
COLUMNS
Toolbox
UI Mockups, User Experience Tips,
JavaScript Checker and More
Scott Mitchell page 9

Cutting Edge
Master-Detail Views with the
ASP.NET Ajax Library
Dino Esposito page 14

Patterns in Practice
Internal Domain Specifi c Languages
Jeremy Miller page 20

Extreme ASP.NET
Text Template Transformation Toolkit and
ASP.NET MVC
K. Scott Allen page 56

The Polyglot Programmer
ACID Transactions with STM.NET
Ted Neward page 62

Extreme UI
Line Charts with Data Templates
Charles Petzold page 68

Foundations
Discover a New WCF with Discovery
Juval Lowy page 76

Test Run
Web Application HTTP Request-Response
Test Automation with JavaScript
James McCaffrey page 85

Fueling Your Application’s Engine with Windows
Azure Storage
Kevin Hoffman and Nathan Dudek page 38

Crypto Services and Data Security in Windows Azure
Jonathan Wiggs page 43

9 Useful Tactics for Paying Back Technical Debt
David Laribee page 52

Designing and Deploying
Services for Windows Azure
Thomas Erl, Arman Kurtagic & Herbjörn

Wilhelmsen page 30

JA
N

U
A

RY
 2

01
0

VO
L

25
 N

O
 1

Project12 12/9/09 4:14 PM Page 1

www.infragistics.com/killerapps

When an electrochemical reaction animated the dormant cells in
a very powerful egg, Gort was hatched. With special powers and

abilities to infuse ordinary applications with UIs that have
extreme functionality, complete usability and the “wow-factor!”,
Gort empowers Killer Apps. Go to infragistics.com/killerapps to

find out how you can start creating your own Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111

Copyright 1996-2009 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo are registered trademarks of Infragistics, Inc.

Project12 12/9/09 4:15 PM Page 2

www.infragistics.com/killerapps

www.syncfusion.com 1 888-9DOTNET

Project1 10/29/09 3:02 PM Page 1

http://www.syncfusion.com

What does your grid do?
Although many grids share basic features, only Syncfusion’s WPF grid has
the power and performance to set your application apart. Our grid builds
on years of Syncfusion’s expertise with high-performance scenarios.

Syncfusion Essential Grid WPF is the fastest WPF grid on the market.

Experience it for yourself at
www.syncfusion.com/wpf-gridperformance

Support for billions of rows

Unmatched scrolling performance with large data sets

Wide variety of styling options

•

•

•

ET ASP.NET MVC ASP.NET Windows Forms Back Offi ce Silverlight WPF Business Intelligence

Project1 10/29/09 3:03 PM Page 2

http://www.syncfusion.com/wpf-gridperformance

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS Dino Esposito, Juval Lowy, Dr. James McCaffrey,
John Papa, Charles Petzold, David Platt, Jeff Prosise, Jeffrey Richter, Aaron
Skonnard, Stephen Toub

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President
Christopher M. Coates Vice President, Finance & Administration
Abraham M. Langer Vice President, Digital Media, Audience Marketing
Erik A. Lindgren Vice President, Information Technology & Web Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 1081, Skokie,
IL 60076-8081. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or Bleuchip International, P.O. Box 25542, London, ON N6C 6B2.

© Copyright 2010 by 1105 Media, Inc. All rights reserved. Printed in the U.S.A. Reproductions in whole
or part prohibited except by written permission. Mail requests to “Permissions Editor,” c/o MSDN
Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

JANUARY 2010 VOLUME 25 NUMBER 1

Printed in the USA

� 25+ full-text
and fielded
data search
options (with
Unicode
support for
hundreds of
international
languages)

� Built-in file
parsers /
converters
highlight hits
in popular
file types

� Spider
supports
static and
dynamic
web data;
highlights
hits with
links,
formatting
and images
intact

� API supports .NET, C++, Java, SQL, etc.
.NET Spider API

Fully-Functional Evaluations

The Smart Choice for Text Retrieval®

since 1991

1-800-IT-FINDS • www.dtsearch.com

Instantly Search
Terabytes of Text

Network with Spider

Web with Spider

Desktop with Spider

Network with Spider

Web with Spider
Publish (portable media)
Publish (portable media)

Desktop with Spider

Engine for Linux
Engine for Linux

includes

64-bit
Engine for Win & .NET
Engine for Win & .NET

“Bottom line: dtSearch manages a terabyte
of text in a single index and returns results
in less than a second” — InfoWorld

dtSearch “covers all data sources …
powerful Web-based engines” — eWEEK

“Lightning fast ... performance was
unmatched by any other product”
— Redmond Magazine

See www.dtsearch.com for hundreds
more reviews, and hundreds of developer
case studies

Masthead.0110.lay3_4.indd 4 12/11/09 1:06 PM

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
http://www.dtsearch.com

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames, bullets,

structured numbered lists, multiple undo/redo,
sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,951.99

programmers.com/unify

Unify SQLBase
Embedded Database
by Unify
SQLBase is an easy to deploy database
for building desktop and Web applications
in server environments without a DBA.

• Small footprint
• Zero admin deployment
• GUI admin
• Embed it and forget it

For applications with encrypted security,
we offer SQLBase Treasury.

Reduce your database costs and simplify
maintenance with Unify SQLBase.

Paradise #
C15 03101A01

$143.99

programmers.com/vSphere

FREE ON DEMAND WEBINAR SERIES:
MORE Maximum Data
Modeling with CA ERwin 7.3
In our last webinar series, we looked at CA
ERwin’s core functionality. In this second series,
we provide a grounding in how CA ERwin r7.3’s
new features help you with Master Data Management, Metadata
Management, Data Warehousing, Data Governance and Business Intelligence.

There are six sessions in the on demand series:
• What’s New in CA ERwin 7.3
• MDM (Master Data Management) with CA ERwin and Data

Profiling tool
• Collaborative model management with CA ERwin ModelManager
• Validate the integrity of your model with CA ERwin Validator
• Reporting: Crystal Reports, PDF, HTML
• SAPHIR Option: light at the end of the metadata tunnel

CA ERwin r7.3

VIEW TODAY: programmers.com/MDM_2009

programmers.com/sparxsystems

Enterprise Architect 7.5
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

Corporate Edition
1-4 Users

Paradise #
SP6 03101A02

$182.99

programmers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded OCR, OMR, and
1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

NEW
RELEASE!

programmers.com/solarwinds

Orion Network
Performance Monitor
by Solarwinds
Orion Network Performance Monitor is a
comprehensive fault and network performance
management platform that scales with the
rapid growth of your network and expands
with your network management needs.
It offers out-of-the-box network-centric views
that are designed to deliver the critical
information network engineers need.
Orion NPM is the easiest product of its
kind to use and maintain, meaning you
will spend more time actually managing
networks, not supporting Orion NPM.

Paradise #
S4A 08201E02

$4,606.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing staff
three times over

• Control downtime—whether planned or not

• Save more than 50% on the cost of managing,
powering and cooling servers

Make your time (and money) count for more
with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09201S06

$4,228.99

programmers.com/multiedit

Multi-Edit 2008
by Multi Edit Software
Multi-Edit 2008 delivers, a powerful IDE,
with its speed, depth, and support for
over 50 languages. Enhanced search
functions include Perl 5 Regular
Expressions and definable filters.
Supports large DOS/Windows, UNIX,
binary and Mac files. File Sync
Integration for: Delphi 6, 7, 2005, C++
Builder 6, BDS 2006 and RadStudio
2007, VB 6, VC 6, VS 2003, 2005
and 2008. Includes file compare, code
beautifying, command maps, and
much more.

1-49 Users
Paradise #

A30 01201A01
$179.99

programmers.com/grapecity

FarPoint Spread
for Windows Forms
Now with Charting! The Best Grid is a
Spreadsheet. Give your users the look, feel,
and power of Microsoft® Excel®, without
needing Excel installed on their machines. Join
the professional developers around the world
who consistently turn to FarPoint Spread to
add powerful, extendable spreadsheet solutions
to their COM, ASP.NET, .NET, BizTalk Server
and SharePoint Server applications.
• World’s #1 selling development spreadsheet
• Read/Write native Microsoft Excel Files
• Charts with 85 new chart types
• Fully extensible models
• Royalty-free, run-time free

Paradise #
F02 01101A01
$936.99

NEW
VERSION

5!

Project4 12/7/09 11:19 AM Page 1

www.programmersparadise.com

msdn magazine6

impressed with Windows Azure, even though Chevron Guy thought
cloud computing would really pick up when it could be more
useful. He sees it more as a solution in search of a problem.

Th at’s where this issue, with its focus on Windows Azure, comes
in. We’ve got some advice for both Vendor Guy and Chevron Guy
in these pages.

For me, the cloud has no real future if it can’t be secured. Moving
across domain and other security boundaries is scary, and creates
signifi cant challenges for developers. Fortunately, Windows Azure
was built with security in mind. As Jonathan Wiggs writes in his article
about securing data in Windows Azure, “proper understanding of
both encryption and the .NET security model will be needed by
product designers and developers building on the Windows Azure
platform.” He dives deep into Windows Azure cryptography, key
storage and security threats, and more.

Another key to the success of the cloud is being able to easily
port existing applications and architectures to take advantage of
its strengths. You don’t want to be rewriting tons of code simply to
move to the cloud—if that’s the case, you probably won’t move at
all. Windows Azure also helps with this process, as we demonstrate
in “Designing Services for Windows Azure.” Th e authors take us
through a fi ctional scenario where they do just that, involving a
bank that moves its services into the cloud.

Th ere’s a lot more cloud goodness in this issue as well, and more
coming in future issues.

So, Chevron and Vendor Guys, I hope we’ve helped sort out
some Windows Azure and cloud issues for you. Th anks for talking.

Two Guys in the Cloud

It’s amazing what you can learn when you shut
up and listen. Case in point: I was in a Super
Shuttle van on the way to Los Angeles Inter-
national airport in mid-November, having just
fi nished my time at Microsoft PDC09. Sitting
behind me were two guys talking about the
show: one was a developer with Chevron, the
other worked for a vendor that builds—among

other things—plug-ins for Salesforce.com.
My natural inclination would be to ask them if they subscribe

to MSDN Magazine, what they like and don’t like about the maga-
zine, stuff like that (by the way, if you’d like to chat with me about
anything related to the magazine, please drop a line to me at
kward@1105media.com). Instead, I held my tongue (no mean feat,
if you know me) and just listened to them banter. I learned a lot.

For one thing, they were both intensely interested in the potential
of the cloud, which is certainly music to Microsoft ’s ears. Th e
Chevron guy was unsure of how much it could do for his company,
but it sounds like he got a lot more information at the show. Th e
vendor was much more well-versed in the cloud, of course, and
seemed very knowledgeable in particular about Windows Azure.

Chevron Guy had some experience with both Amazon’s cloud
off ering and Windows Azure. He said something very interesting. He
liked both, but liked Windows Azure more—a good bit more. In fact,
he said he’d probably drop his work with Amazon to move to Windows
Azure. “Azure is a lot further along than I thought it was,” he said.

Vendor Guy agreed. “I can confi rm that,” he said, or words very
close to that eff ect. Chevron Guy mentioned how fast Windows
Azure was. Vendor Guy said he’d seen the same thing. “Maybe it’s
because we’re the only two people on it,” he joked. Th ey were both

EDITOR’S NOTE

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: kward@1105media.com.

mailto:kward@1105media.com
mailto:kward@1105media.com
http://msdn.microsoft.com/magazine

Project3 11/10/09 5:05 PM Page 1

www.axosoft.com

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more from your data.
Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2009 ESRI. All rights reserved. The ESRI globe logo, ESRI, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Project2 12/3/09 10:01 AM Page 1

http://www.esri.com/edn
http://www.esri.com

9January 2010

Quickly Create UI Mockups
User interface mockups are an important
tool in software engineering. During the
requirements phase they serve as prototypes
that elicit feedback from stakeholders and
end users, and they’re an integral part of
any functional specifi cation.

But what’s the best way to create UI
mockups? The simplest approach is to use
pen and paper. It’s quick and easy, requires
no special software, and can be done by
anyone, regardless of their technical savvy.
Of course, such prototypes are harder to
archive and are more diffi cult to share with
remote stakeholders.

Alternatively, you can use programs like
Microsoft Visio or Visual Studio Designer
to build UI mockups that closely mimic
what the fi nished product will look like.
Unfortunately, creating such mockups
takes considerably longer than using pen
and paper. Also, showing non-technical
stakeholders a “polished” mockup may lead
them to believe that the work is nearly done.

Balsamiq Mockups For Desktop
(version 1.6) is a UI mockup tool that com-
bines the speed, simplicity, and low-tech
look and feel of paper mockups with the
archival and sharing benefi ts inherent in
computer-generated mockups. And unlike
Visual Studio and Visio, which are large and
complex programs that serve many func-
tions, Balsamiq Mockups has a focused goal:
to make creating UI mockups as quick and
painless as possible.

The Mockups For Desktop user interface
is incredibly straightforward—there’s a de-
sign surface and a list of common UI controls
to add to your mockup, including buttons,
labels, textboxes, checkboxes, tabs, combo
boxes, hyperlinks, scroll bars, splitters and
more. There are also pre-built controls
for browser windows, video players and

dialog boxes. In total, Balsamiq Mockups
ships with more than 75 controls. You can
also import any image fi le as a control or
download user-created controls from the
Balsamiq Studios LLC Web site.

Adding a control to your mockup is as
simple as dragging it from the list of controls
and dropping it onto the design surface.
Once on the design surface, double-click
the control to edit its contents. Hovering
your mouse over a control displays a
fl oating panel with an assortment of
confi guration options specifi c to that
control. Every setting is right there in the

TOOLBOX

UI Mockups, User Experience Tips,
JavaScript Checker and More

SCOTT MITCHELL

fl oating panel—there are no menus or
property windows you need to hunt and
peck through. Having all of these settings
right at your fi ngertips fl attens the learning
curve and greatly reduces the time it takes
to create mockups.

Check out the mockup in Figure 1, which
I created in three minutes, from start to
fi nish. To mock the list of e-mails I dragged
a Data Grid control onto the designer and
then used my mouse to position and size
it. Next, I double-clicked the grid, which
displays its contents as comma-delimited
text. I replaced the default contents with

Figure 1 A Quick Balsamiq UI Mockup

All prices confi rmed at press time are subject to change. The opinions expressed in this column are solely
those of the author and do not necessarily refl ect the opinions at Microsoft.

Send your questions and comments for Mitchell to toolsmm@microsoft.com.

mailto:toolsmm@microsoft.com

msdn magazine10 Toolbox

text to represent the three columns and four
rows shown in Figure 1. I then hovered my
mouse over the grid to bring up its proper-
ties in a fl oating window. From there I ticked
a checkbox to add a scrollbar, used a slider
to adjust the row height and chose to have
the second row appear as selected.

Once a mockup has been created, it can
be saved to disk, exported as a .PNG image
or exported into an XML format. In addition
to the regular version, a stripped-down ver-
sion of Mockups For Desktop can be used
for free from the company’s Web site. And a
collaborative, online version of the software
is in the works.

Price: $79 per user license
balsamiq.com

Blogs of Note
The user experience (UX) is one of the most
important aspects of a software application.
Your users decide whether your application
is a success or not, and they don’t care
about your application’s architecture or that
super-clever algorithm you spent a week
perfecting. Unfortunately, most software
developers—myself included—struggle with
UX design. It’s all too easy to get immersed in
the low-level details of the application and
leave UX design as an afterthought.

To stay reminded of the importance
of UX design, and to pick up some great
tips for improving your applications’ user

experiences, check out the UX Booth Blog,
which includes submissions from several
noted UX design authors, trainers and
consultants. My favorite posts are those
that offer specifi c tips for improving the UX
of a common scenario. Building a contact
form on your Web site? Be sure to read
“Creating a Usable Contact Form,” where

author Matthew Kammerer shares advice
on what information to display, how to lay
it out on screen and what to do once the
feedback has been submitted. And be sure
to check out John Hyde’s post, “Handling
User Error with Care,” in which he shares
best practices on where to display error
messages and how to word them.

Other blog entries highlight how to
improve the user experience through less
direct means. One post describes how to
improve the performance of a Web site by
creating optimized images. Another entry
shares tools for improving an application’s
accessibility. You’ll also fi nd more general
posts, including book reviews, usability
lessons learned from the trenches and
interviews with usability experts.

uxbooth.com/blog

Check Your JavaScript
JavaScript is an interesting language.
For much of its history, JavaScript was
considered somewhat of a toy language,
used mainly for performing simple tasks in
Web pages. But JavaScript is a robust and
powerful language, and today it’s used to
build rich, interactive Web applications.

Unfortunately, the JavaScript language
has a number of design decisions that

Figure 2 The JSLint JavaScript Code Quality Tool

The UX Booth Blog

http://balsamiq.com
http://uxbooth.com/blog

11January 2010msdnmagazine.com

allow for poor programming practices
and, if misused, can lead to bugs and
less-maintainable code. For example, in C#
every line must terminate with a semicolon.
In JavaScript, most statements can end with
either a semicolon or a carriage return,
which can be confusing. Likewise, in C#
every variable must be declared before it
can be used. Not so in JavaScript.

JSLint is a free JavaScript Code Quality Tool
created by Douglas Crockford
that runs a variety of static analysis
checks against a block of JavaScript
code. By default, JSLint displays
warnings when encountering
global variables; statements not
terminated with a semicolon;
if, while, do and for statements
that aren’t followed by a state-
ment block; and unreachable
code, among other conditions.
Additional checks are confi gu-
rable through JSLint’s options. For
instance, you can instruct JSLint to
disallow undefi ned variables, to
disallow the unary increment and
decrement operators ++ and --,
and whether to allow the use of
the eval function.

To use JSLint, visit JSLint.com, paste
your JavaScript code into the text-
box, select the options and click
the “JSLint” button. JSLint will then
parse your code and display a list of
errors, as Figure 2 shows. And be-
cause JSLint is written in JavaScript,
it runs entirely on your browser,
meaning that your code is not sent over the
Internet. You can optionally download the
JSLint source code from the Web site to run
on your local environment, if you’d prefer.

Also check out JSLint.VS, a free Visual
Studio Add-In created by Predrag Tomasevic
that lets you run JSLint on a fi le or selected
code block directly from the Visual Studio
IDE. The errors identifi ed by JSLint appear in
the Task List window. You can even confi gure
JSLint.VS to run on selected fi les or folders
whenever the project is built.

JSLint: jslint.com
JSLint.VS: jslint.codeplex.com

The Bookshelf
Over the past decade, storing structured
information has become a trivial task. With

modern databases and data-access frame-
works, collecting data involves a sprinkle
of drag and drop with just a dash of code.
Coupled with decreasing storage costs and
the increasing competitive advantage such
information can bear, businesses are eager
to catalog every possible data point.

Of course, such data is useless unless
workers can access and assess the data in
a meaningful way. Microsoft SQL Server

Reporting Services (SSRS) is a server-based,
enterprise-grade reporting platform
that enables workers to create, explore
and view reports.

Like with any enterprise-grade platform,
SSRS is expansive in its features and use
cases. I recently helped a client evaluate
and get started with SSRS and found
“Microsoft SQL Server 2008 Reporting
Services Unleashed” (Sams, 2009) to
be an invaluable guide for learning the
ins and outs.

The book is divided into fi ve parts. The
fi rst part provides a light overview of SSRS,
highlights common user scenarios, intro-
duces the SSRS architecture, and compares
and contrasts different report deployment
scenarios. There’s also a short chapter on

installing SSRS, with step-by-step instruc-
tions and plenty of screenshots.

The primary purpose of SSRS is to present
data through reports and to allow work-
ers to build, analyze and consume these
reports. The book’s second part explores
how to author reports and examines topics
like expressions, parameters, formatting,
navigation, aggregation and ad hoc reports
in-depth. During my project, I routinely

bumped into roadblocks when
designing reports. I’d get stumped
trying to format data a certain
way, or get stuck when needing
certain information—like the date
and time the report was gener-
ated—to show on the report.
Most of these obstacles were
side-stepped by using the book’s
index and thumbing through the
chapters in this section.

Following report authoring,
the book looks at managing SSRS.
SSRS is a server-based technology;
the reports (and data) reside on
servers and can be accessed by
clients in a variety of ways. Reports
can be generated on-demand
or on schedule, and clients can
subscribe to reports and have
them delivered through a fi le share
or e-mail. These various options,
along with other administration
tasks, are covered here.

The book’s last two sections
look at how to customize and
extend SSRS, along with ways to

integrate SSRS and SharePoint.
“Microsoft SQL Server 2008 Reporting

Services Unleashed” is an excellent intro-
duction to SSRS for administrators, DBAs
and users. The depth of material is a little
light in some areas, but this book does an
excellent job conveying the most impor-
tant aspects and exploring the breadth of
features and functionality available in SSRS.

Price: $49.99
informit.com/sams

SCOTT MITCHELL, author of numerous books and
founder of 4GuysFromRolla.com, is an MVP who has
been working with Microsoft Web technologies since
1998. Mitchell is an independent consultant, trainer
and writer. Reach him at Mitchell@4guysfromrolla.com
or via his blog at ScottOnWriting.net.

Microsoft SQL Server 2008 Reporting Services Unleashed

mailto:Mitchell@4guysfromrolla.com
www.msdnmagazine.com
http://JSLint.com
http://jslint.com
http://jslint.codeplex.com
http://informit.com/sams
http://4GuysFromRolla.com
http://ScottOnWriting.net

Project2 10/30/09 8:46 AM Page 1

www.telerik.com/ORM

Project2 10/30/09 8:48 AM Page 2

www.telerik.com/ORM

msdn magazine14

actions is rewritten to unveil hidden content rather than triggering
a postback. As you can see, this is not an easy way to go.

Th e ASP.NET Ajax Library, in collaboration with jQuery,
off ers a much more powerful toolset and makes it possible to write
smooth and eff ective master-detail views that post back asynchro-
nously and only when strictly needed.

The Hidden Power of the DataView Control
Th e DataView client control is the fundamental tool for building
master-detail views in the ASP.NET Ajax Library. Combined with the
sys-attach feature of the ASP.NET Ajax Library and live binding, the
control off ers an unprecedented level of fl exibility as far as function-
ality and layout are concerned. In particular, the DataView control
can serve to generate both the master and detail views.

To arrange a master-detail view with the ASP.NET Ajax Library,
you need to follow three basic steps. First, create the markup for the
master and detail views. Second, attach an instance of the DataView
control to each view as a behavior. Finally, use live binding (or just
plain data-binding expressions) to populate with fresh data the vi-
sual layout of the detail view. Note that all the templates, binding and
component creation can be done both declaratively and imperatively
in code. Let’s start with a simple example that serves the purpose of
making you familiar with the approach and the tools available.

Building a Plain Master-Detail View
Here’s a simple layout for the master-detail view. It basically consists
of two DIV tags. Th e master DIV contains an unordered list of
items; the detail DIV, instead, contains a child table:

<div id="masterView">
 <ul class="sys-template">
 ...

</div>
<div id="detailView">
 <table>
 <tr>
 <td> ... </td>
 <td> ... </td>
 </tr>
 ...
 </table>
</div>

CUTTING EDGE

Master-Detail Views with the
ASP.NET Ajax Library

In the past few columns, I explored a number of data-related features
of the upcoming ASP.NET Ajax Library beta, which is now part
of the CodePlex Foundation (CodePlex.org). Th e journey began last
September with a look at some of the new features in Web Forms
(msdn.microsoft.com/magazine/ee431529) and continued with some other
stops in the territory of ASP.NET AJAX. In particular, I touched on
client-side templates and data binding (msdn.microsoft.com/magazine/

ee309508), conditional rendering (msdn.microsoft.com/magazine/ee335716)
and live binding (msdn.microsoft.com/magazine/ee819084).

When you think of data-driven Web pages, most of the time what
you really have in mind is a master-detail view of some cross-related
data. Master-detail views are ideal for rendering one-to-many
relationships, and such relationships are so common in the real
world that a Web platform that doesn’t provide an eff ective set of
tools for that functionality is inadequate.

ASP.NET Web Forms has always provided strong support for data
binding and a powerful set of data-source and data-bound server
controls. In Web Forms, server controls do a great job of rendering
hierarchies of data using nearly any possible combination of grids,
lists, and drop-down boxes and supporting multiple levels of nesting.

Th e drawback of the views you get out of Web Forms server controls
is not the eff ectiveness of the rendering, but the static condition.

Users who navigate within a master-detail view typically switch
among master records and drill down into the details of the
records that are of interest. Th is interaction is the essence of a
master-detail view.

In a classic Web Forms scenario, each drill-down operation may
trigger a postback. Many postbacks—and subsequent page reloads—
are not what makes users happy these days.

An alternative exists, but it’s not free of issues either. It basically
consists of preloading any possible data the user might want to
see. Th e data is then downloaded with the standard page and kept
hidden using CSS styles. At the same time, any handler of user

DINO ESPOSITO

Disclaimer: This article is based on a pre-release version of ASP.NET Ajax
Library. All information is subject to change.

Send your questions and comments for Esposito to cutting@microsoft.com.

Code download available at code.msdn.microsoft.com/mag201001Ajax4.

The DataView client control
is the fundamental tool for

building master-detail views
in ASP.NET AJAX.

mailto:cutting@microsoft.com
http://CodePlex.org
http://msdn.microsoft.com/magazine/ee431529
http://msdn.microsoft.com/magazine/ee309508
http://msdn.microsoft.com/magazine/ee309508
http://msdn.microsoft.com/magazine/ee335716
http://msdn.microsoft.com/magazine/ee819084
http://code.msdn.microsoft.com/mag201001Ajax4

Project3 11/10/09 2:27 PM Page 1

www.leadtools.com/msdn

msdn magazine16 Cutting Edge

More oft en than not, the data to show in an AJAX page is retrieved
from the Web server using a Web service, a Windows Communication
Foundation (WCF) service and, of course, any services that can return
JavaScript Object Notation (JSON). Th e data is commonly sent over
the wire as a JSON stream. You can choose to manage the request
to the data source yourself and use your own AJAX framework of
choice such as Microsoft AJAX, jQuery or raw XmlHttpRequest calls.

Th e DataView control, however, also off ers a sort of all-inclusive
service. You point it to a remote data provider such as a Web
service, indicate the operation to invoke and list the parameters.
Any fetched data is automatically ready for display anywhere in
the HTML page where the DataView is attached. Figure 1 shows
the markup code that’s necessary for the master view.

Th e sys:attach attribute attaches a new instance of the DataView
control to the UL tag. Th e code snippet doesn’t show that, but it is
necessary that you declare the “dataview” name and associate it to
the JavaScript object that represents the behavior to attach. Typically,
you declare the JavaScript objects you intend to use in the BODY tag.

<body xmlns:sys="javascript:Sys"
 xmlns:dataview="javascript:Sys.UI.DataView">
 ...
</body>

Properties you set declaratively on the automatically created
instance of the DataView defi ne the remote call that will fetch data.
In the example, I call the method LookupCustomers on MyData-
Service.asmx, passing a string parameter with the value of A.

In addition, the DataView control can accept a few properties
specifi c to the master-detail scenario. Th e selectedItemClass prop-
erty indicates the CSS style to be used for the elements in the item
template that’s currently marked as selected. Th e initialSelectedIndex
property refers to the item in the view that must be marked as
selected when the DataView fi rst renders out its data.

Th e body of the UL tag contains the item template and it binds
to fetched data via the ASP.NET Ajax Library live-binding syntax:

{binding CompanyName}

You could actually use a simpler data-binding expression here:
{{ CompanyName }}

A simple binding expression is enough if you have data to
display that’s read-only. If your code modifi es displayed data and
you need to see changes in real time, then you should opt for live
binding. Figure 2 shows the detail view.

You may have noticed that the value attribute is namespaced.
Starting with ASP.NET Ajax Library beta, all attributes that
contain {{expression}} or {binding ...} must include the Sys prefi x
to not be ignored.

Th e most interesting part of the code in Figure 2 is the expression
assigned to the data property of the DataView:

{binding selectedData, source=$masterView}

Th e syntax indicates that the values for the elements in the view
will come from the object named masterView. Th e property that
physically provides data to the detail view is selectedData. Needless
to say, the object named masterView will have a property named
selectedData, otherwise an error occurs. Figure 3 shows the sam-
ple page in action.

More Control over the Fetch Process
In the fi rst example, I confi gured the master DataView to support
auto-fetching. Th is means the DataView object is responsible for
triggering the specifi ed fetch operation right aft er initialization.

Th is is defi nitely a good choice for many applications, but some
scenarios require more control over the fetch process. In particular,
it’s oft en required that you start the fetch following a user action.
Th e next example will rework the previous code to add a button
bar where you choose the fi rst initial of the name of the customers
you want to see listed. Figure 4 shows the fi nal screen.

Th ere are many ways to generate a bunch of similar DOM
elements on the fl y. You can go with the raw DOM API or perhaps
resort to the more abstract programming interface of the Microsoft
AJAX library. Or you can opt for jQuery. Here’s a code snippet

<div class="sys-template" sys:attach="dataview"
 dataview:data="{binding selectedData, source=$masterView}">
 <table>
 <tr>
 <td>Contact</td>
 <td><input id="contact" type="text"
 sys:value="{{ContactName}}"/></td>
 </tr>
 <tr>
 <td>Address</td>
 <td><input id="address" type="text"
 sys:value="{binding Street}"/></td>
 </tr>
 <tr>
 <td>City</td>
 <td><input id="city" type="text"
 sys:value="{binding City}"/></td>
 </tr>
 <tr>
 <td>Phone</td>
 <td><input id="phone" type="text"
 sys:value="{binding Phone}"/></td>
 </tr>
 </table>
</div>

Figure 2 The Detail View

<div>
 <ul class="sys-template" sys:attach="dataview"
 id="masterView"
 dataview:autofetch="true"
 dataview:dataprovider="/ajax40/mydataservice.asmx"
 dataview:fetchoperation="LookupCustomers"
 dataview:fetchparameters="{{ {query: 'A'} }}"
 dataview:selecteditemclass="selecteditem"
 dataview:initialselectedindex="0">

 {binding CompanyName}
 ,
 {binding Country}

</div>

Figure 1 The Master View

There are many ways to
generate a bunch of similar
DOM elements on the fl y.

17January 2010msdnmagazine.com

using the services of the jQuery library to generate a button for
each possible initial of the customer name:

for(var i=0; i<26; i++) {
 var btn = $('<input type="button"
 onclick="filterQuery(this)" />');
 var text = String.fromCharCode('A'.charCodeAt(0) + i);
 btn.attr("value", text).appendTo("#menuBar").show();
}

The $ function returns a DOM element resulting from the
specified markup string. You then set its value property to an
uppercase letter of the alphabet and append the DOM object
to a placeholder down the page. The code runs from within the
pageLoad function.

Each input button added in this way is bound to the same
click handler. The click handler takes a reference to the DOM
object and updates the master view. Here’s the source code of
the click handler:

function filterQuery(button) {
 // Enables live binding on the internal object that contains
 // the current filter
 Sys.Observer.setValue(currentQuery, "Selection", button.value);

 // Update the master view
 fillMasterView(currentQuery);
}

Note that, in this example, you need to track the current fi lter
applied to select only a subset of customers. To avoid pain with the
binding, and also to leave room for future enhancement, I opted
for a custom object with a single property. Global to the page, the
object is initialized as follows:

var currentQuery = { Selection: "A" };

Th e current selection is also displayed through
a data-bound label in the page. Note the use of
the namespace with the innerHTML attribute
of the SPAN tag:

<h3>
 Selected customers:
 <span sys:innerhtml=
 "{binding Selection, source={{currentQuery}}}">

</h3>

Next, when the user clicks a button to change
the selection, you update the Selection property
of the object. Note that the most straightforward
code shown here won’t really work:

currentQuery.Selection = button.value;

You must enter observable changes only via
the setValue method. Th is is demonstrated in
the code snippet shown earlier using the
Sys.Observer.setValue method.

What about the code that fi lls up the master
view programmatically?

To start off , you need to get hold of the instance
of the DataView control that operates behind the
master view. As mentioned, the sys-key attribute is
only used internally for data-binding purposes. To
retrieve a component like DataView you need to ac-
cess the list of registered application components as
exposed by the $fi nd method of the Microsoft AJAX
library. You use the ID of the root tag as a selector:

var dataViewInstance = Sys.get("$masterView");

In my example, the masterDataView is intended to be the ID
of the UL tag marked with the sys-template attribute that renders
the master view:

<div>
 <ul class="sys-template"
 sys:attach="dataview"
 ID="masterDataView"
 ...>
 ...

</div>

Once you have the DataView instance that populates the master
view, adjust the fetch parameters and tell the DataView to get fresher
data. Here’s the code you need:

function fillMasterView(query) {
 // Retrieves the DataView object being used
 var dataViewInstance = Sys.get("$masterDataView");

 // DataView fetches fresh data to reflect current selection
 var filterString = query.Selection;
 dataViewInstance.set_fetchParameters({ query: filterString });
 dataViewInstance.fetchData();
}

Th e fetchData method on the DataView control uses the
currently set provider, operation and parameters to place a remote
call and refresh the view with downloaded data.

