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1 Introduction 
This guide contains information about building and tuning Analysis Services in SQL Server 2005, SQL 

Server 2008, and SQL Server 2008 R2 cubes for the best possible performance. It is primarily aimed at 

business intelligence (BI) developers who are building a new cube from scratch or optimizing an existing 

cube for better performance. 

The goal of this guide is to provide you with the necessary background to understand design tradeoffs 

and with techniques and design patterns that will help you achieve the best possible performance of 

even large cubes. 

Cube performance can be divided into two types of workload: query performance and processing 

performance. Because these workloads are very different, this paper is organized into four main 

sections. 

Design Patterns for Scalable Cubes – No amount of query tuning and optimization can beat the benefits 

of a well-designed data model. This section contains guidance to help you get the design right the first 

time. In general, good cube design follows Kimball modeling techniques, and if you avoid some typical 

design mistakes, you are in very good shape. 

Tuning Query Performance - Query performance directly impacts the quality of the end-user 

experience. As such, it is the primary benchmark used to evaluate the success of an online analytical 

processing (OLAP) implementation. Analysis Services provides a variety of mechanisms to accelerate 

query performance, including aggregations, caching, and indexed data retrieval. This section also 

provides guidance on writing efficient Multidimensional Expressions (MDX) calculation scripts. 

Tuning Processing Performance - Processing is the operation that refreshes data in an Analysis Services 

database. The faster the processing performance, the sooner users can access refreshed data. Analysis 

Services provides a variety of mechanisms that you can use to influence processing performance, 

including parallelized processing designs, relational tuning, and an economical processing strategy (for 

example, incremental versus full refresh versus proactive caching). 

Special Considerations – Some features of Analysis Services such as distinct count measures and many-

to-many dimensions require more careful attention to the cube design than others. At the end of the 

paper you will find a section that describes the special techniques you should apply when using these 

features. 

2 Design Patterns for Scalable Cubes 
Cubes present a unique challenge to the BI developer: they are ad-hoc databases that are expected to 

respond to most queries in short time. The freedom of the end user is limited only by the data model 

you implement. Achieving a balance between user freedom and scalable design will determine the 

success of a cube. Each industry has specific design patterns that lend themselves well to value adding 

reporting – and a detailed treatment of optimal, industry specific data model is outside the scope of this 

document. However, there are a lot of common design patterns you can apply across all industries - this 
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section deals with these patterns and how you can leverage them for increased scalability in your cube 

design. 

2.1 Building Optimal Dimensions 

A well-tuned dimension design is one of the most critical success factors of a high-performing Analysis 

Services solution. The dimensions of the cube are the first stop for data analysis and their design has a 

deep impact on the performance of all measures in the cube. 

Dimensions are composed of attributes, which are related to each other through hierarchies. Efficient 

use of attributes is a key design skill to master, and studying and implementing the attribute 

relationships available in the business model can help improve cube performance. 

In this section, you will find guidance on building optimized dimensions and properly using both 

attributes and hierarchies. 

2.1.1 Using the KeyColumns, ValueColumn, and NameColumn Properties 

Effectively 

When you add a new attribute to a dimension, three properties are used to define the attribute. The 

KeyColumns property specifies one or more source fields that uniquely identify each instance of the 

attribute.  

The NameColumn property specifies the source field that will be displayed to end users. If you do not 

specify a value for the NameColumn property, it is automatically set to the value of the KeyColumns 

property.  

ValueColumn allows you to carry further information about the attribute – typically used for 

calculations. Unlike member properties, this property of an attribute is strongly typed – providing 

increased performance when it is used in calculations. The contents of this property can be accessed 

through the MemberValue MDX function. 

Using both ValueColumn and NameColumn to carry information eliminates the need for extraneous 

attributes. This reduces the total number of attributes in your design, making it more efficient.  

It is a best practice to assign a numeric source field, if available, to the KeyColumns property rather than 

a string property. Furthermore, use a single column key instead of a composite, multi-column key. Not 

only do these practices this reduce processing time, they also reduce the size of the dimension and the 

likelihood of user errors. This is especially true for attributes that have a large number of members, that 

is, greater than one million members.  

2.1.2 Hiding Attribute Hierarchies 

For many dimensions, you will want the user to navigate hierarchies created for ease of access. For 

example, a customer dimension could be navigated by drilling into country and city before reaching the 

customer name, or by drilling through age groups or income levels. Such hierarchies, covered in more 

detail later, make navigation of the cube easier – and make queries more efficient. 
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In addition to user hierarchies, Analysis Services by default creates a flat hierarchy for every attribute in 

a dimension – these are attribute hierarchies. Hiding attribute hierarchies is often a good idea, because 

a lot of hierarchies in a single dimension will typically confuse users and make client queries less 

efficient. Consider setting AttributeHierarchyVisible = false for most attribute hierarchies and use user 

hierarchies instead. 

2.1.2.1 Hiding the Surrogate Key 

It is often a good idea to hide the surrogate key attribute in the dimension. If you expose the surrogate 

key to the client tools as a ValueColumn, those tools may refer to the key values in reports. The 

surrogate key in a Kimball star schema design holds no business information, and may even change if 

you remodel type2 history. After you create a dependency to the key in the client tools, you cannot 

change the key without breaking reports. Because of this, you don’t want end-user reports referring to 

the surrogate key directly – and this is why we recommend hiding it.  

The best design for a surrogate key is to hide it from users in the dimension design by setting the 

AttributeHierarchyVisible = false and by not including the attribute in any user hierarchies. This 

prevents end-user tools from referencing the surrogate key, leaving you free to change the key value if 

requirements change. 

2.1.3 Setting or Disabling Ordering of Attributes 

In most cases, you want an attribute to have an explicit ordering. For example, you will want a City 

attribute to be sorted alphabetically. You should explicitly set the OrderBy or OrderByAttribute 

property of the attribute to explicitly control this ordering. Typically, this ordering is by attribute name 

or key, but it may also be another attribute. If you include an attribute only for the purpose of ordering 

another attribute, make sure you set AttributeHierarchyEnabled = false and 

AttributeHierarchyOptimizedState = NotOptimized to save on processing operations. 

There are few cases where you don’t care about the ordering of an attribute, yet the surrogate key is 

one such case. For such hidden attribute that you used only for implementation purposes, you can set 

AttributeHierarchyOrdered = false to save time during processing of the dimension. 

2.1.4 Setting Default Attribute Members 

Any query that does not explicitly reference a hierarchy will use the current member of that hierarchy. 

The default behavior of Analysis Services is to assign the All member of a dimension as the default 

member, which is normally the desired behavior. But for some attributes, such as the current day in a 

date dimension, it sometimes makes sense to explicitly assign a default member. For example, you may 

set a default date in the Adventure Works cube like this. 

ALTER CUBE [Adventure Works]UPDATE  

DIMENSION [Date], DEFAULT_MEMBER='[Date].[Date].&[2000]' 

 

However, default members may cause issues in the client tool. For example, Microsoft Excel 2010 will 

not provide a visual indication that a default member is currently selected and hence implicitly influence 
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the query result. This may confuse users who expect the All level to be the current member when no 

other members are implied by the query. Also, if you set a default member in a dimension with multiple 

hierarchies, you will typically get results that are hard for users to interpret.  

In general, prefer explicitly default members only on dimensions with single hierarchies or in hierarchies 

that do not have an All level. 

2.1.5 Removing the All Level 

Most dimensions roll up to a common All level, which is the aggregation of all descendants. But there 

are some exceptions where is does not make sense to query at the All level. For example, you may have 

a currency dimension in the cube – and asking for “the sum of all currencies” is a meaningless question. 

It can even be expensive to ask for the All level of dimension if there is not good aggregate to respond to 

the query. For example, if you have a cube partitioned by currency, asking for the All level of currency 

will cause a scan of all partitions, which could be expensive and lead to a useless result. 

In order to prevent users from querying meaningless All levels, you can disable the All member in a 

hierarchy. You do this by setting the IsAggregateable = false on the attribute at the top of the hierarchy. 

Note that if you disable the All level, you should also set a default member as described in the previous 

section– if you don’t, Analysis Services will choose one for you. 

2.1.6 Identifying Attribute Relationships  

Attribute relationships define hierarchical dependencies between attributes. In other words, if A has a 

related attribute B, written A  B, there is one member in B for every member in A, and many members 

in A for a given member in B. For example, given an attribute relationship City  State, if the current 

city is Seattle, we know the State must be Washington. 

Often, there are relationships between attributes that might or might not be manifested in the original 

dimension table that can be used by the Analysis Services engine to optimize performance. By default, 

all attributes are related to the key, and the attribute relationship diagram represents a “bush” where 

relationships all stem from the key attribute and end at each other’s attribute. 

http://msdn2.microsoft.com/en-us/library/ms176124.aspx
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Figure : Bushy attribute relationships 

You can optimize performance by defining hierarchical relationships supported by the data. In this case, 

a model name identifies the product line and subcategory, and the subcategory identifies a category. In 

other words, a single subcategory is not found in more than one category. If you redefine the 

relationships in the attribute relationship editor, the relationships are clearer. 

 

Figure : Redefined attribute relationships 

Attribute relationships help performance in three significant ways: 

 Cross products between levels in the hierarchy do not need to go through the key attribute. This 

saves CPU time during queries. 

 Aggregations built on attributes can be reused for queries on related attributes. This saves 

resources during processing and for queries. 

 Auto-Exist can more efficiently eliminate attribute combinations that do not exist in the data. 

Consider the cross-product between Subcategory and Category in the two figures. In the first, where no 

attribute relationships have been explicitly defined, the engine must first find which products are in 
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each subcategory and then determine which categories each of these products belongs to. For large 

dimensions, this can take a long time. If the attribute relationship is defined, the Analysis Services 

engine knows beforehand which category each subcategory belongs to via indexes built at process time.  

2.1.6.1 Flexible vs. Rigid Relationships 

When an attribute relationship is defined, the relation can either be flexible or rigid. A flexible attribute 

relationship is one where members can move around during dimension updates, and a rigid attribute 

relationship is one where the member relationships are guaranteed to be fixed. For example, the 

relationship between month and year is fixed because a particular month isn’t going to change its year 

when the dimension is reprocessed. However, the relationship between customer and city may be 

flexible as customers move.  

When a change is detected during process in a flexible relationship, all indexes for partitions referencing 

the affected dimension (including the indexes for attribute that are not affected) must be invalidated. 

This is an expensive operation and may cause Process Update operations to take a very long time. 

Indexes invalidated by changes in flexible relationships must be rebuilt after a Process Update operation 

with a Process Index on the affected partitions; this adds even more time to cube processing. 

Flexible relationships are the default setting. Carefully consider the advantages of rigid relationships and 

change the default where the design allows it.  

2.1.7 Using Hierarchies Effectively 

Analysis Services enables you to build two types of user hierarchies: natural and unnatural hierarchies. 

Each type has different design and performance characteristics.  

In a natural hierarchy, all attributes participating as levels in the hierarchy have direct or indirect 

attribute relationships from the bottom of the hierarchy to the top of the hierarchy.  

In an unnatural hierarchy, the hierarchy consists of at least two consecutive levels that have no attribute 

relationships. Typically these hierarchies are used to create drill-down paths of commonly viewed 

attributes that do not follow any natural hierarchy. For example, users may want to view a hierarchy of 

Gender and Education. 

 

Figure : Natural and unnatural hierarchies 
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From a performance perspective, natural hierarchies behave very differently than unnatural hierarchies 

do. In natural hierarchies, the hierarchy tree is materialized on disk in hierarchy stores. In addition, all 

attributes participating in natural hierarchies are automatically considered to be aggregation candidates.  

Unnatural hierarchies are not materialized on disk, and the attributes participating in unnatural 

hierarchies are not automatically considered as aggregation candidates. Rather, they simply provide 

users with easy-to-use drill-down paths for commonly viewed attributes that do not have natural 

relationships. By assembling these attributes into hierarchies, you can also use a variety of MDX 

navigation functions to easily perform calculations like percent of parent.  

To take advantage of natural hierarchies, define cascading attribute relationships for all attributes that 

participate in the hierarchy.  

2.1.8 Turning Off the Attribute Hierarchy  

Member properties provide a different mechanism to expose dimension information. For a given 

attribute, member properties are automatically created for every direct attribute relationship. For the 

primary key attribute, this means that every attribute that is directly related to the primary key is 

available as a member property of the primary key attribute.  

If you only want to access an attribute as member property, after you verify that the correct relationship 

is in place, you can disable the attribute’s hierarchy by setting the AttributeHierarchyEnabled property 

to False. From a processing perspective, disabling the attribute hierarchy can improve performance and 

decrease cube size because the attribute will no longer be indexed or aggregated. This can be especially 

useful for high-cardinality attributes that have a one-to-one relationship with the primary key. High-

cardinality attributes such as phone numbers and addresses typically do not require slice-and-dice 

analysis. By disabling the hierarchies for these attributes and accessing them via member properties, 

you can save processing time and reduce cube size. 

Deciding whether to disable the attribute’s hierarchy requires that you consider both the querying and 

processing impacts of using member properties. Member properties cannot be placed on a query axis in 

an MDX query in the same manner as attribute hierarchies and user hierarchies. To query a member 

property, you must query the attribute that contains that member property.  

For example, if you require the work phone number for a customer, you must query the properties of 

customer and then request the phone number property. As a convenience, most front-end tools easily 

display member properties in their user interfaces.  

In general, filtering measures using member properties is slower than filtering using attribute 

hierarchies, because member properties are not indexed and do not participate in aggregations. The 

actual impact to query performance depends on how you use the attribute.  

For example, if your users want to slice and dice data by both account number and account description, 

from a querying perspective you may be better off having the attribute hierarchies in place and 

removing the bitmap indexes if processing performance is an issue.  
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2.1.9 Reference Dimensions 

Reference dimensions allow you to build a dimensional model on top of a snow flake relational design. 

While this is a powerful feature, you should understand the implications of using it. 

By default, a reference dimension is non-materialized. This means that queries have to perform the join 

between the reference and the outer dimension table at query time. Also, filters defined on attributes in 

the outer dimension table are not driven into the measure group when the bitmaps there are scanned. 

This may result in reading too much data from disk to answer user queries. Leaving a dimension as non-

materialized prioritizes modeling flexibility over query performance. Consider carefully whether you can 

afford this tradeoff: cubes are typically intended to be fast ad-hoc structures, and putting the 

performance burden on the end user is rarely a good idea.  

Analysis Services has the ability to materialize the references dimension. When you enable this option, 

memory and disk structures are created that make the dimension behave just like a denormalized star 

schema. This means that you will retain all the performance benefits of a regular, non-reference 

dimension. However, be careful with materialized reference dimension – if you run a process update on 

the intermediate dimension, any changes in the relationships between the outer dimension and the 

reference will not be reflected in the cube. Instead, the original relationship between the outer 

dimension and the measure group is retained – which is most likely not the desired result. In a way, you 

can consider the reference table to be a rigid relationship to attributes in the outer attributes. The only 

way to reflect changes in the reference table is to fully process the dimension. 

2.1.10 Fast-Changing Attributes 

Some data models contain attributes that change very fast. Depending on which type of history tracking 

you need, you may face different challenges. 

Type2 Fast-Changing Attributes - If you track every change to a fast-changing attribute, this may cause 

the dimension containing the attribute to grow very large. Type 2 attributes are typically added to a 

dimension with a Process Add command. At some point, running Process Add on a large dimension and 

running all the consistency checks will take a long time. Also, having a huge dimension is unwieldy 

because users will have trouble querying it and the server will have trouble keeping it in memory. A 

good example of such a modeling challenge is the age of a customer – this will change every year and 

cause the customer dimension to grow dramatically. 

Type 1 Fast-Changing Attributes – Even if you do not track every change to the attribute, you may still 

run into issues with fast-changing attributes. To reflect a change in the data source to the cube, you 

have to run Process Update on the changed dimension. As the cube and dimension grows larger, 

running Process Update becomes expensive. An example of such a modeling challenge is to track the 

status attribute of a server in a hosting environment (“Running”, “Shut down”, “Overloaded” and so on). 

A status attribute like this may change several times per day or even per hour. Running frequent Process 

Updates on such a dimension to reflect changes can be an expensive operation, and it may not be 

feasible with the locking implementation of Analysis Servicesin a production environment. 
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In the following sections, we will look at some modeling options you can use to address these problems. 

2.1.10.1 Type 2 Fast-Changing Attributes 

If history tracking is a requirement of a fast-changing attribute, the best option is often to use the fact 

table to track history. This is best illustrated with an example. Consider again the customer dimension 

with the age attribute. Modeling the Age attribute directly in the customer dimension produces a design 

like this. 

 

  

Figure : Age in customer dimension 

Notice that every time Thomas has a birthday, a new row is added in the dimension table. The 

alternative design approach splits the customer dimension into two dimensions like this. 
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Figure : Age in its own dimension 

Note that there are some restrictions on the situation where this design can be applied. It works best 

when the changing attribute takes on a small, distinct set of values. It also adds complexity to the 

design; by adding more dimensions to the model, it creates more work for the ETL developers when the 

fact table is loaded. Also, consider the storage impact on the fact table: With the alternative design, the 

fact table becomes wider, and more bytes have to be stored per row. 

2.1.10.2 Type 1 Fast-Changing Attributes 

Your business requirement may be updating an attribute of a dimension at high frequency, daily, or 

even hourly. For a small cube, running Process Update will help you address this issue. But as the cube 

grows larger, the run time of Process Update can become too long for the batch window or the real-

time requirements of the cube (you can read more about tuning process update in the processing 

section). 

Consider again the server hosting example: You may want to track the status, which changes frequently, 

of all servers. For the example, let us say that the server dimension is used by a fact table tracking 

performance counters. Assume you have modeled like this. 
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Figure : Status column in server dimension 

The problem with this model is the Status column. If the Fact Counter is large and status changes a lot, 

Process Update will take a very long time to run. To optimize, consider this design instead. 

  

Figure : Status column in its own dimension 

If you implement DimServer as the intermediate reference table to DimServerStatus, Analysis Services 

no longer has to keep track of the metadata in the FactCounter when you run Process Update on 

DimServerStatus. But as described earlier, this means that the join to DimServerStatus will happen at 

run time, increasing CPU cost and query times. It also means that you cannot index attributes in 

DimServer because the intermediate dimension is not materialized. You have to carefully balance the 

tradeoff between processing time and query speeds.  
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2.1.11 Large Dimensions 

In SQL Server 2005, SQL Server 2008, and SQL Server 2008 R2, Analysis Services has some built-in 

limitations that limit the size of the dimensions you can create. First of all, it takes time to update a 

dimension – this is expensive because all indexes on fact tables have to be considered for invalidation 

when an attribute changes. Second, string values in dimension attributes are stored on a disk structure 

called the string store. This structure has a size limitation of 4 GB. If a dimension contains attributes 

where the total size of the string values (this includes translations) exceeds 4 GB, you will get an error 

during processing. The next version of SQL Server Analysis Services, code-named “Denali”, is expected to 

remove this limitation. 

Consider for a moment a dimension with tens or even hundreds of millions of members. Such a 

dimension can be built and added to a cube, even on SQL Server 2005, SQL Server 2008, and SQL Server 

2008 R2. But what does such a dimension mean to an ad-hoc user? How will the user navigate it? Which 

hierarchies will group the members of this dimension into reasonable sizes that can be rendered on a 

screen? While it may make sense for some reporting purposes to search for individual members in such 

a dimension, it may not be the right problem to solve with a cube. 

When you build cubes, ask yourself: is this a cube problem? For example, think of this typical telco 

model of call detail records. 

 

Figure : Call detail records (CDRs) 

In this particular example, there are 300 million customers in the data model. There is no good way to 

group these customers and allow ad-hoc access to the cube at reasonable speeds. Even if you manage to 

optimize the space used to fit in the 4-GB string store, how would users browse a customer dimension 

like this? 

If you find yourself in a situation where a dimension becomes too large and unwieldy, consider building 

the cube on top of an aggregate. For the telco example, imagine a transformation like the following. 
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Figure : Cube built on aggregate 

Using an aggregated fact table, this turns a 300-million-row dimension problem into 100,000-row 

dimension problem. You can consider aggregating the facts to save storage too – alternatively, you can 

add a demographics key directly to the original fact table, process on top of this data source, and rely on 

MOLAP compression to reduce data sizes. 

2.2 Partitioning a Cube 

Partitions separate measure group data into physical storage units. Effective use of partitions can 

enhance query performance, improve processing performance, and facilitate data management. This 

section specifically addresses how you can use partitions to improve query performance. You must often 

make a tradeoff between query and processing performance in your partitioning strategy. 

You can use multiple partitions to break up your measure group into separate physical components. The 

advantages of partitioning for improving query performance are partition elimination and aggregation 

design. 

