

Untitled-10 1 6/6/12 11:32 AM

www.devexpress.com

THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
Mobile Site Development, Part 3:
Routing Requests
Dino Esposito, page 6

WINDOWS WITH C++
Lightweight Cooperative
Multitasking with C++
Kenny Kerr, page 10

DATA POINTS
Pitfalls and Pointers for a Base
Logging Class in EF Models
Julie Lerman, page 16

FORECAST: CLOUDY
Decoupling the Cloud with MEF
Joseph Fultz and Chris Mabry,
page 22

THE WORKING
PROGRAMMER
Cassandra NoSQL Database:
Getting Started
Ted Neward, page 78

TOUCH AND GO
Viewing a Virtual World from
Your Windows Phone
Charles Petzold, page 82

DON’T GET ME STARTED
Whither Windows 8 Hardware
David Platt, page 88

AUGUST 2012 VOL 27 NO 8

Functional-Style Programming in C++
David Cravey . 30

Windows Azure Comes to the Rescue
Mark Kromer . 38

Build User-Friendly XML Interfaces
with Windows PowerShell
Joe Leibowitz . 50

A History (API) Lesson
Clark Sell . 56

Using the Team Foundation Server
Client Object Model
Brian Blackman and Willy-Peter Schaub . 60

CyberNanny: Remote Access via
Distributed Components
Angel Hernandez Matos . 66

.NET Development for ARM Processors
Andrew Pardoe . 72

Start a Revolution
Refuse to choose between desktop and mobile.

With the brand new NetAdvantage for .NET,

you can create awesome apps with killer data

visualization today, on any platform or device.

Get your free, fully supported trial today!

www.infragistics.com/NET

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545
Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

All other trademarks or registered trademarks are the respective property of their owners.

Untitled-6 2 7/10/12 4:03 PM

http://www.infragistics.com/NET

Compatible with
Microsoft® Visual
Studio® 2012

Untitled-6 3 7/10/12 4:04 PM

http://www.infragistics.com/NET

magazine

Printed in the USA

MITCH RATCLIFFE Director
MUHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS Dino Esposito, Joseph Fultz, Kenny Kerr,
Julie Lerman, Dr. James McCaffrey, Ted Neward, John Papa,
Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Doug Barney Vice President, New Content Initiatives
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP/Group Publisher
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder National Account Manager/Microsoft Account Manager
Jenny Hernandez-Asandas Director, Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

AUGUST 2012 VOLUME 27 NUMBER 8

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-2 1 7/2/12 10:49 AM

www.leadtools.com

msdn magazine4

On Point with Julie Lerman
partial solution. Th e addition of POCO [Plain Old CLR Object]
support in EF4 was a huge leap forward, and then Code First plus
the much-simpler-to-use API [DbContext] changed the broader
perception of EF dramatically. It wasn’t until those last two pieces
arrived that people at Microsoft who are outside of the data team
started paying attention to it. And the developers’ eyes, enthusi-
asm and excitement followed.

It’s also been fascinating to witness the evolution of how the
EF team at Microsoft works. Aft er some challenging interactions
with a voluble community that was unhappy with the initial
release, they responded with some fantastic changes that made EF
palatable to a much wider audience. Now the entire team is focused
on responding to community feedback.

I get the feeling that the .NET dev community—the subset that
engages with new releases and providing feedback—has a great
sense of ownership of EF and is now very supportive of the work
the team is doing.

How do you find time to write consistently given the
demands of your day job? How does writing help you
improve as a developer?
You know better than anyone that my articles are rarely delivered
on time. I just steal the time from other tasks and deadlines, so I’m
constantly juggling. I also have to steal some of that time from my
personal life. I think the fact that my husband and I don’t have kids
makes that a bit easier.

Th e process of writing does indeed have a positive eff ect on my
development skills. I’m reluctant to write something down until
I’ve explored it inside and out, which forces me to learn even more
deeply something I may already have a great deal of comfort with.
I think we have a great responsibility not to misdirect people who
depend on us for their knowledge. I’m constantly questioning
what I know and how I do things, and I sometimes very reluctantly
drag myself through some process of evolution. But it always has
its rewards.

In the world of soft ware development, nothing is certain except
death, taxes and data. As MSDN Magazine Data Points columnist
Julie Lerman points out: “Nobody can avoid data, so it’s a topic
that’s important to everyone.”

Which is why Data Points has been a fi xture in MSDN Magazine
since John Papa fi rst penned the column back in 2002. Papa launched
the column to address what he felt was a shortage of data-related
coverage in the magazine (and the industry in general). When
he stepped away from the column in 2009 aft er taking a job with
Microsoft , Papa recommended Julie Lerman to take his spot.

I asked Lerman about her experience writing the column and
about her thoughts on data and development. As Lerman told me,
inspiration is not hard to fi nd.

“I’ve tried to use the column to explain things that either I’m
curious or confused about, such as what the heck NoSQL is,” she
says. “Or as a way to share answers to questions that I’m asked
frequently—for example, about Entity Framework [EF].”

Michael Desmond: Th e .NET data space has been anything
but boring, with plenty of infrastructure work pulling devel-
opers in diff erent directions. Have things settled down? Any
advice for developers trying to make big-picture decisions
about data in 2012?
Julie Lerman: Settled? Ha! I think they’re moving faster. I do think
the ORMs [object-relational mappers] are going to settle in as the
“classics” for a while, and Entity Framework seems to have become
the standard for out-of-the-box .NET data access.

Th ere’s so much innovative work and thinking going on, especially
with the focus on big data, NoSQL and CQRS [Command Query
Responsibility Segregation], to name a few. But not everyone has to
work with the vast amounts of data that comes under that umbrella.
I really do think ORM over relational database is the new norm.

How well has EF come together over its brief, if turbulent,
run from the fi rst version in 2008 through the EF4 iterations
the last couple years, and fi nally to EF5 today?
EF started as a project of some serious, data-wizard, Ph.D.-level folks
at Microsoft Research. But for developers it seemed to be only a

MICHAEL DESMONDEDITOR’S NOTE

© 2012 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-6 1 7/5/12 5:03 PM

www.OnTimeNow.com/msdn
www.axosoft.com

msdn magazine6

and examines the user agent string. If the request is coming from
a desktop browser, nothing happens and the request proceeds as
usual. If the requesting browser is hosted on a mobile device, the
user is redirected to a landing page where she’s asked to choose
between the full site and the mobile site. Figure 1 off ers a graphical
view of the strategy I’m outlining.

More generally, both sites have an interceptor that filters any
incoming requests and redirects to a landing page if the requesting
device isn’t compatible with the type of the site. To keep things even
simpler, you can also let laptops view mobile pages if explicitly
requested and host only one landing page for when the main site
is requested from a mobile device.

Th is strategy only explains what to do on the fi rst request to a
site—typically directed to the homepage. For successive requests
that the user can make as she works with the site, you don’t want
the interceptor to kick in again and show the landing page. Let’s
see how to implement this strategy.

An HTTP Module to Route Requests
In ASP.NET, the standard way to intercept incoming requests is
installing a HTTP module. For each intercepted request, the HTTP
module will examine the user agent string and determine whether
or not the browser is hosted on a mobile device. If the browser runs
on a mobile device, the HTTP module redirects the user to a given
landing page; if not, it will simply let the request pass and be pro-
cessed as usual. Figure 2 shows the source code of a sample HTTP
module for routing mobile requests to a (mobile) landing page.

There are basically three use-case scenarios. One is when the
user with a mobile device reaches a landing page and confi rms she
wants to view the full site. Another scenario is when the mobile
user requests a page on the full site because she’s following a link
in one of the full-site pages. Put another way, the mobile user
received the landing page, confi rmed she wants to view the full site

 Mobile Site Development, Part 3:
Routing Requests

More oft en than not, a mobile site is the subset of a larger site built
for a desktop audience. A desktop user oft en visits your site using,
for example, a laptop with a high screen resolution and signifi cant
computing power. In addition, the user relies on stable connectivity
and isn’t particularly concerned about draining the battery. All these
parameters make a huge diff erence for architects and developers
of Web sites, as well as domain experts. When it comes to mobile
sites, the hardest part is not coding but fi guring out the use cases
to code—and before that, the business cases for which you want
to have a mobile site (or a mobile application).

Th e mobile site exists to make it easier for users on the go to con-
sume the most relevant services that you already expose through
the main Web site. So let’s assume we have a well-defi ned set of use
cases and we’re ready to start coding and producing some good
markup. But, fi rst and foremost, how do we reach the mobile site?

I fi rmly believe that a mobile site should be a standalone site that
corresponds to a distinct IIS application. Th is greatly simplifi es the
development experience. You focus only on mobile use cases. You
optimize rendering and the application layer only for mobile use
cases. You deal only with technologies and tools related to mobile
scenarios. Finally, you test it more easily.

On the other hand, as a user, I hate having to type a distinct URL just
to view the mobile version of a site in which I’m interested. Wouldn’t
it be great if you could just type or bookmark www.contoso.com and
let the site fi gure out whether you’re coming from a mobile device
or a laptop? Once your origin is ascertained, the site could possibly
redirect you to the mobile site. Applying such a strategy can deliver
a nice experience, but this requires some assumptions and having
some machinery in place.

Routing Users to the Right Site
Let’s assume there are two distinct Web sites in place—say,
www.contoso.com and m.contoso.com. Th e user, however, isn’t
expected to know about the m-site; she only knows about the
main Web site. So she types www.contoso.com into her mobile
device. Some code hosted in the main site intercepts the request

CUTTING EDGE DINO ESPOSITO

Figure 1 A Strategy for Routing Users to the Most Appropriate Site

laptop device

Serve requested
page

Show landing page
for mobile users

Request for a page
in the desktop site

Show landing page
for desktop users

Detect device
capabilities and
serve appropriate
content

laptop device

Request for a page
in the mobile site

When it comes to mobile sites,
the hardest part is not coding but
fi guring out the use cases to code.

The Altova MissionKit includes

multiple intelligent tools for data integration:

Experience how the Altova MissionKit®, the integrated

suite of XML, data mapping, and database tools, can

help you leverage existing technology and business

software investments while integrating modern

technologies – without breaking your budget.

Connect legacy

technologies

affordably with the

complete set of data

integration tools from Altova®

MapForce® – Graphical data mapping,

transformation, & conversion tool

 Drag-and-drop data conversion with instant

 transformation & code gen

 Support for mapping XML, DBs, EDI,

 Excel®, XBRL, flat files & Web services

XMLSpy® – XML editor and Web services tool

 XML editor with strong database integration

 Web services tool, JSON <> XML converter

 DatabaseSpy® – multi-database query,

 design & comparison tool

 Support for all major relational databases

 and translation between DB types

 SQL editor, graphical database design

 & content editor

NEW in Version 2012:

 of files for large-scale
 ETL applications

 results

 functions

Download a 30 day free trial!

Try before you buy with a free, fully

functional trial from www.altova.com

Scan to learn more

about data integration

with the MissionKit.

Untitled-2 1 6/29/12 12:23 PM

http://www.altova.com

msdn magazine8 Cutting Edge

and is now navigating through the site. Finally, the third scenario is
when the mobile user is trying to visit the full site for the fi rst time
in that browser session. In the fi rst two cases, the HTTP module
lets the request pass. In the last case, it simply redirects the mobile
user to an ad hoc landing page.

Th e landing page will be a mobile-optimized page that shows a
message to the user and off ers links to the homepage of the desktop
site or mobile site. Figure 3 shows a sample landing page. You can
try it out live by pointing your own device to easycourt.net/contosoen.

Th e URL behind the “Mobile site” link points to the mobile site
homepage. Th e other link points to the homepage of the full site
with an extra query string parameter. Th e name and role of this
parameter are up to you, but the name could be something like
this: http://www.contoso.com?mode=full.

Th is parameter will be checked by the HTTP module through
one of the functions mentioned in Figure 2, as shown here:

private static Boolean ForceFullSite(HttpApplication app)
{
 var full = app.Context.Request.QueryString["mode"];
 if (!String.IsNullOrEmpty(full))
 return String.Equals(full, "full", StringComparison.InvariantCultureIgnoreCase);
 return false;
}

You see in Figure 2 that the user’s choice is stored in a cookie.
This means that a user who expressly chose to navigate to the
full site with a mobile device won’t be bothered any longer with a
landing page as long as the cookie is available.

Before I discuss the structure of the landing page in more detail,
let me specify how the HTTP module understands whether the user
clicked to view the full site or is navigating through the full site. In

Figure 2 you see that the following code is used to check whether
the cookie for viewing the full site is found:

private static Boolean HasFullSiteCookie(HttpApplication app)
{
 var cookie = app.Context.Request.Cookies[FullSiteModeCookie];
 return cookie != null;
}

If there’s no cookie and no query string parameter, the user
accessing the desktop site from a mobile device is simply redirected
to the landing page:

private static void ToMobileLandingPage(HttpApplication app)
{
 var landingPage = ConfigurationManager.AppSettings["MobileLandingPage"];
 if (!String.IsNullOrEmpty(landingPage))
 app.Context.Response.Redirect(landingPage);
}

Th e key point is that the user might be redirected to the landing
page only the fi rst time she attempts to access a given desktop site
from a mobile device. From that point on, any further requests have
extra information that prevents the HTTP module from redirecting.

Detecting Mobile Devices
Of all the code you see in Figure 2, only one piece remains to fully
explain: how you detect whether the requesting device is a mobile
device. Th is can be achieved in diff erent ways and with diff erent
levels of reliability. For example, you can simply rely on some code
like that shown in Figure 4. It attempts to query the user agent
string for some mobile-only keywords.

Th e list of keywords isn’t exhaustive, but it’s fairly representative
of the mobile universe. Th is code may be extended at will to make
it work better and better
as new devices appear and
as more mobile users start
visiting your site. But that’s
precisely the point. Are you
willing to constantly update
this piece of code? Not hav-
ing to revise such code is just
one of the benefits that a
Device Description Reposi-
tory (DDR) offers. A DDR
is a library built on top of a
database that contains user
agent strings. All a DDR
does is parse the user agent
and return a list of known
capabilities. I said “known”
and not “detected” because
that’s precisely the case.

public class MobileRouterModule : IHttpModule
{
 private const String ForceFullSiteCookieName = "FullSiteMode";
 public void Dispose()
 {
 }
 public void Init(HttpApplication context)
 {
 context.BeginRequest += OnBeginRequest;
 }

 private static void OnBeginRequest(Object sender, EventArgs e)
 {
 var app = sender as HttpApplication;
 if (app == null)
 throw new ArgumentNullException("sender");

 // Check whether it is a mobile site
 var isMobileDevice = IsMobileUserAgent(app);

 // The mobile user confirmed to view the desktop site
 if (isMobileDevice && ForceFullSite(app))
 {
 app.Response.AppendCookie(new HttpCookie(ForceFullSiteCookieName));
 return;
 }

 // The mobile user is navigating through the desktop site
 if (isMobileDevice && HasFullSiteCookie(app))
 return;

 // The mobile user is attempting to view a desktop page
 if (isMobileDevice)
 ToMobileLandingPage(app);
 }
}

Figure 2 A Mobile Router Component Implemented as an
HTTP Module

Figure 3 A Sample Landing Page
for a Mobile Site

I fi rmly believe that a mobile
site should be a standalone site
that corresponds to a distinct

IIS application.

http://easycourt.net/contosoen

9August 2012msdnmagazine.com

A DDR gets its information statically from a frequently updated
database. It doesn’t detect capabilities on the device. However, this
is an advantage of DDR solutions rather than a limitation! Behind
DDR there’s human intervention, and human work establishes
whether a given device has a given capability.
Some capabilities can be detected algorith-
mically, but the returned value isn’t always
entirely reliable. Some other capabilities—the
majority, in fact—can’t be detected algorith-
mically but can be useful to know in order to
intelligently decide which markup to serve
to a given device.

Popular DDRs for the ASP.NET space are
Wireless Universal Resource File, or WURFL,
and 51degrees, as discussed in my previous
column (msdn.microsoft.com/magazine/jj190798).
Because both of these frameworks have a free
off ering for limited (mostly cloud-based) use,
you might want to pick one of them even if
you only need to determine whether a device
is mobile or not. At least you’ll save your-
self the burden of frequently updating your
IsMobile function to keep up with new
devices and corner cases.

Optimize for Different Devices
Wrapping up, I believe that Web sites should
off er an optimized set of pages to diff erent
devices, whether they’re smartphones, tablets
or laptops. Th is is best achieved if you can
offer different Web sites or at least physi-
cally different views that you can manage
and maintain separately. However, this
separation should always be transparent to

visitors of the site. Th e site should be reachable through a unique
URL. You let the underlying platform do the magic of understand-

ing the type of device and switch to the most appropriate view. In
my next column I’ll use DDRs to discuss an implementation of
diff erent views for diff erent devices.

DINO ESPOSITO is the author of “Architecting Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Programming ASP.NET MVC 3” (Microsoft
Press, 2011), and coauthor of “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker
at industry events worldwide. Follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Pranav Rastogi

private static Boolean HasAnyMobileKeyword(String userAgent)
{
 string ua = userAgent.ToLower();
 return (ua.Contains("midp") ||
 ua.Contains("mobile") ||
 ua.Contains("android") ||
 ua.Contains("samsung") ||
 ua.Contains("nokia") ||
 ua.Contains("phone") ||
 ua.Contains("opera mini") ||
 ua.Contains("opera mobi") ||
 ua.Contains("blackberry") ||
 ua.Contains("symbian") ||
 ua.Contains("j2me") ||
 ua.Contains("windows ce") ||
 ua.Contains("vodafone") ||
 ua.Contains("ipad;") ||
 ua.Contains("maemo") ||
 ua.Contains("palm") ||
 ua.Contains("fennec") ||
 ua.Contains("wireless") ||
 ua.Contains("htc") ||
 ua.Contains("nintendo") ||
 ua.Contains("zunewp7") ||
 ua.Contains("silk");
}

Figure 4 Querying the User Agent String for
Mobile-Only Keywords

The landing page will be a
mobile-optimized page that

shows a message to the user and
offers links to the homepage of
the desktop site or mobile site.

www.cozyroc.com
mailto:sales@cozyroc.com
www.msdnmagazine.com
http://msdn.microsoft.com/magazine/jj190798
www.twitter.com/despos

msdn magazine10

fi rst translated portions of the C++/CX syntax into standard C++
before compiling it further. Th is may have since changed, but the
point is that compilers are fundamentally about translation.

Sometimes, when using a particular language, you might conclude
that a feature would be desirable but the very nature of the language
prohibits you from implementing it. Th is rarely happens in C++,
because the language by design is suited to the expression of dif-
ferent techniques, thanks to its rich syntax and meta-programming
facilities. However, this in fact did happen to me.

I spend most of my time these days working on an embedded OS
that I created from scratch. Neither Linux, Windows nor any other
OS runs under the covers. I rely on no open source soft ware what-
soever, and indeed that would typically be impossible anyway for
reasons that will become clear. Th is has opened my eyes to a whole
world of C and C++ programming that’s quite diff erent from the
traditional world of PC soft ware development. Most embedded
systems have very different constraints from those of “normal”
programs. Th ey have to be extremely reliable. Failure can be costly.
Users are seldom around to “restart” a failed program. Systems
might have to run for years uninterrupted and without human
intervention. Imagine a world without Windows Update or the
like. These systems might also have relatively scarce computing
resources. Correctness, reliability and, in particular, concurrency
all play central roles in the design of such systems.

As such, the plush world of Visual C++, with its powerful libraries,
is seldom appropriate. Even if Visual C++ were to target my embed-
ded microcontroller, the accompanying libraries aren’t well-suited
for systems with such scarce computing resources and, oft en, hard
real-time constraints. One of the microprocessors I’m currently
using has just 32KB of RAM running at less than 50 MHz, and this
is still luxurious to some in the embedded community. It should be
clear that by “embedded” I do not mean your average smartphone
with a half-gig of RAM and a 1 GHz processor.

In “Programming: Principles and Practice Using C++” (Addison-
Wesley Professional, 2008), Stroustrup cites free-store allocations
(for example, new and delete), exceptions and dynamic_cast in a
short list of features that must be avoided in most embedded sys-
tems because they aren’t predictable. Unfortunately, that precludes
the use of most of the standard, vendor-supplied and open source
C++ libraries available today.

Th e result is that most embedded programming—and for that
matter, kernel-mode programming on Windows—still employs C
rather than C++. Given that C is primarily a subset of C++, I tend

Lightweight Cooperative Multitasking
with C++

If you work for a company that has one of those coding standards
documents that would annihilate an entire rainforest were it ever
to be printed, you’d better stop reading now. Chances are, what I’m
about to show you will violate many of the sacred cows in the afore-
mentioned epic. I’m going to tell you about a particular technique I
originally developed to allow me to write completely asynchronous
code effi ciently and without the need for complex state machines.

Unless your name is Donald Knuth, it’s likely any code you
write will resemble something that has already been done. Indeed,
the oldest account I can fi nd of the technique I describe here is a
mention by Knuth himself, and the most recent is by a gentleman
from England by the name of Simon Tatham, known for the pop-
ular PuTTY terminal emulator. Nevertheless, to paraphrase the
judge in the recent Oracle v. Google dispute, “you can’t patent a for
loop.” Still, we’re all indebted to our peers in the fi eld of computer
programming as we push the craft forward.

Before I dive in and describe what my technique is and how it
works, I need to present a quick diversion in the hope that it will
give you a bit more perspective for what’s to come. In “Compilers:
Principles, Techniques and Tools, Second Edition” (Prentice Hall,
2006) by Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey
D. Ullman—more commonly known as the Dragon Book—the
authors sum up the purpose of a compiler as being a program
that can read a program in one language and translate it into an
equivalent program in another language. If you were to ask C++
designer Bjarne Stroustrup what language he used to write C++,
he would tell you it was C++. What this means is that he wrote a
preprocessor that read C++ and produced C, which a standard
C compiler could then further translate into some machine
language. If you look close enough, you can see variants of this idea
in many places. Th e C# compiler, for example, translates the seem-
ingly magical yield keyword into a regular class that implements
an iterator. Late last year, I noticed that the Visual C++ compiler

WINDOWS WITH C++ KENNY KERR

If you were to ask C++ designer
Bjarne Stroustrup what language
he used to write C++, he would

tell you it was C++.

11August 2012msdnmagazine.com

to use a C++ compiler but stick to a strict subset of the language
that’s predictable, portable and works well in embedded systems.

Th is led me on a journey to fi nd a suitable technique to enable
concurrency in my little embedded OS. Up to this point, my OS
had a single thread, if you can call it that. Th ere are no blocking
operations, so any time I needed to implement something that
might take some time, such as waiting for a storage I/O interrupt
or for a network retransmission timeout, I would need to write a
carefully constructed state machine. Th is is standard practice with
event-driven systems, but it results in code that’s hard to reason
through logically, because the code isn’t sequential.

Imagine a storage driver. Th ere might be a storage_read function
to read a page of memory from a device’s persistent fl ash storage.
Th e storage_read function might fi rst check whether the peripheral
or bus is busy, and if so, simply queue the read request before
returning. At some point the peripheral and bus become free and the
request can proceed. Th is might involve disabling the transceiver,
formatting a command appropriate for the bus, preparing the
direct memory access buff ers, enabling the transceiver again and then
returning to allow the caller to do something else while the transfer
completes in hardware. Eventually the bus signals its completion and
the caller is notifi ed via some callback mechanism, and any other
queued requests proceed. Needless to say, it can get pretty compli-
cated managing the queues, callbacks and state machines. Verifying
everything is correct is even harder. I haven’t even described how
a nonblocking fi le system might be implemented on top of this
abstraction or how a Web server might use the fi le system to serve
up data—all without ever blocking. A diff erent approach is needed
to reduce the inevitable and growing complexity.

Now, imagine that C++ had a few keywords that let you trans-
port the processor from one call stack to another in mid-function.
Imagine the following hypothetical C++ code:

void storage_read(storage_args & args) async
{
 wait while (busy);

 busy = true;

 begin_transfer(args);

 yield until (done_transmitting());

 busy = false;
}

Notice the “async” contextual keyword aft er the parameter list. I’m
also using two imaginary spaced keywords named “wait while” and
“yield until.” Consider what it means for C++ to have such keywords.

Th e compiler would somehow have to express the notion of an
interlude, if you will. Knuth called this a coroutine. Th e async key-
word might appear with a function declaration to let the compiler
know that the function can run asynchronously and must thus be
called appropriately. Th e hypothetical wait and yield keywords are the
actual points at which the function ceases to execute synchronously
and can potentially return to the caller, only to resume where it left
off at a later stage. You could also imagine a “wait until” conditional
keyword as well as an unconditional yield statement.

I’ve seen alternatives to this cooperative form of concurrency—
notably the Asynchronous Agents Library included with Visual
C++—but all the solutions I found depended on some runtime
scheduling engine. What I propose here and will illustrate in a
moment is that it’s entirely possible that a C++ compiler might
indeed provide cooperative concurrency without any runtime
cost whatsoever. Keep in mind that I’m not saying this will solve
the manycore scalability challenge. What I’m saying is we should
be able to write fast and responsive event-driven programs with-
out involving a scheduler. And as with the existing C and C++
languages, nothing should prevent those techniques from being
used along with OS threads or other concurrency runtimes.

Obviously, C++ doesn’t support what I’m describing right now.
What I discovered, however, is that it can be simulated reasonably
well using Standard C or C++ and without relying on assembler
trickery. Using this approach, the storage_read function described
earlier might look as follows:

task_begin(storage_read, storage_args & args)
{
 task_wait_while(busy);

 busy = true;

 begin_transfer(args);

 task_yield_until(done_transmitting());

 busy = false;
}
task_end

struct average_args
{
 int * source;
 int sum;
 int count;
 int average;

 int task_;
};

task_begin(average, average_args & args)
{
 args.sum = 0;
 args.count = 0;
 args.average = 0;

 while (true)
 {
 args.sum += *args.source;
 ++args.count;
 args.average = args.sum / args.count;

 task_yield();
 }
}
task_end

Figure 1 The Average Task

What I’m saying is we
should be able to write fast

and responsive event-driven
programs without involving

a scheduler.

www.msdnmagazine.com

msdn magazine12 Windows with C++

Obviously, I’m relying on macros here. Gasp! Clearly, this violates
item 16 in the C++ Coding Standards (bit.ly/8boiZ0), but the alter-
natives are worse. Th e ideal solution is for the language to support
this directly. Alternatives include using longjmp, but I fi nd that’s
worse and has its own pitfalls. Another approach might be to use
assembly language, but then I’d lose all portability. It’s debatable
whether it could even be done as effi ciently in assembly language,
because that would most likely result in a solution that used more
memory due to the loss of contextual information and the inevi-
table one-stack-per-task implementation. So humor me as I show
you how simple and eff ective this is, and then how it all works.