Adding Caching Capabilities
Let’s consider the actual behavior of the page shown in Figure 4.
A remote (and asynchronous) request is placed every time
you click on a button to select a subset of customers. Subse-
quent selections to see details of a particular customer don’t

Figure 3 A Master-Detail View Based on the DataView Control

www.msdnmagazine.com

msdn magazine18 Cutting Edge

require a roundtrip as long as the data to display is already
available for binding.

Th at mostly depends on what the fetch operation really returns. In
my example, the LookupCustomers method is designed as follows:

public IList<Customer> LookupCustomers(string query);

Th e properties of the Customer class form the set of data you
have ready for binding at no extra cost. If you want to display, say,
the list of orders for each customer, then you can do that without
placing an additional request, but only if the orders are packed with
the Customer class and are sent over the wire with the fi rst request.

In a future article, I plan to tackle lazy-loading scenarios and
mix that with the AJAX-specifi c Predictive Fetch pattern. For now,
though, let’s simply assume that the data you get out of the DataView
fetch operation is enough for you to craft an eff ective user interface.

With the solution arranged so far, if you request customers whose
name begins with “A” twice or more, then distinct
requests are placed to get you basically the same
set of data. A possible way to improve this aspect
is adding some client-side caching capabilities.
Th e jQuery library comes in handy as it provides
an excellent local, in-memory cache exposed via
its core functions.

As one alternative, you can make it so the
response is cached by the browser. Th en, even
though you’re issuing another XmlHttpRequest
for the data, the browser doesn’t really make a
new request for it.

The jQuery Cache API
Seen from the outside, the jQuery cache is
nothing more than an initially empty array that
gets populated with keys and values. You can
work with the jQuery cache API at two levels:
Th e low-level API is represented by the cache
array property; the higher-level data function
provides a bit more abstraction, which saves you
from having to check the array against nullness.

Here’s the code to create an entry in the cache
and store some data into it:

// Initializes the named cache if it doesn't exist
if (!jQuery.cache["YourNamedCache"])
 jQuery.cache["YourNamedCache"] = {};

// Stores a key/value pair into the named cache
jQuery.cache["YourNamedCache"][key] = value;

More precisely, the jQuery cache is organized as a set of named
caches grouped under the global cache array. Reading a value from
the cache requires the following code:

var cachedInfo;
if (jQuery.cache["YourNamedCache"])
 cachedInfo = jQuery.cache["YourNamedCache"][key];

In this way, you can gain total control over the organization
of data within the cache. Each named cache is created on a strict
on-demand basis and no duplication of data ever occurs.

Th e data method off ers a slightly richer programming interface
that encapsulates some of the preliminary checks about the exis-
tence of a given named cache. Moreover, the data method allows
you to attach the named cache to one or more DOM elements. Th e
data method off ers a basic get/put interface for you to read and
write data items to the cache.

Here’s a sample command to assign a given value to a key created
in the cache associated with a given DOM element:

$('#elemID').data(key, value);

Th e named cache is created on-demand when the code attempts
to access or manipulate the content. Th e library creates a named
cache for the specifi ed element and decides about its name. Th e
name is a progressive number stored as an expando attribute to
the DOM element.

Th e data method works on the content of a wrapped set. If you
defi ne a wrapped set that returns multiple nodes, then each element
gets its own named cache that contains the same data. However,
no real data duplication occurs because the same content is
referenced—not cloned—across the various cache items.

Figure 4 Starting Data Binding On-Demand

ASP.NET Web Forms has always
provided strong support for

data binding and a powerful set
of data source and data-bound

server controls.

19January 2010msdnmagazine.com

Consider the following example:
$('div').data('A', fetchedData);

The code attempts to store an entry with a key of “A” in a named
cache for each DIV tag you happen to have in the page. In this
way, you can retrieve or set data from any of the DIV tags you
have in the page. For example, the following two lines of code
retrieve the same data:

// Data is actually stored in one place but referenced from many
var data1 = $('div').data('A');

// If the ID references a DIV in the same page,
// the returned data is the same as with the previous code
var data2 = $('#ThisElementIsDiv').data('A');

A common way of using the jQuery cache API is storing data
to the DOM element that’s really using it. In my example, the
canonical solution would be caching customers in the DIV
element bound to the master view.

Putting It All Together
Figure 5 shows the fi nal version of the sample code that retrieves
data from a remote service, caches it locally using jQuery and displays
it via a DataView.

Th e main refactoring regards the way in which the master view
is fi lled. You fi rst check whether the data is available in the local
cache and proceed with a remote request if no data can be found.

Th e reloadFromCache method returns a Boolean value to
signify that data has been successfully loaded from the cache. You
use the DataView’s set_data method to assign the control a new
data source. Next, you call the method refresh to update the view.

You store data in the cache aft er you retrieve it from the specifi ed
provider. Th e point is that the fetchData method works asynchro-
nously. Th is means you can’t just place a call to the method get_data
right aft er the method fetchData returns:

dataViewInstance.set_fetchParameters({ query: filterString });
dataViewInstance.fetchData();
// At this point the method get_data can’t retrieve yet
// data for the new selection.

However, the method fetchData accepts some parameters on the
command line and all you have to do is pass a callback, as shown here:

dataViewInstance.fetchData(
 cacheOnFetchCompletion, // success callback
 null, // failure callback
 null, // merge option: append/overwrite
 filterString); // context

Th e fi rst argument indicates the success callback that will be asyn-
chronously invoked aft er the fetch terminates. Th e second argument
is the callback to be invoked in case of failure. Th e third argument
refers to the merge option. It is AppendOnly by default, or it can be
Overwrite Changes. Both values are only relevant if you hook up
the DataView to an AdoNetDataContext object. Finally, the fourth
argument is the container for any data you want to be received by
the success callback.

Here’s the signature of the success callback:
function onSucceededFetch(fetchedData, context)

Th e fi rst argument the callback receives is the fetched data. Th e
second argument is any context information you specifi ed through
the caller. In my example, the fetch completion callback is the ideal
place where to cache fetched data. Th e context parameter will be
just the query string to cache by.

Data binding is a delicate art and requires a lot of attention and
resources to be effective in an AJAX scenario. ASP.NET Ajax Library
offers a lot of tools for crafting a valid data binding and master-
detail solution. The list includes observable collections, live-
binding syntax and the DataView control. The ASP.NET Ajax
Library beta can be downloaded from ajax.codeplex.com.

DINO ESPOSITO is an architect at IDesign and the co-author of “Microsoft .NET:
Architecting Applications for the Enterprise” (Microsoft Press, 2008). Based in
Italy, Esposito is a frequent speaker at industry events worldwide. You can join
his blog at weblogs.asp.net/despos.

THANKS to the following technical experts for reviewing this article:
Dave Reed and Boris Rivers-Moore

var currentQuery = { Selection: "A" };

function pageLoad() {
 // Build the button bar to select customers by initial
 for(var i=0; i<26; i++) {
 var btn = $('<input type="button"
 onclick="filterQuery(this)" />');
 var text = String.fromCharCode('A'.charCodeAt(0) + i);
 btn.attr("value", text).appendTo("#menuBar").show();
 }

 // Refresh the list of customers
 fillMasterView(currentQuery);
}
function filterQuery(button) {
 Sys.Observer.setValue(currentQuery, "Selection", button.value);

 // Updates the master view
 fillMasterView(currentQuery);
}
function fillMasterView(query) {
 // Check cache first: if not, go through the data provider
 if (!reloadFromCache(query))
 reloadFromSource(query);
}
function reloadFromCache(query) {
 // Using the query string as the cache key

 var filterString = query.Selection;

 // Check the jQuery cache and update
 var cachedInfo = $('#viewOfCustomers').data(filterString);
 if (typeof (cachedInfo) !== 'undefined') {
 var dataViewInstance = Sys.get("$masterView");
 dataViewInstance.set_data(cachedInfo);
 // Template automatically refreshed
 return true;
 }
 return false;
}
function reloadFromSource(query) {
 // Set the query string for the provider
 var filterString = query.Selection;

 // Tell the DataView to fetch
 var dataViewInstance = Sys.get("$masterView");
 dataViewInstance.set_fetchParameters({ query: filterString });
 dataViewInstance.fetchData(
 cacheOnFetchCompletion, null, null, filterString);
}
function cacheOnFetchCompletion(fetchedData, filterString) {
 if (fetchedData !== null) {
 $('#viewOfCustomers').data(filterString, fetchedData);
 }
}

Figure 5 Caching Fetched Data

www.msdnmagazine.com
http://ajax.codeplex.com

msdn magazine20

external DSL approach instead). These rules depend
heavily on TimeSpan values for how often an event
should reoccur, when it should start and when it
expires. That might look like this snippet:
x.Schedule(schedule =>
{
 // These two properties are TimeSpan objects
 schedule.RepeatEvery = new TimeSpan(2, 0, 0);
 schedule.ExpiresIn = new TimeSpan(100, 0, 0, 0);
});

In particular, pay attention to “new TimeSpan(2,
0, 0)” and “new TimeSpan(100, 0, 0, 0).” As an expe-
rienced .NET Framework developer you may parse
those two pieces of code to mean “2 hours” and “100
days,” but you had to think about it, didn’t you? Instead,
let’s make the TimeSpan defi nition more readable:
x.Schedule(schedule =>
{
 // These two properties are TimeSpan objects
 schedule.RepeatEvery = 2.Hours();
 schedule.ExpiresIn = 100.Days();
});

All I did in the sample above was use some extension methods
on the integer object that return TimeSpan objects:

public static class DateTimeExtensions
{
 public static TimeSpan Days(this int number)
 {
 return new TimeSpan(number, 0, 0, 0);
 }

 public static TimeSpan Seconds(this int number)
 {
 return new TimeSpan(0, 0, number);
 }
}

In terms of implementation, switching from “new TimeSpan(2,
0, 0, 0)” to “2.Days()” isn’t that big of a change, but which one is
easier to read? I know that when I’m translating business rules into
code, I’d rather say two days than “a time span consisting of two
days, zero hours and zero minutes.” Th e more readable version of
the code is easier to scan for correctness, and that’s enough reason
for me to use the literal expression version.

Semantic Model
When I build a new DSL I need to solve two problems. First, my
team and I start by asking ourselves how we’d like to express the
DSL in a logical and self-describing way that will make it easy to

PATTERNS IN PRACTICE

Internal Domain Specifi c Languages

Domain Specifi c Languages (DSLs) have been a popular
topic over the past couple years and will probably
grow in importance in years to come. You might
already be following the “Oslo” project (now called
SQL Server Modeling) or experimenting with tools
such as ANTLR to craft “external” DSLs. A more
immediately approachable alternative is to create
“internal” DSLs that are written within an existing
programming language such as C#.

Internal DSLs may not be quite as expressive and
readable to non-developers as external DSLs that can
read like English, but the mechanics of creating an
internal DSL are simpler because you are not em-
ploying compilers or parsers external to your code.

Please note that I am not suggesting that the DSLs in
this article are suitable for review by business experts.
For this article, I will focus only on how the patterns of
internal DSLs can make our jobs as developers easier
by craft ing APIs that are easier to read and write.

I am pulling a lot of examples out of two open source projects
written in C# that I administer and develop. Th e fi rst is Structure-
Map, one of the Inversion of Control (IoC) Container tools for the
Microsoft .NET Framework. Th e second is StoryTeller, an acceptance-
testing tool. You can download the complete source code for
both projects via Subversion at https://structuremap.svn.sourceforge.net/
svnroot/ structuremap/trunk or storyteller.tigris.org/svn/storyteller/trunk (regis-
tration required). I can also suggest the Fluent NHibernate project
(fl uent nhibernate.org) as another source of examples.

Literal Extensions
One of the more important points I want to make in this article is
that there are many small tricks you can do to make your code read
more cleanly and be more expressive. Th ese small tricks can really add
value to your coding eff orts by making code easier to write correctly
as it becomes more declarative and more intention-revealing.

More and more frequently I use extension methods on basic
objects such as strings and numbers to reduce repetitiveness in
the core .NET Framework APIs and to increase readability. This
pattern of extending value objects is called “literal extensions.”

Let’s start with a simplistic example. My current project
involves configurable rules for reoccurring and scheduled
events. We initially attempted to create a small internal DSL for
configuring these events (we are in the process of moving to an

JEREMY MILLER

Send your questions and comments for Miller to mmpatt@microsoft.com.

The mechanics
of creating an
internal DSL
are simpler

because you are
not employing
compilers or

parsers external
to your code.

https://structuremap.svn.sourceforge.net/
mailto:mmpatt@microsoft.com

SHRINKWRAP
YOUR APP.
WITH PROVEN CODE SIGNING FROM VERISIGN.

You developed the software. Now deliver it with the same care and vigilance by using VeriSign®

Code Signing. Why? Code signing not only protects the identity and reputation of the author,

but it also verifies the authenticity and version of your software. Then VeriSign helps you go

a step further. It can create a unique digital signature every time the code is signed, and it

supports more certification programs and development platforms than any other Certificate

Authority. And you can leverage the reputation of the most recognized and trusted name in

online security—VeriSign.

Learn how Code Signing from VeriSign can help make sure your applications are more

trusted and adopted at www.VeriSign.com/CodeSigning or call 1-866-893-6565.

©2009 VeriSign, Inc. All rights reserved. VeriSign, the VeriSign logo, the Checkmark Circle logo, and other trademarks, service marks, and
designs are registered or unregistered trademarks of VeriSign, Inc., and its subsidiaries in the United States and foreign countries. All other
trademarks are property of their respective owners.

Project3 12/10/09 12:49 PM Page 1

http://www.VeriSign.com/CodeSigning

msdn magazine22 Patterns In Practice

use. As much as possible, I try to do this without regard for how
the actual functionality will be structured or built.

For example, the StructureMap Inversion of Control (IoC)
container tool allows users to confi gure the container explicitly
inside StructureMap’s “Registry DSL” like this:

var container = new Container(x =>
{
 x.For<ISendEmailService>().HttpContextScoped()
 .Use<SendEmailService>();
});

If you aren’t already familiar with the usage of an IoC container,
all that code is doing is stating that when you ask the contain-
er at runtime for an object of type ISendEmailService, you will
get an instance of the concrete type SendEmailService. Th e
call to HttpContextScoped directs StructureMap to “scope” the
ISendEmailService objects to a single HttpRequest, meaning that
if the code is running inside ASP.NET, there will be a single unique
instance of ISendEmailService for each individual HTTP request
no matter how many times you request an ISendEmailService
within a single HTTP request.

Once I have an idea for the desired syntax, I’m left with the
crucial question of exactly how I’m going to connect the DSL
syntax to code that implements the actual behavior. You could place
the behavioral code directly into the DSL code such that runtime
actions happen directly in Expression Builder objects, but I would
strongly recommend against this in any but the most simplistic cases.
Th e Expression Builder classes can be somewhat diffi cult to unit test,
and debugging by stepping through a fl uent interface is not conducive
to either productivity or your sanity. You really want to put yourself in
a position to be able to unit test (preferably), debug and troubleshoot
the runtime behavioral elements of your DSL without having to step
through all the code indirection in a typical fl uent interface.

I need to build the runtime behavior and I need to craft a DSL
that expresses the DSL user’s intent as cleanly as possible. In my
experience, it has been extremely helpful to separate the runtime
behavior into a “semantic model,” defi ned by Martin Fowler as
“Th e domain model that’s populated by a DSL” (martinfowler.com/
dslwip/SemanticModel.html).

Th e key point about the previous code snippet is that it doesn’t
do any real work. All that little bit of DSL code does is confi gure

the semantic model of the IoC container. You could bypass the
fl uent interface above and build the semantic model objects
yourself like this:

var graph = new PluginGraph();
PluginFamily family = graph.FindFamily(typeof(ISendEmailService));

family.SetScopeTo(new HttpContextLifecycle());
Instance defaultInstance = new SmartInstance<SendEmailService>();
family.AddInstance(defaultInstance);
family.DefaultInstanceKey = defaultInstance.Name;

var container = new Container(graph);

The Registry DSL code and the code directly above are iden-
tical in runtime behavior. All the DSL does is create the object
graph of the PluginGraph, PluginFamily, Instance and Http-
ContextLifecycle objects. So the question is, why bother with
two separate models?

First of all, as a user I definitely want the DSL version of the
two previous code samples because it’s far less code to write,
more cleanly expresses my intent and doesn’t require the user
to know very much about the internals of StructureMap. As the
implementer of StructureMap, I need an easy way to build and
test functionality in small units, and that’s relatively hard to do
with a fluent interface by itself.

With the semantic model approach, I was able to build and unit
test the behavioral classes quite easily. The DSL code itself becomes
very simple because all it does is configure the semantic model.

Th is separation of DSL expression and semantic model has
turned out to be very benefi cial over time. You will frequently
have to iterate somewhat with your DSL syntax to achieve more
readable and writeable expressions based on feedback from
usage. Th at iteration will go much more smoothly if you don’t have
to worry quite so much about breaking runtime functionality at
the same time you’re changing syntax.

On the other hand, by having the DSL as the offi cial API for
StructureMap, I’ve on several occasions been able to extend or
restructure the internal semantic model without breaking the DSL
syntax. Th is is just one more example of benefi ts of the “Separation
of Concerns” principle in soft ware design.

Fluent Interfaces and Expression Builders
A fl uent interface is a style of API that uses method chaining to
create a terse, readable syntax. I believe the most well-known
example is probably the increasingly popular jQuery library for
JavaScript development. jQuery users will quickly recognize code
such as the following:

var link = $('<a>').attr("href", "#").appendTo(binDomElement);
$('').html(binName).appendTo(link);

A fl uent interface lets me “densify” code into a smaller window
of text, potentially making the code easier to read. Also, it often
helps me guide the user of my APIs to select the proper choices.
The simplest and perhaps most common trick in making a fluent
interface is to simply make an object return itself from method
calls (this is largely how jQuery works).

I have a simple class I use in StoryTeller to generate HTML
called “HtmlTag.” I can build up an HtmlTag object quickly with
method chaining like this:

var tag = new HtmlTag("div").Text("my text").AddClass("collapsible");

public class ScreenObjectRegistry : IScreenObjectRegistry
 {
 private readonly List<ScreenAction> _actions =
 new List<ScreenAction>();
 private readonly IContainer _container;
 private readonly ArrayList _explorerObjects = new ArrayList();
 private readonly IApplicationShell _shell;
 private readonly Window _window;

 public IEnumerable<ScreenAction> Actions {
 get { return _actions; } }

 public IActionExpression Action(string name)
 {
 return new BindingExpression(name, this);
 }

 // Lots of other methods that are not shown here
 }

Figure 1 DSL Is Implemented on the ScreenActionClass

http://http://martinfowler.com/dslwip/SemanticModel.html

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/01

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Add Outlook style interfaces to your WinForms applications.

BEST SELLER Janus WinForms Controls Suite from $757.44

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

Project3 12/4/09 4:18 PM Page 1

http://www.componentsource.com

msdn magazine24 Patterns In Practice

Internally, the HtmlTag object is just returning itself from the
calls to Text and AddClass:

 public HtmlTag AddClass(string className)
 {
 if (!_cssClasses.Contains(className))
 {
 _cssClasses.Add(className);
 }

 return this;
 }
 public HtmlTag Text(string text)
 {
 _innerText = text;
 return this;
 }

In a more complicated scenario you may separate the fluent
interface into two parts, the semantic model that supplies the
runtime behavior (more on this pattern later) and a series of
“Expression Builder” classes that implement the DSL grammars.

I use an example of this pattern in the StoryTeller user interface
for defining keyboard shortcuts and dynamic menus. I wanted a
quick programmatic way to define a keyboard shortcut for an ac-
tion in the user interface. Also, because most of us can’t remember
every keyboard shortcut for each application we use, I wanted
to create a single menu in the UI that exposed all the available
shortcuts and the keyboard combinations to run them. Also, as
screens are activated in the main tab area of the StoryTeller UI,
I wanted to add dynamic menu strip buttons to the UI that were
specific to the active screen.

I certainly could have just coded this the idiomatic Windows
Presentation Foundation (WPF) way, but this would have meant
editing a couple diff erent areas of XAML markup for keyboard
gestures, commands, the menu strip objects for each screen and
menu items–and then making sure that these were all correctly
tied together. Instead, I wanted to make this registration of new
shortcuts and menu items as declarative as possible, and I wanted
to reduce the surface area of the code to a single point. I of course
made a fl uent interface that confi gured all the disparate WPF
objects for me behind the scenes.

In usage, I can specify a global shortcut to open the “Execution
Queue” screen with the following code:

 // Open the "Execution Queue" screen with the
 // CTRL - Q shortcut
 Action("Open the Test Queue")
 .Bind(ModifierKeys.Control, Key.Q)
 .ToScreen<QueuePresenter>();

In the screen activation code for an individual screen, I can
define temporary keyboard shortcuts and the dynamic menu
options in the main application shell with code like this:

 screenObjects.Action("Run").Bind(ModifierKeys.Control, Key.D1)
 .To(_presenter.RunCommand).Icon = Icon.Run;

 screenObjects.Action("Cancel").Bind(ModifierKeys.Control, Key.D2)
 .To(_presenter.CancelCommand).Icon = Icon.Stop;

 screenObjects.Action("Save").Bind(ModifierKeys.Control, Key.S)
 .To(_presenter.SaveCommand).Icon = Icon.Save;

Now, let’s take a look at the implementation of this fl uent inter-
face. Underlying it is a semantic model class called ScreenAction
that does the actual work of building all the constituent WPF
objects. Th at class looks like this:

 public interface IScreenAction
 {
 bool IsPermanent { get; set; }
 InputBinding Binding { get; set; }
 string Name { get; set; }
 Icon Icon { get; set; }
 ICommand Command { get; }
 bool ShortcutOnly { get; set; }
 void BuildButton(ICommandBar bar);
 }

Th is is an important detail. I can build and test the ScreenAction
object independently of the fl uent interface, and now the fl uent
interface merely has to confi gure ScreenAction objects. Th e actual
DSL is implemented on a class called ScreenObjectRegistry that
tracks the list of active ScreenAction objects (see Figure 1).

Th e registration of a new screen action begins with the call to the
Action(name) method above and returns a new instance of the Bind-
ingExpression class that acts as an Expression Builder to confi gure the
new ScreenAction object, partially shown in Figure 2.

One of the important factors in many fl uent interfaces is trying
to guide the user of the API into doing things in a certain order. In
the case in Figure 2, I use interfaces on BindingExpression strictly
to control the user choices in IntelliSense, even though I am always
returning the same BindingExpression object throughout. Th ink
about this. Users of this fl uent interface should only specify the
action name and the keyboard shortcut keys once. Aft er that, the user
shouldn’t have to see those methods in IntelliSense. Th e DSL expres-
sion starts with the call to ScreenObjectRegistry.Action(name), which
captures the descriptive name of the shortcut that will appear in menus
and returns a new BindingExpression object as this interface:

 public interface IActionExpression
 {
 IBindingExpression Bind(Key key);
 IBindingExpression Bind(ModifierKeys modifiers, Key key);
 }

By casting BindingExpression to IActionExpression, the only
choice the user has is to specify the key combinations for the
shortcut, which will return the same BindingExpression object, but
casted to the IBindingExpression interface that only allows users
to specify a single action:

 // The last step that captures the actual
 // "action" of the ScreenAction
 public interface IBindingExpression
 {
 ScreenAction ToDialog<T>();
 ScreenAction ToScreen<T>() where T : IScreen;
 ScreenAction PublishEvent<T>() where T : new();
 ScreenAction To(Action action);
 ScreenAction To(ICommand command);
 }

Users of this fl uent interface
should only specify the action

name and the keyboard shortcut
keys once. After that, the user
shouldn’t have to see those

methods in IntelliSense.

25January 2010msdnmagazine.com

Object Initializers
Now that we’ve introduced method chaining as the mainstay of in-
ternal DSL development in C#, let’s start looking at the alternative
patterns that can often lead to simpler mechanics for the DSL de-
veloper. The first alternative is simply to use the object initializer
functionality introduced in the Microsoft .NET Framework 3.5.

I can still remember my very fi rst foray into fl uent interfaces. I
worked on a system that acted as a message broker between law
fi rms submitting legal invoices electronically and their customers.
One of the common use cases for us was to send messages to the
customers on behalf of the law fi rms. To send the messages we
invoked an interface like this:

 public interface IMessageSender
 {
 void SendMessage(string text, string sender, string receiver);
 }

Th at’s a very simple API; just pass in three string arguments
and it’s good to go. Th e problem in usage is which argument goes
where. Yes, tools such as ReSharper can show you which parameter
you’re specifying at any one time, but how about scanning the calls to
SendMessage when you’re just reading code? Look at the usage of the
following code sample and you’ll understand exactly what I mean about
errors from transposing the order of the string arguments:

 // Snippet from a class that uses IMessageSender
 public void SendMessage(IMessageSender sender)
 {
 // Is this right?
 sender.SendMessage("the message body", "PARTNER001", "PARTNER002");

 // or this?
 sender.SendMessage("PARTNER001", "the message body", "PARTNER002");

 // or this?
 sender.SendMessage("PARTNER001", "PARTNER002", "the message body");
 }

At the time, I solved the API usability issue by moving to a
fl uent interface approach that more clearly indicated which
argument was which:

 public void SendMessageFluently(FluentMessageSender sender)
 {
 sender
 .SendText("the message body")
 .From("PARTNER001").To("PARTNER002");
 }

I genuinely believed this made for a more usable, less error-prone
API, but let’s look at what the underlying implementation of the
expression builders might look like in Figure 3.

Th at’s a lot more code to create the API than was originally
required. Fortunately, now we have another alternative with object
initializers (or with named parameters in .NET Framework 4 or
VB.NET). Let’s make another version of the message sender that
takes in a single object as its parameter:

 public class SendMessageRequest
 {
 public string Text { get; set; }
 public string Sender { get; set; }
 public string Receiver { get; set; }
 }

 public class ParameterObjectMessageSender
 {
 public void Send(SendMessageRequest request)
 {
 // send the message
 }
 }

Now, the API usage with an object initializer is:
 public void SendMessageAsParameter(ParameterObjectMessageSender sender)
 {
 sender.Send(new SendMessageRequest()
 {
 Text = "the message body",
 Receiver = "PARTNER001",
 Sender = "PARTNER002"
 });
 }

Arguably, this third incarnation of the API reduces errors in
usage with much simpler mechanics than the fl uent interface version.

The point here is that fluent interfaces are not the only pattern
for creating more readable APIs in the .NET Framework. This
approach is much more common in JavaScript, where you can

public class BindingExpression : IBindingExpression, IActionExpression
{
 private readonly ScreenObjectRegistry _registry;
 private readonly ScreenAction _screenAction = new ScreenAction();
 private KeyGesture _gesture;

 public BindingExpression(string name, ScreenObjectRegistry registry)
 {
 _screenAction.Name = name;
 _registry = registry;
 }

 public IBindingExpression Bind(Key key)
 {
 _gesture = new KeyGesture(key);
 return this;
 }

 public IBindingExpression Bind(ModifierKeys modifiers, Key key)
 {
 _gesture = new KeyGesture(key, modifiers);
 return this;
 }

 // registers an ICommand that will launch the dialog T
 public ScreenAction ToDialog<T>()
 {
 return buildAction(() => _registry.CommandForDialog<T>());
 }

 // registers an ICommand that would open the screen T in the
 // main tab area of the UI
 public ScreenAction ToScreen<T>() where T : IScreen
 {
 return buildAction(() => _registry.CommandForScreen<T>());
 }

 public ScreenAction To(ICommand command)
 {
 return buildAction(() => command);
 }

 // Merely configures the underlying ScreenAction
 private ScreenAction buildAction(Func<ICommand> value)
 {
 ICommand command = value();
 _screenAction.Binding = new KeyBinding(command, _gesture);

 _registry.register(_screenAction);

 return _screenAction;
 }

 public BindingExpression Icon(Icon icon)
 {
 _screenAction.Icon = icon;
 return this;
 }
}

Figure 2 BindingExpression Class Acting as Expression Builder

www.msdnmagazine.com

msdn magazine26 Patterns In Practice

use JavaScript Object Notation (JSON) to completely specify
objects in one line of code, and in Ruby, where it is idiomatic
to use name/value hashes as arguments to methods.

Nested Closure
I think that many people assume that fluent interfaces and method
chaining are the only possibilities for building DSLs inside C#.
I used to believe that too, but I’ve since found other techniques
and patterns that are frequently much easier to implement than
method chaining. An increasingly popular pattern is the nested
closure pattern:

Express statement sub-elements of a function call by putting them
into a closure in an argument.

More and more .NET Web development projects are being done
with the Model-View-Controller pattern. One of the side effects of
this shift is much more need to generate snippets of HTML in code
for input elements. Straight-up string manipulation to generate
the HTML can get ugly fast. You end up repeating a lot of calls to
“sanitize” the HTML to avoid injection attacks, and in many cases
we may want to allow multiple classes or methods to have some
say in the final HTML representation. I want to express HTML
creation by just saying “I want a div tag with this text and this
class.” To ease this HTML generation, we model HTML with an

“HtmlTag” object that looks something like this in usage
var tag = new HtmlTag("div").Text("my text").AddClass("collapsible");
Debug.WriteLine(tag.ToString());

which generates the following HTML
<div class="collapsible">my text</div>

Th e core of this HTML generation model is the HtmlTag object
that has methods to programmatically build up an HTML element
structure like this:

 public interface IHtmlTag
 {
 HtmlTag Attr(string key, object value);
 HtmlTag Add(string tag);
 HtmlTag AddStyle(string style);
 HtmlTag Text(string text);
 HtmlTag SetStyle(string className);
 HtmlTag Add(string tag, Action<HtmlTag> action);
 }

Th is model also allows us to add nested HTML tags like this:
[Test]
public void render_multiple_levels_of_nesting()
{
 var tag = new HtmlTag("table");
 tag.Add("tbody/tr/td").Text("some text");

 tag.ToCompacted().ShouldEqual(
 "<table><tbody><tr><td>some text</td></tr></tbody></table>"
);
}

In real usage, I frequently fi nd myself wanting to add a fully confi g-
ured child tag in one step. As I mentioned, I have an open source proj-
ect called StoryTeller that my team is using to express acceptance tests.
Part of the functionality of StoryTeller is to run all of the acceptance
tests in our continuous integration build and generate a report of the
test results. Th e test result summary is expressed as a simple table with
three columns. Th e summary table HTML looks like this:

<table>
 <thead>
 <tr>
 <th>Test</th>
 <th>Lifecycle</th>
 <th>Result</th>
 </tr>
 </thead>
 <tbody>
 <!-- rows for each individual test -->
 </tbody>
</table>

Using the HtmlTag model I described above, I generate the header
structure of the results table with this code:

 // _table is an HtmlTag object

 // The Add() method accepts a nested closure argument
 _table.Add("thead/tr", x =>
 {
 x.Add("th").Text("Test");
 x.Add("th").Text("Lifecycle");
 x.Add("th").Text("Result");
 });

IronRuby is exceptional for
creating internal DSLs because

of its fl exible and relatively
clutter-free syntax.

public class FluentMessageSender
{
 private readonly IMessageSender _messageSender;

 public FluentMessageSender(IMessageSender sender)
 {
 _messageSender = sender;
 }

 public SendExpression SendText(string text)
 {
 return new SendExpression(text, _messageSender);
 }

 public class SendExpression : ToExpression
 {
 private readonly string _text;
 private readonly IMessageSender _messageSender;
 private string _sender;

 public SendExpression(string text, IMessageSender messageSender)
 {
 _text = text;
 _messageSender = messageSender;
 }

 public ToExpression From(string sender)
 {
 _sender = sender;
 return this;
 }

 void ToExpression.To(string receiver)
 {
 _messageSender.SendMessage(_text, _sender, receiver);
 }
 }

 public interface ToExpression
 {
 void To(string receiver);
 }
}

Figure 3 Implementation of an Expression Builder

27January 2010msdnmagazine.com

In the call to _table.Add I pass in a lambda function that completely
specifi es how to generate the fi rst header row. Using the nested
closure pattern allows me to pass in the specifi cation without fi rst
having to create another variable for the “tr” tag. You might not like
this syntax at fi rst glance, but it makes the code terser. Internally, the
Add method that uses the nested closure is simply this:

 public HtmlTag Add(string tag, Action<HtmlTag> action)
 {
 // Creates and adds the new HtmlTag with
 // the supplied tagName
 var element = Add(tag);

 // Uses the nested closure passed into this
 // method to configure the new child HtmlTag
 action(element);

 // returns that child
 return element;
 }

For another example, the main StructureMap Container class is
initialized by passing in a nested closure that represents all of the
desired confi guration for the container like this:

 IContainer container = new Container(r =>
 {
 r.For<Processor>().Use<Processor>()
 .WithCtorArg("name").EqualTo("Jeremy")
 .TheArrayOf<IHandler>().Contains(x =>
 {
 x.OfConcreteType<Handler1>();
 x.OfConcreteType<Handler2>();
 x.OfConcreteType<Handler3>();
 });
 });

Th e signature and body of this constructor function is:
 public Container(Action<ConfigurationExpression> action)
 {
 var expression = new ConfigurationExpression();
 action(expression);

 // As explained later in the article,
 // PluginGraph is part of the Semantic Model
 // of StructureMap
 PluginGraph graph = expression.BuildGraph();

 // Take the PluginGraph object graph and
 // dynamically emit classes to build the
 // configured objects
 construct(graph);
 }

I used the nested closure pattern in this case for a couple of
reasons. The first is that the StructureMap container works
by taking the complete configuration in one step, then using
Reflection.Emit to dynamically generate “builder” objects be-
fore the container can be used. Taking the configuration in
through a nested closure allows me to capture the entire con-
figuration at one time and quietly do the emitting right before
the container is made available for use. The other reason is to
segregate the methods for registering types with the container
at configuration time away from the methods that you would
use at runtime to retrieve services (this is an example of the
Interface Segregation Principle, the “I” in S.O.L.I.D.).