Partition elimination - Partitions that do not contain data in the subcube are not queried at all, thus 

avoiding the cost of reading the index (or scanning a table if the server is in ROLAP mode). While reading 

a partition index and finding no available rows is a cheap operation, as the number of concurrent users 

grows, these reads begin to put a strain in the threadpool. Also, for queries that do not have indexes to 

support them, Analysis Services will have to scan all potentially matching partitions for data. 

Aggregation design - Each partition can have its own or shared aggregation design. Therefore, partitions 

queried more often or differently can have their own designs.  
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Figure : Intelligent querying by partitions 

Figure 10 displays the profiler trace of query requesting Reseller Sales Amount by Business Type from 

Adventure Works. The Reseller Sales measure group of the Adventure Works cube contains four 

partitions: one for each year. Because the query slices on 2003, the storage engine can go directly to the 

2003 Reseller Sales partition and ignore other partitions.  

2.2.1 Partition Slicing 

Partitions are bound to a source table, view, or source query. When the formula engine requests a 

subcube, the storage engine looks at the metadata of partition for the relevant measure group. Each 

partition may contain a slice definition, a high level description of the minimum and maximum attribute 

DataIDs that exist in that dimension. If it can be determined from the slice definition that the requested 

subcube data is not present in the partition, that partition is ignored. If the slice definition is missing or if 

the information in the slice indicates that required data is present, the partition is accessed by first 

looking at the indexes (if any) and then scanning the partition segments. 

The slice of a partition can be set in two ways: 

 Auto slice – when Analysis Services reads the data during processing, it keeps track of the 

minimum and maximum attribute DataID reads. These values are used to set the slice when the 

indexes are built on the partition.  

 Manual slicer – There are cases where auto slice will not work – these are described in the next 

section. For those situations, you can manually set the slice. Manual slices are the only available 

slice option for ROLAP partitions and proactive caching partitions. 

2.2.1.1 Auto Slice 

During processing of MOLAP partitions, Analysis Services internally identifies the range of data that is 

contained in each partition by using the Min and Max DataIDs of each attribute to calculate the range of 

data that is contained in the partition. The data range for each attribute is then combined to create the 

slice definition for the partition.  
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The Min and Max DataIDs can specify a either a single member or a range of members. For example, 

partitioning by year results in the same Min and Max DataID slice for the year attribute, and queries to a 

specific moment in time only result in partition queries to that year’s partition.  

It is important to remember that the partition slice is maintained as a range of DataIDs that you have no 

explicit control over. DataIDs are assigned during dimension processing as new members are 

encountered. Because Analysis Services just looks at the minimum and maximum value of the DataID, 

you can end up reading partitions that don’t contain relevant data.  

For example: if you have a partition, P2003_4, that contains both 2003 and 2004 data, you are not 

guaranteed that the minimum and maximum DataID in the slide contain values next to each other (even 

though the years are adjacent). In our example, let us say the DataID for 2003 is 42 and the DataID for 

2004 is 45. Because you cannot control which DataID gets assigned to which members, you could be in a 

situation where the DataID for 2005 is 44. When a user requests data for 2005, Analysis Services looks at 

the slice for P2003_4, sees that it contains data in the interval 42 to 45 and therefore concludes that this 

partition has to be scanned to make sure it does not contain the values for DataID 44 (because 44 is 

between 42 and 45). 

Because of this behavior, auto slice typically works best if the data contained in the partition maps to a 

single attribute value. When that is the case, the maximum and minimum DataID contained in the slice 

will be equal and the slice will work efficiently. 

Note that the auto slice is not defined and indexes are not built for partitions with fewer rows than 

IndexBuildThreshold (which has a default value of 4096). 

2.2.1.2 Manually Setting Slices 

No metadata is available to Analysis Services about the content of ROLAP and proactive caching 

partitions. Because of this, you must manually identify the slice in the properties of the partition. It is a 

best practice to manually set slices in ROLAP and proactive caching partitions. 

However, as shown in the previous section, there are cases where auto slice will not give you the 

desired partition elimination behavior. In these cases you can benefit from defining the slice yourself for 

MOLAP partitions. For example, if you partition by year with some partitions containing a range of years, 

defining the slice explicitly avoids the problem of overlapping DataIDs. This can only be done with 

knowledge of the data – which is where you can add some optimization as a BI developer. 

It is generally not a best practice to create partitions before you are ready to fill them with data. But for 

real-time cubes, it is sometimes a good idea to create partitions in advance to avoid locking issues. 

When you take this approach, it is also a good idea to set a manual slice on MOLAP partitions to make 

sure the storage engine does not spend time scanning empty partitions.  
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2.2.2 Partition Sizing 

For nondistinct count measure groups, tests with partition sizes in the range of 200 MB to up to 3 GB 

indicate that partition size alone does not have a substantial impact on query speeds. In fact, we have 

successfully deployed good query performance on partitions larger than 3 GB. 

The following graph shows four different query runs with different partition sizes (the vertical axis is 

total run time in hours). Performance is comparable between partition sizes and is only affected by the 

design of the security features in this particular customer cube. 

 

Figure : Throughput by partition size (higher is better) 

The partitioning strategy should be based on these factors: 

 Increasing processing speed and flexibility 

 Increasing manageability of bringing in new data 

 Increasing query performance from partition elimination as described earlier 

 Support for different aggregation designs 

As you add more partitions, the metadata overhead of managing the cube grows exponentially. This 

affects ProcessUpdate and ProcessAdd operations on dimensions, which have to traverse the metadata 

dependencies to update the cube when dimensions change. As a rule of thumb, you should therefore 

seek to keep the number of partitions in the cube in the low thousands – while at the same time 

balancing the requirements discussed here. 

For large cubes, prefer larger partitions over creating too many partitions. This also means that you can 

safely ignore the Analysis Management Objects (AMO) warning in Microsoft Visual Studio that partition 

sizes should not exceed 20 million rows.  

2.2.3 Partition Strategy 

From guidance on partition sizing, we can develop some common design patterns for partition 

strategies.  



23 
 

2.2.3.1 Partition by Date 

Most cubes are built on at least one column containing a date. Because data often arrives in monthly, 

weekly, daily, or even hourly slices, it makes sense to partition the cube on date. Partitioning on date 

allows you to replace a full day in case you load faulty data. It allows you to selectively archive old data 

by moving the partition to cheap storage. And finally, it allows you to easily get rid of data, by removing 

an entire partition. Typically, a date partitioning scheme looks somewhat like this. 

January 2011

February 2011

December 2010

November 2010

Process Add/Full

January 2010

December 2009

January 2009

Fast
Storage

Cheap
Storage

 

Figure : Partitioning by Date 

Note that in order to move the partition to cheaper storage, you will have to change the data location 

and reprocesses the partition. This design works very well for small to medium-sized cubes. It is 

reasonably simple to implement and the number of partitions is kept low. However, it does suffer from a 

few drawbacks: 

1. If the granularity of the partitioning is small enough (for example, hourly), the number of 

partitions can quickly become unmanageable. 

2. Assuming data is added only to the latest partition, partition processing is limited to one TCP/IP 

connection reading from the data source. If you have a lot of data, this can be a scalability limit. 

Ad 1) If you have a lot of date-based partitions, it is often a good idea to merge the older ones into large 

partitions. You can do this either by using the Analysis Services merge functionality or by dropping the 

old partitions, creating a new, larger partition, and then reprocessing it. Reprocessing will typically take 
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longer than merging, but we have found that compression of the partition can often increase if you 

reprocess. A modified, date partitioning scheme may look like this. 

2011-02-01

December 2010

November 2010

Process Add/Full

January 2010

Year 2009

Fast
Storage

Cheap
Storage

Year 2008

2011-01-31

2011-01-01

2011-01-30

 

Figure : Modified Date Partitioning 

This design addresses the metadata overhead of having too many partitions. But it is still bottlenecked 

by the maximum speed of the Process Add or Process Full for the latest partition. If your data source is 

SQL Server, the speed of a single database connection can be hundreds of thousands of rows every 

second – which works well for most scenarios. But if the cube requires even faster processing speeds, 

consider matrix partitioning. 

2.2.3.2 Matrix Partitioning 

For large cubes, it is often a good idea to implement a matrix partitioning scheme: partition on both 

date and some other key. The date partitioning is used to selectively delete or merge old partitions as 

described earlier. The other key can be used to achieve parallelism during partition processing and to 

restrict certain users to a subset of the partitions. For example, consider a retailer that operates in US, 

Europe, and Asia. You might decide to partition like this. 
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Figure : Example of matrix partitioning 

If the retailer grows, they may choose to split the region partitions into smaller partitions to increase 

parallelism of load further and to limit the worst-case scans that a user can perform. For cubes that are 

expected to grow dramatically, it is a good idea to choose a partition key that grows with the business 

and gives you options for extending the matrix partitioning strategy appropriately. The following table 

contains examples of such partitioning keys.  

Industry  Example partition key Source of data proliferation 

Web retail Customer key Adding customers and transactions 

Store retail Store key Adding new stores 

Data hosting Host ID or rack location Adding a new server 
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Telecommunications Switch ID, country code, or area 
code 

Expanding into new geographical 
regions or adding new services 

Computerized 
manufacturing 

Production line ID or machine ID Adding production lines or (for 
machines) sensors 

Investment banking Stock exchange or financial 
instrument 

Adding new financial instruments, 
products, or markets 

Retail banking Credit card number or customer 
key 

Increasing customer transactions 

Online gaming Game key or player key Adding new games or players 

 

If you implement a matrix partitioning scheme, you should pay special attention to user queries. Queries 

touching several partitions for every subcube request, such as a query that asks for a high-level 

aggregate of the partition business key, result in a high thread usage in the storage engine. Because of 

this, we recommend that you partition the business key so that single queries touch no more than the 

number of cores available on the target server. For example, if you partition by Store Key and you have 

1,000 stores, queries touching the aggregation of all stores will have to touch 1,000 partitions. In such a 

design, it is a good idea to group the stores into a number of buckets (that is, group the stores on each 

partition, rather than having individual partitions for each store). For example, if you run on a 16-core 

server, you can group the store into buckets of around 62 stores for each partition (1,000 stores divided 

into 16 buckets). 

2.2.3.3 Hash Partitioning 

Sometimes it is not possible to come up with a good distribution of business keys for partitioning the 

cube. Perhaps you just don’t have a good key candidate that fits the description in the previous section, 

or perhaps the distribution of the key is unknown at design time. In such cases, a brute-force approach 

can be used: Partition on the hash value of a key that has a high enough cardinality and where there is 

little skew.  If you expect every query to touch many partitions, it is important that you pay special 

attention to the CoordinatorQueryBalancingFactor and the CoordinatorQueryMaxThread settings, 

which are described in the SQL Server 2008 R2 Analysis Services Operations Guide. 

2.3 Relational Data Source Design 

Cubes are typically built on top of relational data sources to serve as data marts. Through the design 

surface, Analysis Services allows you to create powerful abstractions on top of the relational source. 

Computed columns and named queries are examples of this. This allows fast prototyping and also 

enabled you to correct poor relational design when you are not in control of the underlying data source. 

But the Analysis Services design surface is no panacea – a well-designed relational data source can make 

queries and processing of a cube faster. In this section, we explore some of the options that you should 

consider when designing a relational data source. A full treatment of relational data warehousing is out 

of scope for this document, but we will provide references where appropriate. 
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2.3.1 Use a Star Schema for Best Performance 

It is widely debated what the most efficient ad-report modeling technique is: star schema, snowflake 

schema, or even a third to fifth normal form or data vault models (in order of the increased 

normalization). All are considered by warehouse designers as candidates for reporting.  

Note that the Analysis Services Unified Dimensional Model (UDM) is a dimensional model, with some 

additional features (reference dimensions) that support snowflakes and many-to-many dimensions. No 

matter which model you choose as the end-user reporting model, performance of the relational model 

boils down to one simple fact: joins are expensive! This is also partially true for the Analysis Services 

engine itself. For example: If a snowflake is implemented as a non-materialized reference dimension, 

users will wait longer for queries, because the join is done at run time inside the Analysis Services 

engine.   

The largest impact of snowflakes occurs during processing of the partition data. For example: If you 

implement a fact table as a join of two big tables (for example, separating order lines and order headers 

instead of storing them as pre-joined values), processing of facts will take longer, because the relational 

engine has to compute the join. 

It is possible to build an Analysis Services cube on top of a highly normalized model, but be prepared to 

pay the price of joins when accessing the relational model. In most cases, that price is paid at processing 

time. In MOLAP data models, materialized reference dimensions help you store the result of the joined 

tables on disk and give you high speed queries even on normalized data. However, if you are running 

ROLAP partitions, queries will pay the price of the join at query time, and your user response times or 

your hardware budget will suffer if you are unable to resist normalization. 

2.3.2 Consider Moving Calculations to the Relational Engine 

Sometimes calculations can be moved to the Relational Engine and be processed as simple aggregates 

with much better performance. There is no single solution here; but if you’re encountering performance 

issues, consider whether the calculation can be resolved in the source database or data source view 

(DSV) and prepopulated, rather than evaluated at query time. 

For example, instead of writing expressions like Sum(Customer.City.Members, 

cint(Customer.City.Currentmember.properties(“Population”))), consider defining a separate measure 

group on the City table, with a sum measure on the Population column. 

As a second example, you can compute the product of revenue * Products Sold at the leaves in the cube 

and aggregate with calculations. But computing this result in the source database instead can provide 

superior performance. 

2.3.3 Use Views  

It is generally a good idea to build your UDM on top of database views. A major advantage of views is 

that they provide an abstraction layer on top of the physical, relational model. If the cube is built on top 

of views, the relational database can, to some degree, be remodeled without breaking the cube.  
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Consider a relational source that has chosen to normalize two tables you need to join to obtain a fact 

table – for example, a data model that splits a sales fact into order lines and orders. If you implement 

the fact table using query binding, your UDM will contain the following. 

LineItems
Orders

SELECT ... FROM LineItems JOIN Orders

Cube

Relational
Source

 

Figure : Using named queries in UDM 

In this model, the UDM now has a dependency on the structure of the LineItems and Orders tables – 

along with the join between them. If you instead implement a Sales view in the database, you can model 

like this. 

LineItems
Orders

Sales

     CREATE VIEW Sales AS

     SELECT ... FROM LineItems JOIN Orders

Cube

Relational
Source

 

Figure : Implementing UDM on top of views 
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This model gives the relational database the freedom to optimize the joined results of LineItems and 

Order (for example by storing it denormalized), without any impact on the cube. It would be transparent 

for the cube developer if the DBA of the relational database implemented this change. 

Sales

Sales

     CREATE VIEW Sales AS

     SELECT ... FROM Sales

Cube

Relational
Source

 

Figure : Implementing UDM on top of pre-joined tables 

Views provide encapsulation, and it is good practice to use them. If the relational data modelers insist 

on normalization, give them a chance to change their minds and denormalize without breaking the cube 

model. 

Views also provide easy of debugging. You can issue SQL queries directly on views to compare the 

relational data with the cube. Hence, views are good way to implement business logic that could you 

could mimic with query binding in the UDM. While the UDM syntax is similar to the SQL view syntax, you 

cannot issue SQL statements against the UDM.  

2.3.3.1 Query Binding Dimensions 

Query binding for dimensions does not exist in SQL Server 2008 Analysis Services, but you can 

implement it by using a view (instead of tables) for your underlying dimension data source. That way, 

you can use hints, indexed views, or other relational database tuning techniques to optimize the SQL 

statement that accesses the dimension tables through your view. This also allows you to turn a 

snowflake design in the relational source into a UDM that is a pure star schema. 

2.3.3.2 Processing Through Views 

Depending on the relational source, views can often provide means to optimize the behavior of the 

relational database. For example, in SQL Server you can use the NOLOCK hint in the view definition to 

remove the overhead of locking rows as the view is scanned, balancing this with the possibility of getting 
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dirty reads. Views can also be used to preaggregate large fact tables using a GROUP BY statement; the 

relational database modeler can even choose to materialize views that use a lot of hardware resources. 

2.4 Calculation Scripts 

The calculation script in the cube allows you to express complex functionality of the cube, conferring the 

ability to directly manipulate the multidimensional space. In a few lines of code, you can elegantly build 

highly valuable business logic. But conversely, it takes only a few lines of poorly written calculation code 

to create a big performance impact on users. If you plan to design a cube with a large calculation script, 

we highly recommend that you learn the basics of writing good MDX code – the language used for 

calculations. The references section contains resources that will get you off to a good start. 

The query tuning section of this guide provides high-level guidance on tuning individual queries. But 

even at design time, there are some best practices you should apply to the cube that avoid common 

performance mistakes. This section provides you with some basic rules; these are the bare minimum 

you should apply when building the cube script. 

References: 

MDX has a rich community of contributors on the web. Here are some links to get you started:  

 Pearson, Bill: “Stairway to MDX” 

o http://www.sqlservercentral.com/stairway/72404/  

 Piasevoli, Tomislav: MDX with Microsoft SQL Server 2008 R2 Analysis Services Cookbook 

o http://www.packtpub.com/mdx-with-microsoft-sql-server-2008-r2-analysis-

services/book 

 Russo, Marco: MDX Blog: 

o http://sqlblog.com/blogs/marco_russo/archive/tags/MDX/default.aspx  

 Pasumansky, Mosha: Blog 

o http://sqlblog.com/blogs/mosha/ 

 Piasevoli, Tomislav: Blog 

o http://tomislav.piasevoli.com  

 Webb, Christopher: Blog 

o http://cwebbbi.wordpress.com/category/mdx/ 

 Spofford, George, Sivakumar Harinath, Christopher Webb, Dylan Hai Huang, and Francesco 

Civardi,: MDX Solutions: With Microsoft SQL Server Analysis Services 2005 and Hyperion Essbase, 

ISBN: 978-0471748083 

2.4.1 Use Attributes Instead of Sets 

When you need to refer to a fixed subset of dimension members in a calculation, use an attribute 

instead of a set. Attributes enable you to target aggregations to the subset. Attributes are also evaluated 

faster than sets by the formula engine. Using an attribute for this purpose also allows you to change the 

set by updating the dimension instead of deploying a new calculation scripts. 

Example: Instead of this: 

http://www.sqlservercentral.com/stairway/72404/
http://www.packtpub.com/mdx-with-microsoft-sql-server-2008-r2-analysis-services/book
http://www.packtpub.com/mdx-with-microsoft-sql-server-2008-r2-analysis-services/book
http://sqlblog.com/blogs/marco_russo/archive/tags/MDX/default.aspx
http://sqlblog.com/blogs/mosha/
http://tomislav.piasevoli.com/
http://cwebbbi.wordpress.com/category/mdx/
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CREATE SET [Current Day] AS TAIL([Date].[Calendar].members, 1) 

CREATE SET [Previous Day] AS HEAD(TAIL(Date].[Calendar].members),2),1) 

 

Do this (assuming today is 2011-06-16): 

Calendar Key Attribute Day Type Attribute  
(Flexible relationship to key) 

2011-06-13 Old Dates 

2011-06-14 Old Dates 

2011-06-15 Previous Day 

2011-06-16 Current Day 

 

Process Update the dimension when the day changes. Users can now refer to the current day by 

addressing the Day Type attribute instead of the set. 

2.4.2 Use SCOPE Instead of IIF When Addressing Cube Space 

Sometimes, you want a calculation to only apply for a specific subset of cube space. SCOPE is a better 

choice than IIF in this case. Here is an example of what not to do. 

 

CREATE MEMBER CurrentCube.[Measures].[SixMonthRollingAverage] AS 

IIF ([Date].[Calendar].CurrentMember.Level  

        Is [Date].[Calendar].[Month] 

     , Sum ([Date].[Calendar].CurrentMember.Lag(5) 

            :[Date].[Calendar].CurrentMember 

            ,[Measures].[Internet Sales Amount]) / 6 

     , NULL) 

 

Instead, use the Analysis Services SCOPE function for this. 

 

CREATE MEMBER CurrentCube.[Measures].[SixMonthRollingAverage] 

AS NULL ,FORMAT_STRING = "Currency", VISIBLE = 1;  

SCOPE ([Measures].[SixMonthRollingAverage], [Date].[Calendar].[Month].Members);  
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 THIS = Sum ( [Date].[Calendar].CurrentMember.Lag(5) 

                   :[Date].[Calendar].CurrentMember 

                   , [Measures].[Internet Sales Amount]) / 6; 

 END SCOPE; 

 

2.4.3 Avoid Mimicking Engine Features with Expressions 

Several native features can be mimicked with MDX: 

 Unary operators 

 Calculated columns in the data source view (DSV) 

 Measure expressions 

 Semiadditive measures 

You can reproduce each these features in MDX script (in fact, sometimes you must, because some are 

only supported in the Enterprise SKU), but doing so often hurts performance. 

