3 The Logic App Action that Handles the File Creation Event in
SharePoint

The Logic App flow is triggered when a
new document is uploaded to a SharePoint site.

0319msdn_TempestaBlock_v4_26-33.indd 30 2/6/19 12:38 PM

http://aka.ms/abcworkbench

Americas: +1 903 306 1676 EMEA: +44 141 628 8900 Oceania: +61 2 8006 6987
sales@asposeptyltd.com

Untitled-3 1 6/7/18 1:15 PM

mailto:sales@asposeptyltd.com
https://downloads.groupdocs.com

msdn magazine32 Blockchain

I define these parameters as variables in the Logic App flow, by
using the Initialize variable action from the Variables connector.
The requestId variable can be set to guid, which is an expression that
generates a unique GUID. The processedDateTime variable can be
set to utcNow, which represents the current coordinated universal
time. For userChainIdentifier, you can enter the address of a user in
Blockchain Workbench that’s authorized to run the smart contract,
whereas applicationName and workflowName are defined as per name
and workflow of the smart contract that processes this transaction.

The next section describes the smart contract for processing
these messages sent by the Logic App flow. Figure 6 summarizes
the message body, in JSON format, to send to Service Bus. The
expressions in <acute angle brackets> have to be replaced with the
corresponding value.

Smart Contract for Processing Digital Assets
First of all, let me reinforce the message that digital assets aren’t stored
on the blockchain. Hash values of the file metadata and content are.
In this article, I describe the storage of documents on SharePoint,
which is a centralized service. In a “pure” blockchain deployment,
you may want to obtain decentralization also of the storage service.
The Interplanetary File System (IPFS) is a peer-to-peer hypermedia
protocol (which I mentioned earlier) that provides decentralized file
storage. Integration with IPFS is beyond the scope of this article, but
if you’re interested in knowing how this technology can help remove
centralization of storage that isn’t part of a block in a blockchain, you
can refer to the “IPFS in Azure” video on Channel 9 (bit.ly/2CURRq0).

As I’m using Azure Blockchain Workbench for running my
smart contract, I need two files:

• �FileContract.sol to describe the smart contract itself, in
Solidity programming language.

• �FileContract.json to configure the workflow that’s loaded in
Azure Blockchain Workbench as an application.

The FileContract smart contract describes a file through its meta-
data, based on the values passed in the message sent by Logic App
to Blockchain Workbench via Azure Service Bus. Here’s a snippet of
the source code of the smart contract that defines these parameters:

contract FileContract
{
 // File metadata
 string public FileId; // File identifier
 string public Location; // File path
 string public FileHash; // File content hash
 string public FileMetadataHash; // File Metadata Hash
 string public ContentType; // File content type
 string public Etag; // File entity tag
 string public ProcessedDateTime; // Timestamp
 address public User; // User address

To store the file metadata on a blockchain, I need a file struc-
ture defined, as follows:

struct File {
 string FileId;
 address FileContractAddress;
}

A file entity is identified by its
file ID and the address on block-
chain of the FileContract smart
contract that contains the meta-
data. This structure is saved in a
private collection defined as a dic-

tionary, whose key is the FileId string. The mapping keyword in
Solidity defines a dictionary and its key and value types as follows:

mapping(string => File) private Registry;

To save a file entity (its ID and metadata), I simply add the con-
stituent values to the Registry dictionary in the Save method. For
simplicity, I’ve omitted any necessary control on validity of file
ID and contract address, and whether the file already exists in the
registry. Here’s the code:

function Save(string fileId, address fileContractAddress) public
{
 Registry[fileId].FileId = fileId;
 Registry[fileId].FileContractAddress = fileContractAddress;
}

The Verification Process
Users who need to verify their certificates with a third party do
so by sharing the authenticity token (that is, the file contract
address), which contains all the necessary information to verify
that the document exists and is authentic and not counterfeited.
Figure 7 describes the parties and actions involved in the verification

{
 "requestId": "<The requestId variable>",
 "userChainIdentifier": "<User address in Azure Blockchain Workbench>",
 "applicationName": "<Smart contract name>",
 "workflowName": "<Smart contract workflow name>",
 "parameters": [
 {
 "name": "registryAddress",
 "value": "<Contract address in Azure Blockchain Workbench>"
 },
 {
 "name": "fileId",
 "value": "<File identifier>"
 },
 {
 "name": "location",
 "value": "<File path>"
 },
 {
 "name": "fileHash",
 "value": "<File content hash>"
 },
 {
 "name": "fileMetadataHash",
 "value": "<File metadata hash>"
 },
 {
 "name": "contentType",
 "value": "<File content type>"
 },
 {
 "name": "etag",
 "value": <File entity tag>
 },
 {
 "name": "processedDateTime",
 "value": "<The processedDateTime variable>"
 }
],
 "connectionId": 1,
 "messageSchemaVersion": "1.0.0",
 "messageName": "CreateContractRequest"
}

Figure 6 Structure of the Message Sent to Azure Service Bus

Figure 5 Sending a Message to a Smart Contract

Blockchain
Workbench

Service Bus
Generate TransactionMessage PickedSend MessageLogic App

Action

0319msdn_TempestaBlock_v4_26-33.indd 32 2/6/19 12:38 PM

http://bit.ly/2CURRq0

33March 2019msdnmagazine.com

process. The user retrieves the certificate to verify
from its location (1) and initiates a new transac-
tion on the blockchain network, transferring the
authenticity token (2) to the verification author-
ity. The authority obtains the signed content and
metadata of the certificate being verified (3), which
is stored on the immutable digital ledger, and then
compares them with the equivalent hash values
from the off-chain copy. If the values match, the
document is verified (4).

Once documents and unstructured data are
signed and verified—and a hash of their content
and metadata are stored on a blockchain—it cre-
ates an immutable and independent, verifiable
record of transactions. This process is referred to
as proof of existence and proof of authenticity of
digital assets.

Proof of existence refers to creating an unalterable date and time
stamp for a specific object. This means that you can prove that a
certain information object—like an e-mail, document or image—
existed at a certain point in time.

Proof of authenticity asserts that an object is authentic—that
is, it hasn’t been changed since it was stored at the indicated time
instant. This is accomplished by digitally signing an object and thus
creating a hash, its unique identifier. The identifier then gets com-
mitted into the distributed blockchain ledger, and the transaction
gets time-stamped, as well. Because every entry in the blockchain
is immutable, this means you have proof that this specific object
existed at a certain point in time.

Using the same approach, an object can be verified and val-
idated. A flow similar to the one I described for the signing
process creates a unique identifier and verifies this unique iden-
tifier against the blockchain ledger. If there’s a match, the smart
contract returns the original hash value. If not, the document
being verified isn’t identical to the original copy and should not be
trusted implicitly. Thus, you’re able, beyond any doubt, to prove
that the document, or any digital object, is authentic and existed
at a certain moment in time.

The FileContract smart contract exposes a GetFile method that,
given a file ID in input, returns its contract address on the block-
chain. From the file contract address it’s possible to obtain the file
content and metadata hash values and compare them with the
hash values of the document being verified, like so:

function GetFile(string fileId) public constant
returns(address fileContractAddress)
{
 return Registry[fileId].FileContractAddress;
}

Wrapping Up
Why use blockchain to sign and verify digital assets, when solutions
for electronic signature already exist and are broadly adopted in the
industry? In short, blockchains remove the need for a central cer-
tificate authority or central time-stamping server and enable digital
signatures stored on a blockchain to live independently of the object
being signed. This opens to opportunities for parallel signing and
independent verification, with or without the object itself.

Traditional e-signing solutions store digital signatures inside the
document. This means that whoever needs to check if a document is
signed will have full read access to all the content in the document.
Also, because the document changes with each signature, signing
documents in parallel isn’t possible—everybody needs to sign the
document sequentially. By signing documents on a blockchain,
the object itself isn’t changed by the signature, and this enables
you to sign documents in parallel and implement business rules
based on mandates, 4-eyes, majority vote, seniority and the like.

Finally, but not less important, you can register multiple actions
in a sequence on a blockchain. Each registration is linked to a spe-
cific case, document and task performed by the parties involved,
creating a chain of transactions: an auditable trail. This audit trail
can be verified by authorized third parties, providing transparency,
compliance and, most importantly, trust.

To learn more about the Azure Blockchain Development Kit,
you can find a host of videos on Channel 9, under the “Block Talk”
show (aka.ms/bcblocktalk). If you wish, you can also stay up-to-date
with the latest announcements from the Azure Blockchain prod-
uct group by following the @MSFTBlockchain Twitter handle
(twitter.com/MSFTBlockchain).

The Azure Blockchain Development Kit project welcomes
contributions and suggestions. Most contributions require you
to agree to a Contributor License Agreement (CLA) declaring
that you have the right to, and actually do, grant Microsoft the
rights to use your contribution. When you submit a pull request, a
CLA-bot will automatically determine whether you need to pro-
vide a CLA and decorate the request appropriately (that is, add
labels or comments to your code).	 n

Stefano Tempesta is a Microsoft Regional Director, MVP on AI and Business
Applications, and member of the Blockchain Council. A regular speaker at inter-
national IT conferences, including Microsoft Ignite and Tech Summit, Tempesta’s
interests extend to blockchain and AI-related technologies. He created “Blogchain
Space” (blogchain.space), a blog about blockchain technologies, writes for
MSDN Magazine and MS Dynamics World, and publishes machine learning
experiments on the Azure AI Gallery.