I have included the nested closure pattern in this article
because it’s becoming quite prevalent in.NET Framework open
source projects such as Rhino Mocks, Fluent NHibernate and
many IoC tools. Also, I have frequently found the nested closure
pattern to be signifi cantly easier to implement than using only
method chaining. Th e downside is that many developers are still

uncomfortable with lambda expressions. Furthermore, this
technique is barely usable in VB.NET because VB.NET doesn’t
support multiline lambda expressions.

IronRuby and Boo
All of my samples in this article are written in C# for mainstream
appeal, but if you’re interested in doing DSL development you may
want to look at using other CLR languages. In particular, IronRuby
is exceptional for creating internal DSLs because of its fl exible and
relatively clutter-free syntax (optional parentheses, no semicolons
and very terse). Stepping farther afi eld, the Boo language is also
popular for DSL development in the CLR.

Th e design pattern names and defi nitions are taken from the
online draft of Martin Fowler’s forthcoming book on Domain
Specifi c Languages at martinfowler.com/dslwip/index.html.

JEREMY MILLER, a Microsoft MVP for C#, is also the author of the open source
StructureMap (structuremap.sourceforge.net) tool for Dependency Injection with
.NET and the forthcoming StoryTeller (storyteller.tigris.org) tool for supercharged
FIT testing in .NET. Visit his blog, Th e Shade Tree Developer, at codebetter.com/
blogs/jeremy.miller, part of the CodeBetter site.

THANKS to the following technical expert for reviewing this article:
Glenn Block

www.steema.com
www.msdnmagazine.com
http://martinfowler.com/dslwip/index.html
http://codebetter.com/blogs/jeremy.miller/

Grids • Charts • Reports • Schedules • Menus • Toolbars • Ribbon • Data Input • Editors • PDF

WinForms • WPF • ASP.NET • Silverlight • iPhone • Mobile • ActiveX

Project6 11/10/09 1:25 PM Page 1

www.componentone.com/prepare

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

DOWNLOAD YOUR FREE TRIAL AT

© 1987-2009 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Project6 11/10/09 1:26 PM Page 2

www.componentone.com/prepare

msdn magazine30

 CLO U D PAT T ER NS

Designing Services for
Windows Azure

Windows Azure is a new cloud computing platform under
development by Microsoft (microsoft.com/windowsazure). Cloud computing
allows developers to host applications in an Internet-accessible
virtual environment. Th e environment transparently provides the
hardware, soft ware, network and storage needed by the application.

As with other cloud environments, Windows Azure provides a
hosted environment for applications. Th e added benefi t of Windows
Azure is that .NET Framework applications can be deployed with
minimal changes from their desktop siblings.

Applying service-oriented architecture (SOA) patterns and
utilizing the experiences collected when implementing service-

Disclaimer: This article is based on a pre-release version of
Windows Azure. All information is subject to change.

This article discusses:
• Deployment issues

• Designing for performance and fl exibility

• Using messages and queues

• Idempotent capability

Technologies discussed:
Windows Azure

Code download available at:
code.msdn.microsoft.com/mag201001Azure

Thomas Erl, Arman Kurtagic and Herbjörn Wilhelmsen

oriented solutions will be key to success when moving your
services and applications into the new arena of cloud computing.
To better understand how SOA patterns can be applied to
Windows Azure deployments, let’s take a look at a scenario in which
a fi ctional bank moves its services to the cloud.

Cloud Banking
Woodgrove Bank is a small fi nancial institution that has decided
to focus on a new online banking initiative branded Woodgrove
Bank Online. One of Woodgrove Bank’s most important clients,
Fourth Coff ee, volunteered to try out the new solution for pro-
cessing card transactions. A subset of the services planned for the
solution is already live, and the availability of these services has
generated more interest from other customers. However, as more
of the solution’s rollout is planned, challenges emerge.

Th e fi rst issue pertains to scalability and reliability. Woodgrove
Bank never wanted to take responsibility for hosting its IT solutions.
Instead, it established a provisioning agreement with a local ISP
called the Sesame Hosting Company. To date, Sesame Hosting has
fulfi lled the Web hosting needs of Woodgrove Bank, but the new
card-processing solution has introduced scalability requirements
that Sesame Hosting is not prepared to handle.

Th e Woodgrove Bank technology architecture team suggests
redundantly deploying the Woodgrove Bank Online services, as
per the Redundant Implementation pattern (descriptions of the
patterns discussed here can be found at soapatterns.org). In essence,

code.msdn.microsoft.com/mag201001Azure
http://microsoft.com/windowsazure

31January 2010msdnmagazine.com

the pattern suggests an approach whereby services are intentionally
deployed redundantly for increased scalability and failover. Th e
Sesame Hosting company investigates this option, but cannot
aff ord to expand its infrastructure in order to accommodate
redundant service deployments. It simply doesn’t have the resources
or budget to handle the increase in hardware, operational soft ware
maintenance and networking appliances that would be required.

Th e time frame is also a problem. Even if Sesame Hosting could
make the necessary infrastructure available, it could not do so in
time for Woodgrove Bank to meet its planned rollout schedule.
Th e need to hire and train personnel alone would prolong the
infrastructure expansion far beyond Woodgrove Bank’s timetable.

Aft er realizing that Sesame Hosting wouldn’t be able to meet its
needs, the Woodgrove Bank team begins to explore the option of
hosting its services in a public cloud. Th e Windows Azure platform
provides a way of virtualizing services that naturally apply the
Redundant Implementation pattern. Th is feature of Windows Azure
is called On-Demand Application Instance (discussed in
the May 2009 issue at msdn.microsoft.com/magazine/dd727504).
Th is feature, and the ability to use Microsoft datacenters
without a long-term commitment, looks promising to
the Woodgrove Bank team. Let’s take a closer look at how
Woodgrove Bank migrates its solution to Windows Azure.

Deployment Basics
Th e fi rst order of business is to deploy a Web service by
following a contract-fi rst approach that adheres to the
Standardized Service Contract principle. Th e team uses
the WSCF.blue tool (msdn.microsoft.com/magazine/ee335699)
to generate Windows Communication Foundation
(WCF) contracts from WSDL and XSDs that were
modeled for optimal interoperability. Th e service
contracts are shown in Figure 1.

Because services will need to change and evolve
over time, the developers also decide to let their data

contracts implement the IExtensibleObject interface in support of
the Forward Compatibility pattern (see Figure 2).

To store the necessary data, the Woodgrove Bank team wants
to use SQL Azure because it already has an existing database
structure that the team wants to retain. If the developers were
able to use a non-relational store, they might consider Windows
Azure Storage instead.

Woodgrove Bank architects proceed to create a Visual Studio
Template Cloud Service and use Visual Studio to publish it. Th ey
then log onto the Windows Azure portal to create their new cloud
service (see Figure 3).

Next, they are presented with a screen that allows them to start
deploying the service. Th ey click the Deploy button and specify
an application package, confi guration settings and a deployment
name. Aft er a few more clicks, their service is residing in the cloud.

Figure 4 shows an example of the service confi guration.
Th e key to making the solution elastic with regard to Woodgrove

Bank’s scalability requirements is the following confi guration element:
<Instances count="1" />

For example, if the developers want 10 instances, this element
would be set to:

<Instances count="10" />

Figure 5 shows the screen that confi rms that only one instance is
up and running. Clicking the Confi gure button brings up a screen
where they are able to edit the service confi guration and change
the Instances setting as required.

Performance and Flexibility
Aft er some stress testing, the Woodgrove Bank development team
found that having only one central data store in SQL Azure led
to slower and slower response times when traffi c increased. Th e
developers decided to address this performance issue by using
Windows Azure table storage, which is designed to improve
scalability by distributing the partitions across many storage nodes.
Windows Azure table storage also provides fast data access because
the system monitors usage of the partitions and automatically load-
balances them. However, because Windows Azure table storage isn’t

Figure 1 The Initial Service Contracts

Figure 2 The Initial Data Contracts

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dd727504
http://msdn.microsoft.com/magazine/ee335699

msdn magazine32 Cloud Patterns

a relational data store, the team had to design some new data storage
structures and pick a combination of partition and row keys that
would provide good response times.

Th ey ended up with three tables as shown in Figure 6. User-
AccountBalance will store user account balances. AccountTrans-
actionLogg will be used for storing all transaction messages for
specifi c accounts. Th e UserAccountTransaction table will be
used for storing account transactions. Th e partition keys for the
UserAccountTransaction and AccountTransactionLogg tables were
created by concatenating UserId and AccountId because these are a
part of all queries and can give quick response times. Th e partition
key for the UserAccountBalance table is UserId and the row key
is AccountId. Together they provide a unique identifi cation of a
user and his account.

Woodgrove Bank considers the project a success thus far and
wants more customers to start using the solution. Soon World
Wide Importers is ready to join in—though with some new
functional requirements.

Th e request that appears to matter most is that the service interface
(or information structure) should be changed. According to World
Wide Importers, the information structure that Woodgrove Bank
uses is not compatible with theirs. Due to the importance of this
particular customer, the Woodgrove Bank development team

suggests the application of the Data Model Transformation pattern.
Th e developers would create several new services with the interfaces
that World Wide Importers requested and these services would
contain logic to translate the requests between the World Wide
Importers data models and the Woodgrove Bank data models.

To satisfy this requirement, a new structure for the UserAccount
is created. Th e developers are careful to ensure that there is a clear
mapping between the UserAccountWwi and UserAccount classes,
as shown in Figure 7.

Service contracts need to accept a specifi c data contract (User-
AccountWwi) that transforms requests to UserAccount before
passing on the call to other parts of the solution, and then transform
it back in the reply. Th e architects at Woodgrove Bank realize that
they could reuse a base service interface when implementing these
new requirements. Th e fi nal design is shown in Figure 8.

Th e developers choose to implement the data transformations
by creating a couple of extension methods for the UserAccount
class, including the methods TransformToUserAccountWwi and
TransformToUserAccount.

Th e new service accepts the UserAccountWwi data contract.
Prior to sending requests on to other layers, the data is transformed
to UserAccount by calling the extension method Transform-
ToUserAccount. Before sending a response back to the consumer,
the UserAccount contract is transformed back to UserAccount-
Wwi by calling the TransformToUserAccountWwi. For details

about these elements see the source code for
UserAccountServiceAdvanced in the code
download for this article.

Messaging and Queuing
Although Woodgrove Bank is now up and
running and able to facilitate a great number
of incoming requests, analysts have noted
signifi cant peaks in service usage. Some of
these peaks come regularly (specifi cally, on
Monday mornings and Th ursday aft ernoons).
However, some fl uctuations are unpredictable.

Putting more resources online via Windows
Azure confi guration would be one easy
solution, but now that some large clients such
as World Wide Importers are interested in the
new services, concurrent usage fl uctuations
are expected to increase.

Th e developers at Woodgrove Bank took a
closer look at Windows Azure off erings and

Windows Azure table storage
is designed to improve

scalability by distributing
the partitions across many

storage nodes.

<Role name="BankWebRole">
 <Instances count="1" />
 <ConfigurationSettings>
 <Setting
 name="DataConnectionString"
 value="DefaultEndpointsProtocol=https;AccountName=YOURACCOUNTNAME;A
ccountKey=YOURKEY" />
 <Setting
 name="DiagnosticsConnectionString"
 value="DefaultEndpointsProtocol=https;AccountName=YOURDIAGNOSTICSAC
COUNTNAME;AccountKey=YOURKEY" />

Figure 4 Windows Azure Service Confi guration

Figure 3 Creating a Service in the Windows Azure Portal

33January 2010msdnmagazine.com

discovered features that allow for the application of the Reliable Mes-
saging and Asynchronous Queuing patterns. Th ey concluded that
Reliable Messaging was not the most suitable choice as it would restrict
their customer’s technical choices. Asynchronous Queuing requires no
special technology from the customers so they would focus on that. Inside
the Windows Azure cloud, however, Reliable Messaging made perfect
sense since the technology used there was all provided by Microsoft .

Th e objective is that no message should be lost even if services
are offl ine due to error conditions or planned maintenance. Th e
Asynchronous Queuing pattern allows this, though some off erings
are not suitable for this pattern. For example, prompt answers
with confi rmation or denial of money transfers are
necessary when dealing with online card transactions.
But in other situations the pattern would do fi ne.

Communication between the Web and Worker roles
(see msdn.microsoft.com/magazine/dd727504 for an explana-
tion of these roles) is done with Windows Azure Queues
(as of the November CTP version it is possible to com-
municate directly between role instances), which are by
default both asynchronous and reliable. Th is doesn’t au-
tomatically mean that the communication between the
end user and Woodgrove Bank’s services is reliable. In
fact, the lines of communication between the client and
the services residing in the Web role are clearly unreli-
able. Th e Woodgrove Bank team decided not to address
this because implementing reliability mechanisms all the
way down to the customers would in practice require
customers to adhere to the same technological
choices as Woodgrove Bank. Th is was considered
unrealistic and undesirable.

Putting Queues to Work
As soon as a customer sends a message to
UserAccountService, this message is placed
in a Windows Azure Queue and the customer
receives a confirmation message. User-
AccountWorker will then be able to get
the message from the queue. Should User-
AccountWorker be down, the message will
not be lost as it is stored securely in the queue.

If the processing inside UserAccountWorker
goes wrong, the message will not be removed
from the queue. To ensure this, the call to the
DeleteMessage method of the queue is made
only aft er the work has been completed. If
UserAccountWorker didn’t fi nish process-
ing the message before the timeout elapsed
(the timeout is hardcoded to 20 seconds), the
message will again be made visible on the
queue so that another instance of User-
AccountWorker can attempt to process it.

As soon as a customer sends a message to
UserAccountService, this message is placed
in a queue and the customer receives a con-
firmation message of type Transaction-
Response. From the perspective of the

customer, Asynchronous Queuing is used. ReliableMessaging is
used to communicate between UserAccountStorageAction and
AccountStorageWorker, which reside in the Web role and Worker role,
respectively. Here’s how the call handler put messages into the queue:

public TransactionResponse ReliableInsertMoney(
 AccountTransactionRequest accountTransactionrequest) {

//last parameter (true) means that we want to serialize
//message to the queue as XML (serializeAsXml=true)
 return UserAccountHandler.ReliableInsertMoney(
 accounttransactionRequest.UserId,
 accounttransactionRequest.AccountId,
 accounttransactionRequest.Amount, true);
}

Figure 5 Instances Running in Windows Azure

Figure 6 Windows Azure Table Storage Models

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dd727504

msdn magazine34 Cloud Patterns

UserAccountHandler is a property that returns an IUser-
AccountAction, which is injected in the runtime. Th is makes it
easier to separate implementation from the contract and later
change the implementation:

public IUserAccountAction<Models.UserAccount> UserAccountHandler
 {get;set;}

public UserAccountService(
 IUserAccountAction<Models.UserAccount> action) {

 UserAccountHandler = action;
}

Aft er the message is sent to one of the responsible actions, it will
be put in the queue. Th e fi rst method in Figure 9 shows how data
can be stored as serializable XML and the second method shows
how data can be stored as a string in the queue. Note that there
is a limitation in Windows Azure Queues where the maximum
message size is 8KB.

Th e QueueManager class will initialize queues using defi nitions
from the confi guration:

CloudQueueClient queueClient =
 CloudStorageAccount.FromConfigurationSetting(
 "DataConnectionString").CreateCloudQueueClient();

accountTransQueue = queueClient.GetQueueReference(
 Helpers.Queues.AccountTransactionsQueue);
accountTransQueue.CreateIfNotExist();

loggQueue = queueClient.GetQueueReference(
 Helpers.Queues.AccountTransactionLoggQueue);
loggQueue.CreateIfNotExist();

AccountStorageWorker listens for the messages on Account-
TransactionQueue and gets the messages from the queue. To be able
to listen for the message, the worker must open the correct queue:

var storageAccount = CloudStorageAccount.FromConfigurationSetting(
 "DataConnectionString");
// initialize queue storage
CloudQueueClient queueStorage = storageAccount.CreateCloudQueueClient();
accountTransactionQueue = queueStorage.GetQueueReference(
 Helpers.Queues.AccountTransactionsQueue);

Aft er the queue is opened and AccountStorageWorker reads the
message, the message will be invisible in the queue for 20 seconds
(the visibility timeout was set to 20). During that time the worker
will try to process the message.

If processing of the message succeeds, the message will be
deleted from the queue. If processing fails, the message will be put
back in the queue.

Processing Messages
Th e ProcessMessage method fi rst needs to get the content of the
message. Th is can be done in one of two ways. First, the message
could be stored as a string in the queue:

//userid|accountid|transactionid|amount
var str = msg.AsString.Split('|');...

Second, the message could be serialized XML:
using (MemoryStream m =
 new MemoryStream(msg.AsBytes)) {

 if (m != null) {
 XmlSerializer xs = new XmlSerializer(
 typeof(Core.TableStorage.UserAccountTransaction));
 var t = xs.Deserialize(m) as
 Core.TableStorage.UserAccountTransaction;

 if (t != null) { }
 }
}

Should the AccountStorageWorker for some reason be down
or unable to process the message, no message will be lost as it is
saved in the queue. If processing inside the AccountStorageWorker
should fail, the message will not be removed from the queue and it
will become visible in the queue aft er 20 seconds.

To ensure this behavior, the call to the DeleteMessage method
of the queue is made only after the work has been completed.
If Account StorageWorker didn’t finish processing the message
before the timeout elapsed, the message will yet again be made
visible on the queue so that another instance of Account-
StorageWorker can attempt processing it. Figure 10 works on
a message that was stored as a string.

Idempotent Capability
What if one of Woodgrove
Bank’s customers sends a
request to transfer money
from one account to
another and the message
gets lost? If the customer
resends the message, it
is possible that two or
more of the requests
reach the services and gets
treated separately.

One of the Woodgrove
Bank team members
immediately identified
this scenario as one that
requires the Idempotent
Capability pattern. Th is
pattern demands that
capabilities or operations
are implemented in such a
way that they are safe to re-
peat. In short, the solution

Figure 7 UserAccount Structure for Data Model Transformation

Figure 8 Service Contracts for
World Wide Importers

35January 2010msdnmagazine.com

that Woodgrove Bank wants to implement requires well-behaved
clients that attach a unique ID to each request and promise that they
will resend the exact same message including the same unique ID in
case of a retry. To be able to handle this, the unique ID is saved in the
Windows Azure table storage. Before processing any requests, it is
necessary to check if a message with that ID was already processed.
If it has been processed, a correct reply will be created, but the
processing associated with the new request will not take place.

Although this means bothering the central data store with extra
queries, it was deemed necessary. It will result in some deterioration
of performance since some queries are made to the central data
store before any other processing can take place. However, allowing
this to consume extra time and other resources is a reasonable
choice in order to meet Woodgrove Bank’s requirements.

Th e Woodgrove Bank team updated the methods ReliableInsert-
Money and ReliableWithDrawMoney in the IUserAccountAction
and their implementations by adding a transaction ID:

TransactionResponse ReliableInsertMoney(
 Guid userId, Guid accountId, Guid transactionId,
 double amount, bool serializeToQueue);

TransactionResponse ReliableWithDrawMoney(
 Guid userId, Guid accountId, Guid transactionId,
 double amount, bool serializeToQueue);

Th e UserAccountTransaction table (Windows Azure Storage)
was updated by adding TransactionId as RowKey, so that each
insert into the table would have a unique transaction ID.

Th e responsibility for sending a unique message ID for each
unique transaction is set to the client:

WcfClient.Using(new AccountServiceClient(), client =>{
 using (new OperationContextScope(client.InnerChannel))
 {
 OperationContext.Current.OutgoingMessageHeaders.MessageId =
 messageId;
 client.ReliableInsertMoney(new AccountTransactionRequest {
 UserId = userId, AccountId = accountId, Amount = 1000 });
 }
});

Th e helper class used here can be found at soamag.com/I32/0909-4.asp.
Th e IUserAccountService defi nition was left unchanged. Th e

only change that is necessary to implement this functionality is to
read the MessageId from the incoming message headers, which
was sent by the client, and use it in the processing behind the
scenes (see Figure 11).

if (str.Length == 4){
 //userid|accountid|transactionid|amount
 UserAccountSqlAzureAction ds = new UserAccountSqlAzureAction(
 new Core.DataAccess.UserAccountDB("ConnStr"));
 try
 {
 Trace.WriteLine(String.Format("About to insert data to DB:{0}", str),
 "Information");
 ds.UpdateUserAccountBalance(new Guid(str[0]), new Guid(str[1]),
 double.Parse(str[3]));
 Trace.WriteLine(msg.AsString, "Information");
 accountTransactionLoggQueue.DeleteMessage(msg);
 Trace.WriteLine(String.Format("Deleted:{0}", str), "Information");
 }
 catch (Exception ex)
 {
 Trace.WriteLine(String.Format(
 "fail to insert:{0}", str, ex.Message), "Error");
 }
}

Figure 10 Handling Queued Messages

public TransactionResponse ReliableHandleMoneyInQueueAsXml(
 UserAccountTransaction accountTransaction){

 using (MemoryStream m = new MemoryStream()){
 XmlSerializer xs =
 new XmlSerializer(typeof(UserAccountTransaction));
 xs.Serialize(m, accountTransaction);

 try
 {
 QueueManager.AccountTransactionsQueue.AddMessage(
 new CloudQueueMessage(m.ToArray()));
 response.StatusForTransaction = TransactionStatus.Succeded;
 }
 catch(StorageClientException)
 {
 response.StatusForTransaction = TransactionStatus.Failed;
 response.Message =
 String.Format("Unable to insert message in the account
transaction queue userId|AccountId={0}, messageId={1}",
 accountTransaction.PartitionKey, accountTransaction.RowKey);
 }
 }
 return response;
}

public TransactionResponse ReliableHandleMoneyInQueue(
 UserAccountTransaction accountTransaction){

 TransactionResponse response = this.CheckIfTransactionExists(
 accountTransaction.PartitionKey, accountTransaction.RowKey);

 if (response.StatusForTransaction == TransactionStatus.Proceed)
 {
 //userid|accountid is partkey
 //userid|accountid|transactionid|amount
 string msg = string.Format("{0}|{1}|{2}",
 accountTransaction.PartitionKey,
 accountTransaction.RowKey,
 accountTransaction.Amount);

 try
 {
 QueueManager.AccountTransactionsQueue.AddMessage(
 new CloudQueueMessage(msg));
 response.StatusForTransaction = TransactionStatus.Succeded;
 }
 catch(StorageClientException)
 {
 response.StatusForTransaction = TransactionStatus.Failed;
 response.Message =
 String.Format("Unable to insert message in the account
transaction queue userId|AccountId={0}, messageId={1}",
 accountTransaction.PartitionKey, accountTransaction.RowKey);
 }
 }
 return response;
}

Figure 9 Storing Data

The objective is that no message
should be lost even if services are
offl ine due to error conditions or

planned maintenance.

www.msdnmagazine.com
http://soamag.com/I32/0909-4.asp

msdn magazine36 Cloud Patterns

The updated UserAccountAction will now get a transaction
ID for each idempotent operation. When the service tries to
complete one idempotent operation, it will check to see if the
transaction exists in the table storage. If the transaction exists,
the service returns the message of the transaction that was stored
in the AccountTransactionLogg table. The transaction ID will
be saved as RowKey in storage table UserAccountTransaction.
To find the correct user and account, the service sends the
partition key (userid|accountid). If the transaction ID is not
found, the message will be put in the AccountTransactionsQueue
for further processing:

public TransactionResponse ReliableHandleMoneyInQueueAsXml(
 UserAccountTransaction accountTransaction) {
 TransactionResponse response = this.CheckIfTransactionExists(
 accountTransaction.PartitionKey, accountTransaction.RowKey);
 if(response.StatusForTransaction == TransactionStatus.Proceed) {
 ...
 }
 return response;
}

Th e CheckIfTransactionExists method (see Figure 12) is used
to ensure that the transaction has not been processed. It will
try to fi nd the transaction ID for a specifi c user account. If the
transaction ID is found, the client will get a response message with
the details of the already completed transaction.

An interesting property of CheckIfTransactionExists is that if the
data you want to fi nd is not found, Windows Azure Storage returns

a 404 HTTP status code (because it uses a REST interface).
Furthermore, if the data is not found, an exception will be thrown
by ADO.NET client services (System.Data.Services.Client).

More Info
For more information about the implementation of this proof-of-
concept solution, please check the provided source code available
online. SOA pattern descriptions are published at soapatterns.org.
For questions, contact herbjorn@wilhelmsen.se.

ARMAN KURTAGIĆ is a consultant focusing on new Microsoft technologies, working
at Omegapoint, which provides business-driven, secure IT solutions. He has worked
in various roles including, developer, architect, mentor and entrepreneur, and has
experience in industries such as fi nance, gaming and media.

HERBJÖRN WILHELMSEN is a consultant working for Forefront Consulting
Group and is based in Stockholm. His main focus areas are service-oriented
architecture and business architecture. Wilhelmsen is the chair of the SOA
Patterns Review Committee and also currently leads the Business 2 IT group
within the Swedish chapter of IASA. He is co-authoring the book “SOA with
.NET and Azure” as part of the “Prentice Hall Service-Oriented Computing
Series from Thomas Erl.”

THOMAS ERL is the world’s top-selling SOA author, series editor of the “Prentice
Hall Service-Oriented Computing Series from Th omas Erl,” and editor of SOA
Magazine. Erl is the founder of SOA Systems Inc. and the SOASchool.com SOA
Certifi ed Professional program. Erl is the founder of the SOA Manifesto working
group and is a speaker and instructor for private and public events. For more
information, visit thomaserl.com.

THANKS to the following technical expert for reviewing this article:
Steve Marx

public TransactionResponse ReliableInsertMoney(
 AccountTransactionRequest accountTransactionrequest) {
 var messageId =
 OperationContext.Current.IncomingMessageHeaders.MessageId;
 Guid messageGuid = Guid.Empty;
 if (messageId.TryGetGuid(out messageGuid))
 //last parameter (true) means that we want to serialize
 //message to the queue as XML (serializeAsXml=true)
 return UserAccountHandler.ReliableInsertMoney(
 accounttransactionRequest.UserId,
 accounttransactionRequest.AccountId, messageId,
 accounttransactionRequest.Amount, true);
 else
 return new TransactionResponse { StatusForTransaction =
 Core.Types.TransactionStatus.Failed,
 Message = "MessageId invalid" };
}

Figure 11 Capturing Message IDs The responsibility for sending
a unique message ID for each

unique transaction is set
to the client.

private TransactionResponse CheckIfTransactionExists(
 string userIdAccountId, string transId) {

 TransactionResponse transactionResponse =
 new Core.Models.TransactionResponse();

 var transaction = this.TransactionExists(userIdAccountId, transId);
 if (transaction != null) {
 transactionResponse.Message =
 String.Format("messageId:{0}, Message={1}, ",
 transaction.RowKey, transaction.Message);
 transactionResponse.StatusForTransaction =
 TransactionStatus.Completed;
 }
 else
 transactionResponse.StatusForTransaction =
 TransactionStatus.Proceed;
 return transactionResponse;
}

private UserAccountTransaction TransactionExists(

 string userIdAccountId, string transId) {
 UserAccountTransaction userAccountTransaction = null;
 using (var db = new UserAccountDataContext()) {
 try {
 userAccountTransaction =
 db.UserAccountTransactionTable.Where(
 uac => uac.PartitionKey == userIdAccountId &&
 uac.RowKey == transId).FirstOrDefault();
 userAccountTransaction.Message = "Transaction Exists";
 }
 catch (DataServiceQueryException e) {
 HttpStatusCode s;
 if (TableStorageHelpers.EvaluateException(e, out s) &&
 s == HttpStatusCode.NotFound) {
 // this would mean the entity was not found
 userAccountTransaction = null;
 }
 }
 }
 return userAccountTransaction;
}

Figure 12 Checking Transaction Status and ID

mailto:herbjorn@wilhelmsen.se
http://SOASchool.com
http://thomaserl.com

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com

CLO U D STOR AGE

Fueling Your
Application’s Engine with
Windows Azure Storage

Developers tend to cling to their physical, tangible
infrastructure like a safety blanket. They know how to use it,
they know how to operate it, and when something goes wrong,
they know where it is. This often creates a barrier that slows
down developer adoption of newer technologies, such as cloud
computing.

One of the biggest questions skeptical developers ask is how they
can still run background processes in the cloud—how will their en-
gine continue to work. Th is article aims to dispel myths about lack
of background processing in the cloud by showing you how you
can build an application engine as well as implement asynchro-
nous messaging and processing using Windows Azure Storage.

To prove that developers can shed the safety blanket of their physi-
cal infrastructure and put their application engines in the cloud, we’re
going to walk through the implementation of a small subset of an
e-commerce application, Hollywood Hackers, where you can buy all
of the magical technology that Hollywood uses to completely ignore
the laws of physics and old-fashioned common sense.

This article discusses:
• Building an e-commerce application

• Sending asynchronous text messages (“toasts”) to users

• Submitting a shopping cart to a fulfi llment engine using
Windows Azure technology

Technologies discussed:
Windows Azure Platform, ASP.NET MVC 2, JSON

Code Download URL:
hollywoodhackers.codeplex.com/SourceControl/

ListDownloadableCommits.aspx

By Kevin Hoffman and Nathan Dudek

Th e two main scenarios we’ll cover are:
• Sending asynchronous text messages (“toasts”) to users of the

application to notify them of important events such as their
cart being submitted, or to send messages between employees.
Th is scenario uses Windows Azure Queue, Windows Azure
Table and a Windows Azure Worker Role.

• Submitting a shopping cart to a fulfi llment engine using
Windows Azure Queue and a Windows Azure Worker Role.

string accountName;
string accountSharedKey;
string queueBaseUri;
string StorageCredentialsAccountAndKey credentials;

if (RoleEnvironment.IsAvailable)
{
// We are running in a cloud - INCLUDING LOCAL!
 accountName =
 RoleEnvironment.GetConfigurationSettingValue("AccountName");
 accountSharedKey =
 RoleEnvironment.GetConfigurationSettingValue("AccountSharedKey");
 queueBaseUri = RoleEnvironment.GetConfigurationSettingValue
 ("QueueStorageEndpoint");
}
else
{
 accountName = ConfigurationManager.AppSettings["AccountName"];
 accountSharedKey =
 ConfigurationManager.AppSettings["AccountSharedKey"];
 queueBaseUri =
 ConfigurationManager.AppSettings["QueueStorageEndpoint"];
}
credentials =
new StorageCredentialsAccountAndKey(accountName, accountSharedKey);
CloudQueueClient client =
new CloudQueueClient(queueBaseUri, credentials);
CloudQueue queue = client.GetQueueReference(queueName);
CloudQueueMessage m = new CloudQueueMessage(
 /* string or byte[] representing message to enqueue */);
Queue.AddMessage(m);

Figure 1 Creating and Submitting a Message to a
Windows Azure Queue

msdn magazine38

Hoffman.Dudek.Azure.0110.Lay6_38-42.indd 38 12/11/09 2:11 PM

hollywoodhackers.codeplex.com/SourceControl/ListDownloadableCommits.aspx

39January 2010

Intra-Application Messaging with Queue Storage
Before we get to the specifi c scenarios, we need to cover some basics
about Windows Azure Queue. Queues in the cloud don’t work quite
like queues in your plain-vanilla .NET application. When you work
with data in an AppDomain, you know there’s only one copy of that
data and it’s sitting comfortably within a single managed process.

In the cloud, one piece of your data might be in California and
another might be in New York, and you might have a worker role
doing processing on that data in Texas and another worker role
doing processing in North Dakota.

Adjusting to this kind of distributed computing and distributed
data brings up issues many developers are unfamiliar with, such
as coding for potential failure, building in the concept of multi-
ple retries for data commits and, fi nally, the idea of idempotence.