For example, using distributive unary operators (that is, those whose member order does not matter, 

such as +, -, and ~) is generally twice as fast as trying to mimic their capabilities with assignments.  

There are rare exceptions. For example, you might be able to improve performance of nondistributive 

unary operators (those involving *, /, or numeric values) with MDX. Furthermore, you may know some 

special characteristic of your data that allows you to take a shortcut that improves performance. Such 

optimizations require expert-level tuning – and in general, you can rely on the Analysis Services engine 

features to do the best job. 

Measure expressions also provide a unique challenge, because they disable the use of aggregates (data 

has to be rolled up from the leaf level). One way to work around this is to use a hidden measure that 

contains preaggregated values in the relational source. You can then target the hidden measure to the 

aggregate values with a SCOPE statement in the calculation script. 

2.4.4 Comparing Objects and Values 

When determining whether the current member or tuple is a specific object, use IS. For example, the 

following query is not only nonperformant, but incorrect. It forces unnecessary cell evaluation and 

compares values instead of members. 

 

[Customer].[Customer Geography].[Country].&[Australia] = [Customer].[Customer 

Geography].currentmember 
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Furthermore, don’t perform extra steps when deducing whether CurrentMember is a particular 

member by involving Intersect and Counting. 

 

intersect({[Customer].[Customer Geography].[Country].&[Australia]}, 

[Customer].[Customer Geography].currentmember).count > 0 

 

Use IS instead. 

 

[Customer].[Customer Geography].[Country].&[Australia] is [Customer].[Customer 

Geography].currentmember 

 

2.4.5 Evaluating Set Membership 

Determining whether a member or tuple is in a set is best accomplished with Intersect. The Rank 

function does the additional operation of determining where in the set that object lies. If you don’t need 

it, don’t use it. For example, the following statement may do more work than you need it to do. 

 

rank( [Customer].[Customer Geography].[Country].&[Australia], 

<set expression> )>0 

 

This statement uses Intersect to determine whether the specified information is in the set. 

 

intersect({[Customer].[Customer Geography].[Country].&[Australia]}, <set> ).count > 0 

 

3 Tuning Query Performance 
To improve query performance, you should understand the current situation, diagnose the bottleneck, 

and then apply one of several techniques including optimizing dimension design, designing and building 

aggregations, partitioning, and applying best practices. These should be the first stops for optimization, 

before digging into queries in general. 

Much time can be expended pursuing dead ends – it is important to first understand the nature of the 

problem before applying specific techniques. To gain this understanding, it is often useful to have a 
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mental model of how the query engine works. We will therefore start with a brief introduction to the 

Analysis Services query processor. 

3.1 Query Processor Architecture 

To make the querying experience as fast as possible for end users, the Analysis Services querying 

architecture provides several components that work together to efficiently retrieve and evaluate data. 

The following figure identifies the three major operations that occur during querying—session 

management, MDX query execution, and data retrieval—as well as the server components that 

participate in each operation.  

  

Figure : Analysis Services query processor architecture 

3.1.1 Session Management 

Client applications communicate with Analysis Services using XML for Analysis (XMLA) over TCP/IP or 

HTTP. Analysis Services provides an XMLA listener component that handles all XMLA communications 

between Analysis Services and its clients. The Analysis Services Session Manager controls how clients 
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connect to an Analysis Services instance. Users authenticated by the Windows operating system and 

who have access to at least one database can connect to Analysis Services. After a user connects to 

Analysis Services, the Security Manager determines user permissions based on the combination of 

Analysis Services roles that apply to the user. Depending on the client application architecture and the 

security privileges of the connection, the client creates a session when the application starts, and then it 

reuses the session for all of the user’s requests. The session provides the context under which client 

queries are executed by the query processor. A session exists until it is closed by the client application or 

the server. 

3.1.2 Query Processing 

The query processor executes MDX queries and generates a cellset or rowset in return. This section 

provides an overview of how the query processor executes queries. For more information about 

optimizing MDX, see Optimizing MDX. 

To retrieve the data requested by a query, the query processor builds an execution plan to generate the 

requested results from the cube data and calculations. There are two major different types of query 

execution plans: cell-by-cell (naïve) evaluation or block mode (subspace) computation. Which one is 

chosen by the engine can have a significant impact on performance. For more information, see Subspace 

Computation. 

To communicate with the storage engine, the query processor uses the execution plan to translate the 

data request into one or more subcube requests that the storage engine can understand. A subcube is a 

logical unit of querying, caching, and data retrieval—it is a subset of cube data defined by the crossjoin 

of one or more members from a single level of each attribute hierarchy. An MDX query can be resolved 

into multiple subcube requests, depending the attribute granularities involved and calculation 

complexity; for example, a query involving every member of the Country attribute hierarchy (assuming 

it’s not a parent-child hierarchy) would be split into two subcube requests: one for the All member and 

another for the countries. 

As the query processor evaluates cells, it uses the query processor cache to store calculation results. The 

primary benefits of the cache are to optimize the evaluation of calculations and to support the reuse of 

calculation results across users (with the same security roles). To optimize cache reuse, the query 

processor manages three cache layers that determine the level of cache reusability: global, session, and 

query.  

3.1.2.1 Query Processor Cache  

During the execution of an MDX query, the query processor stores calculation results in the query 

processor cache. The primary benefits of the cache are to optimize the evaluation of calculations and to 

support reuse of calculation results across users. To understand how the query processor uses caching 

during query execution, consider the following example: You have a calculated member called Profit 

Margin. When an MDX query requests Profit Margin by Sales Territory, the query processor caches the 

nonnull Profit Margin values for each Sales Territory. To manage the reuse of the cached results across 

users, the query processor distinguishes different contexts in the cache:  
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 Query Context—contains the result of calculations created by using the WITH keyword within a 

query. The query context is created on demand and terminates when the query is over. 

Therefore, the cache of the query context is not shared across queries in a session.  

 Session Context —contains the result of calculations created by using the CREATE statement 

within a given session. The cache of the session context is reused from request to request in the 

same session, but it is not shared across sessions. 

 Global Context —contains the result of calculations that are shared among users. The cache of 

the global context can be shared across sessions if the sessions share the same security roles.  

The contexts are tiered in terms of their level of reuse. At the top, the query context is can be reused 

only within the query. At the bottom, the global context has the greatest potential for reuse across 

multiple sessions and users because the session context will derive from the global context and the 

query context will derive itself from the session context. 

 

Figure : Cache context layers 

During execution, every MDX query must reference all three contexts to identify all of the potential 

calculations and security conditions that can impact the evaluation of the query. For example, to resolve 

a query that contains a query calculated member, the query processor creates a query context to 

resolve the query calculated member, creates a session context to evaluate session calculations, and 

creates a global context to evaluate the MDX script and retrieve the security permissions of the user 

who submitted the query. Note that these contexts are created only if they aren’t already built. After 

they are built, they are reused where possible. 

Even though a query references all three contexts, it will typically use the cache of a single context. This 

means that on a per-query basis, the query processor must select which cache to use. The query 

processor always attempts to use the broadly applicable cache depending on whether or not it detects 

the presence of calculations at a narrower context.  

If the query processor encounters calculations created at query time, it always uses the query context, 

even if a query also references calculations from the global context (there is an exception to this – 
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queries with query calculated members of the form Aggregate(<set>) do share the session cache). If 

there are no query calculations, but there are session calculations, the query processor uses the session 

cache. The query processor selects the cache based on the presence of any calculation in the scope. This 

behavior is especially relevant to users with MDX-generating front-end tools. If the front-end tool 

creates any session calculations or query calculations, the global cache is not used, even if you do not 

specifically use the session or query calculations.  

There are other calculation scenarios that impact how the query processor caches calculations. When 

you call a stored procedure from an MDX calculation, the engine always uses the query cache. This is 

because stored procedures are nondeterministic (meaning that there is no guarantee what the stored 

procedure will return). As a result, after a nondeterministic calculation is encountered during the query, 

nothing is cached globally or in the session cache. Instead, the remaining calculations are stored in the 

query cache. In addition, the following scenarios determine how the query processor caches calculation 

results:  

• The use of MDX functions that are locale-dependent (such as Caption or .Properties) prevents 

the use of the global cache, because different sessions may be connected with different locales 

and cached results for one locale may not be correct for another locale. 

• The use of cell security; functions such as UserName, StrToSet, StrToMember, and StrToTuple; 

or LookupCube functions in the MDX script or in the dimension or cell security definition disable 

the global cache. That is, just one expression that uses any of these functions or features 

disables global caching for the entire cube. 

• If visual totals are enabled for the session by setting the default MDX Visual Mode property in 

the Analysis Services connection string to 1, the query processor uses the query cache for all 

queries issued in that session.  

• If you enable visual totals for a query by using the MDX VisualTotals function, the query 

processor uses the query cache. 

• Queries that use the subselect syntax (SELECT FROM SELECT) or are based on a session subcube 

(CREATE SUBCUBE) result in the query or, respectively, session cache to be used.  

• Arbitrary shapes can only use the query cache if they are used in a subselect, in the WHERE 

clause, or in a calculated member. An arbitrary shape is any set that cannot be expressed as a 

crossjoin of members from the same level of an attribute hierarchy. For example, {(Food, USA), 

(Drink, Canada)} is an arbitrary set, as is {customer.geography.USA, customer.geography.[British 

Columbia]}. Note that an arbitrary shape on the query axis does not limit the use of any cache. 

Based on this behavior, when your querying workload can benefit from reusing data across users, it is a 

good practice to define calculations in the global scope. An example of this scenario is a structured 

reporting workload where you have few security roles. By contrast, if you have a workload that requires 

individual data sets for each user, such as in an HR cube where you have many security roles or you are 
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using dynamic security, the opportunity to reuse calculation results across users is lessened or 

eliminated. As a result, the performance benefits associated with reusing the query processor cache are 

not as high.  

3.1.3 Data Retrieval 

When you query a cube, the query processor breaks the query into subcube requests for the storage 

engine. For each subcube request, the storage engine first attempts to retrieve data from the storage 

engine cache. If no data is available in the cache, it attempts to retrieve data from an aggregation. If no 

aggregation is present, it must retrieve the data from the fact data from a measure group’s partition 

data. 

Retrieving data from a partition requires I/O activity. This I/O can either be served from the file system 

cache or from disk. Additional details of the I/O subsystem of Analysis Services can be found in the SQL 

Server 2008 R2 Analysis Services Operations Guide. 

 

Figure : High-level overview of the data retrieval process 
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3.1.3.1 Storage Engine Cache 

The storage engine cache is also known as the data cache registry because it is composed of the 

dimension and measure group caches that are the same structurally. When a request is made from the 

Analysis Services formula engine to the storage engine, it sends a request in the form of a subcube 

describing the structure of the data request and a data cache structure that will contain the results of 

the request. Using the data cache registry indexes, it attempts to find a corresponding subcube: 

 If there is a matching subcube, the corresponding data cache is returned. 

 If a subcube superset is found, a new data cache is generated and the results are filtered to fit 

the subcube request. 

 If lower-grain data exists, the data cache registry can aggregate this data and make it available 

as well – and the new subcube and data cache are also registered in the cache registry. 

 If data does not exist, the request goes to the storage engine and the results are cached in the 

cache registry for future queries. 

Analysis Services allocates memory via memory holders that contain statistical information about the 

amount of memory being used. Memory holders are in the form of nonshrinkable and shrinkable 

memory; each combination of a subcube and data cache forms a single shrinkable memory holder. 

When Analysis Services is under heavy memory pressure, cleaner threads remove shrinkable memory. 

Therefore, ensure your system has enough memory; if it does not, your data cache registry will be 

cleared out (resulting in slower query performance) when it is placed under memory pressure. 

3.1.3.2 Aggressive Data Scanning 

Sometimes, in the evaluation of an expression, more data is requested than required to determine the 

result.  

If you suspect more data is being retrieved than is required, you can use SQL Server Profiler to diagnose 

how a query into subcube query events and partition scans. For subcube scans, check the verbose 

subcube event and whether more members than required are retrieved from the storage engine. For 

small cubes, this likely isn’t a problem. For larger cubes with multiple partitions, it can greatly reduce 

query performance. The following figure demonstrates how a single query subcube event results in 

partition scans.  

There are two potential solutions to this. If a calculation expression contains an arbitrary shape (this is 

defined in the section on the query processor cache), the query processor may not be able to determine 

Figure : Aggressive partition scanning 
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that the data is limited to a single partition and request data from all partitions. Try to eliminate the 

arbitrary shape. 

Other times, the query processor is simply overly aggressive in asking for data. For small cubes, this 

doesn’t matter, but for very large cubes, it does. If you observe this behavior, potential solutions include 

the following: 

 Contact Microsoft Customer Service and Support for further advice.  

 Disable Prefetch = 1 (this is done in the connection string): Sometimes Analysis Services requests 

additional data from the source to prepopulate the cache; it may help to turn it off so that 

Analysis Services does not request too much data. 

3.2 Query Processor Internals 

There are several changes to query processor internals in SQL Server 2008 Analysis Services that are 

applicable today (compared to SQL Server 2005 Analysis Services). In this section, these changes are 

discussed before specific optimization techniques are introduced. 

3.2.1 Subspace Computation 

The key idea behind subspace computation is best introduced by contrasting it with a cell-by-cell 

evaluation of a calculation. (This is also known as a naïve calculation.) Consider a trivial calculation 

RollingSum that sums the sales for the previous year and the current year, and a query that requests the 

RollingSum for 2005 for all Products. 

 RollingSum = (Year.PrevMember, Sales) + Sales 

 SELECT 2005 on columns, Product.Members on rows WHERE RollingSum 

A cell-by-cell evaluation of this calculation proceeds as represented in the following figure.  



41 
 

 

Figure : Cell-by-cell evaluation 

The 10 cells for [2005, All Products] are each evaluated in turn. For each, the previous year is located, 

and then the sales value is obtained and then added to the sales for the current year. There are two 

significant performance issues with this approach. 

Firstly, if the data is sparse (that is, thinly populated), cells are calculated even though they are bound to 

return a null value. In the previous example, calculating the cells for anything but Product 3 and Product 

6 is a waste of effort. The impact of this can be extreme—in a sparsely populated cube, the difference 

can be several orders of magnitude in the numbers of cells evaluated. 

Secondly, even if the data is totally dense, meaning that every cell has a value and there is no wasted 

effort visiting empty cells, there is much repeated effort. The same work (for example, getting the 

previous Year member, setting up the new context for the previous Year cell, checking for recursion) is 

redone for each Product. It would be much more efficient to move this work out of the inner loop of 

evaluating each cell. 

Now consider the same example performed using subspace computation. In subspace computation, the 

engine works its way down an execution tree determining what spaces need to be filled. Given the 

query, the following space needs to be computed, where * means every member of the attribute 

hierarchy. 

 [Product.*, 2005, RollingSum]  

 Given the calculation, this means that the following space needs to be computed first. 

 [Product.*, 2004, Sales]  
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Next, the following space must be computed. 

 [Product.*, 2005, Sales]  

Finally, the + operator needs to be added to those two spaces. 

If Sales were itself covered by calculations, the spaces necessary to calculate Sales would be determined 

and the tree would be expanded. In this case Sales is a base measure, so the storage engine data is used 

to fill the two spaces at the leaves, and then, working up the tree, the operator is applied to fill the 

space at the root. Hence the one row (Product3, 2004, 3) and the two rows { (Product3, 2005, 20), 

(Product6, 2005, 5)} are retrieved, and the + operator applied to them to yields the following result.  

 

 

Figure : Execution plan 

The + operator operates on spaces, not simply scalar values. It is responsible for combining the two 

given spaces to produce a space that contains each product that appears in either space with the 

summed value. This is the query execution plan. Note that it operates only on data that could contribute 

to the result. There is no notion of the theoretical space over which the calculation must be performed. 

A query execution plan is not one or the other but can contain both subspace and cell-by-cell nodes. 

Some functions are not supported in subspace mode, causing the engine to fall back to cell-by-cell 

mode. But even when evaluating an expression in cell-by-cell mode, the engine can return to subspace 

mode. 

3.2.2 Expensive vs. Inexpensive Query Plans 

It can be costly to build a query plan. In fact, the cost of building an execution plan can exceed the cost 

of query execution. The Analysis Services engine has a coarse classification scheme—expensive versus 

inexpensive. A plan is deemed expensive if cell-by-cell mode is used or if cube data must be read to build 

the plan. Otherwise the execution plan is deemed inexpensive. 
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Cube data is used in query plans in several scenarios. Some query plans result in the mapping of one 

member to another because of MDX functions such as PrevMember and Parent. The mappings are built 

from cube data and materialized during the construction of the query plans. The IIf, CASE, and IF 

functions can generate expensive query plans as well, should it be necessary to read cube data in order 

to partition cube space for evaluation of one of the branches. For more information, see IIf Function in 

SQL Server 2008 Analysis Services. 

3.2.3 Expression Sparsity 

An expression’s sparsity refers to the number of cells with nonnull values compared to the total number 

of cells in the result of the evaluation of the expression. If there are relatively few nonnull values, the 

expression is termed sparse. If there are many, the expression is dense. As we shall see later, whether 

an expression is sparse or dense can influence the query plan. 

But how can you tell whether an expression is dense or sparse? Consider a simple noncalculated 

measure – is it dense or sparse? In OLAP, base fact measures are considered sparse by the Analysis 

Services engine. This means that the typical measure does not have values for every attribute member. 

For example, a customer does not purchase most products on most days from most stores. In fact it’s 

the quite the opposite. A typical customer purchases a small percentage of all products from a small 

number of stores on a few days. The following table lists some other simple rules for popular 

expressions. 

Expression Sparse/dense 

Regular measure Sparse 

Constant Value Dense (excluding constant null values, 
true/false values) 

Scalar expression; for example, count, 
.properties 

Dense 

<exp1>+<exp2> 
<exp1>-<exp2> 

Sparse if both exp1 and exp2 are sparse; 
otherwise dense 

<exp1>*<exp2> Sparse if either exp1 or exp2 is sparse; 
otherwise dense 

<exp1> / <exp2> Sparse if <exp1> is sparse; otherwise dense 

Sum(<set>, <exp>) 
Aggregate(<set>, <exp>) 

Inherited from <exp> 

IIf(<cond>, <exp1>, <exp2>) Determined by sparsity of default branch 
(refer to IIf function) 

 

For more information about sparsity and density, see Gross margin - dense vs. sparse block evaluation 

mode in MDX (http://sqlblog.com/blogs/mosha/archive/2008/11/01/gross-margin-dense-vs-sparse-

block-evaluation-mode-in-mdx.aspx). 

3.2.4 Default Values 

Every expression has a default value—the value the expression assumes most of the time. The query 

processor calculates an expression’s default value and reuses across most of its space. Most of the time 

http://sqlblog.com/blogs/mosha/archive/2008/11/01/gross-margin-dense-vs-sparse-block-evaluation-mode-in-mdx.aspx
http://sqlblog.com/blogs/mosha/archive/2008/11/01/gross-margin-dense-vs-sparse-block-evaluation-mode-in-mdx.aspx
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this is null because oftentimes (but not always) the result of an expression with null input values is null. 

The engine can then compute the null result once, and then it needs to compute only values for the 

much reduced nonnull space. 

Another important use of the default values is in the condition in the IIf function. Knowing which branch 

is evaluated more often drives the execution plan. The default values of some popular expressions are 

listed in the following table. 

Expression Default value Comment 

Regular measure Null None.  

IsEmpty(<regular measure>) True The majority of theoretical space is 
occupied by null values. Therefore, 
IsEmpty will return True most often. 

<regular measure A> = <regular 
measure B>  

True Values for both measures are principally 
null, so this evaluates to True most of the 
time. 

<member A> IS <member B>  False This is different than comparing values – 
the engine assumes that different 
members are compared most of the time. 

 

3.2.5 Varying Attributes 

Cell values mostly depend on attribute coordinates. But some calculations do not depend on every 

attribute. For example, the following expression depends only on the Customer attribute in the 

customer dimension. 

[Customer].[Customer Geography].properties("Postal Code") 

When this expression is evaluated over a subspace involving other attributes, any attributes the 

expression doesn’t depend on can be eliminated, and then the expression can be resolved and projected 

back over the original subspace. The attributes an expression depends on are termed its varying 

attributes. For example, consider the following query. 

with member measures.Zip as 

[Customer].[Customer Geography].currentmember.properties("Postal Code") 

select measures.zip on 0, 

[Product].[Category].members on 1 

from [Adventure Works] 

where [Customer].[Customer Geography].[Customer].&[25818] 

 



45 
 

The expression depends on the customer attribute and not the category attribute; therefore, customer 

is a varying attribute and category is not. In this case the expression is evaluated only once for the 

customer and not as many times as there are product categories. 

3.3 Optimizing MDX  

Debugging calculation performance issues across a cube can be difficult if there are many calculations. 