Thanks to the following technical expert for reviewing this article:
Jonathan Waldman

Figure 7 The Verification Actors and Process

2

Authenticity
Token

1IPFS

3

4

Verifies Verified
Certificate

On-Chain
Content Hash

Metadata Hash

On-Chain
Content Hash

Metadata Hash

Retrieves
Certificate
Retrieves
Certificate

0319msdn_TempestaBlock_v4_26-33.indd 33 2/6/19 12:38 PM

http://www.msdnmagazine.com
http://aka.ms/bcblocktalk
http://www.twitter.com/MSFTBlockchain
http://blogchain.space

SUPPORTED BY PRODUCED BY

Intense Developer
Training Conference
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

magazine

Spice Up Your Coding Skills in the Bayou
April 22-26, 2019 | Hyatt Regency New Orleans

Use
Promo Code

MSDN

Register by March 22

to save $300!

vslive.com/neworleans

Untitled-11 2 2/5/19 2:41 PM

https://www.vslive.com/neworleans

#VSLiveAgenda-at-a-Glance

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

CONNECT WITH US

DevOps in the
Spotlight

Cloud, Containers
and Microservices

AI, Data and
Machine Learning

Developing New
Experiences

Delivery and
Deployment

.NET Core
and More

Full Stack Web
Development

START TIME END TIME Pre-Conference Full Day Hands-On Labs: Monday, April 22, 2019 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Cross-Platform Mobile Development in a Day
with Xamarin and Xamarin.Forms - Marcel de Vries & Roy Cornelissen

HOL02 Full Day Hands-On Lab: Building a Modern DevOps Pipeline on
Microsoft Azure with ASP.NET Core and Azure DevOps

- Brian Randell & Mickey Gousset

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Day 1: Tuesday, April 23, 2019

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM T01 Moving to ASP.NET Core 2.X
- Philip Japikse

T02 Building Your First Mobile App
with Xamarin Forms - Robert Green

T03 Crack the Code: How Machine
Learning Models Work

- Jen Underwood

T04 Unit Testing Makes Me Faster:
Convincing Your Boss, Your Co-

Workers, and Yourself - Jeremy Clark

9:30 AM 10:45 AM T05 Getting Started with ASP.NET
Core 2.0 Razor Pages - Walt Ritscher

T06 (WPF + WinForms) * .NET Core =
Modern Desktop - Oren Novotny

T07 Containers Demystifi ed
- Robert Green

T08 Azure DevOps in the Cloud and in
Your Data Center - Brian Randell

11:00 AM 12:00 PM Keynote: To Be Announced - Donovan Brown, Principal DevOps Manager, Cloud Developer Advocacy Team, Microsoft

12:00 PM 1:00 PM Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 Diving Deep Into ASP.NET Core
2.x - Philip Japikse

T10 Cross-Platform Development with
Xamarin, C#, and CSLA .NET

- Rockford Lhotka
T11 How to Avoid Building Bad

Predictive Models - Jen Underwood T12 To Be Announced

3:00 PM 4:15 PM T13 Up and Running with Angular in
60 Minutes - Justin James

T14 Programming with PowerApps
and Microsoft Flow - Walt Ritscher

T15 Azure DevOps and AKS
- Brian Randell

T16 Get Func-y: Understanding
Delegates in .NET - Jeremy Clark

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Day 2: Wednesday, April 24, 2019

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Angular Unit Testing from the
Trenches - Justin James

W02 Power BI: What Have You Done
for Me Lately? - Andrew Brust

W03 Secure Your App with Azure AD
B2C - Oren Novotny

W04 Putting the Ops into DevOps
- Mickey Gousset

9:30 AM 10:45 AM W05 TypeScript: Moving Beyond the
Basics - Allen Conway

W06 AI and Analytics with Apache
Spark on Azure Databricks

- Andrew Brust
W07 Architecting and Developing
Microservices Apps - Eric D. Boyd

W08 Architecting Systems for
DevOps and Continuous Delivery

- Marcel de Vries

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffl e @ 1:15pm (Must be present to win)

1:30 PM 1:50 PM W09 Fast Focus: Hybrid Web Frameworks
- Allen Conway

W10 Fast Focus: Graph DB from SQL to Cosmos
- Leonard Lobel

W11 Fast Focus: What’s New in EF Core 2.x
- Jim Wooley

2:00 PM 2:20 PM W12 Fast Focus: Ultimate Presentation
Formula for Nerds - Justin James

W13 Fast Focus: Serverless of Azure 101
- Eric D. Boyd

W14 Fast Focus: Scrum in 20 Minutes
- Benjamin Day

2:30 PM 3:45 PM W15 Migrating from AngularJS to
Angular + TypeScript - Allen Conway

W16 Introduction to Azure
Cosmos DB - Leonard Lobel

W17 Demystifying Microservice
Architecture - Miguel Castro

W18 From One Release per Quarter to
30 Times a Day - Marcel de Vries

4:00 PM 5:15 PM W19 Getting Pushy with SignalR and
Reactive Extensions - Jim Wooley

W20 Modern SQL Server Security
Features for Developers

- Leonard Lobel

W21 Make Your App See, Hear and
Think with Cognitive Services

- Roy Cornelissen
W22 Monitor Your Applications and

Infrastructure - Eric D. Boyd

6:45 PM 9:00 PM VSLive! Event

START TIME END TIME Day 3: Thursday, April 25, 2019

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 Advanced Fiddler Techniques
- Robert Boedigheimer

TH02 Busy Developer’s Guide to
Flutter - Ted Neward TH03 To Be Announced TH04 UX Design Fundamentals: What

Do Your Users Really See? - Billy Hollis

9:30 AM 10:45 AM TH05 SASS and CSS for Developers
- Robert Boedigheimer

TH06 The Next Frontier -
Conversational Bots - Sam Basu

TH07 Porting Your Code from .NET
Framework to .NET Standard

- Rockford Lhotka
TH08 WSL, Bash, Developers Love

Linux! -

11:00 AM 12:15 PM TH09 Upload and Store a File Using
MVC - Paul Sheriff

TH10 Essential Tools for Xamarin
Developers! - Sam Basu

TH11 What’s New in C# 8
- Jason Bock

TH12 How to Interview a Developer -
Billy Hollis

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM TH1 Blazing the Web - Building Web
Applications in C# - Jason Bock

TH14 Entity Framework for Enterprise
Applications - Benjamin Day

TH15 Exposing an Extensibility API for
your Applications - Miguel Castro TH16 To Be Announced

3:00 PM 4:15 PM TH17 What’s New in Bootstrap 4
- Paul Sheriff

TH18 Busy .NET Developer’s Guide to
Python - Ted Neward

TH19 Improving Code Quality with
Static Analyzers - Jim Wooley

TH20 Unit Testing & Test-Driven
Development (TDD) for Mere Mortals

- Benjamin Day

START TIME END TIME Post-Conference Workshops: Friday, April 26, 2019 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: DI for the Dev Guy
- Miguel Castro

F02 Workshop: SQL Server for Developers: The Grand
Expedition - Andrew Brust & Leonard Lobel

F03 Workshop: Cross-Platform C# Using
.NET Core, Kubernetes, and WebAssembly

- Rockford Lhotka & Jason Bock

Speakers and sessions subject to change

Untitled-11 3 2/5/19 2:42 PM

https://www.vslive.com/neworleans
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com/groups/visualstudiolive

msdn magazine36

A support vector machine (SVM) is a software system
that can make predictions using data. The original type of SVM
was designed to perform binary classification, for example pre-
dicting whether a person is male or female, based on their height,
weight, and annual income. There are also variations of SVMs that
can perform multiclass classification (predicting one of three or
more classes) and regression (predicting a numeric value).

In this article I present a complete working example of an SVM
that’s implemented using only raw C# without any external libraries.
A good way to see where this article is headed is to examine the
demo program in Figure 1.

The demo begins by setting up eight dummy training data items.
Each item has three predictor values, followed by the class to pre-
dict encoded as -1 or +1. The dummy data doesn’t represent a real

problem, so the predictor values have no particular meaning. In
a realistic SVM problem, it’s important to normalize the predic-
tor values, usually by applying min-max normalization so that all
values are scaled between 0.0 and 1.0.

The demo creates an SVM classifier that uses a polynomial
kernel function. (I’ll explain kernel functions shortly.) Training the
SVM model generated three support vectors: (4, 5 7), (7, 4, 2) and
(9, 7, 5). These are training data items [0], [1] and [4]. Each sup-
port vector has an associated weight value: (-0.000098, -0.000162,
0.000260). Additionally, an SVM model has a single value called
a bias, which is -2.505727 for the demo data.

The support vectors, weights and biases define the trained SVM
model. The demo program uses the model to generate predicted class
values for each of the eight training items. A decision value that’s
negative corresponds to a predicted class label of -1 and a positive
decision value corresponds to a predicted class of +1. Therefore, the
trained model correctly predicts all eight of the training items. This
isn’t too surprising because the problem is so simple.

The demo concludes by predicting the class for a new, previously
unseen item with predictor values (3, 5, 7). The computed deci-
sion value is -1.274 and therefore the predicted class label is -1. The
computation of the decision value is explained later in this article.

This article assumes you have intermediate or better program-
ming skill with C#, but doesn’t assume you know anything about
SVMs. The demo program is coded using C# and though it’s com-
plicated, you should be able to refactor it to another language, such
as Java or Python, if you wish.

