
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
Dynamic Action Filters
in ASP.NET MVC
Dino Esposito page 6

FORECAST: CLOUDY
SQL Azure and Windows Azure
Table Storage
Joseph Fultz page 12

DATA POINTS
Using the Entity Framework
to Reduce Latency
to SQL Azure
Julie Lerman page 23

TEST RUN
Web UI Test Automation
with the WebBrowser Control
James McCaffrey page 78

THE WORKING
PROGRAMMER
Multiparadigmatic .NET, Part 3:
Procedural Programming
Ted Neward page 82

SECURITY BRIEFS
Web Application Confi guration
Security Revisited
Bryan Sullivan page 86

UI FRONTIERS
The Intricacies of Touch Controls
Charles Petzold page 92

DON’T GET ME STARTED
A Real Pain in the Neck
David Platt page 96

NOVEMBER 2010 VOL 25 NO 11

DATA IN THE CLOUD
Introducing DataMarket
Elisa Flasko . 26

Getting Started with SQL Azure Development
Lynn Langit . 30

Synchronizing Multiple Nodes in Windows Azure
Joshua Twist . 40

Connecting SharePoint to Windows Azure
with Silverlight Web Parts
Steve Fox . 50

PLUS:

Scalable Multithreaded Programming with Tasks
Ron Fosner . 58

A Coder’s Guide to Writing API Documentation
Peter Gruenbaum . 70

Using Quince™, you and your team can
collaborate on the user interface using
wireframes, designs and examples.

Then use NetAdvantage® UI controls,
like the map control used here, to bring
the application to life quickly & easily.

...

..

...

Untitled-2 2 10/13/10 11:40 AM

www.infragistics.com/impress

From start to finish, Infragistics gives you the tools to create
impressive user experiences that'll make end users happy!

SEE HOW WE USE THE TOOLS
TO CREATE THIS KILLER APP AT
INFRAGISTICS.COM/IMPRESS

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 6785 1111 • @infragistics

..

...

Untitled-2 3 10/13/10 11:40 AM

www.infragistics.com/impress

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

NOVEMBER 2010 VOLUME 25 NUMBER 11

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

New
Service
Pack!

Professional Edition
Paradise #

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler r7.3 – Product Plus 1 Year Enterprise Maintenance
CA ERwin Data Modeler is a data modeling solution that enables you to create and maintain
databases, data warehouses and enterprise data resource models. These models help you
visualize data structures so that you can effectively organize, manage and moderate data
complexities, database technologies and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Document
Imaging v17.0:
by LEAD Technologies
LEADTOOLS Document Imaging has every
component you need to develop powerful
image-enabled business applications including
specialized bi-tonal image display and
processing, document clean up, annotation,
high-speed scanning, advanced compression
(CCITT G3/G4, JBIG2, MRC, ABC) and more.
• Multi-threaded OCR/ICR/OMR/

MICR/Barcodes (1D/2D)
• Forms recognition/processing
• PDF and PDF/A
• Win32/x64 binaries for C/C++, .NET,

Silverlight, WPF, WCF, & WF

Paradise #
L05 03301A01
$2,007.99

Certified
for Windows
7/2008R2

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V5585101C02

$446.99

ActiveReports 6
by GrapeCity

The de facto standard reporting tool
for Microsoft Visual Studio.NET
• Fast and Flexible reporting engine
• Flexible event-driven API to completely

control the rendering of reports
• Wide range of Export and Preview formats

including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• XCopy deployment
• Royalty-Free Licensing for Web and

Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

programmers.com/flexera

InstallShield Professional
for Windows 2011
by Flexera Software
If your software targets Windows®,
InstallShield® is your solution. It makes it
easy to author high-quality reliable Windows
Installer (MSI) and InstallScript installations
and App-V™ virtual packages for Windows
platforms, including Windows 7. InstallShield,
the industry standard for MSI installations,
also supports the latest Microsoft technologies
including Visual Studio 2010, .NET
Framework 4.0, IIS7.0, SQL Server 2008
SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down.

Upg from any
Active IS Pro +

IS Pro Silver Mtn
Paradise #

I21H02401B01

$1,384.99

866-719-1528

FREE 30-DAY
PROOF OF CONCEPT

Learn more:
programmers.com/eliminate-wasteful-license-spend

STOP OVERBUYING SOFTWARE TODAY!
Eliminate Wasteful Software
License Spend:
• Control your software

licensing costs

• Stop paying for licenses
you’re not using

• Reduce your license spend
by $300+ per desktop user

NEW! Intel®
Parallel Studio 2011
by Intel
A comprehensive, all-in-one toolkit
for Microsoft Visual Studio® C/C++
developers, Intel® Parallel Studio
2011 simplifies the analysis,
compiling, debugging, error-checking,
and tuning of your serial and
threaded apps.

With Intel Parallel Studio, get
everything you need to optimize
legacy serial code, exploit multicore,
and scale for manycore.

programmers.com/intel

Single User DVD
Paradise #

I23 63101E03

$753.99

NEW
RELEASE!

programmers.com/microsoft

Microsoft Visual Studio
Professional 2010
by Microsoft
Microsoft Visual Studio 2010 Professional with
MSDN Essentials Subscription is an integrated
environment that simplifies creating, debugging
and deploying applications. Unleash your creativity
and bring your vision to life with powerful design
surfaces and innovative collaboration methods for
developers and designers. Work within a personal-
ized environment, targeting a growing number of
platforms, including Microsoft SharePoint and cloud
applications and accelerate the coding process by
using your existing skills. Integrated support for
Test-First Development and new debugging tools
let you find and fix bugs quickly and easily to
ensure high quality solutions.

FREE WEBINAR SERIES: MAXIMIZING DATA QUALITY FOR VALUE AND ROI
Data is a company’s greatest asset. Enterprises that can harness the power of their data will be strategically posi-
tioned for the next business evolution. But too often businesses get bogged down in defining a Data Management
process, awaiting some “magic bullet”, while the scope of their task grows larger and their data quality erodes.
Regardless of how your eventual data management solution is implemented, there are processes that need to
occur now to facilitate that process. In this new series, with a mixture of slides, demonstrations and Q&A sessions,
we will discuss how to use your existing Data Modeling assets to build the foundations of strong data quality.

REGISTER TODAY! programmers.com/CA

NEW
RELEASE!

with MSDN
Paradise #

M47 40201A02

$1,060.99

Untitled-1 1 10/4/10 12:05 PM

www.programmersparadise.com

msdn magazine4

Proactive Education

Th e focus of the Mentoring Team is on practical application of
IT concepts, not sterile classroom lectures. For example, Worksta-
tion Support Supervisor Radame Gutierrez presented the students
with a real challenge. “I disabled a PC with bad memory, [broken]
clock, stuff like that, and had them come up and see if they could
spot the issues and rebuild the machine,” he says.

That kind of hands-on is what sparks students’ interest, says
Network Security Coordinator Hank Sanchez. During one session,
he remembers, “Students were so interested that my presentation
took on a life of its own ... they were very involved, and asked great
questions. I met one-on-one with them aft er.”

Th at enthusiasm is oft en carrying over into college and beyond.
Many of the students they worked with, from the past interns to
the more recent high school students, are now studying computer
science and engineering at colleges and universities such as nearby
Florida Atlantic University, or working productively in the fi eld.

One of them, in fact, is now working for FDOT, where she once
interned. Melissa Fuentes, senior clerk at the Broward Operations
Center, developed her love of IT partially through her paid intern-
ship in 2007. She enjoyed it enough that she would’ve done it for free.
“For me, I honestly would go without being paid,” she says. “Th ey let
me do my own coding; I did Visual Basic and Visual C#. It was great.”

Th e Mentoring Team goes beyond just the technical aspects of
work. Th e HR members advise students on the process of getting
hired. Th is includes advice on how to fi ll out applications, write
resumes and develop interviewing skills.

In his initial e-mail to me, Pencle laid out a vision for the future:
“One of my dreams is to see high school IT students and their tech-
nology teachers attend a four-day conference similar to Microsoft
Tech·Ed where they attend breakout sessions, participate in labs,
meet IT mentors and preview upcoming technologies. Like thou-
sands of Tech·Ed attendees, such an experience will forever change
their lives and possibly the technology landscape of our nation.”

With folks like him and the
Mentoring Team working on it,
that change is truly possible.

Talk about striking a nerve: I’ve gotten more feedback on my
columns about how well colleges are preparing students for a
career in IT than I’ve ever gotten on any topic, at any magazine.
I’m encouraged that so many people are interested in the next
generation of developers and IT pros.

What I’m even more encouraged about is that some folks out
there are doing something about it. Among the deluge of e-mails
I received was one from Steven Pencle, an applications manager
with the Florida Department of Transportation (FDOT), District
4. Pencle told me about a program he and some others started to
mentor high school students interested in the IT fi eld, and help nur-
ture that interest into productive careers. It’s a story worth sharing.

Th e program actually got started about fi ve years ago, when the
agency hired students from the nearby high school to work on some
summer projects as paid interns. Th ese were students in a special
school program called the Academy of Information Technology,
which partnered with local businesses to mentor students and
provide internships. Although the program was successful, the
budget eventually evaporated.

Not willing to give up, Pencle and some coworkers took matters
into their own hands in 2009 and formed the Information Technology
Mentoring Team for local high schools. Th e Team, currently com-
prised of four technologists and two human resources specialists,
gives presentations and tutoring for interested students. And they are
interested, Pencle says. “Th e enthusiasm from the students and the
teachers makes us want to continue. Th ey (the teachers) want us back.”

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

The focus of the Mentoring
Team is on practical application

of IT concepts, not sterile
classroom lectures.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

Untitled-1 1 9/1/10 10:08 AM

www.axosoft.com

msdn magazine6

is loaded and kept in an in-memory list. As a developer, you’re
allowed to access and inspect this list. With some more work, you
can modify the list of action fi lters and even populate it dynamically.

Let’s take a closer look at how this works with an overview of the
steps performed by the framework to perform an action. Along the
way, you’ll meet the central component whose manipulation allows
for dynamic fi lters: the action invoker.

Th e action invoker is ultimately responsible for the execution of any
action methods on a controller class. Th e action invoker implements
the internal lifecycle of each ASP.NET MVC request. Th e invoker is
an instance of a class that implements the IActionInvoker interface.
Each controller class has its own invoker object exposed to the world
through a plain get/set property named ActionInvoker. Th e property
is defi ned on the base System.Web.Mvc.Controller type as follows:

public IActionInvoker ActionInvoker {
 get {
 if (this._actionInvoker == null) {
 this._actionInvoker = this.CreateActionInvoker();
 }
 return this._actionInvoker;
 }
 set {
 this._actionInvoker = value;
 }
}

Th e CreateActionInvoker method is a protected overridable
method of the Controller type. Here’s its implementation:

protected virtual IActionInvoker CreateActionInvoker() {
 // Creates an instance of the built-in invoker
 return new ControllerActionInvoker();
}

It turns out that the action invoker can be changed at will for any
controller. However, because the invoker is involved at quite an
early stage of the request lifecycle, you probably need a controller
factory to exchange your own invoker for the default invoker.
Coupled with an Inversion of Control (IoC) framework like Unity,
this approach would let you change the invoker logic directly from
the (offl ine) settings of the IoC container.

As an alternative, you can defi ne a custom controller base class
for your own application and override the CreateActionInvoker
method to make it return just the invoker object you need. Th is
is the approach that the ASP.NET MVC framework employs to
support the asynchronous execution of controller actions.

Th e action invoker is built around the IActionInvoker interface,
which is fairly simple as it exposes just one method:

public interface IActionInvoker {
 bool InvokeAction(
 ControllerContext controllerContext,
 String actionName);
}

 Dynamic Action Filters in ASP.NET MVC

Last month I discussed the role and implementation of action
fi lters in an ASP.NET MVC application. To review a bit: Action
fi lters are attributes you use to decorate controller methods and
classes with the purpose of having them perform some optional
actions. As an example, you could write a Compress attribute and
have it transparently fi lter any response generated by the method
through a compressed gzip stream. Th e major benefi t is that the
compression code remains isolated in a distinct and easily reus-
able class, which contributes to keeping the responsibilities of the
method as low as possible.

Attributes, however, are a static thing. To enjoy the benefi ts of
their inherent fl exibility, you need to go through an additional
compile step. Changing the additional aspects of your controller
class is easy, but it comes at the cost of modifying the source code.
Generally speaking, this is not a big drawback. Most of the code
maintenance work passes through physical changes made to the
source code. Th e more you can make these changes eff ectively and
with no risk of introducing regression, the better.

For Web sites (mostly Web portals) with highly volatile content
and features, and for highly customizable soft ware as a service (SaaS)
applications, any solution that saves you from touching the source
code is more than welcome. So the question is, is there anything
you can do to load action filters dynamically? As the rest of this
article demonstrates, the answer is a resounding yes.

Inside ASP.NET MVC
Th e ASP.NET MVC framework exposes a number of interfaces and
overridable methods that you can customize nearly every aspect of.
In brief, the entire collection of action fi lters for a controller method

CUTTING EDGE DINO ESPOSITO

public abstract class ControllerDescriptor :
 ICustomAttributeProvider {

 // Properties
 public virtual string ControllerName { get; }
 public abstract Type ControllerType { get; }

 // Method
 public abstract ActionDescriptor[] GetCanonicalActions();
 public virtual object[] GetCustomAttributes(bool inherit);
 public abstract ActionDescriptor FindAction(
 ControllerContext controllerContext,
 string actionName);
 public virtual object[] GetCustomAttributes(
 Type attributeType, bool inherit);
 public virtual bool IsDefined(
 Type attributeType, bool inherit);
}

Figure 1 The ControllerDescriptor Class

Untitled-1 1 10/14/10 12:00 PM

www.DevExpress.com/Grids

msdn magazine8 Cutting Edge

Keeping an eye on the default action invoker, let’s review the
main tasks for which an action invoker is responsible. Th e invoker
fi rst gets information about the controller behind the request and
the specifi c action to perform. Information comes through an ad
hoc descriptor object. Th e descriptor includes the name and type
of the controller, plus the list of attributes and actions. For per-
formance reasons, the invoker builds its own cache of action and
controller descriptors.

It’s interesting to take a quick look at the prototype of the
ControllerDescriptor class in Figure 1. Th e class represents just
the base class for any real descriptor.

Th e ASP.NET MVC framework employs two concrete descriptor
classes that heavily use the Microsoft .NET Framework refl ection
internally. One is named Refl ectedControllerDescriptor; the other
is only used for asynchronous controllers and is named Refl ected-
AsyncControllerDescriptor.

I can hardly think of a realistic scenario where you might need
to create your own descriptor. However, for those who are curious,
let’s take a look at how it’s done.

Imagine you create a derived descriptor class and override the
method GetCanonicalActions to read the list of supported ac-
tions from a confi guration fi le or a database table. In this way,
you can remove valid action methods from the list based on some
confi gurable content. To make this work, however, you need to
bring in your own action invoker and write its GetController-
Descriptor method accordingly to return an instance of your
custom descriptor:

protected virtual ControllerDescriptor
 GetControllerDescriptor(
 ControllerContext controllerContext);

Getting information about the controller and action method
is only the fi rst step accomplished by the action invoker. Next,
and more interestingly for the purposes of this article, the action
invoker gets the list of action fi lters for the method being processed.
In addition, the action invoker checks the authorization permis-
sions of the user, validates the request against potentially danger-
ous posted data and then invokes the method.

Getting the List of Action Filters
Even though the action invoker is identified with the IAction-
Invoker interface, the ASP.NET MVC framework uses the services
of the built-in class ControllerActionInvoker. Th is class supports
a lot of additional methods and features, including the aforemen-
tioned descriptors and action fi lters.

Th e ControllerActionInvoker class off ers two main points of inter-
vention for manipulating action fi lters. One is the GetFilters method:

protected virtual ActionExecutedContext
 InvokeActionMethodWithFilters(
 ControllerContext controllerContext,
 IList<IActionFilter> filters,
 ActionDescriptor actionDescriptor,
 IDictionary<string, object> parameters);

Th e other is the InvokeActionMethodWithFilters method:
protected virtual FilterInfo GetFilters(
 ControllerContext controllerContext,
 ActionDescriptor actionDescriptor)

Both methods are marked protected and virtual, as you can see.
Th e invoker calls GetFilters when it needs to access the list of

fi lters defi ned for a given action. As you may guess, this occurs quite
early in the lifecycle of a request and earlier than any invocation of
the method InvokeActionMethodWithFilters.

You should note that aft er calling GetFilters, the invoker holds
available the entire list of fi lters for each possible category, including
exception fi lters, result fi lters, authorization fi lters and, of course,
action fi lters. Consider the following controller class:

[HandleError]
public class HomeController : Controller {
 public ActionResult About() {
 return View();
 }
}

Th e entire class is decorated with the HandleError attribute, which
is an exception fi lter, and no other attribute is visible.

Now let’s add a custom invoker, override the method GetFilters
and place a breakpoint on the fi nal line of the code, like so:

protected override FilterInfo GetFilters(
 ControllerContext controllerContext,
 ActionDescriptor actionDescriptor) {

 var filters = base.GetFilters(
 controllerContext, actionDescriptor);
 return filters;
}

Figure 2 shows the actual content of the variable fi lters.
Th e FilterInfo class—a public class in System.Web.Mvc—off ers

specifi c collections of fi lters for each category:
public class FilterInfo {
 public IList<IActionFilter> ActionFilters { get; }
 public IList<IAuthorizationFilter> AuthorizationFilters { get; }
 public IList<IExceptionFilter> ExceptionFilters { get; }
 public IList<IResultFilter> ResultFilters { get; }
 ...
}

As in Figure 2, for the trivial class shown earlier you count
one action fi lter, one authorization fi lter, one result fi lter and two
exception fi lters. Who defi ned the action, result and authorization

fi lters? Th e controller class itself is an ac-
tion fi lter. In fact, the base Controller class
implements all related fi lter interfaces:
 public abstract class Controller :
 ControllerBase, IDisposable,
 IActionFilter, IAuthorizationFilter,
 IExceptionFilter, IResultFilter {
 ...
 }

The base implementation of Get-
Filters refl ects attributes from the con-
troller class using refl ection in the .NET
Framework. In your implementation of
the method GetFilters, you can add as Figure 2 Intercepting the Content of the Filters Collection

Untitled-1 1 10/14/10 12:00 PM

www.DevExpress.com/Reporting

msdn magazine10 Cutting Edge

many filters as you want, reading them from any sort of loca-
tion. All you need is a piece of code such as this:

protected override FilterInfo GetFilters(
 ControllerContext controllerContext,
 ActionDescriptor actionDescriptor) {

 var filters = base.GetFilters(
 controllerContext, actionDescriptor);

 // Load additional filters
 var extraFilters = ReadFiltersFromConfig();
 filters.Add(extraFilters);

 return filters;
}

Th is approach gives you the greatest fl exibility and works for any goal
you want to achieve or with whatever type of fi lter you want to add.

Invoking an Action
InvokeActionMethodWithFilters is invoked during the process that
takes the performance of the action method. In this case, the method
receives the list of action filters to take into account. However,
you’re still allowed to add extra fi lters at this time. Figure 3 shows
a sample implementation of Invoke ActionMethodWithFilters

that dynamically adds an action fi lter for compressing the output.
Th e code in Figure 3 fi rst checks whether the method being in-
voked is a particular one and then it instantiates and adds a new
fi lter. It goes without saying that you can determine the fi lters
to load in any way that suits you, including reading from a con-
fi guration fi le, a database or whatever else. When overriding the
Invoke ActionMethodWithFilters method, all you do is check the
method being executed, attach additional action fi lters and invoke
the base method so that the invoker can proceed as usual. To
retrieve information about the method being executed, you resort
to the controller context and the action descriptor.

So you have two possible approaches to add fi lters dynamically
to a controller instance: overriding GetFilters and overriding
InvokeActionMethodWithFilters. But, is there any diff erence?

The Action Lifecycle
Going through GetFilters or InvokeActionMethodWithFilters is
pretty much the same thing. Some diff erences do exist, even though
it’s no big deal. To understand the diff erence, let’s fi nd out more
about the steps taken by the default action invoker when it comes
to executing an action method. Figure 4 summarizes the lifecycle.

Aft er getting descriptors, the invoker gets the list of fi lters and
enters into the authorization phase. At this time, the invoker deals with
any authorization fi lters you may have registered. If the authoriza-
tion fails, any action result is executed completely ignoring any fi lters.

Next, the invoker checks whether the request requires validation
of posted data and then moves on to executing the action method
loading all currently registered fi lters.

In the end, if you intend to dynamically add any authorization fi l-
ters, then it will only work if you do it through the GetFilters method.
If your goal is only adding action fi lters, result fi lters or exception
fi lters, then using either method just produces the same result.

Dynamic Filters
Dynamic loading of fi lters is an optional feature that mostly serves
the purpose of applications with an extremely high-level feature
volatility. A fi lter, specifi cally an action fi lter, enables aspect-oriented
capabilities in an ASP.NET MVC controller class as it lets developers
turn on and off behavior in a declarative manner.

When you write the source code of a controller class, you can choose
to add action attributes to the class or the method level. When you read
about action fi lters from an external data source, how to organize
information so that it’s clear which fi lters apply to which methods may
not be obvious. In a database scenario, you can create a table where
you use method and controller name as the key. In a confi guration sce-
nario, you probably need to work out a custom confi guration section
that delivers just the information you need. In any case, the ASP.NET
MVC framework is fl exible enough to let you decide which fi lters
are to be applied on a per-method and even on a per-call basis.

DINO ESPOSITO is the author of “Programming ASP.NET MVC” from Micro-
soft Press (2010). Based in Italy, Esposito is a frequent speaker at industry events
worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Scott Hanselman

protected override ActionExecutedContext
 InvokeActionMethodWithFilters(
 ControllerContext controllerContext,
 IList<IActionFilter> filters,
 ActionDescriptor actionDescriptor,
 IDictionary<String, Object> parameters) {

 if (
 actionDescriptor.ControllerDescriptor.ControllerName == "Home"
 && actionDescriptor.ActionName == "About") {

 var compressFilter = new CompressAttribute();
 filters.Add(compressFilter);
 }

 return base.InvokeActionMethodWithFilters(
 controllerContext,
 filters, actionDescriptor, parameters);
}

Figure 3 Adding an Action Filter Before Executing the Action

Figure 4 The Lifecycle of an Action Method

No

Yes

Get Controller Descriptor

Invoke Authorization Filters

Validate Request

Invoke Action with Filters

Get Action Descriptor

Get Filters

Invoke Action Result

Invoke Action ResultAuthorized?

http://weblogs.asp.net/despos

Untitled-1 1 10/14/10 12:01 PM

www.DevExpress.com/analytics

msdn magazine12

the needs of the solution and the solution team against the features
and the constraints for both Windows Azure Table Storage and
SQL Azure. Additionally, I’ll add in a sprinkle of code so you can
get the developer feel for working with each.

Reviewing the Options
Expanding the scope briefl y to include the other storage mecha-
nisms in order to convey a bit of the big picture, at a high level it’s
easy to separate storage options into these big buckets:

• Relational data access: SQL Azure
• File and object access: Windows Azure Storage
• Disk-based local cache: role local storage

However, to further qualify the choices, you can start asking
some simple questions such as:

• How do I make fi les available to all roles commonly?
• How can I make fi les available and easily update them?
• How can I provide structured access semantics, but also

provide suffi cient storage and performance?
• Which provides the best performance or best scalability?
• What are the training requirements?
• What is the management story?

The path to a clear decision starts to muddy and it’s easy to get
lost in a feature benefit-versus-constraint comparison. Focus-
ing back on SQL Azure and Windows Azure Table Storage, I’m
going to describe some ideal usage patterns and give some code
examples using each.

SQL Azure Basics
SQL Azure provides the base functionality of a relational database
for use by applications. If an application has data that needs to be
hosted in a relational database management system (RDBMS),
then this is the way to go. It provides all of the common seman-

SQL Azure and Windows Azure
Table Storage

A common scenario that plays out in my family is that we decide
to take it easy for the evening and enjoy a night out eating together.
Everyone likes this and enjoys the time to eat and relax. We have
plenty of restaurant choices in our area so, as it turns out, unless
someone has a particularly strong preference, we get stuck in the
limbo land of deciding where to eat.

It’s this same problem of choosing between seemingly equally
good choices that I find many of my customers and colleagues
experience when deciding what storage mechanism to use in the
cloud. Oft en, the point of confusion is understanding the diff erences
between Windows Azure Table Storage and SQL Azure.

I can’t tell anyone which technology choice to make, but I will
provide some guidelines for making the decision when evaluating

FORECAST: CLOUDY JOSEPH FULTZ

Code download available at code.msdn.microsoft.com/mag201011Cloudy.

SQL Azure and other relational databases usually
provide data-processing capabilities on top of a storage system.
Generally, RDBMS users are more interested in data processing
than the raw storage and retrieval aspects of a database.

For example, if you want to fi nd out the total revenue for the
company in a given period, you might have to scan hundreds of
megabytes of sales data and calculate a SUM. In a database, you
can send a single query (a few bytes) to the database that will
cause the database to retrieve the data (possibly many gigabytes)
from disk into memory, fi lter the data based on the appropriate
time range (down to several hundred megabytes in common
scenarios), calculate the sum of the sales fi gures and return the
number to the client application (a few bytes).

To do this with a pure storage system requires the machine
running the application code to retrieve all of the raw data over
the network from the storage system, and then the developer has
to write the code to execute a SUM on the data. Moving a lot of
data from storage to the app for data processing tends to be very
expensive and slow.

SQL Azure provides data-processing capabilities through
queries, transactions and stored procedures that are executed on
the server side, and only the results are returned to the app. If
you have an application that requires data processing over large
data sets, then SQL Azure is a good choice. If you have an
app that stores and retrieves (scans/fi lters) large datasets but does
not require data processing, then Windows Azure Table Storage is
a superior choice.

—Tony Petrossian, Principal Program Manager, Windows Azure

Data Processing

SQL Azure provides
the base functionality of a

relational database.

http://code.msdn.microsoft.com/mag201011Cloudy

Untitled-1 1 10/14/10 12:01 PM

www.DevExpress.com/scheduling

msdn magazine14 Forecast: Cloudy

tics for data access via SQL statements. In addition, SQL Server
Management Studio (SSMS) can hook directly up to SQL Azure,
which provides for an easy-to-use and well-known means of
working with the database outside of the code.

For example, setting up a new database happens in a few steps
that need both the SQL Azure Web
Management Console and SSMS.
Th ose steps are:

1. Create database via Web
2. Create rule in order to

access database from
local computer

3. Connect to Web database
via local SSMS

4. Run DDL within context of
database container

If an application currently uses
SQL Server or a similar RDBMS
back end, then SQL Azure will be
the easiest path in moving your
data to the cloud.

SQL Azure is also the best
choice for providing cloud-based
access to structured data. Th is is
true whether the app is hosted in
Windows Azure or not. If you have
a mobile app or even a desktop
app, SQL Azure is the way to put
the data in the cloud and access it
from those applications.

Using a database in the cloud is not much diff erent from using
one that’s hosted on-premises—with the one notable exception that
authentication needs to be handled via SQL Server Authentication.
You might want to take a look at Microsoft Project Code-Named
“Houston,” which is a new management console being developed

Figure 1 Automatically Generated Code for Accessing SQL Azure

Figure 2 SQL Azure Data in a Simple Grid

Untitled-1 1 10/14/10 12:02 PM

www.DevExpress.com/CodeRush

msdn magazine16 Forecast: Cloudy

for SQL Azure, built with Silverlight. Details on this project are
available at sqlazurelabs.cloudapp.net/houston.

SQL Azure Development
Writing a quick sample application that’s just a Windows Form
hosting a datagrid that displays data from the Pubs database is
no more complicated than it was when the database was local. I
fire up the wizard in Visual Studio to add a new data source and
it walks me through creating a connection string and a dataset.
In this case, I end up with a connection string in my app.config
that looks like this:

<add name="AzureStrucutredStorageAccessExample.Properties.Settings.
pubsConnectionString"
 connectionString="Data Source=gfkdgapzs5.database.windows.
net;Initial Catalog=pubs;Persist Security Info=True;User
ID=jofultz;Password=[password]"
 providerName="System.Data.SqlClient" />

Usually Integrated Authentication is the choice for database
security, so it is feels a little awkward using SQL Server Authenti-
cation again. SQL Azure minimizes exposure by enforcing an IP
access list to which you will need to add an entry for each range of
IPs that might be connecting to the database.

Going back to my purposefully trivial example, by choosing the
Title view View out of the Pubs database, I also get some generated
code in the default-named dataset pubsDataSet, as shown in Figure 1.

I do some drag-and-drop operations by dragging a DataGridView
onto the form and configure the connection to wire it up. Once

it’s wired up, I run it and end up
with a quick grid view of the data,
as shown in Figure 2.

I’m not attempting to sell the idea
that you can create an enterprise
application via wizards in Visual
Studio, but rather that the data
access is more or less equivalent
to SQL Server and behaves and
feels as expected. Th is means that
you can generate an entity model
against it and use LINQ just as I
might do so if it were local instead
of hosted (see Figure 3).

A great new feature addition
beyond the scope of the normally
available SQL Server-based local
database is the option (currently
available via sqlazurelabs.com) to
expose the data as an OData feed.
You get REST queries such as this:
 https://odata.sqlazurelabs.com/
 OData.svc/v0.1/gfkdgapzs5/pubs/
 authors?$top=10

Th is results in either an OData
response or, using the $format=
JSON parameter, a JSON response.
This is a huge upside for appli-
cation developers, because not
only do you get the standard SQL
Server behavior, but you also get

additional access methods via confi guration instead of writing a
single line of code. Th is allows for the focus to be placed on the
service or application layers that add business value versus the
plumbing to get data in and out of the store across the wire.

If an application needs traditional relational data access, SQL
Azure is most likely the better and easier choice. But there are a
number of other reasons to consider SQL Azure as the primary
choice over Windows Azure Table Storage.

Th e fi rst reason is if you have a high transaction rate, meaning
there are frequent queries (all operations) against the data store.
Th ere are no per-transaction charges for SQL Azure.

SQL Azure also gives you the option of setting up SQL Azure
Data Sync (datasync.sqlazurelabs.com/SADataSync.aspx) between various
Windows Azure databases, along with the ability to synchronize
data between local databases and SQL Azure installations
(microsoft.com/windowsazure/developers/sqlazure/datasync/). I’ll cover design

Figure 3 Using an Entity Model and LINQ

If an application needs traditional
relational data access, SQL Azure

is most likely the better choice.

http://sqlazurelabs.cloudapp.net/houston
http://sqlazurelabs.com
http://datasync.sqlazurelabs.com/SADataSync.aspx
http://microsoft.com/windowsazure/developers/sqlazure/datasync/

Untitled-1 1 10/14/10 12:02 PM

www.DevExpress.com/FreeASP

msdn magazine18 Forecast: Cloudy

and use of SQL Azure and DataSync with local storage in a future
column, when I cover branch node architecture using SQL Azure.

Windows Azure Table Storage
Now you’ve seen the advantages of using SQL Azure for your
storage. So when is it more beneficial to rely on Windows Azure
Table Storage? Here are a number of scenarios where SQL Azure
might not be the right choice.

If an application is being overhauled for moving to the Web or
the data storage layer implementation isn’t completed, you probably
want to take a look at Windows Azure Table Storage. Likewise,
Windows Azure Table Storage makes sense if you don’t need a
relational store or access is limited to a single table at a time and
doesn’t require joins. In this case, your data sets would be small
and joins could be handled client-side by LINQ.

You’ll also want to take a look at Windows Azure Table Storage
if you have more data than the maximum amount supported by
SQL Azure (which is currently 50GB for a single instance). Note
that size limitation can be overcome with some data partitioning,
but that could drive up the SQL Azure costs. Th e same space in
Windows Azure Table Storage would probably be less expensive
and has partitioning built-in by a declared partition key.

In addition, due to the per-transaction charges for Windows Azure
Table Storage, data with a lower-access frequency or data that can
be easily cached would be a good choice.