The first step is to try to narrow down where the problem expression is and then apply best practices to 

the MDX. In order to narrow down a problem, you will first need a baseline. 

3.3.1 Baselining Query Speeds 

Before beginning optimization, you need reproducible cold-cache baseline measurements.  

To do this, you should be aware of the following three Analysis Services caches: 

 The formula engine cache 

 The storage engine cache 

 The file system cache 

Both the Analysis Services and the operating system caches need to be cleared before you start taking 

measurements.  

3.3.1.1 Clearing the Analysis Services Caches 

The Analysis Services formula engine and storage engine caches can be cleared with the XMLA 

ClearCache command. You can use SQL Server Management Studio to run ClearCache. 

<ClearCache  

xmlns="http://schemas.microsoft.com/analysisservices/2003/engine"> 

  <Object> 

    <DatabaseID><database name></DatabaseID> 

  </Object> 

</ClearCache> 

3.3.1.2 Clearing the Operating System Caches 

The file system cache is a bit harder to get rid of because it resides inside Windows itself. You can use 

any of the following tools to perform this task: 

 Fsutil.exe: Windows File System Utility 

If you have created a separate Windows volume for the cube database, you can dismount the 

volume itself using the following command: 

fsutil.exe volume dismount < Drive Letter | Mount Point > 

 

This clears the file system cache for this drive letter or mount point. If the cube database resides 

only on this location, running this command results in a clean file system cache. 

 

 RAMMap: Sysinternals tool 
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Alternatively, you can use RAMMap from Sysinternals (as of this writing, RAMMap v1.11 is 

available at: http://technet.microsoft.com/en-us/sysinternals/ff700229.aspx). RAMMap can 

help you understand how Windows manages memory. This tool not only allows you to read the 

file system cache content, it also allows you to purge it. On the empty menu, click Empty 

System Working Set, and then click Empty Standby List. This clears the file system cache for the 

entire system. Note that when RAMMap starts up, it temporarily freezes the system while it 

reads the memory content – this can take some time on a large machine. Hence, RAMMap 

should be used with care. 

 

 Analysis Services Stored Procedure Project (CodePlex): FileSystemCache class 

There is currently a CodePlex project called the Analysis Services Stored Procedure Project found 

at: http://asstoredprocedures.codeplex.com/wikipage?title=FileSystemCache. This project 

contains code for a utility that enables you to clear the file system cache using a stored 

procedure that you can run directly on Analysis Services.  

Note that neither FSUTIL nor RAMMap should be used in production cubes –both cause disruption to 

service. Also note that neither RAMMap nor the Analysis Services Stored Procedures Project is 

supported by Microsoft. 

3.3.1.3 Measure Query Speeds 

When all caches are clear, you should initialize the calculation script by executing a query that returns 

and caches nothing. Here is an example. 

select {} on 0 from [Adventure Works] 

Execute the query you want to optimize and then use SQL Server Profiler with the Standard (default) 

trace and these additional events enabled: 

 Query Processing\Query Subcube Verbose 

 Query Processing\Get Data From Aggregation 

Save the profiler trace, because it contains important information that you can use to diagnose slow 

query times. 

http://technet.microsoft.com/en-us/sysinternals/ff700229.aspx
http://asstoredprocedures.codeplex.com/wikipage?title=FileSystemCache
http://msdn.microsoft.com/en-us/library/ms174779.aspx
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Figure : Sample trace 

The text for the query subcube verbose event deserves some explanation. It contains information for 

each attribute in every dimension: 

 0: Indicates that the attribute is not included in query (the All member is hit). 

 * : Indicates that every member of the attribute was requested. 

 + : Indicates that two or more members of the attribute were requested. 

 - : Indicates that a slice below granularity is requested. 

 <integer value> : Indicates that a single member of the attribute was hit. The integer 

represents the member’s data ID (an internal identifier generated by the engine). 

For more information about the query subcube verbose event textdata, see the following: 

 Identifying and Resolving MDX Query Performance Bottlenecks in SQL Server 2005 Analysis 

Services (http://sqlcat.com/sqlcat/b/whitepapers/archive/2007/12/16/identifying-and-

resolving-mdx-query-performance-bottlenecks-in-sql-server-2005-analysis-services.aspx) 

 Configuring the Analysis Services Query Log (http://msdn.microsoft.com/en-

us/library/cc917676.aspx): Refer to the The Dataset Column in the Query Log Table section 

SQL Server Management Studio displays the total query time. But be careful: This time is the amount of 

time taken to retrieve and display the cellset. For large results, the time to render the cellset on the 

client can rival the time it took the server to generate it. Instead of using SQL Server Management 

Studio, use the SQL Server Profiler Query End event to measure how long the query takes from the 

server’s perspective and get the Analysis Services engine duration. 

3.3.2 Isolating the Problem 

Diagnosing the problem may be straightforward if a simple query calls out a specific calculation (in 

which case you should continue to the next section), but if there are chains of expressions or a complex 

http://sqlcat.com/whitepapers/archive/2007/12/16/identifying-and-resolving-mdx-query-performance-bottlenecks-in-sql-server-2005-analysis-services.aspx
http://sqlcat.com/whitepapers/archive/2007/12/16/identifying-and-resolving-mdx-query-performance-bottlenecks-in-sql-server-2005-analysis-services.aspx
http://msdn.microsoft.com/en-us/library/cc917676.aspx
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query, it can be time-consuming to locate the problem. Try to reduce the query to the simplest 

expression possible that continues to reproduce the performance issue. If possible, remove expressions 

such as MDX scripts, unary operators, measure expressions, custom member formulas, semi-additive 

measures, and custom rollup properties. With some client applications, the query generated by the 

client itself, not the cube, can be the problem. For example, problems can arise when client applications 

generate queries that demand large data volumes, push down to unnecessarily low granularities, 

unnecessarily bypass aggregations, or contain query calculations that bypass the global and session 

query processor caches. If you can confirm that the issue is in the cube itself, comment out calculated 

members in the cube or query until you have narrowed down the offending calculation. Using a binary 

chop method is useful to quickly reduce the query to the simplest form that reproduces the issue. 

Experienced tuners will be able to quickly narrow in on typical calculation issues. 

When you have removed calculations until the performance issue reproduces, the first step is to 

determine whether the problem lies in the query processor (the formula engine) or the storage engine. 

To determine the amount of time the engine spends scanning data, use the SQL Server Profiler trace 

created earlier. Limit the events to noncached storage engine retrievals by selecting only the query 

subcube verbose event and filtering on event subclass = 22. The result will be similar to the 

following. 

 

Figure : Trace of query subcube events 

If the majority of time is spent in the storage engine with long-running query subcube events, the 

problem is likely with the storage engine. In this case, consider optimizing dimension design, designing 

aggregations, or using partitions to improve query performance. In addition, you may want to consider 

optimizing the disk subsystem.  

If the majority of time is not spent in the storage engine but in the query processor, focus on optimizing 

the MDX script or the query itself. Note, the problem can involve both the formula and storage engines.  

A “fragmented query space” can be diagnosed with SQL Server Profiler if you see many query subcube 

events generated by a single query. Each request may not take long, but the sum of them may. If this is 

the case, consider warming the cache to make sure subcubes and calculations are already cached. Also, 

consider rewriting the query to remove arbitrary shapes, because arbitrary subcubes cannot be cached. 

For more information, see Cache Warming later in this white paper. 
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If the cube and MDX query are already fully optimized, you may consider doing thread, memory, and 

configuration tuning of the cube. You may even want to look at larger hardware. Server-level tuning 

techniques are described in the SQL Server 2008 R2 Analysis Services Operations Guide. 

References:  

 The SQL Server 2008 R2 Analysis Services Operations Guide 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-

services-operations-guide.aspx) 

 Predeployment I/O Best Practices 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2007/11/21/predeployment-i-o-best-

practices.aspx): The concepts in this document provide an overview of disk I/O and its impact 

query performance; focus on the random I/O context. 

 Scalable Shared Databases Part 5 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-

services-operations-guide.aspx): Review to better understand on query performance in context 

of random I/O vs. sequential I/O. 

3.3.3 Cell-by-Cell Mode vs. Subspace Mode 

Almost always, performance obtained by using subspace (or block computation) mode is superior to 

that obtained by using cell-by-cell (nor naïve) mode. For more information, including the list of functions 

supported in subspace mode, see “Performance Improvements for MDX in SQL Server 2008 Analysis 

Services (http://msdn.microsoft.com/en-us/library/bb934106(v=SQL.105).aspx) in SQL Server Books 

Online. 

The following table lists the most common reasons for leaving subspace mode. 

Feature or function Comment 

Set aliases Replace with a set expression rather than an alias. For example, this query 
operates in subspace mode. 
 
with  

member measures.SubspaceMode as  

 sum( 

  [Product].[Category].[Category].members, 

  [Measures].[Internet Sales Amount] 

 ) 

select  

{measures.SubspaceMode,[Measures].[Internet Sales 

Amount]} on 0 , 

[Customer].[Customer Geography].[Country].members on 1 

from [Adventure Works] 

cell properties value 

 
However, almost the same query ,where the set is replaced with an alias, 
operates in cell-by-cell mode: 
 

http://sqlcat.com/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-services-operations-guide.aspx
http://sqlcat.com/whitepapers/archive/2007/11/21/predeployment-i-o-best-practices.aspx
http://sqlvelocity.typepad.com/blog/2011/02/scalable-shared-database-part-5.html
http://msdn.microsoft.com/en-us/library/bb934106(v=SQL.105).aspx
http://msdn.microsoft.com/en-us/library/bb934106(v=SQL.105).aspx
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with  

set y as [Product].[Category].[Category].members 

member measures.Naive as  

 sum( 

  y, 

  [Measures].[Internet Sales Amount] 

 ) 

select 

{measures.Naive,[Measures].[Internet Sales Amount]} on 0 

, 

[Customer].[Customer Geography].[Country].members on 1 

from [Adventure Works] 

cell properties value 
 
Note: This functionality has been fixed with the latest service pack of SQL 
Server 2008 R2 Analysis Services. 

Late binding in functions: 
 
LinkMember, StrToSet, 
StrToMember, 
StrToValue 

Late-binding functions are functions that depend on query context and 
cannot be statically evaluated. For example, the following code is statically 
bound. 
 
with member measures.x as 

(strtomember("[Customer].[Customer 

Geography].[Country].&[Australia]"),[Measures].[Internet 

Sales Amount]) 

select  measures.x on 0, 

[Customer].[Customer Geography].[Country].members on 1 

from [Adventure Works] 

cell properties value 
 
A query is late-bound if an argument can be evaluated only in context. 
 
with member measures.x as 

(strtomember([Customer].[Customer 

Geography].currentmember.uniquename),[Measures].[Internet 

Sales Amount]) 

select  measures.x on 0, 

[Customer].[Customer Geography].[Country].members on 1 

from [Adventure Works] 

cell properties value  
User-defined stored 
procedures 

User-defined stored procedures are evaluated in cell-by-cell mode. Some 
popular Microsoft Visual Basic for Applications (VBA) functions are natively 
supported in MDX, but they are still not optimized to work in subspace 
mode.  

LookupCube Linked measure groups are often a viable alternative. 

Application of cell level 

security 

By definition, cell level security requires cell-by-cell evaluation to ensure the 
correct security context is applied; therefore performance improvements of 
block computation cannot be applied. 

 

3.3.4 Avoid Assigning Nonnull Values to Otherwise Empty Cells  

The Analysis Services engine is very efficient at using sparsity of the data to improve performance. 

Adding calculations with nonempty values replacing empty values does not allow Analysis Services to 
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eliminate these rows. For example, the following query replaces empty values with the dash; therefore 

the non empty keyword does not eliminate them. 

with member measures.x as 

iif( not isempty([Measures].[Internet Sales Amount]),[Measures].[Internet Sales 

Amount],"-") 

select descendants([Date].[Calendar].[Calendar Year].&[2004] ) on 0, 

non empty [Customer].[Customer Geography].[Customer].members on 1 

from [Adventure Works] 

where measures.x 

Note, non empty operates on cell values but not on formatted values. In rare cases you can instead use 

the format string to replace null values with the same character while still eliminating empty rows and 

columns in roughly half the execution time. 

with member measures.x as 

[Measures].[Internet Sales Amount], FORMAT_STRING = "#.00;(#.00);#.00;-" 

select descendants([Date].[Calendar].[Calendar Year].&[2004] ) on 0, 

non empty [Customer].[Customer Geography].[Customer].members on 1 

from [Adventure Works] 

where measures.x 

The reason this can only be used in rare cases is that the query is not equivalent – the second query 

eliminates completely empty rows. More importantly, neither Excel nor SQL Server Reporting Services 

supports the fourth argument in the format_string.  

 

References: 

 For more information about using the format_string calculation property, see FORMAT_STRING 

Contents (MDX) (http://msdn.microsoft.com/en-us/library/ms146084.aspx) in SQL Server Books 

Online. 

 For more information about how Excel uses the format_string property, see Create or delete a 

custom number format (http://office.microsoft.com/en-us/excel-help/create-or-delete-a-

custom-number-format-HP010342372.aspx).  

3.3.5 Sparse/Dense Considerations with “expr1 * expr2” Expressions  

When you write expressions as products of two other expressions, place the sparser one on the left-

hand side. Recall, an expression is sparse if there are few non-null values compared to the total number 

of cells; for more information, see Expression Sparsity earlier in this section. 

http://msdn.microsoft.com/en-us/library/ms146084.aspx
http://msdn.microsoft.com/en-us/library/ms146084.aspx
http://office.microsoft.com/en-us/excel-help/create-or-delete-a-custom-number-format-HP010342372.aspx
http://office.microsoft.com/en-us/excel-help/create-or-delete-a-custom-number-format-HP010342372.aspx
file:///C:/Users/Beth/Documents/Vend/Docs/SQL%20White%20papers/SSASPerfGuide2008_v1_(2).docx%23_Expression_Sparsity
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Consider the following two queries, which have the signature of a currency conversion calculation of 

applying the exchange rate at leaves of the date dimension in Adventure Works. The only difference is 

that the order of the expressions in the product of the cell calculation changes. The results are the same, 

but using the sparser internet sales amount first results in about a 10% savings. (That’s not much in this 

case, but it could be substantially more in others. Savings depends on relative sparsity between the two 

expressions, and performance benefits may vary). 

Sparse First 

with cell CALCULATION x for '({[Measures].[Internet Sales Amount]},leaves([Date]))' 

as [Measures].[Internet Sales Amount] * 

([Measures].[Average Rate],[Destination Currency].[Destination Currency].&[EURO]) 

select 

non empty [Date].[Calendar].members on 0, 

non empty [Product].[Product Categories].members on 1 

from [Adventure Works] 

where ([Measures].[Internet Sales Amount], [Customer].[Customer Geography].[State-

Province].&[BC]&[CA]) 

Dense First 

with cell CALCULATION x for '({[Measures].[Internet Sales Amount]},leaves([Date]))' 

as 

([Measures].[Average Rate],[Destination Currency].[Destination Currency].&[EURO])* 

[Measures].[Internet Sales Amount] 

select 

non empty [Date].[Calendar].members on 0, 

non empty [Product].[Product Categories].members on 1 

from [Adventure Works] 

where ([Measures].[Internet Sales Amount], [Customer].[Customer Geography].[State-

Province].&[BC]&[CA]) 
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3.3.6 IIf Function in SQL Server 2008 Analysis Services  

The IIf MDX function is a commonly used expression that can be costly to evaluate. The engine 

optimizes performance based on a few simple criteria. The IIf function takes three arguments: 

iif(<condition>, <then branch>, <else branch>) 

Where the condition evaluates to true, the value from the then branch is used; otherwise the else 

branch expression is used. Note the term used – one or both branches may be evaluated even if the 

value is not used. It may be cheaper for the engine to evaluate the expression over the entire space and 

use it when needed - termed an eager plan – than it would be to chop up the space into a potentially 

enormous number of fragments and evaluate only where needed - a strict plan.  

Note: One of the most common errors in MDX scripting is using IIf when the condition depends 

on cell coordinates instead of values. If the condition depends on cell coordinates, use scopes 

and assignments as described in section 2. When this is done, the condition is not evaluated 

over the space and the engine does not evaluate one or both branches over the entire space. 

Admittedly, in some cases, using assignments forces some unwieldy scoping and repetition of 

assignments, but it is always worthwhile comparing the two approaches. 

IIf considerations: 

1) The first consideration is whether the query plan is expensive or inexpensive.  

Most IIf condition query plans are inexpensive, but complex nested conditions with more IIf 

functions can go to cell by cell. 

2) The next consideration the engine makes is what value the condition takes most. This is driven 

by the condition’s default value. If the condition’s default value is true, the then branch is the 

default branch – the branch that is evaluated over most of the subspace.  

 

Knowing a few simple rules on how the condition is evaluated helps to determine the default branch:  

 In sparse expressions, most cells are empty. The default value of the IsEmpty function on a 

sparse expression is true.  

 Comparison to zero of a sparse expression is true. 

 The default value of the IS operator is false. 

 If the condition cannot be evaluated in subspace mode, there is no default branch. 

For example, one of the most common uses of the IIf function is to check whether the denominator is 

nonzero: 

iif([Measures].[Internet Sales Amount]=0 

  , null 

  , [Measures].[Internet Order Quantity]/[Measures].[Internet Sales Amount]) 
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There is no calculation on Internet Sales Amount; therefore it is a regular measure expression and it is 

sparse. Therefore the default value of the condition is true. Thus the default branch is the then branch 

with the null expression.  

The following table shows how each branch of an IIf function is evaluated. 

Branch query plan Branch is default 
branch 

Branch expression 
sparsity 

Evaluation  

Expensive Not applicable Not applicable Strict 

Inexpensive True Not applicable Eager 

Inexpensive False Dense Strict 

Inexpensive False Sparse Eager 

 

In SQL Server 2008 Analysis Services, you can overrule the default behavior with query hints. 

iif( 

[<condition> 

, <then branch> [hint [Eager | Strict]] 

, <else branch> [hint [Eager | Strict]] 

) 

 

Here are the most common scenarios where you might want to change the default behavior: 

 The engine determines the query plan for the condition is expensive and evaluates each branch 

in strict mode. 

 The condition is evaluated in cell-by-cell mode, and each branch is evaluated in eager mode. 

 The branch expression is dense but easily evaluated. 

For example, consider the following simple expression, which takes the inverse of a measure. 

with member 

measures.x as 

iif( 

   [Measures].[Internet Sales Amount]=0 

   , null 

   , (1/[Measures].[Internet Sales Amount]) ) 

select {[Measures].x} on 0, 

[Customer].[Customer Geography].[Country].members * 

[Product].[Product Categories].[Category].members on 1 
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from [Adventure Works] 

cell properties value 

 

 

The query plan is not expensive, the else branch is not the default branch, and the expression is dense, 

so it is evaluated in strict mode. This forces the engine to materialize the space over which it is 

evaluated. This can be seen in SQL Server Profiler with query subcube verbose events selected as 

displayed in Figure 26. 

 

Figure : Default IIf query trace 

Note the subcube definition for the Product and Customer dimensions (dimensions 7 and 8 respectively) 

with the ‘+’ indicator on the Country and Category attributes. This means that more than one but not all 

members are included – the query processor has determined which tuples meet the condition and 

partitioned the space, and it is evaluating the fraction over that space. 

To prevent the query plan from partitioning the space, the query can be modified as follows (in bold). 

 

with member 

measures.x as 

iif( 

   [Measures].[Internet Sales Amount]=0 

   , null 
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   , (1/[Measures].[Internet Sales Amount]) hint eager) 

select {[Measures].x} on 0, 

[Customer].[Customer Geography].[Country].members * 

[Product].[Product Categories].[Category].members on 1 

from [Adventure Works] 

cell properties value 

 

 

Figure : IIf trace with MDX query hints 

Now the same attributes are marked with a ‘*’ indicator, meaning that the expression is evaluated over 

the entire space instead of a partitioned space. 

3.3.7 Cache Partial Expressions and Cell Properties 

Partial expressions (those that are part of a calculated member or assignment) are not cached. So if an 

expensive subexpression is used more than once, consider creating a separate calculated member to 

allow the query processor to cache and reuse. For example, consider the following. 

 

this = iif(<expensive expression >= 0, 1/<expensive expression>, null); 

 

The repeated partial expressions can be extracted and replaced with a hidden calculated member as 

follows. 
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create member currentcube.measures.MyPartialExpression as <expensive expression> , 

visible=0; 

this = iif(measures.MyPartialExpression >= 0, 1/ measures.MyPartialExpression, null); 

 

Only the value cell property is cached. If you have complex cell properties to support such things as 

bubble-up exception coloring, consider creating a separate calculated measure. For example, this 

expression includes color in the definition, which creates extra work every time the expression is used.  