To keep things clear, I’ll henceforth call these asynchronous
functions tasks. Given the task I described earlier, it can be sched-
uled simply by calling it as a function:

storage_args = { ... };
storage_read(args);

As soon as the task decides it can’t proceed, it will simply return
to the caller. Tasks employ a bool return type to indicate to callers
whether they’ve completed. Th us, you could continuously schedule
a task until it completes, as follows:

while (storage_read(args));

Of course, this would block the caller until the task completes.
Th is might actually be appropriate, perhaps when your program
fi rst starts in order to load a confi guration fi le or the like. Apart
from that exception, you’d rarely want to block in this manner.
What you need is a way to wait for a task in a cooperative manner:

task_wait_for(storage_read, args);

Th is assumes the caller is itself a task and will then yield to its caller
until the nested task completes, at which point it will continue. Now
let me loosely defi ne the task keywords, or pseudo-functions, and
then go through an example or two you can actually try for yourself:

• task_declare(name, parameter)
Declares a task, typically in a header fi le.

• task_begin(name, parameter)
Begins the defi nition of a task, typically in a C++ source fi le.

• task_end
Ends the defi nition of a task.

• task_return()
Terminates the execution of a task and returns control to
the caller.

• task_wait_until(expression)
Waits until the expression is true before continuing.

• task_wait_while(expression)
Waits while the expression is true before continuing.

• task_wait_for(name, parameter)
Executes the task and waits for it to complete before
continuing.

• task_yield()
Yields control unconditionally, continuing when the task
is rescheduled.

• task_yield_until(expression)
Yields control at least once, continuing when the
expression is non-zero.

It’s important to remember that none of these routines block in any
way. Th ey’re all designed to achieve a high degree of concurrency in
a cooperative manner. Let me illustrate with a simple example. Th is

example uses two tasks, one to prompt the user for a number and
the other to calculate a simple arithmetic mean of the numbers as
they arrive. First is the average task, shown in Figure 1.

A task accepts exactly one argument that must be passed by ref-
erence and must include an integer member variable called task_.
Obviously, this is something the compiler would hide from the caller
given the ideal scenario of fi rst-class language support. However,
for the purpose of this simulation, I need a variable to keep track of
the task’s progress. All the caller needs to do is initialize it to zero.

Th e task itself is interesting in that it contains an infi nite while
loop with a task_yield call within the loop’s body. Th e task initializes
some state before entering this loop. It then updates its aggregates and
yields, allowing other tasks to execute before repeating indefi nitely.

Next is the input task, as shown in Figure 2.
This task is interesting in that it illustrates that tasks may in

fact block, as the scanf_s function will do while it waits for input.
Although not ideal for an event-driven system. Th is task also illus-
trates using the task_return call to complete the task in mid-function
rather than using a conditional expression in the while statement. A
task completes either by calling task_return or by falling off the end
of the function, so to speak. Either way, the caller will see this as the
task completing, and it will be able to resume.

To bring these tasks to life, all you need is a simple main function
to act as a scheduler:

int main()
{
 int share = -1;

 average_args aa = { &share };
 input_args ia = { &share };

 while (input(ia))
 {
 average(aa);

 printf("sum=%d count=%d average=%d\n",
 aa.sum, aa.count, aa.average);
 }
}

Th e possibilities are endless. You could write tasks representing
timers, producers and consumers, TCP connection handlers and
much more.

struct input_args
{
 int * target;

 int task_;
};

task_begin(input, input_args & args)
{
 while (true)
 {
 printf("number: ");

 if (!scanf_s("%d", args.target))
 {
 task_return();
 }

 task_yield();
 }
}
task_end

Figure 2 The Input Task

ONLY PAY FOR WHAT YOU NEED!

®

* Offer valid for a limited time only. 3 months free only applies to $49.99 base confi guration. Set-up fee of $49.00 applies. Base confi guration includes 1 processor core, 1 GB RAM, 100 GB
Storage. Other terms and conditions may apply. Visit www.1and1.com for full promotional offer details. Program and pricing specifi cations and availability subject to change without
notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their respective owners. © 2012 1&1 Internet. All rights reserved.

 With a 1&1 Dynamic Cloud Server, you can
change your server confi guration in real time.

 Independently confi gure CPU, RAM, and storage

 Control costs with pay-per-confi guration and hourly billing

 Up to 6 Cores, 24 GB RAM, 800 GB storage

 2000 GB of traffi c included free

 Parallels® Plesk Panel 10 for unlimited domains, reseller ready

 Up to 99 virtual machines with different confi gurations

 NEW: Monitor and manage your cloud
server through 1&1 mobile apps for Android™
and iPhone®.

www.1and1.com

1&1 DYNAMIC CLOUD SERVER

3 MONTHS

FREE!*

Base Confi guration, Starting at $49.99/month

Untitled-2 1 7/2/12 10:47 AM

http://www.1and1.com
http://www.1and1.com

msdn magazine14 Windows with C++

So how does it work? First keep in mind again that the ideal
solution is for the compiler to implement this, in which case it
can use all kinds of clever tricks to implement it efficiently, and
what I’m about to describe won’t actually be anywhere near as
sophisticated or complicated.

As best as I can tell, this comes down to a discovery by a
programmer named Tom Duff , who found out that you can play
clever tricks with the switch statement. As long as it’s syntactically
valid, you can nest various selection or iteration statements within
a switch statement to eff ectively jump in and out of a function at
will. Duff published a technique for manual loop unrolling, and
Tatham then realized it could be used to simulate coroutines. I took
those ideas and implemented tasks as follows.

Th e task_begin and task_end macros defi ne the surrounding
switch statement:

#define task_begin(name, parameter) \
 \
 bool name(parameter) \
 { \
 bool yield_ = false; \
 switch (args.task_) \
 { \
 case 0:

#define task_end \
 \
 } \
 args.task_ = 0; \
 return false; \
 }

It should now be obvious what the single task_ variable is for and
how it all works. Initializing task_ to zero ensures that execution
jumps to the beginning of the task. When a task ends, it’s again set
back to zero as a convenience so the task can be restarted easily.
Given that, the task_wait_until macro provides the necessary jump
location and cooperative return facility:

#define task_wait_until(expression) \
 \
 args.task_ = __LINE__; case __LINE__: \
 if (!(expression)) \
 { \
 return true; \
 }

Th e task_ variable is set to the predefi ned line number macro, and
the case statement gets the same line number, thus ensuring that
if the task yields, the next time it’s scheduled the code will resume
right where it left off . Th e remaining macros are shown in Figure 3.

Th ese should all be patently obvious. Perhaps the only subtlety
worth mentioning is task_yield_until, as it’s similar to task_wait_
until but for the fact that it will always yield at least once. task_yield,
in turn, will only ever yield exactly once, and I’m confi dent that any
respectable compiler will optimize away my shorthand. I should
mention that task_wait_until is also a great way to deal with out-
of-memory conditions. Rather than failing in some deeply nested

operation with dubious recoverability, you can simply yield until the
memory allocation succeeds, giving other tasks an opportunity to
complete and hopefully free up some much-needed memory. Again,
this is critical for embedded systems where failure is not an option.

Given that I’m emulating coroutines, there are some pitfalls. You
can’t reliably use local variables within tasks, and any code that violates
the validity of the hidden switch statement is going to cause trouble.
Still, given that I can defi ne my own task_args—and considering how
much simpler my code is thanks to this technique—I’m thankful that
it works as well as it does.

I found it useful to disable the following Visual C++ compiler warnings:
#pragma warning(disable: 4127) // Conditional expression is constant
#pragma warning(disable: 4189) // Local variable is initialized but not referenced
#pragma warning(disable: 4706) // Assignment within conditional expression

Finally, if you’re u sing the Visual C++ IDE, be sure to disable “edit
and continue debugging” by using /Zi instead of /ZI.

As I concluded this column, I looked around the Web for any
similar initiatives and found the new async and await keywords that
the Visual Studio 2012 C# compiler has introduced. In many ways,
this is an attempt to solve a similar problem. I expect the C++ com-
munity to follow suit. Th e question is whether these solutions will
come to C and C++ in a manner that will produce predictable code
suitable for embedded systems as I’ve described in this column or
whether they’ll rely on a concurrency runtime, as the current Visual
C++ libraries do. My hope is that one day I’ll be able to throw away
these macros, but until that day comes, I’ll remain productive with
this lightweight, cooperative and multitasking technique.

Stay tuned for the next installment of Windows with C++ in
which I’ll show you some new techniques that Niklas Gustafsson
and Artur Laksberg from the Visual C++ team have been working
on to bring resumable functions to C++.

KENNY KERR is a software craftsman with a passion for native Windows
development. Reach him at kennykerr.ca.

THANKS to the following technical expert for reviewing this article:
Artur Laksberg

#define task_return() \
 \
 args.task_ = 0; \
 return false;

#define task_wait_while(expression) \
 \
 task_wait_until(!(expression))

#define task_wait_for(name, parameter) \
 \
 task_wait_while(name(parameter))

#define task_yield_until(expression) \
 \
 yield_ = true; \
 args.task_ = __LINE__; case __LINE__: \
 if (yield_ || !(expression)) \
 { \
 return true; \
 }

#define task_yield() \
 \
 task_yield_until(true)

Figure 3 The Remaining Macros

task_wait_until is
also a great way to deal with
out-of-memory conditions.

www.kennykerr.ca

Untitled-6 1 7/9/12 12:48 PM

www.telerik.com/justcode

msdn magazine16

that to Customer is a Person. Perhaps I’ve now convinced you to
avoid doing this in your models. But if not, or if you’re already stuck
with this model, let’s take it a little further.

By default, the Model First workfl ow defi nes a database schema with
one-to-one relationships between the base table and all of the tables that
represent the derived types. Th is is the TPT hierarchy mentioned earlier.

If you were to execute a few simple queries, you might not notice
any problem—especially if, like me, you’re not a DBA or other fl avor
of database guru.

For example, this LINQ to Entities query retrieves the DateCreated
property for a particular customer:

context.TheBaseTypes.OfType<Customer>()
 .Where(b => b.Id == 3)
 .Select(c => c.DateCreated)
 .FirstOrDefault();

Th e query results in the following TSQL executed in the database:
SELECT TOP (1)
[Extent1].[DateCreated] AS [DateCreated]
FROM [dbo].[TheBaseTypes] AS [Extent1]
INNER JOIN [dbo].[TheBaseTypes_Customer] AS [Extent2] ON [Extent1].[Id]
= [Extent2].[Id]
WHERE 3 = [Extent1].[Id]

It’s a perfectly good query.
A query to retrieve an entire entity is a little uglier because of the

need to perform a nested query. Th e base query retrieves all of the
fi elds that represent the join between Th eBaseTypes table and the
table containing the derived type. Th en a query over those results

Pitfalls and Pointers for a
Base Logging Class in EF Models

I recently spent time with a client who was experiencing some
occasional—but severe—performance issues with their Entity
Framework-related code. Using a tool to profi le the queries gener-
ated by Entity Framework, we discovered a 5,800-line SQL query
hitting the database. (Learn about profi ling tools in my December
2010 Data Points column, “Profi ling Database Activity in the Entity
Framework,” at msdn.microsoft.com/magazine/gg490349.) I gasped when
I saw that the EDMX model contained an inheritance hierarchy I
had taught friends, loved ones and developers to avoid. Th e model
had a single base entity from which every other entity derived. Th e
base entity was used to ensure each entity had properties to track
logging data such as DateCreated and DateLastModifi ed. Because
this model was created using Model First, the inheritance was
interpreted by Entity Framework as a Table per Type (TPT) model
in which each entity mapped to its own table in the database. To
the uninitiated, this looks innocent enough.

But TPT inheritance is notorious in Entity Framework for its generic
query-building pattern that can result in sprawling, poorly performing
SQL queries. You might be starting out with a new model where you
can avoid TPT, or you might already be stuck with an existing model
and TPT inheritance. Either way, this month’s column is dedicated to
helping you comprehend the potential performance pitfalls of TPT
in this scenario, and showing you a few tricks you can leverage to get
around them if it’s too late to modify the model and database schema.

The Scary Model
Figure 1 shows an example of a model I’ve seen all
too oft en. Notice the entity named Th eBaseType.
Every other entity derives from it in order to auto-
matically inherit a DateCreated property. I under-
stand why it’s tempting to design it this way, but
Entity Framework schema rules also demand that
the base type owns the key property of each derived
entity. To me, that’s already a red fl ag signaling it’s
not an appropriate use of inheritance.

It’s not that Entity Framework specifi cally cre-
ated a problem with this design; it’s a design fl aw in
the model itself. In this case, inheritance says that
Customer is a Th eBaseType. What if we changed
the name of that base entity to “LoggingInfo”
and then repeated the statement “Customer is a
LoggingInfo”? Th e fallacy of the statement becomes
more obvious with the new class name. Compare

DATA POINTS JULIE LERMAN

Figure 1 All Classes Inherit from TheBaseType

http://msdn.microsoft.com/magazine/gg490349

Untitled-6 1 7/9/12 12:47 PM

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

msdn magazine18 Data Points

projects the fi elds to be returned to Entity Framework to populate
the type. For example, here’s a query to retrieve a single product:

context.TheBaseTypes.OfType<Product>().FirstOrDefault();

Figure 2 shows the TSQL executed on the server.
That’s still not such a bad query. If you were profiling your

queries up to this point, you might not notice any issues caused
by the model’s design.

But what about this next “simple” query, which wants to fi nd all
objects that were created today, regardless of type? Th e query could
return Customers, Products, Orders, Employees or any other type
in your model that derives from the base. Th anks to the model
design, this seems like a reasonable request, and the model plus
LINQ to Entities makes it easy to express (DateCreated is stored
in the database as a date type, so I don’t have to be concerned about
comparing to DateTime fi elds in my example queries):

var today= DateTime.Now.Date;
context.TheBaseTypes
 .Where(b => b.DateCreated == today)
 .ToList();

Expressing this query in LINQ to Entities is short and sweet. But
don’t be fooled. It’s a heft y request. You’re asking EF and your data-
base to return instances of any type (be it Customer or Product or
Employee) created today. Entity Framework must begin by querying
each table that maps to the derived entities and joining each one to
the single related Th eBaseTypes table with the DateCreated fi eld. In
my environment, this creates a 3,200-line query (when that query is
nicely formatted by EFProfi ler), which can take Entity Framework
some time to build and the database some time to execute.

In my experience, a query like this belongs in a business analysis
tool anyway. But what if you’ve got the model and you want to get
that info from within your app, perhaps for an administrative report-
ing area of an application you’re building? I’ve seen developers try
to do this type of query in their applications, and I still say you need
to think outside of the Entity Framework box. Build the logic into
the database as a view or stored procedure and call that from Entity
Framework, rather than asking EF to build the query for you. Even
as a database procedure, this particular logic isn’t simple to build.
But there are benefi ts. First, you have a greater chance of building
a better-performing query. Second, EF won’t have to take the time
to fi gure out the query. Th ird, your application won’t have to send a

3,300 (or more!)-line query across the pipe. But be warned that the
more you dig into this problem and attempt to solve it from within
the database or by using EF and .NET coding logic, the clearer it
will become that the problem is not so much Entity Framework as
the overall model design that’s getting in your way.

If you can avoid querying from the base type and query-specifi c
types, your queries will be much simpler. Here’s an example that
expresses the previous query to focus on a particular type:

context.TheBaseTypes.TypeOf<Product>()
 .Where(b => b.DateCreated == today)
 .ToList();

Because EF didn’t have to be prepared for every type in the model,
the resulting TSQL is a simple 25-line query. With the DbContext
API, you don’t even have to use TypeOf to query derived types. It’s
possible to create DbSet properties for the derived types. So I could
query even more simply:

context.Products
 .Where(b => b.DateCreated == today)
 .ToList();

In fact, for this model I’d completely remove the Th eBaseTypes
DbSet from my context class and prevent anyone from expressing
queries directly from this base type.

Logging Without the Scary Model
I’ve focused so far on a hierarchy scenario I strongly advise devel-
opers to avoid when building models with Entity Framework:
using a mapped entity as a base from which every single entity in
the model also derives. Sometimes I come upon scenarios where
it’s just too late to change the model. But other times I’m able to help
my clients avoid this path completely (or they’re early enough in
development that we’re able to change the model).

So how to better achieve the goal—which is to provide commonly
tracked data, such as logging data—for every type in your model?

Oft en, the fi rst thought is to keep the inheritance but change the
type of hierarchy. With Model First, TPT is the default but you can
change that to Table per Hierarchy (TPH) using the Entity Designer
Generation Power Pack (available in Visual Studio Gallery via
Extension Manager). Code First defaults to TPH when you defi ne
inheritance in your classes. But you’ll quickly see that this is not
a solution at all. Why? TPH means that the entire hierarchy is
contained in a single table. In other words, your database would
consist of just one table. I’m hoping no more explanation is neces-
sary to convince you that this is not a good path.

As I said earlier (when I asked if a Customer is really a type of
LoggingInfo), the specifi c scenario I’ve focused on, to solve the
problem of tracking common data, begs that you just avoid inher-
itance altogether for that goal. I’d recommend you consider an
interface or complex types instead, which will embed the fi elds into
each table. If you’re already stuck with the database that created a
separate table, a relationship will do.

To demonstrate, I’ll switch to a model based on classes using
Code First instead of an EDMX (although you can achieve these
same patterns using an EDMX model and the designer).

In the fi rst case I’ll use an interface:
public interface ITheBaseType
{
 DateTime DateCreated { get; set; }
}

SELECT
[Limit1].[Id] AS [Id],
[Limit1].[C1] AS [C1],
[Limit1].[DateCreated] AS [DateCreated],
[Limit1].[ProductID] AS [ProductID],
[Limit1].[Name] AS [Name],
[...continued list of fields required for Product class...]
FROM (SELECT TOP (1)
 [Extent1].[Id] AS [Id],
 [Extent1].[DateCreated] AS [DateCreated],
 [Extent2].[ProductID] AS [ProductID],
 [Extent2].[Name] AS [Name],
 [Extent2].[ProductNumber] AS [ProductNumber],
 [...continued list of fields from Products table aka "Extent2" ...],
 [Extent2].[ProductPhoto_Id] AS [ProductPhoto_Id],
 '0X0X' AS [C1]
 FROM [dbo].[TheBaseTypes] AS [Extent1]
 INNER JOIN [dbo].[TheBaseTypes_Product] AS [Extent2] ON [Extent1].
[Id] = [Extent2].[Id]
) AS [Limit1]

Figure 2 Partial Listing of a Nested TSQL Query
When Specifying a Type

Untitled-1 1 10/11/11 1:58 PM

www.xceed.com

msdn magazine20 Data Points

Each class will implement the interface. It will have its own key
property and contain a DateCreated property. For example, here’s
the Product class:

public class Product : ITheBaseType
{
 public int ProductID { get; set; }
 // ...other properties...
 public DateTime DateCreated { get; set; }
}

In the database, each table has its own DateCreated property.
Th erefore, repeating the earlier query against the Products creates
a straightforward query:

 context.Products
.Where(b => b.DateCreated == today)
.ToList();

Because all of the fi elds are contained in this table, I no longer
need a nested query:

SELECT TOP (1) [Extent1].[Id] AS [Id],
 [Extent1].[ProductID] AS [ProductID],
 [Extent1].[Name] AS [Name],
 [Extent1].[ProductNumber] AS [ProductNumber],
 ...more fields from Products table...
 [Extent1].[ProductPhoto_Id] AS [ProductPhoto_Id],
 [Extent1].[DateCreated] AS [DateCreated]
FROM [dbo].[Products] AS [Extent1]
WHERE [Extent1].[DateCreated] = '2012-05-25T00:00:00.00'

If you prefer to defi ne a complex type and reuse that in each of
the classes, your types might look like this:

public class Logging
{
 public DateTime DateCreated { get; set; }
}

public class Product{
 public int ProductID { get; set; }
 // ...other properties...
 public Logging Logging { get; set; }
}

Note that the Logging class doesn’t have a key fi eld (such as Id
or LoggingId). Code First conventions will presume this to be a
complex type and treat it as such when it’s used to defi ne properties
in other classes, as I’ve done with Product.

Th e Products table in the database has a column generated by
Code First called Logging_DateCreated, and the Product.Log-
ging.DateCreated property maps to that column. Adding the Log-
ging property to the Customer class would have the same eff ect.
Th e Customers table will also have its own Logging_DateCreated
property, and it maps back to Customer.Logging.DateCreated.

In code, you’ll need to navigate through the logging property to
reference that DateCreated fi eld. Here’s the same query as before,
rewritten to work with the new types:

context.Products.Where(b => b.Logging.DateCreated == DateTime.Now).ToList();

Th e resulting SQL is the same as the interface example except the
fi eld name is now Logging_DateCreated rather than DateCreated.
It’s a short query that only queries the Products table.

One of the benefi ts of inheriting from the class in the original
model is that it’s easy to code logic to automatically populate the
fi elds from the base class—during SaveChanges, for example. But
you can create logic just as easily for the complex type or for the
interface, so I don’t see any disadvantage with these new patterns.
Figure 3 shows a simple example of setting the DateCreated prop-
erty for new entities during SaveChanges (you can learn more
about this technique in the Second and DbContext editions of my
“Programming Entity Framework” book series).

Some Changes in EF 5
Entity Framework 5 does bring some improvements to queries that
are generated from TPT hierarchies that help but do not alleviate the
problems I demonstrated earlier. For example, rerunning my query
that initially resulted in 3,300 lines of SQL on a machine that has
the Microsoft .NET Framework 4.5 installed (with no other changes
to the solution) generates a query that’s reduced to 2,100 lines
of SQL. One of the biggest diff erences is that EF 5 doesn’t rely on
UNIONs to build the query. I’m not a DBA, but my understanding
is that such an improvement wouldn’t impact the performance of
the query in the database. You can read more about this change to
TPT queries in my blog post, “Entity Framework June 2011 CTP:
TPT Inheritance Query Improvements,” at bit.ly/MDSQuB.

Not All Inheritance Is Evil
Having a single base type for all entities in your model is an extreme
example of modeling and inheritance gone wrong. Th ere are many
good cases for having an inheritance hierarchy in your model—
for example, when you do want to describe that a Customer is a
Person. What’s also important is the lesson that LINQ to Entities is
just one tool that’s available to you. In the scenario my client showed
me, a clever database developer reconstructed the query against
the base type fi elds as a database stored procedure, which brought
a multisecond activity down to one that took just 9 milliseconds.
And we all cheered. We’re still hoping they’ll be able to redesign the
model and tweak the database for the next version of the soft ware,
though. In the meantime, they’re able to let Entity Framework
continue to generate those queries that aren’t problematic and use
the tools I left behind to tweak the application and database for
some fantastic performance improvements.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article:
Diego Vega

public override int SaveChanges()
{
 foreach (var entity in this.ChangeTracker.Entries()
 .Where(e =>
 e.State == EntityState.Added))
 {
 ApplyLoggingData(entity);
 }
 return base.SaveChanges();
}

private static void ApplyLoggingData(DbEntityEntry entityEntry)
{
 var logger = entityEntry.Entity as ITheBaseType;
 if (logger == null) return;
 logger.DateCreated = System.DateTime.Now;
}

Figure 3 Setting the Interface’s DateCreated Property
During SaveChanges

www.bit.ly/MDSQuB
www.twitter.com/julielerman

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545
Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

All other trademarks or registered trademarks are the respective property of their owners.

Raising the Bar…

Visualize your BI in 50+ ways, and on just as

many devices. From candlesticks to polar and

radial charts, nobody offers the breadth and

depth of dynamic, high fidelity, totally mobile

charting solutions that you get from Infragistics’

NetAdvantage. Try a free, fully supported trial of

NetAdvantage for .NET today!

www.infragistics.com/NET

And Pie, and Spline and Scatter… on Mobile Business Intelligence

Compatible with
Microsoft® Visual
Studio® 2012

Untitled-5 1 7/10/12 3:59 PM

http://www.infragistics.com/NET

msdn magazine22

having to deploy again, we have to deploy the binaries that hold
our concrete classes outside of the Web role deployment. Th at also
forces a little extra work for the application at startup. Figure 2
depicts the startup work in the Global.asax as it calls into a helper
class that we’ve created named MEFContext.

Decoupling the Cloud with MEF

A colleague and I have been working on a project over the
past several months that leverages the Microsoft Extensibil-
ity Framework (MEF). In this article, we’ll look at how you
might use MEF to make a cloud deployment a little more
manageable and fl exible. MEF—and similar frameworks
such as Unity—are the soft ware fabric that frees developers
from managing dependency resolution, object creation
and instantiation. Now and again you might fi nd yourself
writing a factory method or creating dependent objects
inside of a constructor or required initialization method,
but for the most part such work is no longer necessary
thanks to frameworks such as MEF.

By using MEF in our deployment in conjunction with
the StorageClient API, we can deploy and make available
new classes without recycling or redeploying our Web roles.
Moreover, we can deploy updated versions of types into
the cloud without a full redeploy and simply recycle the application
instead. Note that while we’re using MEF here, following a similar
structure using Unity, Castle Windsor, StructureMap or any of
the other similar containers should net the same results, with the
primary diff erences being syntax and type registration semantics.