Some other things that make Windows Azure Table Storage
appealing include if the application needs some structured style
access such as indexed lookup, but stores primarily objects or

Binary Large Objects (BLOBs)/Character Large Objects (CLOBs);
if your app would benefi t from supporting type variability for the
data going into the table; or if the existing data structure (or lack
therof) in your SQL Server installation makes it diffi cult to migrate.

Using Windows Azure Table Storage
At fi rst, working with Windows Azure Table Storage may seem a
little unwieldy due to assumptions made by relating “table storage”
to a SQL database. Th e use of “table” in the name doesn’t help. When
thinking about Windows Azure Table Storage, I suggest that you
think of it as object storage.

As a developer, don’t focus on the storage structure or mecha-
nism; instead, focus on the object and what you intend to do with it.
Getting the objects set up in Windows Azure Table Storage is oft en
the biggest hurdle for the developer, but accessing Windows Azure
Table Storage via objects is natural, particularly if you employ LINQ.

To work with Windows Azure Table Storage, start by adding a
reference to System.Data.Services.Client to your project. In addi-
tion, add a reference to Microsoft .WindowsAzure.StorageClient.dll
if you aren’t working in a Visual Studio Cloud template (which
provides this reference for you).

Next, create an object/entity with which you can work (stealing
from the Authors table):

public class TableStorageAuthor:
 Microsoft.WindowsAzure.StorageClient.TableServiceEntity {
 public int Id {get; set;}
 public string LastName { get; set; }
 public string FirstName { get; set; }
 public string Phone { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Zip {get; set;}
}

You can defi ne a data service client context using TableService-
Context to handle connecting to the store and do the Create/Read/
Update/Delete (CRUD) operations as shown in Figure 4. The
TableStorageAuthor class is used as the template class to declare
the AuthorData element for which a table query method for the
Authors table is returned. It’s also used as a a parameter type to the
implemented Add operation.

Create the target table:
Ta bleClient.CreateTableIfNotExist("Authors");

Using a familiar object creation and property assignment para-
digm, create some data and add it to the table that was created in
storage (see Figure 5).

Once all of the data is there it can be manipulated with LINQ.
For example, a select for the entities would be:

var TableClient = StorageAccount.CreateCloudTableClient();

TableStorageAuthor author = new TableStorageAuthor();
author.FirstName = "Joseph";
author.LastName = "Fultz";
author.RowKey = System.Guid.NewGuid().ToString();
author.Id = author.RowKey;
author.State = "TX";
author.PartitionKey = "TX";

AuthorDataServiceContext ctx =
 new AuthorDataServiceContext(
 StorageAccount.TableEndpoint,
 StorageAccount.Credentials);
ctx.Add(author);

Figure 5 Adding Data to Windows Azure Table Storage

public class AuthorDataServiceContext : TableServiceContext {
 public IQueryable<TableStorageAuthor> AuthorData {
 get {
 return this.CreateQuery<TableStorageAuthor>("Authors");
 }
 }

 public AuthorDataServiceContext (
 Uri baseAddress, StorageCredentials credentials)
 : base(baseAddress.AbsoluteUri, credentials) {}

 public void Add(TableStorageAuthor author) {
 this.AddObject("Authors", author);
 DataServiceResponse dsResponse = SaveChanges();
 }
}

Figure 4 Accessing Windows Azure Table Storage

When thinking about
Windows Azure Table Storage,
I suggest that you think of it as

object storage.

19November 2010msdnmagazine.com

AuthorDataServiceContext ctx =
 new AuthorDataServiceContext(
 StorageAccount.TableEndpoint,
 StorageAccount.Credentials);

var authors =
 from a in ctx.AuthorData
 select a;

foreach (TableStorageAuthor ta in authors) {
 Debug.WriteLine(ta.FirstName + " " + ta.LastName);
}

I didn’t implement update and delete, but they would be similar.
Th e only thing that might be a little diff erent from those that have
used LINQ with the Entity Framework is the code to create the
TableServiceContext and the subsequent code to construct and use
it. If you’ve been working with REST and the DataServiceContext,
doing this work will be quite natural.

By using the TableServiceContext, TableServiceEntity and LINQ,
you get about the same feel as using the Entity Framework and
LINQ with SQL Azure—albeit with a little more hand-coding on
the Windows Azure Table Storage side.

Solution-Based Evaluation
As mentioned before, if the application has a relational store
already established, it’s likely best to migrate that to SQL Azure
with a little help from a tool like the SQL Azure Migration
Wizard. However, if that’s not the case, or the cloud piece of the
application doesn’t need the full functionality of an RDBMS, then
take a look at the matrix in Figure 6 and see which columns meet
 most of the needs of the solution requirements and architecture.

It’s important to note that for some of the items in Figure 6 (for
example, those related to management and data loading for Windows
Azure Table Storage) there are already third-party solutions entering the
market to provide the missing functionality. As such, the cost and func-
tionality of such tools will need to be considered for signifi cant projects.

I expect that many applications will need a hybrid data approach
to make the best use of technology. For example, Windows Azure
Table Storage would be used to optimize fetch times while still pro-
viding mass scale for resources such as documents, videos, images
and other such media. However, to facilitate searching metadata
for the item, related data and object pointers would be stored in
SQL Azure. Such a design would also reduce the transaction traffi c
against Windows Azure Table Storage. Th is type of complementary
design would provide the following benefi ts:

• Keep the throughput high for queries to fi nd resources
• Keep the SQL Azure database size down, so cost for it

remains a minimum
• Minimize the cost of storage by storing the large fi les in

Windows Azure Table Storage versus SQL Azure (though
BLOB storage is preferred for fi les)

• Maintain a fast retrieval performance by having such
resources fetch by key and partition, and offl oading the
retrieval query from the SQL Azure database

• Allow for automatic and mass scale for the data kept in
Windows Azure Table Storage

Simply put: Your design should allow each storage mechanism to
provide the part of the solution that it’s best at performing, rather
than trying to have one do the job of both. Either way, you’re still
looking to the cloud for an answer.

JOSEPH FULTZ is an architect at the Microsoft Technology Center in Dallas, where
he works with both enterprise customers and ISVs designing and prototyping soft -
ware solutions to meet business and market demands. He has spoken at events
such as Tech·Ed and similar internal training events.

THANKS to the following technical experts for reviewing this article:
Jai Haridas, Tony Petrossian and Suraj Puri

Feature SQL Azure Common Benefi t(s) Windows Azure Table Storage
Select semantics Cross-table queries Primary key-based lookup Single key lookup (by partition)
Performance and scale High performance via multiple indices,

normalized data structures and so on, and
scalable via manual partitioning across SQL
Azure instances

Automatic mass scale by partition and
consistent performance even at large scale

User experience Well-known management tools and
traditional database design

Familiar high-level
developer experience

Direct serialization; no ORM necessary;
simplifi ed design model by removing
relational model

Storage style Traditional relational design model Data storage for all types
of data

Type variability in a single table

Cost factors No transaction cost, pay by database size Network traffi c cost
outside of same datacenter

No space overhead cost, pay for what is used

Data loading and sync Synchronizing between local and cloud-
based stores; data easily moved in and out by
traditional extract, transform and load (ETL)
mechanisms; synchronizing between SQL
Azure databases in different datacenters

Figure 6 Comparing SQL Azure and Windows Azure Table Storage

Many applications will need a
hybrid data approach to make

the best use of technology.

www.msdnmagazine.com

Untitled-12 2 10/5/10 4:08 PM

www.telerik.com/orm
mailto:sales@telerik.com

Untitled-12 3 10/5/10 4:08 PM

www.telerik.com/orm

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

23November 2010

Using the Entity Framework to Reduce
Network Latency to SQL Azure

One test queries only the customers and then retrieves their sales
information aft er the fact using the lazy loading feature of the Entity
Framework 4.0. A later test eager loads customer sales along with the
customers using the Include method. Figure 1 shows the console
app that I used to execute these queries and enumerate the results.

I begin with a warm-up query in order to get past the expense
of loading the Entity Data Model (EDM) metadata into memory,
pre-compiling views and other one-time operations. Th e DoTh e-
RealQuery method then queries a subset of Customers entities,
executes the query into a list and enumerates the results. During
the enumeration, the customer’s sales are accessed, forcing—in this
case—a lazy load that goes back to the database to get the sales for
each customer throughout the iteration.

Looking at the Performance on a Local Network
When running this on my local network against an on-premises
SQL Server database, the fi rst call to execute the query takes 233
ms. Th at’s because I’m only retrieving the customers. When the
code runs the enumeration that forces the lazy load, it takes 195 ms.

Now I’ll change the query so that it eager loads the InternetSales
along with Customers:

context.Customers.Include("InternetSales").Where(c => c.InternetSales.
Any()).Take(100);

Now those 100 customers, along with all of their sales records,
will be returned from the database. Th at’s a lot more data.

Th e query.ToList call now takes about 350 ms, nearly 33 percent
longer than returning just the 100 customers.

Th ere’s another eff ect of this change: As the code enumerates
through the customers, the sales data is already there in memory.
Th at means the Entity Framework doesn’t have to make an extra
100 round-trips to the database. The enumeration, along with
writing out the details, takes only about 70 percent of the time it
took when lazy loading was doing its job.

Taking into account the amount of data, the computer and local
network speed, overall, the lazy-loading route in this particular
scenario is a little faster than when you eager load the data. How-
ever, it’s still fast enough that the diff erence isn’t even noticeable
between the two. Th ey both appear to run blazingly fast thanks to
the Entity Framework.

Figure 2 shows a comparison of eager and lazy loading in the
local network environment. Th e ToList column measures the query
execution, which is the code line: var customers = query.ToList();.
Th e Enumeration measures the EnumerateCustomers method. And
fi nally, the Query & Enumeration column measures the complete

At first glance, switching from a locally managed SQL Server
database to the Microsoft cloud-based SQL Azure database sounds
like it could be diffi cult. But in reality, it’s a snap: Simply switch the
connection string and you’re done! As we developers love to see in
these situations, it “just works.”

However, making the switch introduces network latency, which
can substantially aff ect overall application performance. Fortunately,
a good understanding of the eff ects of network latency leaves you
in a powerful position to use the Entity Framework to reduce that
impact in the context of SQL Azure.

Profi ling Your Data Access Code
I use Visual Studio 2010 profi ler tools (msdn.microsoft.com/library/ms182372)
to compare diff erent data access activities against the Adventure-
WorksDW database residing on both my local network and my
SQL Azure account. I use the profi ler to investigate calls to load
some customers from the database using the Entity Framework.

DATA POINTS JULIE LERMAN

static void Main()
{
 using (var context = new AdventureWorksDWEntities())
 {
 var warmupquery = context.Accounts.FirstOrDefault();
 }
 DoTheRealQuery();
}

private static void DoTheRealQuery()
{
 using (var context=new AdventureWorksDWEntities())
 {
 var query = context.Customers.Where(c => c.InternetSales.Any()).Take(100);
 var customers = query.ToList();
 EnumerateCustomers(customers);
 }
}

private static void EnumerateCustomers(List<Customer> customers)
{
 foreach (var c in customers)
 {
 WriteCustomers (c);

 }
}

private static void WriteCustomer(Customer c)
{
 Console.WriteLine
 ("CustomerName: {0} First Purchase: {1} # Orders: {2}",
 c.FirstName.Trim() + "" + c.LastName, c.DateFirstPurchase,
c.InternetSales.Count);
}

Figure 1 Queries Designed to Explore Performance

http://msdn.microsoft.com/library/ms182372

msdn magazine24 Data Points

DoTh eRealQuery method, which combines the execution, enumera-
tion, instantiation of the context and declaration of the query itself.

Switching to the SQL Azure Database
Now I’ll switch the connection string to my SQL Azure database in
the cloud. It shouldn’t be surprising that network latency between
my computer and the cloud database kicks in, making queries take
longer than against the local database. You can’t avoid latency in this
scenario. However, what is notable is that the increase isn’t equal
among the various tasks. For some types of requests, the latency
is much more exaggerated than others. Take a look at Figure 3.

Eager loading the graphs is still slower than only loading the cus-
tomers up front. But where it was about 30 percent slower locally,
on SQL Azure it now takes about three times as long as lazy loading.

But as you can see in Figure 3, it’s the lazy loading that’s most
impacted by the network latency. Aft er the InternetSales data was
in memory thanks to the eager loading, enumerating over the data
is as quick as the fi rst set of tests. But the lazy loading is causing
100 additional round-trips to the cloud database. Because of the
latency, each of these trips takes longer—and in combination, the
resulting time to retrieve the results is visibly noticeable.

The enumeration takes more time than the in-memory enu-
meration by orders of magnitude. Each trip to the database to get
a single customer’s InternetSales data takes a signifi cant amount of
time. Overall—even though it’s surely much faster to load only the
Customers up front—in this environment it took almost six times
longer to retrieve all of the data with lazy loading.

Th e point of all this isn’t to incriminate SQL Azure, which in
fact is highly performant, but to point out that your choice of
Entity Framework query mechanism can have a negative impact
on overall performance because of the latency issues.

Th e particular use case of this demo isn’t typical for an appli-
cation, because, typically, you wouldn’t lazy load related data for
a large series of objects. But it does highlight that, in this case,
returning a lot of data all at once (via eager loading) is much
more effi cient than returning that same amount of data across a
multitude of trips to the database. When you’re using a local
database, the diff erence may not be as signifi cant as it is when your
data is in the cloud, so it merits a close look when you switch from
your local database to SQL Azure.

Depending on the shape of the data that you’re returning—perhaps
a much more complex query with numerous Includes, for example—
there are times when eager loading is more expensive and times when
lazy loading is more expensive. Th ere are even times when it will make
sense to distribute the load: eager load some data and lazy load others
based on what you learn from performance profi ling. And in many
cases, the ultimate solution is to move your application to the cloud,
as well. Windows Azure and SQL Azure were designed to work as a
team. By moving your application to Windows Azure and having that
application get its data from SQL Azure, you’ll maximize performance.

Use Projections to Fine-Tune Query Results
When using applications that are running locally, in some scenarios,
you may be able to revise the queries to further refi ne the amount
of data returned from the database. One technique to consider is
using projections, which grant you much more control over what
related data is brought back. Neither eager loading nor deferred/
lazy loading in the Entity Framework allows you to fi lter or sort
the related data being returned. But with a projection, you can.

For example, the query in this modified version of TheReal-
Query method returns only a subset of InternetSales entities—those
greater than or equal to 1,000:

 private static void TheRealQuery()
 {
 using (var context=new AdventureWorksDWEntities())
 {
 Decimal salesMinimum = 1000;
 var query =
 from customer in context.Customers.Where(c =>
 c.InternetSales.Any()).Take(100)
 select new { customer, Sales = customer.InternetSales };
 IEnumerable customers = query.ToList();
 context.ContextOptions.LazyLoadingEnabled = false;
 EnumerateCustomers(customers);
 }
 }

Th e query brings back the same 100 customers as the previous
query, along with a total of 155 InternetSales records compared to the
661 sales records that are returned without the SalesAmount fi lter.

Mind this important note about projections and lazy loading:
When projecting the data, the context doesn’t recognize the related
data as having been loaded. Th at only happens when it’s loaded via
the Include method, the Load method or lazy loading. Th erefore,
it’s important to disable lazy loading prior to the enumeration as

Figure 4 Comparing Eager Loading to a
Filtered Projection from SQL Azure

Query &
Enumeration

EnumerationToList

SQL Azure
Eager Loaded

SQL Azure
Filtered

1400

800

200

1200

600

0

1000

400

in
Milliseconds

Figure 3 Comparing Eager Loading to
Lazy Loading from SQL Azure

Query &
Enumeration

EnumerationToList

SQL Azure
Eager Loaded

in
Milliseconds

SQL Azure
Lazy Loaded

8000

7000

4000

1000

6000

3000

0

5000

2000

Figure 2 Comparing Eager Loading to
Lazy Loading from a Local Database

in
Milliseconds

Query &
Enumeration

EnumerationToList

Local
Eager Loaded

Local
Lazy Loaded

400

100

600

300

0

500

200

25November 2010msdnmagazine.com

I’ve done in the Th eRealQuery method. Otherwise, the context will
lazy load the InternetSales data even though it’s already in mem-
ory, causing the enumeration to take much longer than necessary.

Th e modifi ed enumeration method takes this into account:
private static void EnumerateCustomers(IEnumerable customers)
{
 foreach (var item in customers)
 {
 dynamic dynamicItem=item;
 WriteCustomer((Customer)dynamicItem.customer);
 }
}

Th e method also takes advantage of the
dynamic type in C# 4 to perform late binding.

Figure 4 demonstrates the significant
performance gain realized by the more fi nely
tuned projection.

It may seem obvious that the fi ltered query
would be faster than the eager-loaded query
that returns more data. Th e more interesting
comparison is the fact that the SQL Azure
database processes the fi ltered projection about
70 percent faster, while on a local database the
fi ltered projection is only about 15 percent faster
than the eager-loaded query. I suspect that the
eager-loaded InternetSales collection causes the
in-memory enumeration to be faster because
of the way the Entity Framework accesses it
internally compared to the projected collection.
But as the enumeration in this case is occur-
ring completely in memory, it has no bearing
on the network latency. Overall, the improve-
ment seen with projection outweighs the small
enumeration price when using the projection.

On your network, switching to a projec-
tion to fi ne-tune the query results may not
seem necessary, but against SQL Azure,
this type of tuning can realize significant
performance gains in your application.

All Aboard the Cloud
Th e scenarios I’ve discussed revolve around
locally hosted apps or services that use SQL
Azure. You may instead have your application
or service hosted in the cloud in Windows
Azure, as well. For example, end users may
be using Silverlight to hit a Windows Azure
Web Role running Windows Communica-
tion Foundation that in turn accesses data
in SQL Azure. In this case, you’ll have no
network latency between the cloud-based
service and SQL Azure.

Whatever the combination, the most
important point to remember is that even
though your application continues to
function as expected, performance can be
aff ected by network latency.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can find her presenting on data access and other
Microsoft .NET topics at user groups and conferences around the world. Lerman
blogs at thedatafarm.com/blog and is the author of the highly acclaimed book,
“Programming Entity Framework” (O’Reilly Media, 2010). Follow her on
Twitter.com: julielerman.

THANKS to the following technical experts for reviewing this article:
Wayne Berry, Kraig Brockschmidt, Tim Laverty and Steve Yi

www.microsoft.com/dynamics/daxconf2011/MSDN
www.msdnmagazine.com
http://Twitter.com:julielerman
http://thedatafarm.com/blog

msdn magazine26

W IN DOWS A ZUR E MAR KET P L ACE DATAMARKET

Introducing DataMarket

Windows Azure Marketplace DataMarket, which
was fi rst announced as Microsoft Project Codename “Dallas” at
PDC09, changes the way information is exchanged by off ering a
wide range of content from authoritative commercial and public
sources in a single marketplace. Th is makes it easier to fi nd and
purchase the data you need to power your applications and analytics.

If I were developing an application to identify and plan stops for
a road trip, I would need a lot of data, from many diff erent sources.
Th e application might fi rst ask the user to enter a fi nal destination
and any stops they would like to make along the way. It could pull
the current GPS location or ask the user to input a starting location
and use these locations to map the best route for the road trip.
After the application mapped the trip, it might reach out to
Facebook and identify friends living along the route who I may
want to visit. It might pull the weather forecasts for the cities that
have been identifi ed as stops, as well as identify points of interest,
gas stations and restaurants as potential stops along the way.

Before DataMarket, I would’ve had to first discover sources
for all the diff erent types of data I require for my application. Th at
could entail visiting numerous companies’ Web sites to determine
whether or not they have the data I want and whether or not they
off er it for sale in a package and at a price that meets my needs.
Th en I would’ve had to purchase the data directly from each com-
pany. For example, I might have gone directly to a company such
as Infogroup to purchase the data enabling me to identify points
of interest, gas stations and restaurants along the route; to a com-
pany such as NavTeq for current traffi c reports; and to a company

Elisa Flasko

such as Weather Central for my weather forecasts. It’s likely that
each of these companies would provide the data in a diff erent for-
mat, some by sending me a DVD, others via a Web service, Excel
spreadsheet and so on.

Today, with DataMarket, building this application becomes
much simpler. DataMarket provides a single location—a market-
place for data—where I can search for, explore, try and purchase
the data I need to develop my application. It also provides the
data to me through a uniform interface, in a standard format
(OData—see OData.org for more information). By exposing the
data as OData, DataMarket ensures I’m able to access it on
any platform (at a minimum, all I need is an HTTP stack) and
from any of the many applications that support OData, including
applications such as Microsoft PowerPivot for Excel 2010, which
natively supports OData.

DataMarket provides a single marketplace for various content
providers to make their data available for sale via a number of
diff erent off erings (each off ering may make a diff erent subset or
view of the data available, or make the data available with diff erent
terms of use). Content providers specify the details of their off er-
ings, including the terms of use governing a purchase, the pricing
model (in version 1, offerings are made available via a monthly
subscription) and the price.

Getting Started with DataMarket
To get started, I register on DataMarket using my Windows Live
ID and log on to the site. From here, I can search through the
datasets currently available on the site, viewing the details of each
(description, pricing, visualizations, terms of use and so on) to
determine which publishers deliver the type of data I’m looking
for and which off ers best suit my needs.

Although I need to find a dataset that meets the technical
requirements of my application, it’s important to also verify that the
terms of use set forth by the publisher allow the data to be used in
the way required by my application. Terms of use can vary widely
across datasets and across publishers. I can view the terms of use
for a specifi c dataset within the off ering details.

This article discusses:
• From Project Codename “Dallas” to DataMarket

• Registering at DataMarket and purchasing data

• Consuming OData in a road trip application

• Selling data on DataMarket

Technologies discussed:
Windows Azure, OData

27November 2010msdnmagazine.com

Aft er digging around a bit, I fi nd that the Infogroup Business
Database service looks like it could be interesting for my road trip
application. Aft er looking through the available visualizations of
the data (a sample of the data in table format, or in some cases a
visualization of the data on a map or in a chart), it looks like it
should provide me with points of interest including hotels,
restaurants and gas stations along the route, and it should meet my
requirements. Aft er I’ve determined which datasets fi t my needs,
I can choose to purchase a monthly subscription to the service,
allowing me an unlimited number of queries against the service
per month, and I can simply pay with a credit card. After I’ve
purchased something, I can manage my account and view all my
current subscriptions in the Account section of the Marketplace.
The Account section can also be used to create and manage
account keys, which I use to access my subscriptions. When
accessing data from an application such as PowerPivot, I’ll need
to provide my account key. Similarly, when developing an appli-
cation, it will authenticate with an account key.

Aft er I’ve purchased a data off ering, DataMarket includes a
Service Explorer, as seen in Figure 1, which allows me to explore
a dataset by creating queries and previewing the results, eff ectively
learning more about the data and the schema that each dataset
makes available.

If I open up the Infogroup Business Database service in the
Service Explorer, I can create queries that fi lter by city, state and
ZIP code to fi nd places along the planned route. For example, if I
specify Seattle as the city and WA as the state and click on “Execute
query,” I get back a preview including the fi rst 100 results from the
service. I can see from the preview that there’s a Westin Hotel in
Seattle that I’ll want my application to include in the list of stops.
By default, when I click Preview, the results show up on the right
side of the explorer in a basic tabular
format to make it easy to read through.
But I can also view the OData Atom
format that I’ll use in my application
right there in the Service Explorer, or
view the raw data in the same format
originally provided by Infogroup.

If I wasn’t a developer, or if my
goal wasn’t to build an application
with this data, but rather just pull the
data into an existing tool that under-
stands OData—such as PowerPivot
for Excel 2010—I could also do that
directly from DataMarket simply
by signing in, opening my current
subscriptions list and clicking on
the data off ering. From there I will
be given the option to open the data
offering in the application of my
choice. (For more information on
using DataMarket with Power Pivot,
including a step-by-step tutorial, be
sure to check out the DataMarket team
blog at blogs.msdn.com/dallas.)

Consuming OData
Have you previously built an application that consumes data
from an OData service? If the answer is yes, you’re already well
on your way to consuming data from DataMarket in your app,
because most DataMarket services are exposed using OData. I’ll
quickly go through the basics of consuming OData.

Whether I begin with an existing application and I’m
simply adding in new features that utilize data from
Data Market, or if I’m creating a new application from
scratch, the first step in pulling data in from a DataMarket
service is to define the classes that I’ll use to represent the data
in my application. I can do this by coding my own Plain Old C#
Object (POCO) classes or by using the Add Service Reference
Wizard in Visual Studio to generate the necessary classes.

As described earlier, the publisher (the owner of the data) speci-
fi es how the data for each dataset is exposed and the terms of use
dictating how the data may be used aft er purchase. Th is includes
specifying how or if a user can create ad hoc queries against a data-
set, which fi elds a user can query on to retrieve the data and which
fi elds are returned. In some cases, a publisher may specify that
users can’t create ad hoc queries and must use fi xed Web methods
to request data from the service. As a developer, before beginning to
write an application, I’ll need to look at the Atom Service document
for a particular off ering to determine whether the off ering exposes
any entity sets for query. I can do this by pointing the browser at
the root URI of an off ering. If the service document doesn’t contain
any collections, the off ering doesn’t expose entity sets for query and
I’ll be required to access the dataset using fi xed Web methods. For
example, let’s examine the Atom Service documents for two separate
datasets, one that exposes an Entity Set for query (Data.Gov Crime
Data), and one that doesn’t allow query at all (AP Data). Notice in

 Figure 1 DataMarket Service Explorer

www.msdnmagazine.com
http://blogs.msdn.com/dallas

msdn magazine28 Windows Azure Marketplace DataMarket

the following code samples that the AP off ering has no <collection>
nodes (representing exposed entity sets) in the service document.

Here’s an Atom Service document for the Data.gov Crime data
off ering, which exposes entity sets for query. Th is particular off ering
exposes a single entity set, CityCrime:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service xml:base=
 "https://api.datamarket.azure.com/Data.ashx/data.gov/Crimes"
 xmlns:atom=
 "http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Default</atom:title>
 <collection href="CityCrime">
 <atom:title>CityCrime</atom:title>
 </collection>
 </workspace>
</service>

Here’s an Atom Service document for the AP offering, which
doesn’t allow ad hoc query:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service xml:base=
 "https://api.datamarket.azure.com/Data.ashx/data.gov/Crimes"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:app="http://www.w3.org/2007/app"
 xmlns="http://www.w3.org/2007/app">
 <workspace>
 <atom:title>Default</atom:title>
 </workspace>
</service>

If the dataset I’m using exposes entity sets for query, I can use
Add Service Reference in Visual Studio, just as I do for a Windows
Communication Foundation (WCF) service. I simply right-click
on the project and choose Add Service Reference. In the Add
Service Reference dialog box, I enter the URI for the entry point
of the service (I can get this from the Service Explorer page in
DataMarket) as the Address and then click OK.

If the dataset I’m using doesn’t allow for ad hoc query, however,
I can’t use Add Service Reference. In this case, I can code my own
POCO classes representing the entities (or objects) returned from
the fi xed Web methods that I call. DataMarket uses Basic Authen-
tication, passing in a Windows Live ID as the username and an
associated DataMarket account key in the password fi eld.For the
purpose of the console application example (see Figure 2), I used
Add Service Reference in Visual Studio to generate the classes. Vi-
sual Studio will access the service and generate the associated class-
es based on the data service defi nition, and add them to the project.
Aft er my classes have been generated, I continue to develop my ap-
plication in the same way I would any application that consumes an
OData service, using either basic authentication or Audit Collection
Services to authenticate with the service. Th e Figure 2 example sets
up a simple console application using Basic Authentication.

Note: To run the sample code in Figure 2, you’ll need to regis-
ter as a DataMarket customer and subscribe to the Data.Gov Crime
Statistics off ering. Also note that the URI used in this sample refers to
a pre-release to manufacturing version of the service; you can fi nd the
correct URI by logging into DataMarket, going to My Datasets and
accessing your subscription to the Data.gov Crime Statistics off ering.

For more details on writing applications that consume data services,
check out “Entity Framework 4.0 and WCF Data Services 4.0 in Visual
Studio 2010” (msdn.microsoft.com/magazine/ee336128) and “Expose and Con-
sume Data in a Web Services World” (msdn.microsoft.com/magazine/cc748663).

Selling Data on DataMarket
Many popular apps and Web sites generate, store and consume large
amounts of valuable data. But typically that data is only leveraged
within the app for which it was created. With the introduction of
WCF Data Services and OData, we had a simple way for developers to
expose their data for broader use, off ering a data services platform
and making it easier for that data to be used not only within the
initially intended application, but within third-party apps. Now, with
DataMarket, there’s a simple opportunity for developers to not only
expose that data to apps they build, but also to generate profi t by sell-
ing data they’re already required to store and maintain.

DataMarket is built on Windows Azure and SQL Azure and
allows publishers to create datasets for data that they host in SQL
Azure. If my data is already stored in SQL Azure, I’m well on my
way to being able to off er data for sale in DataMarket. To learn
more about how you can become a DataMarket publisher, check
out blogs.msdn.com/dallas.

ELISA FLASKO is a program manager in the Windows Azure Marketplace
DataMarket team at Microsoft . She can be reached at blogs.msdn.com/elisaj.

THANKS to the following technical experts for reviewing this article:
Rene Bouw, Moe Khosravy and Adam Wilson

public class Program
 {

 static void Main(string[] args)
 {
 GetCityCrime X = new GetCityCrime();

 IList<CityCrime> stats = X.getStats();

 foreach (CityCrime c in stats)
 {
 Console.WriteLine(c.City + " : " + c.AggravatedAssault);
 }
 Console.ReadLine();
 }
 }

 public class GetCityCrime
 {
 Uri serviceUri;
 datagovCrimesContainer context;

 public GetCityCrime()
 {
 serviceUri =
 new Uri("https://api.datamarket.azure.com/Data.ashx/data.gov/Crimes");
 context = new datagovCrimesContainer(serviceUri);
 context.Credentials = new NetworkCredential(" ", "
 <my account key as copied from DataMarket>");
 }

 public IList<CityCrime> getStats()
 {
 IEnumerable<CityCrime> query;

 query = from c in context.CityCrime
 where c.State == "Alaska"
 select c;

 return query.ToList();
 }
 }

Figure 2 A Simple Console Application Accessing a Data
Service and Printing the Results

http://msdn.microsoft.com/magazine/ee336128
http://msdn.microsoft.com/magazine/cc748663
http://blogs.msdn.com/dallas
http://blogs.msdn.com/elisaj

Free 60 Day Evaluation!
www.leadtools.com/msdn
(800) 637-1840

Silverlight: 100% pure Silverlight 3 and 4 Imaging SDK.
Image Formats & Compression: Supports 150+ image formats and compressions

including TIFF, EXIF, PDF, JPEG2000, JBIG2 and CCITT G3/G4.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing:

supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit

Forms Recognition & Processing: Automatically identify and classify forms and

Barcode:
development.
Document Cleanup/Preprocessing: Auto-

and border removal, inverted text correction and more for optimum results in OCR and
Barcode recognition.
PDF & PDF/A:

annotations.
Annotations: Interactive UI for document mark-up, redaction and image measurement

(including support for DICOM annotations).
Medical Web Viewer Framework:

PACS Workstation Framework: Set of .NET PACS components that can be used to
build a full featured PACS Workstation application.
Medical Image Viewer:

DICOM:

PACS Communications: Full support for DICOM messaging and secure communication

3D:
methods including MIP, MinIP, MRP, VRT and SSD.
Scanning:

speed scanning.
DVD: Play, create, convert and burn DVD images.
MPEG Transport Stream:
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, OGG, ISO,

DVD and more.

Microsoft, HP,
Sony, Canon, Kodak, GE, Siemens, the US Air Force and Veterans Affairs Hospitals.

color, grayscale, document, medical, vector and multimedia imaging development.

Vector

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

DocumentSilverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-2 1 8/11/10 11:24 AM

http://www.leadtools.com/msdn

msdn magazine30

CLO U D DATA

Getting Started with
SQL Azure Development

Microsoft Windows Azure offers several choices for
data storage. Th ese include Windows Azure storage and SQL Azure.
You may choose to use one or both in your particular project.
Windows Azure storage currently contains three types of storage
structures: tables, queues and blobs.