 

create member currentcube.measures.[Value] as <exp> , backgroundColor=<complex 

expression>; 

 

The following is more efficient because it creates a calculated measure to handle the color effect. 

 

create member currentcube.measures.MyCellProperty as <complex expression> , 

visible=0; 

create member currentcube.measures.[Value] as <exp> , 

backgroundColor=<MyCellProperty>; 

 

3.3.8 Eliminate Varying Attributes in Set Expressions 

Set expressions do not support varying attributes. This impacts all set functions including Filter, 

Aggregate, Avg, and others. You can work around this problem by explicitly overwriting invariant 

attributes to a single member. 

For example, in this calculation, the average of sales only including those exceeding $100 is computed. 

 
with member measures.AvgSales as 
avg( 
 filter( 
  descendants([Customer].[Customer Geography].[All Customers],,leaves) 
  , [Measures].[Internet Sales Amount]>100 
 ) 
 ,[Measures].[Internet Sales Amount] 
) 
select measures.AvgSales on 0, 
[Customer].[Customer Geography].[City].members on 1 
from [Adventure Works] 
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On a desktop box, this calculation takes approximately 2:29. However, the average of sales for all 

customers everywhere does not depend on the current city (this is just another way of saying that city is 

not a varying attribute). You can explicitly eliminate city as a varying attribute by overwriting it to the all 

member as follows. 

 
with member measures.AvgSales as 
avg( 
 filter( 
  descendants([Customer].[Customer Geography].[All Customers],,leaves) 
  , [Measures].[Internet Sales Amount]>100 
 ) 
 ,[Measures].[Internet Sales Amount] 
) 
member measures.AvgSalesWithOverWrite as (measures.AvgSales, [All Customers]) 
select measures.AvgSalesWithOverWrite on 0, 
[Customer].[Customer Geography].[City].members on 1 
from [Adventure Works] 
 

With the modification, this query takes less than two seconds to complete. The following is a partial 

view aggregating the SQL Server Profiler traces of the two queries in the example by EventClass and 

EventSubClass. 

 

EventClass > EventSubClass AvgSalesWithOverwrite AvgSales 

Events Duration Events  Duration 

Query Cube End 1 515 1 161526 

Serial Results End 1 499 1 161526 

Query Dimension 586    

Get Data From Cache > Get Data 
from Flat Cache 

586    

Query Subcube > Non-Cache Data 5 64 5 218 

  

The Query Subcube > Non-Cache Data durations are relatively small, denoting that most of the query 

calculation is done by the Analysis Services formula engine. This is apparent with the AvgSales 

calculation because most of the query durations correspond to the Serial Results event, which reports 

the status of serializing axes and cells. The use of [All Customers] ensures that the expression is 

evaluated only once for each Customer, improving performance. 

 

3.3.9 Eliminate Cost of Computing Formatted Values 

In some circumstances, the cost of determining the format string for an expression outweighs the cost 

of the value itself. To determine whether this applies to a slow-running query, compare execution times 

with and without the formatted value cell property, as in the following query. 
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select [Measures].[Internet Average Sales Amount] on 0 from [Adventure Works] cell 

properties value 

 

If the result is noticeable faster without the formatting, apply the formatting directly in the script as 

follows. 

 

scope([Measures].[Internet Average Sales Amount]); 

    FORMAT_STRING(this) = "currency"; 

end scope; 

 

Execute the query (with formatting applied) to determine the extent of any performance benefit. 

3.3.10 NON_EMPTY_BEHAVIOR 

In some situations, it is expensive to compute the result of an expression, even if you know it will be null 

beforehand based on the value of some indicator tuple. In earlier versions of SQL Server Analysis 

Services, the NON_EMPTY_BEHAVIOR property is sometimes helpful for these kinds of calculations. 

When this property evaluates to null, the expression is guaranteed to be null and (most of the time) vice 

versa.  

This property oftentimes resulted in substantial performance improvements in past releases. However, 

starting with SQL Server 2008, the property is oftentimes ignored (because the engine automatically 

deals with nonempty cells in many cases) and can sometimes result in degraded performance. Eliminate 

it from the MDX script and add it back after performance testing demonstrates improvement. 

For assignments, the property is used as follows. 

this = <e1>; 

Non_Empty_Behavior(this) = <e2>; 

For calculated members in the MDX script, the property is used this way. 

 

create member currentcube.measures.x as <e1>, non_empty_behavior = <e2> 

 

In SQL Server 2005 Analysis Services, there were complex rules on how the property could be defined, 

when the engine used it or ignored it, and how the engine would use it. In SQL Server 2008 Analysis 

Services, the behavior of this property has changed: 
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 It remains a guarantee that when NON_EMPTY_BEHAVIOR is null that the expression must also 
be null. (If this is not true, incorrect query results can still be returned.)  

 However, the reverse is not necessarily true; that is, the NON_EMPTY_BEHAVIOR expression can 
return non null when the original expression is null. 

 The engine more often than not ignores this property and deduces the nonempty behavior of 
the expression on its own. 

 
If the property is defined and is applied by the engine, it is semantically equivalent (not performance 

equivalent, however) to the following expression.  

this = <e1> * iif(isempty(<e2>), null, 1) 

The NON_EMPTY_BEHAVIOR property is used if <e2> is sparse and <e1> is dense or <e1> is evaluated in 

the naïve cell-by-cell mode. If these conditions are not met and both <e1> and <e2> are sparse (that is, if 

<e2> is much sparser than <e1>), you may be able to achieve improved performance by forcing the 

behavior as follows. 

this = iif(isempty(<e2>), null, <e1>); 

The NON_EMPTY_BEHAVIOR property can be expressed as a simple tuple expression including simple 

member navigation functions such as .prevmember or .parent or an enumerated set. An enumerated set 

is equivalent to NON_EMPTY_BEHAVIOR of the resultant sum. 

3.3.11 References 

Below are links to some handy MDX optimization articles, books, and blog posts: 

 Query calculated members invalidate formula engine cache 

(http://cwebbbi.wordpress.com/2009/01/30/formula-caching-and-query-scope/) by Chris Webb 

 Subselect preventing caching (http://cwebbbi.wordpress.com/2008/10/28/reporting-services-

generated-mdx-subselects-and-formula-caching/) by Chris Webb 

 Measure datatypes 

(http://bidshelper.codeplex.com/wikipage?title=Measure%20Group%20Health%20Check&Proje

ctName=bidshelper) 

 Currency datatype (http://sqlcat.com/sqlcat/b/technicalnotes/archive/2008/09/25/the-many-

benefits-of-money-data-type.aspx) 

3.4 Aggregations 

An aggregation is a data structure that stores precalculated data that Analysis Services uses to enhance 

query performance. You can define the aggregation design for each partition independently. Each 

partition can be thought of as being an aggregation at the lowest granularity of the measure group. 

Aggregations that are defined for a partition are processed out of the leaf level partition data by 

aggregating it to a higher granularity.  

When a query requests data at higher levels, the aggregation structure can deliver the data more quickly 

because the data is already aggregated in fewer rows. As you design aggregations, you must consider 

file:///C:/Users/Beth/Documents/Vend/Docs/SQL%20White%20papers/SSASPerfGuide2008_v1_(2).docx%23_Sparsity
file:///C:/Users/Beth/Documents/Vend/Docs/SQL%20White%20papers/SSASPerfGuide2008_v1_(2).docx%23_Sparsity
file:///C:/Users/Beth/Documents/Vend/Docs/SQL%20White%20papers/SSASPerfGuide2008_v1_(2).docx%23_Subspace_computation
http://cwebbbi.wordpress.com/2009/01/30/formula-caching-and-query-scope/
http://cwebbbi.wordpress.com/2008/10/28/reporting-services-generated-mdx-subselects-and-formula-caching/
http://www.codeplex.com/bidshelper/Wiki/View.aspx?title=Measure%20Group%20Health%20Check
http://sqlcat.com/technicalnotes/archive/2008/09/25/the-many-benefits-of-money-data-type.aspx
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the querying benefits that aggregations provide compared with the time it takes to create and refresh 

the aggregations. In fact, adding unnecessary aggregations can worsen query performance because the 

rare hits move the aggregation into the file cache at the cost of moving something else out.  

While aggregations are physically designed per measure group partition, the optimization techniques for 

maximizing aggregation design apply whether you have one or many partitions. In this section, unless 

otherwise stated, aggregations are discussed in the fundamental context of a cube with a single 

measure group and single partition. For more information about how you can improve query 

performance using multiple partitions, see Partition Strategy. 

3.4.1 Detecting Aggregation Hits 

Use SQL Server Profiler to view how and when aggregations are used to satisfy queries. Within 

SQL Server Profiler, there are several events that describe how a query is fulfilled. The event that 

specifically pertains to aggregation hits is the Get Data From Aggregation event.  

 

Figure : Scenario 1: SQL Server Profiler trace for cube with an aggregation hit 

This figure displays a SQL Server Profiler trace of the query’s resolution against a cube with aggregations. 

In the SQL Server Profiler trace, the operations that the storage engine performs to produce the result 

set are revealed. 

The storage engine gets data from Aggregation C 0000, 0001, 0000 as indicated by the Get Data From 

Aggregation event. In addition to the aggregation name, Aggregation C, Figure 10 displays a vector, 000, 

0001, 0000, that describes the content of the aggregation. More information on what this vector 

actually means is described in the next section, How to Interpret Aggregations. The aggregation data is 

loaded into the storage engine measure group cache from where the query processor retrieves it and 

returns the result set to the client.  

When no aggregations can satisfy the query request, notice the missing Get Data From Aggregation 

event from the same cube with no aggregations as noted in the following figure. 
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Figure : Scenario 2: SQL Server Profiler trace for cube with no aggregation hit 

After the query is submitted, rather than retrieving data from an aggregation, the storage engine goes to 

the detail data in the partition. From this point, the process is the same. The data is loaded into the 

storage engine measure group cache. 

3.4.2 How to Interpret Aggregations 

When Analysis Services creates an aggregation, each dimension is named by a vector, indicating 

whether the attribute points to the attribute or to the All level. The Attribute level is represented by 1 

and the All level is represented by 0. For example, consider the following examples of aggregation 

vectors for the product dimension:  

 Aggregation By ProductKey Attribute = [Product Key]:1 [Color]:0 [Subcategory]:0  [Category]:0 

or 1000 

 Aggregation By Category Attribute = [Product Key]:0 [Color]:0 [Subcategory]:0  [Category]:1 or 

0001 

 Aggregation By ProductKey.All and Color.All and Subcategory.All and Category.All = [Product 

Key]:0 [Color]:0 [Subcategory]:0  [Category]:0 or 0000 

To identify each aggregation, Analysis Services combines the dimension vectors into one long vector 

path, also called a subcube, with each dimension vector separated by commas.  

The order of the dimensions in the vector is determined by the order of the dimensions in the measure 

group. To find the order of dimensions in the measure group, use one of the following two techniques:  

1. With the cube opened in SQL Server Business Intelligence Development Studio, review the order 

of dimensions in a measure group on the Cube Structure tab. The order of dimensions in the 

cube is displayed in the Dimensions pane.  

2. As an alternative, review the order of dimensions listed in the cube’s XMLA definition.  

The order of attributes in the vector for each dimension is determined by the order of attributes in the 

dimension. You can identify the order of attributes in each dimension by reviewing the dimension XML 

file.  

For example, the subcube definition (0000, 0001, 0001) describes an aggregation for the following:  

 Product – All, All, All, All 
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 Customer – All, All, All, State/Province 

 Order Date – All, All, All, Year 

Understanding how to read these vectors is helpful when you review aggregation hits in SQL Server 

Profiler. In SQL Server Profiler, you can view how the vector maps to specific dimension attributes by 

enabling the Query Subcube Verbose event. In some cases (such as when attributes are disabled), it 

may be easier to view the Aggregation Design tab and use the Advanced View of the aggregations.  

3.4.3 Aggregation Tradeoffs 

Aggregations can improve query response time but they can increase processing time and disk storage 

space, use up memory that could be allocated to cache, and potentially slow the speed of other queries. 

The latter may occur because there is a direct correlation between the number of aggregations and the 

duration for the Analysis Services storage engine to parse them. As well, aggregations may cause 

thrashing due to their potential impact to the file system cache. A general rule of thumb is that 

aggregations should be less than 1/3 the size of the fact table. 

3.4.4 Building Aggregations 

Individual aggregations are organized into collections of aggregations called AggregationDesigns. You 

can apply an AggregationDesign to many partitions. As well, one measure group can have multiple 

AggregationDesigns so that you can choose different sets of aggregations for different partitions. To 

help Analysis Services successfully apply the AggregationDesign algorithm, you can perform the 

following optimization techniques to influence and enhance the AggregationDesign. In this section we 

will discuss the following: 

 The importance of attribute hierarchies 

 Aggregation design and partitions 

 Specifying statistics about cube data 

 Suggesting aggregation candidates 

 Usage-based optimization 

 Large cube aggregations 

 Distinct count partition aggregation considerations 

3.4.4.1 Importance of Attribute Hierarchies 

Aggregations work better when the cube is based on a multidimensional data model that includes 

natural hierarchies. While it is common in relational databases to have attributes independent of each 

other, multidimensional star schemas have attributes related to each other to create natural 

hierarchies. This is important because it allows aggregations built at a lower level of a natural hierarchy 

to be used when querying at a higher level.  

Note that attributes that are exposed only in attribute hierarchies are not automatically considered for 

aggregation by the Aggregation Design Wizard. Therefore, queries involving these attributes are 

satisfied by summarizing data from the primary key. Without the benefit of aggregations, query 

performance against these attributes hierarchies can be slow. To enhance performance, it is possible to 

flag an attribute as an aggregation candidate by using the Aggregation Usage property. For more 
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information about this technique, see Suggesting Aggregation Candidates. However, before you modify 

the Aggregation Usage property, you should consider whether you can take advantage of user 

hierarchies. 

3.4.4.2 Aggregation Design and Partitions 

When you define your partitions, they do not necessarily have to contain uniform datasets or 

aggregation designs. For example, for a given measure group, you may have 3 yearly partitions, 

11 monthly partitions, 3 weekly partitions, and 1–7 daily partitions. Heterogeneous partitions with 

different levels of detail allows you to more easily manage the loading of new data without disturbing 

existing, larger, and stale partitions (more on this in the processing section) and you can design 

aggregations for groups of partitions that share the same access pattern. For each partition, you can use 

a different aggregation design. By taking advantage of this flexibility, you can identify those data sets 

that require higher aggregation design.  

Consider the following example. In a cube with multiple monthly partitions, new data may flow into the 

single partition corresponding to the latest month. Generally that is also the partition most frequently 

queried. A common aggregation strategy in this case is to perform usage-based optimization to the most 

recent partition, leaving older, less frequently queried partitions as they are.  

If you automate partition creation, it is easy to simply set the AggregationDesignID for the new partition 

at creation time and specify the slice for the partition; now it is ready to be processed. At a later stage, 

you may choose to update the aggregation design for a partition when its usage pattern changes – 

again, you can just update the AggregationDesignID, but you will also need to invoke ProcessIndexes so 

that the new aggregation design takes effect for the processed partition.  

3.4.4.3 Specifying Statistics About Cube Data 

To make intelligent assessments of aggregation costs, the design algorithm analyzes statistics about the 

cube for each aggregation candidate. Examples of this metadata include member counts and fact table 

counts. Ensuring that your metadata is up-to-date can improve the effectiveness of your aggregation 

design. 

Whenever you use multiple partitions for a given measure group, ensure that you update the data 

statistics for each partition. More specifically, it is important to ensure that the partition data and 

member counts (such as EstimatedRows and EstimatedCount properties) accurately reflect the specific 

data in the partition and not the data across the entire measure group. 

3.4.4.4 Suggesting Aggregation Candidates  

When Analysis Services designs aggregations, the aggregation design algorithm does not automatically 

consider every attribute for aggregation. Consequently, in your cube design, verify the attributes that 

are considered for aggregation and determine whether you need to suggest additional aggregation 

candidates. To streamline this process, Analysis Services uses the Aggregation Usage property to 

determine which attributes it should consider. For every measure group, verify the attributes that are 
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automatically considered for aggregation and then determine whether you need to suggest additional 

aggregation candidates.  

Aggregation Usage Rules 

An aggregation candidate is an attribute that Analysis Services considers for potential aggregation. To 

determine whether or not a specific attribute is an aggregation candidate, the storage engine relies on 

the value of the Aggregation Usage property. The Aggregation Usage property is assigned a per-cube 

attribute, so it globally applies across all measure groups and partitions in the cube. For each attribute in 

a cube, the Aggregation Usage property can have one of four potential values: Full, None, Unrestricted, 

and Default. 

 Full— Every aggregation for the cube must include this attribute or a related attribute that is 

lower in the attribute chain. For example, you have a product dimension with the following 

chain of related attributes: Product, Product Subcategory, and Product Category. If you specify 

the Aggregation Usage for Product Category to be Full, Analysis Services may create an 

aggregation that includes Product Subcategory as opposed to Product Category, given that 

Product Subcategory is related to Category and can be used to derive Category totals.  

 None—No aggregation for the cube can include this attribute. 

 Unrestricted—No restrictions are placed on the aggregation designer; however, the attribute 

must still be evaluated to determine whether it is a valuable aggregation candidate. 

 Default—The designer applies a default rule based on the type of attribute and dimension. This 

is the default value of the Aggregation Usage property.  

The default rule is highly conservative about which attributes are considered for aggregation. The 

default rule is broken down into four constraints. 

 Default Constraint 1—Unrestricted - For a dimension’s measure group granularity attribute, 

default means Unrestricted. The granularity attribute is the same as the dimension’s key 

attribute as long as the measure group joins to a dimension using the primary key attribute.  

 Default Constraint 2—None for Special Dimension Types - For all attributes (except All) in 

many-to-many, nonmaterialized reference dimensions, and data mining dimensions, default 

means None. This means you can sometimes benefit from creating leaf level projections for 

many-to-many dimensions. Note, these defaults do not apply for parent-child dimensions; for 

more information, see the Special Considerations > Parent-Child dimensions section. 

 Default Constraint 3—Unrestricted for Natural Hierarchies - A natural hierarchy is a user 

hierarchy where all attributes participating in the hierarchy contain attribute relationships to the 

attribute sourcing the next level. For such attributes, default means Unrestricted, except for 

nonaggregatable attributes, which are set to Full (even if they are not in a user hierarchy). 

 Default Constraint 4—None For Everything Else. For all other dimension attributes, default 

means None.  
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Aggregation Usage Guidelines 

In light of the behavior of the Aggregation Usage property, use the following guidelines:  

 Attributes exposed solely as attribute hierarchies- If a given attribute is only exposed as an 

attribute hierarchy such as Color, you may want to change its Aggregation Usage property as 

follows. 

o First, change the value of the Aggregation Usage property from Default to Unrestricted 

if the attribute is a commonly used attribute or if there are special considerations for 

improving the performance in a particular pivot or drilldown. For example, if you have 

highly summarized scorecard style reports, you want to ensure that the users 

experience good initial query response time before drilling around into more detail.  

o While setting the Aggregation Usage property of a particular attribute hierarchy to 

Unrestricted is appropriate is some scenarios, do not set all attribute hierarchies to 

Unrestricted. Increasing the number of attributes to be considered increases the 

problem space the aggregation algorithm must consider. The wizard can take at least an 

hour to complete the design and considerably much more time to process. Set the 

property to Unrestricted only for the commonly queried attribute hierarchies. The 

general rule is five to ten Unrestricted attributes per dimension. 

o Next, change the value of the Aggregation Usage property from Default to Full in the 

unusual case that it is used in virtually every query you want to optimize. This is a rare 

case, and this change should be made only for attributes that have a relatively small 

number of members. 

 Infrequently used attributes—For attributes participating in natural hierarchies, you may want 

to change the Aggregation Usage property from Default to None if users would only 

infrequently use it. Using this approach can help you reduce the aggregation space and get to 

the five to ten Unrestricted attributes per dimension. For example, you may have certain 

attributes that are only used by a few advanced users who are willing to accept slightly slower 

performance. In this scenario, you are essentially forcing the aggregation design algorithm to 

spend time building only the aggregations that provide the most benefit to the majority of users.  

3.4.4.5 Usage-Based Optimization 

The Usage-Based Optimization Wizard reviews the queries in the query log (which you must set up 

beforehand) and designs aggregations that cover up to the top 100 slowest queries. Use the Usage-

Based Optimization Wizard with a 100% performance gain - this will design aggregations to avoid hitting 

the partition directly.  

After the aggregations are designed, you can add them to the existing design or completely replace the 

design. Be careful adding them to the existing design – the two designs may contain aggregations that 

serve almost identical purposes that when combined are redundant with one another. As well, 

aggregation designs have a costly metadata impact – don’t overdesign but try to keep the number of 

aggregation designs per measure group to a minimum. Inspect the new aggregations compared to the 
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old and ensure there are no near-duplicates. The aggregation design can be copied to other partitions in 

SQL Server Management Studio or Business Intelligence Design Studio. 