Design and Deployment
As the saying goes: To get a little more out, you have to put a little more
in. In this case that requires certain construction standards and some
additional work around the deployment. First, if you’re used to using
a dependency injection (DI) or composition container, chances
are you’re pretty keen on keeping implementation and interface
separated within your code. We don’t stray from that goal here—all
our concrete class implementations have inheritance that traces back
to an interface type. Th at doesn’t mean every class will directly inherit
from an interface, but classes will generally have layers of abstraction
that follow a pattern like Interface Virtual Concrete.

Figure 1 shows that not only does the primary class I’m interested
in have such a chain, but in fact one of its required properties is also
abstracted. All of the abstraction makes it easier to replace parts or
add additional functionality in the form of a new library that exports
the desired contract (in this case the interface). Beyond composition,
a nice side eff ect of being a martinet about abstracting your class
design is that it better enables testing via mocked interfaces.

Th e harder part of the requirement is the change in the deploy-
ment model for the application. Because we want to build our
catalog of imports and exports at run time, and refresh it without

FORECAST: CLOUDY JOSEPH FULTZ AND CHRIS MABRY

Figure 1 Class Diagram

CustomerPhoneNumberRule Diagnostics CustomerNameRule

CustomerRuleResult IDiagnostics

IBusinessRule<t> IRuleResult<t> ICustomer

CustomerGenerics
2

Figure 2 Building the Catalog at Startup

InitializeContainer

MEFContext.InitializeContainer() UpdateFromStorage

<<return>>

this : Global

Application...

MEFContext

UpdateFromStorage()

BuildContainer

BuildContainer()

Lock

[lock (MEFCo...

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545
Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

All other trademarks or registered trademarks are the respective property of their owners.

MetroTactual
[me-troh tak-choo-uhl]

noun, adjective
1. Modern, clean, sleek, stylish, touch-

friendly design and UX
2. Feng Shui for your apps
3. Available in NetAdvantage 12.1 toolsets

See also: NetAdvantage for .NET

Try your free, fully supported trial today.
www.infragistics.com/NET

Compatible with
Microsoft® Visual Studio® 2012

Untitled-5 1 7/10/12 4:00 PM

http://www.infragistics.com/NET

msdn magazine24 Forecast: Cloudy

Runtime Composition
Because we’re going to be loading the catalog from fi les in storage,
we’ll have to get those fi les into our cloud storage container. Th ere-
fore, getting the files into the Windows Azure Storage location
needs to become part of the deployment process. This is prob-
ably most easily done using Windows Azure PowerShell cmdlets
(wappowershell.codeplex.com) and some post-build steps. For our
purposes, we’ll manually move the binaries using the Windows
Azure Storage Explorer (azurestorageexplorer.codeplex.com).

We created a project that contains a common diagnostics class, a
customer entity and a couple of rule libraries. All of the rule libraries
have to inherit from and export an interface of type IBusinessRule<t>,
where t represents the entity against which rules are enforced. Here
are the import parts of the class declaration for a rule:

[Export(typeof(IBusinessRule<ICustomer>))]
public class CustomerNameRule : IBusinessRule<ICustomer>
{
 [Import(typeof(IDiagnostics))]
 IDiagnostics _diagnostics;
 ...
}

You can see the export as well as the diagnostics dependency
that MEF will inject for us when we ask for the rule object. It’s
important to know what’s being exported as that will in turn be the
contract by which you resolve the
instances you want. Th e Microsoft
.NET Framework 4.5 will bring
some enhancements to MEF that
will allow a loosening of some of
the constraints currently around
generics in the container. For
example, currently you can regis-
ter and retrieve something such
as IBusinessRule<ICustomer>,
but not something like IBusiness-
Rule<t>. Sometimes you want
all instances of a type beyond its
actual template type. Currently, the
easiest way to accomplish this is to
register a string contract name that’s

an agreed convention in your project or solution. For our sample,
a declaration like the preceding will work.

We have two rules, one for phone number and one for name,
and a diagnostics library, each of which will be available through
the MEF container. Th e fi rst thing we have to do is to grab the
libraries out of Windows Azure Storage and bring them down
to a local resource (local directory) so we can load them with a
DirectoryCatalog. To do this, we include a couple of function calls
in the Application_Start of the Global.asax:

// Store the local directory for later use (directory catalog)
MEFContext.CacheFolderPath = RoleEnvironment.GetLocalResource("ResourceC
ache").RootPath.ToLower();
MEFContext.InitializeContainer();

We’re just grabbing the needed resource path, which is con-
figured as part of the Web role, and then calling the method to
set up the container. That initialization method in turn calls
UpdateFromStorage to get the fi les and BuildContainer to create
the catalog and then the MEF container.

The UpdateFromStorage method looks in a predetermined
container and iterates over the fi les in the container, downloading
each of them into the local resource folder. The first part of this
method is shown in Figure 3.

In the fi rst half we set up the storage client to fetch what we need.
For this scenario, we’re asking for whatever is there. In cases where

// Could also pull from config, etc.
string containerName = CONTAINER_NAME;

// Using development storage account
CloudStorageAccount storageAccount = CloudStorageAccount.DevelopmentStorageAccount;

// Create the blob client and use it to create the container object
CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

// Note that here is where the container name is passed
// in order to get to the files we want
CloudBlobContainer blobContainer = new CloudBlobContainer(
 storageAccount.BlobEndpoint.ToString() + "/" + containerName,
 blobClient);

// Create the options needed to get the blob list
BlobRequestOptions options = new BlobRequestOptions();
options.AccessCondition = AccessCondition.None;
options.BlobListingDetails = BlobListingDetails.All;
options.UseFlatBlobListing = true;
options.Timeout = new TimeSpan(0, 1, 0);

Figure 3 First Half of UpdateFromStorage

// Iterate over the collect
// Grab the files and save them locally
foreach (IListBlobItem item in blobs)
{
 string fileAbsPath = item.Uri.AbsolutePath.ToLower();
 // Just want the file name ...
 fileAbsPath = fileAbsPath.Substring(fileAbsPath.LastIndexOf('/') + 1);

 try
 {
 Microsoft.WindowsAzure.StorageClient.CloudPageBlob pageblob =
 new CloudPageBlob(item.Uri.ToString());
 pageblob.DownloadToFile(MEFContext.CacheFolderPath + fileAbsPath, options);
 }
 catch (Exception)
 {
 // Ignore exceptions, if we can't write it's because
 // we've already got the file, move on
 }
}

Figure 4 Second Half of UpdateFromStorage

Figure 5 Initial Exports

http://wappowershell.codeplex.com
http://azurestorageexplorer.codeplex.com

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545
Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

All other trademarks or registered trademarks are the respective property of their owners.

Just the Right Touch
Get in touch with the new NetAdvantage for .NET 2012 V. 1 today, with a free, fully supported trial!
www.infragistics.com/NET

Compatible with
Microsoft® Visual
Studio® 2012

Untitled-5 1 7/10/12 4:00 PM

http://www.infragistics.com/NET

msdn magazine26 Forecast: Cloudy

you’re bringing fi les down from storage to a local resource, it might
be worth doing a full pass and getting everything. For a more tar-
geted fetch of the fi les, you could assign some IfMatch condition to
the options.AccessCondition property. Th is would require that etags
be set on the blobs when uploaded. Additionally, you could optimize
the update side of rebuilding the MEF container by storing the last
update time and applying an AccessCondition of IfModifi edSince.

Figure 4 shows the second half of UpdateFromStorage.
Once the storage client is ready, we simply iterate over the blob

items and download them to the resource. Depending on the condi-
tions and goals of the overall download, you could replicate folder
structures locally in this operation or build a folder structure based
on convention. Sometimes a folder structure is a requirement to
avoid name collisions. We’re just going with the shotgun method
and grabbing all of the fi les and sticking them in one place because
we know it’s just two or three DLLs for this sample.

With this, we have the fi les in place and just need to build the
container. In MEF, the composition container is built from one or
more catalogs. In this case, we’re going to use a DirectoryCatalog
because this makes it easy to simply point the catalog to the
directory and load the binaries that are available. Th us, the code
to register the types and prepare the container is short and simple:

// Store the container for later use (resolve type instances)
var catalog = new DirectoryCatalog(CacheFolderPath);
MEFContainer = new CompositionContainer(catalog);
MEFContainer.ComposeParts();

Now we’ll run the site and we should see a dump of the types
available in the container, as shown in Figure 5.

We’re not dumping the entire container here, but rather asking
specifi cally for the IDiagnostics interface and then all exports of
type IBusinessRule<ICustomer>. As you can see, we have one of
each of these prior to uploading a new business rule library into
the storage container.

Adding New Functionality at Run Time
Due to the way the AppDomain handles type loading and
resolution, we can’t just refresh a type at run time aft er it
has been loaded once. However, we can add functionality
by placing a new binary into our directory and reloading
the DirectoryCatalog, as shown in Figure 6.

Th e BusinessCommon.dll contains our initial rule and
the diagnostics library, but we’ve decided we need to add
another rule. Like the phone number rule, this one checks

for null or empty values for either of the name fi elds on the Customer
entity. If the rule is violated, this is added to the rule results and logs
using an imported IDiagnostics interface (see Figure 7).

We’ve placed NewRules.dll into the storage location and now
need to get it loaded into the application. Ideally, you want to trig-
ger the container rebuild by doing a little bit of fi le watching on the
storage container. Again, this is easily accomplished with a quick
poll using the IfModifi edSince AccessCondition. However, we’ve
opted for the more manual process of clicking Update Catalog on
our test app. Figure 8 shows the results.

We just repeat the steps to create the catalog and initialize the
container, and now we have a new rule library to enforce. Note that
we haven’t restarted the app or redeployed, but we have new code
running in the environment. Th e only loose end here is that some
synchronization method is needed, because we can’t have code trying
to use the composition container while we’re replacing the reference:

var catalog = new DirectoryCatalog(CacheFolderPath);
CompositionContainer newContainer = new CompositionContainer(catalog);
newContainer.ComposeParts();
lock(MEFContainer)
{
 MEFContainer = newContainer;
}

The primary reason for building a secondary container and
then just replacing the reference is to reduce the lock quantum and
return the container to use right away.

To further evolve the code base, the next step would be to implement
your own custom catalog type—for example, AzureStorageCatalog,

[Export(typeof(IBusinessRule<ICustomer>))]
public class CustomerNameRule : IBusinessRule<ICustomer>
{
 [Import(typeof(IDiagnostics))]
 IDiagnostics _diagnostics;

 public void ProsecuteRules(ref ICustomer Entity,
 ref List<IRuleResult<ICustomer>> RulesResults)
 {
 if (string.IsNullOrEmpty(Entity.FirstName) ||
 string.IsNullOrEmpty(Entity.LastName))
 {
 // Rule violation, add to collection
 CustomerRuleResult result = new CustomerRuleResult()
 {
 TestedEntity = Entity,
 RuleMessage = "The phone first and last names cannot be null or empty.",
 RuleName = "Full Name Required"
 };
 // Log execution result
 _diagnostics.Log("Name rule violation");

 RulesResults.Add(result);

 }
 }

Figure 7 Name Rule

Figure 6 New Binary in Windows Azure Storage Explorer

If you’re used to using a
dependency injection (DI) or

composition container, chances
are you’re pretty keen on keeping
implementation and interface
separated within your code.

Untitled-2 1 5/3/12 11:28 AM

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com

msdn magazine28 Forecast: Cloudy

as shown in Figure 9. Unfortunately, the current object model doesn’t
have a proper interface or an easily reusable base defi ned, so using a bit
of inheritance as well as some encapsulation is probably the best bet.
Implementing a class similar to the AzureStorageCatalog listing
would enable a simple model of instantiating the custom catalog
and using it directly in the composition container.

Updating Existing Functionality
Adding new functionality to our deployment was pretty easy, but
we don’t have the same good news for updating existing function-
ality or libraries. Though the process is better than a complete
redeployment, it’s still fairly involved because we have to move
the fi les to storage and the relevant Web roles have to update their
local resource folders. However, we’ll also recycle the roles because
we need to unload and reload the AppDomain to refresh the type
defi nition stored in the container. Even if you load the Compo-
sition Container and types into a secondary AppDomain and try
to load from there, the AppDomain in which you’re requesting
the type will load it from previously loaded metadata. Th e only
way around this we could see would be to send the entities to the
secondary AppDomain and add some custom marshaling rather

than using the exported types on
the primary AppDomain. Th at pat-
tern seems problematic to us; the
double AppDomain in itself seems
problematic. Th us, a simpler solu-
tion is to recycle the roles aft er the
new binaries are made available.

Th ere’s some good news regarding
Windows Azure update domains.
Take a look at my February 2012
column, “Windows Azure Deploy-
ment Domains” (msdn.microsoft.com/
magazine/hh781019), which describes
walking the update domains and
restarting instances in each. On the
positive side, the site stays up with

no need for a full redeployment. However, you could potentially
experience two diff erent behaviors during the refresh. Th is is an
acceptable risk, though, because the same would be true during a
rolling update if you did a full deployment.

You could confi gure this to happen within the deployment, but
the problem is one of coordination. To do this would require that
the restarts of the instances be coordinated, so the instances would
either need to elect a leader or have some voting system. Rather
than writing some artifi cial intelligence into the Web roles, we feel
the task is more easily handled by a monitoring process and the
Windows Azure cmdlets referenced earlier.

Th ere are many reasons to use a framework such as MEF that are
beyond the narrow bit of functionality we’ve highlighted here. What
we wanted to highlight is that, by using the inherent capabilities of
Windows Azure in combination with a composition/DI/Inversion
of Control-type framework, you could create a dynamic cloud
application that could easily respond to the last-minute changes
that always seem to pop up.

JOSEPH FULTZ is a software architect at Hewlett-Packard Co., working as
part of the HP.com Global IT group. Previously he was a software architect
for Microsoft , working with its top-tier enterprise and ISV customers to defi ne
architecture and design solutions.

CHRIS MABRY is a lead developer at Hewlett-Packard Co. with a current
focus on leading a team to deliver a rich UI experience based on service-enabled
client frameworks.

THANKS to the following technical expert for reviewing this article:
Chris Brooks

public class AzureStorageCatalog:ComposablePartCatalog
{
 private string _localCatalogDirectory = default(string);
 private DirectoryCatalog _directoryCatalog = default(DirectoryCatalog);

 AzureStorageCatalog(string StorageSetting, string ContainerName)
 :base()
 {
 // Pull the files to the local directory
 _localCatalogDirectory = GetStorageCatalog(StorageSetting, ContainerName);
 // Load the exports using an encapsulated DirectoryCatalog
 _directoryCatalog = new DirectoryCatalog(_localCatalogDirectory);

 }

 // Return encapsulated parts
 public override IQueryable<ComposablePartDefinition> Parts
 {
 get { return _directoryCatalog.Parts; }
 }

 private string GetStorageCatalog(string StorageSetting, string ContainerName)
 { }
}

Figure 9 AzureStorageCatalog

Figure 8 Updated Rules Exports

It’s important to know what’s
being exported as that will in turn

be the contract by which you
resolve the instances you want.

http://msdn.microsoft.com/magazine/hh781019
http://msdn.microsoft.com/magazine/hh781019

(888) 850-9911
Sales Hotline - US & Canada:

/update/2012/08

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2012 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

GdPicture.NET from $3,919.47
A full-featured document-imaging and image processing toolkit for software developers.

BEST SELLER

BEST SELLER Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

BEST SELLER

BEST SELLER ActiveReports Developer 7 from $685.02
The fast and fl exible reporting engine has gotten even better.

NEW RELEASE

CodeCompare Pro from $48.95
An advanced visual fi le comparison tool with Visual Studio integration.

BEST SELLER

Untitled-6 1 7/9/12 12:47 PM

http://www.componentsource.com

msdn magazine30

C++

Functional-Style
Programming in C++

C++ is a multiparadigm, systems-level language that pro-
vides high-level abstractions with very low (oft en zero) runtime cost.
Th e paradigms commonly associated with C++ include procedural,
object-oriented and generic programming. Because C++ provides
excellent tools for high-level programming, even functional-style
programming is quite reasonable.

By functional-style programming, I don’t mean the programming
is strictly functional, just that it’s easy to use many of the functional
building blocks in C++. Th is article will focus on one of the most
important functional programming constructs: working with
values as opposed to identities. I’ll discuss the strong support C++
has always had for working with values, then show how the new
C++ 11 standard expands this support with lambdas. Finally, I’ll
introduce a method of working with immutable data structures
that maintains the speed C++ is known for while providing the
protection that functional languages have long enjoyed.

Values vs. Identities
Let me fi rst explain what I mean by working with values rather
than identities. Simple values such as 1, 2 and 3 are easy to identify.
I could also say that 1, 2 and 3 are constant integer values. Th is would
be redundant, however, because all values are actually constants and
the values themselves never change (that is, 1 is always 1 and 1 will
never be 2). On the other hand, the value associated with an iden-
tity may change (x might equal 1 now, but it could equal 2 later).

David Cravey

Unfortunately, it’s easy to confuse values and value types. Value
types are passed around by value rather than by reference. Th ough
I want to focus here on the values and not the mechanism involved
in using or copying them, it’s useful to see how value types go part
way in preserving the concept of values versus identities.

Th e code in Figure 1 demonstrates a simple use of a value type.
With only a small change, the variable y can become a reference

type—which drastically changes the relationship between x and y,
as shown in Figure 2.

As Figure 3 shows, C++ also provides the const modifi er, which
prevents the programmer from making changes to a variable and
thus further preserves the concept of a value. (As with most things
in C++, however, there’s at least one way to defeat that protection.
For more information, look up const_cast, which is intended for
working with older code that isn’t “const correct.”)

Note in Figure 3 that though y is passed by reference, the value
of y is protected at compile time by a const modifi er. Th is gives C++
programmers an effi cient method of passing large objects while
working with their values as opposed to their identities.

This article discusses:
• Values versus identities
• Lambdas
• Immutable data types

Technologies discussed:
C++ 11

Code download available at:
archive.msdn.microsoft.com/mag201208CPP

void Foo()
{
 for (int x = 0; x < 10; ++x)
 {
 // Call Bar, passing the value of x and not the identity
 Bar(x);
 }
}

void Bar(int y)
{
 // Display the value of y
 cout << y << " ";

 // Change the value that the identity y refers to
 // Note: This will not affect the value that the variable x refers to
 y = y + 1;
}

// Outputs:
// 0 1 2 3 4 5 6 7 8 9

Figure 1 Using a Value Type

http://archive.msdn.microsoft.com/mag201208CPP

31August 2012msdnmagazine.com

With the const modifier, C++ has immutable data types that
resemble those found in most functional programming languages.
However, dealing with these immutable data types is diffi cult. Fur-
thermore, making deep (full) copies of large objects for every small
change isn’t effi cient. Nonetheless, it should be clear that standard
C++ has always had a concept of working with values (even if it’s
not a very pure concept).

Note that the support for value types extends to user-defi ned
types through copy constructors and assignment operators. C++
copy constructors and assignment operators allow user-defi ned
types to make a deep copy of the object. Keep in mind that while
C++ copy constructors can be implemented to make a shallow
copy, you’ll have to make sure the value semantics are preserved.

C++ 11 Support for Functional-Style Programming
C++ 11 brings a number of new tools for functional-style program-
ming. Perhaps most important, C++ now has support for lambdas
(also known as closures or anonymous functions). Lambdas allow
you to compose your code in ways that wouldn’t have been practical
before. Th is functionality was previously available through functors,
which are powerful but less practical to use. (Actually, C++ lambdas
write anonymous functors behind the scenes.) Figure 4 shows how
lambdas have improved our code with a simple example that uses
the C++ standard library (STL).

In this case, the for_each function applies a lambda to each
element of a vector. It’s important to note that C++ lambdas have
been designed to be used inline when possible; thus lambdas can
run as fast as handcraft ed code.

While C++ is just one of the many imperative languages that now
have lambdas, what makes C++ lambdas special is that (similar to
functional programming languages) they can preserve the concept
of working with values as opposed to identities. While functional
programming languages accomplish this by making variables

void Foo()
{
 for (int x = 0; x < 10; ++x)
 {
 // Call Bar, passing the identity of x
 Bar(x);
 }
}

void Bar(int& y)
{
 // Display the value of y
 cout << y << " ";

 // Change the value that the identity y refers to
 // Note: This will affect the variable x
 y = y + 1;
}

// Outputs:
// 0 2 4 6 8

Figure 2 Using a Reference Type

void Foo()
{
 for (int x = 0; x < 10; ++x)
 {
 // Call Bar, passing the identity of x,
 // yet the value of x will be protected by the const
 Bar(x);
 }
}

void Bar(const int& y)
{
 // Use the value of y
 cout << y << " ";

 // Attempt to change the value of what the identity y refers to
 y = y + 1; // This line will not compile because y is const!
}

Figure 3 The const Modifi er

void Foo()
{
 vector<int> v;
 v.push_back(1);
 v.push_back(2);
 v.push_back(3);

 for_each(begin(v), end(v), [](int i) {
 cout << i << " ";
 });
}

// Outputs:
// 1 2 3

Figure 4 Using Lambdas

void Foo()
{
 int a[3] = { 11, 12, 13 };

 vector<function<void(void)>> vf;

 // Store lambdas to print each element of an array
 int ctr;
 for (ctr = 0; ctr < 3; ++ctr) {
 vf.push_back([&]() {
 cout << "a[" << ctr << "] = " << a[ctr] << endl;
 });
 }

 // Run each lambda
 for_each(begin(vf), end(vf), [](function<void(void)> f) {
 f();
 });
}

// Outputs:
// a[3] = -858993460
// a[3] = -858993460
// a[3] = -858993460

Figure 5 Capturing by Reference

[] Don’t capture anything
(exactly what I wanted in the fi rst lambda example)

[&] Capture everything by reference
(traditional lambda behavior, though not consistent with
functional programming’s emphasis on values)

[=] Capture everything by value
(while this preserves the concept of values, it limits the usefulness
of the lambdas; also, it can be expensive to copy large objects)

[&ctr] Capture only ctr, and capture ctr by reference
[ctr] Capture only ctr, and capture ctr by value
[&,ctr] Capture ctr by value and everything else by reference
[=,&v] Capture v by reference and everything else by value
[&, ctr1, ctr2] Capture ctr1 and ctr2 by value and everything else

by reference

Figure 6 C++ Syntax for Controlling Lambda Capture

www.msdnmagazine.com

msdn magazine32 C++

immutable, C++ does it by providing control over the capture.
Consider the code in Figure 5.

In this code, everything is captured by reference, which is the
standard behavior for lambdas in other languages. Yet capturing
by reference complicates things unless the variables being captured
are immutable. If you’re new to working with lambdas, you prob-
ably expect the following output from the code:

a[0] = 11
a[1] = 12
a[2] = 13

However, that’s not the output you get—and the program might
even crash. Th is is because the variable ctr is captured by reference,

so all of the lambdas use the fi nal value of ctr (that is, 3, the value
that made the for loop come to an end) and then access the array
beyond its bounds.

It’s also worth noting that to keep the ctr variable alive to be used
by the lambda outside of the for loop, the ctr variable’s declaration
has to be lift ed out of the for loop. While some languages eliminate
the need to lift value type variables to an appropriate scope, that
doesn’t really solve the problem, which is that the lambda needs
to use the value of ctr as opposed to the identity of the variable ctr.
(Th ere are workarounds for other languages that involve making
an explicit copy to a temporary variable. However, this makes it a
bit unclear as to what’s going on, and it’s error-prone because the
original variable is also captured and thus is still available for use.)

As Figure 6 shows, C++ provides a simple syntax to allow easy
control of the lambda’s capture, which preserves the concept of
working with values.

It’s clear from Figure 6 that the programmer has complete control
over how the lambda captures variables and values. However, while
this preserves the concept of working with values, it does nothing
to make working with complex data structures as values effi cient.

Immutable Data Types
What’s missing are the effi cient immutable data structures that some
functional programming languages have. Th ese languages facilitate
immutable data structures that are effi cient even when very large
because they share common data. Creating data structures in C++
that share data is trivial—you just dynamically allocate data and
each data structure has pointers to the data. Unfortunately, it’s more
diffi cult to manage the lifetime of shared variables (for this reason,
garbage collectors have become popular). Luckily, C++ 11 provides

void Foo()
{
 // Create a shared int
 // (dynamically allocates an integer
 // and provides automatic reference counting)
 auto sharedInt = make_shared<int>(123);

 // Share the integer with a secondShare
 // (increments the reference count)
 shared_ptr<int> secondShare(sharedInt);

 // Release the pointer to the first integer
 // (decrements the reference count)
 sharedInt = nullptr;

 // Verify the shared int is still alive
 cout << "secondShare = " << *secondShare << endl;

 // Shared int is automatically de-allocated
 // as secondShare falls out of scope and the reference
 // count falls to zero
}

// Outputs:
// secondShare = 123

Figure 7 Sharing Variables

class Immutable
{
private:
 // Use a normal double, copying is cheap
 double d_;

 // Use a shared string, because strings can be very large
 std::shared_ptr<std::string const> s_;

public:
 // Default constructor
 Immutable()
 : d_(0.0),
 s_(std::make_shared<std::string const>(""))
 {}

 // Constructor taking a string
 Immutable(const double d, const string& s)
 : d_(d),
 s_(std::make_shared<std::string const>(s))
 {}

 // Move constructor
 Immutable(Immutable&& other)
 : s_()
 {
 using std::swap;
 swap(d_, other.d_);
 swap(s_, other.s_);
 }

 // Move assignment operator
 Immutable& operator=(Immutable&& other)
 {

 swap(d_, other.d_);
 swap(s_, other.s_);
 return *this;
 }

 // Use default copy constructor and assignment operator

 // Getter Functions
 double GetD() const
 {
 // Return a copy because double is small (8 bytes)
 return d_;
 }
 const std::string& GetS() const
 {
 // Return a const reference because string can be very large
 return *s_;
 }

 // "Setter" Functions (always return a new object)
 Immutable SetD(double d) const
 {
 Immutable newObject(*this);
 newObject.d_ = d;
 return newObject;
 }
 Immutable SetS(const std::string& s) const
 {
 Immutable newObject(*this);
 newObject.s_ = std::make_shared<std::string const>(s);
 return newObject;
 }
};

Figure 8 An Immutable Class for Sharing Data

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:59 PM

http://c1.ms/reporting

msdn magazine34 C++

template <class ImmutableVector>
void DisplayImmutableVector(const char* name, const ImmutableVector& v)
{
 using namespace std;

 cout << name << ".Size() = " << v.Size()
 << ", " << name << "[] = { ";
 for (size_t ctr = 0; ctr < v.Size(); ++ctr) {
 cout << v[ctr] << " ";
 }
 cout << "}" << endl;
}

void ImmutableVectorTest1()
{
 // Create an ImmutableVector with a branching size of four
 ImmutableVector<int, 4> v;

 // Another ImmutableVector (we will take a copy of v at element 6)
 ImmutableVector<int, 4> aCopyOfV;

 // Push 16 values into the vector (this will create a two level tree).
 // Note that the vector is being assigned to itself. The
 // move constructor insures this is not very expensive, but
 // if a copy was made at any point the copy would remain
 // unchanged, but continue to share the applicable data with
 // the current version.
 for (int ctr = 0; ctr < 10; ++ctr) {
 v = AppendValue(v, ctr);
 if (ctr == 6) aCopyOfV = v;
 }

 // Display the contents of the vectors
 DisplayImmutableVector("v", v);
 DisplayImmutableVector("aCopyOfV", aCopyOfV);
}

// Outputs:
// v.Size() = 10, v[] = { 0 1 2 3 4 5 6 7 8 9 }
// aCopyOfV.Size() = 7, aCopyOfV[] = { 0 1 2 3 4 5 6 }

Figure 9 Using the Smart ImmutableVector Template Class

an elegant solution for working with shared variables through the
std::shared_ptr template class, as shown in Figure 7.