MACH INE L E AR NING

Support Vector Machines
Using C#
James McCaffrey

This article discusses:
•	The support vector machine (SVM) demo program

•	Understanding and using SVMs

•	Kernel functions

•	The sequential minimal optimization algorithm

Technologies discussed:
C#, Visual Studio 2107

Code download available at:
msdn.com/magazine/0319magcode

0319msdn_McCaffreySVM_v3_36-41.indd 36 2/6/19 12:26 PM

http://msdn.com/magazine/0319magcode

37March 2019msdnmagazine.com

The code for the demo program is too long to present in its
entirety in this article, but the complete source code is available in
the accompanying file download. All normal error checking has
been removed to keep the main ideas as clear as possible.

Overall Program Structure
The structure of the demo program is shown in Figure 2. All the
control logic is contained in a single Main method. Program-
defined class SupportVectorMachine declares all member fields
as public so you can more easily inspect them programmatically.

I used Visual Studio 2017 to create the demo program, but there
are no significant .NET Framework dependencies so any ver-
sion of Visual Studio will work fine. I created a new C# console
application and named it SVM_CSharp. After the template code
loaded into the editor window, I removed all unneeded using
statements and then added a reference to the Collections.Generic
assembly. In the Solution Explorer window, I right-clicked on file

Program.cs and renamed it to SVM_Program.cs and allowed
Visual Studio to automatically rename class Program.

Using the SVM
The demo program sets up eight hardcoded training items:

double[][] train_X = new double[8][] {
 new double[] { 4,5,7 },
 ...
 new double[] { 8,9,10 } };
int[] train_y = new int[8]{ -1, -1, -1, -1, 1, 1, 1, 1 };

In a non-demo scenario, you should normalize the predictor
values, and you’d likely store your data in a text file. The SVM clas-
sifier is created like so:

var svm = new SupportVectorMachine("poly", 0);
svm.gamma = 1.0;
svm.coef = 0.0;
svm.degree = 2;

The “poly” argument is really a dummy value because the SVM is
hardcoded to use a polynomial kernel function. The 0 argument is
a seed value for the random component of the training algorithm.
The gamma, coef (also called constant), and degree arguments are
parameters for the polynomial kernel function. Next, parameters
for the training algorithm are specified:

svm.complexity = 1.0;
svm.epsilon = 0.001;
svm.tolerance = 0.001;
int maxIter = 1000;

All of these values are hyperparameters that must be determined
by trial and error. The main challenge when using any implemen-
tation of an SVM is understanding which kernel to use, the kernel
parameters and the training parameters. Training is performed by
a single statement:

int iter = svm.Train(train_X, train_y, maxIter);

using System;
using System.Collections.Generic;
namespace SVM_CSharp
{
 class SVM_Program
 {
 static void Main(string[] args)
 {
 // Set up training data
 // Create SVM object, set parameters
 // Train the SVM
 // Display SVM properties
 // Use trained SVM to make a prediction
 }
 }
 public class SupportVectorMachine
 {
 // All member fields are declared public

 public SupportVectorMachine(string kernelType,
 int seed) . .
 public double PolyKernel(double[] v1, double[] v2) . .
 public double ComputeDecision(double[] input) . .
 public int Train(double[][] X_matrix,
 int[] y_vector, int maxIter) . .
 public double Accuracy(double[][] X_matrix,
 int[] y_vector) . .
 private bool TakeStep(int i1, int i2,
 double[][] X_matrix, int[] y_vector) . .
 private int ExamineExample(int i2, double[][] X_matrix,
 int[] y_vector) . .
 private double ComputeAll(double[] vector,
 double[][] X_matrix, int[] y_vector) . .
 }
}

Figure 2 Demo Program Structure

Figure 1 SVM Demo Program in Action

0319msdn_McCaffreySVM_v3_36-41.indd 37 2/6/19 12:26 PM

http://www.msdnmagazine.com

msdn magazine38 Machine Learning

Training an SVM classifier is an iterative process and method
Train returns the actual number of iterations that were executed,
as an aid for debugging when things go wrong. After training,
the SVM object holds a List<double[]> collection of the support
vectors, an array that holds the model weights (one per support
vector) and a single bias value. They’re displayed like this:

foreach (double[] vec in svm.supportVectors) {
 for (int i = 0; i < vec.Length; ++i)
 Console.Write(vec[i].ToString("F1") + " ");
 Console.WriteLine("");
}
for (int i = 0; i < svm.weights.Length; ++i)
 Console.Write(svm.weights[i].ToString("F6") + " ");
Console.WriteLine("");
Console.WriteLine("Bias = " + svm.bias.ToString("F6") + "\n");

The demo concludes by making a prediction:
double[] unknown = new double[] { 3, 5, 7 };
double predDecVal = svm.ComputeDecision(unknown);
Console.WriteLine("Predicted value for (3.0 5.0 7.0) = " +
 predDecVal.ToString("F3"));
int predLabel = Math.Sign(predDecVal);
Console.WriteLine("Predicted label for (3.0 5.0 7.0) = " +
 predLabel);

The decision value is type double. If the decision value is neg-
ative, the predicted class is -1 and if the decision value is positive,
the predicted class is +1.

Understanding SVMs
SVMs are quite difficult to understand, and they’re extremely
difficult to implement. Take a look at the graph in Figure 3. The
goal is to create a rule that distinguishes between the red data and
the blue data. The graph shows a problem where the data has just
two dimensions (number of predictor variables) only so that the
problem can be visualized, but SVMs can work with data with
three or more dimensions.

An SVM works by finding the widest possible lane that sepa-
rates the two classes and then identifies the one or more points
from each class that are closest to the edge of the separating lane.

To classify a new, previously unseen data point, all you have to
do is see which side of the middle of the lane the new point falls.
In Figure 3, the circled red point at (0.3, 0.65) and the circled blue
points at (0.5, 0.75) and (0.65, 0.6) are called the support vectors.
In my head, however, I think of them as “support points” because
I usually think of vectors as lines.

There are three major challenges that must be solved to imple-
ment a useable SVM. First, what do you do if the data isn’t linearly
separable as it is in Figure 3? Second, just how do you find the
support vectors, weights and biases values? Third, how do you deal
with training data points that are anomalous and are on the wrong
side of the boundary lane?

As this article shows, you can deal with non-linearly separable
data by using what’s called a kernel function. You can determine
the support vectors, weights and biases using an algorithm called
sequential minimal optimization (SMO). And you can deal with
inconsistent training data using an idea known as complexity,
which penalizes bad data.

Kernel Functions
There are many different types of kernel functions. Briefly, a kernel
function takes two vectors and combines them in some way to
produce a single scalar value. Although it’s not obvious, by using a
kernel function, you can enable an SVM to handle data that’s not
linearly separable. This is called “the kernel trick.”

Suppose you have a vector v1 = (3, 5, 2) and a second vector v2
= (4, 1, 0). A very simple kernel is called the linear kernel and it
returns the sum of the products of the vector elements:

K(v1, v2) = (3 * 4) + (5 * 1) + (2 * 0) = 17.0
Many kernel functions have an optional scaling factor, often

called gamma. For the previous example, if gamma is set to 0.5, then:
 K(v1, v2) = 0.5 * [(3 * 4) + (5 * 1) + (2 * 0)] = 8.5
The demo program uses a polynomial kernel with degree = 2,

gamma = 1.0 and constant = 0. In words, you compute the sum of
products, then multiply by gamma, then add the constant, then
raise to the degree. For example:

K(v1, v2) = [1.0 * ((3*4) + (5*1) + (2*0)) + 0]^2 = (1 * 17 + 0)^2 = 289.0
The polynomial kernel is implemented by the demo program

like so:
public double PolyKernel(double[] v1, double[] v2)
{
 double sum = 0.0;
 for (int i = 0; i < v1.Length; ++i)
 sum += v1[i] * v2[i];
 double z = this.gamma * sum + this.coef;
 return Math.Pow(z, this.degree);
}

The values of gamma, degree and constant (named coef to avoid
a name clash with a language keyword) are class members and their
values are supplied elsewhere. The demo program hard codes the Figure 3 Basic SVM Concepts

2.0 3.00.0 1.0
0.0

5.0

0.1

6.0 7.0 8.0

0.2

9.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x1

4.0
x0

1.0

SVMs are quite difficult to
understand, and they’re

extremely difficult to implement.

0319msdn_McCaffreySVM_v3_36-41.indd 38 2/6/19 12:26 PM

Untitled-1 1 2/5/19 11:30 AM

http://jetbrains.com/rider

msdn magazine40 Machine Learning

kernel function so if you want to experiment with a different func-
tion, you’ll have to implement it yourself.

A common alternative to the polynomial kernel is the radial
basis function (RBF) kernel. In words, you sum the squared dif-
ferences between elements, multiply by negative gamma, then
raise to e (Euler’s number, approximately 2.718). In code the RBF
kernel could look like:

public double RbfKernel(double[] v1, double[] v2)
{
 double sum = 0.0;
 for (int i = 0; i < v1.Length; ++i)
 sum += (v1[i] - v2[i]) * (v1[i] - v2[i]);
 return Math.Exp(-this.gamma * sum);
}

Notice that different kernel functions have different parameters.
The linear and RBF kernels only require gamma, but the polyno-
mial kernel requires gamma, degree and constant. The choice of
kernel function to use, and the values of the parameters that apply
to the kernel function being used, are free parameters and must be
determined by trial and error. All machine learning classification
techniques have hyperparameters, but SVMs tend to be particu-
larly sensitive to their hyperparameter values.

The Sequential Minimal Optimization Algorithm
There are many algorithms that can be used to determine the sup-
port vectors for an SVM problem. The SMO algorithm is the most
common. The demo program follows the original explanation of
SMO given in the 1998 research paper, “Sequential Minimal Opti-
mization: A Fast Algorithm for Training Support Vector Machines,”
which can be found in many places on the Internet.