References: 

 Reintroducing Usage-Based Optimization in SQL Server 2008 Analysis Services 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2008/11/18/reintroducing-usage-based-

optimization-in-sql-server-2008-analysis-services.aspx) 

 Analysis Services 2005 Aggregation Design Strategy 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2007/09/11/analysis-services-2005-

aggregation-design-strategy.aspx) 

 Microsoft SQL Server Community Samples: Analysis Services 

(http://sqlsrvanalysissrvcs.codeplex.com/): This CodePlex project contains many useful Analysis 

Services CodePlex samples, including the Aggregation Manager 

3.4.4.6 Large Cube Aggregation Considerations 

It is important to note that small cubes may not need aggregations, because aggregations are not even 

built for partitions with fewer records than the IndexBuildThreshold (which has a default value of 4096). 

Even if the cube partitions exceed the IndexBuildThreshold, aggregations that are correctly designed for 

smaller cubes may not be the correct ones for large cubes. 

However, as cubes become larger, it becomes more important to design aggregations and to do so 

correctly. As a general rule of thumb, MOLAP performance is approximately between 10 and 40 million 

rows per second per core, plus the I/O for aggregating data. 

It is important to note that larger cubes have more constraints such as small processing windows and/or 

not enough disk space. Therefore it may be difficult to create all of your desired aggregations. The result 

is a tradeoff in designing aggregations to be considered more carefully. 

3.5 Cache Warming 

Cache warming can be a last-ditch effort for improving the performance of a query. The following 

sections describe guidelines and implementation strategies for cache warming. 

3.5.1 Cache Warming Guidelines 

During querying, memory is primarily used to store cached results in the storage engine and query 

processor caches. To optimize the benefits of caching, you can often increase query responsiveness by 

preloading data into one or both of these caches. This can be done by either pre-executing one or more 

queries or using the CREATE CACHE statement (which returns no cellsets and has the advantage of 

executing faster because it bypasses the query processor). This process is called cache warming. 

When possible, Analysis Services returns results from the Analysis Services data cache without using 

aggregations (because it is the fastest way to get data). With smaller cubes there may be enough 

memory to keep a large portion of the data in the cache. In this case, aggregations are not needed and 

http://sqlcat.com/technicalnotes/archive/2008/11/18/reintroducing-usage-based-optimization-in-sql-server-2008-analysis-services.aspx
http://sqlcat.com/technicalnotes/archive/2007/09/11/analysis-services-2005-aggregation-design-strategy.aspx
http://sqlsrvanalysissrvcs.codeplex.com/
http://sqlcat.com/technicalnotes/archive/2007/09/11/how-to-warm-up-the-analysis-services-data-cache-using-create-cache-statement.aspx
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existing aggregations may never be used. In this scenario, cache warming can be used so that users will 

always have excellent performance. 

But with larger cubes, there may be insufficient memory to keep enough of the data in cache. For that 

matter, cached results can be pushed out by other query results. Hence, cache warming will only help a 

portion of the queries—it is important to create well-designed aggregations to provide solid query 

performance. But because of the memory bottlenecks, it is important to note that too many 

aggregations may thrash the cache as different data resultsets and aggregations are requested and 

swapped from the cache. 

3.5.2 Implementing a Cache Warming Strategy 

While cache warming can improve the performance of a query, you should note that there is a 

significant difference between the performance of the query on a cold cache and a warm cache. As well, 

it is important to ensure there is enough memory available so that the cache is not being thrashed. 

To warm the cache, it is important to remember that the Analysis Services formula engine can only be 

warmed by MDX queries. To warm the storage engine caches, you can use the WITH CACHE or CREATE 

CACHE statements: 

 To discover what needs to be cached (which can be difficult at times), use SQL Server Profiler to 

trace the query execution and examine the subcube events. 

 Finding many subcube requests to the same grain may indicate that the query processor is 

making many requests for slightly different data, resulting in the storage engine making many 

small but time-consuming I/O requests where it could more efficiently retrieve the data en 

masse and then return results from cache. 

 To pre-execute queries, create an application (or use something like ascmd) that executes a set 

of generalized queries to simulate typical user activity in order to expedite the process of 

populating the cache. Execute these queries post-Analysis Services startup or post-processing to 

preload the cache prior to user queries. 

To determine how to generalize your queries, you can potentially refer to the Analysis Services 

query log to determine the dimension attributes typically queried. Be careful when you 

generalize because you may include attributes or subcubes that are not beneficial and 

unnecessarily take up cache. 

 When testing the effectiveness of different cache-warming queries, you should empty the query 

results cache between each test to ensure the validity of your testing. 

 Because cached results can be pushed out by other query results, it may be necessary to 

schedule refreshes of the cache results. Also, limit cache warming to what can fit in memory, 

leaving enough for other queries to be cached.  

References: 
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 How to warm up the Analysis Services data cache using Create Cache statement? 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2007/09/11/how-to-warm-up-the-analysis-

services-data-cache-using-create-cache-statement.aspx) 

3.6 Scale-Out 

If you have many concurrent users querying your Analysis Services cubes, a potential query performance 

solution is to scale out your Analysis Services query servers. There are different forms of scale-out, 

which are discussed in the Analysis Services 2008 R2 Operations Guide, but the basic principle is that 

you have multiple query servers aimed at the same database (or the database is replicated) so there are 

multiple servers to address user queries. This can be beneficial in the cases like the following: 

 In cases where your server is under memory pressure due to concurrency, scaling out allows you 

to distribute the query load to multiple servers, thus alleviating memory bottlenecks on a single 

server. Memory pressure can be caused by many issues, including (but not limited to): 

o Users executing many different unique queries thus filling up and thrashing available 

cache. 

o Complex or large queries requiring large subcubes thus requiring a large memory space. 

o Too many concurrent users accessing the same server.  

 You have many long running queries against your Analysis Services cube, which will:  

o Block other queries.  

o Block processing commits. 

In this case, scaling out the long-running queries to separate servers can help alleviate 

contention problems. 

References: 

 SQL Server 2008 R2 Analysis Services Operations Guide 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-

services-operations-guide.aspx) 

 Scale-Out Querying for Analysis Services with Read-Only Databases 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2010/06/08/scale-out-querying-for-analysis-

services-with-read-only-databases.aspx) 

 Scale-Out Querying with Analysis Services 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2007/12/16/scale-out-querying-with-analysis-

services.aspx) 

 Scale-Out Querying with Analysis Services Using SAN Snapshots 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2007/11/19/scale-out-querying-with-analysis-

services-using-san-snapshots.aspx) 

http://sqlcat.com/technicalnotes/archive/2007/09/11/how-to-warm-up-the-analysis-services-data-cache-using-create-cache-statement.aspx
http://sqlcat.com/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-services-operations-guide.aspx
http://sqlcat.com/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-services-operations-guide.aspx
http://sqlcat.com/whitepapers/archive/2010/06/08/scale-out-querying-for-analysis-services-with-read-only-databases.aspx
http://sqlcat.com/whitepapers/archive/2007/12/16/scale-out-querying-with-analysis-services.aspx
http://sqlcat.com/whitepapers/archive/2007/11/19/scale-out-querying-with-analysis-services-using-san-snapshots.aspx
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4 Tuning Processing Performance 
In the following sections we will provide guidance on tuning cube processing. Processing is the operation 

that loads data from one or more data sources into one or more Analysis Services objects. Although 

OLAP systems are not generally judged by how fast they process data, processing performance impacts 

how quickly new data is available for querying. Every application has different data refresh 

requirements, ranging from monthly updates to near real-time data refreshes; however, in all cases, the 

faster the processing performance, the sooner users can query refreshed data.  

Analysis Services provides several processing commands, allowing granular control over the data loading 

and refresh frequency of cubes. 

To manage processing operations, Analysis Services uses centrally controlled jobs. A processing job is a 

generic unit of work generated by a processing request.  

From an architectural perspective, a job can be broken down into parent jobs and child jobs. For a given 

object, you can have multiple levels of nested jobs depending on where the object is located in the OLAP 

database hierarchy. The number and type of parent and child jobs depend on 1) the object that you are 

processing, such as a dimension, cube, measure group, or partition, and 2) the processing operation that 

you are requesting, such as ProcessFull, ProcessUpdate, or ProcessIndexes.  

For example, when you issue a ProcessFull operation for a measure group, a parent job is created for 

the measure group with child jobs created for each partition. For each partition, a series of child jobs are 

spawned to carry out the ProcessFull operation of the fact data and aggregations. In addition, Analysis 

Services implements dependencies between jobs. For example, cube jobs are dependent on dimension 

jobs.  

The most significant opportunities to tune performance involve the processing jobs for the core 

processing objects: dimensions and partitions. Each of these has its own section in this guide. 

References: 

 Additional background information on processing can be found in the technical note Analysis 

Services 2005 Processing Architecture (http://msdn.microsoft.com/en-

us/library/ms345142(SQL.90).aspx). 

4.1 Baselining Processing 

To quantify the effects of your tuning and diagnose problems, you should first create a baseline. The 

baseline allows you to analyze root causes and to target optimization effort. 

This section describes how to set up the baseline. 

4.1.1 Performance Monitor Trace 

Windows performance counters are the bread and butter of performance tuning Analysis Services. Use 

the tool perfmon to set up a trace with these counters: 

http://msdn.microsoft.com/en-us/library/ms345142(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms345142(SQL.90).aspx
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 MSOLAP: Processing  

o Rows read/sec 

 MSOLAP: Proc Aggregations  

o Temp File Bytes Writes/sec 

o Rows created/Sec 

o Current Partitions 

 MSOLAP: Threads 

o Processing pool idle threads 

o Processing pool job queue length 

o Processing pool busy threads 

 MSSQL: Memory Manager 

o Total Server Memory 

o Target Server Memory 

 Process  

o Virtual Bytes – msmdsrv.exe 

o Working Set – msmdsrv.exe 

o Private Bytes – msmdsrv.exe 

o % Processor Time – msmdsrv.exe and sqlservr.exe 

 MSOLAP: Memory 

o Quote Blocked 

 Logical Disk:  

o Avg. Disk sec/Transfer – All Instances 

 Processor:  

o % Processor Time – Total 

 System: 

o Context Switches / sec 

Configure the trace to save data to a file. Measuring every 15 seconds will be sufficient for tuning 

processing. 

As you tune processing, you should measure these counters again after each change to see whether you 

are getting closer to your performance goal. Also note the total time used by processing. The following 

sections explain how to use and interpret the individual counters. 

4.1.2 Profiler Trace 

To optimize the SQL queries that form part of processing, you should trace the relational database too. If 

the relational database is SQL Server, you use SQL Server Profiler for this. If you are not using SQL 

Server, consult your database vendor or DBA for help on tuning the database. In the following we will 

assume that you use SQL Server as the relational foundation for Analysis Services. For users of other 

databases, the knowledge here will most likely transfer cleanly to your platform. 

In your SQL Server Profiler trace you should also capture the events:  
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 Performance/Showplan XML Statistics Profile  

 TSQL/SQL:BatchCompleted 

Include these event columns: 

 TextData 

 Reads 

 DatabaseName 

 SPID 

 Duration 

You can use the Tuning template and just add the Reads column and Showplan XML Statistics Profiles. 

Like the perfmon trace, configure the trace to save to a file for later analysis. 

Configure your SQL Server Profiler trace to log to a table instead of a file. This makes it easier to 

correlate the traces later. 

The performance data gathered by these traces will be used in the following section to help you tune 

processing. 

4.1.3 Determining Where You Spend Processing Time 

To properly target the tuning of processing, you should first determine where you are spending your 

time: partition processing or dimension processing.  

To assist with tuning and future monitoring, it is useful to split the dimension processing and partition 

processing into two different commands in the processing, to tune each individually.  

For partition processing, you should distinguish between ProcessData and ProcessIndex—the tuning 

techniques for each are very different. If you follow our recommended best practice of doing 

ProcessData followed by ProcessIndex instead of ProcessFull, the time spent in each should be easy to 

read. 

If you use ProcessFull instead of splitting into ProcessData and ProcessIndex, you can get an idea of 

when each phase ends by observing the following perfmon counters: 

 During ProcessData the counter MSOLAP:Processing – Rows read/Sec is greater than zero. 

 During ProcessIndex the counter MSOLAP:Proc Aggregations – Row created/Sec is greater than 

zero. 

ProcessData can be further split into the time spent by the SQL Server process and the time spent by the 

Analysis Services process. You can use the Process counters collected to see where most of the CPU 

time is spent. The following diagram provides an overview of the operations included in a full cube 

processing. 
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Figure : Full cube processing overview 

4.2 Tuning Dimension Processing  

The performance goal of dimension processing is to refresh dimension data in an efficient manner that 

does not negatively impact the query performance of dependent partitions. The following techniques 

for accomplishing this goal are discussed in this section:  

 Reducing attribute overhead. 

 Optimizing SQL source queries.  

To provide a mental model of the workload, we will first introduce the dimension processing 

architecture. 

4.2.1 Dimension Processing Architecture 

During the processing of MOLAP dimensions, jobs are used to extract, index, and persist data in a series 

of dimension stores.  

To create these dimension stores, the storage engine uses the series of jobs displayed in the following 

diagram.  
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Figure : Dimension processing jobs 

Build Attribute Stores - For each attribute in a dimension, a job is instantiated to extract and persist the 

attribute members into an attribute store. The attribute store consists of the key store, name store, and 

relationship store. The data structures build during dimension processing are saved to disk with the 

following extensions: 

 Hierarchy stores: *.ostore, *.sstore and *.lstore 

 Key store: *.kstore, *.khstore and *.ksstore 

 Name Store: *.asstore, *.ahstore and *.hstore  

 Relationship store: *.data and *.data.hdr 

 Decoding Stores: *.dstore 

 Bitmap indexes: *.map and *.map.hdr 

Because the relationship stores contain information about dependent attributes, an ordering of the 

processing jobs is required. To provide the correct workflow, the storage engine analyzes the 

dependencies between attributes, and then it creates an execution tree with the correct ordering. The 

execution tree is then used to determine the best parallel execution of the dimension processing. 

Figure : 20 displays an example execution tree for a Time dimension. The solid arrows represent the 

attribute relationships in the dimension. The dashed arrows represent the implicit relationship of each 

attribute to the All attribute.  

Note: The dimension has been configured using cascading attribute relationships, which is a best 

practice for all dimension designs.  
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Figure : Execution tree example 

In this example, the All attribute proceeds first, given that it has no dependencies to another attribute, 

followed by the Fiscal Year and Calendar Year attributes, which can be processed in parallel. The other 

attributes proceed according to the dependencies in the execution tree, with the key attribute always 

being processed last, because it always has at least one attribute relationship, except when it is the only 

attribute in the dimension.  

The time taken to process an attribute is generally dependent on 1) the number of members and 2) the 

number of attribute relationships. While you cannot control the number of members for a given 

attribute, you can improve processing performance by using cascading attribute relationships. This is 

especially critical for the key attribute, because it has the most members and all other jobs (hierarchy, 

decoding, bitmap indexes) are waiting for it to complete. Attribute relationships lower the memory 

requirement during processing. When an attribute is processed, all dependent attributes must be kept 

in memory. If you have no attribute relationships, all attributes must kept in memory while the key 

attribute is processed. This may cause out-of-memory conditions.  

Build Decoding Stores - Decoding stores are used extensively by the storage engine. During querying, 

they are used to retrieve data from the dimension. During processing, they are used to build the 

dimension’s bitmap indexes. 

Build Hierarchy Stores - A hierarchy store is a persistent representation of the tree structure. For each 

natural hierarchy in the dimension, a job is instantiated to create the hierarchy stores.  

Build Bitmap Indexes - To efficiently locate attribute data in the relationship store at querying time, the 

storage engine creates bitmap indexes at processing time. For attributes with a very large number of 

members, the bitmap indexes can take some time to process. In most scenarios, the bitmap indexes 

provide significant querying benefits; however, when you have high-cardinality attributes, the querying 
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benefit that the bitmap index provides may not outweigh the processing cost of creating the bitmap 

index.  

4.2.2 Dimension-Processing Commands 

When you need to perform a process operation on a dimension, you issue dimension processing 

commands. Each processing command creates one or more jobs to perform the necessary operations.  

From a performance perspective, the following dimension processing commands are the most 

important:  

 ProcessData 

 ProcessFull 

 ProcessUpdate 

 ProcessAdd 

The ProcessFull and ProcessData commands discard all storage contents of the dimension and rebuild 

them. Behind the scenes, ProcessFull executes all dimension processing jobs and performs an implicit 

ProcessClear on all dependent partitions. This means that whenever you perform a ProcessFull 

operation of a dimension, you need to perform a ProcessFull operation on dependent partitions to bring 

the cube back online. ProcessFull also builds indexes on the dimension data itself (note that indexes on 

the partitions are built separately). If you do ProcessData on a dimension, you should do ProcessIndexes 

subsequently so that dimension queries are able to use these indexes.  

Unlike ProcessFull, ProcessUpdate does not discard the dimension storage contents. Instead, it applies 

updates intelligently in order to preserve dependent partitions. More specifically, ProcessUpdate sends 

SQL queries to read the entire dimension table and then applies changes to the dimension stores.  

ProcessAdd optimizes ProcessUpdate in scenarios where you only need to insert new members. 

ProcessAdd does not delete or update existing members. The performance benefit of ProcessAdd is that 

you can use a different source table or data source view named query that restrict the rows of the 

source dimension table to only return the new rows. This eliminates the need to read all of the source 

data. In addition, ProcessAdd also retains all indexes and aggregations (flexible and rigid).  

ProcessUpdate and ProcessAdd have some special behaviors that you should be aware of. These 

behaviors are discussed in the following sections. 

4.2.2.1 ProcessUpdate 

A ProcessUpdate can handle inserts, updates, and deletions, depending on the type of attribute 

relationships (rigid versus flexible) in the dimension. Note that ProcessUpdate drops invalid 

aggregations and indexes, requiring you to take action to rebuild the aggregations in order to maintain 

query performance. However, flexible aggregations are dropped only if a change is detected. 

When ProcessUpdate runs, it must walk through the partitions that depend on the dimension. For each 

partition, all indexes and aggregation must be checked to see whether they require updating. On a cube 
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with many partitions, indexes, and aggregates, this can take a very long time. Because this dependency 

walk is expensive, ProcessUpdate is often the most expensive of all processing operations on a well-

tuned system, dwarfing even large partition processing commands.  

4.2.2.2 ProcessAdd 

Note that ProcessAdd is only available as an XMLA command and not from SQL Server Management 

Studio. ProcessAdd is the preferred way of managing Type 2 changing dimensions. Because Analysis 

Services knows that existing indexes do not need to be checked for invalidation, ProcessAdd typically 

runs much faster than ProcessUpdate. 

In the default configuration of Analysis Services, ProcessAdd typically triggers a processing error when 

run, reporting duplicate key values. This is caused by the “addition” of non-key properties that already 

exist in the dimension. For example, consider the addition of a new customer to a dimension. If the 

customer lives in a country that is already present in the dimension, this country cannot be added (it is 

already there) and Analysis Services throws an error. The solution in this case is to set the 

<KeyDuplicate> to IgnoreError on the dimension processing command. 

Note that you cannot run a ProcessAdd on an empty dimension. The dimension must first be fully 

processed. 

References: 

 For detailed information about automating ProcessAdd, see Greg Galloway’s blog entry: 

http://www.artisconsulting.com/blogs/greggalloway/Lists/Posts/Post.aspx?ID=4 

 For information about how to avoid set the KeyDuplicate, see this forum thread: 

http://social.msdn.microsoft.com/Forums/en-US/sqlanalysisservices/thread/8e7f1304-56a1-

467e-9cc6-68428bd92aa6?prof=required 

4.3 Tuning Cube Dimension Processing  

In section 2, we described how to create a good and high-performance dimension design. In SQL Server 

2008 and SQL Server 2008 R2 Analysis Services, the Analysis Management Objects (AMO) warnings are 

provided by Business Intelligence Development Studio to assist you with following these best practices. 

When it comes to dimension processing, you must pay a price for having many attributes. If the 

processing time for the dimension is restrictive, you most likely have to change the attribute to design in 

order to improve performance. 