Th e code in Figure 7 illustrates a simple use of std::shared_ptr
and its helper function std::make_shared. Using std::shared_ptr
makes it easy to share data among data structures without fear of
leaking memory (as long as circular references are avoided). Note
that std::shared_ptr provides the basic thread-safety guarantees,
and runs fast because it uses a lock-free design. However, keep in
mind that the basic thread-safety guarantee that std::shared_ptr
provides doesn’t automatically extend to the object to which it’s
pointing. Still, std::shared_ptr guarantees it will not reduce the
thread-safety guarantee of the object it points to. Immutable
objects inherently provide a strong thread-safety guarantee because
once they’re created they never change. (Actually, they never change
in an observable manner, which includes, among other things, an
appropriate thread-safety guarantee.) Th erefore, when you use a
std::shared_ptr with an immutable object, the combination main-
tains the immutable object’s strong thread-safety guarantee.

I can now easily create a simple immutable class that potentially
shares data, as shown in Figure 8.

Th e code in Figure 8 is a bit long, but most of it is boilerplate
code for the constructors and assignment operators. Th e last two
functions are the key to making the object immutable. Note that
the SetS and SetD methods return a new object, which leaves the
original object unchanged. (While including the SetS and SetD

methods as members is convenient, it’s a bit of a lie, because they
don’t actually change the original object. For a cleaner solution, see
the ImmutableVector in Figures 9 and 10.) Figure 11 shows the
Immutable class in action.

Note that object b shares the same string as object a (both strings
are at the same address). Adding additional fi elds with associated
getters and setters is trivial. Th ough this code is good, it’s a little more
diffi cult to scale to containers when you’re being effi cient. For exam-
ple, a naïve ImmutableVector might maintain a list of shared pointers
representing each element of the array. When the naïve Immutable-
Vector is changed, the entire array of shared pointers would need to
be duplicated, incurring additional cost as each shared_ptr element
of the array would need its reference count to be incremented.

Th ere is a technique, though, that allows the data structure to share
most of its data and minimize the duplication. Th is technique uses
a tree of some form to require duplication of only the nodes that
are directly aff ected by a change. Figure 12 shows a comparison of
a naïve ImmutableVector and a smart ImmutableVector.

Th is tree technique scales nicely: as the number of elements grows,
the percent of the tree that needs to be duplicated is minimized.
Moreover, by adjusting the branching factor (so each node has more
than two children), you can achieve a balance in memory overhead
and node reuse.

void ImmutableVectorTest2()
{
 ImmutableVector<int, 4> v;
 v = AppendValue(v, 1);
 v = AppendValue(v, 2);
 v = AppendValue(v, 3);
 int oldValue = v.Back();
 auto v1 = TruncateValue(v);
 auto v2 = SubstituteValueAtIndex(v, 0, 3);
 auto v3 = GenerateFrom(v, [](ImmutableVector<int, 4>::MutableVector& v) {
 v[0] = 4;
 v[1] = 5;
 v[2] = 6;
 v.PushBack(7);
 v.PushBack(8);
 });
 auto v4 = GenerateFrom(v3, [](ImmutableVector<int, 4>::MutableVector& v4) {
 using namespace std;
 cout << "Change v4 by calling PopBack:" << endl;
 cout << "x = v4.PopBack()" << endl;
 int x = v4.PopBack();
 cout << "x == " << x << endl;
 cout << endl;
 });

 // Display the contents of the vectors
 DisplayImmutableVector("v", v);
 DisplayImmutableVector("v1", v1);
 DisplayImmutableVector("v2", v2);
 DisplayImmutableVector("v3", v3);
 DisplayImmutableVector("v4", v4);
}

// Outputs:
// Change v4 by calling PopBack:
// x = v4.PopBack()
// x == 8
//
// Resulting ImmutableVectors:
// v.Size() = 3, v[] = { 1 2 3 }
// v1.Size() = 2, v1[] = { 1 2 }
// v2.Size() = 3, v2[] = { 3 2 1 }
// v3.Size() = 5, v3[] = { 4 5 6 7 8 }
// v4.Size() = 4, v4[] = { 4 5 6 7 }

Figure 10 Methods for Operating on the ImmutableVector

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:59 PM

http://c1.ms/spreadsheets

msdn magazine36 C++

I developed a smart ImmutableVector template class that can
be downloaded from archive.msdn.microsoft.com/mag201208CPP. Figure
9 shows how you can use my ImmutableVector class. (As previously

noted, to make the immutable nature of the ImmutableVector
clearer to the users, ImmutableVector uses static member functions
for all actions that generate new versions.)

For read-only actions, the vector can be used much like a
regular vector. (Note that for this example I haven’t implemented
iterators, but doing so should be fairly trivial.) For write actions,
the AppendValue and TruncateValue static methods return a new
ImmutableVector, thus preserving the original object. Unfortu-
nately, this isn’t reasonable for the array subscript operator, so I
made the array subscript operator read-only (that is, it returns
a const reference) and provided a SubstituteValueAtIndex static
method. It would be nice, however, to be able to make a large
number of modifi cations using the array subscript operator in a
single block of code. To facilitate this, ImmutableVector provides a
GenerateFrom static method, which takes a lambda (or any other
functor). Th e lambda in turn takes a reference to MutableVector
as a parameter, which allows the lambda to work on a temporary
MutableVector that can be changed freely like a normal std::vector.
Th e example in Figure 10 shows the various methods for operating
on the ImmutableVector.

Th e beauty of the GenerateFrom static method is that the code
within it can be written in an imperative way, while resulting in an
immutable object that can be safely shared. Note that the Generate-
From static method prevents unauthorized access to the underlying
ImmutableVector by disabling the MutableVector it passed into
the lambda as soon as the lambda exited. Please note as well that
while ImmutableVector provides a strong thread-safety guarantee,
its helper class MutableVector does not (and is intended to be

only used locally within the lambda, not
passed around to other threads). My
implementation also optimizes for mul-
tiple changes within the Change method
such that there’s minimal restructuring
occurring on the temporary tree, which
gives a nice performance boost.

Wrapping Up
Th is article gives you just a taste of how
you can use functional-style program-
ming in your C++ code. Moreover, C++
11 features such as lambdas bring a touch
of functional-style programming regard-
less of the paradigm used.

DAVID CRAVEY is a Visual C++ MVP who
enjoys programming in C++ maybe a bit too
much. You’ll fi nd him presenting at local C++
user groups and universities. During the day he
enjoys working at NCR, through TEKsystems in
Fort Worth, Texas.

THANKS to the following technical experts
for reviewing this article: Giovanni Dicanio,
Stephan T. Lavavej, Angel Hernández Matos,
Alf P. Steinbach and David Wilkinson

using namespace std;

void Foo()
{
 // Create an immutable object
 double d1 = 1.1;
 string s1 = "Hello World";
 Immutable a(d1, s1);

 // Create a copy of the immutable object, share the data
 Immutable b(a);

 // Create a new immutable object
 // by changing an existing immutable object
 // (Note the new object is returned)
 string s2 = "Hello Other";
 Immutable c = a.SetS(s2);

 // Display the contents of each object
 cout << "a.GetD() = " << a.GetD() << ", "
 << "a.GetS() = " << a.GetS()
 << " [address = " << &(a.GetS()) << "]" << endl;
 cout << "b.GetD() = " << b.GetD() << ", "
 << "b.GetS() = " << b.GetS()
 << " [address = " << &(b.GetS()) << "]" << endl;
 cout << "c.GetD() = " << c.GetD() << ", "
 << "c.GetS() = " << c.GetS()
 << " [address = " << &(c.GetS()) << "]" << endl;
}

// Outputs:
// a.GetD() = 1.1, a.GetS() = Hello World [address = 008354BC]
// b.GetD() = 1.1, b.GetS() = Hello World [address = 008354BC]
// c.GetD() = 1.1, c.GetS() = Hello Other [address = 008355B4]

Figure 11 The Immutable Class in Action

Figure 12 Comparing Naïve and Smart ImmutableVectors

The two vectors share
the data for the first
three elements.
However, they must
each have their own
array of shared_ptr.

The two vectors
share a common
tree except for the
paths to the root
that have changed.

Copying a Smart ImmutableVector with a Shared Data Structure

Changing a Naïve ImmutableVector

Elements

Elements

value value value value

value

shared_ptr shared_ptr shared_ptr shared_ptr

shared_ptr shared_ptr shared_ptr shared_ptr

Pointer to Tree

value value value value

Pointer to Tree

shared_ptr shared_ptr shared_ptr shared_ptr

value

shared_ptr

shared_ptr

shared_ptr

shared_ptr

shared_ptr

shared_ptr

http://archive.msdn.microsoft.com/mag201208CPP

AUGUST 20-24
MICROSOFT HQ
REDMOND, WA

techmentorevents.com

Space is Limited — Register Today!
Use promo code AUG1AD

 Windows 8 Server
 MCITP Training
 Security
 Windows PowerShell
 Virtualization
 Cloud Computing

IN-DEPTH
TRAINING
FOR IT PROS

. . . and much more!

Receive cutting-edge and practical
education for the IT professional! Learn
from IT experts and industry insiders on
topics such as:

Visit techmentorevents.com or scan the QR code to register and for more event details.

This year, TechMentor is a ONE-TIME-ONLY
event at a new special location – Microsoft
Headquarters!

 Visit the Microsoft Campus
 in Redmond, Washington

 Receive Unbiased,
 Immediately Usable and
 In-Depth Tech Training

 Network with Peers,
 IT Experts and
 Microsoft Insiders

Powered by

Produced By: Supported By:

Untitled-2 1 7/3/12 1:42 PM

www.techmentorevents.com

msdn magazine38

W IN DOWS A ZUR E

Windows Azure Comes
to the Rescue

Our marketing department in the Microsoft Mid-Atlantic
District hosted an event last spring for about 90 Fortune 500 exec-
utives, Microsoft partners and Microsoft employees. Th ey needed
a registration system to highlight the latest and greatest Microsoft
technologies and immerse attendees in the newest Microsoft
experience. I had built successful solutions in my previous roles
as a solution architect and consultant, so they turned to me in a
pinch. Th is is because there wasn’t yet any clear direction on what
technologies to showcase, or how. Oh, and—by the way—the
conference was just a month away!

Mark Kromer

My focus at Microsoft is to work with large businesses on
solutions that are built on SQL Server and Windows Azure SQL
Database, known as the Microsoft data platform. So I immediately
gravitated toward the Platform as a Service (PaaS) capabilities of
Windows Azure as the only way I could possibly meet marketing’s
requirements. By leveraging the ability of Windows Azure to quickly
deliver a solution built on the Microsoft application platform (the
Microsoft .NET Framework, SQL Server and Windows Server), I
could make this happen. With the Windows Azure PaaS model,
Microsoft handles the infrastructure, power, servers, maintenance,
patching, upgrades and so on from worldwide Microsoft datacenters,
making this a zero-footprint, zero-infrastructure option, which
was perfect for my requirements.

Part of the agreement with marketing and with my manager
was that I was only going to devote my spare time and weekends
to this project. So I turned to already well-known technologies
proven for quick time to production, which included Silverlight,
Windows Communication Foundation (WCF) and SQL Server. In
the end, I was able to deliver a solid solution that resulted in positive
feedback and good results, using common Microsoft technologies
and with no budget—and without a large time investment. I hope
you’ll gain some guidance and insights from the techniques I
leveraged with Windows Azure, Windows Azure SQL Database
and Windows Phone development, and minimal eff ort.

For this project I primarily needed to focus on two specifi c require-
ments. One was to make it easy and compelling for attendees to

This article discusses:
• Solution architecture

• Windows Azure Web apps

• Windows Phone app

• Windows Azure SQL Database and Windows Azure SQL
Reporting Services

Technologies discussed:
Windows Azure, Windows Azure SQL Database, Windows Azure
SQL Reporting, Windows Azure WCF Services, Windows Phone,
Silverlight, Windows Azure BLOB Storage

Code download available at:
archive.msdn.microsoft.com/mag201208Azure

http://archive.msdn.microsoft.com/mag201208Azure

39August 2012msdnmagazine.com

interact with new devices and
equipment from the conference
partners such as tablets, slates
and phones. The second was to
highlight the new Metro design
approach Microsoft is using across
all devices. I didn’t have time to
load up the community preview
of Windows 8 and Visual Studio
11 to make a native Metro appli-
cation. But I had been developing
on Windows Phone 7.5 for several
months, so I decided to go hybrid
with a Silverlight approach because
it would work for both Windows 8
desktop mode and Windows Phone
native applications.

To meet the requirements, I
decided to create an attendee check-
in application for registered guests to interact with when they arrived
at the registration desk. Th at covered the requirement of a functional
and interactive application. To create a Metro UI experience, I utilized
the Silverlight 5.0 PivotViewer control. In keeping with the interac-
tive themes and presentation of diff erent form-factor experiences, I
created a Windows Phone app based on the Panorama control. With
the app, the Microsoft employees at the event could allow guests to
utilize their devices to check in or view event photos. Guests who
were also Windows Phone users could download the app from the
Marketplace. An easy and obvious technology choice was Windows
Azure, and I used Windows Azure SQL Database for the database,
Windows Azure SQL Reporting for tracking reports, Windows Azure
WCF Services for data exchange and Windows Azure Binary Large
Object (BLOB) Storage for storing on-site event photos.

Solution Overview
I’m going to split up the solution architecture into three
primary areas for this article: the Windows Azure Web
apps; Windows Azure SQL Database and reporting; and
the Windows Phone app. Th e complete solution also
included a few other ancillary, nice-to-have apps and fea-
tures that I won’t detail in the limited space I have here.
But if you’re looking at building a custom solution for a
conference or event on this scale (fewer than 300 attend-
ees), these other areas are important for you to consider:

1. Photo uploading and sharing: I utilized the
image uploader tool from the Windows Azure
Toolkit, which takes images from local storage
and uploads them to Windows Azure BLOB
Storage. It works great out of the box. You just need
to plug in your Windows Azure Storage key and
modify the Default.aspx fi le to your own design.
Images were uploaded so users could share photos
from the event through a photo gallery on large
screens at the event or on demo tables. I recom-
mend downloading a tool to explore the fi les in

your Windows Azure Storage so you can then manage those
fi les easily aft er uploading. One such tool, the Azure Storage
explorer, is available on CodePlex at bit.ly/H3rOC.

2. Social networking: Th is is a requirement for an app of
this nature. For public conferences and events, make sure
you include a way to share those photos as well as attendee
comments, Tweets, updates, conversations and so on. In
the Windows Phone app I simply linked to a Facebook
group that I created, and in the Web app (which I’ll
describe later) I used the Facebook C# SDK for ASP.NET,
which you can get at bit.ly/J5D2zI.

3. Silverlight photo gallery viewer: I won’t fully describe
this now, but I chose to use this as a quick fix for the
requirement of displaying images on an overhead screen
in the main conference room. As the images were dropped

Fig ure 1 The PivotViewer Control Utilized as a Tile Interface for Registered Attendees

Figu re 2 The PivotViewer Zooms in on a Selected Name So the User
Can Check In

www.msdnmagazine.com
http://bit.ly/H3rOC
www.bit.ly/J5D2zI

msdn magazine40 Windows Azure

into Windows Azure Storage, this page could refresh man-
ually and display an endless loop, or display on laptops
with which users could interact. Th e control and XML
confi gurations came from CodePlex (slideshow.codeplex.com).
Th ere are many other photo viewers that you can use. Th e
important criterion, if you go this route with Windows
Azure Storage, is that the component must be able to ren-
der images from a Web URL. In previous use of Windows
Azure Storage, I used plain “http://” links directly to JPG
and PNG graphics fi les.

I had a limited runway in which to work for my time to pro-
duction, and Windows Azure provided a way to ramp up quickly
by using all these diff erent puzzle pieces. Th is is because the PaaS
offering is made up of .NET, Windows Server, Windows Azure
Storage and Windows Azure SQL Database. Th at meant my experi-
ence in .NET, SQL Server and Windows Server worked essentially

the same for me once I learned the nuances of adding a Windows
Azure project to my Visual Studio 2010 solutions. I’ll touch on
some of these later in the solution description. Finally, because
this was a one-time event, I didn’t need to purchase infrastructure.
Instead, I deployed the components to my Windows Azure account
and switched things off when I was done. I have a SQL Saturday

Figure 4 The Windows Azure Management Console

Figure 3 The WCF Service Web Role in Windows Azure

namespace WCFServiceConference
{
 public class Service1 : IService1
 {
 // MyData is used to retrieve the attendee list
 public List<String> MyData(int value)
 {
 List<String> results = new List<String>();

 using (retreatEntities context = new retreatEntities())
 {
 IQueryable<Register> sortedContacts = context.registers
 .OrderBy(c => c.lastname)
 .ThenBy(c => c.org);

 // Register is the EF class

 foreach (Register sortedContact in sortedContacts)
 {
 results.Add(sortedContact.lastname + ", " + sortedContact.email +
 " (" + sortedContact.firstname + ") : " + sortedContact.org);
 }
 }

 return results;
 }

 // Use this method to check in attendees and check out
 public void ToggleRegister(String lname, String fname)
 {
 using (retreatEntities context = new retreatEntities())
 {
 IQueryable<register> sortedContacts = context.registers;

 try
 {
 Register qry = (from register in context.Registers
 where Register.lastname == @lname &&
 Register.firstname == @fname
 select Register).First();

 // checkinis a binary SQL Server field, so I’m using byte array to set it
 byte[] s1 = qry.checkin;

 // We’re going to toggle the checkin value where 1 == checked-in
 if (s1[0] == 0)
 {
 s1[0] = 1;

 // Set the check-in date/time field in SQL
 qry.checkdate = DateTime.Now.ToString();
 }
 else
 {
 s1[0] = 0;
 qry.checkdate = null;
 }

 qry.checkin = s1;

 // Now let’s save our changes
 context.SaveChanges();
 }
 catch (Exception) { }
 }
 }
 }
}

Figure 5 Using WCF Service to Interact with Windows Azure SQL Database

http://slideshow.codeplex.com

41August 2012msdnmagazine.com

event coming up this summer and will likely spin these compo-
nents back up when the time comes around to reuse this conference
event system. Because Windows Azure bills monthly like a power
utility would, I’m only billed based on my utilization, and I can
scale to my user requirements without needing to over-provision
infrastructure for worst-case scenarios.

Windows Azure Web Apps
I’ll start with the primary entry screen for the registration app,
which is a C# .NET Web app hosting a Silverlight 5.0 XAML con-
trol, hosted in Windows Azure. Something that you’ll fi nd diff erent
when developing for Windows Azure instead of traditional .NET
projects in Visual Studio is the framework for the hosting services
in Windows Azure that will host WCF services and Web apps. Th ere

are custom classes in my C# class in my top-level namespace to han-
dle converting data coming from Windows Azure SQL Database to
Silverlight properties. In the Web tier, you’ll see the classic XML fi les
(for example, crossdomain.xml) to allow cross-domain calls from the
Web tier (that is, Silverlight) to a back-end data service. Th is Web app
now becomes the primary role in my Windows Azure service because
I selected it as the Web role in my project.

For this app, I utilized one of my favorite Silverlight controls
from Windows Live labs (which is now a part of Silverlight 5.0)
called the PivotViewer control.

Th e PivotViewer control is generally applicable for application
scenarios where you need to enable easy navigation and an inter-
active UI for large amounts of data that can be easily categorized,
sorted and navigated by the end user (see Figure 1).

Th e PivotViewer also enables customization of user actions so
that when attendees fi nd their names in the tiles, they can then
check in by clicking on their named tiles (see Figure 2). The
color-based tile UI for PivotViewer was chosen by the organizers
of the Microsoft conference because it represents a similar theme
to the Windows 8 Metro interface and Windows Phone tile
interface. Th is user experience worked well for the registration
desk for the conference, and the tiles made for perfect interactive
touch mechanisms for users to self-check-in on large touchscreen
monitors. Additionally, the control has the built-in capability to
change the sort order based on your data’s properties, so the names
could be easily arranged by last name.

To modify the appearance of the tiles in PivotViewer, you need
to add attributes to the PivotViewerItemTemplate. Notice how
I added a color converter and set the attendee name with the
“ShortName” attribute:

<conv:TextToSolidColorConverter x:Key="colorConverter"/>
<pivot:PivotViewerItemTemplate x:Key="DemoTemplate">
 <Border Width="300" Height="300" Background="{Binding Color,
 Converter={StaticResource colorConverter}}">
 <TextBlock Text="{Binding ShortName}" FontWeight="ExtraBold"
 FontSize="42"HorizontalAlignment="Center" VerticalAlignment="Center"
 TextWrapping="Wrap" />
 </Border>
</pivot:PivotViewerItemTemplate>

Th e color is set from nothing more than a loop through the list
of attendees and then modifi cation of the item number property.
Th e XAML for the color is set in the converter class:

var xaml = "<LinearGradientBrush xmlns='http://schemas.microsoft.com/client/2007'
 StartPoint=\"0.5,0\" EndPoint=\"0.5,1\">" +
 "<GradientStop Color=\"Black\" Offset=\"0.0\" />" +
 "<GradientStop Color=\""+value.ToString()+"\" Offset=\"0.15\" />" +
 "<GradientStop Color=\"SlateGray\" Offset=\"0.85\" />" +
 "</LinearGradientBrush>";

To bind data from the Windows Azure SQL Database to the
Silverlight front end, I created a WCF service hosted in Windows

Figure 6 Referencing the Windows Azure-Hosted WCF
Service in the Web App

public static Service1Client _sc;

// This init method is in my MainPage.xaml file
// and is called right after InitializeComponent()
public static void init()
{
 _sc = new Service1Client();
 _sc.MyDataCompleted +=
 new EventHandler<MyDataCompletedEventArgs>(_sc_MyDataCompleted);
 _sc.MyDataAsync(1);
}

public static void _sc_MyDataCompleted(object sender, MyDataCompletedEventArgs e)
{
 // How many rows were returned?
 snamescnt = e.Result.Count;

 snames = new List<string>();

 for (int i = 0; i < snamescnt-1; i++)
 {
 snames.Add(e.Result[i].ToString());
 }
}

Figure 7 Receiving Updates Through Data Binding
in the Silverlight Component via a WCF Service

To bind data from the Windows
Azure SQL Database to the

Silverlight front end, I created a WCF
service hosted in Windows Azure.

www.msdnmagazine.com

msdn magazine42 Windows Azure

Azure. When you develop Web applications on Windows Azure, you
have the option of storing your WCF Web services on your Windows
Azure account. I created my WCF service for the specifi c purpose of
acting as the middle tier to my solution, exposing database data from
Windows Azure SQL Database. Figure 3 shows what you select when
creating a new WCF service for Windows Azure in Visual Studio 2010.

When deploying a solution on Windows Azure, you’ll need to
access diff erent areas of the Windows Azure management console
(see Figure 4). In the case of the PivotViewer Web App, the WCF
service and the check-in Web app, all components are deployed and
stored under the “Hosted Services” section. Later in this article, I’ll
use the Database, Reporting and Storage sections as well. Deploying
a Web application—in Windows Azure lingo—is known as creating
a hosted service with an ASP.NET Web Role, whereas the WCF data
service that I created for accessing the Windows Azure SQL Database
is also a hosted service, but with a WCF Service Web Role instead.
In each case, you’ll receive a cloudapp.net domain name with your
custom service name prepended
to the URL. To use your own
domain name, you’ll need to map
your domain name to the Windows
Azure-friendly DNS name using a
technique explained in the MSDN
Library article, “How to Confi gure
a Custom Domain for a Windows
Azure Hosted Service” (bit.ly/MfSBaD).

Th e WCF service is a straightfor-
ward Web service to query data from
Windows Azure SQL Database to
report the attendee information. It
also includes a method to update the
status of the attendee. By selecting
his name on the PivotViewer tiles,
the user toggles his status of checked
in or checked out.

To access a database in Windows
Azure SQL Database, you use a
connection string that’s really no
different than accessing a classic

SQL Server database. Being able to move code, snippets and previous
code to Windows Azure is incredibly easy because the connection
types and mechanisms are the same. In the code shown in Figure
5—from my WCF service where I access the database in Windows
Azure SQL Database—I’m utilizing my Entity Framework Register
class, which connects to Windows Azure SQL Database in the
same way as you would connect to any other SQL Server database.

When you publish your services to Windows Azure, you can then
reference them in your Visual Studio projects just as you normally
would through service references (see Figure 6), making Windows
Azure a great place to house your public Web services.