Th e way Windows Azure Queues work is fairly straightforward,
so long as you don't treat them like in-process regular CLR queues.
First, your application will ask the queue for some number of mes-
sages (though never more than 20 at a time; keep that mind) and
supply a timeout. Th is timeout governs how long those messages
will be hidden from other queue-processing clients. When your
application has successfully completed whatever processing needs
to be done on the queue message, it should delete the message.

If your application throws an exception or otherwise fails
to process the queue message, the message will become vis-
ible to other clients again after the timeout period. This allows
additional worker roles to continue processing when one fails.
Submitting a message to a queue is very straightforward: your
application forms the appropriate HTTP POST message (either
directly or with the aid of a client library) and submits either
string or an array of bytes. Queues are designed specifically for
intra-application messaging and not permanent storage, so the
messages need to be kept fairly small.

As previously mentioned, you could conceivably have multi-
ple worker roles all attempting to process the same messages. Th e
invisibility timeout that hides messages that are currently being
processed is helpful, but it isn't a guarantee. To completely avoid
confl ict, you should design your engine processing so that it’s idem-
potent. In other words, the same queue message should be able to
be processed multiple times by one or more worker roles without
putting the application into an inconsistent state.

Ideally, you want the worker role to be able to detect if work has
already been completed on a given message. As you write your

namespace HollywoodHackers.Storage.Queue
{
 [Serializable]
 public class QueueMessageBase
 {
 public byte[] ToBinary()
 {
 BinaryFormatter bf = new BinaryFormatter();
 MemoryStream ms = new MemoryStream();
 ms.Position = 0;
 bf.Serialize(ms, this);
 byte[] output = ms.GetBuffer();
 ms.Close();
 return output;
 }
 public static T FromMessage<T>(CloudQueueMessage m)
 {
 byte[] buffer = m.AsBytes();
 MemoryStream ms = new MemoryStream(buffer);
 ms.Position = 0;
 BinaryFormatter bf = new BinaryFormatter();
 return (T)bf.Deserialize(ms);
 }
 }
 [Serializable]
 public class ToastQueueMessage : QueueMessageBase
 {
 public ToastQueueMessage()
 : base()
 {
 }
 public string TargetUserName { get; set; }
 public string MessageText { get; set; }
 public string Title { get; set; }
 public DateTime CreatedOn { get; set; }
 }

Figure 2 Storing Structured Data in the Queue

One of the biggest questions
skeptical developers ask is how
they can still run background

processes in the cloud—how will
their engine continue to work.

worker roles to process queue messages, keep in mind that there
is a chance your code could be attempting to process a message
that already has been processed, however slim that chance may be.

Th e code snippet in Figure 1 shows how to create and submit
a message to a Windows Azure Queue using the StorageClient
assembly that’s provided with the Windows Azure SDK. Th e Storage-
Client library is really just a wrapper around the Windows Azure
Storage HTTP interface.

For other samples throughout this article, we’ve used some wrap-
per classes (available on the CodePlex site for Hollywood Hackers:
hollywoodhackers.codeplex.com/SourceControl/ListDownloadableCommits.aspx)
that simplify this process.

Asynchronous Messaging (Toasts)
Interactive Web sites aren’t just the rage these days, they’re a re-
quirement. Users have become so accustomed to fully interactive
Web sites that they think something’s wrong when they encoun-
ter a static, non-interactive page. With that in mind, we want to
be able to send notifi cations to our users as they are using the site.

To do this, we’ll utilize Windows Azure Queue and Table stor-
age mechanisms to build a message delivery framework. Th e client
side will use jQuery combined with the jQuery Gritter plugin to
display notifi cations in the user’s browser as a toast, similar to the
messages that fade in above the Windows system tray when you
receive a new Outlook e-mail, instant message or tweet.

When a user needs to be sent a notifi cation, it will be inserted
into the queue. As the worker role processes each item in the queue,
it will dynamically determine how to handle each one. In our case,

Hoffman.Dudek.Azure.0110.Lay6_38-42.indd 39 12/11/09 2:11 PM

hollywoodhackers.codeplex.com/SourceControl/ListDownloadableCommits.aspx

msdn magazine40 Cloud Storage

there is only one thing for the engine to do, but in a complex CRM
Web site or helpdesk site, the possibilities are endless.

When the worker role comes across a user notifi cation in the
queue, it will store the notifi cation in table storage and delete it
from the queue. Th is allows messages to be persisted long-term
and wait for the user to log in. Messages in queue storage have a
short maximum lifespan and will never last more than a few days.
When the user accesses the Web site, our jQuery script will asyn-
chronously pull any messages out of the table and display them
in the browser by invoking a method on a controller that returns
JavaScript Object Notation (JSON) in a well-known shape.

Although the queue only handles strings or byte arrays, we can
store any type of structured data in the queue by serializing it to

binary and then converting it back when we need to use it. Th is
becomes a powerful technique for passing strongly typed objects
to the queue. We’ll build this into the base class for our queue mes-
sages. Th en our system message class can contain our data and
the entire object can be submitted into the queue and utilized as
needed (see Figure 2).

Keep in mind that in order to use the BinaryFormatter class,
your Windows Azure worker role needs to be running in full-trust
mode (you can enable this through your service confi guration fi le).

Now we’ll need a simple wrapper to interact with our queue. At
its core, we need the ability to insert a message into the queue, get
any pending messages, and clear the queue (see Figure 3).

We also need to set up a wrapper for our table storage so user
notifi cations can be stored until they log in to the site. Table data is
organized using a PartitionKey, which is the identifi er for a collection
of rows, and a RowKey, which uniquely identifi es each individual
row in a certain partition. Th e choice of what data you use for a
PartitionKey and a RowKey could be one of the most important
design decisions you make when using table storage.

Th ese features allow load-balancing across storage nodes and
provide built-in scalability options in your application. Regardless
of the data-center affi nity of your data, rows in table storage with
the same partition key will be kept within the same physical data
store. Because messages are stored for each user, the partition key
will be the UserName and the RowKey will be a GUID that iden-
tifi es each row (see Figure 4).

Now that our storage mechanisms are in place, we need a worker
role that acts as our engine; processing messages in the background
of our e-commerce site. To do this, we defi ne a class that inherits
from the Microsoft .ServiceHosting.ServiceRuntime.RoleEntry-
Point class and associate it with the worker role in our cloud ser-
vice project (see Figure 5).

Let’s walk through the worker role code. Aft er initializing and
setting up the required queue and table storage, the code will en-

namespace HollywoodHackers.Storage.Queue
{
 public class StdQueue<T> :
 StorageBase where T : QueueMessageBase, new()
 {
 protected CloudQueue queue;
 protected CloudQueueClient client;

 public StdQueue(string queueName)
 {
 client = new CloudQueueClient
 (StorageBase.QueueBaseUri, StorageBase.Credentials);
 queue = client.GetQueueReference(queueName);
 queue.CreateIfNotExist();
 }
 public void AddMessage(T message)
 {
 CloudQueueMessage msg =
 new CloudQueueMessage(message.ToBinary());
 queue.AddMessage(msg);
 }
 public void DeleteMessage(CloudQueueMessage msg)
 {
 queue.DeleteMessage(msg);
 }
 public CloudQueueMessage GetMessage()
 {
 return queue.GetMessage(TimeSpan.FromSeconds(60));
 }
 }
 public class ToastQueue : StdQueue<ToastQueueMessage>
 {
 public ToastQueue()
 : base("toasts")
 {
 }
 }
}

Figure 3 Wrapper to Interact with Queue

namespace HollywoodHackers.Storage.Repositories
{
 public class UserTextNotificationRepository : StorageBase
 {
 public const string EntitySetName =
 "UserTextNotifications";
 CloudTableClient tableClient;
 UserTextNotificationContext notificationContext;
 public UserTextNotificationRepository()
 : base()
 {
 tableClient = new CloudTableClient
 (StorageBase.TableBaseUri, StorageBase.Credentials);
 notificationContext = new UserTextNotificationContext
 (StorageBase.TableBaseUri,StorageBase.Credentials);

 tableClient.CreateTableIfNotExist(EntitySetName);
 }
 public UserTextNotification[]
 GetNotificationsForUser(string userName)
 {
 var q = from notification in
 notificationContext.UserNotifications
 where notification.TargetUserName ==
 userName select notification;
 return q.ToArray();
 }
 public void AddNotification
 (UserTextNotification notification)
 {
 notification.RowKey = Guid.NewGuid().ToString();
 notificationContext.AddObject
 (EntitySetName, notification);
 notificationContext.SaveChanges();
 }
 }
}

Figure 4 Wrapper for Table Storage

Queues in the cloud don’t work
quite like queues in your plain-

vanilla .NET application.

Hoffman.Dudek.Azure.0110.Lay6_38-42.indd 40 12/11/09 2:11 PM

41January 2010msdnmagazine.com

ter a loop. Every 10 seconds, it will process messages in the queue.
Each time we pass through the processing loop, we will get mes-
sages from the queue until we fi nally return null, indicating that
we've emptied the queue.

It’s worth reiterating that you can never look at more than 20
messages from the queue. Anything that does processing on a
queue has a limited amount of time to do something meaningful
with each queue message before the queue message is considered
timed out and shows back up in the queue—making itself avail-
able for processing by other workers. Each message gets added as a
user notifi cation in table storage. An important thing to remember
about worker roles is that once the entry point method fi nishes,
that worker role is done. Th is is why you need to keep your logic
running inside a loop.

From the client side, we need to be able to return the messages
as JSON so jQuery can asynchronously poll and display new user
notifi cations. To do this, we’ll add some code to the message con-
troller so we can access the notifi cations (see Figure 6).

In ASP.NET MVC 2 under Visual Studio 2010 beta 2 (the environ-
ment we used to write this article), you cannot return JSON data to
jQuery or any other client without the JsonRequest Behavior.Allow-
Get option. In ASP.NET MVC 1, this option is not necessary. Now
we can write the JavaScript that will call the GetMessages method
every 15 seconds and display the notifi cations as toast-style mes-
sages (see Figure 7).

public JsonResult GetMessages()
{
 if (User.Identity.IsAuthenticated)
 {
UserTextNotification[] userToasts = toastRepository.
GetNotifications(User.Identity.Name);
object[] data =
(from UserTextNotification toast in userToasts
 select new { title = toast.Title ?? "Notification",
 text = toast.MessageText }).ToArray();
 return Json(data, JsonRequestBehavior.AllowGet);
 }
 else
 return Json(null);
}

Figure 6 Returning Messages as JSON

$(document).ready(function() {

 setInterval(function() {
 $.ajax({
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 url: "/SystemMessage/GetMessages",
 success: function(data) {
 for (msg in data) {
 $.gritter.add({
 title: data[msg].title,
 text: data[msg].text,
 sticky: false
 });
 }
 }
 })
 }, 15000)
});

Figure 7 Notifi cations as Toast-Style Messages

public class WorkerRole : RoleEntryPoint
{
 ShoppingCartQueue cartQueue;
 ToastQueue toastQueue;
 UserTextNotificationRepository toastRepository;

 public override void Run()
 {
 // This is a sample worker implementation.
 //Replace with your logic.
 Trace.WriteLine("WorkerRole1 entry point called",
 "Information");
 toastRepository = new UserTextNotificationRepository();
 InitQueue();
 while (true)
 {
 Thread.Sleep(10000);
 Trace.WriteLine("Working", "Information");

 ProcessNewTextNotifications();
 ProcessShoppingCarts();
 }
 }
 private void InitQueue()
 {
 cartQueue = new ShoppingCartQueue();
 toastQueue = new ToastQueue();
 }
 private void ProcessNewTextNotifications()
 {
 CloudQueueMessage cqm = toastQueue.GetMessage();
 while (cqm != null)
 {
 ToastQueueMessage message =
 QueueMessageBase.FromMessage<ToastQueueMessage>(cqm);

 toastRepository.AddNotification(new
 UserTextNotification()

 {
 MessageText = message.MessageText,
 MessageDate = DateTime.Now,
 TargetUserName = message.TargetUserName,
 Title = message.Title
 });
 toastQueue.DeleteMessage(cqm);
 cqm = toastQueue.GetMessage();
 }
 }
 private void ProcessShoppingCarts()
 {
 // We will add this later in the article!
 }
 public override bool OnStart()
 {
 // Set the maximum number of concurrent connections
 ServicePointManager.DefaultConnectionLimit = 12;

 DiagnosticMonitor.Start("DiagnosticsConnectionString");
 // For information on handling configuration changes
 // see the MSDN topic at
 //http://go.microsoft.com/fwlink/?LinkId=166357.
 RoleEnvironment.Changing += RoleEnvironmentChanging;
 return base.OnStart();
 }
 private void RoleEnvironmentChanging(object sender,
RoleEnvironmentChangingEventArgs e)
 {
 // If a configuration setting is changing
 if (e.Changes.Any(change => change is
RoleEnvironmentConfigurationSettingChange))
 {
 // Set e.Cancel to true to restart this role instance
 e.Cancel = true;
 }
 }
}

Figure 5 Worker Role Acting as Engine

Hoffman.Dudek.Azure.0110.Lay6_38-42.indd 41 12/11/09 2:11 PM

www.msdnmagazine.com

msdn magazine42 Cloud Storage

Submitting and Processing a Shopping Cart
For our sample application, another key scenario that we wanted to
enable using queue storage was submitting shopping carts. Holly-
wood Hackers has a third-party fulfi llment system (they can’t keep
all those gadgets in their little warehouse) so the engine needs to
do some processing on the cart. Once the engine is fi nished do-
ing its processing, it will submit a message to the user notifi cation
queue to let that user know that the shopping cart has been pro-
cessed (or that something went wrong). If the user is online when
the cart is processed, he will receive a pop-up toast message from
the system. If he isn’t online, he will receive that pop-up message

the next time he logs on to the site, as shown
in Figure 8.

What we need fi rst are some wrapper classes
to allow us to interact with the shopping cart
queue. Th ese wrappers are fairly simple and if
you want to see the source code for them, you
can check them out on the CodePlex site.

 Unlike a standard CRUD (create, read, up-
date, delete) repository, read operations on a
queue aren't simple read operations. Remem-
ber that whenever you get a message from a
queue, you’ve got a limited amount of time

during which to process that message and either fail the opera-
tion or delete the message to indicate completed processing. This
pattern doesn't translate well into the repository pattern so we’ve
left that abstraction off the wrapper class.

Now that we have the code to interact with the shopping cart
queue, we can put some code in the cart controller to submit the
cart contents to the queue (see Figure 9).

In a real-world scenario, you would get the shopping cart from
some out-of-process state like a session store, a cache or from a
form post. To keep the article code simple, we’re just fabricating
the contents of a cart.

Finally, with the shopping cart contents sitting in the queue,
we can modify our worker role so that it periodically checks the
queue for pending carts. It will pull each cart out of the queue one
at a time, allow itself a full minute for processing, and then submit
a message to the user notifi cation queue telling the user that the
shopping cart has been processed (see Figure 10).

With the queue message being pulled off and put into the user
notification table, the jQuery Gritter code sitting in the master
page will then detect the new message on the next 15-second poll
cycle and display the shopping cart toast notification to the user.

Summary and Next Steps
The goal of this article is to get developers to shed the safety blan-
ket of their physical datacenters and realize that you can do more
with Windows Azure than create simple “Hello World” Web sites.
With the power of Windows Azure Queues and Windows Azure
table storage, and using this power for asynchronous messaging
between the application and its worker role(s), you truly can fuel
your application’s engine with Windows Azure.

To keep the article clear and easy to read, we left quite a bit of
the code as is, without refactoring. As an exercise to fl ex your new
Windows Azure muscles, try to refactor some of the code in this article
to make the use of queues more generic, and even create a stand-alone
assembly that contains all the code necessary to do asynchronous mes-
saging and notifi cations for any ASP.NET MVC Web site.

Th e main thing is to roll up your sleeves, create some sites and
see what you can do. Th e code for this article can be found on the
CodePlex site for Hollywood Hackers: hollywoodhackers.codeplex.com.

You can find the authors blogging and ranting nonstop about new technol-
ogy at exclaimcomputing.com. KEVIN HOFFMAN and NATE DUDEK are the
co-founders of Exclaim Computing, a company specializing in developing
solutions for the cloud.

Figure 8 Sample User Notifi cation

public ActionResult Submit()
 {
 ShoppingCartMessage cart = new ShoppingCartMessage();
 cart.UserName = User.Identity.Name;
 cart.Discounts = 12.50f;
 cart.CartID = Guid.NewGuid().ToString();
 List<ShoppingCartItem> items = new List<ShoppingCartItem>();
 items.Add(new ShoppingCartItem()
 { Quantity = 12, SKU = "10000101010",
 UnitPrice = 15.75f });
 items.Add(new ShoppingCartItem()
 { Quantity = 27, SKU = "12390123j213",
 UnitPrice = 99.92f });
 cart.CartItems = items.ToArray();
 cartQueue.AddMessage(cart);
 return View();
 }

Figure 9 Submitting Shopping Cart to Queue

private void ProcessShoppingCarts()
{
 CloudQueueMessage cqm = cartQueue.GetMessage();

 while (cqm != null)
 {
 ShoppingCartMessage cart =
 QueueMessageBase.FromMessage<ShoppingCartMessage>(cqm);

 toastRepository.AddNotification(new UserTextNotification()
 {
 MessageText = String.Format
 ("Your shopping cart containing {0} items has been
processed.",
 cart.CartItems.Length),
 MessageDate = DateTime.Now,
 TargetUserName = cart.UserName
 });
 cartQueue.DeleteMessage(cqm);
 cqm = cartQueue.GetMessage();
 }
}

Figure 10 Checking the Queue for Pending Shopping Carts

Hoffman.Dudek.Azure.0110.Lay6_38-42.indd 42 12/11/09 2:57 PM

http://hollywoodhackers.codeplex.com
http://exclaimcomputing.com

43January 2010

CLO U D SEC UR IT Y

Crypto Services and
Data Security in
Windows Azure

Many early adopters of the Windows Azure platform still
have a lot of questions about platform security and its support
of cryptography. My hope here is to introduce some of the basic
concepts of cryptography and related security within the Windows
Azure platform. Th e details of this topic could fi ll whole books, so I
am only intending to demonstrate and review some of the crypto-
graphy services and providers in Windows Azure. Th ere are also
some security implications for any transition to Windows Azure.

As with any new platform or service delivery method, you’ll
be faced with new challenges. You’ll also be reminded that some
of the classic problems still exist and even that some of the same
solutions you’ve used in the past will still work very well. Any
application engineer or designer should think about this topic as
it relates to the kind of data you may be storing as well as what you

Disclaimer: This article is based on a pre-release version of
Windows Azure. All information is subject to change.

This article discusses:
• Windows Azure crypto basics

• Key storage and security threats

• Immutability and in-memory resources

• Message queues

Technologies discussed:
Windows Azure

Jonathan Wiggs

need to persist. Combine this into a methodical approach and you
and your customers will be well-served.

So why would I think this information is needed within the
developer community? Over the last several months I’ve seen an
increasing number of posts on the community sites regarding
security in general with Azure. Microsoft has suggested encryption
as part of securing application-layer data with Azure projects.
However, proper understanding of both encryption and the .NET
security model will be needed by product designers and developers
building on the Windows Azure platform.

One thing I noticed was an increasing percentage of posts
specifi c to crypto services and key storage. Th is was especially true
with regards to Windows Azure Storage services. It got my own
curiosity going, and I discovered it was a worthy topic to discuss
in some depth.

During the course of this article, I’ll be making heavy use of
Cryptographic Service Providers (CSPs), which are implementations
of cryptographic standards, algorithms and functions presented
in a system program interface. For the purposes of this article I’ll
be using the symmetric encryption algorithm provided by the
Rijndael cryptography class.

Crypto Basics
Th e Windows Azure SDK extends the core .NET libraries to
allow the developer to integrate and make use of the services
provided by Windows Azure. Access to the CSPs has not been

Project3 10/29/09 9:20 AM Page 1

www.aspose.com

45January 2010msdnmagazine.com

restricted within Windows Azure projects and services. Th is means
much of your development with regard to encrypting and decrypt-
ing data will remain the same with regards to the assemblies you’re
accustomed to using. However, there are changes in the underlying
architecture, issues of when or where to encrypt data and where
and how to persist keys. I’ll discuss key and secret data persistence
a little later in this article.

You also have access to the full array of cryptographic hash
functionality in Windows Azure, such as MD5 and SHA. Th ese are
vital to enhance the security of any system for things such as
detecting duplicate data, hash table indexes, message signatures and
password verifi cation.

A consistent recommendation is to never create your own or use
a proprietary encryption algorithm. Th e algorithms provided in
the .NET CSPs are proven, tested and have many years of exposure
to back them up. Using XOR to create your own cipher process is
not the same, and does not provide the same level of data security.

A second recommendation is to use the RNGCryptoService-
Provider class to generate random numbers. Th is ensures random
numbers generated by your application will always have a very high
level of entropy, making it hard to guess at the patterns.

Th e code below implements a single static member that returns
a 32-bit int value that is random and meets the requirements to
be cryptographically secure. Th is is made possible by using the
byte generator in the RNGCryptoServiceProvider found in the
Cryptography namespace:

public static int GenerateRandomNumber() {
 byte[] GeneratedBytes = new byte[4];
 RNGCryptoServiceProvider CSP = new RNGCryptoServiceProvider();
 CSP.GetBytes(GeneratedBytes);
 return BitConverter.ToInt32(GeneratedBytes, 0);
}

Figure 1 shows a simple example of using the CSPs within the
Windows Azure platform. Th ree public members are exposed for
use within any Windows Azure application. Th e fi rst accepts a
binary key and initialization vector (IV), as well as a binary buff er
of unencrypted data and returns its encrypted equivalent. Th e
second member does the reverse by decrypting the data. Th e third
member returns the calculated hash value for that data. Notice here
that I’m using the Rijndael CSP for managed access to a provider.
I’m also storing data and keys in binary buff ers and writing over
them as soon as I’m fi nished with them. I’ll touch on this topic later
when I discuss immutability.

Th is is the simplest example of encrypting data and returning
the encrypted results as a byte array. Th is is not code that should
be used in a secure environment without all the proper security
analysis, only an example.

Th e example in Figure 2 has an almost identical structure to
the one in Figure 1. In this case, I’m decrypting data based on the

same key and IV, only with an encrypted byte buff er as a parameter.
Th e only real diff erence here is that when I create the encryption
stream, I specify that I’m creating a symmetric decryptor and not
an encryptor as I did previously.

Key Storage and Persistence
As with any encryption strategy at the application or enterprise layer,
the encryption and decryption infrastructure is less than half the
battle. Th e real problem comes with key storage and key persistence.
Th e data security provided by encrypting data is only as secure
as the keys used, and this problem is much more diffi cult than
people may think at fi rst. Systems I’ve reviewed have stored crypto
keys everywhere, from directly in source code, to text fi les named
something clever, to fl at fi les stored in hard-to-fi nd directories.

An important question of key persistence comes about when
considering where to store and keep keys in a cloud environment.
Some people have expressed concern that by persisting keys in
the cloud you’re exposing yourself to a security threat from the
cloud itself. Th at is, if someone can get physical access to your
data, data stored on disk may not be encrypted by default (as is
the case with Windows Azure). Considering that SQL Azure does
not yet support encryption either, this becomes a security decision
to be considered in the planning and design of your solution. As
with any security implementation, the risks must be measured,
weighed and mitigated.

But that doesn’t mean cloud platforms in general—and Windows
Azure in particular—are inherently not secure. What other options
may be available to you?

One thing to note right away is that no application should ever
use any of the keys provided by Windows Azure as keys to encrypt
data. An example would be the keys provided by Windows Azure

public static byte[] SampleEncrypt(byte[] dataBuffer,
 byte[] Key, byte[] IV) {

 MemoryStream InMemory = new MemoryStream();
 Rijndael SymetricAlgorithm = Rijndael.Create();
 SymetricAlgorithm.Key = Key;
 SymetricAlgorithm.IV = IV;
 CryptoStream EncryptionStream = new CryptoStream(InMemory,
 SymetricAlgorithm.CreateEncryptor(), CryptoStreamMode.Write);
 EncryptionStream.Write(dataBuffer, 0, dataBuffer.Length);
 EncryptionStream.Close();
 byte[] ReturnBuffer = InMemory.ToArray();
 return ReturnBuffer;
}

Figure 1 Simple Encryption

public static byte[] SampleDecrypt(byte[] dataBuffer,
 byte[] Key, byte[] IV) {

 MemoryStream InMemory = new MemoryStream();
 Rijndael SymetricAlgorithm = Rijndael.Create();
 SymetricAlgorithm.Key = Key;
 SymetricAlgorithm.IV = IV;
 CryptoStream EncryptionStream = new CryptoStream(InMemory,
 SymetricAlgorithm.CreateDecryptor(), CryptoStreamMode.Write);
 EncryptionStream.Write(dataBuffer, 0, dataBuffer.Length);
 EncryptionStream.Close();
 byte[] ReturnBuffer = InMemory.ToArray();
 return ReturnBuffer;
}

Figure 2 Simple Decryption

Access to the CSPs has not been
restricted within Windows Azure

projects and services.

www.msdnmagazine.com

msdn magazine46 Cloud Security

for the storage service. Th ese keys are confi gured to allow for easy
rotation for security purposes or if they are compromised for any
reason. In other words, they may not be there in the future, and
may be too widely distributed.

Storing your own key library within the Windows Azure Storage
services is a good way to persist some secret information since you
can rely on this data being secure in the multi-tenant environment
and secured by your own storage keys. Th is is diff erent from using
storage keys as your cryptography keys. Instead, you could use the
storage service keys to access a key library as you would any other
stored fi le. Th is is fairly straightforward to implement. For example,
say you wanted to implement your own key library as a simple text
fi le to persist some secret information. Th is would be best stored
as data in the blob service API as opposed to either the queue or
table storage service. Th e blob area of the storage service is the best
place for data such as binary audio and images or even text fi les.
Th e queue portion of the service is focused on secure messaging
for small data objects that do not persist for long periods of
time. Th e table storage system is great for structured data and
information that needs to be persisted and accessed in specifi c
parts, identical to relational data in a database.

You start by persisting a key in a CSP key container. Th is is a great
option for storing a public key that is diffi cult to retrieve without
physical access to the server. With Windows Azure, where the location
of applications and data is abstracted, this would make even a public
key stored in this manner extremely diffi cult to fi nd and retrieve. Th e
creation of a key storage container is very simple; here is an example
using the RSA provider that creates our key. If the key container
already exists, its key is loaded into the provider automatically:

CspParameters CspParam = new CspParameters();
CspParam.KeyContainerName = "SampleContainerName";
RSACryptoServiceProvider RSAProvider = new
 RSACryptoServiceProvider(CspParam);

Th ere are also other options you can consider based on your
needs. For example, you can use specifi c fl ags to secure the key to
the user that created the container. Th is can be done with the use
of CspParameters fl ags member:

CspParam.Flags = CspProviderFlags.UseUserProtectedKey;

Now create a request to the blob API using your Windows Azure
storage key. Th e request itself requires both a signature string as well
as a proper request header. Th e proper header format is:

Authorization="[SharedKey|SharedKeyLite] <AccountName>:<Signature>"

In this case, I want to maximize the security of my persisted
secret data, so I’ll use the SharedKey authorization method. Th e
signature portion of the header is a hash-based authentication code
that is generated by the SHA256 algorithm and your storage key

against the data in the signature. Th is hash is then encoded into a
base64 string. A sample signature might look like this:

"PUT\n\ntext/plain; charset=UTF-8\n\nx-ms-Date:Fri, 12 Sep 2009
22:33:41 GMT\nx-ms-meta-m1:v1\nx-ms-meta-m2:v2\n/exampleaccount/
storageclientcontainer/keys.txt"

As described earlier, I would then generate the base64 encoded
hash and use that in the header as the signature. Th is key fi le
then could only be accessed by those who have an application
that runs in your application space in the Windows Azure cloud
with access to your storage keys. So with key persistence, you can
either manage the keys outside the Windows Azure framework or
inside the cloud itself.

Key and Security Threats
One item worth covering at least briefl y is key security. Th is is a
slightly diff erent topic than how you persist and store keys. Keys
themselves are essentially strings of characters that have a very high
level of entropy, meaning an extremely high level of randomness. In
fact, this can lead to a common attack process to fi nd keys within a
system. For instance, if you take a dump of memory or an area of
data on a hard disk, the areas of extremely high entropy are great
places to start mining for keys.

Apart from choosing good security practices based on the needs
of your application and securing your data, how else can you protect
yourself? To start, always assume that the processes you’re using to
decrypt, encrypt and secure data are well-known to any attacker.
With that in mind, make sure you cycle your keys on a regular
basis and keep them secure. Give them only to the people who
must make use of them and restrict your exposure to keys getting
outside of your control.

Finally, invest time in diagramming the fl ow of your data,
both secure and unsecure. Take a look at where your data goes
and how, where you store secrets, and especially where your
data crosses boundaries such as public and private networks.
Th is will give you a good idea of where your data is exposed, and
allow you to target those risks with plans for mitigating them in a
straightforward manner.

A related question I’ve been asked is whether Windows Azure
supports SSL. Th e short answer to this is yes! Windows Azure would
not be a very capable cloud platform for Web-based services and
applications without support for SSL.

Encryption with SQL Azure
Th e release of SQL Server 2008 introduced a new feature: trans-
parent data encryption (TDE). For the fi rst time, SQL Server can
encrypt its data fully with very little eff ort needed beyond what
was required for the limited encryption available in SQL Server
2005. However, the initial version of SQL Azure storage does not
yet support database-level encryption, though it’s a feature being
considering for a future version. It should be noted that SQL Azure
is only available via port 1433 and only via TCP connections; it
currently cannot be exposed on other ports.

Even though this feature is not yet integrated into Windows Azure,
there are several security features of SQL Azure that the developer
or designer should keep in mind. First of all, SQL Azure supports
the tabular data stream (TDS). Th is means you can for the most

Windows Azure queues provide
a similar set of functionality to

the Microsoft Message Queuing
(MSMQ) services.

NetAdvantage for Silverlight Data Visualization is a
comprehensive collection of User Interface Controls
to Build Rich Dashboards, Visualize Business Data and
Empower Decision Makers. Go to infragistics.com/sldv
today to get the power of Infragistics behind you and
create high end BI applications without writing a lot
of code.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

Copyright 1996-2009 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo are registered trademarks of Infragistics, Inc.

Project3 11/5/09 2:44 PM Page 1

www.infragistics.com/sldv

msdn magazine48 Cloud Security

part connect and interact with the database just like you’ve always
done. Taking advantage of ADO.NET encryption and trusted server
certifi cates is defi nitely worth considering, especially when accessing
your SQL Azure database from outside the cloud.

Th e connection properties Encrypt=True and TrustServer-
Certificate = False, in the proper combination, will ensure
data transmission is secure and can help prevent man-in-the-
middle attacks. Th is is also a requirement for connecting to SQL
Azure—you cannot connect to SQL Azure unless connection-level
encryption has been turned on.

Th e second security feature of SQL Azure you should familiarize
yourself with is the SQL Azure fi rewall. Th is tool will be very
familiar to those who have used local soft ware fi rewalls or even SQL
Server security surface-area toolsets. It lets you allow or prevent
connections from various sources, all the way down to specifi c
IP addresses or ranges. Th e SQL Azure fi rewall can be managed
via the SQL Azure portal or directly in the master database with
the provided stored procedures such as sp_set_fi rewall_rule and
sp_delete_fi rewall_rule.

As with any implementation of SQL Server, user account
management is another aspect that must be tightly controlled. Th e
fi rewall within SQL Azure is indeed a great tool, but it should not
be relied on by itself. User accounts with strong passwords and
confi gured with specifi c rights should be used as well to complement
your data security model.

Th ese new tools go a long way toward making SQL Azure a very
tightly secured managed platform for cloud-based applications.
If you’re trying this service out for the fi rst time, remember that
before you can connect, you must initially confi gure the SQL
Azure fi rewall. Th is must fi rst be done through the SQL Azure
Web portal, but can be done later directly in the master database
as described earlier.

Immutability and In-Memory Resources
Immuta-what? Immutability in object-oriented programming
simply means that the object’s state cannot be modifi ed aft er its
initial creation. A concrete example in the Microsoft .NET Frame-
work is the string class. When the value of a string is changed in
code, the original string in memory is simply abandoned and a
new string object is created to store the new value.

Why is this important from a security perspective? Well, that
string may stay in memory for as long as the server is online without
a reboot. You really have no way of knowing with certainty how long
a string will stay in memory. Th is is important when considering
how to store information in code such as cryptographic keys or
copies of encrypted and decrypted data. By leaving a trail of that
data behind you in memory, you leave behind information that
exposes your secrets to the clever data thief.

Because of this vulnerability, it is always recommended that such
data be stored in buff ers such as byte arrays. Th at way, as soon as
you’re done with the information, you can overwrite the buff er
with zeroes or any other data that ensures the data is no longer
in that memory.