SQL Azure is a relational data storage service in the cloud. Some
of the benefi ts of this off ering are the ability to use a familiar rela-
tional development model that includes much of the standard SQL
Server language (T-SQL), tools and utilities. Of course, working with
well-understood relational structures in the cloud, such as tables,
views and stored procedures, also results in increased developer
productivity when working in this new platform. Other benefi ts
include a reduced need for physical database-administration tasks to
perform server setup, maintenance and security, as well as built-in support
for reliability, high availability and scalability.

Lynn Langit

I won’t cover Windows Azure storage or make a comparison
between the two storage modes here. You can read more about
these storage options in Julie Lerman’s July 2010 Data Points
column (msdn.microsoft.com/magazine/ff796231). It’s important to note
that Windows Azure tables are not relational tables. Th e focus of
this is on understanding the capabilities included in SQL Azure.

Th is article will explain the diff erences between SQL Server and
SQL Azure. You need to understand the diff erences in detail so that
you can appropriately leverage your current knowledge of SQL
Server as you work on projects that use SQL Azure as a data source.

If you’re new to cloud computing you’ll want to do some back-
ground reading on Windows Azure before continuing with this
article. A good place to start is the MSDN Developer Cloud Center
at msdn.microsoft.com/ff380142.

Getting Started with SQL Azure
To start working with SQL Azure, you’ll fi rst need to set up an
account. If you’re an MSDN subscriber, then you can use up to
three SQL Azure databases (maximum size 1GB each) for up to 16
months (details at msdn.microsoft.com/subscriptions/ee461076) as a devel-
oper sandbox. To sign up for a regular SQL Azure account (storage
and data transfer fees apply) go to microsoft.com/windowsazure/offers/.

Aft er you’ve signed up for your SQL Azure account, the simplest
way to initially access it is via the Web portal at sql.azure.com. You
must sign in with the Windows Live ID that you’ve associated to
your Windows Azure account. Aft er you sign in, you can create
your server installation and get started developing your application.

This article discusses prerelease features of SQL Azure and other
tools. All information is subject to change.

This article discusses:
• Setting up databases

• Creating an application

• Supported database features

• Data-migration tools

Technologies discussed:
Windows Azure, SQL Azure, SQL Server, Visual Studio 2010

http://msdn.microsoft.com/magazine/ff796231
http://msdn.microsoft.com/ff380142
http://msdn.microsoft.com/subscriptions/ee461076
http://microsoft.com/windowsazure/offers/

31November 2010msdnmagazine.com

An example of the SQL Azure Web management portal is shown
in Figure 1. Here you can see a server and its associated databases.
You’ll notice that there’s also a tab on the Web portal for managing
the Firewall Settings for your particular SQL Azure installation.

As you initially create your SQL Azure server installation, it will
be assigned a random string for the server name. You’ll generally
also set the administrator username, password, geographic server
location and fi rewall rules at the time of server creation. You can
select the location for your SQL Azure installation at the time
of server creation. You will be presented with a list of locations
(datacenters) from which to choose. If your application front end
is built in Windows Azure, you have the option to locate both that
installation and your SQL Azure installation in the same geographic
location by associating the two installations.

By default there’s no access to your server, so you’ll have to create
fi rewall rules for all client IPs. SQL Azure uses port 1433, so make
sure that port is open for your client application as well. When con-
necting to SQL Azure you’ll use the username@servername format
for your username. SQL Azure supports SQL Server Authentication
only; Windows Authentication is not supported. Multiple Active
Result Set (MARS) connections are supported.

Open connections will time out aft er 30 minutes of inactivity. Also,
connections can be dropped for long-running queries and trans-
actions or excessive resource usage. Development best practices in
your applications around connections are to open, use and then close
those connections manually, to include retry connection logic for
dropped connections and to avoid caching connections because of
these behaviors. For more details about supported client protocols
for SQL Azure, see Steve Hale’s blog post at blogs.msdn.com/sqlnativeclient/
archive/2010/02/12/using-sql-server-client-apis-with-sql-azure-vversion-1-0.aspx.

Another best practice is to encrypt your connection string to
prevent man-in-the-middle attacks.

You’ll be connected to the master database by default if you don’t
specify a database name in the connection string. In SQL Azure the
T-SQL statement USE is not supported for changing databases, so you’ll
generally specify the database you want to con-
nect to in the connection string (assuming you
want to connect to a database other than master).
Here’s an example of an ADO.NET connection:

Server=tcp:server.ctp.database.windows.net;
Database=<databasename>;
User ID=user@server;
Password=password;
Trusted_Connection=False;
Encrypt=true;

Setting up Databases
After you’ve successfully connected to your
installation you’ll want to create one or more
databases. Although you can create databases
using the SQL Azure portal, you may prefer to
do so using some of the other tools, such as SQL
Server Management Studio 2008 R2. By default,
you can create up to 149 databases for each SQL
Azure server installation. If you need more data-
bases than that, you must call the Windows
Azure business desk to have this limit increased.

When creating a database you must select the maximum size. Th e
current options for sizing (and billing) are Web or Business Edition.
Web Edition, the default, supports databases of 1GB or 5GB total.
Business Edition supports databases of up to 50GB, sized in incre-
ments of 10GB—in other words, 10GB, 20GB, 30GB, 40GB and 50GB.

You set the size limit for your database when you create it by
using the MAXSIZE keyword. You can change the size limit or
the edition (Web or Business) aft er the initial creation using the
ALTER DATABASE statement. If you reach your size or capacity
limit for the edition you’ve selected, then you’ll see the error code
40544. Th e database size measurement doesn’t include the master
database, or any database logs. For more details about sizing and
pricing, see microsoft.com/windowsazure/pricing/#sql.

It’s important to realize that when you create a new SQL Azure
database, you’re actually creating three replicas of that database.
Th is is done to ensure high availability. Th ese replicas are com-
pletely transparent to you. Th e new database appears as a single
unit for your purposes.

Once you’ve created a database, you can quickly get the connec-
tion string information for it by selecting the database in the list on
the portal and then clicking the Connection Strings button. You
can also quickly test connectivity via the portal by clicking the Test
Connectivity button for the selected database. For this test to suc-
ceed you must enable the Allow Microsoft Services to Connect to
this Server option on the Firewall Rules tab of the SQL Azure portal.

Creating Your Application
Aft er you’ve set up your account, created your server, created at
least one database and set a fi rewall rule so that you can connect
to the database, you can start developing your application using
this data source.

Unlike Windows Azure data storage options such as tables,
queues or blobs, when you’re using SQL Azure as a data source
for your project, there’s nothing to install in your development
environment. If you’re using Visual Studio 2010, you can just get

Figure 1 Summary Information for a SQL Azure Database

www.msdnmagazine.com
http://blogs.msdn.com/sqlnativeclient/archive/2010/02/12/using-sql-server-client-apis-with-sql-azure-vversion-1-0.aspx
http://blogs.msdn.com/sqlnativeclient/archive/2010/02/12/using-sql-server-client-apis-with-sql-azure-vversion-1-0.aspx
http://microsoft.com/windowsazure/pricing/#sql

msdn magazine32 Cloud Data

started—no additional SDKs, tools or
anything else are needed.

Although many developers will
choose to use a Windows Azure front
end with a SQL Azure back end, this con-
fi guration is not required. You can use
any front-end client with a supported
connection library such as ADO.NET
or ODBC. This could include, for
example, an application written in Java
or PHP. Connecting to SQL Azure via
OLE DB is currently not supported.

If you’re using Visual Studio 2010
to develop your application, you can
take advantage of the included ability
to view or create many types of objects
in your selected SQL Azure database
installation directly from the Visual
Studio Server Explorer. Th ese objects
are Tables, Views, Stored Procedures,
Functions and Synonyms. You can
also see the data associated with these
objects using this viewer. For many
developers, using Visual Studio 2010
as the primary tool to view and man-
age SQL Azure data will be suffi cient.
The Server Explorer View window
is shown in Figure 2. Both a local installation of a database and
a cloud-based instance are shown. You’ll see that the tree nodes
diff er slightly in the two views. For example, there’s no Assemblies
node in the cloud installation because custom assemblies are not
supported in SQL Azure.

As I mentioned earlier, another tool you may want to use to work
with SQL Azure is SQL Server Management Studio (SSMS) 2008
R2. With SSMS 2008 R2, you actually have access to a fuller set of
operations for SQL Azure databases than in Visual Studio 2010. I
fi nd that I use both tools, depending on which operation I’m trying
to complete. An example of an operation available in SSMS 2008
R2 (and not in Visual Studio 2010) is creating a new database using
a T-SQL script. Another example is the ability to easily perform
index operations (create, maintain, delete and so on). An example
is shown in Figure 3.

Newly released in SQL Server 2008 R2 is a data-tier application,
or DAC. DAC pacs are objects that combine SQL Server or SQL
Azure database schemas and objects into a single entity. You can use
either Visual Studio 2010 (to build) or SQL Server 2008 R2 SSMS
(to extract) to create a DAC from an existing database.

If you wish to use Visual Studio 2010 to work with a DAC, then
you’d start by selecting the SQL Server Data-Tier Application project
type in Visual Studio 2010. Th en, on the Solution Explorer, right-
click your project name and click Import Data-Tier Application.
A wizard opens to guide you through the import process. If you’re
using SSMS, start by right-clicking on the database you want to use
in the Object Explorer, click Tasks, then click Extract Data-Tier
Application to create the DAC.

Th e generated DAC is a compressed
fi le that contains multiple T-SQL and
XML files. You can work with the
contents by right-clicking the .dacpac
fi le and then clicking Unpack. SQL
Azure supports deleting, deploying,
extracting and registering DAC pacs,
but does not support upgrading them.

Another tool you can use to connect
to SQL Azure is the latest community
technology preview (CTP) release
of the tool code-named “Houston.”
Houston is a zero-install, Silverlight-
based management tool for SQL
Azure installations. When you con-
nect to a SQL Azure installation using
Houston, you specify the datacenter
location (as of this writing North Cen-
tral U.S., South Central U.S., North
Europe, Central Europe, Asia Pacifi c
or Southeast Asia).

Houston is in early beta and the cur-
rent release (shown in Figure 4) looks
somewhat like SSMS. Houston supports
working with Tables, Views, Queries
and Stored Procedures in a SQL Azure
database installation. You can access

Houston from the SQL Azure Labs site at sqlazurelabs.com/houston.aspx.
Another tool you can use to connect to a SQL Azure data-

base is SQLCMD (msdn.microsoft.com/library/ee336280). Even though
SQLCMD is supported, the OSQL command-line tool is not
supported by SQL Azure.

Using SQL Azure
So now you’ve connected to your SQL Azure installation and have
created a new, empty database. What exactly can you do with SQL
Azure? Specifi cally, you may be wondering what the limits are on
creating objects. And aft er those objects have been created, how
do you populate those objects with data?

As I mentioned at the beginning of this article, SQL Azure pro-
vides relational cloud data storage, but it does have some subtle
feature diff erences to an on-premises SQL Server installation.
Starting with object creation, let’s look at some of the key diff er-
ences between the two.

You can create the most commonly used objects in your SQL
Azure database using familiar methods. Th e most commonly used
relational objects (which include tables, views, stored procedures,

Figure 2 Viewing Data Connections in Visual Studio
Server Explorer

Houston is a zero-install,
Silverlight-based management
tool for SQL Azure installations.

http://sqlazurelabs.com/houston.aspx
http://msdn.microsoft.com/library/ee336280

1110msdn_GrapeCity_Insert.indd 1 10/6/10 11:09 AM

www.GCPowerTools.com

1110msdn_GrapeCity_Insert.indd 2 10/6/10 11:10 AM

www.GCPowerTools.com

33November 2010msdnmagazine.com

indices and functions) are all available. Th ere are some diff erences
around object creation, though. Here’s a summary of those diff erences:

• SQL Azure tables must contain a clustered index. Non-
clustered indices can be subsequently created on selected
tables. You can create spatial indices, but you cannot
create XML indices.

• Heap tables are not supported.
• CLR geo-spatial types (such as Geography and Geometry)

are supported, as is the HierachyID data type. Other CLR
types are not supported.

• View creation must be the fi rst statement in a batch. Also,
view (or stored procedure) creation with encryption is
not supported.

• Functions can be scalar, inline or multi-statement table-
valued functions, but cannot be any type of CLR function.

Th ere’s a complete reference of partially supported T-SQL state-
ments for SQL Azure on MSDN at msdn.microsoft.com/library/ee336267.

Before you get started creating your objects, remember that
you’ll connect to the master database if you don’t specify a
diff erent one in your connection string. In SQL Azure, the USE
(database) statement is not supported for changing databases, so if
you need to connect to a database other than the master database,
then you must explicitly specify that database in your connection
string, as shown earlier.

Data Migration and Loading
If you plan to create SQL Azure objects using an existing, on-premises
database as your source data and structures, then you can simply use
SSMS to script an appropriate DDL to create those objects on SQL
Azure. Use the Generate Scripts Wizard and set the “Script for the
database engine type” option to “for SQL Azure.”

An even easier way to generate a script is to use the SQL Azure
Migra tion Wizard, available as a download from CodePlex at
sql azure mw.code plex.com. With this handy tool you can generate a script to
create the objects and can also load the data via bulk copy using bcp.exe.

You could also design a SQL Server Integration Services (SSIS)
package to extract and run a DDM or DDL script. If you’re
using SSIS, you’d most commonly design a package that extracts
the DDL from the source database, scripts that DDL for SQL
Azure and then executes that script on one or more SQL Azure
installations. You might also choose to load the associated data as
part of the package’s execution path. For more information about
working with SSIS, see msdn.microsoft.com/library/ms141026.

Also of note regarding DDL creation and data migration is the
CTP release of SQL Azure Data Sync Services (sqlazurelabs.com).
You can see this service in action in a Channel 9 video, “Using
SQL Azure Data Sync Service to provide Geo-Replication of SQL
Azure Databases,” at tinyurl.com/2we4d6q. Currently, SQL Azure Data
Sync services works via Synchronization Groups (HUB and MEM-
BER servers) and then via scheduled synchronization at the level
of individual tables in the databases selected for synchronization.

You can use the Microsoft Sync Framework Power Pack for SQL
Azure to synchronize data between a data source and a SQL Azure
installation. As of this writing, this tool is in CTP release and is
available from tinyurl.com/2ecjwku. If you use this framework to

perform subsequent or ongoing data synchronization for your
application, you may also wish to download the associated SDK.

What if your source database is larger than the maximum size
for the SQL Azure database installation? Th is could be greater than
the absolute maximum of 50GB for the Business Edition or some
smaller limit based on the other program options.

Currently, customers must partition (or shard) their data man-
ually if their database size exceeds the program limits. Microsoft
has announced that it will be providing an auto-partitioning
utility for SQL Azure in the future. In the meantime, it’s important
to note that T-SQL table partitioning is not supported in SQL Azure.
Th ere’s a free utility called Enzo SQL Shard (enzosqlshard.codeplex.com)
that you can use for partitioning your data source.

You’ll want to take note of some other diff erences between SQL
Server and SQL Azure regarding data loading and data access.

Added recently is the ability to copy a SQL Azure database via
the Database copy command. Th e syntax for a cross-server copy
is as follows:

CREATE DATABASE DB2A AS COPY OF Server1.DB1A

Th e T-SQL INSERT statement is supported (with the exceptions
of updating with views or providing a locking hint inside of an
INSERT statement).

Related further to data migration, T-SQL DROP DATABASE
and other DDL commands have additional limits when executed
against a SQL Azure installation. In addition, the T-SQL RESTORE

Figure 3 Using SQL Server Management Studio 2008 R2 to
Manage SQL Azure

www.msdnmagazine.com
http://msdn.microsoft.com/library/ee336267
http://sqlazuremw.codeplex.com
http://msdn.microsoft.com/library/ms141026
http://tinyurl.com/2we4d6q
http://tinyurl.com/2ecjwku
http://enzosqlshard.codeplex.com

msdn magazine34 Cloud Data

and ATTACH DATABASE commands are not supported. Finally,
the T-SQL statement EXECUTE AS (login) is not supported.

Data Access and Programmability
Now let’s take a look at common programming concerns when
working with cloud data.

First, you’ll want to consider where to set up your development
environment. If you’re an MSDN subscriber and can work with
a database that’s less than 1GB, then it may well make sense to
develop using only a cloud installation (sandbox). In this way there
will be no issue with migration from local to cloud. Using a regular
(non-MSDN subscriber) SQL Azure account, you could develop
directly against your cloud instance (most probably using a cloud-
located copy of your production database). Of course, developing
directly from the cloud is not practical for all situations.

If you choose to work with an on-premises
SQL Server database as your development
data source, then you must develop a mech-
anism for synchronizing your local installa-
tion with the cloud installation. You could
do that using any of the methods discussed
earlier, and tools like Data Sync Services and
Sync Framework are being developed with
this scenario in mind.

As long as you use only the supported
features, the method for having your ap-
plication switch from an on-premises SQL
Server installation to a SQL Azure data-
base is simple—you need only to change the
connection string in your application.

Regardless of whether you set up your development installation
locally or in the cloud, you’ll need to understand some program-
mability differences between SQL Server and SQL Azure. I’ve
already covered the T-SQL and connection string diff erences. In
addition, all tables must have a clustered index at minimum (heap
tables are not supported).

As previously mentioned, the USE statement for changing
databases isn’t supported. Th is also means that there’s no support
for distributed (cross-database) transactions or queries, and linked
servers are not supported.

Other options not available when working with a SQL Azure
database include:

• Full-text indexing
• CLR custom types (however, the built-in Geometry and

Geography CLR types are supported)
• RowGUIDs (use the uniqueidentifier type with the

NEWID function instead)
• XML column indices
• Filestream datatype
• Sparse columns

Default collation is always used for the database. To make col-
lation adjustments, set the column-level collation to the desired
value using the T-SQL COLLATE statement.

And fi nally, you cannot currently use SQL Profi ler or the Data-
base Tuning Wizard on your SQL Azure database.

Some important tools that you can use with SQL Azure for
tuning and monitoring include:

• SSMS Query Optimizer to view estimated or actual query
execution plan details and client statistics

• Select Dynamic Management views to monitor health and status
• Entity Framework to connect to SQL Azure aft er the initial

model and mapping fi les have been created by connecting
to a local copy of your SQL Azure database.

Depending on what type of application you’re developing, you
may be using SSAS, SSRS, SSIS or PowerPivot. You can also use
any of these products as consumers of SQL Azure database data.
Simply connect to your SQL Azure server and selected database
using the methods already described in this article.

It’s also important to fully understand the behavior of transactions
in SQL Azure. As mentioned, only local (within the same database)

Figure 4 Using Houston to Manage SQL Azure

Figure 5 SQL Azure Status History

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting,
calculating,charting and printing to your Windows Forms applications
with the easy touse WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

In a League by Itself
“SpreadsheetGear 2010 is Fantastic! These new capabilities just propelled
this control way-way past any competition, of which you have none IMHO.
SpreadsheetGear is in a league all by itself.”

Greg Newman, Senior Software Engineer, WSFS Cash Connect

Untitled-1 1 10/5/10 3:58 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine36 Cloud Data

transactions are supported. In addition, the only transaction-
isolation level available for a database hosted on SQL Azure is
READ COMMITTED SNAPSHOT. Using this isolation level,
readers get the latest consistent version of data that was available
when the statement STARTED.

SQL Azure doesn’t detect update confl icts. Th is is also called an
optimistic concurrency model, because lost updates, non-repeatable
reads and phantoms can occur. Of course, dirty reads cannot occur.

Database Administration
Generally, when using SQL Azure, the administrator role becomes
one of logical installation management. Physical management is
handled by the platform. From a practical standpoint this means
there are no physical servers to buy, install, patch, maintain or
secure. Th ere’s no ability to physically place fi les, logs, tempdb and
so on in specific physical locations. Because of this, there’s no
support for the T-SQL commands USE <database>, FILEGROUP,
BACKUP, RESTORE or SNAPSHOT.

Th ere’s no support for the SQL Agent on SQL Azure. Also, there is
no ability (or need) to confi gure replication, log shipping, database
mirroring or clustering. If you need to maintain a local, synchronized
copy of SQL Azure schemas and data, then you can use any of the
tools discussed earlier for data migration and synchronization—they
work both ways. You can also use the DATABASE COPY command.

Other than keeping data synchronized, what are some other tasks
that administrators may need to perform on a SQL Azure installation?

Most commonly, there will still be a need to perform logical
administration. Th is includes tasks related to security and performance
management. Additionally, you may be involved in monitoring for
capacity usage and associated costs. To help you with these tasks, SQL
Azure provides a public Status History dashboard that shows current
service status and recent history (an example of history is shown in
Figure 5) at microsoft.com/windowsazure/support/status/servicedashboard.aspx.

SQL Azure provides a high-security bar
by default. It forces SSL encryption with all
permitted (via fi rewall rules) client connec-
tions. Server-level logins and database-level
users and roles are also secured. Th ere are no
server-level roles in SQL Azure. Encrypting
the connection string is a best practice.
Also, you may want to use Windows Azure
certificates for additional security. For
more details, see blogs.msdn.com/b/sqlazure/
archive/2010/09/07/10058942.aspx.

In the area of performance, SQL Azure
includes features such as automatically
killing long-running transactions and
idle connections (more than 30 minutes).
Although you can’t use SQL Profi ler or trace
fl ags for performance tuning, you can use

SQL Query Optimizer to view query execution plans and client
statistics. You can also perform statistics management and index
tuning using the standard T-SQL methods.

Th ere’s a select list of dynamic management views (covering database,
execution or transaction information) available for database admin-
istration as well. Th ese include sys.dm_exec_connections , _requests,
_sessions, _tran_database_transactions, _active_transactions and
_partition_stats. For a complete list of supported dynamic manage-
ment views for SQL Azure, see msdn.microsoft.com/library/ee336238.aspx#dmv.

Th ere are also some new views such as sys.database_usage and
sys.bandwidth_usage. Th ese show the number, type and size of
the databases and the bandwidth usage for each database so that
administrators can understand SQL Azure billing. A sample is
shown in Figure 6. In this view, quantity is listed in KB. You can
monitor space used via this command:

SELECT SUM(reserved_page_count) * 8192
FROM sys.dm_db_partition_stats

You can also access the current charges for the SQL Azure
installation via the SQL Azure portal by clicking on the Billing link
at the top-right corner of the screen.

Learn More
To learn more about SQL Azure, I suggest you download the
Windows Azure Training Kit. Th is includes SQL Azure hands-
on learning, white papers, videos and more. Th e training kit is
available from microsoft.com/downloads/details.aspx?FamilyID=413E88F8-
5966-4A83-B309-53B7B77EDF78.

Also, you’ll want to read the SQL Azure Team Blog at blogs.msdn.com/
b/ sqlazure/ and check out the MSDN SQL Azure Developer Center
at msdn.microsoft.com/windowsazure/sqlazure.

If you want to continue to preview upcoming features for SQL
Azure, be sure to visit SQL Azure Labs at sqlazurelabs.com.

LYNN LANGIT is a developer evangelist for Microsoft in Southern California. She’s
published two books on SQL Server Business Intelligence and has created a set of
courseware to introduce children to programming at TeachingKidsProgramming.org.
Read her blog at blogs.msdn.com/SoCalDevGal.

THANKS to the following technical experts for reviewing this article:
George Huey and David Robinson

Figure 6 Bandwidth Usage in SQL Query

There are no physical servers to buy,
install, patch, maintain or secure.

http://microsoft.com/windowsazure/support/status/servicedashboard.aspx
http://blogs.msdn.com/b/sqlazure/archive/2010/09/07/10058942.aspx
http://blogs.msdn.com/b/sqlazure/archive/2010/09/07/10058942.aspx
http://msdn.microsoft.com/library/ee336238.aspx#dmv
http://microsoft.com/downloads/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78
http://microsoft.com/downloads/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78
http://blogs.msdn.com/b/sqlazure/
http://blogs.msdn.com/b/sqlazure/
http://msdn.microsoft.com/windowsazure/sqlazure
http://sqlazurelabs.com
http://TeachingKidsProgramming.org
http://blogs.msdn.com/SoCalDevGal

It’s so powerful it makes the Kraken look like a gimp sea monkey.

It’s so fast it makes warp drive look like a hobbit running backwards.

IT’S SO EASY IT MIGHT AS WELL BE “GOD MODE”
It makes other reporting solutions seem like

you’re trying to crack RIJNDAEL ENCRYPTION,

or like driving the “ROAD OF DEATH” in the

Bolivian Andes, backwards, while blindfolded.

No other solution can match Windward’s array of features,
STREAMLINED IMPLEMENTATION, and already familiar
interface. You create custom report templates with Word,
Excel, or PowerPoint. Even your co-workers who need IT
to turn on their computers can use Microsoft Office to
format reports.

I F YOU F IND A L L OF T H IS HA RD T O S WALLOW,

D O W N L O A D T H E F R E E T R I A L A T

Design Reports in Microsoft Word, Excel, and PowerPoint.

Drag N’Drop data into report templates no coding required!

Solutions for .Net, Java and SharePoint platforms

Integrates easily into any software application

Unless of course you enjoy designing

report templates with endless code,

apologies for keeping you from your
current mind-numbingly dull solution.

the ONLY EPIC REPORT ING & DOCUMENT GENERAT ING SOLUT ION

A N D S E E F O R Y O U R S E L F .

(303) 499-2544

www.WindwardReports.com/msdn.aspx

Untitled-1 1 7/19/10 11:53 AM

http://www.WindwardReports.com/msdn.aspx

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. While supplies last. Void where
prohibited or restricted by law. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 2 8/4/10 5:17 PM

www.componentone.com/devtopia

Untitled-4 3 8/4/10 5:17 PM

www.componentone.com/devtopia

msdn magazine40

CLO U D COMPUT ING

Synchronizing Multiple
Nodes in Windows Azure

The cloud represents a major technology shift , and many
industry experts predict this change is of a scale we see only every
12 years or so. Th is level of excitement is hardly surprising when
you consider the many benefi ts the cloud promises: signifi cantly
reduced running costs, high availability and almost infi nite scal-
ability, to name but a few.

Of course, such a shift also presents the industry with a
number of challenges, not least those faced by today’s developers.
For example, how do we build systems that are optimally positioned
to take advantage of the unique features of the cloud?

Fortunately, Microsoft in February launched the Windows
Azure Platform, which contains a number of right-sized pieces to
support the creation of applications that can support enormous
numbers of users while remaining highly available. However, for any

Josh Twist

application to achieve its full potential when deployed to the cloud,
the onus is on the developers of the system to take advantage of
what is arguably the cloud’s greatest feature: elasticity.

Elasticity is a property of cloud platforms that allows additional
resources (computing power, storage and so on) to be provisioned
on-demand, providing the capability to add additional servers to your
Web farm in a matter of minutes, not months. Equally important
is the ability to remove these resources just as quickly.

A key tenet of cloud computing is the pay-as-you-go business
model, where you only pay for what you use. With Windows Azure,
you only pay for the time a node (a Web or Worker Role running
in a virtual machine) is deployed, thereby reducing the number
of nodes when they’re no longer required or during the quieter
periods of your business, which results in a direct cost savings.

Th erefore, it’s critically important that developers create elastic
systems that react automatically to the provision of additional
hardware, with minimum input or configuration required from
systems administrators.

Scenario 1: Creating Order Numbers
Recently, I was lucky enough to work on a proof of concept that
looked at moving an existing Web application infrastructure into
the cloud using Windows Azure.

Given the partitioned nature of the application’s data, it was a
prime candidate for Windows Azure Table Storage. This simple
but high-performance storage mechanism—with its support for

This article discusses:
• Elasticity in the cloud

• Moving an existing Web app to Windows Azure

• Creating unique IDs

• Polling versus listening to determine released Worker Roles

Technologies discussed:
Windows Azure

Code download available at:
code.msdn.microsoft.com/mag201011Sync

http://code.msdn.microsoft.com/mag201011Sync

41November 2010msdnmagazine.com

almost infi nite scalability—was an ideal
choice, with just one notable drawback
concerning unique identifi ers.

Th e target application allowed custom-
ers to place an order and retrieve their
order number. Using SQL Server or SQL
Azure, it would’ve been easy to generate
a simple, numeric, unique identifier, but Windows Azure Table
Storage doesn’t offer auto-incrementing primary keys. Instead,
developers using Windows Azure Table Storage might create a
GUID and use this as the “key” in the table:

505EAB78-6976-4721-97E4-314C76A8E47E

The problem with using GUIDs is that they’re difficult for
humans to work with. Imagine having to read your GUID order
number out to an operator over the telephone—or make a note
of it in your diary. Of course, GUIDs have to be unique in every
context simultaneously, so they’re quite complex. Th e order num-
ber, on the other hand, only has to be unique in the Orders table.

Creating a Simple Unique ID in Windows Azure
A number of relatively simple solutions to the GUID problem
were considered:

1. Use SQL Azure to Generate Unique IDs For a num-
ber of reasons, the proof of concept had already discounted
SQL Azure in favor of Windows Azure Table Storage—
primarily due to the need for the system to scale out to many
nodes, each with many threads executing against the data.

2. Use Blob Storage to Manage an Incrementing
Value Store a central counter in Windows Azure Blob
Storage. Nodes could read and update the order number,

providing a simple sequential order
number generation mechanism for use
by multiple nodes. However, the con-
tention at this point for a busy system
requiring many new order numbers
per second would likely impede the
scalability of the system.

3. Partition Unique IDs Across Each Node Create
a lightweight in-memory counter that generates unique
order numbers. In order to ensure uniqueness across all
nodes, each node would be allocated a range of order
numbers, as shown in Figure 1.

However, this approach raises a number of questions. What
happens when a node exhausts a range? What happens when
hundreds of nodes are added to the system at one time? What if
a node crashes and is replaced by the Windows Azure runtime
with a fresh node? Administrators would need to closely monitor
these ranges and be careful to ensure the confi guration is correct
or face data corruption.

Instead, a much more elegant approach was needed—a solution
that required no per-node configuration, demonstrated little
contention and guaranteed uniqueness at all times. To achieve this,
I created a hybrid of the second and third options.

Th e concept was relatively straightforward: use a small text fi le
in blob storage to store the last order number. When a new order
number is required, a node can access this blob, increment the
value and write it back to storage. Of course, there’s a reasonable
chance that another node will have accessed the blob with the same
intention during this read-increment-write process. Without some
kind of concurrency management, the order numbers wouldn’t be

Node Range
A 0-1,000,000
B 1,000,001-2,000,000

Figure 1 Allocating a Range of Order Numbers
to Each Node to Ensure Unique IDs

public class UniqueIdGenerator
{
 private readonly object _padLock = new object();
 private Int64 _lastId;
 private Int64 _upperLimit;
 private readonly int _rangeSize;
 private readonly int _maxRetries;
 private readonly IOptimisticSyncStore _optimisticSyncStore;

 public UniqueIdGenerator(
 IOptimisticSyncStore optimisticSyncStore,
 int rangeSize = 1000,
 int maxRetries = 25)
 {
 _rangeSize = rangeSize;
 _maxRetries = maxRetries;
 _optimisticSyncStore = optimisticSyncStore;
 UpdateFromSyncStore();
 }

 public Int64 NextId()
 {
 lock (_padLock)
 {
 if (_lastId == _upperLimit)
 {
 UpdateFromSyncStore();
 }
 return _lastId++;
 }
 }

 private void UpdateFromSyncStore()

 {
 int retryCount = 0;

 // maxRetries + 1 because the first run isn't a 're'try.
 while (retryCount < _maxRetries + 1)
 {
 string data = _optimisticSyncStore.GetData();

 if (!Int64.TryParse(data, out _lastId))
 {
 throw new Exception(string.Format(
 "Data '{0}' in storage was corrupt and ” +
 “could not be parsed as an Int64", data));
 }

 _upperLimit = _lastId + _rangeSize;

 if (_optimisticSyncStore.TryOptimisticWrite(
 _upperLimit.ToString()))
 {
 return;
 }

 retryCount++;
 // update failed, go back around the loop
 }

 throw new Exception(string.Format(
 "Failed to update the OptimisticSyncStore after {0} attempts",
 retryCount));
 }
}

Figure 2 The Full UniqueIdGenerator Class

www.msdnmagazine.com

msdn magazine42 Cloud Computing

unique and the data would be corrupt. Traditionally, I might have
considered creating a locking mechanism that prevents multiple
nodes from working with the blob simultaneously. However, locks
are expensive, and if throughput and massive scalability are guiding
themes for the implementation, they’re to be avoided.