Now that I have the cloud database—and the cloud services to
interact with the data—completed and published, I can interact with
the services from my Silverlight PivotViewer app by using an asyn-
chronous service. Because the interaction with the data service is asyn-
chronous, you’ll have to set up a corresponding local event method to
capture the data when it arrives and populate the client component.

Figure 10 Bind Data to Silverlight in Windows Phone Apps in XAML the Same Way as in a
Silverlight App

Figure 9 The Windows Phone Silverlight App Project TemplateFigure 8 Adding an ASP.NET Web Role for Simple Web Pages

www.bit.ly/MfSBaD

Untitled-5 1 7/10/12 11:26 AM

www.devexpress.com

msdn magazine44 Windows Azure

Th is is just a List of strings in
my case. When the snames
property of my class is updated,
the Silverlight component will
receive the updates through data
binding, as shown in Figure 7.

Th e solution also includes a
small ASP.NET Web app that
displays confirmation, issues
the check-in request and links to
Facebook so attendees can link
together via a Facebook group.
Th e calls to the WCF service to
update the database are much
more straightforward because
ASP.NET includes server-side
capabilities that Silverlight does
not. Th e following code shows
how easy it is to utilize the service:

String lname = Request["lname"];
String fname = Request["fname"];
// No need to use async event calls from ASP.NET
// Just reference the Web service and call the method directly
Service1Client sc = new Service1Client();
sc.ToggleRegister(lname, fname);
Label1.Text = "CHECKING IN " + fname.ToUpper() + " " + lname.ToUpper();

Th is ASP.NET page was then deployed directly to my Windows
Azure account as a Web Role (see Figure 8).

The Windows Phone App
Windows Phone apps are built using Silverlight with the Silverlight
for Windows Phone project template in Visual Studio 2010 (see
Figure 9). Because the app is Silverlight, I was able to quickly generate
a second form-factor application on Windows Phone to complement
the Web app described previously. Th is is because the same techniques
I used to bind the Silverlight client controls in XAML are also used
to connect to the WCF service—hosted in Windows Azure—that I
used for the Web app, making the service highly reusable.

I made the Windows Phone app fully functional for the con-
ference, meaning that you could view all registered attendees, run
reports on attendees and allow Facebook and e-mail interactions. So,
to allow check in—as opposed to the ASP.NET approach described
previously—I needed asynchronous event callback methods for both
retrieving the data from Windows Azure and updating the rows:

public MainViewModel() {
 this.Items = new ObservableCollection<ItemViewModel>();
 _sc = new Service1Client();

 // Same as earlier in the Silverlight PivotViewer app
 _sc.MyDataCompleted +=
 new EventHandler<MyDataCompletedEventArgs>(_sc_MyDataCompleted);

 // Used to update the row
 _sc.CheckInCompleted +=
 new EventHandler<CheckInCompletedEventArgs>(_sc_CheckInCompleted);

 // Get the data
 _sc.MyDataAsync(1);
}

That technique is the same one used in Silverlight Windows
apps, as I demonstrated earlier. However, in this case, I utilized the
ViewModel class.

I utilized the ListBox control in a Windows Phone Portrait Page
(see Figure 10) as my MainPage, which loads when the app is loaded
on the Windows Phone (see Figure 11).

I retrieved the data from Windows Azure SQL Database and
populated the ListBox from the ViewModel by iterating through
each row returned from my Windows Azure WCF service with
the results of the query:

public void _sc_MyDataCompleted(object sender, MyDataCompletedEventArgs e)
{
 for (int i = 0; i < e.Result.Count - 1; i++)
 {
 // Parse the incoming text for attendee name, e-mail address and company name
 string strMain = e.Result[i].ToString();
 string strName = strMain.Substring(0, strMain.IndexOf('(') - 1);
 string strEmail = strMain.Substring(
 strName.Length + 2, strMain.IndexOf(')')-strName.Length-2);
 string strCompany = strMain.Substring(strMain.IndexOf(':') + 2);
 this.Items.Add(new ItemViewModel()
 {LineOne=strName, LineTwo=strCompany, LineThree=strEmail });
}

One of the popular features of the Windows Phone app that I
published for conference events is the photo viewer. At the beginning
of this article, I mentioned that I provided an image-upload tool that
took images and persisted them in Windows Azure BLOB Storage.
To display those on Windows Phone, I simply added another page
(Windows Phone navigation uses a Web-based page paradigm) that
users could navigate to from a menu button on the bottom of the
main page (see Figure 11). Th is is simple. Just add something like
the following to the button click event on a menu item:

NavigationService.Navigate(new Uri("/PivotPage1.xaml", UriKind.Relative));

For the photo gallery page, I used the Pivot (yes, there’s that
pivot word again) page type in Windows Phone, which allows users
to smoothly scroll through a list of items. Th e Pivot control takes
a list of PivotItems in XAML that you use to create a smooth user
experience while scrolling horizontally. In my case, I just had to
add a series of Web Browser controls as Photo 1, Photo 2, Photo 3
and so on, as shown in Figure 12.

Because of the time and resource constraints on the project, I
kept it simple, with the Windows Phone browser control pointing
to the URI for Windows Azure BLOB Storage for each photo. Th is

Figure 11 Windows Phone
App with Attendee List and
Menu Button Navigation

<controls:Pivot Title="Microsoft Executive Technology Retreat">
 <controls:PivotItem Header="Photo 1">
 <Grid>
 <phone:WebBrowser HorizontalAlignment="Left" Margin="6,3,0,0"
 Name="MyWebBrowserControl" VerticalAlignment="Top" Height="605"
 Width="452" />
 </Grid>
 </controls:PivotItem>
 <controls:PivotItem Header="Photo2">
 <Grid>
 <phone:WebBrowser HorizontalAlignment="Left" Margin="6,3,0,0"
 Name="MyWebBrowserControl1" VerticalAlignment="Top" Height="605"
 Width="452" />
 </Grid>
 </controls:PivotItem>
...
 <controls:PivotItem Header="Photo10">
 <Grid>
 <phone:WebBrowser HorizontalAlignment="Left" Margin="6,3,0,0"
 Name="MyWebBrowserControl9" VerticalAlignment="Top" Height="605"
 Width="452" />
 </Grid>
 </controls:PivotItem>
</controls:Pivot>

Figure 12 Adding a Series of Web Browser Controls

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine46 Windows Azure

allowed the user interaction to include resizing, which doesn’t
come naturally in the Windows Phone Image control.

Th e coding for the e-mail piece to send an attendee an e-mail
note was also simple. It used the built-in EmailComposeTask API
in Windows Phone:

private void ApplicationBarEmailButton_Click(object sender, EventArgs e)
{
 EmailComposeTask emailComposeTask = new EmailComposeTask();
 emailComposeTask.To = ContentText.Text;
 emailComposeTask.Body = "Hi There!";
 emailComposeTask.Subject = "Microsoft Executive Technology Retreat";
 emailComposeTask.Show();
}

Th is API uses the existing contact list on the user’s phone (see
Figure 13).

Windows Azure SQL Database and Windows Azure
SQL Reporting Services
Th e database I created for this quick-and-dirty solution was simple.
Because I used Windows Azure SQL Database, I was able to
build the schema directly in classic SQL Server on-premises tools
including SQL Server Management Studio, SQL Server Data Tools
and Business Intelligence Development Studio.

There’s one aspect to this solution that isn’t yet complete: the
online registration sign-up portion, which was handled by an
existing Microsoft -hosted solution. Interestingly, for a technology
company, there wasn’t something readily available to provide the
on-site interactive experience for the attendees, which is what I’ll
show you how to do here. Th at being said, the way that the database
in Windows Azure SQL Database was populated for this project
was through SQL Server Integration Services (SSIS), as shown
in Figure 14. Th is is a simple, straightforward SSIS package that
takes an Excel dump of the registered users and maps them to fi elds
in my database schema in Windows Azure SQL Database. The
Derived Column transform is being used here to modify data in
some fi elds that might not perfectly match my schema. In this kind
of solution, this is an area that will probably need to be a bit more
complex than what I’m showing you here. But what I want you to
take away from this is that in a cloud-based solution such as this
Windows Azure event system, common tools such as SSIS work

perfectly well, so you won’t need
to learn new tools.

What you should be conclud-
ing by now is that the current
devel oper and data-management
tools for Windows Azure make
a solution such as this a hybrid
solution. Another area that also
demonstrates the Microsoft
move into cloud computing is
Windows Azure SQL Report-
ing, which I utilized to provide
up-to-the-minute reports on
who had checked into the con-
ference with timestamps and
contact information (see Figure
15). Anyone who has built any
type of SQL Server Reporting

Services (SSRS) reports in the past will be familiar with this format.
Essentially, Windows Azure SQL Reporting is SSRS in the cloud,
running on the Windows Azure platform. I really like the fact that
Windows Azure SQL Reporting is purely Web-based, without the
need for Silverlight. Th is meant I was also able to render this exact
same report in Windows Phone without needing to recreate a report
for the mobile app. I just referenced it from a Web Browser control:

webBrowser1.Navigate(new
 Uri("https://fxnxxajmxx.reporting.windows.net/
ReportServer?%2fAttendees&rs:
 Command=Render&rc:Toolbar=false", UriKind.Absolute));

Notice that the Web service for Windows Azure SQL Reporting
is identical to an on-premises SSRS service, meaning I can use URL
parameters to modify the report appearance. Figure 15 shows the
Web page view that the volunteers at the check-in table viewed on
their laptops and Windows Phones. As attendees arrived and checked
in, this report let them fi nd the correct stickers and badges for each
attendee from behind the check-in desk.

So, that’s pretty much it. Th ere were quite a few moving parts because
I needed to quickly glue together a solution using as much existing
technology as possible that allowed for quick confi guration and very
little infrastructure. Th is made for a perfect use case to utilize cloud
computing. Using Windows Azure for storage, hosting and Web pages
allowed me to stick with ASP.NET, a WCF service and a cloud database
with Windows Azure SQL Reporting (which I was already familiar
with from an on-premises experience). And sticking with Silverlight
as a UI technology for the Web pages allowed me to reuse the same
techniques for multiple form factors quickly and easily.

MARK KROMER is a Microsoft SQL Server technology specialist based in
Philadelphia. He was previously a Microsoft BI Solutions product manager
for Microsoft and Oracle Corp., as well as a software engineer and database
consultant for AT&T and Agilent Technologies Inc.

THANKS to the following technical expert for reviewing this article: David Ateek

Figure 15 Windows Azure SQL Reporting Was Used to Provide
Reports on Attendee Check-Ins

Figure 14 Using SQL Server Integration Services

Figure 13 The Windows
Phone E-Mail Contact List

30 DAY FREE TRIAL
NO SETUP FEES

WWW.DISCOUNTASP.NET/TFS/MSDN

As a Microsoft Gold Hosting Partner

and Microsoft Visual Studio Partner,

we offer all the tools development

teams require to effectively manage

their software development projects

without the aggravation or expense of

running TFS on their own.

$20/mo per user

Source Control

Custom Process Template

Secure Access via HTTPS

TFS HOSTING FEATURES

TFS HOSTING ADDONS &
MIGRATION SERVICES

Untitled-4 1 5/30/12 4:19 PM

www.discountASP.net/tfs/msdn

Visual Studio Live! is back in Orlando, bringing attendees everything they
love about this event: hard-hitting, practical .NET Developer training from the
industry’s best speakers and Microsoft insiders. But this year, there’s an extra
bonus – THREE extra co-located events that you can attend for free: SharePoint
Live!, SQL Server Live! and Cloud & Virtualization Live! live360events.com

CODE IN THE
SUNSHINE!

Who Should Attend?
 Developers
 IT Pros
 Database Administrators
 System Architects
 Integrators
 Engineers
 Systems Administrators

December 10-14, 2012 | Royal Paci c Resort, Orlando, FL

SUPPORTED BYGOLD SPONSOR

Untitled-6 2 7/10/12 11:53 AM

www.Live360events.com

Cloud and Virtualization for the Real World
The event for IT Professionals, Systems Administrators,
Developers and Consultants to develop their skill sets in
evaluating, deploying and optimizing cloud and virtual-
based environments.virtlive360.com

Bringing SQL Server to Your World
IT Professionals, DBAs and Developers – across a breadth
of experience and organizations – come together for
comprehensive education and knowledge share for SQL
Server database management, performance tuning and
troubleshooting. sqllive360.com

Build. Develop. Implement. Manage.
Leading-edge knowledge and training for SharePoint
administrators, developers, and planners who must
customize, deploy and maintain SharePoint Server and
SharePoint Foundation to maximize the business value.
splive360.com

Code in the Sunshine!
Developers, software architects, programmers
and designers will receive hard-hitting and practical .NET
Developer training from industry experts
and Microsoft insiders. vslive.com/orlando

Use Promo Code DEVAUG

Buy 1 Event,
Get 3 Free!
Customize an agenda to suit YOUR
needs – attend just one Live! event
or all four for the same low price!

WHAT IS LIVE! 360?
LIVE!360 is a new event brought to you by
the publishers of Visual Studio Magazine,
MSDN Magazine, Redmond Magazine,
Redmond Channel Partner Magazine, and
Virtualization Review Magazine; and
the producers of Visual Studio Live! and
TechMentor conferences. This event will
bring together Visual Studio Live!, an
established and respected independent
software conference, with three new
industry events: Cloud & Virtualization Live!,
SharePoint Live!, and SQL Server Live!.

SAVE UP TO $400 –
Register Before October 10th

Live360events.com
Scan the QR code or
visit live360events.com
for more information.

PRODUCED BY MEDIA SPONSOR

Untitled-6 3 7/10/12 11:53 AM

www.Live360events.com
www.vslive.com/orlando
www.virtlive360.com
www.sqllive360.com
www.splive360.com

msdn magazine50

W IN DOWS POW ER SHEL L

Build User-Friendly
XML Interfaces with
Windows PowerShell

The Windows PowerShell scripting language does every-
thing you want a command-line tool to do—and so much more—
that it could eventually replace technologies such as VBScript. For
a good general description of what Windows PowerShell is about
and the basics of using it, see bit.ly/LE4SU6 and bit.ly/eBucBI.

Windows PowerShell is thoroughly integrated with the Microsoft
.NET Framework and thus is deeply connected to XML, the current
international standard for data exchange using structured text fi les.
For general information about XML, see bit.ly/JHfzw.

Th is article explores the capacity of Windows PowerShell to pres-
ent and manipulate XML data with the goal of creating a relatively
simple UI for reading and editing XML fi les. Th e idea is to make
this easier and more convenient using algorithms that “understand”
the sibling and parent-child relations of any given fi le, even without
foreknowledge of the schema. I’ll also examine the use of Windows

Joe Leibowitz

Forms in Windows PowerShell, XPath querying and other related
technologies. Th e proposed app can digest an XML fi le and emit
XPath queries on its own.

Let’s look at how you can analyze any XML file in Windows
PowerShell and present it in a format that people without advanced
technical skills can use. Figure 1 shows a preview of the type of
GUI you can create.

Th e key to making this happen is to enable the Windows Power-
Shell application to parse and understand any XML fi le without
human guidance or foreknowledge of its schema. Aft er researching
existing technologies for automated analysis of XML fi les, I decided
to develop a parsing engine for this specifi c purpose, because what
I was able to fi nd didn’t fully address the need to understand XML
documents without human viewing. Currently, applications uni-
versally seem to assume that a developer or user is well-acquainted
with the elements, attributes and overall schema of any given XML
document. But some—possibly many—situations in the real world
fall outside this paradigm. For example, in a scenario with many data
consumers who aren’t XML experts but who need access to a variety
of XML data sources, the familiarity assumption of the existing para-
digm fails. Similarly, even with a trained expert or two on staff , if an
organization confronts hundreds or thousands of diff erently struc-
tured XML fi les, human handling could easily become overwhelmed.

Th erefore, what’s needed is a parsing engine that will read any XML
fi le and emit XPaths that ordinary users, with only a minimum of
training, can use to search and edit any given XML fi le.

This article discusses:
• Creating an XML parsing engine
• Constructing the Windows Forms
• Using XPath queries to search or edit an XML fi le

Technologies discussed:
Windows PowerShell, Windows Forms, XML, XPath

Code download available at:
archive.msdn.microsoft.com/mag201208PowerShell

www.bit.ly/LE4SU6
www.bit.ly/eBucBI
www.bit.ly/JHfzw
http://archive.msdn.microsoft.com/mag201208PowerShell

51August 2012msdnmagazine.com

The XML Parsing Engine
To be compliant XML, a document’s closing and opening brackets
must match. For example, if an element <ABC> exists, there must
also exist at some later point in the same fi le an element </ABC>.
Between these opening and closing angle brackets, almost anything
can theoretically occur. Using this fundamental principle of XML,
I’ll show you how to automatically construct a comprehensive
series of XPath queries such that even relatively inexperienced
XML data consumers can quickly put them to use to find and
manipulate data in XML fi les.

First, establish a set of arrays to hold all opening and closing
brackets in the XML fi le:

[int[]]$leading_brackets = @()
[int[]]$closing_brackets = @()
[string[]]$leading_value = @()
[string[]]$closing_value = @()

To build a strongly typed array of unknown size in Windows
PowerShell, three elements are necessary: the [type[]] leading part;
a $name part; and the symbol for an array of unknown size, @().
Variables in Windows PowerShell take $ as their leading character.
Th ese particular arrays cover the indexed locations of opening and
closing angle brackets in the XML document as well as the string
values of the element names associated with these brackets. For
example, in the XML line <PS1>text value</PS1>, the integer
index of the leading brackets would be 0 and the index of the clos-
ing brackets would be 15. Th e leading and closing values in this
case would be PS1.

To get our target XML into memory, we use the following code:
$xdoc = New-Object System.Xml.XmlDocument
 $xdoc.Load("C:\temp\XMLSample.xml")

Figure 2 is a partial view of the actual XML fi le being used.

Aft er the load operation, this XML data is in memory. In order
to manipulate and analyze the XML, I use the document object
model that’s now instantiated in the $xdoc variable (but I’ll also
need to use the XPathNavigator technology for a few special
purposes, as noted later in this article):

Create an XPath navigator (comments in PowerShell code take the "#"
leading character)
$nav = $xdoc.CreateNavigator()

One of the most interesting features of Windows PowerShell is
the built-in function, or cmdlet, called Get-Member, which lets
you examine the methods and properties of any object in Windows
PowerShell right in the IDE as you develop. Figure 3 includes a
call to this cmdlet on the $nav object just created, and Figure 4
shows the results displayed in the Windows PowerShell Integrated
Scripting Environment (ISE) when the Get-Help call is made.

While Get-Member will oft en put you on the right track during
Windows PowerShell development, you’ll also fi nd the associated
Get-Help cmdlet handy during this process.

If you type get-help xml at the command line, as shown in
Figure 4, you’ll get the output shown here:

getName Category Synopsis
---- -------- --------
Export-Clixml Cmdlet Creates an XML-based representation of an object or...
Import-Clixml Cmdlet Imports a CLIXML file and creates corresponding obj...
ConvertTo-XML Cmdlet Creates an XML-based representation of an object.
Select-XML Cmdlet Finds text in an XML string or document.
about_format.ps1xml HelpFile The Format.ps1xml files in Windows PowerShell defin...
about_types.ps1xml HelpFile Explains how the Types.ps1xml files let you extend ...

If you type get-help about_types.ps1xml, you’ll see the results
shown in Figure 5.

The Windows PowerShell integrated system for researching
syntax is comprehensive and relatively easy to use. Th is is a topic
worthy of its own article.

<?xml version="1.0" encoding="utf-8"?>
<Sciences>
 <Chemistry>
 <Organic ID="C1" origination="Ancient Greece" age="2800 yrs">
 <branch ID="C1a">
 <size>300</size>
 <price>1000</price>
 <degree>easy></degree>
 <origin>Athens</origin>
 // Text for organic chem here
 </branch>
 <branch name="early" ID="C1b" source="Egypt" number="14">
 <size>100</size>
 <price>3000</price>
 <degree>hard></degree>
 <origin>Alexandria</origin>
 // Text for original Egyptian science
 </branch>
 </Organic>
 </Chemistry>
<Physics></Physics>
<Biology ID="B" origination="17th century" >
.
.
.

 <Trees4a name="trees4a" age="40000000">
 <type ID="Tda1">oakda</type>
 <type ID="Tda2">elmda</type>
 <type ID="Tda3">oakd3a</type>
 </Trees4a>
 </Plants>
 </Biology>
</Sciences>

Figure 2 Partial View of the Sample XML File

Figure 1 Preliminary View of the GUI

To be compliant XML, a
document’s closing and opening

brackets must match.

www.msdnmagazine.com

msdn magazine52 Windows PowerShell

To get the XML into analysis-ready condition, use the Select
method of XpathNavigator:

$nav.Select("/") | % { $ouxml = $_.OuterXml }

In the fi rst part of this statement, I invoke .Select on the simple
XPath query “/”, giving the entire XML contents. In the second part,
aft er the Windows PowerShell symbol | for its object pipeline, I do
a foreach, represented by the alias %; I could’ve used foreach rather
than the alias. Inside the loop, I build the working XML string data
variable $ouxml from the .OuterXML property of the objects being
processed in the loop. Referring back to Figure 3, .OuterXML is
one of the properties of the XPathNavigator object. Th is property
provides a complete set of all the angle brackets in the XML fi le,
which is required for the parsing engine to work properly.

Note that for objects going through a pipeline, $_ is the symbol
for the particular instance, with
dot notation used to obtain each
instance’s properties and methods.
Every object in the pipeline is ad-
dressed or referenced using the $_
symbol. To get an attribute of the $_
object, use, for example, $_.Name (if
Name is a member property of the
particular object). Everything pass-
ing through a Windows PowerShell
pipeline is an object with properties
and methods.

A last preparation stage before
parsing is to “regularize” the XML
text by treating any special cases

that look like <ShortNode/>. Th e parsing engine would rather see the
same information in a diff erent format: <ShortNode></ShortNode>.
Th e following code starts this transformation using a RegEx and
looking for matches:

$ms = $ouxml | select-string -pattern "<([a-zA-Z0-9]*)\b[^>]*/>" -allmatches
foreach($m in $ms.Matches){ ‘regularize’ to the longer format }

You can now look at the main analytical code for this
application: the parsing engine that will populate the four
arrays listed earlier. Figure 6 shows code that tests the file for
opening brackets.

The code in Figure 6 handles the special case of the root
element of the XML document. Another fundamental rule of
XML is that every schema should contain a single overall root
set of angle brackets; inside of these enclosing symbols, the
XML data can be structured in any manner consistent with the
matching rule mentioned earlier, that is, for every “<ABC>” there’s
an “</ABC.”

Notice that the += syntax is used to add an item or element to
an array. Later, aft er being populated with elements, such an array
can be accessed via indexing, as in $leading_brackets[3].

In the IndexOf arguments, note that the starting position for
the search, represented by the second parameter in the method,
shows a reference to $Script:ctr. In Windows PowerShell, vari-
ables have distinct scopes that follow from where they’re created.
Because the variable $ctr here is created outside the scope of any
function, it’s considered script-level, and a script-level variable can’t
be changed from inside a function without referring to $Script.
Inside a loop, rather than inside a function, the $Script reference
may not be required, but it’s a good habit to keep scope in mind
at all times.

When coding, a good clue to a scope violation is a variable that
should be changing in value but isn’t; usually, this is because it’s out
of scope and needs to be prefi xed accordingly.

Once the root element is handled, all other elements are handled
within one else block:

else
{
Check for more "<"
$check = $ouxml.IndexOf("<",$leading_brackets[$Script:ctr-1]+1)
if($check -eq - 1)
{
break
}

Figure 4 Results of Get-Help in Windows PowerShell

 Get-Member -InputObject $nav
 TypeName: System.Xml.DocumentXPathNavigator

Name MemberType Definition
---- ---------- ----------
AppendChild Method System.Xml.XmlWriter AppendChild(), System.V...
AppendChildElement Method System.Void AppendChildElement(string prefix...
CheckValidity Method bool CheckValidity(System.Xml.Schema.XmlSche...
Clone Method System.Xml.XPath.XPathNavigator Clone()
ComparePosition Method System.Xml.XmlNodeOrder ComparePosition(Syst...
Compile Method System.Xml.XPath.XPathExpression Compile(str...
CreateAttribute Method System.Void CreateAttribute(string prefix, s...
CreateAttributes Method System.Xml.XmlWriter CreateAttributes()
CreateNavigator Method System.Xml.XPath.XPathNavigator CreateNaviga...
DeleteRange Method System.Void DeleteRange(System.Xml.XPath.XPa...
DeleteSelf Method System.Void DeleteSelf()
Equals Method bool Equals(System.Object obj)
Evaluate Method System.Object Evaluate(string xpath), System...
GetAttribute Method string GetAttribute(string localName, string...
GetHashCode Method int GetHashCode()
TypeName: System.Xml.DocumentXPathNavigator

.

.

.

.

.
Value Property System.String Value {get;}
ValueAsBoolean Property System.Boolean ValueAsBoolean {get;}
ValueAsDateTime Property System.DateTime ValueAsDateTime {get;}
ValueAsDouble Property System.Double ValueAsDouble {get;}
ValueAsInt Property System.Int32 ValueAsInt {get;}
ValueAsLong Property System.Int64 ValueAsLong {get;}
ValueType Property System.Type ValueType {get;}
XmlLang Property System.String XmlLang {get;}
XmlType Property System.Xml.Schema.XmlSchemaType XmlType {get;}

Figure 3 Results of Get-Member Call

53August 2012msdnmagazine.com

Th e fi rst thing to do is to check whether the end of the fi le has
been reached; the criterion for that event is the absence of further
< symbols. The preceding code does this. If there are no more
< symbols, a break is called.

Th e next segment of code distinguishes between < cases and </ cases:
#eliminate "</" cases of "<"
if($ouxml.IndexOf("</",$leading_brackets[$Script:ctr-1]+1) -ne `
 $ouxml.IndexOf("<",$leading_brackets[$Script:ctr-1]+1))

Because you’re trying to accumulate all the opening angle brack-
ets, you want to know only about these at this stage of parsing engine
operations. Notice the Windows PowerShell syntax for “not equal” in
comparisons: -ne. Related operators include -eq,-lt and -gt. Also, as
in Visual Basic (but unlike C#), you need a line-wrapping character,
the back-tick symbol (`), to continue a line of code.