Because Windows Azure is a cloud environment I’ve been asked
if this is a still a concern, and it’s a good question. True, in the
Windows Azure system individual applications are isolated from
each other. Th is makes exposing data in memory much less of an
issue in general. It would be very diffi cult to associate applications
and memory space in the cloud. However, I still recommend the
cautious approach and cleaning up aft er yourself. You may not
always run this piece of code in the cloud, and other vulnerabilities
may expose themselves in the future. While less of a concern, keep
this habit, and persist this approach.

In Figure 3 I’ve modifi ed the previous example that generated
random integers. Here I added a bit of error-handling to ensure
that I have a fi nally block that always runs, no matter what. Within
that block I am doing a very simple iteration through the values
in the byte array, overwriting each position with a zero. Th is
overwrites that data in memory because byte arrays are mutable.
I know that this number is no longer in memory owned by the
execution of this member. Th is can be done to any byte array used
as a data buff er for items such as keys, initialization vectors, and
encrypted or decrypted data.

Message Queues
Windows Azure queues provide a similar set of functionality to the
Microsoft Message Queuing (MSMQ) services that are common
to enterprise Windows applications. Th e message queue service
within Windows Azure stores text-based messages no larger than
8 KB in a fi rst-in, fi rst-out (FIFO) manner. Th is allows services and
applications running on diff erent servers—or in this case within
the cloud—to interact and send actionable messages to each other
in a secure and distributed manner.

Th ere are fi ve basic functions that allow you to push a message to
the queue, peek a message, pull a message and so on. Th e question
that has come up most oft en is, how secure are these messages?

Many of the features currently supported by MSMQ are not yet
supported within the Windows Azure messaging APIs. However,

public static int GenerateRandomNumber() {
 byte[] GeneratedBytes = null;

 try {
 GeneratedBytes = new byte[4];
 RNGCryptoServiceProvider CSP =
 new RNGCryptoServiceProvider();
 CSP.GetBytes(GeneratedBytes);
 return BitConverter.ToInt32(GeneratedBytes, 0);
 }
 finally {
 for (int x = 0; x < GeneratedBytes.Length; x++) {
 GeneratedBytes[x] = 0;
 }
 }
}

Figure 3 Clearing Data from Memory

The data security provided by
encrypting data is only as secure

as the keys used.

there are similarities. As with the blob data service, the messaging
services makes use of the same REST get and put interfaces. Writing
and reading messages can be done either in code or with a URI and
Web request calls that can be encrypted via SSL for requests over
unsecured networks. Th is means transmission of requests is encrypted.

Also, as with the other storage services within Windows Azure,
any access to a message queue must make use of the same storage
service key. Only applications with access to the key can view or add
messages to these queues. Th is makes any additional encryption of
these messages overkill unless the body of these messages is going
to be leaving the secured network or secured application space.

Wrapping It All Up
In today’s drive toward service-oriented architecture and solutions,
few can consider doing business without cloud applications. Th e

isolation of data and services in a multi-tenant environment such
as Windows Azure is one of the major concerns of anyone who has
an eye toward using private data.

As with any new platform, security and cryptography features
will continue to evolve in the Windows Azure platform. Micro-
soft has taken great pains to not only provide a secure, isolated
environment, but also to expose what it has done to allow for
public certifi cation of these measures. Th is should give engineers
confi dence that Microsoft wants to be a closer partner on security
and keeping systems and applications locked down.

Th e whole point of security and especially cryptography is to
make your information and processes very hard to gain access to.
We can defi ne “hard” as meaning that it is beyond the capability of
any adversary to break into such a system for the duration of the life
of that data or process. Th is is, however, a relative defi nition based
on the requirements of the application or data being used. Th at is
why I’ve continued to emphasize the need of constant evaluation
of security and cryptographic requirements through this article.
Th at is essential to ensuring these tools can be used eff ectively to
make your cloud system secure and to protect your data.

JONATHAN WIGGS is currently a principal engineer and development manager
at Nuance Communications Inc. Read his blog at jonwiggs.com or contact Wiggs
directly at Jon_Wiggs@yahoo.com.

Always assume that the
processes you’re using to

decrypt, encrypt and secure data
are well-known to any attacker.

mailto:Jon_Wiggs@yahoo.com
www.inishtech.com/redmond
http://jonwiggs.com

Project6 11/5/09 2:51 PM Page 1

www.xceed.com

Project6 11/5/09 2:52 PM Page 2

www.xceed.com

msdn magazine52

 CODE C L EANUP

9 Useful Tactics for Paying
Back Technical Debt

In the December 2009 issue of MSDN Magazine
(msdn.microsoft.com/magazine/ee819135) I gave advice for identifying and
building a case to tackle technical debt. In summary, I believe it’s
important to identify the debt that’s likely to harm you in the near
future. Introducing technical excellence to seldom touched parts of
your codebase won’t help you realize productivity gains tomorrow.

Also, I hope that you understand the importance of obtaining
license and buy-in from management on the importance of paying
back debt and have some basic tools to start building a rock-solid
case for the same.

Now let’s turn our attention to tactics that might help you pay
back high interest technical debt. Th ere are many proven tactics in
dealing with technical debt. A full catalog of the patterns, tools and
techniques for wrangling diffi cult code is well beyond the scope of
this article. Instead, I’ll supply some of the more applicable tricks
I’ve added to my repertoire over the years.

This article discusses:
• Continuous learning

• Working together effectively

• Test and measure results

• Move forward, but don’t stop improving

Technologies discussed:
Testing, Design Patterns

David Laribee

Learn, Learn, Learn
If you know you have issues, but you’re not sure how to fi x
them, it might be time to acquire new knowledge and skills
that will help you raise your code out of the muck. Learning,
as they say, is fundamental.

Learning can take many forms. You might need outside help in
the form of consultants or classroom training. You might be able
to get by with books.

Try to involve your team in the learning process. Perhaps you
could start a book club within your team. Maybe you can bring
back the benefi ts of a course or conference in the form of an
instructive presentation.

A collaborative and hands-on technique for involving the whole
team is the Coding Dojo. A basic Coding Dojo involves picking a
programming challenge and tackling that as a group. I’ve experi-
mented with a rotating pair watched by a peanut gallery. In this
method, two members of the team work together on a program-
ming task, with “tag” intervals where other members of the team
enter the dojo as another person leaves.

If you learn best at your own pace or want to start a book club,
there are a couple of good texts I can recommend on the subject
of improving the maintainability of legacy code.

Michael Feathers’ aptly titled volume, “Working Eff ectively with
Legacy Code” (Prentice Hall 2004), provides a patterns-based
approach to teasing out legacy code. Th e author makes the statement
that legacy code is untested code. It is diffi cult to change, and you

http://msdn.microsoft.com/magazine/ee819135

53January 2010msdnmagazine.com

can’t be certain your changes aren’t introducing regression defects.
In this book you’ll fi nd a number of focused strategies and tactics
for reducing coupling in your code and making it more testable.

Kyle Baley and Donald Belcham have one of the newest books
on the scene, “Brownfi eld Application Development in .NET”
(Manning Publications, 2010). Th ey take a systemic approach
toward improving so-called brownfi eld (versus new development.
or greenfi eld) codebases. One benefi t of this book is that, while the

approaches they recommend are broadly applicable, their code
examples are designed around the Microsoft .NET Framework,
a likely benefi t to readers of this article. I quite like how they take
a team-practices approach as well. Th at is, while you’re making
changes in a wild codebase, the confi dence you’ll get from
implementing some basics such as continuous integration and
version control is worth its weight in gold.

Diplomacy
Th ere’s a high probability the messy code you have to deal with was
written by someone currently on your team. It’s important that you
take this into account when reasoning about the code in its current
state. Hurt feelings lead to defensiveness that, in turn, leads to slow
going on the improvement train.

Try defusing the situation with anecdotes of mistakes you’ve
made in the past. Stay professional, avoid personal attacks and
encourage the author of the original code to make suggestions
about how you might go about improving it.

Th en again, it’s quite possible you’re one of the developers that
contributed to your mess. I want you to repeat aft er me: “I am not
my code. I am learning every day and am dedicated to fi nding a
better way moving forward. I will not let my colleagues’ critiques
or my own ego stand in the way of my team’s eff ort to improve.”

In truth, it takes time to get over these issues. I fi nd the best way
to reason and talk about improvements is to focus on the present
and near future rather than the past. What could this code be?
What do you want to see it evolve into?

A little diplomacy and consideration for other people’s emotional
investment in work that’s already been committed will go a long,
long way toward moving forward.

Introduce a Shape
Some code is so horrendous it’s hard to understand what’s going
on at all. Perhaps all classes are in a single namespace. Perhaps
the codebase is in such a tangled web of dependencies that
following the stack greatly exceeds your short-term memory’s
ability to keep your place.

Symptoms like these oft en imply a diagnosis of debt at the
architectural and design levels rather than at an implementation
level. Th is, as far as I’m concerned, is the most insidious kind of
debt and usually leads to the greatest costs of change.

Brian Foote and Joseph Yoder call architectures with no discern-
ible shape, where everything depends on everything else, the “big
ball of mud” (laputan.org/mud):

“A big ball of mud is a casually, even haphazardly, structured
system. Its organization, if one can call it that, is dictated more by
expediency than design. Yet, its enduring popularity cannot merely
be indicative of a general disregard for architecture.”

I’d bet my last dollar that most soft ware applications in production
today are big balls of mud. Th is isn’t necessarily a value judgement.
Th ere are billions of lines of terrible code out there in the world
making people lots and lots of money. It stands to reason that big
balls of mud are fulfi lling the champagne dreams and caviar wishes
of many a business owner and shareholder.

Th e problem is that ball-of-mud applications become increasingly
costly to change. While the business environment remains dynamic,
the soft ware becomes infl exible. Th e typical strategy for dealing
with this is the soft ware equivalent of a nuclear bomb: the big
rewrite. Th ere are many risks associated with big rewrites and it’s
oft en better to try to improve the design of the incumbent system.

Before you can start to employ some of the lower-level techniques,
it’s oft en valuable to introduce a shape to your system. Th e typical
example is that of a layered architecture. Classically this means the
UI talks to services and services talk to some kind of model and
the model, in turn, talks to your persistence layer.

Shaping up your code into layers can be a very low-fi delity
activity. Start by organizing code into namespaces named aft er the
layers of your architecture.

Now you have your marching orders: enforce the rule that
higher-level layers (user interface layer) may only depend on the
next level up (services layer). As simple way of enforcing the rule
is to move your layers into separate projects in Visual Studio. Th e
solution won’t compile if you violate the rule.

By making the rule pass, you have decreased coupling. Th e model
is no longer coupled to your application’s views. By introducing a
shape you have increased cohesion. Classes inside your layer are
all working to the same purpose whether that be to display data to
an end user or to encapsulate business behavior.

Introduce facades between layers and make higher level layers
such as your UI depend on facades provided by lower level layers
rather than granular classes inside the layers. You can apply this
technique this process incrementally and opportunistically.

When you cover your code
with tests before you change
the code, you’re more likely to

catch any mistakes.

There’s a high probability the
messy code you have to deal
with was written by someone

currently on your team.

www.msdnmagazine.com

msdn magazine54 Code Cleanup

Th e power of a imposing a shape on the monolithic big ball of
mud is you can now start to identify more targeted opportunities
for paying back technical debt. Th at is, if you’re doing lots of work
in, say, CompanyX.ProductY.Model, you might drill down with a
static analysis tool to fi nd the most coupled or complicated classes.

Close Air Support with Tests
Th e process of making changes without changing system behavior
is called refactoring. Th ere are entire refactoring pattern languages
dedicated for both object-oriented (refactoring.com) and relational-
database (agiledata.org/essays/databaseRefactoringCatalog.html) code:
Extract Method, Split Table and so on. Th e fact of the matter is, it’s
diffi cult to apply these granular and safe methods when you don’t
fully understand the code base.

So how do you start making changes in a legacy project? Th e
fi rst thing to notice is that, given a choice, it is always safer to have
tests around the changes that you make. When you change code,
you can introduce errors. But when you cover your code with tests
before you change the code, you’re more likely to catch any mistakes.

Th e practice of shotgun surgery, plunging headlong into code
without any real confi dence the changes you’re introducing aren’t also
introducing dangerous defects, isn’t the only way to force a change.

Before you start changing code, determine whether there’s a hard
interface in the system against which you can write tests. Th ese
tests are of the black-box variety. Th at is, you’re feeding a system
inputs and inspecting the outputs. When you make your change,
continually run the tests to verify your changes haven’t broken
existing behavior.

Application of this tactic can be challenging when you’re tackling
parts of your system that are tightly coupled. Th e cost of testing
may very well exceed the benefi t of removing debt. Th is constant
cost-benefi t analysis permeates the process of turning a codebase
around and, sometimes, it’s more cost-eff ective to straight up re-
write an application or large section of an application’s codebase.

Measure Observable Effects
Build measurements around the area of code you’re improving. For
the sake of argument, let’s say that you’re trying to better organize
the core business logic of your application. Th ere are lots of paths
through the members in the types of this namespace: switch state-
ments, nested if statements and the like. A measurement such as
cyclomatic complexity can give you a rough sense of whether
improvement eff orts are simplifying your code.

You can obtain extremely specifi c measurements of specifi c parts
of your codebase with the NDepend code-analysis tool (ndepend.

com). NDepend provides a powerful Code Query Language (CQL)
over namespaces, types and members in your .NET assemblies.

Consider the CQL statements in Figure 1. Note that I’m probing
measurements like coupling and complexity (just a few of the many
metrics NDepend makes available) inside a particular namespace.
Th is implies that I’ve already introduced a shape so I can focus
eff orts in defi nable areas of my code. If I’m successful in introducing
positive changes, I should see measurements like coupling and
complexity decrease over time.

A nice side-eff ect of this tactic is that the measurements can
help you hold the line and maintain discipline once debt has been
removed. Th ey will give you an early warning system toward the
reintroduction of new debt into an already improved area.

Dedicated Improvement Stream
You don’t live in a vacuum. Chances are, during your improvement
eff orts, you’ll be asked to continue to deliver new features and
modifi cations to existing features. Delivery pressure causes feelings
of being under the gun. But maintenance is a fact of life you should
embrace rather than trying to ignore.

One way to deal with this is to secure approval from the business
to dedicate resources—an individual, a pair or an entire team—to
improving debt items concurrently with delivering new features.

Th is can be a highly eff ective strategy but is best when the
entire team (all the developers and testers who make modifi cations
to the codebase) takes a part in the improvements being made. Try
regularly rotating individuals as pairs. Th e developer that’s been in
the improvement stream the longest rotates out, leaving the other
developer to brief the new pair on what’s happening.

By spreading the knowledge you get closer to collective ownership,
thereby reducing risk and improving designs.

Sometimes you’ll fi nd opportunities for improvement that lie
directly in the way of some new functionality you’re trying to
deliver. Whenever you start work on a new or modifi ed feature,
it’s good practice to review the list to determine whether the team
hasn’t already identifi ed an area for improvement that intersects
with the work you’re about to do.

Opportunities for improvement occur all the time, oft en
identifi ed on-the-fl y and achieved with a few simple refactorings that
make a diff erence the next time a teammate encounters the code.

Th ere’s a constant cost-benefi t analysis that goes on when you’re
improving the existing code base while delivering new features.
If the improvement seems too costly, add it back to your list and
discuss it in your improvement planning.

-- Efferent coupling outside a namespace
SELECT TYPES
WHERE TypeCe > 0
 AND (FullNameLike "MyCompany.MyProduct.Web")

-- Afferent coupling inside a namespace
SELECT TYPES
WHERE TypeCa > 0
 AND (FullNameLike "MyCompany.MyProduct.Web")

-- Top 20 most complicated methods
SELECT TOP 20 METHODS
WHERE CyclomaticComplexity > 4
 AND FullNameLike "MyCompany.MyProduct.Web"

Figure 1 NDepend CQL

Maintenance is a fact of life
you should embrace rather than

trying to ignore.

http://refactoring.com
http://ndepend.com/

55January 2010msdnmagazine.com

Iterate, Iterate, Iterate
You’ve payed back some debt. Time to go back to step one and
identify, prioritize and build consensus on the next item that
needs fi xing, right?

Yes, but there’s a bit more to it than mindlessly plowing through
your list. You have to be sure that you’re not incurring more debt
than your fi xing. You should also regularly incorporate your
learnings into future eff orts in new development and improve-
ment eff orts alike.

Opportunities to improve a codebase change regularly. Th ey
emerge and their importance ebbs and fl ows. Reasons for the
dynamic nature of high-interest debt change from release to release.

What’s worked well for me is scheduling a short, weekly meeting
with developers to review new debt items and prioritize the backlog
of existing debt items. Th is keeps the consensus you’ve built alive
and the list fresh. Again, I’d give priority to fi xing the debt that’s
likely to slow down your current release or project.

Begin the meeting by reviewing new items. Have the identifi er
pitch their case and put it to vote: does it merit inclusion in the
backlog or not? Once you’ve gone through the new items, review
the old items. Is there work that no longer applies? Will there be
immediate value in completing this work, that is, will it remove
day-to-day impediments? Last, prioritize the opportunity against
others—re-rank your list. Th e top item on the list should be the
very next improvement to make.

Hold the Line
While you and your team are merrily paying down high-interest
technical debt, you’ll likely also be delivering new soft ware. As you
learn about solid programming techniques and introduce new
patterns into your code, apply this knowledge going forward. It’s
possible that additive work will pile on existing technical debt
creating an inescapable inertia.

It’s important that you set expectations for your business stake-
holder for new work. Higher quality takes more time to attain than
rushed, get-it-done-style code. Th is fact brings me back to the
systems-thinking concept introduced back in my December 2009
article. For me this is a cultural attribute. Th at is, organizations
can either think sustainably for the long term or continue with a
buy now, pay later mentality—the oh so fertile breeding ground of
technical debt. Never forget the central question, how did we end
up here in the fi rst place?

While you’re learning about how to improve a codebase, you
will very likely develop some team norms that apply to new code.
I suggest capturing these in a tool like a wiki and holding small,
informal learning sessions where you share your fi ndings with your
team. You will also develop techniques for dealing with similar
improvement items. When you notice you’ve done the same thing
to correct a fl awed design or clean up implementation three or four
times, codify it in your team’s doctrine. Th at is, write it down in a
well-known place and, very simply, tell people it’s there.

Work Together
Technical debt is a people problem. People, through lack of knowl-
edge or unrealistic expectations, created the mess and are now

dealing with the consequences. And it’ll take people working as
a group to fi x it.

Giving advice like this is all well and good, and I’d be surprised if
you, a soft ware professional and likely one who’s passionate about
their craft , weren’t in complete agreement.

A successful turnaround requires fundamental changes in the
value system of everyone involved—the entire team. Th e economics
of quality are proven to pay back in the end, but you’ll have to take
that step of faith in the near term. You have to win hearts and minds
in order to change a culture, and that can be a tough job indeed. Th e
most useful suggestion I can make is: don’t go it alone. Get the team
behind the eff ort and make sure everyone has a stake in the results.

Setting a goal like “we want 90 percent coverage” or “we want
to do Test-Driven Development (TDD) all the time” is relatively
meaningless. Tackle the problem areas that are slowing you down
at the moment and in the near future. Th at might mean introducing
TDD and living by the coverage report—or it might not. It might
be something more primitive like making sure your team knows
the basics of object-oriented analysis and design.

Start Making a Difference
While I hope I’ve given you some tools and techniques for tackling
debt or, at the very least, made some of the implicit ideas and
experiences you’ve had explicit, it’s important to realize that
dealing with technical debt is very much a product-to-product
issue. You may, for example, be in an environment where there’s not
a lot of trust between the development and business parties and fi nd
you have to pitch your case with the preparation of a trial attorney.

Th ere’s no out-of-box process that’ll tell you the how to for
driving down debt, but as for the when and the where, today is
a fi ne day to start making a diff erence. March toward technical
excellence can be slow and rough going in the beginning. It’s only
through sustained eff ort, constant learning and, above all, an
earnest attitude that you’ll pull through the tough times, bringing
debt-crippled code back into the black. I encourage you to stick
with the program. Not only will you increase value for your
customers, you will greatly expand your craft sman’s toolbox.

DAVE LARIBEE coaches the product development team at VersionOne Inc. He’s
a frequent speaker at local and national developer events and was awarded a
Microsoft Architecture MVP for 2007 and 2008. He writes on the CodeBetter
blog network at thebeelog.com.

THANKS to the following technical expert for reviewing this article:
Donald Belcham

Higher quality takes more
time to attain than rushed,

get-it-done-style code.

www.msdnmagazine.com
http://thebeelog.com

K. SCOTT ALLEN

code in the template and not code in the project itself. You can
also use a directive to specify the extension of the output fi le. Th e
default is C#, but as I mentioned earlier, you can generate Visual
Basic code, XML, HTML or any other textual artifact.

Th e directives I’m using tell the template engine to use the C#
compiler that comes with the Microsoft .NET Framework 3.5. It
also tells the template engine to reference the ASP.NET MVC as-
sembly and to bring the System.Web.Mvc namespace into scope.
Th e MVC assembly and namespace are not actually required by
the simple code in the template, but I put them in the template as
an example.

Aft er the directives, the text you see that’s not between <# and
#> delimiters is put verbatim into the output file. The text
between <# and #> is C# code. Th e template engine will parse the code
and add it to a class for execution (a class ultimately derived from the
TextTransformation class in the Microsoft .Visual Studio.Text Templating
assembly). Th is process is similar to the ASP.NET view engine process
where the code and markup in an .aspx fi le are added to a class ulti-
mately derived from System.Web.UI.Page. If you’ve already been
writing your MVC views using the Web Forms view engine, you’ll
feel comfortable creating templates. In .aspx fi les you can use C#
code to generate HTML. In my .tt fi le, I’m using C# code to gener-
ate C# code.

Th e code I have in Simple.tt will produce the following C# out-
put in Simple.tt.cs:

public class Test
{
 public int Prop0 { get; set; }
 public int Prop1 { get; set; }
 public int Prop2 { get; set; }
 public int Prop3 { get; set; }
 public int Prop4 { get; set; }
}

Of course, the Test class is completely useless and wholly unin-
teresting, but I hope it gives you some idea of the possibilities that
exist with T4 templates. Because you’re writing C# code in the tem-
plate, you can connect to databases, read data from the fi le system,

EXTREME ASP.NET

Text Template Transformation Toolkit and
ASP.NET MVC

Microsoft Visual Studio includes a code generation engine known
as T4 (which is short for Text Template Transformation Toolkit).
You’ve probably already used T4 templates in Visual Studio with-
out even knowing they were working behind the scenes. In this
article I’m going to give you a basic introduction to T4 templates
and show you how ASP.NET MVC uses this technology. I’ll also
show you how to customize T4 templates to enhance your day-to-
day work with the MVC framework.

Th e basic idea behind the template toolkit is to parse an input fi le
and transform it into an output fi le. Th e input fi le is a template—
a text fi le with a .tt fi le extension. Th e output fi le will also contain
text, and the text can be C# code, Visual Basic code, Web Forms
code, markup or anything else you need to generate.

Th e easiest way to see T4 in action is to create a new project in
Visual Studio. I’ll be generating C# code in this article, so you can
use any project type that compiles C# code. Once the project is
opened, right-click the project and select Add | New Item. Select
Text File from the Add New Item dialog (there’s no item template
dedicated to T4 in Visual Studio 2008, but there will be in 2010),
and name the fi le Simple.tt (make sure you use the .tt extension).
Once the fi le is loaded into the project you’ll immediately see a
Simple.cs fi le appear behind Simple.tt in the Solution Explorer
window (see Figure 1).

Both Simple.tt and Simple.cs will start as empty fi les. If you right-
click the Simple.tt fi le and select Properties, you’ll see that Visual
Studio assigned TextTemplatingFileGenerator as the custom tool
for the fi le (see Figure 2). Th is generator is the T4 engine that will
transform the template fi le into a fi le full of C# code.

To make the template do something interesting, add the fol-
lowing code:

<#@ template language=”c#v3.5” #>
<#@ assembly name=”System.Web.Mvc.DLL” #>
<#@ import namespace=”System.Web.Mvc” #>

public class Test
{
<# for(int i = 0; i < 5; i++) { #>
 public int Prop<#= i #> { get; set; }
<# } #>
}

Th e code begins with some directives. Directives allow you to
specify the programming language for the template and include
namespaces and assemblies required by the code in the template.
I want to stress that I’m talking about settings required to execute

Send your questions and comments to extrmasp@microsoft.com.

msdn magazine56

When you’re editing T4 templates in Visual Studio, you’ll
have no help from the language services in the IDE, like Intelli-
Sense and syntax highlighting. There are two solutions to this
problem. One is the Visual T4 editor available from Clarius Con-
sulting (visualt4.com). Another solution is the Tangible T4 Editor
from Tangible Engineering (t4-editor.tangible-engineering.com).

T4 Editing

Allen.ExtremeASPNET.0110.Lay9_56-58.indd 56 12/14/09 8:52 AM

mailto:extrmasp@microsoft.com
http://visualt4.com
http://t4-editor.tangible-engineering.com

57January 2010msdnmagazine.com

Note that not all of the properties on the MvcText-
TemplateHost object are available for every context. The tem-
plates execute when you invoke the Add View and Add Controller
context menu items. The Namespace property is available for
both these operations and will be set to the appropriate value.
The MasterPage property, however, is only set to a valid value
during an Add View operation and will contain the value the user
entered for the MasterPage name in the Add View dialog.

MvcTextTemplateHost Properties

parse XML or use any .NET class to
connect and read metadata that exists
somewhere in your environment. Th is
metadata, like a database schema or the
types inside another assembly, is infor-
mation you can use to generate classes.
Th e classes will become part of the cur-
rent project, so they will compile into
the current assembly and you can use
them in your application.

With a basic understanding of how
T4 templates work, let’s look at how the
MVC framework uses T4 templates.

T4 in ASP.NET MVC
You’ve been using T4 templates every
time you used the Add View or Add
Controller features in an ASP.NET MVC
project. Th ese templates are located in
your Visual Studio installation within
the Common7\IDE\ItemTemplates\
CSharp\Web\MVC 2\CodeTemplates folder. Visual Basic ver-
sions of the template also exist, but I’ll leave it as an exercise for
the reader to deduce the folder name.

Th e templates themselves provide a great education on the value
and features of T4. For example, here is an excerpt from List.tt in
the AddView subfolder of CodeTemplates:

if(!String.IsNullOrEmpty(mvcViewDataTypeGenericString)) {
 Dictionary<string, string> properties =
 new Dictionary<string, string>();
 FilterProperties(mvcHost.ViewDataType, properties);
#>
 <table>
 <tr>
 <th></th>
<#
 foreach(KeyValuePair<string, string> property in properties) {
#>
 <th>
 <#= property.Key #>
 </th>
<#
 }
#>

Th e job of List.tt is to produce an .aspx fi le that will display a col-
lection of model objects in tabular form. In the template you can
see the table, tr and th tags being written. To produce the .aspx fi le
the template needs some contextual information, like the name
of the master page it should use and the type of the model. Th e
template can retrieve this information from its host object. Th e
host object sits between a template and the T4 engine and can
give a template access to resources (like local fi les) and environ-
mental settings. Typically, the host is Visual Studio, but the MVC
team created a custom host of type MvcTextTemplateHost in the
Microsoft .VisualStudio.Web.Extensions assembly. It’s this custom
host object that carries forward information you enter in the Add
View and Add Controller dialog boxes, which are the closest things
you’ll fi nd to wizards in an MVC project.

List.tt will loop through the displayable properties of the strongly
typed model object and create a table with a column for each prop-
erty. Th e template uses refl ection to discover the model’s available

properties in a FilterProperties meth-
od. FilterProperties is a helper method
defi ned later in the template fi le. Th e
template also sets up links to navigate
to the edit and details actions, and
sets up the proper @ Page or @ Con-
trol directives for the .aspx, depending
on whether you’re creating a view or a
partial view.

When the template is fi nished run-
ning, you’ll have a new .aspx view with
everything you need to display a col-
lection of model objects. Chances are
you’ll go into the .aspx fi le and perform
some fi ne-tuning to make the view
consistent with the look and feel of the
views in the rest of your application.

If you fi nd you’re always making the
same changes to these generated views
(or to the controller code generated
by Controller.tt), you can save time

by modifying the templates themselves. For example, you could
modify the built-in templates to add class attributes for style rules
you use in your project, or perhaps something even more drastic.
Keep in mind that modifying the template fi les in the Visual Stu-
dio installation directory will change the code generated in all the
projects you work with on your machine. If you want to change the
generated code for a single project, you can do this, too.

Per-Project T4 Customization
If you want custom versions of the code-generation templates on
a per project basis, your fi rst step is to copy the CodeTemplates
folder from the Visual Studio installation and paste it into the root
of your ASP.NET MVC project. You don’t need to copy all the tem-
plates into your project, however. You can copy only the templates
you want to modify. Th ere are a total of six MVC code-generation
templates, one for adding a controller (Controller.tt) and fi ve for
adding views (Create.tt, Details.tt, Edit.tt, Empty.tt, List.tt). If a
template exists in your project, it will override the template in the
Visual Studio installation directory.

When you add a .tt fi le to a Visual Studio solution, the IDE
will automatically assign the .tt fi le a custom tool setting of Text-
TemplatingFileGenerator. You’ve already seen this behavior if you
created the Simple.tt template I discussed earlier. However, this is

Figure 1 C# File Behind a T4 Template

Allen.ExtremeASPNET.0110.Lay9_56-58.indd 57 12/14/09 8:52 AM

www.msdnmagazine.com

msdn magazine58 January 2010

not the proper setting for the MVC T4 Templates. Th e MVC tools
for Visual Studio will invoke these templates at the appropriate
times and create the special MvcTextTemplateHost object during
template processing. Th us, aft er copying the templates into your
project, the second step is to open the Properties Window for each
template fi le and remove the Custom Tool setting (leave the set-
ting blank). At this point you’re ready to customize your templates.

As an example, let’s say you do not want your controllers to have
an Index action. You’d rather use a default action named List. You
can open up the Controller.tt template in the CodeTemplates\Ad-
dController folder and change the appropriate area of code to look
like the following:

public class <#= mvcHost.ControllerName #> : Controller
{
 // GET: /<#= mvcHost.ControllerRootName #>/

 public ActionResult List()
 {
 return View();
 }
...

Th is is a simple change to make, but it can save you and your
team quite a bit of time over the life of a large project.

One Step Further—T4MVC
In the summer of 2009, David Ebbo of the ASP.NET team
created T4MVC, a T4 template designed to generate strongly
typed helpers in an ASP.NET MVC application. Ebbo has re-
fined the template over time and you can now download it from
aspnet.codeplex.com/wikipage?title=T4mvc.

Th e T4MVC template is a traditional T4 template. You add
T4MVC.tt and its associated settings fi le (T4MVC.settings.t4)
to your project and it will use the TextTemplatingFileGenerator
custom tool to generate C# code. T4MVC will help you eliminate
many of the magic string literals from your MVC application. For
example, one of the jobs the template will do is to scan the Content
and Scripts folders in your project and generate classes with static
properties to represent each script and piece of content.

Th e generated code means you can render the LogOnUserControl
partial view provided by the default MVC project with this code:

<% Html.RenderPartial(MVC.Shared.Views.LogOnUserControl); %>

Previously you would have used a string literal:
<% Html.RenderPartial(“LogOnUserControl”); %>

If someone renames, moves, or deletes the LogonUserControl,
the strongly typed code will produce a compilation error when the
view compiles. In addition to strongly typed access to views and
partial views, the T4MVC template also provides strongly typed
access to all fi les inside your Content and Scripts folders and strongly
typed access to controllers and controller actions.

You can use the T4MVC-generated classes when building ac-
tion links, returning view results, and even when building the rout-
ing table for an application. Note that when you fi rst add T4MVC
to your project, you’ll see some warnings generated in the IDE’s
Error List window. Th ese warnings are just T4MVC telling you about
some changes it is applying to your code. Most of these changes
are nothing that will change the behavior of your application; the
T4MVC templates just add some partial keywords to controller
class defi nitions and will also make non-virtual action methods
virtual. For more information on T4MVC, check out Ebbo’s blog
at blogs.msdn.com/davidebb.

Easier to Maintain
T4 is a wonderful treasure inside of Visual Studio but is still not

well-publicized. Th is article gives you every-
thing you need to get started with custom
templates for your ASP.NET MVC project.
Hopefully, you can fi nd some uses for T4
Templates outside of your Web applica-
tion project, too. You should also try out
the T4MVC templates in your project, as
they make your code easier to maintain and
refactor. Moving forward, T4 technology is
even better in Visual Studio 2010 with the
addition of dedicated item templates and
pre-compiled templates.

K. SCOTT ALLEN is the principal consultant and
founder of OdeToCode, and also a member of the
Pluralsight technical staff. You can reach Allen
through his blog (odetocode.com/blogs/scott) or on
Twitter (twitter.com/OdeToCode).