4.3.1 Reduce Attribute Overhead 

Every attribute that you include in a dimension impacts the cube size, the dimension size, the 

aggregation design, and processing performance. Whenever you identify an attribute that will not be 

used by end users, delete the attribute entirely from your dimension. After you have removed 

extraneous attributes, you can apply a series of techniques to optimize the processing of remaining 

attributes.  

http://www.artisconsulting.com/blogs/greggalloway/Lists/Posts/Post.aspx?ID=4
http://social.msdn.microsoft.com/Forums/en-US/sqlanalysisservices/thread/8e7f1304-56a1-467e-9cc6-68428bd92aa6?prof=required
http://social.msdn.microsoft.com/Forums/en-US/sqlanalysisservices/thread/8e7f1304-56a1-467e-9cc6-68428bd92aa6?prof=required
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4.3.1.1 Remove Bitmap Indexes 

During processing of the primary key attribute, bitmap indexes are created for every related attribute. 

Building the bitmap indexes for the primary key can take time if it has one or more related attributes 

with high cardinality. At query time, the bitmap indexes for these attributes are not useful in speeding 

up retrieval, because the storage engine still must sift through a large number of distinct values. This 

may have a negative impact on query response times.  

For example, the primary key of the customer dimension uniquely identifies each customer by account 

number; however, users also want to slice and dice data by the customer’s social security number. Each 

customer account number has a one-to-one relationship with a customer social security number. You 

can consider removing the creation of bitmaps for the social security number. 

You can also consider removing bitmap indexes from attributes that are always queried together with 

other attributes that already have bitmap indexes that are highly selective. If the other attributes have 

sufficient selectivity, adding another bitmap index to filter the segments will not yield a great benefit.  

For example, you are creating a sales fact and users always query both date and store dimensions. 

Sometimes a filter is also applied by the store clerk dimension, but because you have already filtered 

down to stores, adding a bitmap on the store clerk may only yield a trivial benefit. In this case, you can 

consider disabling bitmap indexes on store clerk attributes. 

You can disable the creation of bitmap indexes for an attribute by setting the 

AttributeHierarchyOptimizedState property to Not Optimized.  

4.3.1.2 Optimize Attribute Processing Across Multiple Data Sources 

When a dimension comes from multiple data sources, using cascading attribute relationships allows the 

system to segment attributes during processing according to data source. If an attribute’s key, name, 

and attribute relationships come from the same database, the system can optimize the SQL query for 

that attribute by querying only one database. Without cascading attribute relationships, the SQL Server 

OPENROWSET function, which provides a method for accessing data from multiple sources, is used to 

merge the data streams. In this situation, the processing for the attribute is extremely slow, because it 

must access multiple OPENROWSET derived tables. 

If you have the option, consider performing ETL to bring all data needed for the dimension into the same 

SQL Server database. This allows you to utilize the Relational Engine to tune the query. 

4.3.2 Tuning the Relational Dimension Processing Queries 

Unlike fact partitions, which only send one query to the server per partition, dimension process 

operations send multiple queries. Dimensions tend to be small, complex tables with very few changes, 

compared to facts that are typically simpler tables, but with many changes. Tables that have the 

characteristics of dimensions can often be heavily indexed with little insert/update performance 

overhead to the system. You can use this to your advantage during processing and be wasteful with the 

relational indexes. 
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To quickly tune the relational queries used for dimension processing you can use the Database Engine 

Tuning Advisor on a profiler trace of the dimension processing. For the small dimension tables, chances 

are that you can get away with adding every suggested index. For the larger tables, target the indexes 

towards the longest-running queries. For detailed tuning advice on large dimension tables, see The SQL 

Server 2008 R2 Analysis Services Operations Guide. 

4.3.2.1 Using ByTable Processing 

By setting the ProcessingGroup property of the dimension to be ByTable you will change how Analysis 

Services behaves during dimension processing. Instead of sending multiple SELECT DISTINCT queries, the 

processing task instead requests the entire table with one query. If you have enough memory to hold all 

the new dimension data while processing is happening, this option can provide a fast way to optimize 

processing. However, you should be careful about this setting – if Analysis Services runs out of memory 

during processing, this will have a large impact on both query and processing performance. Experiment 

with this setting carefully before putting it into production. 

Note also that ByTable processing will cause duplicate key (KeyDuplicate) errors because SELECT 

DISTINCT is not executed for each attribute, and the same members will be encountered repeatedly 

during processing. Therefore, you will need to specify a custom error configuration and disable the 

KeyDuplicate errors. 

4.4 Tuning Partition Processing  

The performance goal of partition processing is to refresh fact data and aggregations in an efficient 

manner that satisfies your overall data refresh requirements.  

The following techniques for accomplishing this goal are discussed in this section: optimizing SQL source 

queries and using a partitioning strategy (both in the cube and the relational database) to optimize 

processing. For detailed guidance on server tuning, hardware optimization and relational indexing, see 

the SQL Server 2008 R2 Operations Guide. 

4.4.1 Partition Processing Architecture 

During partition processing, source data is extracted and stored on disk using the series of jobs displayed 

In Figure 33. 

 

Figure : Partition processing jobs 

Process Fact Data - Fact data is processed using three concurrent threads that perform the following 

tasks: 
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 Send SQL statements to extract data from data sources. 

 Look up dimension keys in dimension stores and populate the processing buffer. 

 When the processing buffer is full, write out the buffer to disk.  

Build Aggregations and Bitmap Indexes - Aggregations are built in memory during processing. Although 

too few aggregations may have little impact on query performance, excessive aggregations can increase 

processing time without much added value on query performance.  

If aggregations do not fit in memory, chunks are written to temp files and merged at the end of the 

process. Bitmap indexes are also built during this phase and written to disk on a segment-by-segment 

basis. 

4.4.2 Partition-Processing Commands 

When you need to perform a process operation on a partition, you issue partition processing 

commands. Each processing command creates one or more jobs to perform the necessary operations.  

The following partition processing commands are available:  

 ProcessFull 

 ProcessData 

 ProcessIndexes 

 ProcessAdd 

 ProcessClear 

 ProcessClearIndexes 

ProcessFull discards the storage contents of the partition and then rebuilds them. Behind the scenes, 

ProcessFull executes ProcessData and ProcessIndexes jobs. 

ProcessData discards the storage contents of the object and rebuilds only the fact data.  

ProcessIndexes requires a partition to have built its data already. ProcessIndexes preserves the data 

created during ProcessData and creates new aggregations and bitmap indexes based on it.  

ProcessAdd internally creates a temporary partition, processes it with the target fact data, and then 

merges it with the existing partition. Note that ProcessAdd is the name of the XMLA command, in 

Business Intelligence Development Studio and SQL Server Management Studio this is exposed as 

ProcessIncremental.  

ProcessClear removes all data from the partition. Note the ProcessClear is the name of the XMLA 

command. In Business Intelligence Development Studio and SQL Server Management Studio, it is 

exposed as UnProcess. 

ProcessClearIndexes removes all indexes and aggregates from the partition. This brings the partitions in 

the same state as if ProcessClear followed by ProcessData had just been run. Note that 
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ProcessClearIndexes is the name of the XMLA command. This command is not available in Business 

Intelligence Development Studio and SQL Server Management Studio.  

4.4.3 Partition Processing Performance Best Practices 

When designing your fact tables, use the guidance in the following technical notes: 

 Top 10 Best Practices for Building a Large Scale Relational Data Warehouse 

(http://sqlcat.com/sqlcat/b/top10lists/archive/2008/02/06/top-10-best-practices-for-building-

a-large-scale-relational-data-warehouse.aspx) 

 Analysis Services Processing Best Practices 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2007/11/15/analysis-services-processing-best-

practices.aspx) 

4.4.4 Optimizing Data Inserts, Updates, and Deletes 

This section provides guidance on how to efficiently refresh partition data to handle inserts, updates, 

and deletes.  

4.4.4.1 Inserts 

If you have a browsable, processed cube and you need to add new data to an existing measure group 

partition, you can apply one of the following techniques: 

 ProcessFull—Perform a ProcessFull operation for the existing partition. During the ProcessFull 

operation, the cube remains available for browsing with the existing data while a separate set of 

data files are created to contain the new data. When the processing is complete, the new 

partition data is available for browsing. Note that ProcessFull is technically not necessary, given 

that you are only doing inserts. To optimize processing for insert operations, you can use 

ProcessAdd. 

 ProcessAdd—Use this operation to append data to the existing partition files. If you frequently 

perform ProcessAdd, we recommend that you periodically perform ProcessFull in order to 

rebuild and recompress the partition data files. ProcessAdd internally creates a temporary 

partition and merges it. This results in data fragmentation over time and the need to periodically 

perform ProcessFull. 

If your measure group contains multiple partitions, as described in the previous section, a more effective 

approach is to create a new partition that contains the new data and then perform ProcessFull on that 

partition. This technique allows you to add new data without impacting the existing partitions. When 

the new partition has completed processing, it is available for querying. 

4.4.4.2 Updates 

When you need to perform data updates, you can perform a ProcessFull. Of course it is useful if you can 

target the updates to a specific partition so you only have to process a single partition. Rather than 

directly updating fact data, a better practice is to use a journaling mechanism to implement data 

changes. In this scenario, you turn an update into an insertion that corrects that existing data. With this 

http://sqlcat.com/top10lists/archive/2008/02/06/top-10-best-practices-for-building-a-large-scale-relational-data-warehouse.aspx
http://sqlcat.com/whitepapers/archive/2007/11/15/analysis-services-processing-best-practices.aspx
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approach, you can simply continue to add new data to the partition by using a ProcessAdd. By using 

journaling, you also have an audit trail of the changes that have been made to the fact table.  

4.4.4.3 Deletes 

For deletions, multiple partitions provide a great mechanism for you to roll out expired data. Consider 

the following example. You currently have 13 months of data in a measure group, 1 month per partition. 

You want to roll out the oldest month from the cube. To do this, you can simply delete the partition 

without affecting any of the other partitions.  

If there are any old dimension members that only appeared in the expired month, you can remove these 

using a ProcessUpdate operation on the dimension (but only if it contains flexible relationships). In 

order to delete members from the key/granularity attribute of a dimension, you must set the 

dimension’s UnknownMember property to Hidden. This is because the server does not know if there is 

a fact record assigned to the deleted member. With this property set appropriately, the member will be 

hidden at query time. Another option is to remove the data from the underlying table and perform a 

ProcessFull operation. However, this may take longer than ProcessUpdate. 

As your dimension grows larger, you may want to perform a ProcessFull operation on the dimension to 

completely remove deleted keys. However, if you do this, all related partitions must also be 

reprocessed. This may require a large batch window and is not viable for all scenarios.  

4.4.5 Picking Efficient Data Types in Fact Tables 

During processing, data has to be moved out of SQL Server and into Analysis Services. The wider your 

rows are, the more bandwidth must be spent moving the rows.  

Some data types are, by the nature of their design, faster to use than others. For fastest performance, 

consider using only these data types in fact tables. 

Fact column type Fastest SQL Server data types 

Surrogate keys tinyint, smallint, int, bigint 

Date key int in the format yyyyMMdd 

Integer measures tinyint, smallint, int, bigint  

Numeric measures smallmoney, money, real, float 
(Note that decimal and vardecimal require more 
CPU power to process than money and float types) 

Distinct count columns tinyint, smallint, int, bigint  
(If your count column is char, consider either 
hashing or replacing with surrogate key) 

 

4.4.6 Tuning the Relational Partition Processing Query 

During the ProcessData phase, rows are read from a relational source and into Analysis Services. 

Analysis Services can consume rows at a very high rate during this phase. To achieve these high speeds, 

you need to tune the relational database to provide a proper throughput.  
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In the following subsection, we assume that your relational source is SQL Server. If you are using 

another relational source, some of the advice still applies – consult your database specialist for platform 

specific guidance. 

Analysis Services uses the partition information to generate the query. Unless you have done any query 

binding in the UDM, the SELECT statement issues to the relational source is very simple. It consists of: 

 A SELECT of the columns required to process. This will be the dimension columns and the 

measures. 

 Optionally, a WHERE criterion if you use partitions. You can control this WHERE criterion by 

changing the query binding of the partition. 

4.4.6.1 Getting Rid of Joins 

If you are using a database view or a UDM named query as the basis of partitions, you should seek to 

eliminate joins in the query send to the database. You can achieve this by denormalizing the joined 

columns to the fact table. If you are using a star schema design, you should already have done this. 

References 

• For background on relational star schemas and how to design and denormalize for optimal 

performance, refer to: Ralph Kimball, The Data Warehouse Toolkit. 

4.4.6.2 Getting Relational Partitioning Right 

If you use partitioning on the relational side, you should ensure that each cube partition touches at most 

one relational partition. To check this, use the XML Showplan event from your SQL Server Profiler trace.  

If you got rid of all joins, your query plan should look something like the following figure. 

 

Figure : An optimal partition processing query 

Click on the table scan (it may also be a range scan or index seek in your case) and bring up the 

properties pane. 
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Figure : Too many partitions accessed  

Both partition 4 and partition 5 are accessed. The value for Actual Partition Count should be 1. If this is 

not the case (as in the figure), you should consider repartitioning the relational source data so that each 

cube partition touches at most one relational partition. 

4.4.7 Splitting Processing Index and Process Data 

It is good practice to split partition processing into its components: ProcessData and ProcessIndex. This 

has several advantages.  

First, it allows you to restart a failed processing at the last valid state. For example, if you fail processing 

during ProcessIndex, you can restart this phase instead of reverting to running ProcessData again. 

Second, ProcessData and ProcessIndex have different performance characteristics. Typically, you want 

to have more parallel commands executing during ProcessData than you want during ProcessIndex. By 

splitting them into two different commands, you can override parallelism on the individual commands. 

Of course, if you don’t want to micromanage partition processing, you may just opt for running a 

ProcessFull on the measure group. For small cubes where performance is not a concern, this will work 

well. 

4.4.8 Increasing Concurrency by Adding More Partitions 

If your tuning is bound only by the amount of CPU power you have (as opposed to I/O, for example), you 

should optimize to make the best use of the CPU cores available to you. It is time to have a look at the 

Processor:Total counter from the baseline trace. If this counter is not 100%, you are not taking full 

advantage of your CPU power. As you continue the tuning, keep comparing the baselines to measure 

improvement, and watch out for bottlenecks to appear again as you push more data through the 

system. 

Using multiple partitions can enhance processing performance. Partitions allow you to work on many, 

smaller parts of the fact table in parallel. Because a single connection to SQL Server can only transfer a 

limited amount of rows per second, adding more partitions, and hence, more connections, can increase 

throughput. How many partitions you can process in parallel depends on your CPU and machine 

architecture. As a rule of thumb, keep increasing parallelism until you no longer see an increase in 

MSOLAP:Processing – Rows read/Sec. You can measure the amount of concurrent partitions you are 

processing by looking at the perfmon counter MSOLAP: Proc Aggregations - Current Partitions. 
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Being able to process multiple partitions in parallel is useful in a variety of scenarios; however, there are 

a few guidelines that you must follow. Keep in mind that whenever you process a measure group that 

has no processed partitions, Analysis Services must initialize the cube structure for that measure group. 

To do this, it takes an exclusive lock that prevents parallel processing of partitions. You should eliminate 

this lock before you start the full parallel process on the system. To remove the initialization lock, ensure 

that you have at least one processed partition per measure group before you begin the parallel 

operation. If you do not have a processed partition, you can perform a ProcessStructure on the cube to 

build its initial structure and then proceed to process measure group partitions in parallel. You will not 

encounter this limitation if you process partitions in the same client session and use the MaxParallel 

XMLA element to control the level of parallelism. 

4.4.9 Adjusting Maximum Number of Connections 

When you increase parallelism of the processing above 10 concurrent partitions, you will need to adjust 

the maximum number of connections that Analysis Services keeps open on the database. This number 

can be changed in the properties of the data source (the Maximum number of connections box). 

 

Figure : Adding more database connections 

Set this number to at least the number of partitions you want to process in parallel. 

4.4.10 Tuning the Process Index Phase 

During the ProcessIndex phase the aggregations in the cube are built. At this point, no more activity 

happens in the Relational Engine, and if Analysis Services and the Relational Engine are sharing the same 

box, you can dedicate all your CPU cores to Analysis Services. 
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The key figure you optimize during ProcessIndex is the performance counter MSOLAP:Proc 

Aggregations – Row created/Sec. As the counter increases, the ProcessIndex time decreases. You can 

use this counter to check if your tuning efforts improve the speed. 

An additional important counter to look at is the temporary files counter – when an aggregation doesn’t 

fit in memory, the aggregation data is spilled to temporary disk files. Building disk based aggregations is 

much more expensive, and if you notice this you may be able to find a way to either allow more memory 

to be available for the index building phase, or drop some of the larger aggregations to avoid this issue. 

4.4.10.1 Add Partitions to Increase Parallelism 

As was the case with ProcessData, processing more partitions in parallel can speed up ProcessIndex. 

The same tuning strategy applies: Keep increasing partition count until you no longer see an increase in 

processing speed.  

4.4.11 Partitioning the Relational Source 

The best partition strategy to implement in the relational source varies by database product capabilities, 

but some general guidance applies. 

It is often a good idea to reflect the cube partition strategy in the relation design. Partitions in the 

relational source serve as “coarse indexes,” and matching relational partitions with the cube allows you 

to get the best possible table scan speeds by touching only the records you need. Another way to 

achieve that effect is to use a SQL Server clustered index (or the equivalent in your preferred database 

engine) to support fast scan queries during partition processing. If you have used a matrix partition 

schema as described earlier, you may even want to combine the partition and cluster index strategy, 

using partitioning to support one of the partitioned dimension and cluster indexes to support the other. 

The following figures illustrate some examples of partition strategies you should consider. 

 

Figure : Matching partition strategies 
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Figure : Clustering the relational table 

 

Figure : Supporting matrix partitioning with a combination of relational layouts 

5 Special Considerations 
There are certain features of Analysis Services that provide a lot of business intelligence value, but that 

require special attention to succeed. This section describes these scenarios and the tuning you can apply 

when you encounter them. 

5.1 Distinct Count 

Distinct count measures are architecturally very different from other Analysis Services measures 

because they are not additive in nature. This means that more data must be kept on disk and in general, 

most distinct count queries have a heavy impact on the storage engine. 

5.1.1 Partition Design 

When distinct count partitions are queried, each partition’s segment jobs must coordinate with one 

another to avoid counting duplicates. For example, if counting distinct customers with customer ID and 

the same customer ID is in multiple partitions, the partitions’ jobs must recognize the match so that they 

do not count the same customer more than once. 

If each partition contains nonoverlapping range of values, this coordination between jobs is avoided and 

query performance can improve by orders of magnitude, depending on hardware! As well, there are a 

number of additional optimizations to help improve distinct count performance: 
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 The key to improving distinct count query performance is to have a partitioning strategy that 

involves a time period and your distinct count value. Start by partitioning by time and x number 

of distinct value partitions of equal size with non-overlapping ranges, where x is the number of 

cores. Refine x by testing with different partitioning schemes. 

 To distribute your distinct value across your partitions with non-overlapping ranges, considering 

building a hash of the distinct value. A modulo function is simple and straightforward but it 

requires extra processing (for example, convert character key to integer values) and storage (for 

example, to maintain an IDENTITY table). A hash function such as the SQL HashBytes function 

will avoid the latter issues but may introduce hash key collisions (that is, when the hash value is 

repeated based on different source values).  

 The distinct count measure must be directly contained in the query. If you partition your cube 

by the hash of the distinct value, it is important that your query is against the hash of the distinct 

value (versus the distinct value itself). Even if the distinct value and the hash of the distinct value 

have the same distribution of data, and even if you partition data by the latter, the header files 

contain only the range of values associated with the hash of the distinct value. This ultimately 

means that the Analysis Services storage engine must query all of the partitions to perform the 

distinct on the distinct value. 

 The distinct count values need to be continuous.  

For more information, see Analysis Services Distinct Count Optimization Using Solid State Devices 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2010/09/20/analysis-services-distinct-count-

optimization-using-solid-state-devices.aspx). 

5.1.2 Processing of Distinct Count 

Distinct count measure groups have special requirements for partitioning. Normally, you use time and 

potentially some other dimension as the partitioning column (see the section on Partitioning earlier in 

this guide). However, if you partition a distinct count measure group, you should partition on the value 

of the distinct count measure column instead of a dimension.  

Group the distinct count measure column into separate, nonoverlapping intervals. Each interval should 

contain approximately the same amount of rows from the source. These intervals then form the source 

of your Analysis Services partitions. 

Because the parallelism of the Process Data phase is limited by the amount of partitions you have, for 

optimal processing performance, split the distinct count measure into as many equal-sized 

nonoverlapping intervals as you have CPU cores on the Analysis Services computer. 

Starting with SQL Server 2005 Analysis Services, it is possible to use noninteger columns for distinct 

count measure groups. However, for performance reasons (and the potential to hit the 4-GB limit) you 

should avoid this. The white paper Analysis Services Distinct Count Optimization 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2010/09/20/analysis-services-distinct-count-

optimization-using-solid-state-devices.aspx) describes how you can use hash functions to transform 

http://sqlcat.com/technicalnotes/archive/2010/09/20/analysis-services-distinct-count-optimization-using-solid-state-devices.aspx
http://sqlcat.com/whitepapers/archive/2008/04/17/analysis-services-distinct-count-optimization.aspx
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noninteger columns into integers for distinct count. It also provides examples of the nonoverlapping 

interval-partitioning strategy. 