The SMO algorithm is very complex and a full explanation would
require roughly 200 pages (I know because I once reviewed an
entire book dedicated just to SMO). SMO has three key functions:
a top-level Train function that calls a helper ExamineExample
function, which calls a helper TakeStep function.

The signature of TakeStep is: private bool TakeStep(int i1, int i2,
double[][] X_matrix, int[] y_vector). Parameter X_matrix holds
the training data predictor values. Parameter y_vector holds the
training data target values, which are either -1 or +1. The i1 and i2
parameters are a first index and a second index pointing into the
training data. On each call to TakeStep, the algorithm attempts to
find a better solution and returns true if an improvement is found
using the two training data items, false otherwise.

The signature of ExamineExample is: private int Examine
Example(nt i2, double[][] X_matrix, int[] y_vector). The function
returns the number of changes that occurred so that TakeStep can
determine if progress has been made.

Both TakeStep and ExamineExample use a class-scope vari-
able named complexity. Larger values of complexity increasingly
penalize outlier training data and force the SMO algorithm to try
to find a solution that deals with them, at the expense of model
overfitting. Because complexity is a parameter used by SMO, it will
always be present, unlike parameters associated with the kernel
function used, which might be present or absent.

The TakeStep function uses a class-scope variable named epsilon,
and the ExamineExample function uses a class-scope variable
named tolerance. Both are small values, set to 0.001 by default in

the demo. Epsilon is used internally to determine when to stop iter
ating, which in turn affects the number of support vectors found.
Tolerance is used when computing error. The values of epsilon and
tolerance are free parameters and the effect of changing them varies
quite a bit (from a very small to a very large effect) depending on
the particular problem at which you’re looking.

The code for method Train is presented in Figure 4. The method
is iterative and returns the number of iterations that were performed.
The method accepts a maxIter parameter to set a hard limit on the
number of iterations performed. In theory, the SMO algorithm
will always converge and stop iterating, but theory doesn’t always
match practice with an algorithm as complex as SMO.

In addition to explicitly returning the number of iterations
performed, Train finds and stores the indices of the training data
items that are support vectors. After the number of support vec-
tors is known, the array that holds the values of the weights can
be allocated. The weight values are alpha values that are non-zero.

The Train method has many possible customization points. For
example, the demo code stores support vectors as a List<double[]>
collection. An alternative is to store just the indices of the sup-
port vectors, in a List<int> collection or in an int[] array object.
Examining the Train method carefully is the best way to start to
understand SVMs and the SMO algorithm.

public int Train(double[][] X_matrix, int[] y_vector, int maxIter)
{
 int N = X_matrix.Length;
 this.alpha = new double[N];
 this.errors = new double[N];
 int numChanged = 0;
 bool examineAll = true;
 int iter = 0;

 while (iter < maxIter && numChanged > 0 || examineAll == true) {
 ++iter;
 numChanged = 0;
 if (examineAll == true) {
 for (int i = 0; i < N; ++i)
 numChanged += ExamineExample(i, X_matrix, y_vector);
 }
 else {
 for (int i = 0; i < N; ++i)
 if (this.alpha[i] != 0 && this.alpha[i] !=
 this.complexity)
 numChanged += ExamineExample(i, X_matrix, y_vector);
 }

 if (examineAll == true)
 examineAll = false;
 else if (numChanged == 0)
 examineAll = true;
 } // While

 List<int> indices = new List<int>(); // support vectors
 for (int i = 0; i < N; ++i) {
 // Only store vectors with Lagrange multipliers > 0
 if (this.alpha[i] > 0) indices.Add(i);
 }

 int num_supp_vectors = indices.Count;
 this.weights = new double[num_supp_vectors];
 for (int i = 0; i < num_supp_vectors; ++i) {
 int j = indices[i];
 this.supportVectors.Add(X_matrix[j]);
 this.weights[i] = this.alpha[j] * y_vector[j];
 }
 this.bias = -1 * this.bias;
 return iter;
}

Figure 4 The Training Method

0319msdn_McCaffreySVM_v3_36-41.indd 40 2/6/19 12:26 PM

msdnmagazine.com
dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support:
• popular file types
• emails with multilevel attachments
• a wide variety of databases
• web data

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional enterprise and

developer evaluations

Over 25 search options including:
• efficient multithreaded search
• easy multicolor hit-highlighting
• forensics options like credit card search

Instantly Search
Terabytes

®

Developers:
• APIs for C++, Java and .NET, including

cross-platform .NET Standard with
Xamarin and .NET Core

• SDKs for Windows, UWP, Linux, Mac,
iOS in beta, Android in beta

• FAQs on faceted search, granular data
classification, Azure and more

Understanding the SVM Mechanism
If you refer to Figure 1, you’ll see the trained SVM has three sup-
port vectors: (4, 5, 7), (7, 4, 2) and (9, 7, 5). And the model has three
weight values = (-0.000098, -0.000162, 0.000260) and bias = -2.506.
The decision value for input (3, 5, 7) is computed by calculating the
value of the kernel function with each of the three support vectors,
then multiplying each kernel value by its corresponding weight,
summing, then adding the bias:

x = (3, 5, 7)
sv1 = (4, 5, 7)
sv2 = (7, 4, 2)
sv3 = (9, 7, 5)

K(x, sv1) * wt1 = 7396.0 * -0.000098 = -0.725
K(x, sv2) * wt2 = 3025.0 * -0.000162 = -0.490
K(x, sv3) * wt3 = 9409.0 * 0.000260 = 2.446

decision = -0.725 + -0.490 + 2.446 + -2.506 = -1.274
prediction = Sign(decision) = -1

Notice that if the predictor values are not normalized, as in the
demo, the values of the kernels can become very large, forcing the
values of the weights to become very small, which could possibly
lead to arithmetic errors.

The SVM mechanism points out strengths and weaknesses of
the technique. SVM focuses only on the key support vectors, and
therefore tends to be resilient to bad training data. When the num-
ber of support vectors is small, an SVM is somewhat interpretable,
an advantage compared to many other techniques. Compared to
many other classification techniques, notably neural networks,
SVMs can often work well with limited training data, but SVMs
can have trouble dealing with very large training datasets. The
major disadvantages of SVMs is that SVMs are very complex and
they require you to specify the value of many hyperparameters.

Wrapping Up
As this article shows, implementing a support vector machine is
quite complex and difficult. Because of this, there are very few SVM
library implementations available. Most SVM libraries are based
on a C++ implementation called LibSVM, which was created by
a group of researchers. Because calling C++ is often difficult, there
are several libraries that provide wrappers over LibSVM, written
in Python, Java, C# and other languages.

By experimenting with the code presented in this article, you’ll
gain a good understanding of exactly how SVMs work and be
able to use a library implementation more effectively. Because
the code in this article is self-contained and simplified, you’ll be
able to explore alternative kernel functions and their parameters,
and the SMO training algorithm parameters epsilon, tolerance,
and complexity.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several key Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Yihe Dong, Chris Lee

0319msdn_McCaffreySVM_v3_36-41.indd 41 2/6/19 12:26 PM

mailto:jamccaff@microsoft.com
http://www.msdnmagazine.com
http://www.dtSearch.com

INTENSE DEVELOPER TRAINING CONFERENCE
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

SUPPORTED BY

magazine

PRODUCED BY

SPARK YOUR CODE REVOLUTION IN HISTORIC BOSTON
June 9-13, 2019 | Hyatt Regency Cambridge

New This Year!
On-Demand Session Recordings Now Available

Get on-demand access for one full year to all keynotes and sessions from

Visual Studio Live! Boston, including everything Tuesday – Thursday

at the conference.

AGENDA COMING SOON!

Untitled-4 2Untitled-4 2 1/24/19 11:56 AM1/24/19 11:56 AM

https://www.vslive.com/boston

vslive.com/
boston

Your

Starts Here!

#VSLive

Hear From Your Peers!
See what past attendees had to say about Visual Studio Live!

linkedin.com – Join the
“Visual Studio Live” group!

facebook.com –
Search “VSLive”

twitter.com/vslive –
@VSLive

CONNECT WITH US

Use
Promo Code

MSDN

Register by April 19 &

Save Up To $400!

Timothy Franzke
Software Engineer, Ascend Learning

“This conference has done a great job of getting attendees to mingle

and network. I’ve enjoyed the talks but the social aspects of this

conference have been great. I’ve met a lot of great people and hope

to see them at future conferences.”

Katie Gray
Senior Lecturer, The University of Texas at Austin

“I have loved learning about all of the latest off erings in the Visual

Studio ecosystem from experts in the fi eld. All of the sessions

provided candid information about what is new and what is

coming. It has also been great to network with fellow developers

to hear about what they are working on at their jobs.”

Ritesh Salot
Software Architect, Netsmart Technologies

“Learning latest and greatest stuff from industry experts will

allow me to come up with new directions to fi nd solutions

for our business and technology challenges.”

Untitled-4 3Untitled-4 3 1/24/19 11:56 AM1/24/19 11:56 AM

https://www.vslive.com/boston
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
https://www.linkedin.com/groups/visualstudiolive

msdn magazine44

As the latest framework to join the single-page application (SPA)
party, Blazor had the opportunity to build on the best character-
istics of other frameworks, such as Angular and React. While the
core concept behind Blazor is to leverage C# and Razor to build
SPA applications, one aspect clearly inspired by other frameworks
is the use of components.