THANKS to the following technical expert for
reviewing this article: David Ebbo

Figure 2 Properties of the T4 Template

T4MVC is a T4 template
designed to generate strongly
typed helpers in an ASP.NET

MVC application.

Allen.ExtremeASPNET.0110.Lay9_56-58.indd 58 12/14/09 8:52 AM

http://aspnet.codeplex.com/wikipage?title=T4mvc
http://blogs.msdn.com/davidebb
http://odetocode.com/blogs/scott
http://twitter.com/OdeToCode

Project1 12/17/09 3:56 PM Page 1

www.vslive.com

Project1 12/17/09 3:57 PM Page 1

www.vslive.com

Project1 12/17/09 3:51 PM Page 1

www.vslive.com

msdn magazine62

install side-by-side with Visual Studio 2008, but I still wouldn’t put
it on your work machine. Here’s another case where Virtual PC is
your very good friend.

Beginnings
Th e linguistic background of STM.NET comes from a number
of diff erent places, but the conceptual idea of STM is remarkably
straightforward and familiar: rather than forcing developers to
focus on the means of making things concurrent (focusing on
locks and such), allow them to mark which parts of the code should
execute under certain concurrency-friendly characteristics, and
let the language tool (compiler or interpreter) manage the locks
as necessary. In other words, just as database admins and users do,
let the programmer mark the code with ACID-style transactional
semantics, and leave the grunt work of managing locks to the
underlying environment.

While the STM.NET bits may appear to be just another attempt
at managing concurrency, the STM eff ort represents something
deeper than that—it seeks to bring all four qualities of the data-
base ACID transaction to the in-memory programming model.
In addition to managing the locks on the programmer’s behalf,
the STM model also provides atomicity, consistency, isolation and

THE POLYGLOT PROGRAMMER

ACID Transactions with STM.NET

While this column has focused specifi cally on programming
languages, it’s interesting to note how language ideas can sometimes
bleed over into other languages without directly modifying them.

One such example is the Microsoft Research language C-Omega
(sometimes written Cw, since the Greek omega symbol looks a lot
like a lower-case w on the US keyboard layout). In addition to intro-
ducing a number of data- and code-unifying concepts that would
eventually make their way into the C# and Visual Basic languages
as LINQ, C-Omega also off ered up a new means of concurrency
called chords that later made it into a library known as Joins. While
Joins hasn’t, as of this writing, made it into a product (yet), the fact
that the whole chords concept of concurrency could be provided
via a library means that any run-of-the-mill C# or Visual Basic (or
other .NET language) program could make use of it.

Another such eff ort is the Code Contracts facility, available from the
Microsoft DevLabs Web site (msdn.microsoft.com/devlabs) and discussed in
the August 2009 issue of MSDN Magazine (msdn.micro soft.com/magazine/

ee236408). Design-by-contract is a language feature that was prominent
in languages like Eiff el, and originally came to .NET through the Micro-
soft Research language Spec#. Similar kinds of contractual guarantee
systems have come through Microsoft Research as well, including one
of my favorites, Fugue, which made use of custom attributes and static
analysis to provide correctness-checking of client code.

Once again, although Code Contracts hasn’t shipped as a formal
product or with a license that permits its use in production soft -
ware, the fact that it exists as a library rather than as a standalone
language implies two things. First, that it could (in theory) be
written as a library by any .NET developer suffi ciently determined
to have similar kinds of functionality. And second, that (assuming
it does ship) said functionality could be available across a variety
of languages, including C# and Visual Basic.

If you’re sensing a theme, you’re right. Th is month I want to focus on
yet another recently announced library that comes from the polyglot
language world: soft ware transactional memory, or STM. Th e STM.
NET library is available for download via the DevLabs Web site, but in
stark contrast to some of the other implementations I’ve mentioned,
it’s not a standalone library that gets linked into your program or that
runs as a static analysis tool—it’s a replacement and supplement to the
.NET Base Class Library as a whole, among other things.

Note, however, that the current implementation of STM.NET is
not very compatible with current Visual Studio 2010 betas, so the
usual disclaimers about installing unfi nished/beta/CTP soft ware
on machines you care about applies doubly so in this case. It should

TED NEWARD

This article is based on pre-release versions of the Microsoft .NET Framework 4
beta 1 STM.NET library.

Send your questions and comments for Neward to polyglot@microsoft.com.

Figure 1 Starting a New Project with the
TMConsoleApplication Template

mailto:polyglot@microsoft.com
http://msdn.microsoft.com/devlabs
http://msdn.microsoft.com/magazine/ee236408.aspx

Now with 35+ advanced UI controls, full .NET RIA Support,
VS Extensions, free Testing tool, 5x better performance

RadControls for

Silverlight 3

www.telerik.com

UI COMPONENTS PRODUCTIVITY TOOLSDATA AUTOMATED TESTING CMS

ASP.NET AJAX
Silverlight
ASP.NET MVC
WinForms
WPF

TFS TOOLS

Work Item
Manager
Project
Dashboard

JustCodeOpenAccess ORM
Reporting

Web Testing Tools Sitefinity

Project1 10/30/09 8:49 AM Page 1

http://www.telerik.com
sales@telerik.com

msdn magazine64 The Polyglot Programmer

durability, which of themselves can make programming much
simpler, regardless of the presence of multiple threads of execution.

As an example, consider this (admittedly wildly overused)
pseudocode example:

BankTransfer(Account from, Account to, int amount) {
 from.Debit(amount);
 to.Credit(amount);
}

What happens if the Credit fails and throws an exception? Clearly
the user will not be happy if the debit to the from account still
remains on the record when the credit to the account isn’t there,
which means now the developer has some additional work to do:

BankTransfer(Account from, Account to, int amount) {
 int originalFromAmount = from.Amount;
 int originalToAmount = to.Amount;
 try {
 from.Debit(amount);
 to.Credit(amount);
 }
 catch (Exception x) {
 from.Amount = originalFromAmount;
 to.Amount = originalToAmount;
 }
}

Th is would seem, at fi rst blush, to be overkill. Remember,
however, that depending on the exact implementation of the
Debit and Credit methods, exceptions can be thrown before the
Debit operation completes or aft er the Credit operation completes
(but doesn’t fi nish). Th at means the BankTransfer method must
ensure that all data referenced and used in this operation goes back
to exactly the state it was in when the operation began.

If this BankTransfer gets at all more complicated—operating on
three or four data items at once, for example—the recovery code in
the catch block is going to get really ugly, really quickly. And this
pattern shows up far more oft en than I’d like to admit.

Another point worth noting is isolation. In the original code, another
thread could read an incorrect balance while it was executing and
corrupt at least one of the accounts. Further, if you simply slapped a
lock around it, you could deadlock if the from/to pairs were not always
ordered. STM just takes care of that for you without using locks.

If, instead, the language off ered some kind of transactional
operation, such as an atomic keyword that handled the locking and
failure/rollback logic under the hood, just as BEGIN TRANSACTION /
COMMIT does for a database, coding the BankTransfer example
becomes as simple as this:

BankTransfer(Account from, Account to, int amount) {
 atomic {
 from.Debit(amount);
 to.Credit(amount);
 }
}

You have to admit, this is a lot less to worry about.
Th e STM.NET approach, however, being library based, isn’t going

to get quite this far since the C# language doesn’t allow quite that
degree of syntactic fl exibility. Instead, you’re going to be working
with something along the lines of:

public static void Transfer(
 BankAccount from, BankAccount to, int amount) {
 Atomic.Do(() => {
 // Be optimistic, credit the beneficiary first
 to.ModifyBalance(amount);
 from.ModifyBalance(-amount);
 });
}

Th e syntax isn’t quite as elegant as an atomic keyword would be, but
C# has the power of anonymous methods to capture the block of code
that would make up the body of the desired atomic block, and it can
thus be executed under similar kinds of semantics. (Sorry, but as of
this writing, the STM.NET incubation eff ort only supports C#. Th ere
is no technical reason why it couldn’t be extended to all languages,
but the STM.NET team only focused on C# for the fi rst release.)

In the course of reviewing Neward’s column,
one thing jumped out at me as being, unfortunately, a basic
misinterpretation. Neward tries to divide language extensions into
those that require language changes and those that are (purely)
library changes. It tries to classify STM.NET as the latter—a library-
only change—whereas I would argue it most decidedly is not.

A library-only extension is one that is implementable completely
in the existing language. Library-based STM systems do exist;
these generally require that the data that should have transac-
tional semantics be declared of some special type, such as
“TransactionalInt”. STM.NET is not like that—it provides transactional
semantics for ordinary data transparently, simply by virtue of
being accessed within the (dynamic) scope of a transaction.

This requires every read and write occurring in code that is
executed within the transaction to be modifi ed to make additional
associated calls that acquire necessary locks, create and populate
shadow copies, and so on. In our implementation, we modifi ed
the CLR’s JIT compiler extensively to produce very different code
to be executed within transactions. The atomic keyword (even if
we’ve presented it via a delegate-based API) changes the
language semantics at a pretty fundamental level.

Thus, I claim that we did change the language. In a .NET
language like C#, the language semantics are implemented by
a combination of the source-level language compiler, and its
assumptions about the semantics of the MSIL that it emits—how
the CLR runtime will execute that IL. We radically changed the
CLR’s interpretation of the bytecodes, so I would say that this
changes the language.

In particular, say the CLR’s JIT compiler encounters code like this:
try {
 <body>
}
catch (AtomicMarkerException) {}

The code within <body> (and, recursively, within methods it
calls) is dynamically modifi ed to ensure transactional semantics.
I should emphasize that this has absolutely nothing to do with
exception handling—it is purely a hack to identify an atomic block,
since the try/catch construct is the only mechanism available in IL
for identifying a lexically scoped block. In the long run, we would
want something more like an explicit “atomic” block in the IL
language. The delegate-based interface is implemented in terms
of this ersatz atomic block.

In summary, the IL-level atomic block, however expressed,
really does change the semantics of code that runs in it in a fun-
damental way. This is why STM.NET contains a new, signifi cantly
modifi ed CLR runtime, not just changes to the BCL. If you took a
stock CLR runtime and ran with the BCL from STM.NET, the result
would not give you transactional semantics (in fact, I doubt it
would work at all). —Dr. Dave Detlefs, Architect, Common
Language Runtime, Microsoft

Insights: It’s Really a Language Change

65January 2010msdnmagazine.com

Getting Started with STM.NET
Th e fi rst thing you’ll need to do is download the Microsoft .NET
Framework 4 beta 1 Enabled to use Software Transactional
Memory V1.0 bits (a long-winded name, which I’ll shorten to STM.
NET BCL, or just STM.NET) from the DevLabs Web site. While
you’re there, download the STM.NET Documentation and Sam-
ples as well. Th e former is the actual BCL and STM.NET tools and
supplemental assemblies, and the latter contains, among the docu-
mentation and sample projects, a Visual Studio 2008 template for
building STM.Net applications.

Creating a new STM.NET-enabled application begins like any
other app, in the New Project dialog (see Figure 1). Selecting the
TMConsoleApplication template does a couple of things, some of
which aren’t entirely intuitive. For example, as of this writing, to
execute against the STM.NET libraries, the .NET application’s app.
confi g requires this little bit of versioning legerdemain:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <requiredRuntime version="v4.0.20506"/>
 </startup>
 ...
</configuration>

Other settings will be present, but the requiredRuntime value is necessary
to tell the CLR launcher shim to bind against the STM.NET version of the
runtime. In addition, the TMConsoleApplication template binds the
assembly against versions of the mscorlib and System.Transactions
assemblies installed in the directory where STM.NET is installed,
rather than the versions that come with the stock .NET Framework
3.0 or 3.5 CLR. Th is is necessary, when you think about it, because
if STM.NET is going to provide transactional access for anything
beyond just the code that you write, it’s going to need to use its
own copy of mscorlib. Plus, if it’s going to interact correctly with
other forms of transactions—such as the lightweight transactions
provided by the Lightweight Transaction Manager (LTM)—it needs
to have its own version of System.Transactions as well.

Other than that, an STM.NET application will be a traditional
.NET application, written in C# and compiled to IL, linked against
the rest of the unmodifi ed .NET assemblies, and so on. STM.NET
assemblies, like the COM+ and EnterpriseServices components of
the last decade, will have a few more extensions in them describing
transactional behaviors for the methods that interact with the STM.
NET transactional behavior, but I’ll get to that in time.

Hello, STM.NET
As with the Axum example in the September 2009 issue of MSDN
Magazine (msdn.microsoft.com/magazine/ee412254), writing a traditional
Hello World application as the starting point for STM.NET is
actually harder than you might think at fi rst, largely because if you
write it without concern for transactions, it’s exactly the same as
the traditional C# Hello World. If you write it to take advantage of
the STM.NET transactional behavior, you have to consider the fact
that writing text to the console is, in fact, an un-undoable method
(at least as far as STM.NET is concerned), which means that trying
to roll back a Console.WriteLine statement is diffi cult.

So, instead, let’s take a simple example from the STM.NET User
Guide as a quick demonstration of the STM.NET bits. An object

(called MyObject) has two private strings on it and a method to
set those two strings to some pair of values:

class MyObject {
 private string m_string1 = "1";
 private string m_string2 = "2";

 public bool Validate() {
 return (m_string1.Equals(m_string2) == false);
 }
 public void SetStrings(string s1, string s2) {
 m_string1 = s1;
 Thread.Sleep(1); // simulates some work
 m_string2 = s2;
 }
}

Because the assignment of the parameter to the fi eld is itself an
atomic operation, there’s no concern around concurrency there. But
just as with the BankAccount example shown earlier, you want either

class MyObject {
 private string m_string1 = "1";
 private string m_string2 = "2";

 public bool Validate() {
 bool result = false;
 Atomic.Do(() => {
 result = (m_string1.Equals(m_string2) == false);
 });
 return result;
 }

 public void SetStrings(string s1, string s2) {
 Atomic.Do(() => {
 m_string1 = s1;
 Thread.Sleep(1); // simulates some work
 m_string2 = s2;
 });
 }
}

Figure 3 Validating MyObject with STM.NET

[AtomicNotSupported]
static void Main(string[] args) {
 MyObject obj = new MyObject();
 int completionCounter = 0; int iterations = 1000;
 bool violations = false;

 Thread t1 = new Thread(new ThreadStart(delegate {
 for (int i = 0; i < iterations; i++)
 obj.SetStrings("Hello", "World");
 completionCounter++;
 }));

 Thread t2 = new Thread(new ThreadStart(delegate {
 for (int i = 0; i < iterations; i++)
 obj.SetStrings("World", "Hello");
 completionCounter++;
 }));

 Thread t3 = new Thread(new ThreadStart(delegate {
 while (completionCounter < 2) {
 if (!obj.Validate()) {
 Console.WriteLine("Violation!");
 violations = true;
 }
 }
 }));

 t1.Start(); t2.Start(); t3.Start();
 while (completionCounter < 2)
 Thread.Sleep(1000);

 Console.WriteLine(“Violations: “ + violations);
...

Figure 2 Manually Validating Atomic Updates to MyObject

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/ee412254

msdn magazine66 The Polyglot Programmer

both to be set or neither, and you don’t want to see partial updates—
one string being set, but not the other—during the set operation.
You’ll spawn two threads to blindly set the strings over and over again,
and a third thread to validate the contents of the MyObject instance,
reporting a violation in the event Validate returns false (see Figure 2).

Note that the way this example is constructed, validation fails
if the two strings in obj are set to the same thing, indicating that
Th read t1’s SetStrings(“Hello”, “World”) is partially updated (leaving
the fi rst “Hello” to match the second “Hello” set by t2).

A cursory glance at the SetStrings implementation shows that this
code is hardly thread-safe. If a thread switch occurs in the middle
(which is likely given the Th read.Sleep call, which will cause the
currently-executing thread to give up its time slice), another thread
could easily jump into the middle of SetStrings again, putting the
MyObject instance into an invalid state. Run it, and with enough
iterations, violations will start to appear. (On my laptop, I had to
run it twice before I got the violations, proving that just because
it runs without an error once doesn’t mean the code doesn’t have
a concurrency bug.)

Modifying this to use STM.NET requires only a small change
to the MyObject class, as shown in Figure 3.

As you can see, the only modifi cation required was to wrap the
bodies of Validate and SetStrings into atomic methods using the
Atomic.Do operation. Now, when run, no violations appear.

Transactional Affi nity
Observant readers will have noticed the [AtomicNotSupported]
attribute at the top of the Main method in Figure 2, and perhaps
wondered at its purpose, or even wondered if it served the same
purpose as those attributes from the COM+ days. As it turns out,
that’s entirely correct: the STM.NET environment needs some
assistance in understanding whether methods called during an
Atomic block are transaction-friendly so that it can provide the
necessary and desirable support for those methods.

Th ree such attributes are available in the current STM.NET release:
• AtomicSupported—the assembly, method, fi eld or delegate

supports transactional behavior and can be used inside or
outside of atomic blocks successfully.

• AtomicNotSupported—the assembly, method, or delegate
doesn’t support transactional behavior and thus shouldn’t be
used inside of atomic blocks.

• AtomicRequired—the assembly, method, fi eld or delegate not
only supports transactional behavior, it should only be used
inside of atomic blocks (thus guaranteeing that using this item
will always be done under transactional semantics).
Technically there is a fourth, AtomicUnchecked, which signals

to STM.NET that this item shouldn’t be checked, period. It’s
intended as an escape hatch to avoid checking the code altogether.

Th e presence of the AtomicNotSupported attribute is what leads
the STM.NET system to throw an AtomicContractViolation-
Exception when the following (naïve) code is attempted:

[AtomicNotSupported]
static void Main(string[] args) {
 Atomic.Do(() => {
 Console.WriteLine("Howdy, world!");
 });

 System.Console.WriteLine("Simulation done");
}

Because the System.Console.WriteLine method is not marked
with AtomicSupported, the Atomic.Do method throws the
exception when it sees the call in the atomic block. Th is bit of
security ensures that only transaction-friendly methods are
executed inside of the atomic block, and provides that additional
bit of safety and security to the code.

Hello, STM.NET (Part Two)
What if you really, really want to write the traditional Hello World?
What if you really want to print a line to the console (or write to a
fi le, or perform some other non-transactional behavior) alongside
two other transactional operations, but only print it out if both of
those other operations succeed? STM.NET off ers three ways to
handle this situation.

public class TxAppender : TransactionalOperation {
 private TextWriter m_tw;
 private List<string> m_lines;

 public TxAppender(TextWriter tw) : base() {
 m_tw = tw;
 m_lines = new List<string>();
 }

 // This is the only supported public method
 [AtomicRequired]
 public void Append(string line) {
 OnOperation();

 try {
 m_lines.Add(line);
 }
 catch (Exception e) {
 FailOperation();
 throw e;
 }
 }

 protected override void OnCommit() {
 foreach (string line in m_lines) {
 m_tw.WriteLine(line);
 }
 m_lines = new List<string>();
 }

 protected override void OnAbort() {
 m_lines.Clear();
 }
}

Figure 4 A Transactional Resource Manager

The STM.NET environment
needs some assistance in
understanding whether

methods called during an
Atomic block are

transaction-friendly.

67January 2010msdnmagazine.com

First, you can perform the non-transactional operation outside the
transaction (and only aft er the transaction commits) by putting the
code inside of a block passed to Atomic.DoAft er Commit. Because
the code inside that block will typically want to use data generated
or modifi ed from inside the transaction, DoAft er Commit takes a
context parameter that is passed from inside the transaction to the
code block as its only parameter.

Second, you can create a compensating action that will be executed
in the event that the transaction ultimately fails, by calling Atomic.
DoWithCompensation, which (again) takes a context parameter
to marshal data from inside the transaction to the committing or
compensating block of code (as appropriate).

Th ird, you can go all the way and create a Transactional Resource
Manager (RM) that understands how to participate with the STM.
NET transactional system. Th is is actually less diffi cult than it
might seem—just inherit from the STM.NET class Transactional-
Operation, which has OnCommit and OnAbort methods that
you override to provide the appropriate behavior in either case.
When using this new RM type, call OnOperation at the start of
your work with it (eff ectively enlisting the resource into the STM.
NET transaction). Th en call FailOperation on it in the event that
the surrounding operations fail.

Thus, if you want to transactionally write to some text-based
stream, you can write a text-appending resource manager like
the one shown in Figure 4. This then allows you—in fact, by
virtue of the [Atomic-Required] attribute, requires you—to
write to some text stream via the TxAppender while inside an
atomic block (see Figure 5).

Th is is obviously the longer route and will be suitable only in
certain scenarios. It could fail for some kinds of media types, but
for the most part, if all the actual irreversible behavior is deferred
to the OnCommit method, this will suffi ce for most of your
in-process transactional needs.

Putting STM.NET to Work
Working with an STM system takes a little getting used to, but
once you’re acclimated, working without it can feel crippling.
Consider some of the potential places where using STM.NET
can simplify coding.

When working with other transacted resources, STM.NET plugs
in to existing transacted systems quickly and easily, making Atomic.
Do the sole source of transacted code in your system. Th e STM.
NET examples demonstrate this in the Traditional Transactions
sample, posting messages to an MSMQ private queue and making
it obvious that, when the Atomic block fails, no message is posted
to the queue. Th is is probably the most obvious usage.

In dialog boxes—particularly for multi-step wizard processes or
settings dialogs—the ability to roll back changes to the settings or
dialog data members when the user hits the Cancel button is priceless.

Unit tests such as NUnit, MSTest, and other systems exert great
eff ort to ensure that, when written correctly, tests cannot leak results
from one test to the next. If STM.NET reaches production status,
NUnit and MSTest can refactor their test case execution code to use
STM transactions to isolate test results from each other, generating
a rollback at the end of each test method, and thus eliminating any

changes that might have been generated by the test. Even more,
any test that calls out to an AtomicUnsupported method will be
fl agged at test execution time as an error, rather than silently leaking
the test results to some medium outside the test environment (such
as to disk or database).

STM.NET can also be used in domain object property implemen-
tation. Although most domain objects have fairly simple properties,
either assigning to a field or returning that field’s value, more
complex properties that have multiple-step algorithms run
the risk of multiple threads seeing partial updates (if another
thread calls the property during its set) or phantom updates (in
the event another thread calls the property during its set, and
the original update is eventually thrown away due to a validation
error of some form).

Even more interesting, researchers outside of Microsoft are looking
into extending transactions into hardware, such that someday,
updating an object’s fi eld or a local variable could be a transaction
guarded at the hardware level by the memory chip itself, making
the transaction blindingly fast in comparison to today’s methods.

However, as with Axum, Microsoft depends on your feedback
to determine if this technology is worth pursuing and produc-
tizing, so if you find this idea exciting or interesting, or that it’s
missing something important to your coding practice, don’t
hesitate to let them know. ■

TED NEWARD is a Principal with Neward and Associates, an independent fi rm
specializing in .NET and Java enterprise systems. He has written numerous books,
is a Microsoft MVP Architect, INETA speaker, and PluralSight instructor. Reach
Ted at ted@tedneward.com, or read his blog at blogs.tedneward.com.

THANKS to the following technical experts for reviewing this article:
Dave Detlefs and Dana Groff

public static void Test13() {
 TxAppender tracer =
 new TxAppender(Console.Out);
 Console.WriteLine(
 "Before transactions. m_balance= " +
 m_balance);

 Atomic.Do(delegate() {
 tracer.Append("Append 1: " + m_balance);
 m_balance = m_balance + 1;
 tracer.Append(“Append 2: " + m_balance);
 });

 Console.WriteLine(
 "After transactions. m_balance= "
 + m_balance);

 Atomic.Do(delegate() {
 tracer.Append("Append 1: " + m_balance);
 m_balance = m_balance + 1;
 tracer.Append("Append 2: " + m_balance);
 });

 Console.WriteLine(
 "After transactions. m_balance= "
 + m_balance);
}

Figure 5 Using TxAppender

mailto:ted@tedneward.com
www.msdnmagazine.com
http://blogs.tedneward.com

line charts in that article, but the importance (and diffi culty) of line
charts mandates that a whole column be devoted to the subject.

Line Chart Issues
Line charts are actually forms of scatter plots—a Cartesian coordi-
nate system with one variable on the horizontal axis and another
on the vertical axis. One big diff erence with the line chart is that
the values graphed horizontally are generally sorted. Very oft en

these values are dates or times—that is, the
line chart oft en shows the change in a vari-
able over time.

Th e other big diff erence is that the in-
dividual data points are oft en connected
with a line. Although this line is obviously a
basic part of the line-chart visuals, it actu-
ally throws a big monkey wrench into the
process of realizing the chart in XAML. Th e
DataTemplate describes how each item in
the ItemsControl is rendered; but connect-
ing the items requires access to multiple
points, ideally a PointCollection that can
then be used with a Polyline element. Th e
need to generate this PointCollection was
the fi rst hint that a custom class would be
needed to perform pre-processing on the
line-chart data.

More than other graphs, line graphs man-
date that much more attention be paid to the
axes. In fact, it makes sense for the horizontal
and vertical axes themselves to be additional
ItemsControls! Additional DataTemplates
for these two other ItemsControls can then

be used to defi ne the formatting of the axis tick marks and labels en-
tirely in XAML.

In summary, what you start out with is a collection of data items with
two properties: one property corresponding to the horizontal axis and
the other to the vertical axis. To realize a chart in XAML, you need to
get certain items from this data. First, you need point objects for each
data item (to render each data point). You also need a PointCollection
of all data items (for the line connecting the points), and two additional
collections containing suffi cient information to render the horizontal
and vertical axes in XAML, including data for the labels and off sets for
positioning the labels and tick marks.

Line Charts with Data Templates

Despite the many advanced manifestations of computer graphics
these days (including animation and 3-D), I suspect that the most
important will forever be the basic visual representation of data in
traditional charts built from bars, pies and lines.

A table of data may appear like a jumble of random numbers,
but any trends or interesting information hidden within the fi gures
become much more comprehensible when displayed in a chart.

With the Windows Presentation Foundation (WPF)—and its
Web-based off shoot, Silverlight—we have
discovered the advantages of defining
graphical visuals in markup rather than
code. Extensible Application Markup
Language (XAML) is easier to alter than
code, easier to experiment with and is more
toolable than code, allowing us to defi ne our
visuals interactively and to play around with
alternative approaches.

In fact, defi ning visuals entirely in XAML
is so advantageous that WPF programmers
will spend many hours writing code specifi -
cally to enable more powerful and fl exible
XAML. Th is is a phenomenon I call “coding
for XAML,” and it’s one of several ways that
WPF has altered our approach to applica-
tion development.

Many of the most powerful techniques in
WPF involve the ItemsControl, which is the
basic control to display collections of items,
generally of the same type. (One familiar
control that derives from ItemsControl is
the ListBox, which allows navigation and
selection as well as display.)

An ItemsControl can be fi lled with objects of any type—even
business objects that have no intrinsic textual or visual represen-
tation. Th e magic ingredient is a DataTemplate—almost always
defi ned in XAML—that gives those business objects a visual rep-
resentation based on the objects’ properties.

In the March issue (msdn.microsoft.com/magazine/dd483292.aspx) I
showed how to use ItemsControls and DataTemplates to defi ne bar
charts and pie charts in XAML. Originally I was going to include

EXTREME UI CHARLES PETZOLD

msdn magazine68

Code download available at code.msdn.microsoft.com/mag201001Charts.

With the Windows
Presentation

Foundation (and
its Web-based

offshoot, Silverlight),
we have discovered
the advantages of
defi ning graphical
visuals in markup
rather than code.

Petzold.ExtremeUI.0110.v9_68-75.indd 68 12/14/09 9:53 AM

code.msdn.microsoft.com/mag201001Charts
http://msdn.microsoft.com/magazine/dd483292.asp

Project3 11/5/09 2:54 PM Page 1

www.xceed.com

msdn magazine70 Extreme UI

Th e calculation of these Point objects and
off sets obviously requires some information:
the width and height of the chart and the
minimum and maximum values of the data
graphed on the horizontal and vertical axes.

But that’s not quite enough. Suppose the min-
imum value for the vertical axis is 127 and the
maximum value is 232. In that case, you might
want the vertical axis to actually extend from
100 to 250 with tick marks every 25 units. Or
for this particular graph, you might want to
always include 0, so the vertical axis extends
from 0 to 250. Or perhaps you want the max-
imum value to always be a multiple of 100, so
it goes from 0 to 300. If the values range from
-125 to 237, perhaps you want 0 to be centered,
so the axis might range from -300 to 300.

Th ere are potentially many diff erent strat-
egies for determining what values the axes
display, which then govern the calculation
of the Point values associated with each data
item. Th ese strategies might be so varied that
it makes sense to off er a “plug-in” option to
defi ne additional axis strategies as required for a particular chart.

The First Attempt
Programming failures are sometimes just as instructive as program-
ming successes. My fi rst attempt to create a line-charting class ac-
cessible from XAML wasn’t exactly a complete failure, but it was
certainly headed in that direction.

I knew that to generate the collection of Point objects I would
obviously need access to the collection of items in the Items Control,
as well as the ActualWidth and ActualHeight of the control. For
these reasons it seemed logical to derive a class from Items Control
that I called LineChartItemsControl.

LineChartItemsControl defi ned several new read/write proper-
ties: HorizontalAxisPropertyName and VerticalAxisPropertyName
provided the names of the items’ properties that would be graphed.
Four other new properties provided LineChartItemsControl with
minimum and maximum values for the horizontal and vertical
axes. (Th is was a very simple approach to handling the axes that I
knew would have to be enhanced at a later time.)

Th e custom control also defi ned three read-only dependency
properties for data binding in XAML: a property named Points of
type PointCollection and two properties called Horizontal AxisInfo
and VerticalAxisInfo for rendering the axes.

LineChartItemsControl overrode the OnItemsSourceChanged
and OnItemsChanged methods to be informed whenever changes
were occurring in the items collection, and it installed a handler
for the SizeChanged event. It was then fairly straightforward to put
together all the available information to calculate the three read-
only dependency properties.

Actually using LineChartItemsControl in XAML, however,
was a mess. Th e easy part was rendering the connected line. Th at
was done with a Polyline element with its Points property bound

to the Points property of LineChartItemsControl. But defi ning a
DataTemplate that would position the individual data was very
hard. Th e DataTemplate only has access to the properties of one
particular data item. Th rough bindings, the DataTemplate can
access the ItemsControl itself, but how do you get access to posi-
tioning information that corresponds to that particular data item?

My solution involved a RenderTransform set from a Multi-
Binding that contained both a RelativeSource binding and refer-
enced a BindingConverter. It was so complex that the day aft er I
had coded it, I couldn’t quite fi gure out how it worked!

Th e complexity of this solution was a clear indication that I
needed a whole diff erent approach.

The Line Chart Generator in Practice
Th e reconceived solution was a class I called LineChartGenerator
because it generates all the raw materials necessary to defi ne the

U.S. Population by Year
300,000,000

250,000,000

200,000,000

150,000,000

100,000,000

50,000,000

0
17

90
18

00
18

10
18

20
18

30
18

40
18

50
18

60
18

70
18

80
18

90
19

00
19

10
19

20
19

30
19

40
19

50
19

60
19

70
19

80
19

90
20

00

Figure 1 The PopulationLineChart Display

<Window.Resources>
 <src:CensusData x:Key="censusData" />

 <charts:LineChartGenerator
 x:Key="generator"
 ItemsSource="{Binding Source={StaticResource censusData}}"
 Width="300"
 Height="200">

 <charts:LineChartGenerator.HorizontalAxis>
 <charts:AutoAxis PropertyName="Year" />
 </charts:LineChartGenerator.HorizontalAxis>

 <charts:LineChartGenerator.VerticalAxis>
 <charts:IncrementAxis PropertyName="Population"
 Increment="50000000"
 IsFlipped="True" />
 </charts:LineChartGenerator.VerticalAxis>
 </charts:LineChartGenerator>
</Window.Resources>

Figure 2 The Resources Section of PopulationLineChart

Petzold.ExtremeUI.0110.v9_68-75.indd 70 12/14/09 9:53 AM

71January 2010msdnmagazine.com

visuals of a chart entirely in XAML. One collection goes in (the actual
business objects) and four collections come out—one for the data points,
one for drawing the connected line and two more for the horizontal
and vertical axes. Th is allows you to construct a chart in XAML that
contains multiple ItemsControls (generally arranged in a four-by-four
Grid, or larger if you want to include titles and other labels), each with
its own DataTemplate to display these collections.

Let’s see how this works in practice. (All downloadable source code
is contained in a single Visual Studio project named LineChartsWith-
DataTemplates. Th is solution has one DLL project named LineChar-
tLib and three demonstration programs.)

Th e PopulationLineChart project contains a structure named
CensusDatum that defi nes two properties of type int named Year
and Population. Th e CensusData class derives from Observable-
Collection of type CensusDatum and fi lls up the collection with
U. S. decennial census data from the years 1790 (when the popu-
lation was 3,929,214) through 2000 (281,421,906). Figure 1 shows
the resultant chart.