If the test succeeds, populate the $leading_brackets array with
a new element:

$leading_brackets += $ouxml.IndexOf("<",$leading_brackets[$Script:ctr-1]+1)

With the newest iteration of leading angle brackets established, the
next task is to isolate the name of the associated element. For this task,
note that aft er the initial opening < and element name, <ElementName,
there’s either a space followed by one or more attributes, or the
brackets close, as in the following two cases:

<ElementName attribute1="X" attribute2 = "Y">, or
<ElementName>

Separate these two cases with the following code, which looks
to see which comes fi rst, a space or the > symbol:

$indx_space = $ouxml.IndexOf(" ",$leading_brackets[$Script:ctr])
 $indx_close = $ouxml.IndexOf(">",$leading_brackets[$Script:ctr])
 if($indx_space -lt $indx_close)
 {
 $indx_to_use = $indx_space
 }
 else
 {
 $indx_to_use = $indx_close
 }

Once you establish the proper ending point, employ $indx_
to_use to help isolate the string associated with the leading angle
bracket that’s now in focus:

$leading_value += $ouxml.
Substring($leading_brackets[$Script:ctr],($indx_to_use -
 $leading_brackets[$Script:ctr]))

In eff ect, the leading value is the string starting with < and ending
with either a space or a >.

Th e stage is set to pick up the correlative closing angle brackets
by fi nding the string </ElementName:

$closing_brackets += $ouxml.IndexOf("</" + $leading_value[$Script:ctr].
Substring(1),`
 $leading_brackets[$Script:ctr]+1)
$Script:ctr+=1

Finally, in case the distinction between < and </ is not met, incre-
ment the array element and continue:

else
{
$leading_brackets[$Script:ctr-1] +=1
}

At the end of this process, the three arrays look like the follow-
ing partial presentation of their data:

$leading_brackets:
0 18 62 109 179 207 241 360 375 447 475 509 625 639 681 713
741 775 808 844 900 915 948 976 1012 1044 1077 1142 1154
1203 1292 1329 1344 1426 1475 1490 1616 1687 1701 1743 1810
1842 1890 1904 1941 1979 2031 2046 2085 2138 2153 2186 2235
2250 2315 2362 2378 2442 2476 2524 2539 2607 2643 2718

$leading_value:
<Sciences <Chemistry <Organic <branch <size <price <degree
<origin <branch <size <price <degree <origin <Physics <Biology

$closing_brackets:
2718 1687 625 360 179 207 241 273 612 447 475 509 541 1142
900 713 741 775 808 844 882 1129 948 976 1012 1044 1077 1

TOPIC
 about_Types.ps1xml

SHORT DESCRIPTION
 Explains how the Types.ps1xml fi les let you extend the Microsoft .NET

Framework types of the objects that are used in Windows PowerShell.

LONG DESCRIPTION
 Th e Types.ps1xml fi le in the Windows PowerShell installation directory

($pshome) is an XML-based text fi le that lets you add properties and
methods to the objects that are used in Windows PowerShell. Windows
PowerShell has a built-in Types.ps1xml fi le that adds several elements to
the .NET Framework types, but you can create additional Types.ps1xml
fi les to further extend the types.

SEE ALSO
 about_Signing
 Copy-Item
 Get-Member
 Update-TypeData

Figure 5 Getting Help with Types.ps1xml Files

if you run out of “<” you’re done, so use the “$found_bracket”
Boolean variable to test for presence of “<”

$found_bracket = $true

while($found_bracket -eq $true)
{
 # Special case of first, or root element, of the XML document;
 # here the script-level variable $ctr equals zero.
 if($Script:ctr -eq 0)
 {
 #to handle the top-level root
 $leading_brackets += $ouxml.IndexOf("<",$leading_brackets[$Script:ctr])
 $leading_value += $ouxml.Substring(0,$ind)
 $closing_brackets += $ouxml.IndexOf("</" + $leading_value[0].Substring(1))

 $Script:ctr+=1
 }
}

Figure 6 Testing a File for Opening Brackets

Notice the Windows PowerShell
syntax for “not equal” in

comparisons: -ne. Related
operators include -eq,-lt and -gt.

www.msdnmagazine.com

msdn magazine54 Windows PowerShell

Establishing Nodal Relationships
Now it’s time for the second phase in parsing engine operations. In
this more complex phase, the sequences of $leading_brackets and
$closing_brackets establish the parent-child and sibling relations
among all the nodes of the XML being parsed. First, a number of
variables are established:

These variables will be used to build an automatic list of XPath queries
$xpaths = @()
$xpaths_sorted = @()
$xpath = @()
[string]$xpath2 = $null

Next, a fi rst pairing of adjacent leading and closing brackets is fi xed:
$first_open = $leading_brackets[0]
$first_closed = $closing_brackets[0]
$second_open = $leading_brackets[1]
$second_closed = $closing_brackets[1]

And some loop counters are created:
$loop_ctr = 1
$loop_ctr3 = 0

Th e engine will parse iteratively no more
times than the value of the $ctr variable
incremented during the first phase when
building the $leading_brackets and other
arrays (the following if statement is the lit-
mus test in terms of establishing the nodal
structure of the XML):

if($second_closed -lt $first_closed)

If the $second_closed value is less than (-lt)
the $first_closed value, a child relationship
is established:

<ElementOneName>text for this element
 <ChildElementName>this one closes up before its
parent does</ChildElementName>
</ElementOneName>

With a child node detected, the variables are reset to the next
two adjacent pairs of opening-closing angle brackets, the counters
are incremented and the vital $xpath array is populated with a
new element:

$first_open = $leading_brackets[$loop_ctr]
$first_closed = $closing_brackets[$loop_ctr]
$second_open = $leading_brackets[$loop_ctr + 1]
$second_closed = $closing_brackets[$loop_ctr + 1]
$loop_ctr2 +=1
#if($loop_ctr2 -gt $depth){$loop_ctr2 -= 1}
$depth_trial+=1
$xpath += '/' + $leading_value[$loop_ctr-1]
$loop_ctr+=1

You’ve now reached the critical processing stage for the parsing
engine: What to do when the parent-child relation no longer holds.

A preliminary matter is to eliminate duplicates that will arise in
the course of parsing engine operations. To do this, the variable
holding the entire array of XPath queries (which is the key value
constructed by the parsing engine) is reviewed element by element
to ensure that it doesn’t already contain the new proposed candidate
for inclusion in $xpaths, which at this point is the current value
of $xpath, established in the eighth line of the code in Figure 7.

If the current $xpath value is not a duplicate, it’s appended to the
$xpaths array and $xpath is recreated as an empty array for its next use:

if($is_dupe -eq $false){$xpaths += ($xpath2 + '/////');}
$xpath = @()
$xpath2 = $null

The essential device used by the parsing engine to continue
through the XML iteratively is to rebuild the arrays at each itera-
tion. To accomplish this, the first step is to create new interim
array objects as transitional devices:

$replacement_array_values = @()
$replacement_array_opens = @()
$replacement_array_closes = @()
$finished = $false
$item_ct = 0

Figure 9 Selecting an XPath Query

$is_dupe = $false
 foreach($xp in $xpaths)
 {
 $depth = $xpath.Length
 $xp = $xp.Replace('/////','')
 $xpath2 = $xpath
 $xpath2 = $xpath2.Replace(" ","")
 $xpath2 = $xpath2.Replace("<","")
 if($xp -eq $xpath2)
 {
 $is_dupe = $true
 #write-host 'DUPE!!!'
 break
}

Figure 7 Checking for Duplicate Xpaths

$pointA = New-Object System.Drawing.Point
$listbox = New-Object Windows.Forms.Listbox
$form.Controls.Add($listbox)
$listbox.add_SelectedIndexChanged({PopulateTextBox})
$form.Controls.Add($button_get_data)
$form.Controls.Add($text_box)
$pointA.X = 800
$pointA.Y = 100
$button_get_data.Location = $pointA
$button_get_data.Width = 100
$button_get_data.Height = 50
$pointA.X = 400
$pointA.Y = 50
$text_box.Location = $pointA
$text_box.Width = 800

Figure 8 Adding Buttons and Textboxes

With all of the automatic XPath
queries in hand, you’re ready to

build a Windows Forms app.

55August 2012msdnmagazine.com

Th e engine loops through the $leading_value array and fi lters
out just the current one:

foreach($item in $leading_value)
{
if($item -eq $leading_value[$loop_ctr - 1] -and $finished -eq $false)
{
$finished = $true
$item_ct+=1
continue #because this one should be filtered out
}

Unfi ltered values are populated into the interim array. All three
arrays are populated via association because the array of element
name values corresponds in its indexing with the opening and
closing angle bracket arrays:

$replacement_array_values += $item
$replacement_array_opens += $leading_brackets[$item_ct]
$replacement_array_closes += $closing_brackets[$item_ct]
$item_ct +=1

When the three interim arrays are complete, the three perma-
nent arrays are assigned their new values:

$leading_value = $replacement_array_values
 $opening_brackets = $replacement_array_opens
 $closing_brackets = $replacement_array_closes
 $loop_ctr+=1

The next iteration of the first phase of the parsing engine is
readied by initializing the fi rst adjacent pairs of angle brackets:

$first_open = $leading_brackets[0]
$first_closed = $closing_brackets[0]
$second_open = $leading_brackets[1]
$second_closed = $closing_brackets[1]
$loop_ctr = 1
$loop_ctr2 = 1
continue # Sends the engine back to the top of the loop

Finally, to complete the set of XPath queries, you generate short
paths that the previously described process might not have
included. For instance, in the current example, without this extra
last step, the XPath \Sciences\Chemistry would not be included. Th e
underlying logic is to test that every shorter version of every XPath
query also exists, without duplicates. Th e function that performs

this step is AddMissingShortPaths, which you can see in the code
download for this article (archive.msdn.microsoft.com/mag201208PowerShell).

With all of the automatic XPath queries in hand, you’re ready
to build a Windows Forms app for users. In the meantime, the
XPath queries just produced are put into the fi le C:\PowerShell\
XPATHS.txt via the Windows PowerShell >> output syntax.

Constructing the Windows Forms Application
Because Windows PowerShell hosts .NET libraries and classes, you
can write the following code and thereby make available to your
application Windows Forms and the Drawing classes of .NET:

[void] [Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")
[void] [System.Reflection.Assembly]::LoadWithPartialName("System.Drawing")

With these basic building blocks in place, you can build a form
and its controls, as follows:

$form= New-Object Windows.Forms.Form
$form.Height = 1000
$form.Width = 1500
$drawinfo = 'System.Drawing'
$button_get_data = New-Object Windows.Forms.button
$button_get_data.Enabled = $false
$text_box = New-Object Windows.Forms.Textbox
$button_get_data.Text = "get data"
$button_get_data.add_Click({ShowDataFromXMLXPathFilter})

It’s worth noting that add_Click is Windows PowerShell syntax
for attaching an event to a control—in this case, attaching a func-
tion call to the button’s click event. The code in Figure 8 adds
buttons and textboxes.

In order to populate $listbox with your collection of XPath queries,
do the following:

foreach($item in $xpaths)
{
$listbox.Items.Add($item.Substring(0,$item.Length - 5))
Each row in the listbox should be separated by a blank row
$listbox.Items.Add(' ')
}

The UI
Figure 9 displays the UI with the XPath queries generated by the
tool shown on the left , one of which was selected by the user.

In the fi nal step, the user presses the GetXMLData button and
produces the results shown in Figure 10.

Th ere you have it—a simple UI for reading and editing XML
files, created entirely with Windows PowerShell. In upcoming
MSDN Magazine online articles, I’ll continue on this subject by

showing you how to handle XML
fi les that use namespaces, as well as
demonstrate the use of the tech-
niques shown here to allow editing
of XML fi les via the interface.

JOE LEIBOWITZ is a consultant who
specializes in infrastructure projects. He
can be reached at joe.leibowitz@bridge-
waresolutions.com.

THANKS to the following technical
expert for reviewing this article:
Th omas PetchelFigure 10 The Results Window

It’s worth noting that add_Click is
Windows PowerShell syntax for
attaching an event to a control.

mailto:joe.leibowitz@bridge-waresolutions.com
www.msdnmagazine.com
http://archive.msdn.microsoft.com/mag201208PowerShell

msdn magazine56

B U I LD ING HT ML5 APPL IC AT I ONS

A History (API) Lesson

History, in the context of a Web browser, has generally
meant the back button, and it has never been easy to manage. It
became even more of a challenge when AJAX became signifi cant
in Web applications and we started to see the typical Web site grow
into more of a rich Web application. And as JavaScript became
enabled—rather than disabled—by default, single-page Web appli-
cations emerged that made heavy use of client-side JavaScript. But
there was no good way to deal with client-side storage, databases
or even the general state between pages.

Now, however, HTML5 has taken client-side state management
head-on and introduced a whole new set of APIs, including speci-
fi cations such as IndexedDB, Local Storage and the History API,
which I’ll focus on in this article.

Clark Sell

In short, the goal of the History API is to provide a way for rich
JavaScript applications to be better able to not only navigate the
session history but also manage its state and provide first-class
support for URLs. This means with a few simple API calls and
events you can navigate around, pushing and popping state data
to the session stack to affect, for example, how the back button
operates, while maintaining a great URL structure.

The Problem
When you’re working on any solution, it’s important to understand
the problem. Th e History API isn’t just about having some magic
way to persist page state as the end user bangs on the back and for-
ward buttons. While that’s certainly true, the real story lies deeper
beneath the surface. From a user’s perspective, there are two major
features of any browser: the URL and the navigation buttons
(forward and back). Together these allow the user to request or
navigate through a series of documents across the Internet.

Th ough these features have remained essentially the same over
the years, behind the scenes things changed as AJAX caught on.
What were once a series of documents became just a single file
with AJAX calls behind the scenes. Th is was great; we could deliver
a richer experience with just a little asynchrony, not to mention
performance benefi ts and user experience improvements. But it
also posed some problems; it became much more challenging to
keep track of the URL, for example, to know where the browser
should go when the user hit the back button or refresh.

I don’t think I can overstate the importance of the URL. URLs
are permanent: users make favorites of them, search engines index

This article is based on the Windows 8 Release Preview.
All information is subject to change.

This article discusses:
• The challenge of client-side state management

• Maintaining the URl structure

• The History interface defi nition

• Using Knockout to help with declarative binding

Technologies discussed:
HTML5 History API, JavaScript, Knockout, Modernizr, Windows 8

Code download available at:
on.csell.net/msdn-historylesson

http://on.csell.net/msdn-historylesson

57August 2012msdnmagazine.com

them and companies market them. How could you manage them
in the changing Web world?

Enter the hash (#) and hashbang (#!). Browsers consider any-
thing after the # as a URL fragment identifier and never send it
to the server. Th e hash was originally meant as a way for anchor
tags to link inside the page, but it came to be used for AJAX-
related activities. In the early days of AJAX, however, URLs with
just a hash wouldn’t get indexed by a search engine. Th e solution
was the hashbang, which gave Web applications a way to use and
modify a URL and let search engines index it, without ever mak-
ing a page request back to the server. URLs containing hashbangs,
such as twitter.com/#!replies, became important with the advent
of Web applications.

The New History API
Th ough this was all a great step forward, there wasn’t really any
formal support from the browser. Web applications just played
scripting games to make things work. Th e new History API focuses
on giving Web applications the ability to “manage state,” which
means keeping track of the sequence of documents that make up
a session’s history. Th is lets you navigate the session history and
persist state data—and deal with the URL properly. To start explor-
ing this API, let’s look at the actual interface defi nition as specifi ed
by the World Wide Web Consortium, or W3C (bit.ly/MU89iZ):

interface History {
 readonly attribute long length;
 readonly attribute any state;
 void go(optional long delta);
 void back();
 void forward();
 void pushState(any data, DOMString title, optional DOMString url);
 void replaceState(any data, DOMString title, optional DOMString url);
};

Not a complicated API, by any stretch.
To get an idea of how things really work, let’s start by doing some

simple navigation between documents. Assume you have three
real documents, a.cshtml, b.cshtml and c.cshtml, and you want to
move around in all of them. Typically, you’d simply create an anchor
tag goto a that the user
clicks on, forcing the browser to drive though its normal page
and server lifecycle. As that user clicks around a given Web site, he
creates what’s called the session history.

Th ere are two potential problems with this method, however.
First, you’re forcing the browser to drive through its full page cycle,

and even call the server; and second, you need a physical document
that represents the URL.

AJAX solves part of the problem by allowing you to request just
parts of a page, reducing the number of full-page requests and man-
ually updating the URL to something like http://foo.com/#!a or
http://foo.com/#a. To accomplish something similar with the His-
tory API, you call window.history.pushState(state, title, url), passing
along any state you want persisted, along with the title of the page
and the URL to be displayed. Note that you’re not required to use
a URL with a hash or hashbang; you can use just http://foo.com/a,
even if “a” doesn’t physically exist.

By calling pushState, you’re creating the session history for that
user’s session. Th e user can navigate as he sees fi t and things will
work as expected. When he hits the back button, he’s taken back
to the previous URL as expected, and the URLs that were there
before continue to exist, just as with any normal series of pages.

You also have hooks that let you navigate and look around the
user’s session history. You can dynamically move the user forward
and back through the stack, just as if the user himself were clicking
the forward and back buttons.

A Real-World Example
Let’s make this concrete with a real-world example. I run a technology
conference called Th at Conference (thatconference.com). Th e conference
has many speakers, but I don’t want to create a page for each one
of them. What I’d prefer to do is dynamically create a page for each
speaker that appears real. I can do this easily with the History API.

As with any script-heavy Web application, I need data. Luckily,
Th at Conference has a simple Representational State Transfer (REST)
API I can call to get the speakers, thatConference.com/api/person.
Th is call will yield an array of speakers for the given year in either
JSON or XML. Figure 1 shows an item in that array.

Data is no good without a way to see it. I need to set up a simple
markup template I can use to dynamically create a page for each
speaker. For this I’m going to use a framework called Knockout
(knockoutjs.com). Knockout is a JavaScript library that helps devel-
opers use declarative bindings with the Model-View-ViewModel
pattern. You’re not required to use Knockout for the History API,
but I’m going to—and I’ll have a little fun along the way.

Because every speaker page is the same, I’m going to defi ne a
simple markup template in Knockout. I need to create a script block
and tell the framework how to later populate it:

<script type="text/html" id="person-template">
 <div>
 <p>
 Name:

 </p>
 <p>Company: <strong data-bind="text: Company"></p>
 <p>Bio: <strong data-bind="text: Bio"></p>
 </div>
</script>

<PersonViewModel>
 <FirstName>Scott</FirstName>
 <LastName>Hanselman</LastName>
 <Company>Microsoft</Company>
 <Bio>
 My name is Scott Hanselman. I work out of my home office for Microsoft
as a Principal Program Manager, aiming to spread good information about
developing software, usually on the Microsoft stack. Before this I was
the Chief Architect at Corillian Corporation, now a part of Checkfree,
for 6-plus years. I was also involved in a few Microsoft Developer
things for many years like the MVP and RD programs and I'll speak about
computers (and other passions) whenever someone will listen.
 </Bio>
 <Twitter>shanselman</Twitter>
 <WebSite>http://www.hanselman.com</WebSite>
 <Gravatar>/Images/People/2012Speakers/ScottHanselman.png</Gravatar>
</PersonViewModel>

Figure 1 A Speaker Profi le

I don’t think I can overstate the
importance of the URL.

www.msdnmagazine.com
http://bit.ly/MU89iZ
http://thatconference.com
www.knockoutjs.com

msdn magazine58 Building HTML5 Applications

Next, I need to populate the template. To do so, I call
ko.applyBindings(someData), and Knockout will work its magic
on whatever object I pass into applyBindings. With that, I have the
basic mechanics in place to take a speaker object and populate the
markup with its data.

My goal is a little more complex, though. What I really want is a
series of pages that a user can fl ip through; a book of speakers, if you
will. Here’s what needs to happen the fi rst time the page is loaded:

1. Get the JSON that represents the speakers.
2. Bind the fi rst item in the array to the Knockout template

as the default.
3. Call window.pushState, passing the appropriate arguments.

I’ve covered the fi rst two steps already, so let’s talk about pushState.
By calling window.pushState, you’re creating an item in the user’s
session history. I’m going to call pushState and pass three items:

• State: In my case this data is the array item I bound to the
Knockout template.

• Title: Th is is the title of the page, which will be the
speaker’s full name.

• URL: Th is is the URL for the page; in this case it will be
something like thatconference.com/speakers/speaker/
SpeakerFullName.

I’ve wrapped all of this logic in a method I called bind:
function bind (speakerID) {
 var speakerVM = new speakerViewModel(speakerID);
 var fullName = speakers[speakerID].FirstName + speakers[speakerID].LastName
 window.history.pushState(speakerVM, fullName, "/speakers/" + fullName);

 ko.applyBindings(speakerVM);
}

Now I’ll add a couple of buttons to the speaker book to allow
moving through the speakers:

<button id="prevSpeaker">previous speaker</button>
<button id="nextSpeaker">next speaker</button>

Of course, I need a couple of event handlers for the nextSpeaker
and prevSpeaker buttons. To keep track of what speaker should be
next, I’m going to create a simple counter that I’ll manipulate as the
user navigates. Th e counter value is what I’ll pass to the bind method:

var counter = 0;

$('#nextSpeaker').click(function () {
 counter = counter + 1;
 bind(counter);
});
$('#prevSpeaker').click(function () {
 counter = counter - 1;
 window.history.back();
});

At this point I have a page that loads with some default data, and as I
click next, I continue to get the next speaker in the speaker array. If I call
prevSpeaker, however, nothing happens. Something more is needed.

Events
When the back button (or a script) calls windows.history.back, the
event onpopstate is fi red. Th is is the hook into moving backward
in a user’s session history. When onpopstate is fi red, it passes along
the state data given to pushState; in my case, it’s that one speaker.

Now I need to grab that state data and tell Knockout to bind it:
window.onpopstate = function (event) {
 console.log('onpopstate event was fired');
 ko.applyBindings(event.state);
};

With this, I can move back and forth in the session history as
expected. You’ll now see the speakers change accordingly whether
you press the browser’s back button or the previous-speaker button.

Now What?
As with most things, the devil is always in the details. I’ve just
scratched the surface of the History API. I didn’t cover what to do
if a user makes a favorite of a speaker and later visits the site or, for
that matter, if he hits refresh while on one of those new speaker
pages I just created.

I explicitly didn’t cover that scenario because there’s a multitude
of ways to do so, but they depend on how you’ve structured your
site and the technologies you’re using. If you subscribe to using #
or #!, calling window.location.hash to get the URL fragment and
then calling a service to retrieve the appropriate data for that hash
and binding that to your markup might be all you need.

It’s important to note that while my solution creates an entire
dynamic page, you can also use the History API for part of an
existing page so the core of the page takes advantage of the server
but part of the page uses the History API. You can find a great
detailed example of exactly this at bit.ly/vOlB2U.

You should also implement feature detection in your Web appli-
cation. Rather than basing actions on user agents, you should
leverage a tool such as Modernizr (modernizr.com) to ask the browser
what it can do. If a user’s browser doesn’t support a particular fea-
ture, you can use a polyfi ll—a shim that implements that feature
for the browser. Th is can even be done for features such as CSS.
For more information about feature detection, check out Brandon
Satrom’s September 2011 article, “No Browser Left Behind: An
HTML5 Adoption Strategy” (msdn.microsoft.com/magazine/hh394148).

AJAX changed the way Web sites interact on the Internet, and
Web developers found creative solutions for turning standard
Web sites into rich Web applications. Th e History API is here to
help those script-heavy Web applications keep the core browser
fundamentals intact.

Everything in this article was done on the Windows 8 Release
Preview using Microsoft Web Matrix. You’ll fi nd all of the code at
on.csell.net/msdn-historylesson and a number of great resources for ex-
ploring the History API at on.csell.net/msdn-historylesson-linkstack.

CLARK SELL works as a senior Web and Windows 8 evangelist for Microsoft
outside of Chicago. He blogs at csell.net, podcasts at DeveloperSmackdown.com
and can be found on Twitter at twitter.com/csell5.

THANKS to the following technical experts for reviewing this article:
John Hrvatin, Mark Nichols, Tony Ross and Brandon Satrom

Rather than basing actions on
user agents, you should leverage
a tool such as Modernizr to ask

the browser what it can do.

http://bit.ly/vOlB2U
www.modernizr.com
http://msdn.microsoft.com/magazine/hh394148
http://on.csell.net/msdn-historylesson
http://on.csell.net/msdn-historylesson-linkstack
www.csell.net
www.DeveloperSmackdown.com
www.twitter.com/csell5

SUPPORTED BY PRODUCED BY

Register before October 10th
Use Promo Code SQLAUG

Orlando, FL December 10-14
Royal Paci c Resort at Universal Orlando | sqllive360.com

DBAs, IT professionals, developers,
and analytics specialists will
gather this December in Orlando
for comprehensive education,
knowledge share and networking —
all about and around SQL Server.

Scan the QR code or
visit sqllive360.com
for more information.

Subject-matter experts
and industry insiders will
guide attendees through
mission-critical topics
such as:

Friends of SQL Server
Learn to leverage the “friends”
of SQL Server – including Integration
Services and Reporting Services –
more effectively.

Monitoring, Maintaining,
and Tuning
Be a real DBA! This track focuses on
SQL Server’s day-to-day operations –
the stuff you need to keep SQL Server
running smoothly.

Business Intelligence and Big Data
with the Microsoft Stack
Sessions in this track help you
understand tie-in technologies to
SQL Server and then teach you
how to ne-tune them to optimize
the solutions you’ve deployed.

Recovery and High Availability
SQL Server is mission critical – hone
your skills to help keep it running and
learn new techniques for protecting
and recovering data.