Blazor components are written using the Razor language, in much
the same way that MVC views are built, and this is where things
get really interesting for developers. In ASP.NET Core you can
reach unprecedented levels of expressivity through new language
artifacts called tag helpers. A tag helper is a C# class instructed to
parse a given markup tree to turn it into valid HTML5. All of the
branches you may face while creating a complex, made-to-measure
chunk of HTML are handled in code, and all that developers write
in text files is plain markup. With tag helpers the amount of code
snippets decreases significantly. Tag helpers are great, but still pres-
ent some programming wrinkles that Blazor components brilliantly
iron out. In this article, I’ll build a new Blazor component that
presents a modal dialog box through the services of the Bootstrap
4 framework. In doing so, I’ll deal with Blazor-templated compo-
nents and cascading parameters.

Wrinkles of Tag Helpers
In my book, “Programming ASP.NET Core” (Microsoft Press,
2018), I present a sample tag helper that does nearly the same job
discussed earlier. It turns some ad hoc non-HTML markup into
Bootstrap-specific markup for modal dialog boxes (see bit.ly/2RxmWJS).

Any transformation between the input markup and the desired
output is performed via C# code. A tag helper, in fact, is a plain C#
class that inherits from the base class TagHelper and overrides a
single method. The problem is that the transformation and mark-
up composition must be expressed in code. While this adds a lot
of flexibility, any change also requires a compile step. In particular,
you need to use C# code to describe a DIV tree with all of its sets
of attributes and child elements.

In Blazor, things come much easier as you don’t need to resort
to tag helpers in order to create a friendlier markup syntax for
sophisticated elements, such as a Bootstrap modal dialog box. Let’s
see how to create a modal component in Blazor.

Modal Dialog Boxes
The idea is to set up a Blazor reusable component that wraps the
Bootstrap modal dialog component. Figure 1 presents the famil-
iar HTML5 markup tree required for Bootstrap (both 3.x and 4.x
versions) to work.

No Web developer is happy to reiterate that chunk of markup
over and over again across multiple views and pages. Most of the
markup is pure layout and the only variable information is the
text to display and perhaps some style and buttons. Here’s a more
expressive markup that’s easier to remember:

<Modal>
 <Toggle class="btn"> Open </Toggle>
 <Content>
 <HeaderTemplate> ... </HeaderTemplate>
 <BodyTemplate> ... </BodyTemplate>
 <FooterTemplate> ... </FooterTemplate>
 </Content>
</Modal>

The constituent elements of a modal component are imme-
diately visible in the more expressive markup code. The markup
includes a wrapper Modal element with two child subtrees: one
for the toggle button and one for the actual content.

According to the Bootstrap syntax of modals, any dialog needs
a trigger to be displayed. Typically, the trigger is a button element
decorated with a pair of data-toggle and data-target attributes. The
modal, however, can also be triggered via JavaScript. The Toggle
sub-component just serves as the container for the trigger markup.
The Content sub-component, instead, wraps the entire content of
the dialog and is split in three segments: header, body and footer.

Hierarchical Blazor Components

Cutting Edge DINO ESPOSITO

Code download available at bit.ly/2FdGZat.

<button type="button" class="btn btn-primary"
 data-toggle="modal"
 data-target="#exampleModal">
 Open modal
</button>

<div class="modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <h5 class="modal-title">Modal title</h5>
 <button type="button" class="close" data-dismiss="modal">
 ×
 </button>
 </div>
 <div class="modal-body">
 <p>Modal body text goes here.</p>
 </div>
 <div class="modal-footer">
 <button type="button"
 class="btn btn-secondary"
 data-dismiss="modal">Close</button>
 </div>
 </div>
 </div>
</div>

Figure 1 The Bootstrap Markup for Modal Dialogs

0319msdn_EspositoCEdge_v3_44-46.indd 44 2/6/19 11:29 AM

http://bit.ly/2FdGZat
http://bit.ly/2RxmWJS

45March 2019msdnmagazine.com

In summary, based on the previous code snippet, the resulting
UI is made of a primary button labeled “Open.” Once clicked, the
button will pop up a DIV filled with three layers: header, body
and footer.

To create the nested components required for the modal dialog
box, you need to deal with templated components and cascading
parameters. Note that cascading parameters require you to run
Blazor 0.7.0 or newer.

The Modal Component
Let’s have a look at the code displayed in Figure 2. The markup
is fairly minimal and includes a DIV element around a chunk of
templated markup. The modal.cshtml file in Figure 2 declares a
template property named ChildContent that collects (obviously
enough) any child content. The result of the markup is to push out
a surrounding DIV element that gathers both the toggle markup
and the actual content to display in the dialog.

Apparently this container component is not of great use. None-
theless, it plays a crucial role given the
required structure of the markup for
Bootstrap dialog boxes. Both the Tog-
gle and Content components share the
same ID that uniquely identifies the
modal dialog. By using a wrapper com-
ponent, you can capture the ID value
in only one place and cascade it down
the tree. In this particular case, though,
the ID is not even the sole param
eter you want to cascade through the
innermost layers of markup. A modal
dialog can optionally have a Close
button in the header, as well as other
attributes related to the size of the
dialog or the animation. All of this
information can be grouped together
in a custom data transfer object and
cascaded through the tree.

The ModalContext class is used to collect the ID and the Bool-
ean value for the closing button, as shown in the code here:

public class ModalContext
{
 public string Id { get; set; }
 public bool AutoClose { get; set; }
}

The CascadingValue element captures the provided expression
and automatically shares it with all innermost components that
explicitly bind to it. Without the cascading parameters feature,
any shared value in complex and hierarchical components must
be explicitly injected wherever needed. Without this feature, you
would have to indicate the same ID twice, as shown in this code:

<Modal>
 <Toggle id="myModal" class="btn btn-primary btn-lg">
 ...
 </Toggle>
 <Content id="myModal">
 ...
 </Content>
</Modal>

Cascading values are helpful in situations where the same set of values
must be passed along the hierarchy of a complex component made of
multiple sub-components. Note that cascading values must be grouped
in a single container; therefore, if you need to pass on multiple scalar
values, you should first define a container object. Figure 3 illustrates
how parameters flow through the hierarchy of modal components.

Inside the Modal Component
The inner content of the Modal component is parsed recursively,
and the Toggle and Content components take care of that. Here’s
the source of the Toggle.cshtml component:

<button class="@Class"
 data-toggle="modal"
 data-target="#@OutermostEnv.Id">
 @ChildContent
</button>

@functions
{
 [CascadingParameter] protected ModalContext OutermostEnv { get; set; }
 [Parameter] string Class { get; set; }
 [Parameter] RenderFragment ChildContent { get; set; }
}

<CascadingValue Value="@Context">
 <div>
 @ChildContent
 </div>
</CascadingValue>

@functions
{
 protected override void OnInit()
 {
 Context = new ModalContext
 {
 Id = Id,
 AutoClose = AutoClose
 };
 }

 ModalContext Context { get; set; }
 [Parameter] private string Id { get; set; }
 [Parameter] private bool AutoClose { get; set; }

 [Parameter] RenderFragment ChildContent { get; set; }
}

Figure 2 Source Code of the Modal Component

Figure 3 Cascading Values in Hierarchical Components

0319msdn_EspositoCEdge_v3_44-46.indd 45 2/6/19 11:29 AM

http://www.msdnmagazine.com

msdn magazine46 Cutting Edge

In the present implementation, the toggle element is styled through
a public property named Class. The content of the button is captured
through a templated property named ChildContent. Note that in
Blazor, a template property named ChildContent automatically cap-
tures the entire child markup of the parent element. Also, a template
property in Blazor is a property of type RenderFragment.

The interesting thing in the previous source code is the binding
to the cascading values. You use the CascadingParameter attribute
to decorate a component property, such as OutermostEnv. The
property is then populated with cascaded values from the inner-
most level. As a result, OutermostEnv takes the value assigned to
the instance of ModalContext freshly created in the Init method
of the root component (refer back to Figure 2).

In the Toggle component, the Id cascaded value is used to set
the value for the data-target attribute. In Bootstrap jargon, the
data-target attribute of a dialog toggle button identifies the ID of
the DIV to be popped up when the toggle is clicked.

The Content of the Modal Dialog
A Bootstrap dialog box is made of up to three DIV blocks laid out
vertically: header, body and footer. All of them are optional, but
you want to have at least one defined in order to give users some
minimal feedback. A templated component is the right fit here.
Here’s the public interface of the Content component as it results
from the Content.cshtml file:

@functions
{
 [CascadingParameter] ModalContext OutermostEnv { get; set; }
 [Parameter] RenderFragment HeaderTemplate { get; set; }
 [Parameter] RenderFragment BodyTemplate { get; set; }
 [Parameter] RenderFragment FooterTemplate { get; set; }
}

The OutermostEnv cascaded parameter will bring the data
defined outside the realm of the Content component. Both the
ID and AutoClose properties are used here. The Id value is used
to identify the outermost container of the dialog box. The DIV

signed with the ID will pop up when the modal is triggered. The
AutoClose value, instead, is used to control an IF statement that
decides whether or not a Dismiss button should go in the header bar.

Finally, three RenderFragment template properties define the
actual content for customizable areas—header, footer and body.

As you can see in Figure 4, the Content component does most
of the work to render the expected Bootstrap markup for modal
dialog boxes. It defines the overall HTML layout and uses tem-
plate properties to import the details of the markup that would
make a given dialog unique—the header, footer and body markup.
Thanks to Blazor templates, any actual markup can be specified as
inline content in the caller page. Note that the source code of the
caller page (called Cascade in the sample application) is depicted
back in Figure 3.