Instead, an approach using optimistic concurrency is favorable.
With optimistic concurrency, we allow multiple actors to interact
with a resource. When the resource is retrieved by an actor, the
actor is also issued a token that indicates the version of the resource.
When an update takes place, the token can be included to indicate
which version of the resource is being modifi ed. If the resource has
already been modifi ed by another actor, then the update will fail and
the original actor can retrieve the latest version and try the update
again. Optimistic concurrency works well provided the chances of

contention on updates are low. Th e cost and complexity of a lock is
avoided and the resource is protected from corruption.

Imagine that, during peak times, the system issues about 100
new order numbers per second. Th is would mean 100 requests to
update the blob every second, causing an extremely high chance
of contention, which would mean many retries, exacerbating the
situation. Th erefore, to reduce the possibility of this occurring, I
decided to allocate order numbers in ranges.

A class called the UniqueIdGenerator was created to encapsulate
this behavior. Th e class removes a range of order numbers from
blob storage by incrementing the value in confi gurable chunks. If
each UniqueIdGenerator was to reserve 1,000 order numbers at a
time, the blob would only be updated on average every 10 seconds,
signifi cantly reducing the chances of contention. Each UniqueId-
Generator is free to issue its reserved 1,000 order numbers at will,
confi dent that no other instance of the class pointing to the same
blob resource will issue the same order number.

In order to make this new component testable, an interface called
IOptimisticSyncStore was specifi ed that de-coupled the UniqueId-
Generator from the specifi c storage mechanism. Th is has an added
advantage: In the future, the component could use a diff erent type
of storage where appropriate. Here’s the interface:

public interface IOptimisticSyncStore
{
 string GetData();
 bool TryOptimisticWrite(string data);
}

As you can see, it’s quite a simple interface with just two methods:
one to retrieve the data and another to update it, the latter returning

Figure 3 Nodes Polling a Central Status Flag

2. When ready, the
administrator sets the
flag to release the
Worker Roles

1. Worker Roles poll for
a flag in blob storage at
a fixed time interval

Windows Azure Blob Storage

Windows Azure
Worker Roles

Administrator
Console

public interface IGlobalFlag
{
 bool GetFlag();
 void SetFlag(bool status);
}

public class BlobGlobalFlag : IGlobalFlag
{
 private readonly string _token = "Set";
 private readonly CloudBlob _blobReference;
 public BlobGlobalFlag(CloudStorageAccount account, string container,
 string address)
 {
 var blobClient = account.CreateCloudBlobClient();
 var blobContainer =
 blobClient.GetContainerReference(container.ToLower());
 _blobReference = blobContainer.GetBlobReference(address);
 }

 public void SetFlag(bool status)
 {
 if (status)
 {
 _blobReference.UploadText(_token);

 }
 else
 {
 _blobReference.DeleteIfExists();
 }
 }

 public bool GetFlag()
 {
 try
 {
 _blobReference.DownloadText();
 return true;
 }
 catch (StorageClientException exc)
 {
 if (exc.StatusCode == System.Net.HttpStatusCode.NotFound)
 {
 return false;
 }
 throw;
 }
 }
}

Figure 4 The IGlobalFlag Interface and Implementation for Blob Storage

The problem with using GUIDs is
that they’re diffi cult for humans

to work with.

43November 2010msdnmagazine.com

a Boolean where false indicates that there was an optimistic
concurrency failure and the process should be retried.

An implementation of IOptimisticSyncStore that uses blob
storage is available in the code download (details at the end of the
article). For the most part, the implementation is simple; however,
it’s worth looking at the TryOptimisticWrite method in more detail
to understand how optimistic concurrency has been implemented.

It’s simple to use optimistic concurrency when updating resources
in Windows Azure Blob Storage, thanks to Preconditions and Entity
Tags (ETags). A Precondition is a statement a developer asserts must
be true for an HTTP request to succeed. If the Web server evaluates
the statement to false, it should respond with an HTTP Status Code
412: “Precondition failed.” ETags are also part of the HTTP specifi ca-
tion and identify a particular version of a resource, such as a blob. If
the blob changes, the ETag should change also, as shown here:

try
{
 _blobReference.UploadText(
 data,
 Encoding.Default,
 new BlobRequestOptions {
 AccessCondition = AccessCondition.IfMatch(
 _blobReference.Properties.ETag) });
}

To specify a Precondition in code, we use the BlobRequest-
Options type and set the AccessCondition property. If this access
condition isn’t satisfi ed (for example, if another node updated the
blob in the short time since it was retrieved), the ETags wouldn’t
match and a StorageClientException would be thrown:

catch (StorageClientException exc)
{
 if (exc.StatusCode == HttpStatusCode.PreconditionFailed)
 {
 return false;
 }
 else
 {
 throw;
 }
}
return true;

Th e implementation checks the exception for the Precondition-
Failed status code and returns false in this instance. Any other type
of exception is a serious failure and is rethrown for handling and
logging further on. No exception means the update took place and

the method returns true. Th e full listing for the UniqueIdGenerator
class is shown in Figure 2.

Th e constructor takes three parameters. Th e fi rst is an implemen-
tation of IOptimisticSyncStore, such as our BlobOptimisticSyncStore
discussed previously. Th e second parameter is rangeSize, an integer
value that indicates how large the range of numbers allocated from
the blob should be. Th e larger this range, the less chance of con-
tention. However, more numbers would be lost if this node were
to crash. Th e fi nal parameter is maxRetries, an integer value that
indicates how many times the generator should attempt to update
the blob in the event of an optimistic concurrency failure. Beyond
this point, an exception is raised.

Th e NextId method is the only public member of the UniqueId-
Generator class and is used to fetch the next unique number. Th e
body of the method is synchronized to ensure that any instance of the
class is thread-safe and could, for example, be shared among all the
threads running your Web application. An if statement checks to see if
the generator has reached the upper limit of its range allocation and, if
so, calls UpdateFromSyncStore to fetch a new range from blob storage.

Th e UpdateFromSyncStore method is the fi nal but most interesting
part of the class. Th e implementation of IOptimisticSyncStore is used

public class PollingRelease
{
 private readonly IGlobalFlag _globalFlag;
 private readonly int _intervalMilliseconds;

 public PollingRelease(IGlobalFlag globalFlag,
 int intervalMilliseconds)
 {
 _globalFlag = globalFlag;
 _intervalMilliseconds = intervalMilliseconds;
 }

 public void Wait()
 {
 while (!_globalFlag.GetFlag())
 {
 Thread.Sleep(_intervalMilliseconds);
 }
 }
}

Figure 5 The PollingRelease Class

Figure 6 Using the Windows Azure AppFabric Service Bus to
Simultaneously Communicate with All Worker Roles

2. When ready, the
administrator signals
via the Service Bus

1. Worker Roles register
with the Service Bus and
listen for signal

3. Almost instantaneously,
the Worker Roles receive
the signal and are released

Windows Azure AppFabric Service Bus

Windows Azure
Worker Roles

Administrator
Console

Locks are expensive, and
if throughput and massive

scalability are guiding themes for
the implementation, they’re

to be avoided.

www.msdnmagazine.com

msdn magazine44 Cloud Computing

to fetch the upper limit of the previous allocation issued. Th e value is
incremented by the generator’s range size, and this is written back to
storage. A simple “while” loop encloses the body to ensure that the appro-
priate number of retries takes place if TryOptimisticWrite returns false.

Th e following code snippet shows a UniqueIdGenerator being
constructed, using a BlobOptimisticSyncStore with a file called
“ordernumber.dat” in a container called “uniqueids” (note: containers
in blob storage must have lowercase names):

IOptimisticSyncStore storage = new BlobOptimisticSyncStore(
 CloudStorageAccount.DevelopmentStorageAccount,
 "uniqueids",
 "ordernumber.dat");
UniqueIdGenerator
 generator = new UniqueIdGenerator(storage, 1000, 10);

Th is instance removes 1,000 IDs from the central range and will
retry 10 times in the event of an optimistic concurrency failure
before throwing an exception.

Using the UniqueIdGenerator is even simpler. Wherever you
need a new unique order number, simply call NextId:

Int64 orderId = generator.NextId();

Th e sample code shows a Windows Azure Worker Role that uses
multiple threads to quickly allocate unique order numbers and write
them to a SQL database. Th e use of SQL in this instance is simply
to prove that every order number is unique—any violation of this
would result in a Primary Key violation and throw an exception.

Th e advantage to this approach—other than creating the blob
and setting its value to 0 at the very start of the application’s
lifetime—is that no eff ort is required of the systems administrator.
Th e UniqueIdGenerator carefully manages the allocation of IDs
based on your settings, recovers gracefully in the event of a failure
and scales eff ortlessly even in the most elastic of environments.

Scenario 2: Release the Hounds!
Another interesting requirement posed by the application was the
need to rapidly process large amounts of data following a specifi ed
event that would occur at an approximately known time. Due to
the nature of the processing, work couldn’t commence on any of
the data until aft er this event.

Worker Roles are an obvious choice in this scenario, and it
would have been possible to simply ask Windows Azure to pro-
vision the necessary number of Worker Roles in response to the
aforementioned event. However, provisioning new roles can take
as long as 30 minutes, and speed was of the essence in this scenario.
Therefore, it was decided that the roles would be hydrated in
advance but in a paused state until released by an administrator—
I called this “Release the Hounds!” Two possible approaches were
considered, and I’ll review each in turn.

It should be noted that, because Windows Azure Worker Roles
are charged based on the time they’re deployed (not on how actively
they use the CPU), this approach would cost more compared to
simply creating the Worker Roles in response to the event. How-
ever, the customer was clear that this investment was worthwhile
to ensure that processing could begin as quickly as possible.

 Approach I: Polling
Th e fi rst approach, shown in Figure 3, had each node poll a central
status fl ag at a regular interval (again, stored in a Windows Azure
blob) to determine whether work could yet commence.

To un-pause the nodes, a client application simply had to set
this fl ag to true, and with the subsequent poll, each node would
be released. Th e primary disadvantage of this approach is latency,
potentially as large as the polling interval. On the other hand, this
is a very simple and reliable mechanism to implement.

Th is design is demonstrated by the PollingRelease class available
in the sample code. In order to support testability, the fl ag-storage
mechanism was abstracted behind an interface in much the same way
as for the UniqueIdGenerator class. Th e interface IGlobalFlag and
accompanying implementation for blob storage are shown in Figure 4.

Notice that in this example, the mere existence of a fi le in blob
storage indicates true, no matter what the content.

Th e PollingRelease class itself is straightforward, as shown in
Figure 5, with just one public method called Wait.

private IDisposable ConnectToServiceBus()
{
 Uri address = ServiceBusEnvironment.CreateServiceUri("sb",
 _serviceNamespace, _servicePath);
 TransportClientEndpointBehavior sharedSecretServiceBusCredential =
 new TransportClientEndpointBehavior();
 sharedSecretServiceBusCredential.CredentialType =
 TransportClientCredentialType.SharedSecret;
 sharedSecretServiceBusCredential.Credentials.SharedSecret.
 IssuerName = _issuerName;
 sharedSecretServiceBusCredential.Credentials.SharedSecret.
 IssuerSecret = _issuerSecret;

 // Create the single instance service, which raises an event
 // when the signal is received.
 UnleashService unleashService = new UnleashService();
 unleashService.Unleashed += new
 EventHandler(unleashService_Unleashed);

 // Create the service host reading the configuration.
 ServiceHost host = new ServiceHost(unleashService, address);

 IEndpointBehavior serviceRegistrySettings =
 new ServiceRegistrySettings(DiscoveryType.Public);

 foreach (ServiceEndpoint endpoint in host.Description.Endpoints)
 {
 endpoint.Behaviors.Add(serviceRegistrySettings);
 endpoint.Behaviors.Add(sharedSecretServiceBusCredential);
 }

 host.Open();

 return host;
}

Figure 7 The ConnectToServiceBus Method

[ServiceBehavior(InstanceContextMode= InstanceContextMode.Single)]
public class UnleashService : IUnleashContract
{
 public void Unleash()
 {
 OnUnleashed();
 }

 protected virtual void OnUnleashed()
 {
 EventHandler temp = Unleashed;
 if (temp != null)
 {
 temp(this, EventArgs.Empty);
 }
 }

 public event EventHandler Unleashed;
}

Figure 8 The UnleashService Class

DESIGN
Design Applications That Help Run the Business

Our xamMap™ control in Silverlight and
WPF lets you map out any geospatial
data like this airplane seating app to
manage your business. Come to
infragistics.com to try it today!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

@infragistics

Untitled-1 1 10/13/10 11:38 AM

www.infragistics.com

msdn magazine46 Cloud Computing

This method blocks any caller as long as the
IGlobalFlag implementation indicates that its
status is false. Th e following code snippet shows
the PollingRelease class in use:

BlobGlobalFlag globalFlag = new BlobGlobalFlag(
 CloudStorageAccount.DevelopmentStorageAccount,
 "globalflags",
 "start-order-processing.dat");
PollingRelease pollingRelease = new
PollingRelease(globalFlag, 2500);
pollingRelease.Wait();

A BlobGlobalFlag instance is created pointing at
a container called “globalfl ags.” Th e Polling Release
class will poll every 2.5 seconds for the presence of
a fi le called “start-order-processing.dat”; any call to
the Wait method will be blocked until this fi le exists.

 Approach II: Listening
The second approach uses the Windows Azure
AppFabric Service Bus to simultaneously communicate with all
worker roles directly and release them (see Figure 6).

The Service Bus is a large-scale messaging and connectivity
service, also built on Windows Azure. It facilitates secure commu-
nication among diff erent components of a distributed application.
Th e Service Bus provides an ideal way to connect two applications
that would otherwise fi nd it diffi cult to communicate, due to their
location behind a network address translation (NAT) boundary
or a frequently changing IP address, for example. It’s beyond the
scope of this article to give a detailed overview of the Windows
Azure AppFabric Service Bus, but an excellent tutorial is available
on MSDN at msdn.microsoft.com/library/ee706736.

To demonstrate this approach, a class called ListeningRelease
was created that, like PollingRelease, has one public method called
Wait. Th is method connects to the Service Bus and uses a Manual-
ResetEvent to block the thread until a signal is received:

public void Wait()
{
 using (ConnectToServiceBus())
 {
 _manualResetEvent.WaitOne();
 }
}

Th e full ConnectToServiceBus method is listed in Figure 7. It
uses types from the System.ServiceModel and Microsoft .Service-
Bus assemblies to expose a class called UnleashService to the cloud
via the Windows Azure AppFabric Service Bus, shown in Figure 8.

The UnleashService is hosted by Windows Communication
Foundation (WCF) as a single instance and implements the
IUnleashService contract, which has just one method: Unleash.
ListeningRelease listens for an invocation of this method through
the Unleashed event shown earlier. When the ListeningRelease

class observes this event, the ManualResetEvent that’s currently
blocking any calls to Wait is set and all blocked threads are released.

In the confi guration for the service, I used the NetEventRelay-
Binding, which supports multicasting through the Service Bus,
allowing any number of publishers and subscribers to communicate
through a single endpoint. Th e nature of this broadcast commu-
nication requires that all operations are one-way, as demonstrated
by the IUnleashContract interface:

[ServiceContract]
public interface IUnleashContract
{
 [OperationContract(IsOneWay=true)]
 void Unleash();
}

Th e endpoint is secured using a Shared Secret (username and
complex password). With these details, any client with access to the
Internet could invoke the Unleash method—including, for example,
the Administrator Console provided in the sample (see Figure 9).

Although the ListeningRelease approach does away with the
inherent latency in the PollingRelease class, there’s still some latency
to deal with. However, the main disadvantage with the listening
approach is its stateless nature, such that any nodes provisioned
aft er the release signal has been transmitted wouldn’t see this
event and would remain paused. Of course, an obvious solution
might be to combine both the Service Bus and a global fl ag in blob
storage, but I’ll leave that as an exercise for the reader.

Sample Code
Th e accompanying sample solution is available at code.msdn.micro soft.com/
mag201011Sync and includes a ReadMe fi le that lists the prerequisites
and includes the setup and confi guration instructions. Th e sample
uses the ListeningRelease, PollingRelease and UniqueIdGenerator
in a single Worker Role.

JOSH TWIST is a principal application development manager with the Premier
Support for Developers team in the United Kingdom, and can be found blogging
at thejoyofcode.com.

THANKS to the following technical experts for reviewing this article:
David Goon, Morgan Skinner and Wade Wegner

Figure 9 The Administrator Console

The Service Bus is a
large-scale messaging and

connectivity service.

http://msdn.microsoft.com/library/ee706736
http://thejoyofcode.com
http://code.msdn.microsoft.com/mag201011Sync
http://code.msdn.microsoft.com/mag201011Sync

Experience how the Altova MissionKit®, the

integrated suite of XML, database, and data

integration tools, can simplify even the most

advanced XML development projects.

Bring your

XML development

projects to light

with the complete set

of tools from Altova®

The Altova MissionKit includes multiple intelligent

XML tools – now with cutting edge chart and

report generation:

Download a 30 day free trial!

Try before you buy with a free,

fully functional, trial from

www.altova.com

XMLSpy® – industry-leading XML editor

 • Support for all XML-based technologies

 • Graphical editing views, powerful debuggers,

 code generation, & more

MapForce® – graphical data mapping tool

 • Drag-and-drop data conversion with code generation

 • Support for XML, DBs, EDI, Excel® 2007+,

XBRL, flat files & Web services

StyleVision® – visual stylesheet & report designer

• Graphical stylesheet and report design for

XML, XBRL & databases

• Report designer with chart creation

• Output to HTML, PDF, Word & e-Forms

Plus up to five additional tools…

XBRL, fla

Sty

•

New in

Version 2011:

 • Instant chart generation for

 XML, XBRL, and databases

• Exporting charts to XSLT,

 XQuery, or image files

• Schema flattener &

 schema subset creation

 • Report generation in MapForce

 via StyleVision integration

 • Chained data mapping

 tra

nsformations

Untitled-1 1 10/4/10 11:54 AM

http://www.altova.com

Untitled-4 2 8/4/10 5:20 PM

www.xceed.com

Untitled-4 3 8/4/10 5:19 PM

www.xceed.com

msdn magazine50

CLO U D COL L ABOR AT ION

Connecting SharePoint
to Windows Azure with
Silverlight Web Parts

Microsoft SharePoint 2010 is enjoying much-deserved
praise as a solid developer platform. Augmented with new services,
APIs, data programmability, and UI support via the dialog frame-
work and Silverlight, many options exist for developers to really
sink their teeth into this evolved platform.

With the growing interest in cloud computing, though, I
increasingly get questions about how developers can integrate their
SharePoint apps with cloud-based technologies. As a platform, many
of the aforementioned features can be integrated with Windows
Azure in some way. Further, you can integrate SharePoint with the
cloud through a host of other technologies such as OData, REST,
Web 2.0 social APIs for applications like Twitter or Facebook, and,
of course, through a service-oriented architecture using SOAP or
Windows Communication Foundation (WCF) services.

Knowing that there’s broad integration potential between the
cloud and SharePoint, in this article I’ll explore some specifi c inte-
gration points between SharePoint and Windows Azure. Along the
way I’ll walk through the steps for creating your fi rst integration.

Steve Fox

Platform Basics
Th e Windows Azure platform is made up of three parts. First, Windows
Azure itself provides data and management capabilities. Second,
SQL Azure provides highly available and transactional data in the
cloud. Th ird, Windows Azure AppFabric provides a service bus for
more advanced, direct service call scenarios.

Using Windows Azure, you can support a number of diff erent
types of integration. For example, you can build and deploy a WCF
service to the cloud, then integrate that service within SharePoint.
Or you can consume data from Windows Azure, modeling that
data within SharePoint. Further, you can use the Windows Azure
AppFabric Service Bus to generate more complex service scenarios
that connect SharePoint Online with SharePoint on-premises.

With any integration, you need to understand the possibilities.
Figure 1 provides a starting point, listing the diff erent ways in
which you can integrate SharePoint with Windows Azure. Th is table
is specifi c to SharePoint 2010, and some of these options require
more coding than others.

Whatever integration you choose, it’s important to note that in
this article, when integrating with Windows Azure, SharePoint is
consumptive and not being hosted. In other words, SharePoint is
not a service that is hosted by Windows Azure, but rather an appli-
cation that consumes Windows Azure data or services. Windows
Azure provides applications or resources that will be consumed by
SharePoint artifacts such as a Web Part or Silverlight application.
In this article, you’ll see a specifi c example of how you integrate a
Silverlight application within SharePoint that leverages a custom
WCF service deployed to Windows Azure.

If you’re starting fresh, you’ll need to make sure you have an
appropriate development environment set up. Your development
environment will, at the least, include the following:

This article discusses:
• Platform basics

• Creating a WCF service

• The Silverlight Web Part

• Deploying the solution

Technologies discussed:
Windows Azure, SharePoint 2010, Visual Studio 2010, Silverlight

Code download available at:
code.msdn.microsoft.com/mag201011Azure

http://code.msdn.microsoft.com/mag201011Azure

51November 2010msdnmagazine.com

• Visual Studio 2010
• Windows Azure SDK and tools
• SharePoint Server 2010
• Offi ce 2010 Professional Plus
• SQL Server 2008 R2
• Silverlight runtime, SDK and tools

For Windows Azure, you’ll need to make sure you have a developer
account set up so that you can create a developer portal to manage
your cloud applications, data and services. You can fi nd all of the
Windows Azure tools that you’ll use to build these applications and
services at microsoft.com/windowsazure/getstarted. Note that you can install
the items listed earlier on your existing development machine or you
can download a pre-confi gured virtual machine that has everything
except the Windows Azure tools from tinyurl.com/33bgpy6. (Also, you
can optionally install the Silverlight Web Part Visual Studio exten-
sion available at code.msdn.microsoft.com/vsixforsp.)

When you’ve got your development environment set up, you
can get started developing your fi rst integration. In this article, I’ll
work through three steps:

1. Create and deploy the custom Windows Azure WCF service.
2. Create a Silverlight-enabled Web Part that can consume

the custom Windows Azure service.
3. Deploy and use the Silverlight-enabled Web Part in your

SharePoint site.
Let’s walk through each of these steps.

Creating the WCF Service
Imagine you want to deploy a service to your entire sales organi-
zation, but you want to host that service in the cloud. Th e service
will retrieve competitor information and will support two methods:
It will enable you to get specific competitor information, and it
will return a list of all competitor information. You’ll create both

methods, but will implement only the bulk return of competitor
information. You can extend the code aft er reading this article to
leverage the request for specifi c competitor information.

To create the WCF service, open up Visual Studio 2010 and start
a new project. In the New Project wizard, select the Cloud template.
Provide a name for the project (I called mine Competitors) and
click OK. Select the WCF Service Web Role project and click OK.

Visual Studio creates a new solution with a number of resources,
which include Windows Azure role confi guration fi les and your
WCF service code and contract. You’ll use an in-memory object
in this example, so right-click the WCF project, select Add, then
select Class. Provide a name for the class (Competitor), and add
the following code to the class fi le:

namespace WCFServiceWebRole1 {
 public class Competitor {
 public string svcCompeteID { get; set; }
 public string svcCompeteName { get; set; }
 public string svcCompeteFY09 { get; set; }
 public string svcCompeteFY10 { get; set; }
 }
}

Th e code includes four properties (a competitor ID, name, and
sales for fi scal year 2009 and fi scal year 2010).

Because you’ll also be using Silverlight as your presentation layer,
you’ll need to add a client access policy fi le to the project to support
Silverlight calling the Windows Azure service across domains. To
do this, right-click the WCF project, select Add, then click New
Item. In the New Item dialog, select the Data category and select
XML. Name the new file clientaccesspolicy.xml and click Add.
Replace the XML code in the new fi le with this code:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="SOAPAction">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

Next, create the service contract for your WCF service. For this
example, you’ll keep things simple and just include two operational
contracts. The first operation will get a single competitor (the
getACompetitor method) and the second operation will get all

Azure Integration How
SharePoint Client
Object Model

Interact with Windows Azure data in a list.

Business Connectivity
Services (BCS)

Model data from Windows Azure or build
external list to SQL Azure.

Silverlight Create UI against Windows Azure services or data.
Sandboxed Solutions/
SharePoint Online

Silverlight application leveraging Windows Azure
deployed to site collection.

Offi ce Custom Client Consume data directly from Windows Azure or
BCS list exposing data.

Standard/Visual
Web Parts

Leverage services and data from Windows Azure.

Open XML Manage Windows Azure data in a document.
REST Use REST to interact with Windows Azure data to

integrate with SharePoint.
Offi ce Server Services Combine with Open XML to auto-gen docs (such

as PDFs) on a server.
Workfl ow/
Event Receivers

State or events that tie into Windows Azure
services, workfl ows or data.

LINQ Use for querying Windows Azure data objects.
Search Federate search to include Windows Azure data.

Figure 1 Common Integration Points

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;

namespace WCFServiceWebRole1 {
 [ServiceContract]
 public interface IService1 {
 [OperationContract]
 string[] getACompetitor(string custID);

 [OperationContract]
 List<Competitor> getAllCompetitors();
 }
}

Figure 2 Service Contract

www.msdnmagazine.com
http://microsoft.com/windowsazure/getstarted
http://tinyurl.com/33bgpy6
http://code.msdn.microsoft.com/vsixforsp

msdn magazine52 Cloud Collaboration

competitors (getAllCompetitors method). Note that you’ll need
to pass an ID (custID) if you want to return a specifi c competitor
record. Figure 2 provides a summary of the contracts.

With the contracts complete, you can now add some code that
implements the contracts. The service code that corresponds

to the service contract is shown in Figure 3. Th is code includes
a method to get a single competitor record (getACompetitor),
another to get all competitor information (getAllCompetitors)
and a third to generate the competitor information (generate-
CompeteData). The code is straightforward, leveraging in-memory
data structures such as list collections and arrays along with LINQ
to create and pass data back to the calling application. In this
example, the calling application is a Silverlight application that will
be deployed into SharePoint.

At this point, you’ve now created the WCF service and you’re
almost ready to start the SharePoint part of this integration.
Before you can do that, though, you need to deploy the service to
Windows Azure.

To deploy the service, you must have a Windows Azure devel-
oper account set up and ready to go. Assuming you have this, you
simply right-click the Windows Azure project and select Publish.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;

namespace WCFServiceWebRole1 {
 public class Service1 : IService1 {
 List<Competitor> myCompetitors = new List<Competitor>();

 public string[] getACompetitor(string custID) {
 generateCompeteData();

 string[] returnCompete = new string[4];

 var returnListOfData = (
 from compete in myCompetitors
 where compete.svcCompeteID == custID
 select compete).ToArray();

 foreach (var competeRecord in returnListOfData) {
 returnCompete[0] = competeRecord.svcCompeteID;
 returnCompete[1] = competeRecord.svcCompeteName;
 returnCompete[2] = competeRecord.svcCompeteFY09;
 returnCompete[3] = competeRecord.svcCompeteFY10;

 };

 return returnCompete;
 }

 public List<Competitor> getAllCompetitors() {
 generateCompeteData();
 List<Competitor> returnlistOfCompetitors =
 new List<Competitor>();

 var returnListOfData = (
 from customer in myCompetitors
 select customer).ToArray();

 foreach (var compete in returnListOfData) {

 Competitor tempCompeteRecord = new Competitor();
 tempCompeteRecord.svcCompeteID = compete.svcCompeteID;
 tempCompeteRecord.svcCompeteName = compete.svcCompeteName;
 tempCompeteRecord.svcCompeteFY09 = compete.svcCompeteFY09;
 tempCompeteRecord.svcCompeteFY10 = compete.svcCompeteFY10;
 returnlistOfCompetitors.Add(tempCompeteRecord);
 };

 return returnlistOfCompetitors;
 }

 private void generateCompeteData() {
 Competitor compete1 = new Competitor();
 compete1.svcCompeteID = "BR-CAN-8909";
 compete1.svcCompeteName = "Bauer - Canada";
 compete1.svcCompeteFY09 = "$45,093,028.00";
 compete1.svcCompeteFY10 = "$50,493,820.00";
 myCompetitors.Add(compete1);

 Competitor compete2 = new Competitor();
 compete2.svcCompeteID = "NK-USA-8665";
 compete2.svcCompeteName = "Nike - USA";
 compete2.svcCompeteFY09 = "$50,492,331.00";
 compete2.svcCompeteFY10 = "$52,019,828.00";
 myCompetitors.Add(compete2);

 Competitor compete3 = new Competitor();
 compete3.svcCompeteID = "GF-EU-9912";
 compete3.svcCompeteName = "Graf - Europe";
 compete3.svcCompeteFY09 = "$24,403,920.00";
 compete3.svcCompeteFY10 = "$24,001,926.00";
 myCompetitors.Add(compete3);

 Competitor compete4 = new Competitor();
 compete4.svcCompeteID = "CCM-USA-8843";
 compete4.svcCompeteName = "CCM Hockey";
 compete4.svcCompeteFY09 = "$12,209,105.00";
 compete4.svcCompeteFY10 = "$10,092,813.00";
 myCompetitors.Add(compete4);

 }
 }
}

Figure 3 Service Code

Figure 4 Service Publishing Options

Windows Azure provides
applications or resources that will

be consumed by SharePoint.

The industry leading UI components for Silverlight with
unmatched performance and pioneering support for Silverlight 4.

RadControls for

Silverlight

www.telerik.com/Silverlight
Europe HQ: +359.2.80.99.850 • US Sales: +1.888.365.2779 • Germany Sales: +49.89.8780687.70 e-mail: sales@telerik.com

Visual Studio
2010

FULL

support

Developer Productivity Tools | Automated Testing Tools I Team Productivity Tools | Web CMS

Untitled-1 1 10/5/10 4:00 PM

http://www.telerik.com/Silverlight
mailto:sales@telerik.com

msdn magazine54 Cloud Collaboration

Publishing your service invokes a dialog box where you can
provide your credentials. You can see in Figure 4 that you have
the choice to create a service package only (Visual Studio creates
the two core fi les that need to be added to your Windows Azure
developer portal in a local folder) or to deploy your service auto-
matically using the pre-confi gured information. In this example,
click Create Service Package Only and click OK.

Two fi les, Competitors and ServiceConfi guration, will be created.
Competitors is a service package fi le—essentially a resource archive—
and ServiceConfi guration is an XML confi guration fi le.

You can now navigate to your Windows Azure developer portal
and add these fi les to your service. To do this, navigate to your ser-
vice and click Deploy (or if you’ve deployed
already and are upgrading the service, click
Upgrade as shown in Figure 5). You can then
browse to the two fi les and click OK. You’ll
want to give your service fi les a few minutes
to upload.

When you see the Ready message, you can
click the link that’s displayed on the same Web
page to test the service endpoint. Note that
you’ll likely have to add the service name at
the end of the service URL like so:

http://serviceendpoint.azure.com/Service1.svc.

At this point, you can now put Windows
Azure aside and move on to SharePoint.

Creating the Silverlight-
Enabled Web Part
You can create the Silverlight Web Part for
SharePoint in a couple of ways. One way
is to simply create a Silverlight application
in Visual Studio, deploy the XAP file to
SharePoint (by uploading it to a document
library, for example), and using the native

Silverlight Web Part in SharePoint
2010 to load your Silverlight appli-
cation. Th is is the quickest way to
deploy the Silverlight application to
SharePoint, and requires less coding.

A second, slightly more inter-
esting way is to use the Silverlight
and SharePoint Web Part project
template (code.msdn.microsoft.com/
vsixforsp). Th is automatically wraps
a Silverlight app with a Web Part,
which means you simply create the
Silverlight application and deploy
it as a Web Part to SharePoint. You
have a little more control over your
code, plus you’re deploying a real
Web Part to SharePoint.

To use the template, navigate
to the Codeplex site, click the
Silverlight and SharePoint VSIX link,

download and unzip the fi les. Aft er you unzip the fi les, simply install
the .vsix fi le by double-clicking it, then restart Visual Studio 2010.