You should also investigate the possibility of optimizing the relational database for the particular SQL 

queries that are generated during processing of distinct count partitions. The processing query will send 

an ORDER BY clause in the SQL, and there may be techniques that you can follow to build indexes in the 

relational database that will produce better performance for this query pattern. 

5.1.3 Distinct Count Partition Aggregation Considerations 

Aggregations created for distinct count partitions are different because distinct count values cannot be 

naturally aggregated at different levels . Analysis Services creates aggregations at the different 

granularities by also including the value that needs to be counted. If you think of an aggregation as a 

GROUP BY on the aggregation granularities, a distinct count aggregation is a GROUP BY on the 

aggregation granularities and the distinct count column. Having the distinct count column in the 

aggregation data allows the aggregation to be used when querying a higher granularity—but 

unfortunately it also makes the aggregations much larger. 

To get the most value out of aggregations for distinct count partitions, design aggregations at a 

commonly viewed higher level attribute related to the distinct count attribute. For example, a report 

about customers is typically viewed at the Customer Group level; hence, build aggregations at that level. 

A common approach is run the typical queries against your distinct count partition and use usage-based 

optimization to build the appropriate aggregations. 

5.1.4 Optimize the Disk Subsystem for Random I/O 

As noted in the beginning of this section, distinct count queries have a heavy impact on the Analysis 

Services storage engine, which for large cubes means there is a large impact on the disk subsystem. For 

each query, Analysis Services generates potentially multiple processes—each one parsing the disk 

subsystem to perform a portion of the distinct count calculation. This results in heavy random I/O on the 

disk subsystem, which can significantly reduce the query performance of your distinct counts (and all of 

your Analysis Services queries overall).  

The disk optimization techniques described in the SQL Server 2008 R2 Analysis Services Operations 

Guide are especially important for distinct count measure groups.  

References: 

 SQL Server 2008 R2 Analysis Services Operations Guide 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-

services-operations-guide.aspx) 

 Analysis Services Distinct Count Optimization 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2008/04/17/analysis-services-distinct-count-

optimization.aspx) 

http://sqlcat.com/whitepapers/archive/2011/06/01/sql-server-2008r2-analysis-services-operations-guide.aspx
http://sqlcat.com/whitepapers/archive/2008/04/17/analysis-services-distinct-count-optimization.aspx
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 Analysis Services Distinct Count Optimization Using Solid State Devices 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2010/09/20/analysis-services-distinct-

count-optimization-using-solid-state-devices.aspx) 

 SQLBI Many-to-Many Project 

(http://www.sqlbi.com/Projects/Manytomanydimensionalmodeling/tabid/80/Default.aspx) 

5.2 Large Many-to-Many Dimensions 

Many-to-many relationships are used heavily in many business scenarios ranging from sales to 

accounting to healthcare. But at times there may be query performance issues when dealing with a large 

number of many-to-many relationships and perceived accuracy issues. One way to think about a many-

to-many dimension is that it is a generalization of the distinct count measure. The use of many-to-many 

dimensions enables you to apply distinct count logic to other Analysis Services measures such as sum, 

count, max, min, and so on. To calculate these distinct count or aggregates, the Analysis Services storage 

engine must parse through the lowest level of granularity of data. This is because when a query includes 

a many-to-many dimension, the query calculation is performed at query-time between the measure 

group and intermediate measure group at the attribute level. The result is a processor- and memory-

intensive process to return the result. 

Performance and accuracy issues concerning many-to-many dimensions include the following:  

 The join between the measure group and intermediate measure group is a hash join strategy; 

hence it is very memory-intensive to perform this operation. 

 Because queries involving many-to-many dimensions result in a join between the measure 

group and an intermediate measure group, reducing the size of your intermediate measure 

group (a general rule is less than 1 million rows) provides the best performance. For additional 

techniques, see the Analysis Services Many-to-Many Dimensions: Query Performance 

Optimization Techniques white paper 

(http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=137). 

 Many-to-many relationships cannot be aggregated (although it generally is not very easy to 

create general purpose aggregates for distinct counts as well). Therefore, queries involving 

many-to-many dimensions cannot use aggregations or aggregate caches—only a direct hit will 

work. There are specific situations where many-to-many relationships can be aggregated; you 

can find more information in the Analysis Services Many-to-Many Dimensions: Query 

Performance Optimization Techniques white paper. 

o Because many-to-many cannot be aggregated, there are various MDX calculation issues 

with VisualTotals, subselects, and CREATE SUBCUBE. 

 Similar to distinct count, there may be perceived double counting issues because it is difficult to 

identify which members of the dimension are involved with the many-to-many relationship. 

To help improve the performance of many-to-many dimensions, one can make use of the Many-to-

Many matrix compression, which removes repeated many-to-many relationships thus reducing the size 

of your intermediate measure group. As can be seen in the following figure, a MatrixKey is created 

http://sqlcat.com/technicalnotes/archive/2010/09/20/analysis-services-distinct-count-optimization-using-solid-state-devices.aspx
http://www.sqlbi.com/Projects/Manytomanydimensionalmodeling/tabid/80/Default.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=3494E712-C90B-4A4E-AD45-01009C15C665&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=3494E712-C90B-4A4E-AD45-01009C15C665&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=3494E712-C90B-4A4E-AD45-01009C15C665&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=3494E712-C90B-4A4E-AD45-01009C15C665&displaylang=en
http://bidshelper.codeplex.com/wikipage?title=Many-to-Many%20Matrix%20Compression
http://bidshelper.codeplex.com/wikipage?title=Many-to-Many%20Matrix%20Compression
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based on each set of common dimension member combinations so that repeated combinations are 

eliminated.  

 

Figure : Compressing the FactInternetSalesReason intermediate fact table (from 

Analysis Services Many-to-Many Dimensions: Query Performance Optimization 

Techniques) 

References: 

 Many-to-Many Matrix Compression (http://bidshelper.codeplex.com/wikipage?title=Many-to-

Many%20Matrix%20Compression) 

 SQLBI Many-to-Many Project 

(http://www.sqlbi.com/Projects/Manytomanydimensionalmodeling/tabid/80/Default.aspx) 

 Analysis Services: Should you use many-to-many dimensions? 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2008/02/11/analysis-services-should-you-

use-many-to-many-dimensions.aspx) 

http://bidshelper.codeplex.com/wikipage?title=Many-to-Many%20Matrix%20Compression
http://www.sqlbi.com/Projects/Manytomanydimensionalmodeling/tabid/80/Default.aspx
http://sqlcat.com/technicalnotes/archive/2008/02/11/analysis-services-should-you-use-many-to-many-dimensions.aspx
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5.3 Parent-Child Dimensions 

The parent-child dimension is a compact and powerful way to represent hierarchies in a relational 

database – especially ragged and unbalanced hierarchies. Yet within Analysis Services, the query 

performance tends to be suboptimal, especially for large parent-child dimensions,  because aggregations 

are created only for the key attribute and the top attribute (that is, the All attribute) unless it is disabled. 

Therefore, a common best practice is to refrain from using parent-child hierarchies that contain a large 

number of members. (How big is large? There isn’t a specific number because query performance at 

intermediate levels of the parent-child hierarchy degrades linearly with the number of members.) 

Additionally, limit the number of parent-child hierarchies in your cube.  

If you are in a design scenario with a large parent-child hierarchy, consider altering the source schema to 

reorganize part or all of the hierarchy into a regular hierarchy with a fixed number of levels. For 

example, say you have a parent-child hierarchy such as the one shown here. 

 

Figure : Sample parent-child hierarchy 

The data from this parent-child hierarchy is represented in relational format as per the following table. 

SK Parent_SK 

1 NULL 

2 1 

3 2 

4 2 

5 1 

 

Converting this table to a regularly hierarchy results in a relational table with the following format. 

SK Level0_SK Level1_SK Level2_SK 

1 1 NULL NULL 

2 1 2 NULL 

3 1 2 3 

4 1 2 4 

5 1 5 NULL 
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After the data has been reorganized into the user hierarchy, you can use the Hide Member If property 

of each level to hide the redundant or missing members. To help convert your parent-child hierarchy 

into a regular hierarchy, refer to the Analysis Services Parent-Child Dimension Naturalizer tool in 

CodePlex 

(http://pcdimnaturalize.codeplex.com/wikipage?title=Home&version=12&ProjectName=pcdimnaturaliz

e). 

References: 

 Analysis Services Parent-Child Dimension Naturalizer 

(http://pcdimnaturalize.codeplex.com/wikipage?title=Home&version=12&ProjectName=pcdimn

aturalize) 

 Including Child Members Multiple Places in a Parent-Child Hierarchy 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2008/03/17/including-child-members-

multiple-places-in-a-parent-child-hierarchy.aspx) 

5.4 Near Real Time and ROLAP 

As your Analysis Services data becomes more valuable to the business, a common next requirement is to 

provide near real-time capabilities so users can have immediate access to their business intelligence 

system. Near real-time data has special requirements: 

 Typically the data must reside in memory for low latency access. 

 Often, you do not have time to maintain indexes on the data. 

 You will typically run into locking and/or concurrency issues that must be dealt with. 

It is important to note that due to the locking logic invoked by Analysis Services, long-running queries in 

Analysis Services can both prevent processing from committing and block other queries. 

To provide near real-time results and avoid the Analysis Services query locking, start with using ROLAP 

so that the queries go directly to the relational database. Yet even relational databases have locking 

and/or concurrency issues that need to be dealt with. To minimize the impact of blocking queries within 

your relational database, place the real-time portion of the data into its own separate table but keep 

historical data within your partitioned table. After you have done this, you can apply other techniques. 

In this section we discuss the following: 

 MOLAP switching 

 ROLAP + MOLAP  

 ROLAP partitioning 

5.4.1 MOLAP Switching 

The basic principle behind MOLAP switching is to create some partitions for historical data and another 

set of partitions for the latest data. The latencies associated with frequently processing the current 

http://pcdimnaturalize.codeplex.com/wikipage?title=Home&version=12&ProjectName=pcdimnaturalize
http://pcdimnaturalize.codeplex.com/wikipage?title=Home&version=12&ProjectName=pcdimnaturalize
http://sqlcat.com/technicalnotes/archive/2008/03/17/including-child-members-multiple-places-in-a-parent-child-hierarchy.aspx
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MOLAP partitions are in minutes. This methodology is well suited for something like a time-zone 

scenario in which you have active partitions throughout the day. For example, say you have active 

partitions for different regions such as New York, London, Mumbai, and Tokyo. In this scenario, you 

would create partitions by both time and the specific region. This provides you with the following 

benefits: 

 You can fully process (as often as needed) the active region / time partition (for example, Tokyo 

/ Day 1) without interfering with other partitions (for example, New York / Day 1). 

 You can “roll with the daylight” and process New York, London, Mumbai, and Tokyo with 

minimal overlap. 

However, long-running queries for a region can block the processing for that region. A processing 

commit of current New York data might be blocked by an existing long running query for New York data. 

To alleviate this problem, use two copies of the same cube, alternating data processing between them 

(known as cube flipping). 

 

Figure : Cube-flipping concept 

While one cube processes data, the other cube is available for querying. To flip between the cubes, you 

can use the Analysis Services Load Balancing Toolkit 

(http://sqlcat.com/sqlcat/b/toolbox/archive/2010/02/08/aslb.aspx) or create your own custom plug-in 

to your UI (you can use Excel to do this, for example) that can detect which cube it should query against. 

It will be important for the plug-in to hold session state so that user queries use the query cache. Session 

state should automatically refresh when the connection string is changed. 

5.4.2 ROLAP + MOLAP 

The basic principle behind ROLAP + MOLAP is to create two sets of partitions: a ROLAP partition for 

frequently updated current data and MOLAP partitions for historical data. In this scenario, you typically 

can achieve latencies in terms of seconds. If you use this technique, be sure to follow these guidelines: 

 Maintain a coherent ROLAP cache. For example, if you query the relational data, the results are 

placed into the storage engine cache. By default, the next query uses that storage engine cache 

http://sqlcat.com/toolbox/archive/2010/02/08/aslb.aspx
http://sqlcat.com/sqlcat/b/toolbox/archive/2010/02/08/aslb.aspx
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entry, but the cache entry may not reflect any new changes to the underlying relational 

database. It is even possible to have aggregate values stored in the data cache that when 

aggregated up do not add up correctly to the parent. 

 Use Real Time OLAP = true within the connection string. 

 Assume that the MOLAP partitions are write-once / read-sometimes. If you need to make 

changes to the MOLAP partitions, ensure the changes do not have an impact on users querying 

the system. 

 For the ROLAP partition, ensure that the underlying SQL data source can handle concurrent 

queries and load. A potential solution is to use Read Committed Snapshot Isolation (RSCI); for 

more information, see Bulk Loading Data into a Table with Concurrent Queries 

(http://sqlcat.com/sqlcat/b/technicalnotes/archive/2009/04/06/bulk-loading-data-into-a-table-

with-concurrent-queries.aspx). 

5.4.3 Comparing MOLAP Switching and ROLAP + MOLAP  

The following table compares the MOLAP switching and ROLAP + MOLAP methodologies. 

Component MOLAP Switching ROLAP + MOLAP 

Relational Tuning Low Must get right 
AS locking Need to handle Minimal 
Cache Usage Good Poor 
Relational Concurrency N/A RSCI 
Data Storage Best Compression ROLAP sizes typically 2x MOLAP 
Aggregation Management SQL Server Profiler + UBO Manual 
Latency Minutes Seconds 

 

5.4.4 ROLAP 

In general, MOLAP is the preferred storage choice for Analysis Services; because MOLAP typically 

provides faster access to the data (especially if your disk subsystem is optimized for random I/O), it can 

handle attributes more efficiently and it is easier to manage. However, ROLAP against SQL Server can be 

a solid choice for very large cubes with excellent performance and the benefit of reducing or even 

removing the processing time of large cubes. As noted earlier, it is often a requirement if you need to 

have near real-time cubes. As can be seen in the following figure, the query performance of a ROLAP 

cube after usage-based optimization is applied can be comparable to MOLAP if the system is expertly 

tuned.  

http://msdn.microsoft.com/en-us/library/ms188277.aspx
http://sqlcat.com/technicalnotes/archive/2009/04/06/bulk-loading-data-into-a-table-with-concurrent-queries.aspx
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Figure : Showcasing ROLAP vs. MOLAP performance before and after the 

application of usage-based optimization  

5.4.4.1 ROLAP Design Recommendations 

The recommendations for high performance querying of ROLAP cubes are listed here: 

 Simplify the data structure of your underlying SQL data source to minimize page reads (for 

example, remove unused columns, try to use INT columns, and so on). 

 Use a star schema without snowflaking, because joins can be expensive. 

 Avoid scenarios such as many-to-many dimensions, parent-child dimensions, distinct count, and 

ROLAP dimensions. 

5.4.4.2 ROLAP Aggregation Design Recommendations 

When working with ROLAP partitions, you can create aggregations in two ways: 

 Create cube-based aggregations by using the Analysis Services aggregations tools.  

 Create your own transparent aggregations directly against the SQL Server database. 

Both approaches rely on the creation of indexed views within SQL Server but offer different advantages 

and disadvantages. Often the most effective strategy is a combination of these two approaches as noted 

in the following table . 

Aggregation 
Type 

Advantages Disadvantages 

Cube-based Efficient query processing: Analysis 
Services can use cube-based 

Processing overhead: Analysis Services 
drops and re-creates indexed views 
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aggregations even if the query and 
aggregation granularities do not exactly 
match. For example, a query on [Month] 
can use an aggregation on [Day], which 
requires only the summarization of up 
to 31 numbers. 
 
Aggregation design efficiency: Analysis 
Services includes the Aggregation Design 
Wizard and the Usage-Based 
Optimization Wizard to create 
aggregation designs based on storage 
and percentage constraints or queries 
submitted by client applications. 

associated with cube-based aggregations 
during cube partition processing. 
Dropping and re-creating the indexes 
can take an excessive amount of time in 
a large-scale data warehouse. 

Transparent Reuse of existing indexes across cubes: 
While aggregate views can also be 
created by queries that do not know of 
their existence, the issue is that Analysis 
Services may unexpectedly drop the 
indexed views  
 
Less overhead during cube processing: 
Analysis Services is unaware of the 
aggregations and does not drop the 
indexed views during partition 
processing. There is no need to drop 
indexed views because the relational 
engine maintains the indexes 
continuously, such as during INSERT, 
UPDATE, and DELETE operations against 
the base tables. 

No sophisticated aggregation 
algorithms: Indexed views must match 
query granularity. The query optimizer 
doesn’t consider dimension hierarchies 
or aggregation granularities in the query 
execution plan. For example, an SQL 
query with GROUP BY on [Month] can’t 
use an index on [Day]. 
 
Maintenance overhead: Database 
administrators must maintain 
aggregations by using SQL Server 
Management Studio or other tools. It is 
difficult to keep track of the 
relationships between indexed views 
and ROLAP cubes. 
 
Design complexity: Database Engine 
Tuning Advisor can help to facilitate 
aggregation design tasks by analyzing 
SQL Server Profiler traces, but it can’t 
identify all possible candidates. 
Moreover, data warehouse (DW) 
architects must manually study SQL 
Server Profiler traces to determine 
effective aggregations. 
 

 

Here are some general rules: 

 Transparent aggregations have greater value in an environment where multiple cubes are 

referencing the same fact table. 
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 Transparent aggregations and cube-based aggregations could be used together to get the most 

efficient design: 

o Start with a set of transparent aggregations that will work for the most commonly run 

queries. 

o Add cube-based aggregations using usage-based optimization for important queries that 

are taking a long time to run. 

5.4.4.3 Limitations of ROLAP Aggregations 

While ROLAP is very powerful, there are some strict limitations that must be first considered before 

using this approach: 

 You may have to design using table binding (and not query binding) to an actual table instead of 

a partition. The goal of this guidance is to ensure partition elimination. 

o This advice is specific to SQL Server as a data source. For other data sources, carefully 

evaluate the behavior of ROLAP queries when accessing a partitioned table. 

o It is not possible to create an indexed view on a view containing a subselect statement. 

This will prevent Analysis Services from creating index view aggregations. 

 Relational partition elimination will generally not work: 

o Normally, DW best practice is to use partitioned fact tables.  

o If you need to use ROLAP aggregations, you must use separate tables in the relational 

database for each cube partition 

o Partitions require named queries, and those generate bad SQL plans. This may vary 

depending on the relational engine you use. 

 You cannot use: 

o A named query or a view in the DSV. 

o Any feature that will cause Analysis Services to generate a subquery. For example, you 

cannot use a Count of Rows measure, because a subquery is always generated when 

this type of measure is used. 

 The measure group cannot have: 

o Any measures that use Max or Min aggregation. 

o Any measures that are based on nullable fields in the relational data source. 

References 

For more information about how to optimize your ROLAP design, see the white paper Analysis Services 

ROLAP for SQL Server Data Warehouses 

(http://sqlcat.com/sqlcat/b/whitepapers/archive/2010/08/23/analysis-services-rolap-for-sql-server-

data-warehouses.aspx). 

 

http://sqlcat.com/whitepapers/archive/2010/08/23/analysis-services-rolap-for-sql-server-data-warehouses.aspx
http://sqlcat.com/whitepapers/archive/2010/08/23/analysis-services-rolap-for-sql-server-data-warehouses.aspx
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6 Conclusion 
This document provides the means to diagnose and address SQL Server 2008 Analysis 

Services processing and query performance issues.  

For more information, see: 

http://sqlcat.com/: SQL Customer Advisory Team 

http://www.microsoft.com/sqlserver/: SQL Server Web site 

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter  

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter  

If you have any suggestions or comments, please do not hesitate to contact the authors. You 

can reach Thomas Kejser at tkejser@microsoft.com and Denny Lee at dennyl@microsoft.com. 

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5 

(excellent), how would you rate this paper and why have you given it this rating? For example: 

 Are you rating it high due to having good examples, excellent screen shots, clear writing, 

or another reason?  

 Are you rating it low due to poor examples, fuzzy screen shots, or unclear writing? 

This feedback will help us improve the quality of white papers we release.  

Send feedback. 

http://sqlcat.com/
http://www.microsoft.com/sqlserver/
http://technet.microsoft.com/en-us/sqlserver/
http://msdn.microsoft.com/en-us/sqlserver/
mailto:tkejser@microsoft.com
mailto:dennyl@microsoft.com
mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20SQL%20Server%20Analysis%20Services%202008%20Performance%20Guide
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