More on Cascading Values and Parameters
Cascading values solve the problem of effectively flowing values
down the stack of subcomponents. Cascading values can be defined
at various levels in a complex hierarchy and go from an ancestor
component to all of its descendants. Each ancestor element can
define a single cascading value, possibly a complex object that
gathers together multiple scalar values.

To make use of cascaded values, descendant components declare
cascading parameters. A cascading parameter is a public or pro-
tected property decorated with the CascadingParameter attribute.
Cascading values can be associated with a Name property, like so:

<CascadingValue Value=@Context Name="ModalDialogGlobals">
 ...
</CascadingValue>

In this case, descendants will use the Name property to retrieve
the cascaded value, as shown here:

[CascadingParameter(Name = "ModalDialogGlobals")]
ModalContext OutermostEnv { get; set; }

When no name is specified, cascading values are bound to cas-
cading parameters by type.

Wrapping Up
Cascading values are specifically designed for hierarchical com-
ponents, but at the same time hierarchical (and templated)
components are realistically the most common type of Blazor
components that developers are expected to write. This article
demonstrated cascading parameters and templated and hierarchi-
cal components, but also showed how powerful it could be to use
Razor components to express specific pieces of markup through a
higher-level syntax. In particular, I worked out a custom markup
syntax to render a Bootstrap modal dialog box. Note that you
can achieve the same in plain ASP.NET Core using tag helpers or
HTML helpers in classic ASP.NET MVC.

The source code for the article is available at bit.ly/2FdGZat. 	 n

Dino Esposito has authored more than 20 books and 1,000-plus articles in his
25-year career. Author of “The Sabbatical Break,” a theatrical-style show, Esposito
is busy writing software for a greener world as the digital strategist at BaxEnergy.
Follow him on Twitter: @despos.

Thanks to the following Microsoft technical expert for reviewing this article:
Daniel Roth

<div class="modal" id="@OutermostEnv.Id">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <h5 class="modal-title">
 @HeaderTemplate
 </h5>
 @if (OutermostEnv.AutoClose)
 {
 <button type="button" class="close"
 data-dismiss="modal">
 ×
 </button>
 }
 </div>

 <div class="modal-body">
 @BodyTemplate
 </div>

 <div class="modal-footer">
 @FooterTemplate
 </div>

 </div>
 </div>
</div>

Figure 4 Markup of the Content Component

0319msdn_EspositoCEdge_v3_44-46.indd 46 2/6/19 11:29 AM

http://bit.ly/2FdGZat
www.twitter.com/despos

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-12 1Untitled-12 1 2/5/19 3:08 PM2/5/19 3:08 PM

http://MSDN.microsoft.com

msdn magazine48

The goal of a regression problem is to predict a single numeric value.
For example, you might want to predict the price of a house based
on its square footage, age, ZIP code and so on. In this article I show
how to create a neural regression model using the PyTorch code
library. The best way to understand where this article is headed is
to take a look at the demo program in Figure 1.

The demo program creates a prediction model based on the
Boston Housing dataset, where the goal is to predict the median
house price in one of 506 towns close to Boston. The data comes
from the early 1970s. Each data item has 13 predictor variables, such
as crime index of the town, average number of rooms per house
in the town and so on. There’s only one output value because the
goal is to predict a single numeric value.

The demo loads 404 training items and 102 test items into mem-
ory, and then creates a 13-(10-10)-1 neural network. The neural
network has two hidden processing layers, each of which has 10
nodes. The number of input and output nodes is determined by
the data, but the number of hidden layers and the number
of nodes in each are free parameters that must be deter-
mined by trial and error.

The demo trains the neural network, meaning the values
of the weights and biases that define the behavior of the
neural network are computed using the training data,
which has known correct input and output values. After
training, the demo computes the accuracy of the model
on the test data (75.49 percent, 77 out of 102 correct). The
test accuracy is a rough measure of how well you’d expect
the model to do on new, previously unseen data.

The demo concludes by making a prediction for the first
test town. The 13 raw input values are (0.09266, 34.0, . . 8.67).
When the neural regression model was trained, normal-
ized data (scaled so all values are between 0.0 and 1.0) was
used, so when making a prediction the demo had to use
normalized data, which is (0.00097, 0.34, . . 0.191501). The
model predicts that the median house price is $24,870.07,
quite close to the actual median price of $26,400.

This article assumes you have intermediate or better
programming skill with a C-family language and a basic
familiarity with machine learning. The complete demo
code is presented in this article. The source code and the
two data files used by the demo are also available in the

accompanying download. All normal error checking has been
removed to keep the main ideas as clear as possible.

Installing PyTorch
Installing PyTorch involves two main steps. First you install Python
and several required auxiliary packages, such as NumPy and SciPy,
then you install PyTorch as an add-on Python package.

Although it’s possible to install Python and the packages required
to run PyTorch separately, it’s much better to install a Python
distribution. For my demo, I installed the Anaconda3 5.2.0 distri-
bution (which contains Python 3.6.5) and PyTorch 1.0.0. If you’re

Neural Regression Using PyTorch

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0319magcode.
Figure 1 Neural Regression Using a PyTorch Demo Run

The goal of a regression problem
is to predict a single numeric value.

0319msdn_McCaffreyTRun_v4_48-54.indd 48 2/6/19 12:35 PM

http://msdn.com/magazine/0319magcode

August 12-16, 2019
Microsoft Campus in Redmond, WA

In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

Intense Developer
Training Conference

Save $400
When You Register

By June 21!

New This Year!
On-Demand Session Recordings
Now Available

Get on-demand access for one full

year to all keynotes and sessions

from Visual Studio Live! Microsoft

HQ, including everything Tuesday –

Thursday at the conference.

#VSLIVE

vslive.com/microsofthq
SUPPORTED BY PRODUCED BY

magazine

Untitled-3 1 1/24/19 11:40 AM

https://www.vslive.com/microsofthq

msdn magazine50 Test Run

new to Python, be aware that installing and managing add-on
package dependencies is non-trivial.

After installing Python via the Anaconda distribution, the
PyTorch package can be installed using the pip utility function
with a .whl (“wheel”) file. PyTorch comes in a CPU-only version
and in a GPU version. I used the CPU-only version.

Understanding the Data
The Boston Housing dataset comes from a research paper written
in 1978 that studied air pollution. You can find different versions of
the dataset in many locations on the Internet. The first data item is:

0.00632, 18.00, 2.310, 0, 0.5380, 6.5750, 65.20
4.0900, 1, 296.0, 15.30, 396.90, 4.98, 24.00

Each data item has 14 values and represents one of 506 towns
near Boston. The first 13 numbers are the values of predictor vari-
ables and the last value is the median house price in the town
(divided by 1,000). Briefly, the 13 predictor variables are: crime rate
in the town, large lot percentage, percentage zoned for industry,
adjacency to Charles River, pollution, average number rooms per
house, house age information, distance to Boston, accessibility to
highways, tax rate, pupil-teacher ratio, proportion of Black resi-
dents, and percentage of low-status residents.

Because there are 14 variables, it’s not possible to visualize the
dataset, but you can get a rough idea of the data from the graph
in Figure 2. The graph shows median house price as a function
of the percentage of town zoned for industry for the 102 items in
the test dataset.

When working with neural networks, you must encode non-
numeric data and you should normalize numeric data so that large
values, such as a pupil-teacher ratio of 20.0, don’t overwhelm small
values, such as a pollution reading of 0.538. The Charles River vari-
able is a categorical value stored either as 0 (town is not adjacent) or
1 (adjacent). Those values were re-encoded as -1 and +1. The other
12 predictor variables are numeric. For each variable, I computed
the min value and the max value, and then for every value x, nor-
malized it as (x - min) / (max - min). After min-max normalization,
all values will be between 0.0 and 1.0.

The median house values in the raw data were already normalized
by dividing by 1,000, so the values ranged from 5.0 to 50.0, with most
at about 25.0. I applied an additional normalization by dividing the
prices by 10 so that all median house prices were between 0.5 and
5.0, with most being around 2.5.

The Demo Program
The complete demo program, with a few minor edits to save space,
is presented in Figure 3. I indent two spaces rather than the usual
four spaces to save space. And note that Python uses the ‘\’ char-
acter for line continuation. I used Notepad to edit my program,
but many of my colleagues prefer Visual Studio or VS Code, both
of which have excellent support for Python.

The demo imports the entire PyTorch package and assigns it an alias
of T. An alternative is to import just the modules and functions needed.

The demo defines a helper function called accuracy. When using
a regression model, there’s no inherent definition of the accuracy
of a prediction. You must define how close a predicted value must
be to a target value in order to be counted as a correct prediction.

The demo program counts a predicted median house price as
correct if it’s within 15 percent of the true value.

All the control logic for the demo program is contained in a sin-
gle main function. Program execution begins by setting the global
NumPy and PyTorch random seeds so results will be reproducible.

Loading Data into Memory
The demo loads data in memory using the NumPy loadtxt function:

train_x = np.loadtxt(train_file, delimiter="\t",
 usecols=range(0,13), dtype=np.float32)
train_y = np.loadtxt(train_file, delimiter="\t",
 usecols=[13], dtype=np.float32)
test_x = np.loadtxt(test_file, delimiter="\t",
 usecols=range(0,13), dtype=np.float32)
test_y = np.loadtxt(test_file, delimiter="\t",
 usecols=[13], dtype=np.float32)

The code assumes that the data is located in a subdirectory
named Data. The demo data was preprocessed by splitting it into
training and test sets. Data wrangling isn’t conceptually difficult,
but it’s almost always quite time-consuming and annoying. Many
of my colleagues like to use the pandas (Python data analysis)
package to manipulate data.