Aft er you install the Silverlight Web Part template, return to
your Visual Studio solution and click File | Add | New Project,
and select Add to Solution in the Solution fi eld. Navigate to the
SharePoint 2010 folder and select the Silverlight Web Part project
template. Provide a name for your Web Part (I used Competitor-
SPWebPart) and click OK.

Aft er you click OK, you’ll be prompted for a SharePoint site URL.
Add your site URL here and then select Deploy as Farm Solution.
You’re next prompted for a number of items, including the name
for the Silverlight project, version, location to deploy the XAP fi le,

Figure 5 Manually Deploying Services to Windows Azure

Figure 6 Confi guring the Silverlight Web Part

http://code.msdn.microsoft.com/vsixforsp
http://code.msdn.microsoft.com/vsixforsp

A New Evolution, a New Opportunity
with Microsoft Dynamics AX
Q What is Microsoft Dynamics?
A Microsoft Dynamics is a line of ERP and CRM applications
developed by the Microsoft Business Solutions group within
Microsoft. You can read more at http://www.microsoft.com/
dynamics.

Q What is Microsoft Dynamic AX?
A Microsoft Dynamics AX is a Microsoft enterprise resource
planning product that provides solutions for industries like
distribution, manufacturing, professional services, retail, and
public sector. http://www.microsoft.com/dynamics/en/us/
products/ax-overview.aspx

Q Why is this interesting for developers?
A Microsoft Dynamics AX is an application built on the
Microsoft sta ck. Developers can leverage their skills in the .NET
Framework to extend the solution into speci c industry vertical.

Q How is the .NET Framework is leveraged?
A For example, the Windows Work ow foundation is the
orchestration engine coordinating business processes in
Microsoft Dynamics AX. The Windows Communication
Foundation provides a uni ed programming model for
leveraging business processes through services.

Q How is the application lifecycle managed?
A Microsoft Dynamics AX is integrated with Visual Studio
Team System allowing developers to manage their solution
with standard Microsoft tools.

Q Is there a new release coming?
A Yes. A new version of Microsoft Dynamics AX is expected
in 2011.

Q Is there somewhere that I could go and learn about
the upcoming release?
A Yes. We are hosting a pre-release conference called the
Microsoft Dynamics AX Technical Conference 2011 focused
on helping developers get their solutions prepared for the
next release.

Q What can people expect when attending
this conference?
A We have a great lineup. There will be over 65 sessions
covering the upcoming release, with time set aside to
collaborate with the development team in Chalk and Talk

and Ask the Experts sessions. Microsoft Dynamics AX Certi ed
Trainers will host instructor-led labs.

Also, partners and customers can network with the develop-
ment team, not only from Microsoft Dynamics AX, but with
others that work on the core technologies that AX builds on.

Q What topics will be covered?
A With all of the innovation in this new version there is
something for everyone. Topics cover developer tools,
database modeling, application component design, business
intelligence tools, of ce integration around Microsoft
SharePoint and the core Microsoft Of ce products, services
integration, IT management, performance, and application
lifecycle management.

Q Sounds great! How do I sign up?
A We are excited to be able to put on this event, as we think
it is our little version of PDC for developers or TechEd for the
IT folks, but just focused on Microsoft Dynamics AX and
speci cally the next release.

Register at http://www.microsoft.com/dynamics/daxconf2011/
msdn. And be sure to check out the sample of the session
content. Look for the full catalog by the end of October.

Experience How. Get Involved.
Find out more at http://www.microsoft.com/dynamics/daxconf2011/MSDN

Want to get involved? Email: daxconf@microsoft.com.

Untitled-1 1 10/14/10 4:53 PM

http://www.microsoft.com/dynamics
http://www.microsoft.com/dynamics/en/us/products/as-overview.aspx
http://www.microsoft.com/dynamics/daxconf2011/MSDN
http://www.microsoft.com/dynamics/daxconf2011/MSDN
mailto:daxconf@microsoft.com
http://www.microsoft.com/dynamics/en/us/products/as-overview.aspx
http://www.microsoft.com/dynamics
http://www.microsoft.com/dynamics/daxconf2011/MSDN
http://www.microsoft.com/dynamics/daxconf2011/MSDN

msdn magazine56 Cloud Collaboration

title for your Web Part and description for your Web Part (see
Figure 6). Click Finish when you’ve completed this part of the
wizard. (Note that you can use Silverlight 3 or 4 with the project
template, and Microsoft is currently upgrading the template for
re-release on Codeplex.)

Now you have a SharePoint Web Part that wraps a Silverlight
application, and you can use the Silverlight application to build
out the UI and functionality of the Web Part.

First, in the Silverlight project, add a reference to the Windows
Azure service by right-clicking References and selecting Add Service
Reference. Provide a name for the namespace for your service (in
my case, GetCompeteAzureService) and click OK. Th is is the same
as consuming any other service reference in an application, except
in this case the endpoint is pointing to a Windows Azure service.

At this point, you can code against the Windows Azure service.
As mentioned earlier, you’ll leverage the getAllCompetitors method
in the SharePoint application.

You’ll need a UI for your application. I created a simple UI that
will render the data returned from the call to the Windows Azure
service. Th e core control is a listbox control with a couple of images
added for fl air. See the code download for this article for details.

Next, add a custom class called Competitor to the Silverlight
application. Competitor has four properties that correspond to the
competitor data defi ned for the service code in Figure 3:

namespace CompetitorDisplayApp {
 public class Competitor {
 public string competeID { get; set; }
 public string competeName { get; set; }
 public string competeFY09 { get; set; }
 public string competeFY10 { get; set; }
 }
}

In the XAML code-behind, you can now add some code that will
implement the getAllCustomers method. In Figure 7, you can see
that I’m using a list collection called myCompetitors to store the
data being returned from the service call to Windows Azure. Th ere
isn’t a lot of heavy lift ing here at all; the code is using the Competitor
object to help populate the myCompetitors list collection, which
is then bound to the listbox (competeList).

At this point, you’re fi nished with your coding. However, it’s
worth taking a quick look at the default code that’s created by the

[ToolboxItemAttribute(false)]
public class SilverlightWebPart : WebPart {
 private SilverlightPluginGenerator _silverlightPluginGenerator = null;

 public SilverlightWebPart() {
 this._silverlightPluginGenerator =
 new SilverlightPluginGenerator {

 Source = new Uri(
 "/XAPS/Silverlight/CompetitorDisplayApp/CompetitorDisplayApp.xap",
 UriKind.Relative),
 Width = new Unit(400, UnitType.Pixel),
 Height = new Unit(300, UnitType.Pixel),
 BackGround = Color.White,
 Version = SilverlightVersion.v3,
 AutoUpgrade = true,
 OnError = "onSilverlightError",
 };
 }

 protected override void CreateChildControls() {
 base.CreateChildControls();

 this.Controls.Add(new LiteralControl(
 @"<script type=""text/javascript"">" +
 Resources.onSilverlightErrorHandler +
 “</script>”));

 this._silverlightPluginGenerator.InitParams.Add(new InitParam(
 "SiteUrl", SPContext.Current.Site.Url));

 this.Controls.Add(new LiteralControl(
 this._silverlightPluginGenerator.ToString()));
 }

 protected override void RenderContents(HtmlTextWriter writer) {
 base.RenderContents(writer);
 }
}

Figure 8 Default Web Part Code

using CompetitorDisplayApp.GetCompeteAzureService;

namespace CompetitorDisplayApp {
 public partial class MainPage : UserControl {
 public string SiteUrl { get; set; }

 List<Competitor> myCompetitors = new List<Competitor>();

 public MainPage() {
 InitializeComponent();

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e) {
 LoadAzureData();
 }

 private void LoadAzureData() {
 GetCompeteAzureService.Service1Client azureSvcProxy =
 new Service1Client();
 azureSvcProxy.getAllCompetitorsAsync();

 azureSvcProxy.getAllCompetitorsCompleted +=
 new EventHandler<getAllCompetitorsCompletedEventArgs>(
 azureSvcProxy_getAllCompetitorsCompleted);
 }

 void azureSvcProxy_getAllCompetitorsCompleted(
 object sender, getAllCompetitorsCompletedEventArgs e) {

 var competeData = e.Result;
 foreach (var item in competeData) {
 Competitor tempRecord = new Competitor();
 tempRecord.competeID = item.svcCompeteID;
 tempRecord.competeName = item.svcCompeteName;
 tempRecord.competeFY09 = item.svcCompeteFY09;
 tempRecord.competeFY10 = item.svcCompeteFY10;
 myCompetitors.Add(tempRecord);
 }

 competeList.ItemsSource = myCompetitors;
 }
 }
}

Figure 7 Custom Competitor Object

You can create the Silverlight
Web Part for SharePoint in a

couple of ways.

57November 2010msdnmagazine.com

Silverlight Web Part template to show
why it can be more useful than just
using the default Silverlight Web Part
that ships with SharePoint.

Figure 8 shows the default
Web Part code that’s created when
Visual Studio creates the Silverlight
Web Part project. You can see the
wrapper code where a Silverlight-
PluginGenerator object is creat-
ed and properties are set for your
Web Part. Th ese are properties that
are managed at design time (as
opposed to opening the Web Part,
for example, and editing the height
and width through the Tools pane in SharePoint). Further, you
can avoid copy and paste, given this Web Part is deployed into the
Web Part gallery—with the stitchwork already in place to render
the Silverlight application.

Finally, the properties of the Web Part were set when you walked
through the initial confi guration wizard. For example, if you open
the .webpart fi le, you’ll see the name and description of the Web
Part (which you can change here if you wanted):

<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metadata>
 <type name="CompetitorSPWebPart.SilverlightWebPart.
SilverlightWebPart, $SharePoint.Project.AssemblyFullName$" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</
importErrorMessage>
 </metadata>
 <data>
 <properties>
 <property name="Title" type="string">Compete Information</property>
 <property name="Description"
 type="string">This Web Part provides compete information.</property>
 </properties>
 </data>
 </webPart>
</webParts>

With the Silverlight Web Part complete, you’re now ready to
deploy the Web Part to SharePoint for use.

Deploying the Web Part
To deploy, right-click the Web Part project (CompetitorSPWebPart
in my example) and select Deploy. When you deploy the Web Part,
the Silverlight application is deployed into the XAPS document
library, and a link to that XAP fi le is automatically generated within
the Web Part. (If you chose to use the Silverlight application instead
of the Silverlight Web Part template, then you’d simply upload the
XAP fi le into the XAPS document library and then use the native
Silverlight Web Part in SharePoint.)

Now open your SharePoint site and navigate to (or create) a new
Web Part page. (Note that you can create a new Web Part page by
clicking Site Actions | View All Site Content | Create | Web Part
Page.) Click Site Actions | Edit Page | Add a Web Part. Navigate
to the Custom category, then select the Web Part (which is called
Compete Information in this example), and click Add. When
added, click Stop Editing. You should have something similar to
what’s shown in Figure 9.

Wrapping Up
SharePoint and Windows Azure
integration is new and the opportunities
are plentiful. In this example, I showed
you how to create a custom Windows
Azure service and then leverage that
service from a custom Silverlight-based
Web Part. Just in this simple example
you can see the potential for much
more sophisticated solutions in both
Windows Azure services and the Web
Parts that consume them.

For more samples and walk-
throughs, you can check out my blog
at blogs.msdn.com/steve_fox. Look out

for more code and documentation on how to integrate SharePoint
and Windows Azure.

STEVE FOX is a senior evangelism manager at Microsoft . He’s worked in IT for 15
years, 10 of which have been spent at Microsoft across natural language, search, and
SharePoint and Office development. Fox has authored many articles and books,
including the recently released “Beginning SharePoint 2010 Development” (Wrox, 2010).

THANKS to the following technical expert for reviewing this article:
Paul Stubbs

Figure 9 Final Silverlight Web Part Calling Windows
Azure Service

www.steema.com
www.msdnmagazine.com
http://blogs.msdn.com/steve_fox

msdn magazine58

TA S K -B ASED PR OG R AMMING

Scalable Multithreaded
Programming with Tasks

PCs are evolving away from faster and faster processors
and toward more and more cores. Th at means increases in latent
processing power are available at relatively low cost. But it also
means programming these systems to take advantage of that latent
processing power is more challenging. To use all of those multiple
processors, you need to delve into the world of parallel processing.

Th ere are many diff erent ways to distribute your work across mul-
tiple cores. In the October issue of MSDN Magazine (msdn.microsoft.com/
magazine/gg232758), I introduced you to some basic concepts of
multithreaded programming and showed how to add threaded
execution into your code with OpenMP and thread pools. I also
demonstrated how to use tools in Visual Studio 2010 to measure
core and thread utilization as a measure of how well a threading
implementation improves the performance of your app.

In this article, I’ll look at a more sophisticated multithreading tech-
nique called task-based programming. Tasks let you spread your ap-
plication’s work across some or all of the CPU cores that are available.
With a bit of thoughtful programming you can minimize and even
eliminate any data dependency or time- synchronization constraints.

Ron Fosner

Building on what you learned from my previous article, I’ll take
you through a more sophisticated multithreaded application that uses
tasks. Tasks enable the application to scale itself up to the number of
cores available and the amount of work that needs to be accomplished.

A Mouse in a Maze
When I sat down to write this article, I tried to come up with a
problem that was complicated to parallelize but still easy to visu-
alize what was occurring. I hit upon the idea of creating a solution
that would solve a 2D maze. While at fi rst glance it may seem a
bit trivial, it’s actually quite challenging to implement correctly—I
know because it took me three tries to get it right.

Figure 1 shows a simple, serial maze solver in action. Th e solu-
tion to the maze is just a long, sinuous pathway with many branches
that lead to dead ends. Not surprisingly, I called the solution
algorithm a “mouse.” Th e mouse will observe its current cell and
try to go forward to the next cell. If it hits a wall it will try to go left .
If it can’t go left it will try to go right. If it can’t go into any of those
directions, it will mark its current path as a dead end and back up.

When the mouse moves into a new cell it makes note of any
pathways that it didn’t take. For example, if a mouse is able to move
forward, but it was also able to go left , then it will remember that
cell and that direction. So as the mouse moves down a hallway it
will take note of doorways on either side and push these on a stack.
When the mouse reaches a dead end it pops one of these locations,
backs up, and heads off in the saved direction. Eventually it will
reach the endpoint though sheer persistence.

Aft er a mouse has backed up, it’s necessary to prevent it from
trying a direction it has already searched. I do this by marking a
cell as visited when a mouse has successfully moved into a cell. So

This article discusses:
• Parallelizing problems

• Task queues and dependencies

• Using thread pools

• A custom task class wrapper

Technologies discussed:
Visual Studio 2010, Task Parallel Library, Parallel Patterns Library

http://msdn.microsoft.com/magazine/gg232758
http://msdn.microsoft.com/magazine/gg232758

DEVELOP
Rich Business Intelligence Applications in WPF and Silverlight

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

@infragistics

Robust Pivot Grids for WPF and
Silverlight let your users analyze data
to make key business decisions.
Visit infragistics.com to try it today!

Untitled-1 1 10/13/10 11:37 AM

www.infragistics.com

msdn magazine60 Task-Based Programming

when a mouse attempts to move in a new direction, it
fi rst checks to see that there’s no wall. If there’s no wall,
it checks to see if the cell that it’s considering moving
into has been visited before. It will discard any move-
ment into cells that have already been visited. Th is is
illustrated by the grayed out pathways in Figure 1.

The Mouse Solution
Th is solution is pretty easy to visualize and, as a result,
it’s easy to understand the logic behind the search. It’s
also somewhat hypnotic to watch—at least for a little
while. A simplifi ed fl ow chart for a serial mouse is
shown in Figure 2.

While it’s very simple to understand the problem
conceptually, there are some unconstrained elements
that make it challenging. First, you have no idea
how long a mouse will run before it hits a dead end.
Second, you have no idea how many branches it will
discover along the way.

Th is problem is doubly interesting when you try
running it on multiple threads. Th e most straightfor-
ward way to make this problem multi-core friendly is
to make multiple mice and give each mouse its own
thread—which is the approach I’ve taken. As an added
bonus, this enhances the visualization because I can
switch the active mouse color as a new thread takes over.

In fact, it was a bit more challenging than I originally considered.
Once I had a working single-threaded version, I made the mistake
of trying to adapt that version and make it multithreaded. Th is
was my single biggest architectural mistake. I went through three
diff erent revisions before I stood back and reworked the architec-
ture to be task-friendly.

I won’t cover my failed eff orts except to state that they all focused
on me trying to optimize performance by not copying data and
by trying to minimize memory and optimize access to the shared
data by the various threads. Essentially, in my original design, I

had a global stack that I could lock, then I’d push the locations of
the untaken branches onto the stack as I ran across them. When a
thread fi nished work and went in search of more work to process,
I would lock the stack (to prevent simultaneous access by another
thread), pop off the location and direction, then unlock the stack.
While this worked to some degree, it was clunky and forced me to
consider adding in new data in each mouse to keep track of the
path taken so that it would have a path from the starting point to
its current location.

When you fi nd yourself adding in mid-state information in a
multithreaded program to make up for some partial state you’re
starting with, or special casing behavior, or in general doing
something that’s not generic to your tasking code, then it’s time to
rethink your design.

What I ended up doing was placing the current path information
in each mouse and making this part of the mouse’s initialization
information. When I reached a branch point, I created a mouse
data structure and initialized it from the current mouse’s infor-
mation—thus creating a clone mouse that, for example, goes left
when the original goes right. Th e clone contains the original’s
memory. Th e only thing diff erent in each mouse is a counter that
keeps track of the number of mice created—this is how the mice
get assigned a color.

I also turned about and made one global copy of the maze that
contains the individual cells’ state information and did not place
any locks around the writing of the state information. Th is was a
simplifi cation I accepted as a tradeoff —a mouse will be working on
a path by itself. It always checks to see whether the cell is marked
as visited before it moves into the cell.

Because there are no locks around the global cell data, it’s
possible, though unlikely, that two mice might both start down
a path at the same time. This could happen either though a du-
plicate stack entry or through a looped pathway where two
mice run into each other. In either case, I accept the fact that a
mouse might be happily running down a path, its thread might
get suspended, and when it resumes it discovers that some other
mouse has crossed its path. In this case the mouse just backs up
as if it has hit a wall, because the mouse that crossed it is follow-

Figure 1 Single-Threaded Maze

Tasks let you spread
your application’s work across

some or all of the CPU cores that
are available.

Untitled-1 1 10/4/10 11:54 AM

www.aspose.com

msdn magazine62 Task-Based Programming

ing a path successfully. Th e suspended mouse missed its chance
and did some extra work.

If there were a lot more processing involved in marking the
cells, then I might be more reluctant to accept the fact that some
useless work might get done. Eliminating any locks of shared data
simply means I have to make the algorithm a bit more robust.
Designing it to handle such situations means that there’s less room
to make mistakes. Th e most likely source of errors in multithreaded
programs usually involves some form of locking mistake, such
as a race condition or making assumptions about when data or
counters get updated.

If you can make your algorithms robust enough to handle data
that might be slightly out of date and able to recover from those
situations, then you’re on your way to making a resilient multi-
threaded architecture.

Task Queues and Dependencies
Windows Vista introduced new scheduling algorithms and
new primitives that are the underlying support for a number of
Microsoft .NET Framework 4 features. One of these features is
the Task Parallel Library (TPL), which provides quite a few of the
more common parallel programming algorithms, including fork/
join, parallel for, work stealing and task inlining. If you’re coding in
unmanaged C++, you can take advantage of Intel Th reading Build-
ing Blocks (TBB) or the Microsoft Parallel Patterns Library (PPL).

Th ese libraries come with classes that provide multithreaded
programming support for jobs and tasks. Th ey also have many
thread-safe container classes. Th ese classes have been tested and
optimized for performance, so unless you’ve got a deep-seated need
to write a customized variation for some reason, you’ll be better
off using some tested, robust code.

Because this is an introductory article on threading and tasks,
and you might benefi t from some insight into how these threading
libraries work, I wrote my own set of wrappers around two of the
new features in Windows Vista: Th readPool and SlimReaderWriter-
Lock (SRWLock). Th ese are both low-cost ways of making data
threads safe for those situations where you’ve got one writer and
many readers, and the data usually isn’t locked for a long time. Note
that the goal of this article is to step you through how I’ve chosen
to implement a thread pool that consumes tasks—tasks which can
have dependencies. To illustrate the basic mechanisms I’ve taken
some liberties with the code to make it easier to understand. Th e
code works, but you’re better off choosing one of the threading
libraries for any real implementation.

For my maze algorithm I chose to use the most generic of the
multithreading algorithms: tasks that can have dependencies
(implemented using SRWLock) and a task scheduler (using the
OS’s Th readPool). Th is is the most generic because basically a
task is just some bit of work that needs to get done and the task
scheduler takes care of communication with the OS to get the
task running on a thread. Th ey’re generic because it’s possible to
create tasks out of any code that needs to get executed and throw
it into a Th readPool.

The challenge is creating tasks that take up enough time to
make overcoming the overhead of getting them scheduled worth-
while. If you’ve got some big monolithic tasks that need to get
executed, then feel free to create some threads and execute the
code on them. On the other hand, there are many applications
where there are groups of tasks that need to get done, some
serially, some not. Sometimes you’ll know beforehand how much
work needs to get done; other times—particularly fetching or
reacting to user input or some communication—you’re just poll-
ing for something that will only occasionally require extended
processing. This is easily handled by the generic nature of Thread-
Pool and its associated task queue.

Customizing the ThreadPool
To give you a clear understanding of how to build a tasking system on
top of the Th readPool, I really only need to use three of its interfaces:

CreateThreadpool();
CloseThreadpool();
TrySubmitThreadpoolCallback();

Th e fi rst two are just the bookkeeping functions. TrySubmit-
ThreadpoolCallback basically takes a pointer to a function to
exe cute plus some context variables. You call this function repeat-
edly to load up the thread pool with tasks to execute and it will serve
them in a fi rst-in-fi rst-out (FIFO) manner (no guarantees here).

To make it work with my tasks, I wrote a short wrapper about
ThreadPool that lets me customize the number of threads in the
thread pool (see Figure 3). I also wrote a submit function that will
take care of tracking the context variables associated with the task.

Figure 2 Flow Chart of Mouse Actions

Move into cell,
mark as visited

Push extra directions
to unvisited cells

Am I at the end?

Pop a location direction
and back up

Can I move left, right,
or forward?

DONESTART

I chose to use the most
generic of the multithreading

algorithms: tasks that can have
dependencies.

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine64 Task-Based Programming

Th e interesting thing to note is that you usually only want to create
as many soft ware threads as there are hardware threads. Sometimes
this might be one less if you’ve got a main thread off doing some-
thing else. Note that the number of threads you create has nothing
to do with the size of the task queue—it’s perfectly legitimate to create
a Th readPool with four threads and then submit hundreds of tasks.
It’s probably not a good idea, however, to take a single serial job
and break it up into thousands of tasks. Th is is an indication that
you’ve got too many fi nely grained tasks. If you fi nd yourself in this
situation, then you’ll just have create a task whose job it is schedule
the next 100 tasks—or if you’re using one of the tasking libraries,
then create a work-stealing, inlining or follow-on task.

My Task class (note the capital T, which I’ll use to denote my task
wrapper class as shown in Figure 4) has the capability of being
dependent upon other Tasks. Since the OS’s ThreadPool doesn’t
have this capability, I’ll need to add it. Thus, when a Task starts
executing on a thread, the fi rst thing it does is check to make sure

it has no outstanding dependencies. If it does, the thread execut-
ing the task blocks by waiting on the SRWLock. Th e Task will only
get rescheduled when the SRWLock is freed.

Again, let me point out that this is not code I’d want to see in a
non-academic application, but putting the block here lets you see
exactly what’s happening. Th e OS will notice the block and schedule
another Task. Eventually—unless there’s a programming error—the
blocked task will unblock and get rescheduled to run.

Generally, it’s not a good idea to schedule a Task that will imme-
diately get suspended. Because Th readPool’s task queue is by and
large FIFO, you’ll want to schedule tasks that have no dependencies
fi rst. If I were writing this for optimal performance rather than
illustrative purposes, I’d add a layer that only submitted tasks
that had no dependencies to the thread pool. I can get away with
this because blocked threads will eventually get swapped out. In
any case, you’ll need to have some thread-safe way of signaling
that a task is done and SRWLocks can be used for this situation.
Incorporating them into my Task class is natural, rather than
having to write specialty code to handle each case.

By design a Task can have any number of Task dependencies.
Ordinarily, you want to reduce or eliminate any waiting if you can,
and using a tool such as Visual Studio Task List or Intel Graphics
Performance Analyzers will help you track these down. The
implementation I present here is a very basic tasking system and
should not be used for code that requires high performance. It’s
good sandbox code for getting your multithreaded feet wet, but
you should look toward TBB, TPL or PPL for more effi cient code.

Th e Th readPool will call the WorkCallback function, which exe-
cutes some prefi x code that will query the Task data structure, like so:

VOID CALLBACK ThreadPool::WorkCallback(
 PTP_CALLBACK_INSTANCE instance, void* pTask) {

 ITask * pCurrentTask = (ITask*) pTask;
 pCurrentTask->blockIfDependenciesArePending();
 pCurrentTask->doWork(pCurrentTask->context());
 pCurrentTask->SignalDependentsImDone();
}

Th e basic operation is:
1. Th e Th readPool loads up the WorkCallback from its

internal task queue.
2. Th e code queries the Task to see if there are any

dependencies (parent dependencies). If dependencies
are found, block execution.

3. Once there are no dependencies, call doWork, which is
the actual part of the Task code that’s unique per Task.

4. Upon returning from doWork, clear any child
dependencies on this Task.

Th e important thing to note is there is some preamble and post-
script code residing in my Th readPool class that checks and clears

class ThreadPool {
 PTP_POOL m_Pool;
public:
 static VOID CALLBACK WorkCallback(
 PTP_CALLBACK_INSTANCE instance,
 void* Context);
 ThreadPool(void);
 ~ThreadPool(void);

 static unsigned GetHardwareThreadsCount();

 // create thread pool that has optimal
 // number of threads for current hardware
 bool create() {
 DWORD tc = GetHardwareThreadsCount();
 return create(tc,tc);
 }
 bool create(
 unsigned int minThreads,
 unsigned int maxThreads = 0);
 void release();
 bool submit(ITask* pWork);
};

Figure 3 ThreadPool Wrapper

class ITask {
protected:
 vector<ITask*> m_dependentsList; // Those waiting for me
 ThreadSafe_Int32 m_dependencysRemaining;// Those I’m waiting for

 // The blocking event if we have dependencies waiting on
 SRWLOCK m_SRWLock;
 CONDITION_VARIABLE m_Dependencies;

 void SignalDependentsImDone();
 ITask();
 virtual ~ITask();

public:
 void blockIfDependenciesArePending();
 void isDependentUpon(ITask* pTask);

 unsigned int queryNumberDependentsRemaining()

 // A parent Task will call this
 void clearOneDependency();
 virtual void doWork(void*) = 0;
 virtual void* context() = 0;
};

Figure 4 Task Wrapper

Generally it’s not a good idea
to schedule a Task that will

immediately get suspended.

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/11

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER Spread for Windows Forms from $959.04
A comprehensive Excel compatible spreadsheet component for Windows Forms applications.

BEST SELLER

BEST SELLER ActiveReports 6 from $685.02
Latest release of the best selling royalty free .NET report writer.

BEST SELLER

Untitled-1 1 10/7/10 11:02 AM

http://www.componentsource.com

msdn magazine66 Task-Based Programming

dependencies in the Task. Th is code gets run on each thread but
has a unique Task associated with it. Once the preamble code gets
run, the actual Task work function gets called.

Creating a Custom Task Class Wrapper
Th e basic job of a task is to provide some context and a function
pointer to get the task executed by the thread pool. Because I wanted
to create Tasks that were capable of having dependencies, I needed
some code to handle the bookkeeping of tracking blocking, and
unblocking dependencies (see Figure 4).

When a Task is created you can then tell it that it’s dependent
upon other tasks by providing a pointer to that dependant Task.
A Task contains a counter for the number of Tasks that it has to
wait for, plus an array of pointers to Tasks that have to wait for it.

When a Task has no dependants, its work function will get called.
Aft er the work function returns, it loops through all the Task pointers
in the array, calling clearOneDependency on each class, which
decrements the number of that Task’s remaining dependencies.
When the number of dependencies drops to zero, the SRWLock is
released, unblocking the thread that executed the task waiting on
those dependencies. Th e thread running the task gets unblocked
and execution will continue.

Th at’s the basic overview of how I designed my Task and Th read-
Pool classes. I ended up designing it this way because the OS’s
native thread pool doesn’t have quite this behavior and I wanted
to give you some code to play with where you’re in control of the
dependency mechanism. I originally had a much more compli-
cated wrapper around Th readPool that included a priority queue,
but realized that I was unnecessarily complicating things and that

a simple child-parent dependency relationship was
all I needed. If you really want to take a look at cus-
tomizing a thread scheduler, take a look at Joe Duff y’s
article, “Building a Custom Th read Pool (Part 2): A Work
Stealing Queue,” at tinyurl.com/36k4jcy.

I tend to write code pretty defensively. I tend to
write simple implementations that work, then refactor
and increase functionality with frequent checks along
the way to make sure I haven’t messed anything up.
Unfortunately, I also tend to write code that passes
around references to other variables—which is a bad
thing in a multithreaded program if you’re not careful.

I was undone more than once when converting my
single-threaded maze solution code to a multithreaded
one. I fi nally had to go through and make sure I was
passing copies of data when there was a chance that
the value would be modifi ed in a thread.

I also tried to be conservative by starting with a single-
threaded version that only kept the current mouse’s
path. Th at introduced the problem of keeping track of
yet more state data. As mentioned earlier, I solved this
by making clone mice that had all their parents’ data.
I also chose to eliminate the prioritized Th readPool
wrapper and any locking on the global maze cell data.
In all likelihood I introduced some additional work,
but I also eliminated many of the sources of errors that

could have occurred by greatly simplifying my code.
Th e Th readPool wrapper and the Task class worked exactly as

designed. I utilized these classes in some unit tests to make sure
they exhibited the behavior I was expecting. I also instrumented
them using the Intel Graphics Performance Analyzers tasking
tool, which has a feature that lets you dynamically tag threads and
examine which pieces of code are executing on a particular thread.
Th is visualization of thread execution let me verify the threads
were executing, blocking and being rescheduled, just as I expected.

When I reworked the mice to be clones of their parents, this ended
up greatly simplifying the bookkeeping required by the simulation
because each mouse was self-contained. Th e only shared data I ended
up requiring was the global cell array, which indicates if a cell was
visited. I can’t emphasize enough that having a good visualization
on how your tasks are being scheduled is of paramount importance.

The Mouse Pool
I chose the maze problem because it illustrated a number of issues
that can crop up in converting a single-threaded algorithm to a

Figure 5 Solving the Original Long-Maze Algorithm

I was undone more than once
when converting my single-

threaded maze solution code to
a multithreaded one.

http://tinyurl.com/36k4jcy

Untitled-4 1 8/31/10 4:03 PM

www.techexcel.com

msdn magazine68 Task-Based Programming

multithreaded one. Th e biggest surprise to me was that, once I bit
the bullet and rewrote the algorithm to eliminate some of the book-
keeping I had been attempting to maintain, the maze-solving algorithm
suddenly became much simpler. In fact, it became simpler than the
single-threaded algorithm because there was no need to keep a stack
of branch points—they were simply spawned off into a new mouse.

By design, each mouse was a clone of its parent, so each mouse
had an inherited path tracing back to the spawn point. The
mice didn’t know it, but I purposely wrote the maze-generation
algorithms to try to select the furthest path possible. No sense in
making it easy on them. Th e test program allows selection between
a number of maze-generation algorithms, ranging from the origi-
nal algorithm—which generates long corridors with occasional
branches eventually leading to dead ends—to algorithms that are
very branchy with short corridors. Presented with these diff erent
mazes, the diff erence in behavior from the single-threaded solu-
tion to the multithreaded solution can be quite dramatic.