What’s New in SQL Server 2012
“Denali” is nally here – learn what’s
new, what’s different, and how to
get there from whatever version of
SQL Server you’re currently on.

SQL Server Virtualization
and In the Cloud
Virtualize SQL Server? Run SQL Server in
“the cloud?” It’s all ok as long as you do
it right . . . from under-the-hood details
to prescriptive advice, this is where to
come for the most accurate and up-to-
date information in the industry.

Save up to $400!

Orla
Paci c Reso

cemblando,ando,
t t U

mbe
i

ndo, FL Dece
Un

GOLD SPONSOR MEDIA SPONSOR

Untitled-2 1 7/3/12 1:34 PM

www.sqllive360.com

msdn magazine60

A LM RA NGER S

Using the Team
Foundation Server
Client Object Model

In this article we’ll introduce the Visual Studio Team Foundation
Server (TFS) client object model and create the foundation for a
new series of Visual Studio ALM Rangers articles, focused on prac-
tical guidance and common coding scenarios with TFS.

To recap, the ALM Rangers are a group of experts who promote
collaboration among the Visual Studio product group, Microsoft
Services and the Microsoft Most Valuable Professional (MVP)
community by addressing missing functionality, removing adop-
tion blockers, and publishing best practices and guidance based
on real-world experiences.

Visual Studio TFS is all about application lifecycle management
(ALM). It’s about enabling teams to collaborate, plan, track, design,
develop, build and store their solutions eff ectively and securely. It’s

Brian Blackman and Willy-Peter Schaub

about productivity and bringing ALM within the reach of profes-
sional soft ware developers, whether they’re from a small, midsize
or large organization, and whether they’re using a formal, agile or
custom process, or working as virtual or tightly coupled teams. In
this article we’ll explore the basic architecture concepts you need
to understand to work with TFS and, more important, to extend
its features.

Why Extensibility Is Important
TFS includes hooks and mechanisms for expanding and enhancing
the product with new features. Th ese new features enable you to
customize the TFS ALM solution to suit your environment and
to extend TFS with custom features and behaviors not built into
the standard product.

TFS is a multitier solution, which can be programmatically
accessed by using the appropriate object models. As shown in
Figure 1, the object model includes a client and a server object
model, which can be used to extend the client or the application
tier, respectively. In this article we’ll focus on the client object model.

This article discusses:
• The importance of extensibility

• Setting up a dev environment

• Best practices and guidelines

• Namespaces and assemblies

• Connecting to TFS servers

Technologies discussed:
Visual Studio Team Foundation Server

Code download available at:
archive.msdn.microsoft.com/mag201208TFS

Visual Studio TFS is all
about application lifecycle

management (ALM).

http://archive.msdn.microsoft.com/mag201208TFS

61August 2012msdnmagazine.com

Although it’s technically possible to access the Web services or the
data tier directly, it’s highly recommended to access the TFS features
and data through the relevant object models, as shown in Figure 1.

Let’s briefly take a step back and explore the idea of the TFS
object model and its namespaces, which we’ll be referring to in
both this article and its accompanying sample code download.

Th e object model is the set of classes logically decomposed into
namespaces and physically distributed over a set of assemblies. Th e
TFS client object model is a general term that refers to all public
classes available in Microsoft .TeamFoundation.*.dll assemblies.

Namespaces organize TFS classes and features into similar items,
which could be compared with using a fi ling cabinet. Each drawer
represents an object model. Each folder within each drawer repre-
sents a namespace, and the content of each folder represents the
classes. Just like a fi ling cabinet, the namespace allows you to catego-
rize and subsequently fi nd relevant classes easier and more quickly.

We’ll focus on getting started and creating a client using the
TFS object model to connect to the TFS Web services. The TFS
services support specific features such as version control, work
item tracking and events.

Setting up a Dev Environment
We’ll use the C# language and the Visual Studio IDE. You also can
work with the object model with other languages and environments,
such as Windows PowerShell.

Use of the TFS client object model currently requires a client
SKU—such as Team Explorer—installation on the development

machine. In the future, the TFS client object model will be avail-
able as a standalone client installation.

Team Explorer is included with all editions of Visual Studio
except Express. When you have Visual Studio and TFS installed,
start Visual Studio, connect to a TFS server and confi rm that you
have create, read, update and delete (CRUD) permissions for work
items and source control.

For this article and most development work, we used a public
virtual machine (VM) provided by Brian Keller from the ALM
Developer Evangelism Team at Microsoft (available at bit.ly/VS2010RTMVHD
for the Visual Studio 2010 version and aka.ms/VS11ALMVM for the
Visual Studio 2012 version). If you download the same VM, the
code samples should just work. If you use the code against your
own server, it might require some changes.

To work with the sample code in this article, you’ll need references
to the TFS .NET Framework assemblies listed later. You get these
assemblies when you install Team Explorer.

Best Practices and Guidelines
When you develop client applications using the TFS object model,
use the following guidelines.

Use the TFS Client API even though the API calls the
Web services. Accessing the Web service interfaces directly is
not offi cially supported. Th e TFS client object model helps with
authentication, compatibility with multiple server versions, imper-
sonation, two-factor authentication using client credentials and a
handful of other things in addition to providing clean, high-level
abstractions over the Web service interfaces. For some clients (for
example, a Ruby on Rails app running on *nix), the Web service
layer is the only option. If you fall within this category, it’s worth
checking out the Java SDK (see bit.ly/irHxgm).<?xml version ="1.0"?>

 <configuration>
 <system.diagnostics>
 <switches>
 <add name="TeamFoundationSoapProxy" value="4" />
 <add name="VersionControl" value="4" />
 </switches>
 <trace autoflush="true" indentsize="3">
 <listeners>
 <add name="rangerListener"
 type="Microsoft.TeamFoundation.TeamFoundationTextWriterTraceListener,
 Microsoft.TeamFoundation.Common, Version=10.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 initializeData="c:\almrangertracing.log" />
 <add name="performanceListener"
 type="Microsoft.TeamFoundation.Client.PerfTraceListener,
 Microsoft.TeamFoundation.Client, Version=10.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 </listeners>
 </trace>
 </system.diagnostics>
 </configuration>

Figure 2 Enabling Tracing in Your Confi guration File

03/17/2012 12:10:14 (pid 2936, tid 4820, 11636 ms) Web method response:
[http://servername/tfs/myCollection/VersionControl/v1.0/repository.asmx]
QueryWorkspace[VersionControl] 3 ms
03/17/2012 12:10:14 (pid 2936, tid 4820, 11637 ms) CreateWebRequest() -- Uri:
http://servername:8080/tfs/myCollection/VersionControl/v1.0/repository.asmx
03/17/2012 12:10:14 (pid 2936, tid 4820, 11637 ms) request.
AutomaticDecompression: GZip
03/17/2012 12:10:14 (pid 2936, tid 4820, 11637 ms) Web method running:
http:// servername:8080/tfs/myCollection/VersionControl/v1.0/repository.
asmx] UpdateWorkspace[VersionControl]
03/17/2012 12:10:14 (pid 2936, tid 4820, 11658 ms) HTTP headers:
Content-Length: 896
Cache-Control: private, max-age=0
Content-Type: application/soap+xml; charset=utf-8
Date: Sat, 17 Mar 2012 16:10:12 GMT
Server: Microsoft-IIS/7.0
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET

F igure 3 Web Method Tracing with Performance Data

F igure 1 Visual Studio Team Foundation Server Architecture

Team Foundation
Server

Team Foundation Server
Client

Te
am

 F
ou

nd
at

io
n

W
eb

 S
er

vi
ce

s

Se
rv

er
 O

bj
ec

t M
od

el

Cl
ie

nt
 O

bj
ec

t M
od

el

Namespaces organize TFS
classes and features into similar

items, which could be compared
with using a fi ling cabinet.

www.msdnmagazine.com
www.bit.ly/VS2010RTMVHD
http://aka.ms/VS11ALMVM
www.bit.ly/irHxgm

msdn magazine62 ALM Rangers

Where possible, perform recursive operations instead of
enumerating each individual item. For example, delete the folder
instead of deleting each individual fi le. Th is guideline brings up some-
thing that we learned from Don Box when we attended his session at

TechEd in New Orleans back when he had very long hair and didn’t
work for Microsoft : “Network traffi c is evil.” We attended his session
on remote procedure calls. Back then, C code was used, but what
has not changed is the importance of his statement. Network traffi c
is evil! Some developers haven’t yet learned this, or they’re learning
about it the hard way with customers and consultants complaining
about poor performance over the network.

To adhere to the “network traffi c is evil”
mantra, try to batch non-recursive oper-
ations and only request the download
URLs you need when you need them.
Some of the accompanying sample code
will ignore this guideline in attempts to
demonstrate features of the API.

When passing a path to an API,
use the server path instead of the
local path. Do this because the latter
needs to be translated into the server
path. Th is translation requires that the
workspace of the caller be identifi ed, the
mapping be loaded, the proper mapping
be determined and so on, before fi nally
getting the server path.

Use an optimistic pattern with your
operations. Just like with databases,
assume that you’ll be successful at a write
operation and catch the exception. For

example, in operations that use
the version control service, don’t
spend valuable time checking the
item before operating on it, because
the fi le could be deleted, and there-
fore your need to handle exceptions
would be, too. So assume the best
and prepare for the worst.

Another useful tool for fi guring
out where there’s evil network traf-
fi c is Microsoft Network Monitor.
Don’t code against the network

or debug the network without it. No packet can hide from this
tool, and the truth will be revealed. You can download Microsoft
Network Monitor from Microsoft downloads (bit.ly/mMmieH).

When you’re in a bind and don’t know why, or how or for
how long things are working, turn on tracing for Web methods.
Tracing will show you what Web methods are called by the API.
It provides details such as what was called, the duration of the call
and the SOAP response. Tracing is turned on through modifi cation
of your application .confi g fi le in the system.diagnostics section, as
shown in Figure 2. Sample output that you fi nd in your log fi le is in
Figure 3. However, if you want to look at the SOAP payload, you’ll
need to use a tool such as Microsoft Network Monitor.

Understanding the Assemblies and Namespaces
Many assemblies and namespaces are exposed by the TFS object
model. Not all assemblies will be covered in this series of articles, just
the most important and most frequently used namespaces. In addi-
tion to common TFS namespaces, we’ll list .NET core namespaces
where the use of the TFS object model has dependencies.

A common pattern will be connecting to Team Foundation
Confi guration Server or a collection and listing the registered serv-
ers or listing the projects. Th ese common client tasks require the
following references:

Namespace
 = Microsoft.TeamFoundation Description

.client The namespace and associated assemblies provide the interfaces to connect to
TFS and to access data relating to team projects and team project collections.

.framework.client The namespace and associated assemblies expose APIs for viewing and
manage the contents of the TFS registry, job schedules, generic property store,
event subscriptions, security namespaces, services, team project collections,
catalog and Lab Management objects.

.framework.common The namespace and associated assemblies defi ne common objects such as
permissions, exceptions and constants.

Figure 4 TFS SDK Assemblies

Fig ure 5 Registered Team Foundation Server Dialog Box

A common pattern will be
connecting to Team Foundation

Confi guration Server or a
collection and listing the registered

servers or listing the projects.

www.bit.ly/mMmieH

63August 2012msdnmagazine.com

// Needed for TfsConfigruationServer
using Microsoft.TeamFoundation.Client;

// Needed for Catalog Resources such as types
using Microsoft.TeamFoundation.Framework.Common;

// Needed for other Catalog Resouces such as nodes
using Microsoft.TeamFoundation.Framework.Client;

// Needed for use of the Version Control service
using Microsoft.TeamFoundation.VersionControl.Client;

Use of each of the available services will also require the same ref-
erences, such as Microsoft .TeamFoundation.VersionControl.Client
for the Version Control Service. Working with work items could
require references to:

• Microsoft .TeamFoundation.WorkItemTracking.Client
• Microsoft .TeamFoundation.WorkItemTracking.Common
• Microsoft .TeamFoundation.WorkItemTracking.Proxy

Figure 4 shows the main assemblies included with the TFS SDK,
which are found in Program Files\Microsoft Visual Studio 10.0\
Common7\IDE under ReferenceAssemblies\v2.0 and Private-
Assemblies in terms of TFS 2010, or in Program Files (X86)\ ...
on a 64-bit OS.

(Note: Th e default code sample we provided is built and tested
with the released TFS 2010 object model, retrieving the referenced
assemblies from …\Program Files (x86)\Microsoft Visual Studio
10.0\Common7\IDE\ReferenceAssemblies\v2.0. To use the new
TFS 11 beta object model, simply remove the Microsoft.Team-
Foundation.* assembly references and re-add them from …Pro-
gram Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\
ReferenceAssemblies\v2.0 and rebuild the sample applications.
You can use either object model to connect to TFS 2010 and 2012
servers using the default samples.)

If you’re looking for the complete sample solution and more code
samples from the Visual Studio ALM Rangers, or if you’d like to
contribute samples yourself, please visit us at bit.ly/M0oyQt.

Our First Programming Adventure
Remember, you’ll need the following references to connect to a
TFS server:

using Microsoft.TeamFoundation.Client;
using Microsoft.TeamFoundation.Framework.Common;
using Microsoft.TeamFoundation.Framework.Client;

You could also have a dependency on the System.Net namespace
for passing network credentials to some overloaded methods, as
shown in the following code:

NetworkCredential myNetCredentials =
 new NetworkCredential("Administrator", "P2ssw0rd");
ICredentials myCredentials = (ICredentials)myNetCredentials;

NetworkCredentials are useful if you’re using the public TFS
VM. Aft er you have the references, you can connect to a TFS server
via several diff erent approaches. You can connect to the confi gura-
tion server, where you can get a list of collections passing in your
server URI and credentials:

Uri tfsUri = @"http://servername:8080/tfs";
TfsConfigurationServer configurationServer =
 new TfsConfigurationServer(tfsUri, myCredentials);

A better approach is to prompt the user for credentials by
passing in UICredentialsProvider, as shown here:

TfsConfigurationServer configurationServer =
 new TfsConfigurationServer(tfsUri, new UICredentialsProvider());

Second Approach—Connecting to a New
Confi guration Server
Here’s an alternate approach when you’re running the process
under the proper credentials and want to avoid having to connect
to a new confi guration server:

TfsConfigurationServerFactory.GetConfigurationServer(tfsUri);

// Once you have your connection then you can
// get a list of collections on the server
// Get the catalog of team project collections
ReadOnlyCollection<CatalogNode> collectionNodes;
collectionNodes = configurationServer.CatalogNode.QueryChildren(
 new[] { CatalogResourceTypes.ProjectCollection },
 false, CatalogQueryOptions.None);
foreach (CatalogNode collectionNode in collectionNodes)
{
 // Add each collection to the combo box
 cbTPC.Items.Add(collectionNode.Resource.DisplayName);
}

Th e previous example requires that you type a URI in an edit
control on the dialog. In the next example, we’ll read the list of
registered servers on the client. Registered servers are the TFS
servers that were added to Visual Studio through its Connect to
Team Foundation Server dialog box, as shown in Figure 5.

To read the registered servers on the client, you’ll need a refer-
ence to Microsoft .TeamFoundation.Client. In the following code,

NetworkCredential myNetCredentials =
 new NetworkCredential("Administrator", "P2ssw0rd");
ICredentials myCredentials = (ICredentials)myNetCredentials;

// Connect to the tpc hosting the version-control repository
TfsTeamProjectCollection tpc =
 new TfsTeamProjectCollection(new Uri(cb.Text),
 myNetCredentials);

// Get the version control service
vcServer = tpc.GetService<VersionControlServer>();

var teamProjects =
 new List<TeamProject>(vcServer.GetAllTeamProjects(false));

// List the team projects in the collection and add to list box
foreach (TeamProject projectNode in teamProjects)
{
 // Add list or team projects to list box
 lbProjects.Items.Add(projectNode.Name);
}

Figure 7 Connecting to a Known Collection URI

Figu re 6 Reading Registered Servers

www.msdnmagazine.com
www.bit.ly/M0oyQt

msdn magazine64 ALM Rangers

the registered servers on the client are read and added to a combo
box (shown in Figure 6):

List<RegisteredProjectCollection> registeredTPCs;
// Get all registered collections on this machine
registeredTPCs = new
 List<RegisteredProjectCollection>((
 RegisteredTfsConnections.GetProjectCollections()));
foreach (var projectCollection in registeredTPCs)
{
 // Add each registered team project collection to the combo box
 cbRegColl.Items.Add(projectCollection.Uri);
}

Third Approach—Connecting to a Known
Collection URI
In addition to connecting to a server, if you know the URI to the
collection, you can connect to it directly. Figure 7 shows this third
approach—connecting to a known collection URI.

The next examples demonstrate using some of the version
control service features. When you have the references to the server
and a reference to the version control service (see Figure 7), you
can use some of the APIs, such as getting a list of fi les on the server

or pending changes. Th e following code uses the version control
server reference to ask for all XAML fi les on the server and adds
them to a list box:

 // List all of the XAML files on the server
ItemSet items = vcServer.GetItems("$/*.xaml", RecursionType.Full);
foreach (Item item in items.Items)
{
 // Add each file to the list box
 lbAll.Items.Add(item.ToString());
}

Th e fi rst parameter to the GetItems method is the path to the
folder. In the sample code, the path is the root, and all XAML fi les
will be returned in all folders. In Figure 8, you see that fi le details
are shown when you select one of these fi les.

If you want to see a list of fi les with pending changes and add
those to a list box, you would use the code in Figure 9. In this
code, the API QueryPendingSets is overloaded, and this example
uses the method overload that allows you to query based on
ItemSpecs, which is an array that represents what to query. In
this case, we’re asking for pending changes for only one folder on
the server. We’ll also filter on pending changes for a particular
workspace and user. Th e last parameter instructs the API to provide
us the information so that we can download the fi le. If we have no
plans to use that information, then consider the mantra “network
traffi c is evil” and pass false.

 Th e version control service off ers many more features that we
haven’t covered in this article. We tried to whet your appetite and
get you started on connecting to the server and using the version
control service.

In future articles we’ll continue to investigate the TFS client
object model and introduce diff erent programming scenarios such
as working with work items, version control, builds and deeper
integration through the Visual Studio TFS server object model.

BRIAN BLACKMAN is a principal consultant with the Microsoft Services Partner
ISV team, focusing on aff ecting ISV partners’ success in engineering and the mar-
ketplace. He has an MBA and is a CSM, CSP, MCSD (C++), MCTS and Visual
Studio ALM Core Ranger. He spends his time writing code, creating and delivering
workshops, and consulting in various concentrations and all things ALM.

WILLY-PETER SCHAUB is a senior program manager with the Visual Studio ALM
Rangers at the Microsoft Canada Development Center. Since the mid-’80s, he’s
been striving for simplicity and maintainability in soft ware engineering. Read
his blog at blogs.msdn.com/b/willy-peter_schaub and follow him on Twitter at
twitter.com/wpschaub.

THANKS to the following technical experts for reviewing this article: Jeff
Bramwell, Bill Essary, Mike Fourie, Bijan Javidi, Jim Lamb and Patricia Wagner

Figur e 8 Get All XAML Files and Show File Details

ItemSpec[] itemSpecs = new ItemSpec[1];
// You can filter the path to a project and folder
// using $/ProjectName/Folder...
ItemSpecs[0] =
 new ItemSpec(@"$/Tailspin Toys/Development/Iteration 2",
 RecursionType.Full);

// Your options for filtering are the Workspace Name,
// User Name and the previous path in the ItemSpec
String qryWSName = @"WIN-GS9GMUJITS8";
String queryUserName = @"administrator";
bool includeDownloadInfo = true;

PendingSet[] pendingSet = vcServer.QueryPendingSets(
 itemSpecs, qryWSName, qryUserName, includeDownloadInfo);

foreach (PendingSet ps in pendingSet)
{
 // Add pending changes to list box
 lbPendingChanges.Items.Add(ps.ToString());
}

Figure 9 Get PendingChanges

In addition to connecting
to a server, if you know the URI to
the collection, you can connect

to it directly.

http://blogs.msdn.com/b/willy-peter_schaub
www.twitter.com/wpschaub

Untitled-1 1 5/10/12 12:16 PM

www.nevron.com

msdn magazine66

W IN DOWS A ZUR E

CyberNanny:
Remote Access via
Distributed Components

This article is about an application called CyberNanny, which
I recently wrote to allow me to remotely see my baby daughter
Miranda at home from anywhere at any time. It’s written in Visual
C++ (MFC) and it comprises diff erent technologies such as Kinect
and its SDK, Windows Azure, Web services and Offi ce automation via
Outlook. Th e project is hosted on CodePlex (cybernanny.codeplex.com),
where you can check out the code or contribute to it.

Before I get into the nuts and bolts of the application, I’ll briefl y
explain the technologies used to build it.

C++ has been—and still is—the workhorse in many soft ware
shops. Saying that, the new standard C++ 11 takes the language to
a new level. Th ree terms to describe it would be modern, elegant
and extremely fast. Also, MFC is still around and Microsoft has
been upgrading it with every new release of its Visual C++ compiler.

Angel Hernandez Matos

Th e Kinect technology is amazing, to say the least; it changes the
way we interact with games and computers. And with Microsoft
providing developers with an SDK, a new world of opportunities
is unveiled for creating soft ware that requires human interaction.
Interestingly, though, the Kinect SDK is based on COM (as well
as the new programming model in Windows 8, called Windows
Runtime, oft en abbreviated as WinRT). Th e SDK is also available
to Microsoft .NET Framework languages.

Windows Azure is the Microsoft Platform as a Service (PaaS)
off ering that has been around for a couple of years. It provides a
series of services that allow building solutions on top of them (such
as Compute and Storage). One of the requirements I had with
CyberNanny was the reliable delivery of messages via a highly
available queue, and Windows Azure provides that.

This article discusses:
• General architecture of the solution

• Kinect architecture

• Locally deployed, native components

• Cloud-hosted, managed components

Technologies discussed:
Windows Azure, Kinect, C++, ASP.NET

Code download available at:
cybernanny.codeplex.com

One of the requirements I had
with CyberNanny was the

reliable delivery of messages via
a highly available queue, and
Windows Azure provides that.

http://cybernanny.codeplex.com
http://cybernanny.codeplex.com

67August 2012msdnmagazine.com

Th e native use and consumption of Web services is possible using
the Windows Web Services API (WWSAPI), which was introduced
with Windows 7. I have a blog post (bit.ly/LiygQY) that describes a Win-
dows Presentation Foundation (WPF) application implementing a
native component using WWSAPI. It’s important to mention that
WWSAPI is built in to the OS, so there’s no need to download or
install anything but the Windows SDK (for header and lib fi les).

Why reinvent the wheel? One of the requirements for Cyber-
Nanny was the ability to send e-mails with attached pictures, so
instead of writing my own e-mailing class, I preferred to reuse the
functionality provided by Outlook for this task. Th is allowed me
to focus on the main objective: building a distributed application
for looking aft er my baby.

Th is article is organized in four main sections:
1. Overview of the general architectural solution
2. Kinect architecture
3. Locally deployed components (native)
4. Cloud-hosted components (managed)

Overview of the General Architectural Solution
Th e CyberNanny concept is simple (as shown in Figure 1), but it also
has some moving pieces. It can briefl y be described as a thick client
written in Visual C++, which captures frames via the Kinect sensor.
Th ese frames can later be used as a picture that’s attached to a new
e-mail composed in Outlook through automation. Th e application is
notifi ed about pending requests by spawning a thread triggered from
a timer, which polls a queue hosted in Windows Azure. Th e requests
are inserted into the queue via an ASP.NET Web page.

Note that in order to run and test the solution you must have:
• Kinect sensor (I used the one on my Xbox 360)
• Windows Azure subscription
• Kinect SDK

Kinect Architecture
Having a good architectural understanding of how things work and
how they can be implemented is crucial to development projects,
and in this case Kinect is no exception. Microsoft has provided
an SDK for managed and native code developers. I’ll describe the
architecture Kinect is built upon, as shown in Figure 2.

Th e circled numbers in Figure 2 correspond to the following:
1. Kinect hardware: Th e hardware components, including

the Kinect and the USB hub through which the sensor is
connected to the computer.

2. Kinect drivers: The Windows drivers for the Kinect,
which are installed as part of the SDK setup process as
described in this article. Th e Kinect drivers support:

 • Th e Kinect microphone array as a kernel-mode audio
device that you can access through the standard audio
APIs in Windows.

 • Audio and video streaming controls for streaming
audio and video (color, depth and skeleton).

 • Device enumeration functions that enable an applica-
tion to use more than one Kinect.

3. Audio and video components: Th e Kinect Natural
User Interface (NUI) for skeleton tracking, audio, color
and depth imaging.

4. DirectX Media Object (DMO): Th is is for microphone
array beam forming and audio source localization.

5. Windows 7 standard APIs: Th e audio, speech and
media APIs in Windows 7, as described in the Windows 7
SDK and the Microsoft Speech SDK.

Capture Frames Polling Queue

If there’s a request, take picture,
compose e-mail, attach picture

and send

Request
Request

RequestRequest

Capture Frames Polling Queue
Windows Azure

Web Role (2 Cores)
WCF Service Queue

Laptop

Windows 7 Laptop Tablet

Smartphone

Kinect for
XBox 360

Happy Dad

If there’s a request, take picture,
compose e-mail, attach picture

and send

Request
Request

RequestRequest

Send an E-mail

Figure 1 CyberNanny Architecture

Having a good architectural
understanding of how things
work and how they can be
implemented is crucial to

development projects, and in
this case Kinect is no exception.

www.msdnmagazine.com
www.bit.ly/LiygQY

msdn magazine68 Windows Azure

I’ll demonstrate how I used the video
component for capturing frames that are
then saved as JPEG fi les for e-mailing
purposes. Th e rendering of the captured
frames is done via Direct2D.

The Nui_Core Class I wrote a class
called Nui_Core, which encapsulates the
functionality I needed from the Kinect
sensor. Th ere’s a single instance of this
object in the application. Th e application
interacts with the sensor via a member
of type INuiSensor that represents the
physical device connected to the com-
puter. It’s important to remember that
the Kinect SDK is COM-based, hence
the aforementioned interface—as well
as all the other COM interfaces used
throughout the application—is managed by smart pointers (for
example, CComPtr<INuiSensor> m_pSensor;).