All the XAML for this chart is in the Window1.xaml fi le in the
PopulationLineChart project. Figure 2 shows the Resources section
of this fi le. LineChartGenerator has its own ItemsSource property;
in this example it’s set to the CensusData object. It’s also necessary
to set the Width and Height properties here. (I realize this isn’t an
optimum place for these values, and not quite conducive to the
preferred method of layout in WPF, but I couldn’t work out a bet-
ter solution.) Th ese values indicate the interior dimensions of the
chart excluding the horizontal and vertical axes.

LineChartGenerator also has two properties of type AxisStrat-
egy named HorizontalAxis and VerticalAxis. AxisStrategy is an
abstract class that defi nes several properties, including Proper-
tyName where you indicate the property of the data objects you
want graphed on this axis. In accordance with WPF’s coordinate
system, increasing values go from left to right and from top to bot-
tom. Almost always you’ll want to set the IsFlipped property on the
vertical axis to True so increasing values go from bottom to top.

One of the classes that derives from AxisStrategy is Increment Axis,
which defi nes one property named Increment. With the Increment-
Axis strategy, you specify what increment you want between the
tick marks. Th e minimum and maximum are set as multiples of
the increment. I’ve used IncrementAxis for the population scale.

Another class that derives from AxisStrategy is AutoAxis, which
defi nes no additional properties of its own. I’ve used this one for
the horizontal axis: All it does is use the actual values for the axis.
(Another obvious AxisStrategy derivative that I haven’t written is
ExplicitAxis, where you supply a list of values to appear on the axis.)

Th e LineChartGenerator class defi nes two read-only dependency
properties. Th e fi rst is named Points of type PointCollection; use
this property to draw the line that connects the points:

<Polyline Points="{Binding Source={StaticResource generator},
 Path=Points}"
 Stroke="Blue" />

Th e second LineChartGenerator property is named ItemPoints of
type ItemPointCollection. An ItemPoint has two properties, named
Item and Point. Item is the original object in the collection—in this
particular example, Item is an object of type CensusDatum. Point
is the point where that item is to appear in the graph.

Figure 3 shows the ItemsControl that displays the main body of
the chart. Notice that its ItemsSource is bound to the ItemPoints
property of the LineChartGenerator. Th e ItemsPanel template is a
Grid, and the ItemTemplate is a Path with an EllipseGeometry and
a ToolTip. Th e Center property of the EllipseGeometry is bound
to the Point property of the ItemPoint object, while the ToolTip
accesses the Year and Population properties of the Item property.

You might be wondering about the Transform set on the Ellipse-
Geometry object, which is off set by a RenderTransform property set
on the Path element. Th is is a kludge: Without it, the ellipse at the far
right was partially clipped, and I couldn’t fi x it with ClipToBounds.

Th e Polyline and this main ItemsControl share the same single-
cell Grid whose Width and Height are bound to the values from
LineChartGenerator:

<Grid Width="{Binding Source=
{StaticResource generator}, Path=Width}"
 Height="{Binding Source=
{StaticResource generator}, Path=Height}">

Th e Polyline is underneath the ItemsControl in this example.
Th e AxisStrategy class defi nes its own read-only dependency

property named AxisItems, a collection of objects of type Axis-
Item, which has two properties named Item and Off set. Th is is the
collection used for the ItemsControl for each axis. Although the

Programming failures are
sometimes just as instructive as

programming successes.

<ItemsControl ItemsSource="{Binding Source={StaticResource generator},
 Path=ItemPoints}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <Grid IsItemsHost="True" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Path Fill="Red" RenderTransform="2 0 0 2 0 0">
 <Path.Data>
 <EllipseGeometry Center="{Binding Point}"
 RadiusX="4"
 RadiusY="4"
 Transform="0.5 0 0 0.5 0 0" />
 </Path.Data>
 <Path.ToolTip>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Item.Year}" />
 <TextBlock Text="{Binding Item.Population,
 StringFormat=': {0:N0}'}" />
 </StackPanel>
 </Path.ToolTip>
 </Path>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

Figure 3 The Main ItemsControl for PopulationLineChart

Petzold.ExtremeUI.0110.v9_68-75.indd 71 12/14/09 9:53 AM

www.msdnmagazine.com

msdn magazine72 Extreme UI

Item property is defi ned to be of type object, it will actually be the
same type as the property associated with that axis. Off set is a dis-
tance from the top or left .

Figure 4 shows the ItemsControl for the horizontal axis; the ver-
tical axis is similar. Th e ItemsSource property of the ItemsControl
is bound to the AxisItems property of the HorizontalAxis prop-
erty of the LineChartGenerator. Th e ItemsControl is thus fi lled
with objects of type AxisItem. Th e Text property of the TextBlock
is bound to the Items property, and the Off set property is used to
translate the tick mark and text along the axis.

Because these three ItemsControls are simply sitting in three cells
of a Grid, it’s the responsibility of the person
designing the layout in XAML to make sure
they align correctly. Any borders or margins
or padding applied to these controls must be
consistent. Th e ItemsControl in Figure 4 has
a horizontal margin of 4; the ItemsControl
for the vertical axis has a vertical margin of
4. I chose these values to correspond to the
BorderTh ickness and Padding of a Border
surrounding the single-cell Grid that con-
tains the Polyline and the chart itself:

<Border Grid.Row="1"
 Grid.Column="1"
 Background="Yellow"
 BorderBrush="Black"
 BorderThickness="1"
 Padding="3">

Data Type Consistency
Th e LineChartGenerator class itself is not
very interesting. It assumes that the Items-
Source collection is already sorted, and is
mostly devoted to making sure that every-
thing gets updated when the ItemsSource

property changes. If the collection set to ItemsSource implements
ICollectionChanged, the chart is also updated when items are add-
ed to or removed from the collection. If the items in the collection
implement INotifyPropertyChanged, the chart is updated when
the items themselves change.

Most of the real work actually goes on in AxisStrategy and
derived classes. Th ese AxisStrategy derivatives are the classes you set
to LineChartGenerator’s HorizontalAxis and VerticalAxis properties.

AxisStrategy itself defi nes the important PropertyName property
that indicates which property of the objects being charted is associat-
ed with that axis. AxisStrategy uses refl ection to access that particular
property of the objects in the collection. But just accessing that prop-
erty isn’t enough. AxisStrategy (and its derivatives) need to perform
calculations on the values of this property to obtain Point objects and
tick off sets. Th ese calculations include multiplication and division.

Th e necessity of calculations strongly implies that the proper-
ties being graphed must be numeric types—integers or fl oating
point. Yet one extremely common data type commonly used on
the horizontal axis of line charts is not a number at all, but a date
or a time. In the Microsoft .NET Framework, we’re talking about
an object of type DateTime.

What do all the numeric data types and DateTime have in
common? They all implement the IConvertible interface, which
means that they all contain a bunch of methods that convert them
into one another, and they are all usable with the same-named
methods in the static Convert class. Therefore, it seemed rea-
sonable to me to require that the properties being charted im-
plement IConvertible. AxisStrategy (and its derivatives) could
then simply convert the property values to doubles to perform
the necessary calculations.

However, I soon discovered that properties of type Date-
Time actually cannot be converted to doubles using either the
To Double method or the Convert.ToDouble static method. This

<ItemsControl Grid.Row="2"
 Grid.Column="1"
 Margin="4 0"
 ItemsSource="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.AxisItems}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <Grid IsItemsHost="True" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <Line Y2="10" Stroke="Black" />
 <TextBlock Text="{Binding Item}"
 FontSize="8"
 LayoutTransform="0 -1 1 0 0 0"
 RenderTransform="1 0 0 1 -6 1"/>

 <StackPanel.RenderTransform>
 <TranslateTransform X="{Binding Offset}" />
 </StackPanel.RenderTransform>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

Figure 4 Markup for the Horizontal Axis of
PopulationLineChart

Sales for 2009
30

25

20

15

10

5

0

300

250

200

150

100

50

0

W
ID

G
ET

S

D
O
O
D
A
D
S

January

February

March
April

May
June

July
August

September

October

November

December

Figure 5 The SalesByMonth Display

Petzold.ExtremeUI.0110.v9_68-75.indd 72 12/14/09 9:53 AM

73January 2010msdnmagazine.com

meant that properties of type DateTime really had to be handled
with special logic, which fortunately didn’t turn out to be a big
deal. The Ticks property defined by DateTime is a 64-bit integer,
which can be converted to a double; a double can be converted
back to a DateTime by first converting it to a 64-bit integer and
then passing that value to a DateTime constructor. A little ex-
perimentation revealed that the round-trip conversion was ac-
curate to the millisecond.

AxisStrategy has a Recalculate method that loops through all the
items in its parent’s ItemsSource collection, converts the specifi ed
property of each object to a double and determines the minimum
and maximum values. AxisStrategy defi nes three properties that
potentially aff ect these two values: Margin (which allows the mini-
mum and maximum to be a little beyond the range of actual val-
ues), IncludeZero (so that the axis always includes the value zero
even if all the values are greater than zero or less than zero), and
IsSymmetricAroundZero, which means that the axis maximum
should be positive, and the minimum should be negative, but they
should have the same absolute values.

Aft er those adjustments, AxisStrategy calls the abstract Calcu-
lateAxisItems method:

protected abstract void CalculateAxisItems(Type propertyType, ref double
minValue, ref double maxValue);

Th e fi rst argument is the type of the properties corresponding
to that axis. Any class that derives from AxisStrategy must imple-
ment this method and use the opportunity to defi ne the items and
off sets that constitute its AxisItems collection.

It’s very likely that CalculateAxisItems will also set new mini-
mum and maximum values. When CalculateAxisItems returns,
AxisStrategy then uses these values together with the width and
height of the chart to calculate Point values for all the items.

XML Data Sources
Besides dealing with numeric properties and properties of type
DateTime, AxisStategy also must handle the case when the
items in the ItemsSource collection are of type XmlNode. Th is
is what the collection contains when ItemsSource is bound to an

XmlDataProvider, either referencing an external XML fi le or an
XML data island within the XAML fi le.

AxisStrategy uses the same conventions as DataTemplates: A
name by itself refers to an XML element, and a name preceded by
an @ sign is an XML attribute. AxisStrategy obtains these values
as strings. Just in case they are actually dates or times, Axis Strategy
fi rst attempts to convert these strings into DateTime objects before
converting them into doubles. DateTime.TryParseExact is used
for this job, and only for the invariant-culture formatting specifi -
cations of “R”, “s”, “u” and “o”.

Th e SalesByMonth project demonstrates graphing XML data and
a few other features. Th e Window1.xaml fi le contains an XmlData-
Provider with data for 12 months of fi ctitious sales of two products
named Widgets and Doodads:

<XmlDataProvider x:Key="sales"
 XPath="YearSales">
 <x:XData>
 <YearSales xmlns="">
 <MonthSales Date="2009-01-01T00:00:00">
 <Widgets>13</Widgets>
 <Doodads>285</Doodads>
 </MonthSales>

 ...

 <MonthSales Date="2009-12-01T00:00:00">
 <Widgets>29</Widgets>
 <Doodads>160</Doodads>
 </MonthSales>
 </YearSales>
 </x:XData>
</XmlDataProvider>

Th e Resources section also contains two very similar LineChart-
Generator objects for the two products. Here’s the one for the
Widgets:

<charts:LineChartGenerator
 x:Key="widgetsGenerator"
 ItemsSource=
 "{Binding Source={StaticResource sales},
 XPath=MonthSales}"
 Width="250" Height="150">
 <charts:LineChartGenerator.HorizontalAxis>
 <charts:AutoAxis PropertyName="@Date" />
 </charts:LineChartGenerator.HorizontalAxis>

 <charts:LineChartGenerator.VerticalAxis>
 <charts:AdaptableIncrementAxis
 PropertyName="Widgets"
 IncludeZero="True"
 IsFlipped="True" />
 </charts:LineChartGenerator.VerticalAxis>
</charts:LineChartGenerator>

Notice that the horizontal axis is associated with the XML attribute
of Date. Th e vertical axis is of type AdaptableIncrementAxis, which
derives from AxisStrategy and defi nes two additional properties:

• Increments of type DoubleCollection
• MaximumItems of type int

The Increments collection has default values 1, 2 and 5, and the
MaximumItems property has a default value of 10. The SalesBy-
Month project simply uses those defaults. AdaptableIncrement-
Axis determines the optimum increment between tick marks so
the number of axis items does not exceed MaximumItems. With
the default settings, it tests increment values of 1, 2 and 5, and
then 0, 20 and 50, and then 100, 200 and 500 and so forth. It will
also go in the opposite direction: testing increments of 0.5, 0.2,
0.1 and so forth.

I soon discovered that
properties of type DateTime

actually cannot be converted to
doubles using either

the ToDouble method or the
Convert.ToDouble

static method.

Petzold.ExtremeUI.0110.v9_68-75.indd 73 12/14/09 9:53 AM

www.msdnmagazine.com

msdn magazine74 Extreme UI

You can fill the Increments property of AdaptableIncrement-
Axis with other values, of course. If you want the increment to
always be a multiple of 10, just use the single value 1. An alterna-
tive to 1, 2 and 5 that might be more appropriate for some situ-
ations is 1, 2.5 and 5.

AdaptableIncrementAxis (or something like it of your own
invention) is probably the best choice when the numeric values of
an axis are unpredictable, particularly when the chart contains data
that is dynamically changing or growing in overall size. Because
the Increments property of AdaptableIncrementAxis is of type
DoubleCollection, it’s unsuitable for DateTime values. I describe
an alternative for DateTime later in this column.

Th e XAML fi le in the SalesByMonth project defi nes two
LineChartGenerator objects for the two products, which then
allows a composite chart as shown in Figure 5.

This option of creating a composite chart did not require
anything special in the classes that make up LineChartLib. All
the code does is generate collections that can then be handled
flexibly in XAML.

To accommodate all the labels and axes, the entire chart is re-
alized in a Grid of four rows and fi ve columns containing fi ve
ItemsControls—two for the two collections of data items in the
chart itself, two for the axis scales on the left and right, and one
more for the horizontal axis.

Th e color-coding to distinguish the two products is simple to
implement in XAML. But notice also that the two products are
further distinguished by triangular and square data points. Th e
triangular items are rendered by this DataTemplate:

<DataTemplate>
 <Path Fill="Blue"
 Data="M 0 -4 L 4 4 -4 4Z">
 <Path.RenderTransform>
 <TranslateTransform X="{Binding Point.X}"
 Y="{Binding Point.Y}" />
 </Path.RenderTransform>
 </Path>
</DataTemplate>

In a real-life example you might use shapes actually associated
with the two products, or even little bitmaps.

Th e line that connects the points in this example is not a stan-
dard Polyline element but instead a custom Shape derivative named
CanonicalSpline. (Th e canonical spline—also known as the cardi-
nal spline—is part of Windows Forms but did not make it into the
WPF. Every pair of points is connected by a curve that depends
algorithmically on the two additional points surrounding the pair
of points.) It’s also possible to write other custom classes for this
purpose, perhaps one that performs least-squares interpolation on
the points and displays the result.

The HorizontalAxis.AxisItems property of the LineChart-
ChartGenerator is an ObservableCollection of type Date-
Time, which means that the items can be formatted using the
StringFormat feature of the Binding class and standard date/
time formatting strings.

<DataTemplate>
 <StackPanel HorizontalAlignment="Left">
 <Line Y2="10" Stroke="Black" />

 <TextBlock Name="txtblk"
 RenderTransform="1 0 0 1 -4 -4">
 <TextBlock.LayoutTransform>
 <RotateTransform Angle="45" />
 </TextBlock.LayoutTransform>
 </TextBlock>

 <StackPanel.RenderTransform>
 <TranslateTransform X="{Binding Offset}" />
 </StackPanel.RenderTransform>
 </StackPanel>

 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Second">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat=h:mm:ss d MMM yy}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Minute">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat=h:mm d MMM yy}" />
 </DataTrigger>

 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Hour">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat='h tt, d MMM yy'}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Day">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat=d}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Month">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat=MMM yy}" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Source={StaticResource generator},
 Path=HorizontalAxis.
 DateTimeInterval}"
 Value="Year">
 <Setter TargetName="txtblk" Property="Text"
 Value="{Binding Item, StringFormat=MMMM}" />
 </DataTrigger>
 </DataTemplate.Triggers>
</DataTemplate>

Figure 6 The DataTemplate for the Horizontal Axis of TemperatureHistory

The canonical spline—also
known as the cardinal spline—is
part of Windows Forms but did

not make it into the WPF.

Petzold.ExtremeUI.0110.v9_68-75.indd 74 12/14/09 9:53 AM

The DataTemplate for the horizontal axis uses the “MMMM”
formatting string to display whole month names:

<DataTemplate>
 <StackPanel HorizontalAlignment="Left">
 <Line Y2="10" Stroke="Black" />
 <TextBlock Text="{Binding Item, StringFormat=MMMM}"
 RenderTransform="1 0 0 1 -4 -4">
 <TextBlock.LayoutTransform>
 <RotateTransform Angle="45" />
 </TextBlock.LayoutTransform>
 </TextBlock>

 <StackPanel.RenderTransform>
 <TranslateTransform X="{Binding Offset}" />
 </StackPanel.RenderTransform>
 </StackPanel>
</DataTemplate>

Dates and Times
Th e use of DateTime objects on the horizontal axis of a line chart is
so common that it’s worth spending eff ort coding an AxisStrategy to
deal specifi cally with these objects. Some line
charts accumulate data such as stock prices
or environmental readings, perhaps adding
a new item every hour or so, and it would be
nice to have an AxisStrategy that adapts itself
depending on the range of DateTime values
among the graphed items.

My stab at such a class is calledAdaptable-
DateTimeAxis, and it’s intended to accom-
modate DateTime data over a wide range
from seconds to years.

AdaptableDateTimeAxis has a Maximu-
mItems property (with a default setting of 10)
and six collections called SecondIncrements,
MinuteIncrements, HourIncrements, Day-
Increments, MonthIncrements and YearIn-
crements. Th e class systematically tries to fi nd
an increment between tick points so that the
number of items does not exceed Maximum-
Items. With the default settings, Adaptable-
DateTimeAxis will test increments of 1 second,
2 seconds, 5, 15 and 30 seconds, then 1, 2, 5, 15
and 30 minutes, then 1, 2, 4, 6 and 12 hours,
1, 2, 5 and 10 days, and 1, 2, 4 and 6 months.
Once it gets up to years, it tries 1, 2 and 5 years,
then 10, 20 and 50, and so forth.

AdaptableDateTimeAxis also defines
a read-only dependency property named
DateTimeInterval—also the name of
an enumeration with members Second,
Minute, Hour and so forth—that indicates
the units of the axis increments determined
by the class. Th is property allows Data-
Triggers to be defi ned in XAML that alter
the Date Time formatting based on the incre-
ment. Figure 6 shows a sample DataTemplate
that performs such formatting selection.

Th at template is from the Temperature-
History project, which accesses the Web

site of the National Weather Service to obtain hourly tempera-
ture readings in Central Park in New York City. Figure 7 shows
the Temperature History display aft er the program ran for several
hours; Figure 8 shows it aft er several days.

Of course, my line-charting classes aren’t entirely fl exible—for
example, currently there is no way to independently draw tick
marks not associated with text labels—but I think they illustrate a
viable and powerful approach to providing suffi cient information
to defi ne line-chart visuals entirely in XAML.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His most recent book is "Th e Annotated Turing: A Guided Tour through Alan
Turing’s Historic Paper on Computability and the Turing Machine" (Wiley, 2008).
His Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
David Teitelbaum

12 PM, 18 Sep 09

80.0

75.0

70.0

65.0

60.0

55.0

Temperature History / Central Park

6 AM, 14 Sep 09

12 PM, 14 Sep 09

6 PM, 14 Sep 09

12 AM, 15 Sep 09

6 AM, 15 Sep 09

12 PM, 15 Sep 09

6 PM, 15 Sep 09

12 AM, 16 Sep 09

6 AM, 16 Sep 09

12 PM, 16 Sep 09

6 PM, 16 Sep 09

12 AM, 17 Sep 09

6 AM, 17 Sep 09

12 PM, 17 Sep 09

6 PM, 17 Sep 09

12 AM, 18 Sep 09

6 AM, 18 Sep 09

Figure 8 The TemperatureHistory Display with Days

77.0

76.0

75.0

74.0

73.0

72.0

71.0

70.0

69.0

Temperature History / Central Park

10:30 14 Sep 09

11:00 14 Sep 09

11:30 14 Sep 09

12:00 14 Sep 09

12:30 14 Sep 09

1:00 14 Sep 09

1:30 14 Sep 09

2:00 14 Sep 09

2:30 14 Sep 09

3:00 14 Sep 09

3:30 14 Sep 09

4:00 14 Sep 09

4:30 14 Sep 09

5:00 14 Sep 09

5:30 14 Sep 09

6:00 14 Sep 09

6:30 14 Sep 09

7:00 14 Sep 09

7:30 14 Sep 09

8:00 14 Sep 09

Figure 7 The TemperatureHistory Display with Hours

75January 2010msdnmagazine.com

Petzold.ExtremeUI.0110.v9_68-75.indd 75 12/14/09 9:53 AM

www.msdnmagazine.com
http://charlespetzold.com

msdn magazine76

to fi nd the service address? In that case, the service is at liberty to
confi gure its endpoint addresses on the fl y, dynamically, based on
any available port or pipe.

To automate using dynamic addresses, I wrote the Discovery-
Helper static helper class with the two properties AvailableIpcBase-
Address and AvailableTcpBaseAddress:

public static class DiscoveryHelper
{
 public static Uri AvailableIpcBaseAddress
 {get;}
 public static Uri AvailableTcpBaseAddress
 {get;}
}

Implementing AvailableIpcBaseAddress is straightforward—
because any uniquely named pipe will do, the property uses a new
globally unique identifi er (GUID) to name the pipe. Implementing
AvailableTcpBaseAddress is done by fi nding an available TCP port
via opening port zero.

Figure 3 shows how to use AvailableTcpBaseAddress.
If all you want is the dynamic base address for your service, the

code in Figure 3 is less than perfect, because it still requires you
to add discovery, either in the confi g fi le or programmatically.
You can streamline these steps with my EnableDiscovery host
extension, defi ned as:

public static class DiscoveryHelper
{
 public static void EnableDiscovery(this ServiceHost host,bool
enableMEX = true);
}

FOUNDATIONS

Discover a New WCF with Discovery

All the Windows Communication Foundation (WCF) calls possible
with the Microsoft .NET Framework 3.5 share two constraints.
First, the port or pipe assigned to the service must be available.
Th e application developer or administrator literally has to guess or
have some way of reserving them. Second, the client must a priori
know the address of the service endpoints, both the port number
and the service machine, or the pipe name.

It would be great if the service could use any available address.
Th e client, in turn, would need to discover that address at runtime.
In fact, there is an industry standard-based solution that stipu-
lates how that discovery stakes place. Th at solution, called simply
discovery (and its supporting mechanisms), is the subject of this
column. I will also introduce several useful tools and helper classes.
Th e source code for these is available at code.msdn.

Address Discovery
Discovery relies on the User Datagram Protocol (UDP). Unlike the
Transmission Control Protocol (TCP), UDP is a connectionless pro-
tocol, and no direct connection is required between the packets sender
and the receiver. Th e client uses UDP to broadcast discovery requests
for any endpoint supporting a specifi ed contract type. Th ese requests are
received by dedicated discovery endpoints that the services support. Th e
implementation of the discovery endpoint responds back to the client
with the address of the service endpoints that support the specifi ed
contract. Once the client discovers the services, it continues to invoke
them as with regular WCF calls. Th is sequence is illustrated in Figure 1.

Much like the Metadata Exchange (MEX) endpoint, WCF off ers a
standard discovery endpoint with the type UdpDiscoveryEndpoint:

public class DiscoveryEndpoint : ServiceEndpoint
{...}
public class UdpDiscoveryEndpoint : DiscoveryEndpoint
{...}

Th e service can have the host implement that endpoint by adding the
ServiceDiscoveryBehavior to the collections of behaviors supported
by the service. You can do that programmatically like this:

ServiceHost host = new ServiceHost(...);
host.AddServiceEndpoint(new UdpDiscoveryEndpoint());
ServiceDiscoveryBehavior discovery = new ServiceDiscoveryBehavior();
host.Description.Behaviors.Add(discovery);
host.Open();

Figure 2 shows how to add the discovery endpoint and the
discovery behavior using the service confi g fi le.

Dynamic Addresses
Discovery is independent of how exactly the service host defi nes its
endpoints. However, what if the client is expected to use discovery

JUVAL LOWY

Send your questions and comments for Lowy to mmnet30@microsoft.com.

Code download available at code.msdn.microsoft.com/mag2010WCF.

Figure 1 Address Discovery over UDP

Discovery
Endpoint

Discovery
Response

Discovery
Request 1

2

3
4

Client Service

Discovery
Endpoint

Discovery
Response

2

3Service

mailto:mmnet30@microsoft.com
code.msdn.microsoft.com/mag2010WCF

Project3 3/18/09 9:10 AM Page 1

www.nsoftware.com

msdn magazine78 Foundations

When using EnableDiscovery there is no need for programmatic
steps or a confi g fi le:

Uri baseAddress = DiscoveryHelper.AvailableTcpBaseAddress;
ServiceHost host = new ServiceHost(typeof(MyService),baseAddress);
host.EnableDiscovery();
host.Open();

If the host has not already defi ned endpoints for the service,
EnableDiscovery will add the default endpoints. EnableDiscovery
will also default to adding to the service the MEX endpoint on
its base addresses.

Client-Side Steps
Th e client uses the DiscoveryClient class to discover all endpoint
addresses of all services that support a specifi ed contract:

public sealed class DiscoveryClient : ICommunicationObject
{
 public DiscoveryClient();
 public DiscoveryClient(string endpointName);
 public DiscoveryClient(DiscoveryEndpoint discoveryEndpoint);
 public FindResponse Find(FindCriteria criteria);
 //More members
}

Logically, DiscoveryClient is a proxy to the discovery endpoint.
Like all proxies, the client must provide the proxy’s constructor
with the information about the target endpoint. Th e client can use
a confi g fi le to specify the endpoint or programmatically provide
the standard UDP discovery endpoint for that purpose, since no
further details (such as address or binding) are required. Th e client
then calls the Find method, providing it with the contract type to
discover via an instance of FindCriteria:

public class FindCriteria
{
 public FindCriteria(Type contractType);
 //More members
}

Find returns an instance of FindResponse, which contains a
collection of all the discovered endpoints:

public class FindResponse
{
 public Collection<EndpointDiscoveryMetadata> Endpoints
 {get;}
 //More members
}

Each endpoint is represented by the EndpointDiscovery-
Metadata class:

public class EndpointDiscoveryMetadata
{
 public EndpointAddress Address
 {get;set;}
 //More members
}

Th e main property of the EndpointDiscoveryMetadata is Address,
which fi nally contains the discovered endpoint address. Figure 4
shows how a client can use these types in conjunction to discover
the endpoint address and invoke the service.

Th ere are several noteworthy problems with Figure 4.
While the client may discover multiple endpoints supporting the

desired contract, it has no logic to resolve which one to invoke. It
simply invokes the fi rst one in the returned collection.

Discovery is geared toward addresses only. Th ere’s no information
about which binding to use to invoke the service. Figure 4 simply
hardcodes the use of the TCP binding. Th e client will have to re-
peat these minute steps over and over every time it needs to dis-
cover the service address.

Discovery takes time. By default, Find will wait for 20 seconds
for the services to respond to the UDP discovery request. Such
a delay makes discovery inadequate for use in many applica-
tions, certainly when the application performs a high volume
of tight calls. While you could shorten that timeout, if you do
so, you run the risk of not discovering any or all of the services.
DiscoveryClient does offer an asynchronous discovery, but that
is of no use for a client that needs to invoke the service before
continuing with its execution.

You will see several approaches to addressing these problems
in this column.

Scopes
Th e use of discovery implies a somewhat loose relationship between
the client and the service or services it discovers. Th is presents
another set of problems—how can the client know it has discovered
the right endpoint? When multiple compatible endpoints are
discovered, which one should the client invoke?

Clearly, there is a need for some mechanism that will help the
client fi lter the results of discovery. Th is is exactly what scopes are

DiscoveryClient discoveryClient =
 new DiscoveryClient(new UdpDiscoveryEndpoint());
FindCriteria criteria = new FindCriteria(typeof(IMyContract));
FindResponse discovered = discoveryClient.Find(criteria);
discoveryClient.Close();
//Just grab the first found
EndpointAddress address = discovered.Endpoints[0].Address;
Binding binding = new NetTcpBinding();
IMyContract proxy =
 ChannelFactory<IMyContract>.CreateChannel(binding,address);
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

Figure 4 Discovering and Invoking an Endpoint

<services>
 <service name = "MyService">
 <endpoint
 kind = "udpDiscoveryEndpoint"
 />
 ...
 </service>
</services>
<behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceDiscovery/>
 </behavior>
 </serviceBehaviors>
</behaviors>

Figure 2 Adding Discovery Endpoint in Confi g

Uri baseAddress = DiscoveryHelper.AvailableTcpBaseAddress;
ServiceHost host = new ServiceHost(typeof(MyService),baseAddress);
host.AddDefaultEndpoints();
host.Open();
<service name = "MyService">
 <endpoint
 kind = "udpDiscoveryEndpoint"
 />
</service>
<serviceBehaviors>
 <behavior>
 <serviceDiscovery/>
 </behavior>
</serviceBehaviors>

Figure 3 Using Dynamic Addresses

79January 2010msdnmagazine.com

about. A scope is merely a valid URL associated with the endpoint.
Th e service can associate a scope or even multiple scopes with each
of its endpoints. Th e scopes are bundled along with the addresses
in the response to the discovery request. In turn, the client can
fi lter the discovered addresses based on the scopes found or, better
yet, try to fi nd only relevant scopes in the fi rst place.

Scopes are immensely useful in customizing discovery and in
adding sophisticated behavior to your application, especially when
writing a framework or administration tools. Th e classic use for
scopes is to enable the client to distinguish among polymorphic
services from diff erent applications. However, this is somewhat of a
rare occurrence. I fi nd scopes handy when it comes to distinguishing
among endpoint types in the same application.

For example, suppose for a given contract you have multiple
implementations. You have the operational mode used in production
and the simulation mode used in testing or diagnostics. Using
scopes, the client can pick and choose the correct implementation
type needed, and diff erent clients never confl ict with one another
by consuming one another’s services. You can also have the same
client pick up a diff erent endpoint based on the context of the
invocation. You could have endpoints for profi ling, debugging,
diagnostics, testing, instrumentation and so on.

Th e host assigns scopes on a per-endpoint basis using the
Endpoint DiscoveryBehavior class. For example, to apply across
all endpoints, use a default endpoint behavior:

<endpointBehaviors>
 <behavior>
 <endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://MyApplication"/>
 </scopes>
 </endpointDiscovery>
 </behavior>
</endpointBehaviors>

You apply scopes discretely, based on the type of service, by assign-
ing the behaviors explicitly per endpoint, as shown in Figure 5. A
single discovery behavior can list multiple scopes:

<endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://MyScope1"/>
 <add scope = "net.tcp://MyScope2"/>
 </scopes>
</endpointDiscovery>

If an endpoint has multiple scopes associated with it, when the
client tries to discover the endpoint based on scope matching, the

client needs at least one of the scopes to match, but not all of them.
Th e client has two ways of using scopes. Th e fi rst is to add the

scope to the fi nding criteria:
public class FindCriteria
{
 public Collection<Uri> Scopes
 {get;}
 //More members
}

Now the Find method will return only compatible endpoints that
also list that scope. If the client adds multiple scopes, then Find will
return only endpoints that support all of the listed scopes. Note that
the endpoint may support additional scopes not provided to Find.

Th e second way of using scopes is to examine the scopes return-
ed in FindResponse:

public class EndpointDiscoveryMetadata
{
 public Collection<Uri> Scopes
 {get;}
 //More members
}

Th ese scopes are all the scopes supported by the endpoint, and
they are useful for additional fi ltering.

Discovery Cardinality
Whenever relying on discovery, the client must deal with what I call
discovery cardinality, that is, how many endpoints are discovered and
which one, if any, to invoke. Th ere are several cases of cardinality:

• No endpoint is discovered. In this case the client needs to deal
with the absence of the service. Th is is no diff erent from any
other WCF client whose service is unavailable.

• Exactly one compatible endpoint is discovered. Th is is by far the
most common case—the client simply proceeds to invoke the service.