When I applied a multi-threaded method to solving the original
maze algorithm, I reduced the search duration by 48 percent on
a 4 CPU system. Th is is because the algorithm has a lot of long
corridors and there aren’t a lot of opportunities to spawn off
additional mice (see Figure 5).

Figure 6 shows a maze with more branches. Now there are a
lot more opportunities to spawn off mice and have them search
simultaneously. Figure 6 shows the multi-threaded solution to
this short-path maze, where I get a reduction of the time to fi nd a
solution by 95 percent by using more tasks.

Th is just serves to illustrate that some problems are more amenable
to breaking apart than others. I feel compelled to point out that the

maze program is designed to be visually interesting—
that is, it lets you see the progression of the mice and
steps through them. If I were interested in simply fi nd-
ing the solution to the maze in the shortest amount of
time, the rendering and the mice would be decoupled—
but then that would not be as fun to watch.

Loose Threads
One of the biggest problems that I see when I help
folks try to make their applications run faster is a
h esitation to try multithreading. I understand that
hesitation. When you add in multithreading, you
suddenly add in a layer of complexity that most
programmers aren’t used to in an area they don’t have
a lot of experience with.

Unfortunately, when you shy away from multithread-
ing, you end up leaving a good portion of computing
power unutilized.

I’ve covered the basics of how a tasking system
works and given you the basics of how to go about
breaking up large jobs into tasks. However, the
current approach, while good, is not the best practice
for getting the maximum performance across current
and future multi-core hardware. If you’re interested in
getting further performance gains on any hardware
that your application may be run on, then you’ll need

to architect your application with this in mind.
The best way of getting maximum, scalable performance in

your application is to take advantage of one of the existing parallel
libraries and see the best way to fi t your application’s needs into
the various architectures that these libraries provide. Unmanaged,
real-time or performance-critical applications are usually best
served by using one of the interfaces provided in TBB, while
managed apps have a wider variety of multithreading options in
the .NET Framework 4. In either case, choosing one of these
threading APIs will determine the overall structure of your
application and how you design the tasks to work and coexist.

In a future article I’ll take a look at actual implementations
that take advantage of these techniques, and demonstrate how to
construct applications around these various threading libraries so
you can design your own implementations to use them.

In any event, you’ve now got the basic knowledge to try out some
basic threading approaches, and you should take a look at the
threading libraries to start to fi gure out how best to design your
future applications. While multithreading can be challenging, using
one of these scalable libraries is the gateway to taking advantage of
maximum performance of hardware, both current and future.

RON FOSNER has been optimizing high-performance applications and games
on Windows for years and is starting to get the hang of it. He’s a graphics and
optimization expert at Intel and is happiest when he sees all CPU cores running
fl at out. You can reach him at Ron@directx.com.

THANKS to the following technical experts for reviewing this article:
Aaron Coday, Orion Granatir and Brad Werth

Figure 6 Multiple Mice Make It Easy to Solve the Maze in Much Less Time

mailto:Ron@directx.com

Untitled-1 1 6/9/10 11:03 AM

www.nevron.com

msdn magazine70

“H E LLO WOR L D! ”

A Coder’s Guide
to Writing API
Documentation

Ever been in a situation where your manager asks you to
write documentation for the APIs that you developed? Let’s face it,
if you’re like most developers, you love to code and hate to write.
Furthermore, writing takes time away from critical tasks you need
to do, such as feature development and bug fi xing.

It’s no surprise that API documentation oft en ends up being
frustrating and confusing for the reader—it rarely gets the atten-
tion it deserves.

Th is article is a guide on how to write API documentation. I’ll
describe the most important components of API documentation
and provide some suggestions about how to make it eff ective. I’ll
also give you some hints for creating good overviews, sample code
and reference material, including where you should focus your time
and attention to get the best eff ect.

Why Document Your APIs?
Let’s start with the non-technical side of the issue. API documenta-
tion has been around ever since the fi rst programming languages

Peter Gruenbaum

were created. Th ere’s been plenty of time to develop eff ective pro-
cesses for creating quality documentation, yet well-written API
documentation is still quite rare. Why doesn’t it happen?

First, documentation is seldom prioritized. Even though it has
a large impact on how much a soft ware platform is adopted, the
actual impact of documentation is diffi cult to measure. As a result,
documentation is hardly ever given enough time and budget. When
developers are asked to write documentation, it’s typically on top
of their other responsibilities, and they must somehow fi t it into
their already overloaded schedule.

Second, developing code and writing documentation are two
different skills. Sometimes developers are asked to write in a
language that’s not their fi rst language. But even if they were born
in an English-speaking region and are asked to write in English,
there’s a good chance that they struggled through their literature
and social studies classes in school, and would’ve much rather
spent that time solving problems in their math and science classes.

The first step in creating good API documentation is to ask
management for the time and budget to do it well. Th ere are two
main points to make to managers:

1. Good documentation can increase the likelihood of
platform adoption because it means a less-frustrating
experience for developers.

2. Good documentation reduces the cost of support
because developers can fi nd the answers to their
questions more easily.

Arguing the importance of good documentation may be a
challenge for you if you don’t enjoy writing or if you’re completely

This article discusses:
• The importance of API docs

• API documentation components

• Writing useful sample code

• Reference docs and Web APIs

Technologies discussed:
API Documentation, Best Practices

71November 2010msdnmagazine.com

overloaded with work, but there is an alternative. If there’s enough
budget, you can hire a technical writer who will gather information
from you and write the documentation.

As with developers, you’ll fi nd technical writers with a range
of experience and expertise. Many technical writers are more
experienced in end-user documentation and support. For API
documentation, however, you’ll want to fi nd one who’s actually
spent time as a soft ware developer. In many companies, these types
of writers have titles like programmer/writer.

Technical writers who have some coding experience under their
belt understand the pain that developers go through in trying to
get a soft ware platform to work, and how good documentation can
help improve the development of the platform. Also, they should
have enough specialized knowledge of languages, algorithms and
patterns to read your code and understand your libraries. With this
knowledge and experience, technical discussion between the writer
and development team will be more straightforward and productive.

Th at said, if the budget doesn’t allow you to bring on a technical
writer, then you’ll need to write the documentation yourself. Make
sure management understands that you need to carve out time to
do this, just as you would for creating a new feature.

Components of API Documentation
Th ere are four components of good API documentation:

1. Overview Explain what advantages developers have in
using the platform, and in some cases, provide an archi-
tectural description of the platform.

2. Getting started Help the developer get started, in the
form of step-by-step tutorials or simpler walkthroughs.

3. Sample code Provide well-commented code samples
that developers can build on.

4. Reference material Provide detailed information
about each class, member, function or XML element.

When developers fi rst begin to read about an API, the fi rst piece
of information they need to know is: who would use the API and
why they would use it. If the developers don’t understand this, then
they’ll quickly move on to use something else. Unfortunately, this
information oft en tends to be forgotten. To the people developing
the API, the information is obvious—but to others, it’s not.

Come up with clear examples of when you would use the API.
If you’ve got existing customers, or even potential customers, then
use those as real-world examples. List the advantages of the soft -
ware platform, ideally contrasting it to existing approaches. You’ll
fi nd that project managers oft en have this kind of information.

Overviews are also a good place to explain the API’s overall
architecture. For some types of APIs (for example, many Web APIs),
the API is simple enough that an architecture discussion is not
necessary. However, if you’re documenting something complex,
with many classes and an inheritance structure, then a full dis-
cussion of the architecture, along with accompanying diagrams,
is oft en helpful for developers to understand it.

Getting Started
Once developers have decided to give your API a try, the fi rst thing
they’ll want to know is how to get started. In 2009, my company
(SDK Bridge LLC) ran a survey on documentation, and one of the
most common threads running through the responses was that
developers wanted help in getting started. (See my article “Survey
on SDK Documentation” at tinyurl.com/35l66yk.) Th is is critical for
adoption: if developers fi nd it diffi cult to get started, they’ll give up
quickly and fi nd another way to accomplish their goals.

A great way to get developers started is through tutorials. Th is
approach is oft en much more eff ective than descriptive text or
architectural diagrams. A tutorial leads a developer step-by-step
through the process of creating a simple application that demon-
strates how the API works. It oft en starts with non-programming
activities, such as setting up your development environment or
obtaining authorization credentials. Th en it directs the developer
to gradually add code until they can demonstrate a simple task

/// <summary>
/// Returns an array of user IDs for users that
/// are connected to the specified user. Note that
/// this is a simple, synchronous way to obtain the data.
/// </summary>
/// <param name="userId">The ID of the specified user.</param>
/// <returns>An array of user IDs that are connected to
/// the specified user.</returns>

public int[] GetConnectedUserIds(int userId) {
 // Create variable to hold the returned IDs
 int[] connectedIds;

 // Construct a URL using the userId and the authorization token
 string url =
 "http://webservices.contoso.com/users/connections?userid=" +
 userId.ToString() +
 "&token=" +
 authorizationToken;

 // Create the Web request using the url
 HttpWebRequest request =
 WebRequest.Create(url) as HttpWebRequest;

 // Get the response
 using (HttpWebResponse response =
 request.GetResponse() as HttpWebResponse) {

 // Read the response XML
 StreamReader reader =
 new StreamReader(response.GetResponseStream());
 string xmlResponse = reader.ReadToEnd();

 // Process XML to extract user IDs for connected users
 // and responseStatus
 ...

 if (responseStatus != "ok") {
 // Handle errors here
 ...
 }

 reader.Close();
 }

 return connectedIds;
}

Figure 1 Sample Code Example

Good documentation can
increase the likelihood of

platform adoption.

www.msdnmagazine.com
http://tinyurl.com/35l66yk

msdn magazine72 “Hello World!”

from the API. If possible, try to structure your tutorial so that
developers have something they can run and see results quickly.
Th en continue the tutorial, adding more features.

Chances are, you’ve worked so closely with your API that you’ve
forgotten what it’s like to come at it from a completely new perspec-
tive. As you work on this section, do your best to take a step back
and put yourself in the shoes of a newcomer.

Writing Sample Code
Another common thread in the SDK Bridge survey responses
was the importance of good sample code. Developers learn a new
platform by starting with code that they know already works, and
then modifying it or adding to it. A lot, if not most, developers fi nd
it easier to learn by doing than by reading.

You probably already know how to create good production code.
Good sample code shares some similarities to good production
code, but there are some key diff erences as well. In general, good
sample code should follow these guidelines:

1. Relevant information should be grouped together.
2. Clarity is more important than effi ciency or robustness.
3. Simplicity is more important than a good-looking UI.

You can apply these guidelines to specifi c areas of soft ware and
see how sample code compares to production code.

Every programmer knows that they should never use hard-coded
values in their code. Th ose values should be turned into constants and
put somewhere that’s easy to fi nd in case someone wants to change them.

It turns out that that’s true of production code, but not true for
sample code. You should use hard-coded values in sample code in
order to group all relevant information as closely together as possi-
ble. If you follow good practices for production code and defi ne all
of your constants at the top of your fi le, then when developers look at
the line of code that uses the constant, they have to scroll to the top of
the fi le to fi nd out what its value is. Th at simple action can make them
lose their train of thought. Strings, integers, hexadecimal values, and
other simple values should all be hard-coded right where they’re used.

Comments are good for both production code and sample code,
but in sample code they’re critical. Every class, member or function
should start with at least one comment line explaining what it is or

what it does. You should use comments anywhere the code is not
obvious, especially if you need to document a work-around or some-
thing equally unusual. Th ese comments can be several lines long if
required. Use complete sentences and don’t be afraid to be wordy.

In general, you should have at least a line of comment for every
fi ve or 10 lines of code. However, there are some exceptions to this
guideline. Code that’s extraneous to what you’re demonstrating
doesn’t need so many comments (for example, UI code that’s required
to display the results of your API). If you’re writing a small snippet
with just a few lines of code that’s included in some reference mate-
rial, you might not need comments at all. If you’re providing a very
large sample that’s more like production code, then it may be more
practical to lessen the number of lines of comments.

Variable, class, member and function names should be clear,
regardless of whether you’re writing production code or sample
code. In sample code, though, you should take this idea farther
than in production code because clarity is more important than
effi ciency. Long, unwieldy names can be a problem in production
code, but they’re usually worth it in sample code because of the
added clarity. Try to make even the smallest variable name have
meaning, and do not—no matter how much you’re tempted—use
meaningless variable names like “foo” or one-letter names.

Object-oriented programming is one of soft ware engineering’s
best inventions. You may be surprised to learn that although it’s
highly desirable for production code, it’s in fact generally not
desirable for sample code. Th e reason is that object-oriented design
distributes functionality so that data and functions are grouped
together, and it uses inheritance to cut down on duplicate code.
Remember, one of the fundamental principles of good sample code
is that relevant information should be grouped together. Object-
oriented code tends to distribute the relevant information among
various classes. Th erefore, developers may end up searching through
an inheritance hierarchy for what a method does, which only serves
to waste time and break their train of thought.

There are exceptions, of course. Some APIs require object-
oriented programming to function properly. Very large samples
that are more like a production application may also need object-

Type Guideline Examples
Class Start with a word like “Represents” “Represents a user’s photo album.”
Methods and functions Start with a verb “Returns the number of contacts for the specifi ed area.”

“Pauses the video.”
Properties Use a noun or start with verbs such as “Gets” or “Gets and sets” “The user’s tasks.”

“Gets and sets a collection of the user’s tasks.”
Events Start with a phrase such as “Raised when” or “Occurs when” “Raised when the response from server is received.”
XML elements Use a noun-based phrase “The city’s postal code.”
Boolean values For Boolean properties, start with “Indicates whether”; for Boolean

return values on methods and functions, start with “Returns whether”
“Indicates whether the control is visible.”
“Returns whether two regions intersect.”

Figure 2 Reference Documentation Style

Good documentation reduces
the cost of support.

A good way to get developers
started is through tutorials.

WORD PROCESSING
COMPONENTS
WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

MILES BEYOND RICH TEXT

TRUE WYSIWYG

POWERFUL MAIL MERGE

MS OFFICE NOT REQUIRED

PDF, DOCX, DOC, RTF & HTML

Word Processing Components
for Windows Forms & ASP.NET

TX Text Control Sales:
US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

MEET US AT

NOVEMBER 1-4, 2010, LAS VEGAS

BOOTH #514

Untitled-1 1 10/6/10 11:26 AM

www.textcontrol.com

msdn magazine74 “Hello World!”

oriented design. Just be mindful that the user wants to see all the
necessary information in one class if at all possible.

A basic rule of good soft ware design is to encapsulate functionality
in functions and methods. For production code, this adds clarity and
reduces duplicate code. It’s also good for sample code, because it oft en
can create a block of code that developers can simply copy and
paste into their own code, making it easy to use.

Occasionally, sample code requires a large number of lines of
code that are not directly relevant to your API, but that you need
in order to get your sample to run. In this case, it’s a good idea to
try to encapsulate those irrelevant lines of code into a function or
method so that developers can more easily ignore them.

Unless your API specifi cally provides UI capabilities that you need
to demonstrate, you should keep the UI elements in your sample code
as simple as possible. UI code can take up a lot of space and dilute
the important lines of code that you want to be demonstrating.
Developers aren’t concerned about whether your sample looks slick—
they just want to be able to understand how your API works.

If you absolutely have to have a large number of lines of code for
your UI, then package that code up into separate functions that are
easy for developers to scan or ignore.

Finally, while exception handling is critical for production code
to work well, in sample code it can dilute the relevant code and
create a distraction. Oft en, a good solution is to not have exception
handling, but to put in a comment indicating what kind of excep-
tions to handle in production code. However, there are situations
where certain calls should always be made with exception handling,
and in these situations, it’s worth the extra lines of code to show
exactly how that exception handling should work.

Figure 1 shows an example of a function from sample code that
demonstrates how to make a REST request in C# for a social net-
working site, returning the user IDs of the users who are connected
to the specifi ed user. In production code, the REST endpoint URL
would be stored as a constant along with other relevant URLs.
In sample code, however, it’s best to put this information where
developers are most likely to see it and make the connection to its
role in the function. Note also that error handling is suggested, but
not implemented. Th e XML processing has been removed from
this example for brevity.

Reference Material
Reference material typically makes up the bulk of the API docu-
mentation. For each class, member, function, XML element and
so on, there needs to be detailed information about what it is and
how it’s used. At a minimum, reference material should cover:

• A short description
• Description of any parameters and return values
• Any important remarks that will assist the developer

If there’s more time and budget, add this information:
• Exceptions that may need to be caught
• Links to other related overview or reference topics
• A snippet of sample code, ideally from the sample code

you’ve already written
Good reference documentation has a consistent style through-

out. Sometimes style guidelines will exist already, but oft en you’re

on your own to fi gure them out. Figure 2 lays out some general
guidelines for the short descriptions.

As an example, consider the descriptions shown in Figure 3 for
the Button class from the Microsoft .NET Framework. Th is is taken
directly from the SDK documentation on MSDN.

Web APIs
Th e number of Web APIs has been growing rapidly over the past
few years, and so it’s worth thinking about how Web APIs are
different from local APIs. Software as a Service is becoming a
popular business model, and companies are quickly fi nding that
their larger customers want to be able use their services directly
from their own systems. Th is means that the services provider needs
to have a public API that their customers can call.

(A note on terminology: I use the term “local API” to describe
the typical kind of API that existed before the Web. Technically,
these APIs can be Remote Procedure Calls, therefore they’re not
local; technically, Web APIs can be called on a server that’s the same
computer as the client, therefore they are local. However, in most
instances, Web APIs, which use standard protocols such as HTTP,
are used remotely and other APIs are used locally.)

Because Web APIs are relatively new, there’s no standardization
on how their documentation looks. Th e quality of Web API docu-
mentation varies dramatically—sometimes it’s well-organized and
complete, and sometimes it’s the bare-minimum information thrown
up on a wiki. If you’re going to be writing Web API documentation,
it’s worth spending some time looking at how various companies
have documented their APIs so that you can fi nd a good template
to follow. For example, Twilio, a platform for voice and messaging
applications, has an excellent example of REST documentation,
which can be found at twilio.com/docs. Hopefully, over time, the
industry will settle into a small number of eff ective templates.

In some ways, Web API documentation is more critical than local
API documentation because it can be more diffi cult for developers
to experiment with Web APIs in order to fi gure out how they work.

Class or Member Type Description
Class description Class Represents a Windows button

control.
Button constructor Constructor Initializes a new instance of the

Button class.
Focus Method Sets input focus to the control.
Visible Property Gets or sets a value indicating

whether the control and all its child
controls are displayed.

Click Event Occurs when the control is clicked.

Figure 3 Reference Documentation Example

Developers learn a new platform
by starting with code that they

know already works.

http://twilio.com/docs

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine76 “Hello World!”

Developers may have limitations (quotas) on how many times they
can make a call, or their experimentation may be aff ecting a live
system, or it may be diffi cult to emulate specifi c conditions, such
as when the server is under heavy use.

As mentioned earlier, developers rely heavily on sample
code. One of the powerful things about Web APIs is that they’re
independent of platform and language. Unfortunately, this means
extra work when creating sample code. You may find yourself
writing sample code in Python, Ruby, Java, C# and so on. Try to
fi nd out what your customers use most and focus on the languages
that are most important to them.

The two most common technologies for Web APIs are SOAP
and REST. SOAP has a defi nition format (Web Services Description
Language, or WSDL) that’s a great starting point for reference docu-
mentation, whereas REST does not. Sample HTTP calls and XML/
JSON fi les are useful for both of these technologies in illustrating how
they work, but they’re not suffi cient. Samples should be followed by
tables that describe each element as well as its data format.

For example, it may not be enough to describe a parameter as
a string. Are there special characters it can’t handle? Are there
limitations on its length? If an XML element is a date, you should
specify the format of the date. If it’s a time, then you need to
specify its time zone.

Also, you’ll need to explain how errors are handled. Th is may
vary for the different formats that your API supports. If your
API uses HTTP response codes to flag errors, these should be
documented. Error documentation should explain why an error
occurs and how to fi x the problem.

Authentication is oft en required for Web APIs, and this needs
to be documented in detail as well. If developers need API keys,
be sure to give them step-by-step instructions on how to obtain
these. Also, don’t forget that Web APIs are built on top of HTTP,
which is an incredibly rich protocol. You may have HTTP-related
information that requires documentation, such as caching, content
type and status codes.

Web APIs are new enough that we’re still in a period of fi guring
out the best way to document them. Expect to see standardization
in the next few years.

Publishing
So far I’ve been focusing on content, but you’ll also need to pub-
lish the documentation so that developers can read it. In general,
developers expect to see Web-based, hyper-linked documentation
rather than fl at fi les such as a PDF. Th ere are several ways to get
your documentation on the Web.

If your API is small, it may be simplest just to create HTML fi les.
Use CSS to get the look-and-feel to match your company’s Web site.

Wikis provide a structure for more-complex APIs. Wikis also
allow you to easily update or add to documentation over time
without needing access to other tools or servers. In addition, the
group collaboration aspects of wikis enable entire teams—even
your users—to contribute. However, slapping together a wiki and
hoping your developers and users will write the docs isn’t a very
viable API documentation strategy.

Several free, open source wiki engines are available and are
becoming popular for API documentation, such as the PHP-based
MediaWiki (mediawiki.org/wiki/MediaWiki) and the PERL-based
TWiki (twiki.org).

Commercial documentation tools such as Madcap Flare (see
madcapsoftware.com/products/fl are) and Adobe RoboHelp (see adobe.com/

products/robohelp) are designed primarily for end-user documentation,
but can be easily adopted for API documentation. Th ey provide a
simple UI for entering in information and give you a more polished
look than a wiki. Th ey can generate both Web and fl at-fi le documen-
tation from the same source.

Online collaboration services, such as PBworks (pbworks.com) and
MindTouch (mindtouch.com), are also being used for API documen-
tation. In addition to the collaborative features of wikis, these off er
additional features, such as hosting, fi ne-grained access control and
scripting capabilities. Th ese services typically require a subscription
fee for commercial use.

Ship It!
Good API documentation is critical for getting your platform
adopted and for cutting down on the number of support calls your
company receives. If you can convince your manager to hire a tech-
nical writer with the right skills, then do it. But if you can’t, follow
the guidelines in this article.

Your documentation should have an overview, help on getting
started, sample code and reference material. In the overview, be sure
to explain why your platform should be used. Put together tutorials
to help developers get started. Th e sample code should focus on
clarity and simplicity, and it won’t always follow the same coding
principles as production code. Your reference material should be
detailed and consistent. Th ere are a number of tools available to
get your documentation published on the Web.

Now get writing!

PETER GRUENBAUM started out as a physicist but became a soft ware developer,
working on technologies as diverse as Tablet PCs, Augmented Reality, computer-
aided design and surgical simulation. He founded SDK Bridge LLC to bring together
his love of technology and writing, where he writes and teaches about technology.

THANKS to the following technical experts for reviewing this article:
John Musser (ProgrammableWeb) and Eugene Osovetsky (WebServius)

Developers expect to see
Web-based, hyper-linked

documentation.

Good reference documentation
has a consistent style

throughout.

http://mediawiki.org/wiki/MediaWiki
http://twiki.org
http://madcapsoftware.com/products/flare
http://adobe.com/products/robohelp
http://adobe.com/products/robohelp
http://pbworks.com
http://mindtouch.com

DynamicPDF Viewer
O u r n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you
to display PDF documents within

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and
all common Office file formats) to PDF. Events can be

used to manage the action taken on a successful or failed
conversion. It is highly intuitive and flexible and

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter,
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download

Project1 10/30/09 1:28 PM Page 1

http://www.cete.com/download
www.cete.com

msdn magazine78

In this article, I briefl y describe the
example Web application under test.
I then walk you through the code for
the Windows Forms test harness so
you’ll be able to modify my code to
meet your testing scenarios. I con-
clude by describing situations where
this technique is applicable and when
alternative techniques may be better.

This article assumes you have
basic Web development skills and
intermediate C# coding skills, but
even if you’re new to C# you should
be able to follow without much diffi -
culty. I think you’ll fi nd the technique
I present here a useful addition to your
personal soft ware testing, development
and management tool kit.

The Application Under Test
Let’s take a look at the code for the
example Web app that’s the target of
my test automation. For simplicity I

created the application using Notepad. Th e application functionality
is supplied by client-side JavaScript rather than by server-side pro-
cessing. As I’ll explain later, this test automation technique will work
with applications based on most Web technologies (such as ASP.NET,
Perl/CGI and so on), but the technique is best suited for applications
that use JavaScript to generate message boxes. The entire Web
application code is presented in Figure 3.

I saved my Web app as default.html in a directory named
ColorApp located in the C:\Inetpub\wwwroot directory on my
test host machine. To steer clear of security issues, the technique
I present here works best when the test automation runs directly
on the machine that acts as the Web server hosting the application
under test. To keep my example Web app simple and not obscure
details of the test automation, I took shortcuts you wouldn’t see in
a production Web app, such as eliminating error checks.

The heart of the Web app’s functionality is contained in a
Java Script function named processclick. Th at function is called

Web UI Test Automation with the
WebBrowser Control

In this month’s column I show you a
new way to create UI test automation
for Web applications. Th e technique
I present provides one solution to a
very common but tricky testing sce-
nario: how to deal with modal message
boxes generated by a Web application.

Th e best way for you to see where
I’m headed is to take a look at the
screenshots in Figures 1 and 2. Th e
image in Figure 1 shows a simplistic
but representative Web application
hosted in Internet Explorer. The
application accepts user input into
a text box, and aft er the user clicks
on the button labeled Click Me, the
app identifi es the color of the input
item, then displays the result in a
second text box.

Notice that when the Click Me
button is clicked, the application’s
logic checks to see if the user input
box is empty. If so, it generates a
modal message box with an error message. Dealing with a message
box is problematic in part because the message box isn’t part of the
browser or the browser document.

Now take a look at the example test run in Figure 2. The test
harness is a Windows Forms application. Embedded inside the
Windows Forms app is a WebBrowser control that gives the Win-
dows Forms the ability to display and manipulate the dummy
Web application under test.

If you examine the messages in the ListBox control at the bot-
tom of the Windows Forms harness, you’ll see that the test harness
begins by loading the Web app under test into the WebBrowser
control. Next, the harness uses a separate thread of execution to
watch for—and deal with—any message boxes generated by the
Web app. Th e harness simulates a user-click on the Web app Click
Me button, which in turn creates a modal error message box.
Th e watcher thread fi nds the message box and simulates a user
clicking it away. Th e test harness concludes by simulating a user
typing “roses” into the fi rst input box, clicking on the Click Me
button, and looking for the test case expected response of “red”
in the second text box.

TEST RUN JAMES MCCAFFREY

Code download available at msdn.microsoft.com/mag201011TestRun.

Figure 1 Example Web App under Test

http://msdn.microsoft.com/mag201011TestRun

79November 2010msdnmagazine.com

when a user clicks on the application’s button control with ID
Button1 and label value “Click Me.” Th e processclick function fi rst
checks to see if the value in input element TextBox1 is empty. If so,
it generates an error message box using the JavaScript alert function.
If the TextBox1 input element is not empty, the processclick func-
tion uses an if-then statement to produce a value for the TextBox2
element. Notice that because the Web application’s functionality
is provided by client-side JavaScript, the application doesn’t
perform multiple client-to-server round-trips, and therefore the
Web application is loaded only once per functionality cycle.

The Windows Forms Test Harness
Now let’s walk through the test harness code illustrated in Figure 2
so that you’ll be able to modify the code to meet your own needs. Th e
test harness is a Windows Forms application; normally I’d use Visual
Studio to create the program. However, I’m going to show you how to
create the harness using Notepad and the command-line C# compiler
because the ease of use and auto-generated code in Visual Studio hide
some important concepts. Once you understand my example code
you should have no trouble using Visual Studio rather than Notepad.

I open Notepad and begin my harness by declaring the
namespaces used:

using System;
using System.Windows.Forms;
using System.Drawing;
using System.Runtime.InteropServices;
using System.Threading;

You need the System, Forms and Drawing namespaces for
basic Windows Forms functional-
ity. The InteropServices namespace
allows the test harness to fi nd and
manipulate modal message boxes
using the P/Invoke mechanism.
P/Invoke allows you to create C#
wrapper methods that call native
Win32 API functions. Th e Th read-
ing namespace is used to spin off
a separate thread that watches for
the appearance of message boxes.

Next I declare a harness name-
space and I begin the code for the
main Windows Forms applica-
tion class, which inherits from the
System.Windows.Forms.Form class:

namespace TestHarness
{
 public class Form1 : Form
 {
 [DllImport("user32.dll",
 EntryPoint="FindWindow",
 CharSet=CharSet.Auto)]
 static extern IntPtr FindWindow(
 string lpClassName,
 string lpWindowName);
. . .

Immediately inside the Form1
definition I place a class-scope
attribute that allows the test
harness to call the external Find-
Window API function, which is

located in user32.dll. Th e FindWindow API function is mapped
to a C# method also named FindWindow, which accepts the
internal name of a window control and returns an IntPtr handle
to the control. Th e FindWindow method will be used by the test
harness to get a handle to the message box generated by the Web
application under test.

Next, I add two more attributes to enable additional Win32
API functionality:

[DllImport("user32.dll", EntryPoint="FindWindowEx",
 CharSet=CharSet.Auto)]
static extern IntPtr FindWindowEx(IntPtr hwndParent,
 IntPtr hwndChildAfter, string lpszClass,
 string lpszWindow);

[DllImport("user32.dll", EntryPoint="PostMessage",
 CharSet=CharSet.Auto)]
static extern bool PostMessage1(IntPtr hWnd, uint Msg,
 int wParam, int lParam);

The C# FindWindowEx method associated with the Find-
WindowEx API function will be used to get a child control of
the control found by FindWindow, namely the OK button on the
message box. Th e C# PostMessage1 method associated with the
PostMessage API function will be used to send a mouse-up and
mouse-down message—in other words, a click—to the OK button.

Th en I declare the three class-scope controls that are part of the
Windows Forms harness:

private WebBrowser wb = null;
private Button button1 = null;
private ListBox listBox1 = null;

Th e WebBrowser control is a managed code wrapper around native
code that houses the functionality of
the Internet Explorer Web browser.
Th e WebBrowser control exposes
methods and properties that can be
used to examine and manipulate a
Web page housed in the control. Th e
Button control will be used to launch
the test automation, and the ListBox
control will be used to display test
harness logging messages.

Next I begin the code for the
Form1 constructor:
 public Form1() {
 // button1
 button1 = new Button();
 button1.Location =
 new Point(20, 430);
 button1.Size = new Size(90, 23);
 button1.Text = "Load and Test";
 button1.Click +=
 new EventHandler(
 this.button1_Click);
 . . .

Th is code should be fairly self-
explanatory. It’s quite possible that
you’ve never had to write Windows
Forms UI code like this from scratch
before because Visual Studio does
such a good job of generating
UI boilerplate code. Notice the
pattern: instantiate a control, set the
properties and then hook up event Figure 2 Example Test Run

www.msdnmagazine.com

msdn magazine80 Test Run

handler methods. You’ll see this same pattern with the WebBrowser
control. When using the test automation technique I present in this
article, it’s useful to have a way to display logging messages, and a
ListBox control works well:

// listBox1
listBox1 = new ListBox();
listBox1.Location = new Point(10, 460);
listBox1.Size = new Size(460, 200);

Next I set up the WebBrowser control:
// wb
wb = new System.Windows.Forms.WebBrowser();
wb.Location = new Point(10,10);
wb.Size = new Size(460, 400);
wb.DocumentCompleted +=
 new WebBrowserDocumentCompletedEventHandler(ExerciseApp);

Th e key thing to notice here is that I hook up an event handler
method to the DocumentCompleted event so that, aft er the Web
application under test is fully loaded into the WebBrowser control,
control of execution will be transferred to a program-defi ned method
named ExerciseApp (which I haven’t yet coded). Th is is important
because in almost all situations there will be a delay while the Web
application is loading, and any attempt to access the Web application
in the control before it’s fully loaded will throw an exception.

You might have guessed that one way to deal with this is to place
a Th read.Sleep statement into the test harness. But because the har-
ness and WebBrowser control are both running in the same thread
of execution, the Sleep statement will halt both the test harness and
the WebBrowser loading.