Defining the Neural Network
The demo defines the 13-(10-10)-1 neural network in a program-
defined class named Net that inherits from the nn.Module module.
You can think of the Python __init__ function as a class construc-
tor. Notice that you don’t explicitly define an input layer because
input values are fed directly to the first hidden layer.

Figure 2 Partial Boston Area House Dataset

10 150 5
0

25

10

20

30

40

50

60

M
ed

ia
n

Pr
ice

 (x
$1

,0
00

)

20
Percentage Land Zoned for Industry

Boston Area Median House Prices (~1970)

30

You must define how close
a predicted value must be to
a target value in order to be

counted as a correct prediction.

0319msdn_McCaffreyTRun_v4_48-54.indd 50 2/6/19 12:35 PM

Training Conference for IT Pros at Microsoft HQ!

EVENT PARTNER SUPPORTED BY PRODUCED BY

Client and EndPoint Management

Cloud

Infrastructure

PowerShell and DevOps

Security

Soft Skills for IT Pros

In-depth Technical Tracks on:

TechMentorEvents.com/
MicrosoftHQ

MICROSOFT
HEADQUARTERS

REDMOND, WA
AUGUST 5-9, 2019

SAVE $400
WHEN YOU REGISTER

BY JUNE 14
Use Promo Code MSDN

AGENDA
COMING
SOON!

Untitled-6 1 1/23/19 2:49 PM

https://www.techmentorevents.com/microsofthq

msdn magazine52 Test Run

The network has (13 * 10) + (10 * 10) + (10 * 1) = 240 weights.
Each weight is initialized to a small random value using the Xavier
Uniform algorithm. The network has 10 + 10 + 1 = 21 biases. Each
bias value is initialized to zero.

The Net class forward function defines how the layers compute
output. The demo uses tanh (hyperbolic tangent) activation on the
two hidden layers, and no activation on the output layer:

def forward(self, x):
 z = T.tanh(self.hid1(x))
 z = T.tanh(self.hid2(z))
 z = self.oupt(z)
 return z

For hidden layer activation, the main alternative is rectified linear
unit (ReLU) activation, but there are many other functions.

Because PyTorch works at a relatively low level of abstraction,
there are many alternative design patterns you can use. For exam-
ple, instead of defining a class Net with the __init__ and forward
functions, and then instantiating with net = Net(), you can use the
Sequential function, like so:

net = T.nn.Sequential(
 T.nn.Linear(13,10),
 T.nn.Tanh(),
 T.nn.Linear(10,10),
 T.nn.Tanh(),
 T.nn.Linear(10,1))

Figure 3 The Boston Housing Demo Program

boston_dnn.py
Boston Area House Price dataset regression
Anaconda3 5.2.0 (Python 3.6.5), PyTorch 1.0.0

import numpy as np
import torch as T # non-standard alias

--

def accuracy(model, data_x, data_y, pct_close):
 n_items = len(data_y)
 X = T.Tensor(data_x) # 2-d Tensor
 Y = T.Tensor(data_y) # actual as 1-d Tensor

 oupt = model(X) # all predicted as 2-d Tensor
 pred = oupt.view(n_items) # all predicted as 1-d

 n_correct = T.sum((T.abs(pred - Y) < T.abs(pct_close * Y)))
 result = (n_correct.item() * 100.0 / n_items) # scalar
 return result

--

class Net(T.nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.hid1 = T.nn.Linear(13, 10) # 13-(10-10)-1
 self.hid2 = T.nn.Linear(10, 10)
 self.oupt = T.nn.Linear(10, 1)

 T.nn.init.xavier_uniform_(self.hid1.weight) # glorot
 T.nn.init.zeros_(self.hid1.bias)
 T.nn.init.xavier_uniform_(self.hid2.weight)
 T.nn.init.zeros_(self.hid2.bias)
 T.nn.init.xavier_uniform_(self.oupt.weight)
 T.nn.init.zeros_(self.oupt.bias)

 def forward(self, x):
 z = T.tanh(self.hid1(x))
 z = T.tanh(self.hid2(z))
 z = self.oupt(z) # no activation, aka Identity()
 return z

--

def main():
 # 0. Get started
 print("\nBoston regression using PyTorch 1.0 \n")
 T.manual_seed(1); np.random.seed(1)

 # 1. Load data
 print("Loading Boston data into memory ")
 train_file = ".\\Data\\boston_train.txt"
 test_file = ".\\Data\\boston_test.txt"

 train_x = np.loadtxt(train_file, delimiter="\t",
 usecols=range(0,13), dtype=np.float32)
 train_y = np.loadtxt(train_file, delimiter="\t",
 usecols=[13], dtype=np.float32)
 test_x = np.loadtxt(test_file, delimiter="\t",
 usecols=range(0,13), dtype=np.float32)
 test_y = np.loadtxt(test_file, delimiter="\t",
 usecols=[13], dtype=np.float32)

 # 2. Create model
 print("Creating 13-(10-10)-1 DNN regression model \n")
 net = Net() # all work done above

 # 3. Train model
 net = net.train() # set training mode
 bat_size = 10
 loss_func = T.nn.MSELoss() # mean squared error
 optimizer = T.optim.SGD(net.parameters(), lr=0.01)
 n_items = len(train_x)
 batches_per_epoch = n_items // bat_size
 max_batches = 1000 * batches_per_epoch

 print("Starting training")
 for b in range(max_batches):
 curr_bat = np.random.choice(n_items, bat_size,
 replace=False)
 X = T.Tensor(train_x[curr_bat])
 Y = T.Tensor(train_y[curr_bat]).view(bat_size,1)
 optimizer.zero_grad()
 oupt = net(X)

 loss_obj = loss_func(oupt, Y)
 loss_obj.backward()
 optimizer.step()

 if b % (max_batches // 10) == 0:
 print("batch = %6d" % b, end="")
 print(" batch loss = %7.4f" % loss_obj.item(), end="")
 net = net.eval()
 acc = accuracy(net, train_x, train_y, 0.15)
 net = net.train()
 print(" accuracy = %0.2f%%" % acc)
 print("Training complete \n")

 # 4. Evaluate model
 net = net.eval() # set eval mode
 acc = accuracy(net, test_x, test_y, 0.15)
 print("Accuracy on test data = %0.2f%%" % acc)

 # 5. Save model - TODO

 # 6. Use model
 raw_inpt = np.array([[0.09266, 34, 6.09, 0, 0.433, 6.495, 18.4,
 5.4917, 7, 329, 16.1, 383.61, 8.67]], dtype=np.float32)

 norm_inpt = np.array([[0.000970, 0.340000, 0.198148, -1,
 0.098765, 0.562177, 0.159629, 0.396666, 0.260870, 0.270992,
 0.372340, 0.966488, 0.191501]], dtype=np.float32)

 X = T.Tensor(norm_inpt)
 y = net(X)
 print("For a town with raw input values: ")
 for (idx,val) in enumerate(raw_inpt[0]):
 if idx % 5 == 0: print("")
 print("%11.6f " % val, end="")
 print("\n\nPredicted median house price = $%0.2f" %
 (y.item()*10000))

if __name__=="__main__":
 main()

0319msdn_McCaffreyTRun_v4_48-54.indd 52 2/6/19 12:35 PM

magazine

SUPPORTED BY

March 3–8, 2019 Bally’s Hotel and Casino

PRODUCED BY

An Oasis of Education Dazzling in the Desert

vslive.com/lasvegas

Intense Developer
Training Conference
In-depth Technical Content On:

AI, Data and Machine Learning

Cloud, Containers and Microservices

Delivery and Deployment

Developing New Experiences

DevOps in the Spotlight

Full Stack Web Development

.NET Core and More

Secure Your
Seat Today!

Untitled-1 1Untitled-1 1 2/4/19 10:18 AM2/4/19 10:18 AM

https://www.vslive.com/lasvegas

msdn magazine54 Test Run

The Sequential approach is much simpler, but notice you don’t
have direct control over the weight and bias initialization algo-
rithms. The tremendous flexibility you get when using PyTorch is
an advantage once you become familiar with the library.

Training the Model
Training the model begins with these seven statements:

net = net.train() # Set training mode
bat_size = 10
loss_func = T.nn.MSELoss() # Mean squared error
optimizer = T.optim.SGD(net.parameters(), lr=0.01)
n_items = len(train_x)
batches_per_epoch = n_items // bat_size
max_batches = 1000 * batches_per_epoch

PyTorch has two modes: train and eval. The default mode is train,
but in my opinion it’s a good practice to explicitly set the mode.
The batch (often called mini-batch) size is a hyperparameter. For
a regression problem, mean squared error is the most common
loss function. The stochastic gradient descent (SGD) algorithm is
the most rudimentary technique and in many situations the Adam
algorithm gives better results.

The demo program uses a simple approach for batching training
items. For the demo, there are about 400 training items, so if the
batch size is 10, on average visiting each training item once (this
is usually called an epoch in machine learning terminology) will
require 400 / 10 = 40 batches. Therefore, to train the equivalent of
1,000 epochs, the demo program needs 1000 * 40 = 40,000 batches.