• Multiple endpoints are discovered. Here the client, in theory,
has two options. Th e fi rst is to invoke all of them. Th is is the
case with a publisher fi ring an event at subscribers, as discussed
later on, and is a valid scenario. Th e second option is to invoke

<service name = "MySimulator">
 <endpoint behaviorConfiguration = "SimulationScope"
 ...
 />
 ...
</service>
...
 <behavior name = "SimulationScope">
 <endpointDiscovery>
 <scopes>
 <add scope = "net.tcp://Simulation"/>
 </scopes>
 </endpointDiscovery>
 </behavior>

Figure 5 Explicit Behavior Assignment

Figure 6 The Announcement Architecture

Announcements
Endpoint

Hello/Bye

Hello/Bye

Service

Discovery
Endpoint

Service

Client

Discovery is independent
of how exactly the service host

defi nes its endpoints.

www.msdnmagazine.com

msdn magazine80 Foundations

some (including only one), but not all of the discovered
endpoints). I fi nd that scenario to be moot. Any attempt to
place logic in the client that resolves which endpoint to invoke
creates too much coupling across the system. It negates the
very notion of runtime discovery, namely, that any discovered
endpoint will do. If it is possible to discover undesirable
endpoints, then using discovery is a poor design choice, and
you should instead provide static addresses to the client.
If the client expects to discover exactly one endpoint (cardinality

of one), then the client should instruct Find to return as soon as it
fi nds that endpoint. Doing so will drastically reduce the discovery
latency and make it adequate for the majority of cases.

Th e client can confi gure the cardinality using the MaxResults
property of FindCriteria:

public class FindCriteria
{
 public int MaxResults
 {get;set;}
 //More members
}
FindCriteria criteria = new FindCriteria(typeof(IMyContract));
criteria.MaxResults = 1;

You can streamline the case of cardinality of one using my
Discov ery Helper.DiscoverAddress<T> helper method:

public static class DiscoveryHelper
{
 public static EndpointAddress DiscoverAddress<T>(Uri scope = null);
 //More members
}

Using DiscoverAddress<T>, Figure 4 is reduced to:
EndpointAddress address = DiscoveryHelper.DiscoverAddress<IMyContract>();
Binding binding = new NetTcpBinding();
IMyContract proxy = ChannelFactory<IMyContract>.
CreateChannel(binding,address);
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

Streamlining Discovery
So far, the client has had to hardcode the binding to use. However, if
the service supports a MEX endpoint, the client can discover the MEX
endpoint address, then proceed to retrieve and process the metadata
in order to obtain the binding to use, along with the endpoint address.
To help with MEX endpoint discovery, the FindCriteria class off ers the
static method CreateMetadataExchange EndpointCriteria:

public class FindCriteria
{
 public static FindCriteria CreateMetadataExchangeEndpointCriteria();
//More members
}

To streamline this sequence, use my DiscoveryFactory.
CreateChannel<T> method:

public static class DiscoveryFactory
{
 public static T CreateChannel<T>(Uri scope = null);
 //More members
}

Using CreateChannel<T>, Figure 4 is reduced to:
IMyContract proxy = DiscoveryFactory.CreateChannel<IMyContract>();
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

CreateChannel<T> assumes cardinality of one with the MEX
endpoint (that is, only a single discoverable MEX endpoint is found
in the local network), and that the metadata contains exactly one
endpoint whose contract is the specifi ed type parameter T.

 Note that CreateChannel<T> uses the MEX endpoint both for
the endpoint binding and address. Th e service is expected to support
both a MEX endpoint and a discovery endpoint (although the client
never uses the discovery endpoint to fi nd the actual endpoint).

In case there are multiple services supporting the desired service
contract, or there are multiple MEX endpoints, DiscoveryFactory
also off ers the CreateChannels<T> method:

public static class DiscoveryHelper
{
 public static T[] CreateChannels<T>(bool inferBinding = true);
 //More members
}

CreateChannels<T> by default will infer the binding to use from
the scheme of the service endpoint. If inferBinding is false, it will
discover the binding from the MEX endpoints.

CreateChannels<T> does not assume a cardinality of one on
the compatible service endpoints or the MEX endpoints, and will
return an array of all compatible endpoints.

Announcements
Th e discovery mechanism as presented thus far is passive from the per-
spective of the service. Th e client queries the discovery endpoint and
the service responds. As an alternative to this passive address discovery,
WCF off ers an active model, where the service broadcasts its status to
all clients and provides its address. Th e service host broadcasts a “hello”

public class AnnouncementEventArgs : EventArgs
{
 public EndpointDiscoveryMetadata EndpointDiscoveryMetadata
 {get;}
 //More members
}
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 ConcurrencyMode = ConcurrencyMode.Multiple)]
public class AnnouncementService : ...
{
 public event EventHandler<AnnouncementEventArgs>
OfflineAnnouncementReceived;
 public event EventHandler<AnnouncementEventArgs>
OnlineAnnouncementReceived;
 //More members
}

Figure 7 WCF Implementation of an Announcements Endpoint

class MyClient : IDisposable
{
 AnnouncementSink<IMyContract> m_AnnouncementSink;
 public MyClient()
 {
 m_AnnouncementSink = new AnnouncementSink<IMyContract>();
 m_AnnouncementSink.OnHelloEvent += OnHello;
 m_AnnouncementSink.Open();
 }
 void Dispose()
 {
 m_AnnouncementSink.Close();
 }
 void OnHello(string address)
 {
 EndpointAddress endpointAddress = new EndpointAddress(address);
 IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(
 new NetTcpBinding(),endpointAddress);
 proxy.MyMethod();
 (proxy as ICommunicationObject).Close();
 }
}

Figure 8 Using AnnouncementSink<T>

81January 2010msdnmagazine.com

announcement when the host is opened and a “bye” announcement
when the host shuts down gracefully. If the host is aborted ungracefully,
no “bye” announcement is sent. Th ese announcements are received on
a special announcements endpoint hosted by the client (see Figure 6).

Announcements are an individual endpoint-level mechanism,
not a host-level one. Th e host can choose which endpoint to
announce. Each announcement contains the endpoint address, its
scopes and its contract.

Note that announcements are unrelated to address discovery.
Th e host may not support a discovery endpoint at all, and there is
no need for the discovery behavior. On the other hand, the host
may chose to both support the discovery endpoint and announce
its endpoints, as shown in Figure 6.

Th e host can automatically announce its endpoints. All you
need to do is provide the information about the client announce-
ment endpoint for the discovery behavior. For example, when
using a confi g fi le:

<behavior>
 <serviceDiscovery>
 <announcementEndpoints>
 <endpoint
 kind = "udpAnnouncementEndpoint"
 />
 </announcementEndpoints>
 </serviceDiscovery>
</behavior>

My EnableDiscovery extension method also adds the announce-
ment endpoint to the discovery behavior.

For the use of the client, WCF provides a pre-canned implemen-
tation of an announcements endpoint with the Announcement-
Service class, as shown in Figure 7.

AnnouncementService is a singleton confi gured for concurrent
access. AnnouncementService provides two event delegates that
the client can subscribe to in order to receive the announcements.
Th e client should host the AnnouncementService using the
constructor of ServiceHost, which accepts a singleton instance. Th is
is required so that the client is able to interact with the instance and
subscribe to the events. In addition, the client must add the UDP
announcement endpoint to the host:

AnnouncementService announcementService = new AnnouncementService();
announcementService.OnlineAnnouncementReceived += OnHello;
announcementService.OfflineAnnouncementReceived += OnBye;
ServiceHost host = new ServiceHost(announcementService);
host.AddServiceEndpoint(new UdpAnnouncementEndpoint());
host.Open();
void OnHello(object sender,AnnouncementEventArgs args)
{...}
void OnBye(object sender,AnnouncementEventArgs args)
{...}

Th ere is one important detail related to receiving announcements.
Th e client would receive all notifi cations of all services in the

intranet, regardless of contract type or, for that matter, applications
or scopes. Th e client must fi lter out the relevant announcements.

Streamlining Announcements
You can greatly simplify and improve on the raw steps required of the
client to utilize announcements using my AnnouncementSink<T>
class defi ned as:

public class AnnouncementSink<T> : AddressesContainer<T> where T: class
{
 public event Action<T> OnHelloEvent;
 public event Action<T> OnByeEvent;
}

AnnouncementSink<T> automates hosting the announce-
ments endpoint by encapsulating the steps of Figure 7. While
AnnouncementSink<T> hosts an instance of Announcement Service
internally, it improves on its defi ciencies. First, Announcement Sink<T>
off ers two event delegates for notifi cations. Unlike the raw Announce-
mentService, AnnouncementSink<T> fi res these delegates concurrently.
In addition, AnnouncementSink<T> disables the synchronization
context affi nity of AnnouncementService, so that it can accept the
announcements on any incoming thread, making it truly concurrent.

AnnouncementSink<T> fi lters the contract types and only
fi res its events when compatible endpoints announce them-
selves. Th e only thing the client needs to do is to open and close
AnnouncementSink<T>, in order to indicate when to start and
stop receiving notifi cations.

AnnouncementSink<T> derives my general-purpose address
container called AddressesContainer<T>.

AddressesContainer<T> is a rich address-management helper
collection that you can use whenever you need to manipulate
multiple addresses. AddressesContainer<T> supports several
iterators, indexers, conversion methods and queries.

Figure 8 demonstrates using AnnouncementSink<T>.

The MEX Explorer
In my book “Programming WCF Services Second Edition” (O’Reilly,
2008), I presented a tool I call the MEX Explorer (see Figure 9).
You can provide a MEX address to the MEX Explorer and use it
to refl ect the service endpoints (their address, binding properties
and contract). Th e introduction of discovery enabled me to
revamp the MEX Explorer.

Figure 9 The MEX Explorer

Discovery is geared toward
addresses only. There is no

information about which binding
to use to invoke the service.

www.msdnmagazine.com

msdn magazine82 Foundations

Clicking the Discover button triggers a discovery request for
all MEX endpoints without any limit on cardinality. Th e tool then
visualizes all discovered endpoints in the tree. In addition, Th e MEX
Explorer utilizes announcements of MEX endpoints. In responding
to the announcements, the MEX Explorer refreshes itself and
presents the new endpoints or removes from the tree those that
are no longer running.

Discovery-Driven Publish-Subscribe Pattern
In the October 2006 article, “What You Need To Know About
One-Way Calls, Callbacks and Events” (msdn.microsoft.com/

magazine/cc163537), I present my framework for supporting a publish-
subscribe pattern in WCF. You can use the mechanisms of discovery
and announcements to provide yet another way of implementing a
publish-subscribe system.

Unlike the techniques in that article, a discovery-based solution is
the only publish-subscribe case that requires no explicit steps by the
subscribers or administrator. When utilizing discovery, there is no
need to explicitly subscribe either in code or in config. In turn, this
significantly simplifies the deployment of the system, and it enables
great flexibility in the presence of both publishers and subscribers.
You can easily add or remove subscribers and publishers
without any additional administration steps or programming.

When taking advantage of discovery for a publish-subscribe
system, the subscribers can provide a discovery endpoint so that
the publish-subscribe service can discover them, or they can
announce their event-handling endpoints, or even do both.

Th e publishers should not discover the subscribers directly,
because that may incur the discovery latency on every event

fi ring (having the cardinality of all endpoints). Instead, the
publishers should discover the publish-subscribe service, which is
a one-time negligible cost. Th e publish-subscribe service should be
a singleton (enabling fast discovery since it has cardinality of one).
Th e publish-subscribe service exposes the same event endpoint
as the subscribers, so it looks like a meta-subscriber to the
publishers. Th at is, it requires the same code to fi re the event at the
publish-subscribe service as against an actual subscriber.

Th e events endpoint of the publish-subscribe service must use
a particular scope. Th is scope enables the publishers to fi nd the
publish-subscribe service rather than the subscribers. In addi-
tion to supporting discovering that scoped events endpoint, the
publish-subscribe service provides an announcement endpoint.

The publish-subscribe service maintains a list of all subscrib-
ers. The publish-subscribe service can keep that list current by
constantly trying to discover the subscribers using some ongoing
background activity. Note again that having the publish-subscribe
service’s events endpoint associated with a special scope will also
prevent the publish-subscribe service from discovering itself
when discovering all events endpoints. The publish-subscribe
service can also provide an announcement endpoint to monitor
subscribers. Figure 10 depicts this architecture.

The Publish-Subscribe Service
To facilitate deploying your own publish-subscribe service, I wrote
the DiscoveryPublishService<T> defi ned as:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class DiscoveryPublishService<T> : IDisposable where T: class
{
 public static readonly Uri Scope;
 protected void FireEvent(params object[] args);
 //More members
}

All you need to do is to derive your publish-subscribe service
from DiscoveryPublishService<T> and specify the events contract
as the type parameter. Th en implement the operations of the event
contract by calling the FireEvent method.

For example, consider this events contract:
[ServiceContract]
interface IMyEvents
{
 [OperationContract(IsOneWay = true)]
 void OnEvent1();
 [OperationContract(IsOneWay = true)]
 void OnEvent2(int number);
}

Figure 11 shows how to implement your publish-subscribe
service using DiscoveryPublishService<T>.

Internally, DiscoveryPublishService<T> uses another one of my
AddressContainer<T> derived classes called DiscoveredServices<T>,
defi ned as:

public class DiscoveredServices<T> : AddressesContainer<T> where T:
class
{
 public DiscoveredServices();
 public void Abort();
}

DiscoveredServices<T> is designed to maintain as much as
possible an up-to-date list of all discovered services, and it stores
the addresses it discovers in its base class. DiscoveredServices<T>
spins off an ongoing discovery on a background thread, and

class MyPublishService : DiscoveryPublishService<IMyEvents>,IMyEvents
{
 public void OnEvent1()
 {
 FireEvent();
 }
 public void OnEvent2(int number)
 {
 FireEvent(number);
 }
}

Figure 11 Implementing a Publish-Subscribe Service

Figure 10 Discovery-Driven Publish-Subscribe System

Discovery
Endpoint

Discovery
Endpoint

Announcements
Endpoint

Discover
Pub/Sub

Publish

Discover
Subscribers

Hello/Bye

Subsciber

Publisher Pub/Sub
Service Subsciber

http://msdn.microsoft.com/magazine/cc163537

Project1 11/12/09 11:47 AM Page 1

www.alexcorp.com

Foundations

it is useful in cases where you want a current repository of
discovered addresses.

Th e FireEvent method extracts from the message headers the
operation name. It then queries the subscribers list for all subscribers
that do not support the publish-subscribe scope (to avoid self
discovery). FireEvent then merges the lists into a union of unique
entries (this is required to deal with subscribers that both announce
themselves and are discoverable). For each subscriber, FireEvent
infers the binding from the address scheme and creates a proxy to
fi re at the subscriber. Publishing the events is done concurrently
using threads from the thread pool.

To host your publish-subscribe service, use the static helper
method CreateHost<S> of DiscoveryPublishService<T>:

public class DiscoveryPublishService<T> : IDisposable where T: class
{
 public static ServiceHost<S> CreateHost<S>()
 where S : DiscoveryPublishService<T>,T;
 //More members
}

Th e type parameter S is your subclass of DiscoveryPublishService<T>,
and T is the events contract. CreateHost<S> returns an instance of
a service host you need to open:

ServiceHost host = DiscoveryPublishService<IMyEvents>.
 CreateHost<MyPublishService>();
host.Open();

In addition, CreateHost<S> will also obtain an available TCP base
address and add the events endpoint so there is no need for a confi g fi le.

The Publisher
Th e publisher needs a proxy to the events service. For that, use my
DiscoveryPublishService<T>.CreateChannel:

public class DiscoveryPublishService<T> : IDisposable where T : class
{
 public static T CreateChannel();
 //More members
}

DiscoveryPublishService<T>.CreateChannel discovers the publish-
subscribe service and creates a proxy to it. Th at discovery is fast since
the cardinality is one. Th e code of the publisher is straightforward:

IMyEvents proxy = DiscoveryPublishService<IMyEvents>.CreateChannel();
proxy.OnEvent1();
(proxy as ICommunicationObject).Close();

When it comes to implementing a subscriber, there is nothing special
to do. Simply support the events contract on a service, and add either
discovery or announcements (or both) of the events endpoint.

JUVAL LOWY is a soft ware architect with IDesign and provides WCF training
and architecture consulting. His latest book is “Programming WCF Services Th ird
Edition” (O’Reilly, 2010). He is also the Microsoft regional director for the Silicon
Valley. Contact Lowy at www.idesign.net.

A discovery-based solution is the
only publish-subscribe case that
requires no explicit steps by the
subscribers or administrator.

http://www.idesign.net
www.scaleoutsoftware.com/eval

TEST RUN

the Web application under test shown in Figure 1 so that you’ll un-
derstand which factors are relevant to HTTP request-response test-
ing. Next I explain in detail the test harness code shown running in
Figure 2 so that you’ll be able to modify the harness to meet your
own needs. I conclude with a few comments about when browser-
based request-response test automation with JavaScript is appro-
priate and when alternative approaches might be more suitable.

Th is article assumes you have intermediate level JavaScript and
ASP.NET skills, but even if you’re a beginner with these technol-
ogies you should be able to follow my explanations without too
much diffi culty.

Building the Web Application
I used Visual Studio 2008 to create the Product Search Web
application under test. In order to leverage Visual Studio’s

Web Application Request-Response
Testing with JavaScript

In this month’s column I explain how to write simple and eff ective
browser-based request-response test automation using JavaScript.
Th e best way for you to see where I'm headed is to take a look at
the screenshots in Figures 1 and 2. Figure 1 shows a simple but
representative ASP.NET Web application under test named Prod-
uct Search. A user enters some search string into the application's
single textbox control, and specifi es whether the search is to be per-
formed in a case-sensitive manner using two radio button controls.
Search results are displayed in a listbox control.

Although the example Web application under test is based on
ASP.NET, the technique I present in this article can be used to create
test automation for Web applications written using most dynamic
page generation technologies, including PHP, JSP, CGI and others.

Figure 2 shows the request-response test automation in action.
Notice that the test automation harness is browser-based. One of
the advantages of the technique I present here compared to al-
ternative approaches is that the technique can be used with most
major Web browsers, and can be executed on test host machines
running most operating systems.

Th e test automation harness consists of a single HTML page that
houses a relatively short set of JavaScript functions. Notice that the
fi rst line of test run output indicates that the test automation is us-
ing the jQuery library. Th e harness reads test case input data, which
corresponds to user input, and programmatically posts that input
data to the Product Search Web application. Th e harness accepts
the resulting HTTP response data and examines that response for
an expected value in order to determine a test case pass/fail result.

In the sections of this article that follow, I fi rst briefl y describe

DR. JAMES MCCAFFREY

Send your questions and comments for Dr. McCaffrey to testrun@microsoft.com.

Code download available at code.msdn.microsoft.com/mag2010Test.
Figure 1 Product Search Web Application Under Test

Figure 2 Request-Response Test Run

85January 2010

McCaffrey.TestRun.0110.Lay8_85-88.indd 85 12/14/09 10:29 AM

mailto:testrun@microsoft.com
code.msdn.microsoft.com/mag2010Test

msdn magazine86 Test Run

ability to confi gure a Web site, I selected File | New | Web Site from
the main menu bar. Next I selected the Empty Web Site option
from the resulting new Web site dialog box. I specified an HTTP
location on my local machine to create a complete ASP.NET Web
site, rather than specifying a file system location to use the built-
in Visual Studio development server. I selected the C# language
for my logic code.

Aft er clicking OK, Visual Studio created the empty Product-
Search Web site. In the Solution Explorer window, I right-clicked
on the ProductSearch project and selected Add New Item from
the context menu. I selected the Web Form item and accepted the
default page name of Default.aspx and clicked Add to generate the
page. Next I created the simple UI for the Web application under
test, as presented in Figure 3.

As I will explain shortly, when creating HTTP request-response
test automation you must know the IDs of any of the input con-
trols that you wish to simulate user input on. In this case I have
access to the source code of the application under test, but even
if you do not have source code access you can always determine
input control IDs using a Web browser’s view-source functionality.
Notice that the two radio button controls are actually represented
by a single input control with ID RadioButtonList1, rather than by
two controls as you might have guessed.

I added the application logic directly into the Defaut.aspx fi le
rather than using the code-behind mechanism. At the top of the
page I created a script block to hold the application’s logic code:

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">
 // ...
</script>

I added a small class into the script block to represent a
Product object:

public class Product {
 public int id;
 public string desc;
 public Product(int id, string desc) {
 this.id = id; this.desc = desc;
 }
}

Th en I added an internal application-scope ArrayList object to
simulate an external data store:

public static ArrayList data = null;

In most realistic Web application scenarios, data stores are usu-
ally external, such as an XML fi le or SQL Server database. However,
when performing HTTP request-response testing, the location of
an application’s data store is irrelevant to some extent. Th e HTTP
request has no knowledge of the data store’s location, and the HTTP

response typically contains only HTML. Next I added some code
to populate the internal data store with Product items:

protected void Page_Load(object sender, EventArgs e) {
 if (!IsPostBack) {
 data = new ArrayList();
 Product p1 = new Product(111, "Widget");
 Product p2 = new Product(222, "Gizzmo");
 Product p3 = new Product(333, "Thingy");
 data.Add(p1); data.Add(p2); data.Add(p3);
 }
}

Finally, I placed all the application logic into the event handler
for the Button1 click event. I begin by clearing the ListBox1 result
area and fetching user input:

ListBox1.Items.Clear();
string filter = TextBox1.Text.Trim();
string sensitivity = RadioButtonList1.SelectedValue;

Th e sensitivity string variable will hold either “Case Sensitive”
or “Not Case Sensitive.”

Next I place header information into the ListBox1 result area
and declare a string to hold a Product search result and initialize a
counter to track how many Product items match the search fi lter:

ListBox1.Items.Add("ID Description");
ListBox1.Items.Add("================");
string resultRow;
int count = 0;

I iterate through each Product object in the ArrayList data store
checking to see if the search fi lter string matches the current ob-
ject’s description fi eld:

foreach (Product p in data) {
 resultRow = "";
 if (sensitivity == "Not Case Sensitive" &&
 p.desc.IndexOf(filter,
 StringComparison.CurrentCultureIgnoreCase) >= 0) {
 resultRow = p.id + " " + p.desc; ++count;
 }
 else if (sensitivity == "Case Sensitive" &&
 p.desc.IndexOf(filter) >= 0) {
 resultRow = p.id + " " + p.desc; ++count;
 }
 if (resultRow != "") ListBox1.Items.Add(resultRow);
}

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Product Search</title>
</head>
<body bgcolor="#ccbbcc">
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Find:"
 Font-Names="Arial" Font-Size="Small">
 </asp:Label>
 <asp:TextBox ID="TextBox1" runat="server" Width="114px">
 </asp:TextBox>
 <asp:Button ID="Button1" runat="server" onclick="Button1_Click"
 Text="Go" />

 <asp:RadioButtonList ID="RadioButtonList1" runat="server"
 Font-Names="Arial" Font-Size="Small">
 <asp:ListItem>Case Sensitive</asp:ListItem>
 <asp:ListItem Selected="True">Not Case Sensitive</asp:ListItem>
 </asp:RadioButtonList>
 </div>
 <asp:ListBox ID="ListBox1" runat="server" Height="131px" Width="246px"
 Font-Names="Courier New" Font-Size="Small">
 </asp:ListBox>
 </form>
</body>
</html>

Figure 3 Web App UI

You can always determine
input control IDs using a

Web browser's view-source
functionality.

McCaffrey.TestRun.0110.Lay8_85-88.indd 86 12/14/09 10:29 AM

87January 2010msdnmagazine.com

For each product that matches the search fi lter, I build a result
string and increment the hit counter. Notice that the IndexOf method
is conveniently overloaded to accept a case-sensitivity argument.

Th e application logic fi nishes by adding a blank line and a count
summary to the ListBox1 display area:

ListBox1.Items.Add("");
ListBox1.Items.Add("Found " + count + " matching items");

In order to keep the size of the Web application as small and
simple as possible, I have taken many shortcuts you wouldn’t use
in a production environment. In particular I have not provided
any error checking or handling.

Request-Response Test Automation
I created the test harness page shown running in Figure 2 using
notepad. Th e overall structure of the harness is shown in Figure 4.

Th e harness UI code in the body element at the bottom of the
page consists only of some text, a textarea element to display
information and a button to start the test automation.

The test harness structure begins by using the script element
src attribute to reference the jQuery library. The jQuery library is
an open source collection of JavaScript functions available from
jquery.com. Although jQuery was created with Web development
in mind, the library contains functions that make it well suited
for lightweight request-response test automation. Here I point
to a local copy of version 1.3.2 of the library. For test-automation
purposes, using a local copy of the library is more reliable than
pointing to a remote copy. Next I use the $(document).ready
jQuery idiom to make sure that my harness can access the library
and that the harness DOM is loaded into memory.

Aft er setting up a variable targetURL that points to the Web
application under test, I hard code internal comma-delimited
test cases into a string array named testCaseData. Here I have
just two test cases, but in a production environment you might
have hundreds of cases. External test case data is often prefer-
able to internal test case data because external data can be more
easily modified and shared. However, because the technique I’m
presenting here is lightweight, internal test case data is a reason-
able design choice.

Th e fi rst fi eld in a test case is a case ID number. Th e second fi eld
is raw request data to send to the application under test. Th e third
fi eld is an expected result.

How did I know the format of the request data? The easiest
way to determine the format of HTTP request data is to perform
preliminary experimentation with the application under test by
examining actual request data using an HTTP logger tool such
as Fiddler.

Running the Tests
The main harness control function is named runTests. The run-
Tests function uses a top-level try-catch mechanism to provide
rudimentary error handling. I use an auxiliary function named
logRemarks to display information to the harness textarea ele-
ment. The harness uses helper functions getVS and getEV to get
the current ViewState and EventValidation values of the ASP.
NET Web application under test. These application-generated
Base64-encoded values act primarily as state and security mech-
anisms, and must be sent as part of any HTTP POST request.
The sendAndReceive function performs the actual HTTP request
and returns the corresponding HTTP response:

The runTests function iterates through each test case:
for (i = 0; i < testCaseData.length; ++i) {
 logRemark("==========================");
 var tokens = testCaseData[i].split(',');
 var caseID = tokens[0];
 var inputData = tokens[1];
 var expected = tokens[2];
 ...

I use the built-in split function to separate each test case
string into smaller pieces. Next I call the getVS and getEV
helper functions:

logRemark('Case ID : ' + caseID);
logRemark('Fetching ViewState and EventValidation');
var rawVS = getVS(targetURL);
var rawEV = getEV(targetURL);

<html>
<!-- RequestResponseTests.html -->
<head>
 <script src='http://localhost/TestWithJQuery/jquery-1.3.2.js'>
 </script>
 <script type="text/javascript">
 $(document).ready(function() {
 logRemark("jQuery Library found and harness DOM is ready\n");
 });

 var targetURL = 'http://localhost/TestWithJQuery/ProductSearch/
Default.aspx';

 var testCaseData =
['001,TextBox1=T&RadioButtonList1=Case+Sensitive&Button1=clicked,333
Thingy',
'002,TextBox1=t&RadioButtonList1=Not+Case+Sensitive&Button1=clicked,Found 2
matching items'];

 function runTests() {
 try {
 logRemark('Begin Request-Response with JavaScript test run');
 logRemark("Testing Product Search ASP.NET application\n");
 // ...
 logRemark("\nEnd test run");
 }
 catch(ex) {
 logRemark("Fatal error: " + ex);
 }
 }

 function getVS(target) {
 // ...
 }

 function getEV(target) {
 // ...
 }

 function sendAndReceive(target, rawVS, rawEV, inputData) {
 // ...
 }

 function logRemark(comment) {
 // ...
 }

 </script>
</head>
<body bgcolor="#66ddcc">
 <h3>Request-Response Test Harness Page</h3>
 <p>Actions:</p><p>
 <textarea id="comments" rows="24" cols=63">
 </textarea></p>
 <input type="button" value="Run Tests" onclick="runTests();" />
</body>
</html>

Figure 4 Test Harness Structure

McCaffrey.TestRun.0110.Lay8_85-88.indd 87 12/14/09 10:29 AM

www.msdnmagazine.com
http://jquery.com

msdn magazine88 Test Run

Th e main processing loop continues by calling the sendAnd-
Receive function and examining the resulting HTTP response for
the associated test case expected value:

var response = sendAndReceive(targetURL, rawVS, rawEV, inputData);
logRemark("Expected : '" + expected + "'");
if (response.indexOf(expected) >= 0)
 logRemark("Test result : **Pass**");
else if (response.indexOf(expected) == -1)
 logRemark("Test result : **FAIL**");
} // main loop

Th e getVS helper function relies on the jQuery library:
function getVS(target) {
 $.ajax({
 async: false, type: "GET", url: target,
 success: function(resp) {
 if (resp.hasOwnProperty("d")) s = resp.d;
 else s = resp;

 start = s.indexOf('id="__VIEWSTATE"', 0) + 24;
 end = s.indexOf('"', start);
 }
 });
 return s.substring(start, end);
}

The main idea of the getVS function is to send a priming GET
request to the application under test, fetch the response and
parse out the ViewState value. The $.ajax function accepts an
anonymous function. The async, type and URL parameters
should be fairly self-explanatory. The hasOwnProperty(“d”)
method of the response resp object is essentially a
security mechanism present in the Microsoft .NET Framework
3.5 and is not necessary in this situation.

I extract the ViewState value by looking for the start of the
attribute, then counting over 24 characters to where the
ViewState value actually begins. The getEV function code is exactly
the same as the getVS code except that the EventValidation value
starts 30 characters from the initial id=EVENTVALIDATION
attribute. Having separate getVS and getEV functions gives
you flexibility but requires two separate priming requests.
An alternative is to refactor getVS and getEV into a single
helper function.

Th e sendAndReceive helper function executes the actual HTTP
request and fetches the resulting response. Th e function begins
by converting the raw ViewState and EventValidation strings into
URL-encoded strings, and then constructs the data to post to the
Web application:

function sendAndReceive(target, rawVS, rawEV, inputData) {
 vs = encodeURIComponent(rawVS);
 ev = encodeURIComponent(rawEV);
 postData = inputData + '&__VIEWSTATE=' + vs +
 '&__EVENTVALIDATION=' + ev;
 ...

Th e built-in encodeURIComponent function encodes charac-
ters that are not legal values in post data into an escape sequence.
For example, the ‘/’ character is encoded as %2F. Aft er a logging
message, sendAndReceive uses the $.ajax method to create an
HTTP POST request:

logRemark("Posting " + inputData);
$.ajax({
 async: false,
 type: "POST",
 url: target,
 contentType: "application/x-www-form-urlencoded",
 data: postData,
 ...

Th e $.ajax method was created primarily to send asynchronous
XML HTTP requests, but by setting the async parameter to false
the method can be used to send standard synchronous requests.
Neat! You can think of the content-type parameter value as a magic
string that simply means data posted from an HTML form element.
Th e sendAndReceive function uses the same pattern as getVS to
grab the associated HTTP response:

 success: function(resp, status) {
 if (resp.hasOwnProperty("d")) s = resp.d;
 else s = resp;
 },
 error: function(xhr, status, errObj) {
 alert(xhr.responseText);
 }
 });
 return s;
}

I also use the optional error parameter to display any fatal
errors in an alert box.

Th e fi nal function in the test harness is the logRemark utility:
function logRemark(comment) {
 var currComment = $("#comments").val();
 var newComment = currComment + "\n" + comment;
 $("#comments").val(newComment);
}

I use jQuery selector and chaining syntax to get the current
text in the textarea element, which has an ID of comments. The
‘#’ syntax is used to select an HTML element by ID, and the
val function can act as both a value setter and getter. I append
the comment parameter value and a newline character to the
existing comment text, and then use jQuery syntax to update
the textarea element.

Alternatives
Th e main alternative to the browser-based, JavaScript language
approach I’ve presented in this article is to create a shell-based
harness using a language such as C#. Compared to a shell-based
approach, the browser-based approach is most useful when you’re
working in a highly dynamic environment where your test automa-
tion has a short lifespan. Additionally, the browser-based approach
presented here is quite platform-independent. Th e technique will
work with any browser and OS combination that supports the
jQuery library and JavaScript.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he
manages technical training for soft ware engineers working at Microsoft . He has
worked on several Microsoft products including Internet Explorer and Search.
Dr. McCaff rey is the author of “.NET Test Automation Recipes” (Apress, 2006)
and can be reached at jmccaff rey@volt.com or v-jammc@microsoft .com.

I use jQuery selector and
chaining syntax to get the

current text in the
textarea element.

McCaffrey.TestRun.0110.Lay8_85-88.indd 88 12/14/09 10:29 AM

mailto:rey@volt.com
mailto:v-jammc@microsoft.com

Project3 12/11/09 1:58 PM Page 1

www.FarPointSpread.com

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

From the industry leader in data visualization
technology comes an easy-to-integrate,
customizable, turnkey dashboard solution.

• Rapid dashboard development

• Flexible integration and customization

• The latest Silverlight 3.0 technology

Silverlight is a trademark of Microsoft Corporation in the United States and/or other countries.

Project1 11/12/09 10:14 AM Page 1

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, January 2010
	Contents
	Toolbox
	Cutting Edge
	Patterns in Practice
	Cloud Patterns
	Cloud Storage
	Cloud Security
	Code Cleanup
	Extreme ASP.NET
	The Polyglot Programmer
	Extreme UI
	Foundations
	Test Run