I fi nish the Form1 constructor code by attaching the user controls
to the Form object:

// Form1
 this.Text = "Lightweight Web Application Windows Forms Test Harness";
 this.Size = new Size(500, 710);
 this.Controls.Add(wb);
 this.Controls.Add(button1);
 this.Controls.Add(listBox1);
} // Form1()

Next I code the event handler method for the button control
on the Windows Forms harness that kicks off the test automation:

private void button1_Click(object sender, EventArgs e) {
 listBox1.Items.Add(
 "Loading Web app under test into WebBrowser control");
 wb.Url = new Uri(
 "http://localhost/ColorApp/default.html");
}

Aft er logging a message, I instruct the WebBrowser control to
load the Web app under test by setting the control’s Url property.
Notice that I’ve hardcoded the URL of the app under test. Th e tech-
nique I present here is best suited for lightweight, disposable test
automation where hardcoded parameter values have fewer disad-
vantages than in situations where your test automation must be
used over a long period of time.

Next I begin the code for the ExerciseApp method, which accepts
control of execution when the DocumentCompleted event is fi red:

private void ExerciseApp(object sender, EventArgs e) {
 Thread thread = new Thread(new
 ThreadStart(WatchForAndClickAwayMessageBox));
 thread.Start();

The ExerciseApp method contains most of the actual test har-
ness logic. I begin by spawning a new thread associated with a
program-defined method named WatchForAndClickAway-
MessageBox. The idea here is that when a modal message box is
generated by the Web application under test in the Web Browser

control, all test harness execution will halt until that message
box is dealt with, meaning that the test harness can’t directly
deal with the message box. So by spinning off a separate thread
that watches for a message box, the harness can indirectly deal
with the message box.

Next I log a message and then simulate a user clicking on the
Web application’s Click Me button:

listBox1.Items.Add(
 "Clicking on 'Click Me' button");
HtmlElement btn1 =
 wb.Document.GetElementById("button1");
btn1.InvokeMember("click");

Th e GetElementById method accepts the ID of an HTML element
that’s part of the document loaded into the WebBrowser control. Th e
InvokeMember method can be used to fi re off events such as click
and mouseover. Because there’s no text in the Web app’s TextBox1
control, the Web app will generate the error message box, which will
be dealt with by the harness WatchForAndClickAwayMessageBox
method, as I’ll explain shortly.

Now, assuming that the message box has been dealt with, I
continue the test scenario:

listBox1.Items.Add("Waiting to click away message box");
listBox1.Items.Add("'Typing' roses into TextBox1");
HtmlElement tb1 = wb.Document.GetElementById("TextBox1");
tb1.InnerText = "roses";

I use the InnerText property to simulate a user typing “roses”
into the TextBox1 control. Other useful properties for manipu-
lating the Web application under test are OuterText, InnerHtml,
and OuterHtml.

My automation continues by simulating a user click on the Web
application’s Click Me button:

listBox1.Items.Add(
 "Clicking on 'Click Me' button again");
btn1 = wb.Document.GetElementById("button1");
btn1.InvokeMember("click");

<html>
<head>
<title>Item Color Web Application</title>
<script language="JavaScript">
 function processclick() {
 if (document.all['TextBox1'].value == "") {
 alert("You must enter an item into the first box!");
 }
 else {
 var txt = document.all['TextBox1'].value;
 if (txt == "roses")
 document.all["TextBox2"].value = "red";
 else if (txt == "sky")
 document.all["TextBox2"].value = "blue";
 else
 document.all["TextBox2"].value = "I don't know that item";
 }
 }

</script>
</head>
<body bgcolor="#F5DEB3">
 <h3>Color Identifier Web Application</h3>
 <p>Enter an item:
 <input type="text" id="TextBox1" /></p>
 <p><input type="button" value="Click Me"
 id="Button1"
 onclick="processclick()"/></p>
 <p>Item color is:
 <input type="text" id="TextBox2" /></p>
</body>
</html>

Figure 3 The Web App

81November 2010msdnmagazine.com

Unlike the previous simulated click, this time there’s text in the
TextBox1 control, so the Web application’s logic will display some
result text in the TextBox2 control, and the test harness can check
for an expected result and log a pass or fail message:

listBox1.Items.Add("Looking for 'red' in TextBox2");
HtmlElement tb2 = wb.Document.GetElementById("TextBox2");
string response = tb2.OuterHtml;
if (response.IndexOf("red") >= 0) {
 listBox1.Items.Add("Found 'red' in TextBox2");
 listBox1.Items.Add("Test scenario result: PASS");
}
else {
 listBox1.Items.Add("Did NOT find 'red' in TextBox2");
 listBox1.Items.Add("Test scenario result: **FAIL**");
}

Notice that the HTML response will look something like <input
type="text" value="red" />, so I use the IndexOf method to search
the OuterHtml content for the correct expected result.

Here’s the defi nition for the method that will deal with the Web
app’s modal message box:

private void WatchForAndClickAwayMessageBox() {
 IntPtr hMessBox = IntPtr.Zero;
 bool mbFound = false;
 int attempts = 0;
 string caption = "Message from webpage";
. . .

I declare a handle to the message box, a Boolean variable to
let me know when the message box has been found, a counter
variable so I can limit the number of times my harness will look
for the message box to prevent an endless loop, and the caption
of the message box to look for. Although in this case the message
box caption is fairly obvious, you can always use the Spy++ tool to
verify the caption property of any window control.

Next I code a watching loop:
do {
 hMessBox = FindWindow(null, caption);
 if (hMessBox == IntPtr.Zero) {
 listBox1.Items.Add("Watching for message box . . . ");
 System.Threading.Thread.Sleep(100);
 ++attempts;
 }
 else {
 listBox1.Items.Add("Message box has been found");
 mbFound = true;
 }
} while (!mbFound && attempts < 250);

I use a do-while loop to repeatedly attempt to get a handle to a mes-
sage box. If the return from FindWindow is IntPtr.Zero, I delay 0.1
seconds and increment my loop attempt’s counter. If the return is not
IntPtr.Zero, I know I’ve obtained a handle to the message box and I
can exit the do-while loop. Th e “attempts < 250” condition will limit
the amount of time my harness is waiting for a message box to appear.
Depending on the nature of your Web app, you may want to modify
the delay time and the maximum number of attempts.

Aft er the do-while loop exits, I fi nish up the WatchForAndClick-
AwayMessageBox method by seeing if the exit occurred because a
message box was found or because the harness timed out:

if (!mbFound) {
 listBox1.Items.Add("Did not find message box");
 listBox1.Items.Add("Test scenario result: **FAIL**");
}
else {
 IntPtr hOkBtn = FindWindowEx(hMessBox, IntPtr.Zero, null, "OK");
 ClickOn(hOkBtn);
}

If the message box wasn’t found, I classify this as a test case
failure and log that result. If the message box was found, I use

the FindWindowEx method to get a handle to the OK button
child control located on the parent message box control and
then call a program-defined helper method named ClickOn,
which I define as:

private void ClickOn(IntPtr hControl) {
 uint WM_LBUTTONDOWN = 0x0201;
 uint WM_LBUTTONUP = 0x0202;
 PostMessage1(hControl, WM_LBUTTONDOWN, 0, 0);
 PostMessage1(hControl, WM_LBUTTONUP, 0, 0);
}

Th e Windows message constants 0201h and 0202h represent left -
mouse-button-down and left -mouse-button-up, respectively. I use
the PostMessage1 method that’s hooked to the Win32 PostMessage
API function, which I described earlier.

My test harness ends by defining the harness Main method
entry point:

[STAThread]
private static void Main() {
 Application.Run(new Form1());
}

Aft er saving my test harness as Harness.cs, I used the command-
line compiler. I launch the special Visual Studio command shell
(which knows where the csc.exe C# compiler is), navigate to the
directory holding my Harness.cs fi le, and issue the command:

C:\LocationOfHarness> csc.exe /t:winexe Harness.cs

The /t:winexe argument instructs the compiler to generate a
Windows Forms executable rather than the default console appli-
cation executable. Th e result is a fi le named Harness.exe, which can
be executed from the command line. As I mentioned earlier, you
will likely want to use Visual Studio rather than Notepad to create
WebBrowser control-based test automation.

Wrapping Up
Th e example I’ve presented here should give you enough information
to get you started writing your own WebBrower control-based test
automation. Th is technique is best suited for lightweight automation
scenarios—situations where you want to get your test automation
up and running quickly and where the automation has a short
expected lifespan. Th e strength of this technique is its ability to deal
with modal message boxes—something that can be quite tricky
when using other UI test-automation approaches. Th is technique
is especially useful when you’re testing Web application function-
ality that’s generated primarily by client-side JavaScript.

In situations where Web application functionality is generated
by multiple client-server round trips, you’ll have to modify the
code I’ve presented, because each time a response is returned from
the Web server, the DocumentCompleted event will be fired.
One approach for dealing with this is to create and use a variable
that tracks the number of DocumentCompleted events and adds
branching logic to your harness.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He’s worked on several Microsoft products, including Internet
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation
Recipes” (Apress, 2006) and can be reached at jammc@microsoft .com.

THANKS to the following Microsoft technical experts for reviewing this
article: Paul Newson and Dan Liebling

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine82

invoked from any given context. (Procedural languages rely heavily
on “scope” to isolate work inside the procedure away from the
surrounding context.) One way to introduce variability within the
procedure is by way of parameters (indicating how to process the
remainder of the parameters, for example), which can have either
positive or negative variability, depending on how the procedure itself
is written. If the source to that procedure is unavailable or shouldn’t
be modifi ed for some reason, variability can still be had by creating
a new procedure that either calls to the old procedure, or not, depend-
ing on whether positive or negative variability is desired.

Hello Procedures
In essence, the procedure provides common behavior, which can
vary based on input. And, ironically enough, the fi rst example we
see of the procedural paradigm lies in the very fi rst example most
Microsoft .NET Framework programmers ever see:

 Sub Main()
 Console.WriteLine("{0}, {1}!", "Hello", "world!")
 End Sub

In the WriteLine implementation, developers pass a format
string describing not only what to print out but how to print it,
including formatter commands contained within the replacement
markers, like so:

 Sub Main()
 Console.WriteLine("Hello, world, it's {0:hh} o'clock!", Date.Now)
 End Sub

Th e implementation of WriteLine is an interesting case study, in
that it diff ers somewhat from its ancient predecessor, printf from
the C standard library. Recall that printf took a similar kind of for-
mat string using diff erent formatting markers and wrote directly
to the console (the STDOUT stream). If a programmer wanted to
write formatted output to a fi le, or to a string, diff erent variations
of printf had to be invoked: fprintf in the case of file
output, or sprintf in the case of a string. But the actual formatting
of the output was common, and oft en C runtime libraries took
advantage of this fact by creating a single generic formatting
function before sending the results to the final destination—

Multiparadigmatic .NET, Part 3:
Procedural Programming

Last month, the soft ware-design exercise as one of commonality
and variability stood as the centerpiece of the discussion (see
msdn.micro soft.com/magazine/gg232770). It left us with the idea that
software languages such as C# and Visual Basic offer different
paradigms for representing these commonality/variability
concepts along different dimensions, and that the heart of
multiparadigmatic design is in pairing up the demands of the
domain with the facilities of the language.

Th is month, we begin by examining one of the older facilities
of programming languages, “procedural programming,” also some-
times known as “structured programming,” though the two are
somewhat subtly diff erent. Although commonly seen as “old school”
and therefore outdated and useless in modern soft ware design,
the procedural design paradigm still shows up in a surprising
number of places.

Proceeding It, Old School
For those of us who weren’t alive when structured programming
emerged as a new term, its core tenet was to put some defi nition
(structure) around the code being written—at a practical level, this
meant “single entry points” and “single exit points” to the blocks of
code being written in assembly at the time. Th e goal here was pretty
simple, in retrospect: put some higher-level abstractions around
the repetitive bits of code that were fl oating around.

But frequently, these commands (procedures) needed some
variation to them if they were to be at all useful, and parameters—
input passed to the procedure to vary its execution—were included
as part of the approach, fi rst informally (“pass the character you want
to display in the AX register”), then formally (as parameters to
functions, as in C/C++/C#/Java/Visual Basic and the like).
Procedures oft en calculate some kind of returned value, sometimes
derived from the input passed in, sometimes simply to indicate
success or failure (such as in the case of writing data to a fi le or
database); these are also specifi ed and handled by the compiler.

However, all of this is a remedial topic for most readers. What
the multiparadigm approach asks of us isn’t to rehash history, but
to look at it again through the lens of commonality analysis. What,
specifi cally, is being generalized in the procedural approach, and
how do we introduce variability? Once the variability is identifi ed,
what kind of variability is it—positive or negative?

With commonality/variability glasses on, the procedural para-
digm yields up interesting secrets: Commonality is gathered into
procedures, which are essentially named blocks of code that can be

THE WORKING PROGRAMMER TED NEWARD

The procedural design paradigm
still shows up in a surprising

number of places.

http://msdn.microsoft.com/magazine/gg232770

83November 2010msdnmagazine.com

a perfect example of commonality. However, this formatting
behavior was considered “closed” to the average C developer
and couldn’t be extended. Th e .NET Framework takes one step
beyond that, off ering developers the chance to create new format-
ting markers by passing responsibility off to the objects passed in
to WriteLine aft er the format string. If the object implements the
IFormattable interface, it’s given the responsibility for fi guring out
the formatting marker and returning an appropriately formatted
string for processing.

Variability could also hide behind other places in the procedural
approach. When sorting values, the qsort (a Quicksort imple-
mentation) procedure needed help to know how to compare two
elements to determine which one was greater or lesser than the
other. To require developers to write their own wrappers around
qsort—the traditional variability mechanism, when the original
was untouchable—would’ve been too awkward and difficult.
Fortunately, the procedural paradigm off ered a diff erent approach,
an early variation of what would later become known as Inversion
of Control: Th e C developer passed in a pointer to a function, which
qsort invoked as part of its operation. Th is, in essence a variation
of the parameters-as-variability approach, off ered an open-ended
variability approach, in that any procedure (so long as it met the
parameter and return type expectations) could be used. Although
somewhat rare at fi rst, over time this paradigm’s idiom became
more and more commonplace, usually under the general label
of “callbacks”; by the time Windows 3.0 was released, it was an
accepted core practice and necessary to write Windows programs.

Hello Services
Most interestingly, the place where the procedural paradigm has
achieved the most widespread success (if we blithely ignore the
unbelievable success and ubiquity of the C standard library, of course)
is in the service-oriented realm. (Here, I use the term “service” to mean
a wider collection of soft ware, rather than the traditional narrow view
of just WS-* or SOAP/Web Services Description Language [WSDL]-
based services; REST-based implementations as well as Atom/RSS
implementations fi t much the same defi nition.)

According to past literature appearing on msdn.com, such as
“Principles of Service-Oriented Design” (msdn.microsoft.com/library/
bb972954), services obey four basic tenets:

• Boundaries are explicit.
• Services are autonomous.
• Services share schema and contract, not class.
• Service compatibility is based on policy.

These tenets, perhaps without intending to do so, reinforce
the nature of services as belonging to the procedural paradigm
of design more than to the object-oriented one. “Boundaries are
explicit” reinforces the notion that the service is an entity separate
and distinct from the system invoking it; this view is reinforced by
the notion that “services are autonomous” and therefore distinct
from one another, ideally even at an infrastructure-management
level. “Services share schema and contract, not class” speaks to the
notion that services are defi ned in terms of the parameters sent to
them, expressed as XML (or JSON) constructs, not specifi c runtime
types from a particular programming language or platform. Finally,

“Service compatibility is based on policy” suggests that services
must be compatible based on policy declarations, which provide
more of a context around the invocation—this is something that the
procedural paradigm historically has assumed from the surrounding
environment, and as such, it isn’t necessary to defi ne explicitly.

Developers may be quick to point out that in classic WSDL-based
services, it’s more diffi cult to create variability because the service is
tied to the schema defi nition of the input type. But this is only for
the most basic (or code-generative) of services—input and result
types can be (and frequently are) reused across service defi nitions.
In fact, if the notion of service is expanded to include REST-based
systems, then the service can accept any number of diff erent kinds
of input types—essentially the parameters to the procedure are
taking on an open-ended and interpretive role not generally seen
in traditional statically typed procedures—and behave diff erently,
bringing the variability within that service squarely to the fore once
again. Some of that behavior will, of course, need to be validational
in nature, because the service’s URL (its name) won’t always be
appropriate for every kind of data that can be thrown at it.

When services are seen through the lens of a messaging system,
such as BizTalk, ServiceBus or some other Enterprise Service Bus,
the procedural aspect still holds, though now the entire variability
rests with the messages being passed around, because the mes-
sages carry the entirety of the call context—not even the name
of the procedure to invoke is present. Th is also implies that the
variability mechanism by which we wrap another procedure in a
new one—either introducing or restricting variability in doing
so—is no longer present, because we typically don’t control how
messages are passed around the bus.

Succeeding with Proceeding
Th e procedural paradigm demonstrates some of the earliest
commonality/variability dimensions:

• Name and behavior. Names convey meanings. We can
use commonality of name to group items (such as procedures/
methods) that have the same meaning. In fact, “modern”
languages have allowed us to capture this relationship more
formally by allowing us to have different methods use
the same name, so long as they vary in the number and/
or types of parameters; this is method overloading. C++,
C# and Visual Basic can also take advantage of appropri-
ately named methods by creating methods whose names
are well-understood based on algebra; this is operator

Politics aside, the classic
service—be it a RESTful one or a
SOAP/WSDL-based one—bears

a striking resemblance to the
classic procedural paradigm.

www.msdnmagazine.com
http://msdn.microsoft.com/library/bb972954
http://msdn.microsoft.com/library/bb972954

The Working Programmer

STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

(Required by 39 U.S.C. 3685, United States Postal Service)

1. Title of Publication: MSDN Magazine

2. Publication No. 1528-4859

3. Filing Date: 9/30/10

4. Frequency of Issue: Monthly

5. No. of issues published annually: 12

6. Annual Subscription Price: US $35, International $60

7. Mailing address of known offi ce of publication: 9201 Oakdale Ave., Ste. 101,

Chatsworth, CA 91311

8. Mailing address of the headquarters of general business offi ces of the publisher:

Same as above.

9. Name and complete mailing address of Publisher, Editor, and Managing Editor:

Henry Allain, President, 16261 Laguna Canyon Rd., Ste. 130, Irvine, CA 92618

Matt N. Morollo, Publisher, 600 Worcester Rd., Ste. 204, Framingham, MA 01702

Doug Barney, VP/Editorial Director, 600 Worcester Rd., Ste. 204, Framingham,

MA 01702

Wendy Gonchar, Managing Editor, 16261 Laguna Canyon Rd., Ste. 130, Irvine,

CA 92618

10. Owner (s): 1105 Media, Inc. dba: 101 Communications LLC, 9201 Oakdale Ave,

Ste. 101, Chatsworth, CA 91311. Listing of shareholders in 1105 Media, Inc.

11. Known Bondholders, Mortgagees, and Other Security Holders Owning or Holding

1 Percent or more of the Total Amount of Bonds, Mortgages or Other Securities:

Nautic Partners V, L.P., 50 Kennedy Plaza, 12th Flr., Providence, RI 02903

Kennedy Plaza Partners III, LLC, 50 Kennedy Plaza, 12th Flr., Providence, RI

02903

Alta Communications 1X, L.P., 1X-B, L.P., Assoc., LLC, 28 State St., Ste. 1801,

Boston, MA 02109

12. The tax status has not changed during the preceding 12 months.

13. Publication Title: MSDN Magazine

14. Issue date for Circulation Data Below: September 2010

15. Extent & Nature of Circulation:

 No. Copies of
 Average No. Copies Single Issue
 Each Month During Published Nearest
 Preceding 12 Months to Filing Date

a. Total Number of Copies (Net Press Run) 80,543 77,948

b. Legitimate Paid/and or Requested Distribution

 1. Outside County Paid/Requested Mail

 Subscriptions Stated on PS Form 3541 63,268 66,491

 2. In-County Paid/Requested Mail

 Subscriptions Stated on PS Form 3541 1,163 1,073

 3. Sales Through Dealers and Carriers, Street

 Vendors, Counter Sales, and Other Paid or

 Requested Distribution Outside USPS® 9,680 8,640

 4. Requested Copies Distributed by Other

 Mail Classes Through the USPS 0 0

c. Total Paid and/or Requested Circulation 74,111 76,204

d. Nonrequested Distribution

 1. Outside County Nonrequested

 Copies Stated on PS Form 3541 4,030 519

 2. In-County Nonrequested Copies

 Distribution Stated on PS Form 3541 0 0

 3. Nonrequested Copies Distribution

 Through the USPS by Other

 Classes of Mail 0 0

 4. Nonrequested Copies Distributed

 Outside the Mail 2,249 1,036

e. Total Nonrequested Distribution 6,279 1,555

f. Total Distribution 80,390 77,759

g. Copies not Distributed 153 189

h. Total 80,543 77,948

i. Percent paid and/or Requested Circulation 92.19% 98.000%

16. Publication of Statement of Ownership for a Requester Publication is required and

will be printed in the November 2010 issue of this publication.

17. I certify that all information furnished on this form is true and complete:

Abraham Langer, Senior Vice President, Audience Development and Digital Media

magazine overloading. F# takes this even further by allowing devel-
opers to create new operators.

• Algorithm. Algorithms aren’t just mathematical calcu-
lations, but rather repeated steps of execution. If the entire
system (rather than individual layers) is seen in a top-down
form, interesting process/code fragments—use cases, in
fact—begin to emerge that form families. Aft er these steps
(procedures) have been identifi ed, families can form around
the variability based on how the algorithm/procedure
operates on diff erent kinds of data/parameters. In C#, F#
and Visual Basic, these algorithms can be varied by placing
them in base classes, then varied by inheriting the base class
and replacing the base’s behavior; this is method overriding.
Algorithmic behavior can also be customized by leaving
part of that behavior unspecified and passed in; this is
using delegates as Inversion of Control or callbacks.

One fi nal note before we wrap up this piece. Th e procedural
paradigm may not line up one-to-one with the service-oriented
world; in fact, many service-oriented architecture evangelists
and proponents will reject even the smallest association to the
procedural paradigm, for fear that such an association will somehow
take the shine off of their vested interest. Politics aside, the classic
service—be it a RESTful one or a SOAP/WSDL-based one—bears a
striking resemblance to the classic procedural paradigm. As a result,
using the same commonality analysis during service design helps
create an acceptable level of granularity, though designers must
take care to ensure that the (assumed) traversal of the network to
execute the service at the service host’s location won’t be blithely
ignored. In particular, naïve implementations of services using the
procedural paradigm might attempt to use the “pass a callback”
approach to variability, and while this isn’t entirely a terrible idea,
it could represent a major bottleneck or performance problem.

To this day, the procedural paradigm still appears throughout
a great deal of what we do, but it’s been lurking under the surface,
hiding from developers under an assumed name. Our next subject,
object orientation, has no such excuse—it’s the perky, outgoing, “Hey,
come look at me!” younger sister to its moody, melodramatic and
oft en-ignored procedural older sibling. In next month’s piece, we’ll
start analyzing the commonality/variability dimensions of objects,
and some of what we fi nd may prove surprising.

In the meantime, as an intellectual exercise, cast your gaze around
the various tools you use and identify which of them use funda-
mentally procedural tactics. (Hint: Two of them are tools you use
every day while writing soft ware: the compiler and MSBuild, the
build system hidden away behind the Build button in Visual Studio.)

And, as always, happy coding!

TED NEWARD is a principal with Neward & Associates, an independent fi rm
specializing in enterprise Microsoft .NET Framework and Java platform systems.
He’s written more than 100 articles, is a C# MVP and INETA speaker, and has
authored and coauthored a dozen books, including “Professional F# 2.0” (Wrox,
2010). He also consults and mentors regularly. Reach him at ted@tedneward.com
with questions or consulting requests, and read his blog at blogs.tedneward.com.

 THANKS to the following technical expert for reviewing this article:
Anthony Green

mailto:ted@tedneward.com
http://blogs.tedneward.com

EXPERIENCE
Beautiful Data Visualizations That Bring Your Data to Life

Use our Motion Framework™ to see your
data over time and give your users new
insight into their data. Visit infragistics.com
to try it today!

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.
Motion Framework is a trademark of Infragistics, Inc.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111

@infragistics

Untitled-1 1 10/13/10 11:36 AM

www.infragistics.com

msdn magazine86

tools for fi nding security vulnerabilities in Web applications and
can be downloaded from fi ddler2.com), you can send any value you
want for any form fi eld. If your application isn’t prepared for this
possibility, it can fail in potentially dangerous ways.

Th e EnableEventValidation confi guration setting is a defense-
in-depth mechanism to help defend against attacks of this nature.
If a malicious user tries to send an unexpected value for a control
that accepts a fi nite list of values (such as a ListBox—but not such
as a TextBox, which can already accept any value), the application
will detect the tampering and throw an exception.
Bad:

<configuration>
 <system.web>
 <pages enableEventValidation="false"/>

Good:
<configuration>
 <system.web>
 <pages enableEventValidation="true"/>

PasswordFormat
Th e membership provider framework supplied as part of ASP.NET
(starting in ASP.NET 2.0) is a great feature that keeps developers
from having to reinvent the membership-functionality wheel time
and time again. In general, the built-in providers are quite good
from a security perspective when left in their default settings.
However, if the membership confi guration settings are changed,
they can become signifi cantly less secure.

One good example of this is the PasswordFormat setting,
which determines how user passwords are stored. You have three
choices: Clear, which stores passwords in plaintext; Encrypted,
which encrypts the passwords before storing them; and Hashed,
which stores hashes of the passwords instead of the passwords
themselves. Of these choices, Clear is clearly the worst. It’s never
appropriate to store passwords in plaintext. A much better choice
is Encrypted, and the best choice is Hashed, because the best way
to store a secret is not to store it at all. However, because there’s no
way to retrieve the original password from a hash, if a user forgets
his or her password, you won’t be able to recover it for him.
Bad:

<configuration>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 passwordFormat="Clear"
 ...
 />

Web Application Confi guration
Security Revisited

A few years ago—prior to my time at Microsoft and the Security
Development Lifecycle (SDL) team—I wrote an article on the
dangers of insecure web.confi g settings and named the top 10 worst
off enders. You can still fi nd this article today—just search for “Top
10 Application Security Vulnerabilities in Web.Confi g Files” in your
favorite search engine. Th e confi guration vulnerabilities I talked
about back then are still relevant and serious today, although they
probably wouldn’t come as huge surprises to regular readers of
MSDN Magazine. It’s still important to enable custom errors; it’s
still important to disable tracing and debugging before pushing
your application to production; and it’s still important to require
SSL for authentication cookies.

In this month’s column, I’d like to pick up where that article
left off and discuss some of the more obscure but equally serious
security misconfi gurations. I’m also going to take a look at a new
free tool from the Microsoft Information Security Tools team
called the Web Application Confi guration Analyzer that can help
fi nd these problems. Remember, even the most securely coded
ASP.NET application can be hacked if it isn’t confi gured correctly.

EnableEventValidation
One of the more common mistakes I see developers make is that
they give users a list of choices and then assume the users will, in
fact, choose one of those values. It seems logical enough: If you add
a ListBox control to a page and then pre-populate it with the list of
all states in the United States, you’d expect to get back “Washington”
or “Georgia” or “Texas”; you wouldn’t expect “Foo” or “!@#$%” or
“<script>alert(document.cookie);</script>”. Th ere may not be a way
to specify values like this by using the application in the traditional
way, with a browser, but there are plenty of ways to access Web
applications without using a browser at all! With a Web proxy tool
such as Eric Lawrence’s Fiddler (which remains one of my favorite

SECURITY BRIEFS BRYAN SULLIVAN

Even the most
securely coded ASP.NET

application can be hacked if it
isn’t confi gured correctly.

http://fiddler2.com

87November 2010msdnmagazine.com

Better:
<configuration>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 passwordFormat="Encrypted"
 ...
 />

Best:
<configuration>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 passwordFormat="Hashed"
 ...
 />

MinRequiredPasswordLength and
MinRequiredNonalphanumericCharacters
Th ere are two values of the membership settings that should be
changed from their defaults: the MinRequiredPasswordLength
and MinRequiredNonalphanumericCharacters properties. For
AspNetSqlMembershipProvider objects, these settings default to a
minimum required password length of six characters, with no non-
alphanumeric characters required. For better security, these settings
should be set much higher. You should require at least a 10-character-
long password, with two or more non-alphanumeric characters.
A 14-character minimum with four or more non-alphanumeric
characters would be better still .

It’s true that password length and complexity are dual-edged swords:
When you require your users to set longer and more complex pass-
words, there’s less of a chance those passwords will fall to brute-force
attacks, but there’s also a correspondingly greater chance that your users
won’t be able to remember their passwords and will be forced to write
them down. However, while this sounds like a horrible potential secu-
rity hole, many security experts believe the benefi ts outweigh the risks.
Noted security guru Bruce Schneier, for one, suggests that users create
long, complex passwords and store them in their purse or wallet, as
this is a place where people are used to securing small pieces of paper.
Bad:

<configuration>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 ...
 />

Good:
<configuration>
 <system.web>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 minRequiredPasswordLength="14"
 minRequiredNonalphanumericCharacters="4"
 ...
 />

Th e Microsoft Online Safety site (microsoft.com/protect/fraud/passwords/

create.aspx) also suggests that users should write their passwords

down, and it has additional information on creating and securing
strong passwords.

ValidateRequest
Cross-site scripting (XSS) continues to be the most common Web
vulnerability. A report published by Cenzic Inc. in July found that
in the fi rst half of the year, XSS vulnerabilities accounted for 28 per-
cent of all Web attacks. Given the potentially severe consequences
of an XSS vulnerability—I’ve oft en called XSS “the buff er overfl ow
of the Web” in the past—it’s only logical that developers should do
whatever they can to help defend their applications against this
attack. It’s especially nice when you get a defense that basically costs
you nothing, and that’s what ValidateRequest is.
Bad:

<configuration>
 <system.web>
 <pages validateRequest="false" />

Good:
<configuration>
 <system.web>
 <pages validateRequest="true" />

ValidateRequest works by testing user input for the presence of
common attack patterns, such as whether the input string contains
angle brackets (<). If it does, the application throws an exception
and stops processing the request. While this isn’t a complete
solution in and of itself—you should also always apply output
encoding and input validation/sanitization logic, such as is built
into the Microsoft Web Protection Library—ValidateRequest does
block many types of popular XSS attacks. It’s best to leave Validate-
Request enabled whenever possible.

MaxRequestLength
It’s rarely a good idea to allow users to make arbitrarily large HTTP
requests to your application. Doing so opens you to denial-of-service
(DoS) attacks, where a single attacker could use up all your band-
width, processor cycles or disk space and make your application
unavailable to any of the other legitimate users you’re trying to reach.

To help prevent this, you can set the MaxRequestLength property
setting to an appropriately small value. Th e default value is 4096KB
(4MB). Because diff erent applications have diff erent requirements
as to what their usual and exceptional request sizes are, it’s diffi cult
to make a good rule of thumb about what the MaxRequestLength
value should be set to. So, instead of giving examples of what
“bad” and “good” settings would be, I just suggest that you keep in
mind the fact that the higher you set this value, the more you put
yourself at risk for a DoS attack:

<configuration>
 <system.web>
 <httpRuntime maxRequestLength="4096"/>

Cross-site scripting (XSS)
continues to be the most

common Web vulnerability.

www.msdnmagazine.com
http://microsoft.com/protect/fraud/passwords/create.aspx
http://microsoft.com/protect/fraud/passwords/create.aspx

msdn magazine88 Security Briefs

EnableViewStateMac
I’ve written previously about the EnableViewStateMac setting in the
July 2010 Security Briefs column on view state security (microsoft.com/

magazine/ff797918). For those who missed it, EnableViewStateMac is
a defense to prevent attackers from tampering with client-side
view state. When EnableViewStateMac is enabled, the ASP.NET
application adds a cryptographic Message Authentication Code
(MAC) to the hidden __VIEWSTATE form value. Th ere’s no way
for an attacker to determine a valid MAC for an arbitrary attack—
to try to poison a victim’s view state to inject some malicious
JavaScript, for example—so if an attacker tries to tamper with view
state in this manner, the MAC will be invalid and the ASP.NET
application will block the request.
Bad:

<configuration>
 <system.web>
 <pages enableViewStateMac="false"/>

Good:
<configuration>
 <system.web>
 <pages enableViewStateMac="true"/>

If you’re deploying your application in a server farm environ-
ment, it’s also important to remember to manually specify a key
for the MAC rather than letting the application auto-generate
random keys. (If you don’t manually specify keys, each machine
in the farm will auto-generate a diff erent key, and the view state
MAC created by any of the machines will be considered invalid
and will be blocked by any of the other machines.)