The core training statements are:
for b in range(max_batches):
 curr_bat = np.random.choice(n_items, bat_size,
 replace=False)
 X = T.Tensor(train_x[curr_bat])
 Y = T.Tensor(train_y[curr_bat]).view(bat_size,1)
 optimizer.zero_grad()
 oupt = net(X)
 loss_obj = loss_func(oupt, Y)
 loss_obj.backward() # Compute gradients
 optimizer.step() # Update weights and biases

The choice function selects 10 random indices from the 404
available training items. The items are converted from NumPy
arrays to PyTorch tensors. You can think of a tensor as a multi
dimensional array that can be efficiently processed by a GPU
(even though the demo doesn’t take advantage of a GPU). The
oddly named view function reshapes the one-dimensional target
values into a two-dimensional tensor. Converting NumPy arrays
to PyTorch tensors, and dealing with array and tensor shapes is a
major challenge when working with PyTorch.

Once every 4,000 batches the demo program displays the value
of the mean squared error loss for the current batch of 10 training
items, and the prediction accuracy of the model, using the cur-
rent weights and biases on the entire 404-item training dataset:

if b % (max_batches // 10) == 0:
 print("batch = %6d" % b, end="")
 print(" batch loss = %7.4f" % loss_obj.item(), end="")
 net = net.eval()
 acc = accuracy(net, train_x, train_y, 0.15)
 net = net.train()
 print(" accuracy = %0.2f%%" % acc)

The “//” operator is integer division in Python. Before calling the
program-defined accuracy function, the demo sets the network
into eval mode. Technically, this isn’t necessary because train and
eval modes only give different results if the network uses dropout
or layer batch normalization.

Evaluating and Using the Trained Model
After training completes, the demo program evaluates the predic-
tion accuracy of the model on the test datasets:

net = net.eval() # set eval mode
acc = accuracy(net, test_x, test_y, 0.15)
print("Accuracy on test data = %0.2f%%" % acc)

The eval function returns a reference to the model on which it’s
applied; it could have been called without the assignment statement.

In most situations, after training a model you want to save the
model for later use. Saving a trained PyTorch model is a bit outside
the scope of this article, but you can find several examples in the
PyTorch documentation.

The whole point of training a regression model is to use it to
make a prediction. The demo program makes a prediction using
the first data item from the 102 test items:

raw_inpt = np.array([[0.09266, 34, 6.09, 0, 0.433, 6.495, 18.4,
 5.4917, 7, 329, 16.1, 383.61, 8.67]], dtype=np.float32)

norm_inpt = np.array([[0.000970, 0.340000, 0.198148, -1,
 0.098765, 0.562177, 0.159629, 0.396666, 0.260870, 0.270992,
 0.372340, 0.966488, 0.191501]], dtype=np.float32)

When you have new data, you must remember to normalize the
predictor values in the same way that the training data was nor-
malized. For min-max normalization, that means you need to save
the min and max value for every variable that was normalized.

The demo concludes by making and displaying the prediction:
...
 X = T.Tensor(norm_inpt)
 y = net(X)
 print("Predicted = $%0.2f" % (y.item()*10000))
if __name__=="__main__":
 main()

The predicted value is returned as a tensor with a single value.
The item function is used to access the value so it can be displayed.

Wrapping Up
The PyTorch library is somewhat less mature than alternatives
TensorFlow, Keras and CNTK, especially with regard to example
code. But among my colleagues, the use of PyTorch is growing very
quickly. I expect this trend to continue and high-quality examples
will become increasingly available to you. 	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several key Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Chris Lee, Ricky Loynd

PyTorch has two modes:
train and eval. The default mode

is train, but in my opinion it’s
a good practice to explicitly

set the mode.

0319msdn_McCaffreyTRun_v4_48-54.indd 54 2/6/19 12:35 PM

mailto:jamccaff@microsoft.com

msdn.microsoft.com/flashnewsletter

Sign up to receive the
MICROSOFT DEVELOPER NEWSLETTER,
which delivers the latest resources, SDKs,

downloads, partner offers, security news, and
updates on national and local developer events.

Get news from MSDN
in your inbox!

magazine

Untitled-10 1 2/5/19 1:37 PM

http://msdn.microsoft.com/flashnewsletter

msdn magazine56

Being a parent really opens your eyes to hypocrisy. Any time your
kids catch you practicing differently from what you preach, you
get it right back in the teeth: “But, Daddy, you told me that down-
loading unauthorized music was stealing, and we shouldn’t do it.”
We mumble something about, yeah, well, maybe not exactly in this
case, but that doesn’t get us far. We’re left with the inevitable con-
flict that occurs when most humans (including you and me, dear
reader) say one thing but do another. Don’t believe me? Read on.

There’s no greater example of hypocrisy than people’s behavior
regarding digital privacy. At a recent conference, I joined several
other speakers on a panel discussing that topic. The other speakers
solemnly intoned that privacy was important. The audience agreed,
yes, important, very important. Very, very important.

I couldn’t resist pouring oil on this troubled fire. “OK,” I asked the
crowd. “Suppose your government required you to wear a location
tracker at all times, like a convicted felon, so they could tell where
you are and where you’ve been. Sounds awful, right?” The audience
nodded, it sure did sound awful. “And suppose the government could
share your location with anyone they wanted, without telling you.
Sell it to the highest bidder. Really awful, right?” Yes, really, really
awful. “And now, suppose they made you pay for it? Fifty Euros a
month, they charged you actual money? You’d storm the parlia-
ment building and throw the bums out, right?” Yells now from the
crowd, I wondered if I’d agitated them too much.

“And suppose to keep you pacified, once in a while the tracker
would show you a cat video.” Widespread groans; they saw my point
coming, but way too late. “OK, then, wise guys, who here does not

have a smartphone in your pocket right now?” No hands. Not one.
“And who has bothered to turn off location sharing?” Two hands,
maybe three, of 700 attendees. “So you say, vehemently, that privacy
is important. But when you have the choice of privacy versus a little
less functionality, like taking five seconds longer to find the nearest
espresso stand, you fall all over yourselves handing everything to
Big Brother? Don’t any of you ever tell me that you give a flying fish
about privacy while you have your phone turned on.”

I know you logical geeks are squirming here. I am myself. In
theory, we don’t want anyone watching us, but in practice, we don’t
care until something bites us on the butt, and then it’s too late.
When users make choices, immediate convenience always, always,
displaces abstract ideals. As security expert Jesper Johansson once
said to me, “Given the choice between security and dancing pigs,
users will take the dancing pigs every time.”

Many writers would call here for a consciousness-raising educa-
tional effort, but I won’t. This denial, believing what we want to believe
(that our phone is magically taking care of everything and won’t hurt
us) simply because we find that belief convenient, is a fundamental
part of the human organism. As I wrote in my very first DGMS
(“The Human Touch” msdn.com/magazine/ee309884) back in February
2010: “Humans are not going to stop being human any time soon, no
matter how much you might wish they would evolve into something
more logical. Good applications recognize this, and adjust to their
human users, instead of hoping, futilely, for the opposite.”

Human users are two-faced. They say one thing and do the exact
opposite. My daughter Annabelle, now 18, is starting to realize
that—perhaps the beginning of her graduation from teen to human?
Lucy, 16, still expects hypocrisy to vanish when she recognizes and
exposes it, and get furious when it doesn’t. She’ll learn better soon,
while I mourn that she has to.

The ancient Romans dedicated an entire god, Janus, to this
dichotomy (en.wikipedia.org/wiki/Janus). His statue in Figure 1 is more
than 2,000 years old. This condition—I won’t call it a problem, it’s
simply a part of life, basic as gravity—is not a new one. We need to
take care of our users anyway, even if—especially if—being human,
they won’t take care of themselves. 	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006) and
“Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a
Software Legend in 2002. He wonders whether he should have taped down two
of his daughter’s fingers so she would learn how to count in octal. You can contact
him at rollthunder.com.

Do As I Say, Not As I Do

Don’t Get Me Started DAVID S. PLATT

Figure 1 Janus the Two-Faced God

0319msdn_PlattDGMS_v2_56.indd 56 2/6/19 12:36 PM

http://msdn.com/magazine/ee309884
http://en.wikipedia.org/wiki/Janus
http://www.rollthunder.com

Request a Demo

Melissa.com/msdn-unison

1-800-MELISSA

Multiplatform Data Quality Management
Unison – Speedy, Secure, Scalable

Melissa’s Unison is a data steward’s best friend. Unison is a unique multiplatform solution that
establishes and maintains contact data quality at lightning speeds – processing 50 million
addresses per hour – while meeting the most stringent security requirements. With Unison,
you can design, administer and automate data quality routines that cleanse, validate and
enrich even your most sensitive customer information – name, address, phone, email address
– as data never leaves your organization.

• Lightning fast processing (50M records/hour)

• Streamline data prep work�ows

• Reduce analytics busy work

• Services: Address, Name, Email, Phone Veri�cation & Geocoding

Untitled-1 1 2/6/19 10:33 AM

http://www.Melissa.com/msdn-unison

Untitled-10 1 7/2/18 3:37 PM

http://www.telerik.com/msdn

	Back
	Print
	Cover Tip
	Front
	Back

	MSDN Magazine, March 2019
	Contents
	FEATURES
	Full Stack C# with Blazor
	Parse the Command Line with System.CommandLine
	Verify e-Documents with Smart Contracts in Azure Blockchain Development Kit
	Support Vector Machines Using C#

	COLUMNS
	DATA POINTS: A Peek at the EF Core Cosmos DB Provider Preview, Part 2
	THE WORKING PROGRAMMER: Coding Naked: Naked Properties
	CUTTING EDGE: Hierarchical Blazor Components
	TEST RUN: Neural Regression Using PyTorch
	DON’T GET ME STARTED: Do As I Say, Not As I Do

	Visual Studio Live!, New Orleans - Insert