Th ere are a few additional guidelines you should follow when
manually creating keys to ensure maximum security for your
view state. First, be sure to specify one of the SDL-approved cryp-
tographic algorithms. For applications using the Microsoft .NET
Framework 3.5 or earlier, this means using either SHA1 (which is
the default algorithm) or AES. For applications using the .NET
Framework 4, you can also use HMACSHA256, HMACSHA384 or
HMACSHA512. Avoid weak algorithms such as MD5.
Bad:

<configuration>
 <system.web>
 <machineKey validation="MD5" validationKey="..."/>

Good:
<configuration>
 <system.web>
 <machineKey validation="AES" validationKey="..."/>

It’s just as important to choose a strong key as it is to choose a
strong algorithm. Use a cryptographically strong random-number
generator to generate a 64-byte key (128-byte if you’re using
HMACSHA384 or HMACSHA512 as your key algorithm).

Reference sample code to generate appropriate keys is provided in
the July 2010 Security Briefs column I mentioned earlier.
Bad:

<configuration>
 <system.web>
 <machineKey validation="AES" validationKey="12345"/>

Good:
<configuration>
 <system.web>
 <machineKey validation="AES" validationKey="143a907bb73069a2fe7c..."/>

ViewStateEncryptionMode
Just as you should apply a MAC to your application’s view state to keep
potential attackers from tampering with it, you should also encrypt the
view state to keep them from reading it. Unless you’re 100 percent sure
there’s no sensitive information in any of your view state, it’s safest to
set the ViewStateEncryptionMode property to encrypt and protect it.
Bad:

<configuration>
 <system.web>
 <pages viewStateEncryptionMode="Never"/>

Good:
<configuration>
 <system.web>
 <pages viewStateEncryptionMode="Auto"/>

Again, just as with EnableViewStateMac, you have your choice
of several cryptographic algorithms the application will use to
encrypt the view state. However, it’s best to stick with AES, which
is the only available algorithm currently approved by the SDL
Cryptographic Standards.
Bad:

<configuration>
 <system.web>
 <machineKey decryption="DES" decryptionKey=""/>

Good:
<configuration>
 <system.web>
 <machineKey decryption="AES" decryptionKey=""/>

Finally, remember that if you’re deploying your application in
a server farm, you’ll need to manually specify a key. Make sure to
set the key value to a 24-byte cryptographically random value.
Bad:

<configuration>
 <system.web>
 <machineKey decryption="AES" decryptionKey="12345"/>

Good:
<configuration>
 <system.web>
 <machineKey decryption="AES" decryptionKey="143a907bb73069a2fe7c..."/>

UseUnsafeHeaderParsing
When developers are frustrated enough by a diffi cult bug, they’ll
oft en implement any change they read about that fi xes the problem
without really understanding what they’re doing to their applica-
tion. Th e UseUnsafeHeaderParsing setting is a great example of this
phenomenon. While the word “unsafe” in the property name alone
should be enough to throw up a red fl ag for most people, a quick
Internet search reveals literally thousands of results suggesting
developers enable this property. If you do enable UseUnsafe-
HeaderParsing, your application will ignore many of the HTTP
RFC specifi cations and attempt to parse malformed requests. While

It’s rarely a good idea to
allow users to make arbitrarily

large HTTP requests to
your application.

http://microsoft.com/magazine/ff797918
http://microsoft.com/magazine/ff797918

89November 2010msdnmagazine.com

doing so can allow your application to work with HTTP clients that
disobey HTTP standards (which is why so many people suggest it
as a problem fi x), it can also open your application to malformed
header attacks. Play it safe and leave this setting disabled.
Bad:

<configuration>
 <system.net>
 <settings>
 <httpWebRequest
 useUnsafeHeaderParsing=
 "true"/>

Good:
<configuration>
 <system.net>
 <settings>
 <httpWebRequest
 useUnsafeHeaderParsing=
 "false"/>

Web Application
Con fi g u ra tion
Analyzer (WACA)
Now that we’ve taken a look at some
dangerous confi guration settings,
let’s take a look at a tool that can
help automate finding these set-
tings in your code. Aft er all, while
manual code review can be useful,
automated analysis can be more
thorough and more consistent.
You’ll also save yourself from the
drudgery of hand-reviewing XML
fi les and leave yourself more time to
solve more-interesting problems!

The Microsoft Information
Security Tools team has released
some excellent security tools,
including two—AntiXSS/Web
Protection Library and CAT.NET—
that we’ve made mandatory for all
internal .NET Framework Micro-
soft products and services as part of
the Microsoft SDL. Its latest release,
WACA, is designed to detect poten-
tially dangerous misconfi gurations,
such as the ones I talked about
in this article and in my earlier
article on the top 10 most common
web.confi g vulnerabilities. Some
examples of WACA checks include:
• Is tracing enabled?
• Is MaxRequestLength too large?
• Are HttpOnly cookies disabled?
• Is SSL required for forms

authentication login?
• Is EnableViewStateMac

attribute set to false?
In addition, WACA can also check

for misconfi gurations in IIS itself,
as well as SQL database misconfi gurations and even system-level
issues. Some examples include:

• Is the Windows Firewall service disabled?
• Is the local admin named “Administrator”?
• Is the IIS log fi le on the system drive?
• Is execute enabled on the application virtual directory?

Figure 1 Web Application Confi guration Analyzer Rules

Figure 2 WACA Team Foundation Server Integration

www.msdnmagazine.com

msdn magazine90 Security Briefs

• Are sample databases
present on the SQL server?

• Is xp_cmdshell enabled on
the SQL server?

While developers and testers will
probably use WACA mostly for
checking their applications’ confi g-
uration settings, systems adminis-
trators and database administrators
will fi nd value in using WACA to
check IIS, SQL and system settings
(see Figure 1). In all, there are more
than 140 checks in WACA derived
from SDL requirements and pat-
terns & practices coding guidelines.

One more really handy feature
of WACA is that you can automati-
cally create work items or bugs in
Team Foundation Server (TFS)
team projects from WACA scan re-
sults. Th is is especially useful when
you use it with a team project cre-
ated from either the SDL process
template or the MSF-Agile+SDL
process template. From the WACA
TFS setup page, map the template
fi eld “Origin” to the value “Web Ap-
plication Confi guration Analyzer.”
Now when you view your bug
reports and trend charts, you’ll be
able to fi lter and drill down into the
WACA results to see how eff ective
it’s been at detecting potential
vulnerabilities (see Figure 2).

You can read more about WACA on the Microsoft IT InfoSec
group’s page (msdn.microsoft.com/security/dd547422); watch a video dem-
onstration of the tool presented by Anil Revuru, program manager
for the WACA project (msdn.microsoft.com/security/ee909463); or, best
of all, download the tool and try it for yourself (tinyurl.com/3x7bgfd).

Always Check Your Settings
It’s frustrating to think that you could develop your application
following every secure development guideline and best practice
and still end up hacked because of a simple mistake in a web.confi g
confi guration fi le. It’s even more frustrating when you realize that
web.confi g fi les are designed to be changed at any time and that
the confi guration mistake could come years aft er you’ve fi nished
coding the application and moved it to production. It’s important
to always check your confi guration settings—not just by manual
inspection, but with automated tools, and not just during the
development lifecycle, but also in production.

Follow-up on Regular Expression DoS Attacks
On a completely diff erent topic: In the May 2010 Security Briefs
column (msdn.microsoft.com/magazine/ff646973), I wrote about the

regular expression DoS attack demonstrated by Checkmarx at the
OWASP Israel conference in September 2009. In that column, I
also provided code for a regex DoS fuzzer based on the Visual
Studio Database Projects Data Generation Plan functionality.
Although this approach was technically sound and worked well to
detect regex vulnerabilities, it was admittedly somewhat tedious
to generate the test data, and it did require you to own a license of
Visual Studio Database Projects. So I’m happy to report that the
SDL team has released a new, freely downloadable tool to fuzz for
regex vulnerabilities that takes care of the data generation details
for you. Th e tool has no external dependencies (other than .NET
Framework 3.5). It’s shown in Figure 3.

You can download SDL Regex Fuzzer from micro soft.com/sdl. Give
it a try and let us know what you think.

BRYAN SULLIVAN is a security program manager for the Microsoft Security
Development Lifecycle team, where he specializes in Web application and
Microsoft .NET Framework security issues. He’s the author of “Ajax Security”
(Addison-Wesley, 2007).

THANKS to the following technical expert for reviewing this article:
Anil Revuru

Figure 3 SDL Regex Fuzzer

http://msdn.microsoft.com/security/dd547422
http://msdn.microsoft.com/security/ee909463
http://tinyurl.com/3x7bgfd
http://msdn.microsoft.com/magazine/ff646973
http://microsoft.com/sdl

Untitled-14 1 10/7/10 3:52 PM

www.codeproject.com

msdn magazine92

these center areas as a type of “window,”
with the list functioning similar to the
mechanical reels of old-fashioned slot
machines, which in my mind I began
referring to as “bands.”

Th ese controls seem to respond to
touch in three distinct ways:
 • If you simply tap another visi-

ble item in the band (such as the
month of December in Figure 1),
the item becomes highlighted
when your fi nger leaves the screen,
and that item shift s into the center
window area.

 • Instead of tapping, you can move
one of the bands of items up or

 down with your fi nger. During that time, nothing in that band
is highlighted. As soon as you lift your fi nger, the item closest to
the window becomes highlighted and it shift s into the center.

• Th e third type of interface involves inertia. If the band of
items is moving when your fi nger leaves the screen, it will
continue moving while slowing down. As it gets close to stop-
ping, the item closest to the window becomes highlighted
and moves to the center. If necessary, sometimes the band
reverses direction right at the end before stopping. That
little eff ect—very natural, I had to admit—was something I
knew would be one of the more “interesting” challenges in
duplicating these controls.

Overall Architecture
Another “interesting” challenge involved the circular list of items,
where December is followed by January and 12:00 is followed
by 1:00. Th ese circular bands are crucial aspects of the design—
particularly in combination with inertia. Th e bands can be fl icked
in either direction, and inertia carries them forward to any item
in the band without reaching a dead end.

Aft er rolling around ideas in my mind for several days, I simply
couldn’t think of a better solution to the circular list than a custom
panel, and the name WrappableStackPanel suggested itself. Such a
panel would sometimes position its children from top to bottom,

The Intricacies of Touch Controls

I was the kind of kid who took apart
toasters to fi nd out how they worked.
Much later in life, I graduated to dis-
assembling operating systems and
application programs.

I don’t do a lot of disassembling these
days. But sometimes when I see a par-
ticularly interesting UI, I try to fi gure
out how to code it on my own. It’s an
engineering exercise, of course, but I
also like to think of myself as an art
student who goes to the museum to
paint copies of existing masterworks. In
my own code, I strive for simplicity, of
course, and to make use of pre-existing
elements and controls. But mostly I like
to give myself a challenge and hope I learn something new from it.

Recently I’ve been exploring Windows Phone 7, and I became
intrigued by the pages used to set date and time, as shown in Figure 1.
Th ese controls (which are not publicly available) struck me as
interesting touch interfaces. [Th e controls were released in a Silverlight
for Windows Phone Toolkit following completion of this article. It’s
available at silverlight.codeplex.com/releases/view/52297.—Ed.]

I started wondering: How would I code these controls? In the
past several issues, I’ve been exploring multi-touch in the Windows
Presentation Foundation (WPF), so I decided to target that plat-
form for my fi rst shot at duplicating them. If successful, I could
think about moving the code to Silverlight.

Exploring the Controls
When you fi rst navigate to one of the date or time pages on Windows
Phone 7, you see the current setting in gray squares centered in the
middle of the page. Touch one of these squares and a list of other
choices pops up on the top and bottom. Oft en this list is circular;
as you can see in Figure 1, the month of December is followed
by January. Circular lists are also used for the days of the month,
hours and minutes. Non-circular lists are used for the year—the list
ranges from 1601 to 3000—or (as you can see) to select AM or PM.

How diff erent from a ListBox! A conventional ListBox displays
the currently selected item with a highlight, but as you scroll through
the ListBox, that selected item is sometimes scrolled completely
out of view. In contrast, these date and time controls always tend
to display the selected item in the center, and I began to think of

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201011UIFrontiers.

Figure 1 Windows Phone 7 Date and Time Pickers

http://silverlight.codeplex.com/releases/view/52297
http://code.msdn.microsoft.com/mag201011UIFrontiers

93November 2010msdnmagazine.com

and sometimes start with a child other than the fi rst, and position
the early children aft er the latter children. Of course, rendering
more than one version of a particular child is prohibited in WPF,
so the stack would always have a defi nite end.

Th e WrappableStackPanel would need a property (called Start-
Index, for example) to denote the index of the child that should be
displayed at the top of the panel, with the rest of the children fol-
lowing sequentially and looping back to child zero. In the general
case, no child would be aligned precisely at the top of the panel.
Th e topmost child would usually be partially above the top of the
panel. Th is implied that the StartIndex property would be a fl oating
point value rather than an integer.

But that meant the overall control would probably function in
two distinct ways. One mode requires a WrappableStackPanel to
host the items, where the WrappableStackPanel is fi xed in position
relative to the control, and the panel handles the positioning of chil-
dren relative to itself. Th e other mode is for cases when a regular
StackPanel is adequate (such as for the Year or the AM/PM band);
in this mode, the children are fi xed relative to the StackPanel, and
the StackPanel is then scrolled relative to the control.

Would this control derive from ListBox? I decided it would not.
ListBox incorporates its own selection logic, and the control I want-
ed has a rather diff erent type of selection logic. If I derived from
ListBox, I’d probably fi nd it to be hindering rather than assisting
me as I wrestled with the existing selection logic.

But I knew I wanted the control to maintain its own collection of
items and—particularly—to let me defi ne a template in XAML for
displaying these items. Th is need suggested that an ItemsControl
would be involved. ItemsControl is the parent class to Selector,
from which ListBox and ComboBox derive, and is the obvious
choice for displaying collections where no selection logic is
necessary, or where the programmer will be handling customized
selection logic. Th is was me.

The default control template for a ListBox includes a Scroll-
Viewer; the ItemsControl doesn’t. If you need to scroll the items
displayed by an ItemsControl, you put the whole ItemsControl
itself in a ScrollViewer.

I knew I couldn’t use the existing ScrollViewer for this job.
Although the existing ScrollViewer handles inertia, it doesn’t

have any logic to orient a particular item in the center. My fi rst stab
at actual coding was to create an alternative to ScrollViewer called
WindowedScrollViewer, which hosted an ItemsControl contain-
ing either the months, the days of the months or the years. In its
MeasureOverride method, this WindowedScrollViewer could
easily obtain the full size of the ItemsControl and the number of
items being displayed—and therefore the uniform height of the
individual items—so it could use this information to move the
ItemsControl relative to itself based on the Manipulation events.

Th is approach worked fi ne when the ItemsControl didn’t need to
display wrappable bands of items. For those cases, I needed to set the
ItemsPanel property of the ItemsControl to an ItemsPanelTemplate
referencing the WrappableStackPanel. Th e big problem involved the
WindowedScrollViewer communicating with the WrappableStack-
Panel through the ItemsControl sitting in the middle of the visual tree.

Th is seemed diffi cult. Moreover, I also slowly came to realize that
my WindowedScrollViewer was unlike the regular ScrollViewer
in that it had no visuals of its own. It was doing nothing more than
sliding the ItemsControl relative to itself.

I decided to abandon that approach and instead derive
from ItemsControl and do everything in there. I called it
WindowedItemsControl class, and it implements selection logic,
manipulation handling, scrolling and communicating with an
optional WrappableStackPanel.

Th e downloadable source code for this article is a solution named
TouchDatePickerDemo with a project of that name and a library
project called Petzold.Controls. Th e library project includes Windowed-
ItemsControl (divided into three fi les), WrappableStackPanel and a
UserControl derivative named TouchDatePicker. Th e TouchDate-
Picker combines three WindowedItemsControls (for month, day and
year) with a DatePresenter class and a property named DateTime.

Figure 2 shows the TouchDatePicker in action. A TextBlock is
bound to the DateTime property to display the currently selected date.

Th e TouchDatePicker is basically a Grid with three columns for
the month, day and year. Figure 3 shows the XAML for the fi rst
WindowedItemsControl to handle the month. Th e DataContext is
an object of type DatePresenter, which has properties AllMonths
and SelectedMonth referenced by the WindowedItemsControl tag
itself. Th e AllMonths property is a collection of MonthInfo objects,
and SelectedMonth is also of type MonthInfo. Th e MonthInfo class
has properties named MonthNumber and MonthName that you’ll
see referenced in the DataTemplate. Th e WrappableStackPanel is
referenced down at the bottom.

Figure 2 The TouchDatePicker Control in Action

After rolling around ideas
in my mind for several days, I

simply couldn’t think of a better
solution to the circular list than

a custom panel.

www.msdnmagazine.com

msdn magazine94 UI Frontiers

Selection Logic
The Items collection maintained by ItemsControl is defined to
accept items of type object. Each of these items is rendered based on
a DataTemplate set to the ItemTemplate property of ItemsControl.

Th e ListBox does a little more. Th e ListBox wraps each of its items
in a ListBoxItem control for the purpose of implementing selec-
tion logic. It’s the ListBoxItem that has an IsSelected property along
with the Selected and Unselected events, and which is responsible
for visually indicating that an item is selected.

My goal with WindowedItemsControl was to implement selec-
tion logic without any kind of wrappers, and implement it in such

a way so I could define the visuals of the selected item entirely
in XAML. To help, the WindowedItemsControl has a Selected-
Index property (which it uses internally to determine where
items should be positioned) and a SelectedItem property, which
is the particular object in its Items collection that corresponds
to the SelectedIndex.

In the XAML in Figure 3, this SelectedItem property is refer-
enced in the DateTemplate property like so:

<Binding ElementName="monthControl" Path="SelectedItem" />

Within that same DataTemplate, the item itself can be referenced
with a much simpler Binding expression:

<Binding />

If the objects referenced by these two bindings are equal, then
the DataTemplate should have some special markup to indicate
a selected item—in this case, gray background shading and non-
dimmed text.

Normally in XAML you can’t determine whether two bindings
reference the same object, but I wrote a multi-binding converter
specifi cally for that purpose. It’s called EqualsToVisibilityMulti-
Converter and returns Visibility.Visible or Visibility.Hidden
based on whether two objects are equal. Here’s how it’s used in the
DataTemplate for the gray background:

<Rectangle Fill="{DynamicResource {x:Static SystemColors.
ControlLightBrushKey}}">
 <Rectangle.Visibility>
 <MultiBinding Converter="{StaticResource multiConverter}">
 <Binding />
 <Binding ElementName="monthControl" Path="SelectedItem" />
 </MultiBinding>
 </Rectangle.Visibility>
</Rectangle>

And it worked!

Unfortunately, this binding converter got more complex as I
needed it to perform other duties. I wanted another Rectangle to
dim unselected items, and I wanted this Rectangle to be hidden
for the selected item, so I added a converter parameter. When this
parameter is set to “true,” the Visibility return values from the multi-
binding converter are swapped.

But I also needed to switch between showing just the selected
item and showing the whole band of items I associated with an
IsActive property. If IsActive is true, all items need to be displayed;
if IsActive is false, only the selected item need to be displayed. I
added a facility to the multi-binding converter for a third object of
type bool. If true, then the multi-binding converter always returns
Visibility.Visible (unless the parameter is set to “true,” in which case
it returns Visibility.Hidden). This facility was used to make the
entire item visible or hidden:

<local:WindowedItemsControl x:Name=”monthControl”
 Grid.Column=”0”
 ItemsSource=”{Binding AllMonths}”
 SelectedItem=”{Binding SelectedMonth, Mode=TwoWay}”
 IsActiveChanged=”OnWindowedItemsControlIsActiveChanged”>

 <local:WindowedItemsControl.ItemTemplate>
 <DataTemplate DataType=”local:MonthInfo”>
 <Border Width=”60” Height=”60”
 BorderThickness=”1”
 BorderBrush=”{Binding ElementName=monthControl,
 Path=Foreground}”
 Margin=”2”>
 <Grid>
 <Rectangle Fill=”{DynamicResource
 {x:Static SystemColors.ControlLightBrushKey}}”>
 <Rectangle.Visibility>
 <MultiBinding Converter=”{StaticResource multiConverter}”>
 <Binding />
 <Binding ElementName=”monthControl” Path=”SelectedItem” />
 </MultiBinding>
 </Rectangle.Visibility>
 </Rectangle>

 <TextBlock Text=”{Binding MonthNumber, StringFormat=D2}”
 VerticalAlignment=”Center”
 FontSize=”24”
 FontWeight=”Bold” />

 <TextBlock Text=”{Binding MonthName}”
 VerticalAlignment=”Bottom”
 FontSize=”10” />

 <Rectangle Fill=”#80FFFFFF”>
 <Rectangle.Visibility>
 <MultiBinding Converter=”{StaticResource multiConverter}”
 ConverterParameter=”True”>
 <Binding />
 <Binding ElementName=”monthControl” Path=”SelectedItem” />
 </MultiBinding>
 </Rectangle.Visibility>
 </Rectangle>
 </Grid>

 <Border.Visibility>
 <MultiBinding Converter=”{StaticResource multiConverter}”>
 <Binding />
 <Binding ElementName=”monthControl” Path=”SelectedItem” />
 <Binding ElementName=”monthControl” Path=”IsActive” />
 </MultiBinding>
 </Border.Visibility>
 </Border>
 </DataTemplate>
 </local:WindowedItemsControl.ItemTemplate>

 <local:WindowedItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <local:WrappableStackPanel IsItemsHost=”True” />
 </ItemsPanelTemplate>
 </local:WindowedItemsControl.ItemsPanel>
</local:WindowedItemsControl>

Figure 3 One-Third of the TouchDatePicker Control

I was able to implement selection
visuals entirely in XAML without

the use of any wrappers, and that
made me happy.

95November 2010msdnmagazine.com

<Border.Visibility>
 <MultiBinding Converter="{StaticResource multiConverter}">
 <Binding />
 <Binding ElementName="monthControl" Path="SelectedItem" />
 <Binding ElementName="monthControl" Path="IsActive" />
 </MultiBinding>
</Border.Visibility>

Although the actual multi-binding converter isn’t complex, it’s
a rather messy array of functionality. But I was able to implement
selection visuals entirely in XAML without the use of any wrap-
pers, and that made me happy.

Communicating with the Panel
The WindowedItemsControl needs to implement different
scrolling logic if the panel set through its ItemsPanel property is
a WrappableStackPanel. How can it tell? And how can it funnel
information to this panel?

Determining the type of panel is fairly easy: Override the On-
ItemsPanelChanged property. Whenever the ItemsPanel property
changes, this method is called with the old ItemsPanelTemplate
and the new ItemsPanelTemplate. Call LoadContent on this new
template and you get an instance of the panel in the template.

However, the panel returned from LoadContent isn’t the same
instance as the panel actually being used by the ItemsControl!
Th is technique is suitable only for determining if the panel is of a
particular type, not for communicating with that panel.

If the ItemsControl wishes to set properties on that panel, another
technique is required. It could fi nd the actual panel by traversing
the visual tree, or it could use an inheritable event.

I chose the latter technique. In WindowedItemsControl, I defi ned
a StartIndex property backed by a dependency property, to which
I set the Inherits fl ag of FrameworkPropertyMetadataOptions
(it’s also well-known that to persuade this Inherits fl ag to work,
you should register an attached property rather than a normal
dependency property).

Here it is:
public static readonly DependencyProperty StartIndexProperty =
 DependencyProperty.RegisterAttached("StartIndex",
 typeof(double),
 typeof(WindowedItemsControl),
 new FrameworkPropertyMetadata(0.0,
 FrameworkPropertyMetadataOptions.Inherits));

When the ItemsPanel is a WrappableStackPanel, the Windowed-
ItemsControl implements scrolling simply by setting a value to this
StartIndex property.

The WrappableStackPanel adds an owner to the StartIndex
attached property and sets the FrameworkPropertyMetadata-
Options fl ag Aff ectsArrange. Th e ArrangeOverride method uses the
value of the StartIndex property inherited from the ItemsControl
to determine what item should appear at the top of the panel, and
how much of it should be above the panel.

The Manipulation Events
As I suspected from the very outset, implementing the actual
Manipulation events would be the hardest part of the whole job. It
turned out that my analysis of the three types of touch events was
right on target. Th ey all had to be handled pretty much separately.
(Th e code is in the WindowedItemsControl.Manipulation.cs fi le.)

Much of the determination of the three types of touch events
occurs in the OnManipulationInertiaStarting override. Th is event
indicates that the user’s fi nger has left the screen.

If the ManipulationInertiaStarting event follows the Manipu-
lationStarting event without any intervening ManipulationDelta
events, that’s a tap. Th e code in the ManipulationInertiaStarting
event determines how far the tapped item needs to travel to move
to the center, and then determines the velocity necessary to
accomplish this in a fi xed period of time (set at 250 milliseconds).
It then initializes the DesiredDisplacement and InitialVelocity
properties of the TranslationBehavior property of the event argu-
ments for that amount of inertia.

Keep in mind that the user just tapped the item. Th e user didn’t
move the item, hence there’s no actual velocity or inertia! But the
ManipulationInertiaStarting event allows setting inertia parameters
to force an object to move even if it hasn’t been moving. In the context
of handling the Manipulation events, this approach is much easier
than using animation or CompositionTarget.Rendering for scrolling.

Th e logic is quite similar if the user has moved the band manu-
ally, but the new selected item is obvious because there’s insuffi cient
velocity to move the band beyond that item. Again, all that needs
to be done is to set the DesiredDisplacement and InitialVelocity
properties to slide it into place.

Th e really messy code occurs when there’s actual inertia, and the
new selected item won’t be known until the velocity decreases and
the scrolling almost stops. Th is is where velocity must be analyzed
to examine if the new selected item will actually scroll beyond the
center, and to reverse the direction if necessary. Some early code
actually reversed the scrolling several times, back and forth, and
that wasn’t desirable at all.

How’d It Turn Out?
I must admit that the resultant control seems more like a “fi rst
draft ” than a fi nal version. It doesn’t seem as smooth or as natural
as the version implemented in Windows Phone 7, and it lacks some
amenities. For example, when you activate the control by pressing
on it, the bands in the Windows Phone 7 version fade into view
and later fade out. Mine just pop.

But I’m happy for the experience, and I’m convinced even more that
good multi-touch coding is a lot harder than it might at fi rst seem.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His new book, “Programming Windows Phone 7,” will be published as a free
downloadable ebook in the fall of 2010.

THANKS to the following technical expert for reviewing this column:
Doug Kramer

I must admit that the resultant
control seems more like a “fi rst

draft” than a fi nal version.

www.msdnmagazine.com

msdn magazine96

A Real Pain in the Neck
medium. Don’t infl ict it on the virtual world where those physical
constraints don’t apply.

Besides neck pain, the tabs and display pane jump around
confusingly as they cycle through the display topics. Th e display
area starts on the left with two tabs on its right. Aft er seven seconds,
it jumps to the right with a tab on each side. Aft er another seven
seconds it jumps again to the right, now having two tabs on its left .
Finally it jumps a double step left , back to the starting position.

Th e user has to visually reacquire the display pane every time
the image changes. If he wants to click a link, sometimes that link
is on the left ; but a few seconds later that same link is on the right.
Th is major navigation structure is a Whac-A-Mole game.

Why did Microsoft Web designers do this? Probably the usual
suspect: the toolkit contained a pre-fabricated component that
worked this way, and the designer just picked it out of the toolkit
because it existed. It’s like a 6 year old who got an Erector Set for
Christmas, saying, “Look Ma, see what I can do! Isn’t it cool?”

Infl icting physical pain on grownups is not cool. It’s juvenile at best—
malpractice at worst. It’s the toy image that Microsoft acquired in the
early 1990s and today is desperately trying to shed. Th is doesn’t help.

Th e goal of rotating highlights with links can be accomplished
far less painfully and more pleasingly, as in the MSN Lifestyle
page. Users don’t tilt their heads. Th e links always occupy the same
location, as does the display area. It’s easy to use, but apparently
not cool enough for the main site designers.
Late update: Th e week this article was fi led (Sept. 20), Microsoft
unveiled a much-improved design. Th e highlight topics are shown
all at once in separate panels. Th ere’s no motion, no need for any

links to display hidden topics. Maybe this
column leaked and the designers realized
their sins. They annoyed and confused
many users in the meantime, though—
I first saw the jumping, neck-bending
design in April 2009. But now I know you
readers are on the job, ready to pounce
if they backslide.

DAVID S. PLATT teaches Programming .NET
at Harvard University Extension School and at
companies all over the world. He’s the author of
11 programming books, including “Why Soft ware
Sucks” (Addison-Wesley Professional, 2006) and
“Introducing Microsoft .NET” (Microsoft Press,
2002). Microsoft named him a Soft ware Legend in
2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count
in octal. You can contact him at rollthunder.com.

Not too long ago, the Microsoft .com homepage, shown here, was
infl icting physical pain on its users. Th is pain was caused by deliber-
ate decisions of professionals whose job it is to know better. Plattski
hyperbole? Read and wince.

As on many homepages, the central display frame cycles through
several highlight screens. Th e tabs beside the screen provide links
to the highlights not currently displayed. Th e basic idea is sound,
but this implementation stinks on several levels.

First, the tabs containing the links have text running vertically,
which the reader has to tilt his head to read. Furthermore, the
tabs and display pane scramble around as they cycle through the
diff erent displays: sometimes both tabs on the left , sometimes one
on each side, sometimes both on the right.

This design violates what I call Plattski’s Law of Minimum
Chiropractic, which states that inflicting on your user an injury
requiring chiropractic care will not make him happy; there-
fore you should do it as seldom as possible. The peer-reviewed
“Journal of the Canadian Chiropractic Association” published
a study (see tinyurl.com/2972ea5) on the prevalence of neck pain in
the general population, in which 54 percent of all adults reported
experiencing neck pain within the past six months, with almost
5 percent of all adults reporting neck pain of a disabling level.
Microsoft should put themselves in the shoes—or neck braces—
of its users, and stop this nonsense.

One Microsoft Web designer said to me, “It’s just like a book.
It looks cool. What’s the problem?” Here’s the problem: Book
titles read this way because that’s the most convenient storage of
the books themselves. It’s a compromise forced by the physical

DON’T GET ME STARTED DAVID PLATT

http://tinyurl.com/2972ea5
http://rollthunder.com

Untitled-14 1 10/7/10 3:47 PM

www.GCPowerTools.com

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, November 2010
	Contents
	CUTTING EDGE: Dynamic Action Filters in ASP.NET MVC
	FORECAST-CLOUDY: SQL Azure and Windows Azure Table Storage
	DATA POINTS: Using the Entity Framework to Reduce Latency
	DATA IN THE CLOUD
	Introducing DataMarket
	Getting Started with SQL Azure Development
	Synchronizing Multiple Nodes in Windows Azure
	Connecting SharePoint to Windows Azure with Silverlight Web Parts

	Scalable Multithreaded Programming with Tasks
	A Coder’s Guide to Writing API Documentation
	TEST RUN: Web UI Test Automation with the WebBrowser Control
	THE WORKING PROGRAMMER: Multiparadigmatic .NET, Part 3: Procedural Programming
	SECURITY BRIEFS: Web Application Confi guration Security Revisited
	UI FRONTIERS: The Intricacies of Touch Controls
	DON’T GET ME STARTED: A Real Pain in the Neck

	GrapeCity Insert