Th e steps to start capturing frames with the sensor are:
1. Check whether there’s a sensor available by calling

NuiGetSensorCount.
2. Create an instance of the Kinect sensor by calling

NuiCreateSensorByIndex.
3. Create a factory object for the creation of Direct2D

resources by calling D2D1CreateFactory.
4. Create events for each stream required by the application.
5. Open the streams by calling NuiImageStreamOpen.
6. Process the captured data (frame).

Once the Nui_Core instance is set up, you can easily take a picture
on demand by calling the TakePicture method, as shown in Figure 3.

Note that you pass a smart pointer to store the bytes of the
image as well as the number of bytes that are copied to it, and then
this information is used to handcraft your bitmap.

It’s important to mention that once you’ve finished using the
sensor, it has to be shut down by calling NuiShutdown, and
handles that were used need to be released.

The DrawDevice Class As previously mentioned, the rendering
capabilities are provided by Direct2D; that’s why another support
class is required for use in conjunction with Nui_Core. Th is class
is responsible for ensuring there are resources available for the
captured frame, such as a bitmap in this case.

Th e three main methods are Initialize, Draw and EnsureResources.
I’ll describe each.

Initialize: Th is is responsible for setting up three members of
type DrawDevice. Th e application has a tab control with three tabs,
so there’s a member for each tab (Color, Skeletal and Depth view).
Each tab is a window that’s responsible for rendering its correspond-
ing frame. Th e InitializeColorView shown in the following code is
a good example of calling the Initialize method:

bool Nui_Core::InitializeColorView() {
 auto width = m_rect.Width();
 auto height = m_rect.Height();
 m_pDrawColor = std::shared_ptr<DrawDevice>(new DrawDevice());
 return (m_pDrawColor.get()->Initialize(m_views[TAB_VIEW_1]->m_hWnd,
 m_pD2DFactory.p, 640, 320, NULL));
}

Draw: Th is renders a frame on the proper tab. It takes as argu-
ment a Byte* captured by the sensor. Just as in the movies, the eff ect
of animation comes from the successive rendering of static frames.

EnsureResources: Th is is responsible for creating a bitmap
when requested by the Draw method.

Locally Deployed Components (Native)
Th e CyberNanny project comprises the following:

• Application
 • CCyberNannyApp (inherited from CWinApp). Th e

application has a single member of type Nui_Core for
interacting with the sensor.

• UI Elements
 • CCyberNannyDlg (Main Window, inherited from CDialogEx)
 • CAboutDlg (About Dialog, inherited from CDialogEx)
• Web Service Client
 • Files auto-generated aft er executing WSUTIL against a

service, Web Services Description Language (WSDL).
Th ese fi les contain the messages, structures and methods
exposed by the WCF Web service.

Applications

3 NUI API
Windows Core Audio

and Speech APIs
5

DMO Codec for Mic Array 4

2 Device
Setup

Device
Access Video Stream Control Audio Stream Control User Mode

WinUSB Device
Stack WinUSB Camera Stack USBAudio Audio Stack Kernel Mode

Kernel-Mode Drivers for Kinect for Windows

1

USB Hub Hardware

Motor Cameras Audio Mic Array
Kinect Sensor

 Kinect for Windows SDK Windows Components User-Created Components

Figure 2 Kinect for Windows Architecture

void Nui_Core::TakePicture(std::shared_ptr<BYTE>& imageBytes, int& bytesCount) {
 byte *bytes;
 NUI_IMAGE_FRAME imageFrame;
 NUI_LOCKED_RECT LockedRect;

 if (SUCCEEDED(m_pSensor->NuiImageStreamGetNextFrame(m_hVideoStream,
 m_millisecondsToWait, &imageFrame))) {

 auto pTexture = imageFrame.pFrameTexture;
 pTexture->LockRect(0, &LockedRect, NULL, 0);

 if (LockedRect.Pitch != 0) {
 bytes = static_cast<BYTE *>(LockedRect.pBits);
 m_pDrawColor->Draw(bytes, LockedRect.size);
 }
 pTexture->UnlockRect(0);
 imageBytes.reset(new BYTE[LockedRect.size]);
 memcpy(imageBytes.get(), bytes, LockedRect.size);
 bytesCount = LockedRect.size;
 m_pSensor->NuiImageStreamReleaseFrame(m_hVideoStream, &imageFrame);
 }
}

Figure 3 The TakePicture Method

69August 2012msdnmagazine.com

• Outlook Object Classes
 • In order to manipulate some of the Outlook objects, you

have to import them into your project by selecting “Add
MFC Class” from ActiveX Control Wizard. Th e objects
used in this solution are Application, Attachment, Mail-
Item and Namespace.

• Proxy
 • Th is is a custom class that encapsulates the creation of the

required objects to interact with WWSAPI.
• Helper Classes
 • Th ese classes are used to support the functionality of the

application, such as converting a bitmap into a JPEG to
reduce the fi le size, providing a wrapper to send e-mails
and interact with Outlook, and so on.

When the application starts, the following events occur:
1. A new window message is defined by calling Register-

WindowMessage. Th is is for adding items to the list of events
when a request is processed. Th is is required because you
can’t directly modify UI elements from a thread diff erent
from the UI thread, or you’ll incur an illegal cross-thread
call. Th is is managed by the MFC messaging infrastructure.

2. You initialize your Nui_Core member and set up a couple of
timers (one for updating the current time on the status bar
and another one that kicks off a thread for polling the queue
to check whether there’s a pending request).

3. Th e Kinect sensor starts capturing frames, but
the application doesn’t take a picture unless
there’s a request in the queue. The Process-
Request method is responsible for taking a
picture, serializing the picture to disk, writing
to the event viewer and kicking off the Outlook
automation, as shown in Figure 4.

The frame originally captured by Kinect is a
bitmap that’s approximately 1.7MB in size (which
isn’t convenient for e-mailing and therefore needs
to be converted to a JPEG image). It’s also upside
down, so a 180° rotation is required. Th is is done by
making a couple of calls to GDI+. Th is functionality
is encapsulated in the ImageFile class.

Th e ImageFile class serves as a wrapper for perform-
ing operations with GDI+. Th e two main methods are:

1. SerializeImage: Th is method takes a shared_
ptr<BYTE>, which contains the bytes of the

captured frame to be serialized as an image, as well as the
count of bytes. The image is also rotated by calling the
RotateFlip method.

2. GetEncoderClsid: As mentioned, the image fi le size is
too big to use as an attachment—therefore, it needs to be
encoded to a format with a smaller footprint (JPEG, for
example). GDI+ provides a GetImageEncoders function
that lets you find out which encoders are available on
the system.

So far I’ve covered how the application utilizes the Kinect
sensor and how the frames captured are used to create a picture for
e-mailing. Next, I’ll show you how to call the WCF service hosted
on Windows Azure.

WWSAPI, introduced in Windows 7, allows native developers
to consume Web or WCF services in an easy and convenient way,
without worrying about the communication (sockets) details. Th e
fi rst step for consuming a service is to have a WSDL to use with

void CCyberNannyDlg::ProcessRequest(_request request) {
 if (!request.IsEmpty) {
 auto byteCount = 0;
 ImageFile imageFile;
 std::shared_ptr<BYTE> bytes;
 m_Kinect.TakePicture(bytes, byteCount);
 imageFile.SerializeImage(bytes, byteCount);
 EventLogHelper::LogRequest(request);
 m_emailer.ComposeAndSend(request.EmailRecipient,
 imageFile.ImageFilePath_get());
 imageFile.DeleteFile();
 }
}

Figure 4 The ProcessRequest Method Call

Web/Worker Roles

Cloud Applications

SQL Azure Reporting

Business Analytics

Traffic Manager Connect

Networking

HPC Scheduler

HPC

Windows Azure Active Directory

Identity

Marketplace

Commerce

Data Management

SQL Azure Tables Blobs

Messaging

Queues Service Bus

Caching

In-Memory CDN

SDKs

Visual Studio Eclipse ...

.NET Java PHP Node.js

Figure 5 Windows Azure Platform Services

The frame originally captured
by Kinect is a bitmap that’s

approximately 1.7MB in size
(which isn’t convenient for

e-mailing and therefore needs to
be converted to a JPEG image).
It’s also upside down, so a 180°

rotation is required.

www.msdnmagazine.com

msdn magazine70 Windows Azure

WSUTIL that in turn produces codegen C code for service proxies,
which are data structures required by the service. There is an
alternative called Casablanca (bit.ly/JLletJ), which supports cloud-
based client-server communication in native code, but it wasn’t
available when I wrote CyberNanny.

It’s common to get the WSDL and save it to disk, and then use
the WSDL fi le and related schema fi les as input for WSUTIL. One
aspect to take into account is schemas. Th ey must be downloaded
along with the WSDL, otherwise WSUTIL will complain when pro-
ducing the fi les. You can easily determine the required schemas by
checking the .xsd parameter in the schema section of the WSDL fi le:

wsutil /wsdl:cybernanny.wsdl /xsd:cybernanny0.xsd cybernanny1.xsd
cybernanny2.xsd cybernanny3.xsd /string:WS_STRING

Th e resulting fi les can be added to the solution, and then you
proceed to call your service via the codegen files. Four main
objects are required to use with WWSAPI:

1. WS_HEAP
2. WS_ERROR
3. WS_SERVICE_PROXY
4. WS_CHANNEL_PROPERTY

Th ese objects allow the interaction between the client and the
service. I put together the functionality to invoke the service in
the Proxy class.

Most of the WWSAPI functions return an HRESULT, so
debugging errors can be a challenging task. But fear not, because
you can enable the tracing from the Windows Event Viewer and
see exactly why a given function failed. To enable tracing, navi-
gate to Applications and Services Logs | Microsoft | WebServices |
Tracing (right-click it to enable it).

Th at pretty much covers the native components of the solution.
For more information, please refer to the source code on the afore-
mentioned CodePlex site. Th e next section is about the Windows
Azure component of the solution.

Cloud-Hosted Components (Managed)
Please note that this is not an extensive tutorial on Windows Azure,
but rather a description of the Windows Azure components in
CyberNanny. For more in-depth and detailed information, refer
to the Windows Azure Web site at windowsazure.com. Th e Windows
Azure platform (Figure 5) comprises the following services:

• Windows Azure Compute
• Windows Azure Storage
• Windows Azure SQL Database
• Windows Azure AppFabric
• Windows Azure Marketplace
• Windows Azure Virtual Network

CyberNanny only has a Web Role that has allocated two cores
to guarantee high availability. If one of the nodes fails, the platform

will switch to the healthy node. The Web Role is an ASP.NET
application, and it only inserts message items into a queue. Th ese
messages are then popped out from CyberNanny. Th ere’s also a
WCF service, which is part of the Web Role that’s responsible for
handling the queue.

Note that a Windows Azure role is an individual component
running in the cloud where each instance of a cloud corresponds
to a virtual machine (VM) instance. In CyberNanny’s case, then,
I’ve allocated two VMs.

CyberNanny has a Web Role that’s a Web application (whether
it’s only ASPX pages or WCF services) running on IIS. It’s accessible
via HTTP/HTTPS endpoints. Th ere’s also another type of role that’s
called a Worker Ro le. It’s a background processing application (for
example, for fi nancial calculations), and it also has the ability to
expose Internet-facing and internal endpoints.

Th is application also utilizes a queue provided by Windows Azure
Storage, which allows reliable storage and delivery of messages.
Th e beauty of the queue is that you don’t have to write any spe-
cialized code to take advantage of it. Neither are you responsible
for setting up the data storage with a certain structure to resemble
a queue, because all this functionality is provided out of the box
by the platform.

Besides high availability and scalability, one of the benefits
provided by the Windows Azure platform is the commonality to do
things such as developing, testing and deploying Windows Azure
solutions from Visual Studio, as well as having .NET as the lingua
franca to build solutions.

Th ere are some other cool features I’d love to add to CyberNanny,
such as motion detection and speech recognition. If you want to use
this soft ware or contribute to the project, please feel free to do so.
Th e technologies used are available now and even though they look
“diff erent,” they can interoperate and play nicely with one another.

Happy coding!

ANGEL HERNANDEZ MATOS is a manager in the Enterprise Applications team
at Avanade Australia. He’s based in Sydney, Australia, but is originally from
Caracas, Venezuela. He has been a Microsoft MVP award recipient for eight
consecutive years and is currently an MVP in Visual C++. He has been writ-
ing soft ware since he was 12 years old and considers himself an “existential geek.”

THANKS to the following technical experts for reviewing this article:
Scott Berry, Diego Dagum, Yonghwi Kwon and Nish Sivakumar

This application also
utilizes a queue provided by

Windows Azure Storage, which
allows reliable storage and

delivery of messages.

CyberNanny only has a Web
Role that has allocated two cores

to guarantee high availability.

www.bit.ly/JLletJ
www.windowsazure.com

Word Processing Components
for Windows Forms, WPF & ASP.NET

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

WORD PROCESSING
COMPONENTS

WINDOWS FORMS | WPF | ASP.NET | ACTIVEX

Spell Checking
Add the fastest spell checking
engine to your Windows Forms,
WPF or ASP.NET applications.

Rich Text Editing
Add feature-complete word processing capabilities to your Microsoft .NET
applications.

Build MS Word compatible mail
merge applications with
Master-Detail views.

Free
License

Download
our 100% free
Express version.

Rich Text Editing Integrate professional rich text editing
into your .NET based applications.

Untitled-2 1 7/3/12 11:07 AM

www.textcontrol.com

msdn magazine72

CLR

.NET Development
for ARM Processors

Consumers are a large driver of the technology market
today. As evidenced by the trend known as “the consumerization of
IT,” long battery life and always-connected and media-rich experi-
ences are important to all technology customers. To enable the best
experience for devices with long battery life, Microsoft is bringing
the Windows 8 OS to systems built on the low-powered ARM pro-
cessor, which powers most mobile devices today. In this article, I’ll
discuss details about the Microsoft .NET Framework and the ARM
processor, what you as a .NET developer should keep in mind and
what we at Microsoft (where I’m a program manager on the CLR
team) had to do to bring .NET over to ARM.

As a .NET developer, you can imagine that writing apps to run
on a variety of different processors would pose a bit of a quan-
dary. The ARM processor’s instruction set architecture (ISA)
is incompatible with the x86 processor’s ISA. Apps built to run
natively on x86 run well on x64 because the x64 processor’s ISA
is a superset of the x86 ISA. But the same isn’t true of native x86

Andrew Pardoe

apps running on ARM—they need to be recompiled to execute on
the incompatible architecture. Being able to choose from a range
of different devices is great for consumers, but it brings some
complexity to the developer story.

Writing your app in a .NET language not only allows you to reuse
your existing skills and code, it also enables your app to run on all
Windows 8 processors without recompilation. By porting the .NET
Framework to ARM, we helped to abstract the unique characteristics
of the architecture that are unfamiliar to most Windows developers.
But there are still some things you might need to watch out for when
writing code to run on ARM.

The Road to ARM: .NET Past and Present
Th e .NET Framework already runs on ARM processors, but it’s
not the exact same .NET Framework as the version that runs on
the desktop. Back when we started working on the fi rst version
of .NET, we realized that being able to write easily portable code
across processors was key to our value proposition of increased
developer productivity. Th e x86 processor dominated the desktop
computing space, but a huge variety of processors existed in the
embedded and mobile space. To enable developers to target those
processors, we created a version of the .NET Framework called the
.NET Compact Framework, which runs on machines that have
memory and processor constraints.

Th e fi rst devices that the .NET Compact Framework supported
had as little as 4MB of RAM and a 33 MHz CPU. Th e design of the

This article discusses:
• ARM processors and different .NET versions

• Considerations for .NET developers targeting ARM

• Technical details about ARM support in .NET

Technologies discussed:
Microsoft .NET Framework, ARM processors

73August 2012msdnmagazine.com

.NET Compact Framework emphasized both an effi cient imple-
mentation (which allowed it to run on such constrained devices)
and portability (so it could run across the vast range of processors
that were common in the mobile and embedded spaces). But the
most popular mobile devices—smartphones—now run on confi g-
urations that are comparable to the computers of 10 years ago. Th e
desktop .NET Framework was designed to run on Windows XP
machines with at least a 300 MHz processor and 128MB of RAM.
Windows Phone devices today require at least 256MB of RAM and
a modern ARM Cortex processor.

Th e .NET Compact Framework is still a big part of the Windows
Embedded Compact developer story. Devices in embedded scenarios
run in constrained confi gurations, oft en with as little as 32MB of
RAM. We’ve also created a version of the .NET Framework called

the .NET Micro Framework, which runs on processors that have
as little as 64KB of RAM. So we actually have three versions of the
.NET Framework, each of which runs on a diff erent class of proces-
sor. But this is the fi rst time that our fl agship product, the desktop
.NET Framework, has joined the Compact and Micro Frameworks
in running on ARM processors.

Running on ARM
Although the .NET Framework was designed to be platform-neutral,
it’s mostly been run on x86-based hardware throughout its exis-
tence. Th is means that a few x86-specifi c patterns have slipped into
the collective minds of .NET programmers. You should be able to
focus on writing great apps instead of writing for the processor ar-
chitecture, but you should keep a few things in mind when writing

.NET code to run on ARM. Th ese
include a weaker memory model
and stricter data alignment require-
ments as well as some places where
function parameters are treated
diff erently. Finally, there are a few
project-confi guration steps in Visual
Studio that diff er when you target
devices. I’ll discuss each of these.

A Weaker Memory Model A
“memory model” refers to the vis-
ibility of changes made to global
state in a multithreaded program.
A program that shares data be-
tween two (or more) threads will
normally take a lock on that shared
data. Depending on the particular
lock used, if one thread is accessing
the data, other threads that attempt
to access the data will block until
the fi rst thread is fi nished with the
shared data. But locks aren’t neces-
sary if you know that every thread
accessing the shared data will do
so without interfering with other
threads’ view of that data. Program-
ming in such a manner is called
using a “lock-free” algorithm.

Th e trouble with lock-free algo-
rithms comes when you don’t
know the precise order in which
your code will execute. Modern
processors reorder instructions
to ensure the processor can make
progress on every clock cycle and
combine writes to memory in
order to decrease latency. Although
almost every processor performs
these optimizations, there’s a dif-
ference in how the ordering of
reads and writes is presented to Figure 1 Write Reordering

Thread 0 Start

WRITE isInitialize
to true

INITIALIZE local
SomeValueType on

Thread 0 stack

WRITE local
SomeValueType to
AppDomain global

location

CALL myValue.
DoSomething(),
WRITE state to

AppDomain global

Ex
ec

ut
io

n
Tim

e

READ global
isInitialized

Ex
ec

ut
io

n
Tim

e

Thread 0 Start

WRITE isInitialized
to true

WRITE isInitialize
to true

Context switch,
execution stalls

Create new local
SomeValueType on

Thread 0 stack

CALL myValue.
DoSomething(),
WRITE state to

AppDomain global

READ global
isInitialized

Thread 1 Start

WRITE isInitialize
to true

INITIALIZE local
SomeValueType on

Thread 1 stack

WRITE local
SomeValueType to
AppDomain global

location

CALL myValue.
DoSomething(),
WRITE state to

AppDomain global

READ global
isInitialized

Execution
Without

Reordering

Thread 1 Start

ERROR!
AppDomain global
DoSomething is not
initialized memory.

READ global
isInitialized

CALL myValue.
DoSomething(),
WRITE state to

AppDomain global

Execution
with WRITE
Reordering

www.msdnmagazine.com

msdn magazine74 CLR

the program. x86-based processors guarantee that the processor
will look like it’s executing most reads and writes in the same order
that the program specifi es them. Th is guarantee is called a strong
memory model, or strong write ordering. ARM processors don’t
make as many guarantees—they’re generally free to move opera-
tions around as long as doing so doesn’t change the way the code
would run in a single-threaded program. Th e ARM processor does
make some guarantees that allow carefully constructed lock-free
code, but it has what’s called a weak memory model.

Interestingly, the .NET Framework CLR itself has a weak memory
model. All the references to write ordering in the ECMA Common
Language Infrastructure (CLI) specifi cation (available as a PDF at
bit.ly/1Hv1xw), the standard that the CLR is designed to meet, refer
to volatile accesses. In C# this means accesses to variables marked
with the volatile keyword (see section 12.6 of the CLI specifi cation
for reference). But in the last decade, most managed code has been
run on x86 systems, and the CLR just-in-time (JIT) compiler hasn’t
added much to the reorderings permitted by the hardware, so there
were relatively few cases where the memory model would reveal
latent concurrency bugs. Th is could present a problem if managed
code written for and tested only on x86-based machines is expected
to work the same way on ARM systems.

Most of the patterns that require additional caution with regard to
reordering are rare in managed code. But some of these patterns that
do exist are deceptively simple. Here’s an example of code that doesn’t
look like it has a bug, but if these statics are changed on another thread,
this code might break on a machine with a weak memory model:

static bool isInitialized = false;
static SomeValueType myValue;
if (!isInitialized)
{
 myValue = new SomeValueType();
 isInitialized = true;
}
myValue.DoSomething();

To make this code correct, simply indicate that the isInitialized
fl ag is volatile:

static volatile bool isInitialized = false; // Properly marked as volatile

Execution of this code without reordering is shown in the left
block in Figure 1. Th read 0 is the fi rst to initialize SomeValueType
on its local stack and copies the locally created SomeValueType to
an AppDomain global location. Th read 1 determines by checking
isInitialized that it also needs to create SomeValueType. But there’s
no problem because the data is being written back to the same
AppDomain global location. (Most oft en, as in this example, any
mutations made by the DoSomething method are idempotent.)

Th e right-side block shows execution of the same code with a
system that supports write reordering (and a conveniently placed
stall in execution). Th is code fails to execute properly because Th read
1 determines by reading isInitialized’s value that SomeValueType
doesn’t need to be initialized. Th e call to DoSomething refers to
memory that hasn’t been initialized. Any data read from Some-
ValueType will have been set by the CLR to 0.

Your code won’t oft en execute incorrectly due to this kind of
reordering, but it does happen. These reorderings are perfectly
legal—the order of the writes doesn’t matter when executing on a
single thread. It’s best when writing concurrent code to mark
volatile variables correctly with the volatile keyword.

Th e CLR is allowed to expose a stronger memory model than the
ECMA CLI specifi cation requires. On x86, for example, the memory
model of the CLR is strong because the processor’s memory model is
strong. Th e .NET team could’ve made the memory model on ARM
as strong as the model on x86, but ensuring the perfect ordering
whenever possible can have a notable impact on code execution
performance. We’ve done targeted work to strengthen the memory
model on ARM—specifi cally, we’ve inserted memory barriers at
key points when writing to the managed heap to guarantee type
safety—but we’ve made sure to only do this with a minimal impact
on performance. Th e team went through multiple design reviews
with experts to make sure that the techniques applied in the ARM
CLR were correct. Moreover, performance benchmarks show that
.NET code execution performance scales the same as native C++
code when compared across x86, x64 and ARM.

If your code relies on lock-free algorithms that depend on the
implementation of the x86 CLR (rather than the ECMA CLR
specifi cation), you’ll want to add the volatile keyword to relevant
variables as appropriate. Once you’ve marked shared state as vola-
tile, the CLR will take care of everything for you. If you’re like most
developers, you’re ready to run on ARM because you’ve already
used locks to protect your shared data, properly marked volatile
variables and tested your app on ARM.

Data Alignment Requirements Another diff erence that might
aff ect some programs is that ARM processors require some data to
be aligned. Th e specifi c pattern in which alignment requirements
apply is when you have a 64-bit value (that is, an int64, a uint64
or a double) that isn’t aligned on a 64-bit boundary. The CLR
takes care of alignment for you, but there are two ways to force
an unaligned data type. Th e fi rst way is to explicitly specify the
layout of a structure with the [ExplicitLayout] custom attribute.
Th e second way is to incorrectly specify the layout of a structure
passed between managed and native code.

If you notice a P/Invoke call come back with garbage, you might
want to take a look at any structures being marshaled. As an example,
we fi xed a bug while porting some .NET libraries in which a COM
interface passed a POINTL structure containing two 32-bit fi elds to
a function in managed code that took a 64-bit double as a param-
eter. Th e function used bit operations to obtain the two 32-bit fi elds.
Here’s a simplifi ed version of the buggy function:

void CalledFromNative(int parameter, long point)
{
 // Unpack native POINTL from long point
 int x = (int)(point & 0xFFFFFFFF);
 int y = (int)((point >> 32) & 0xFFFFFFFF);
 ... // Do something with POINTL here
}

Th e native code didn’t have to align the POINTL structure on a
64-bit boundary, because it contained two 32-bit fi elds. But ARM
requires the 64-bit double to be aligned when it’s passed into the
managed function. Making certain that the types are specifi ed to
be the same on both sides of the managed-native call is critical if
your types require alignment.

Inside Visual Studio Most developers won’t ever notice the
diff erences I’ve discussed because .NET code by design isn’t spe-
cifi c to any processor architecture. But there are some diff erences
in Visual Studio when profi ling or debugging Windows 8 apps on

www.bit.ly/1Hv1xw

PRODUCED BY MEDIA SPONSORSUPPORTED BY

Register
Today and

Save
$400!
Use Promo Code

AUG1AD

YOUR MAP TO THE .NET DEVELOPMENT PLATFORM

Orlando, FL December 10-14
Royal Paci c Resort at Universal Orlando | vslive.com/orlando

BIRDS OF A FEATHER
CODE TOGETHER

Don’t miss your
chance for great .NET
education in 2012
at Visual Studio Live!
Orlando.

Visit vslive.com/orlando
or scan the QR code to register

and for more event details.

Visual Studio / .NET
HTML5
Cloud Computing and Services
Windows 8 / WinRT
Data Management
Silverlight / WPF
Windows Phone

Untitled-2 1 6/29/12 12:23 PM

www.vslive.com/orlando

msdn magazine76 CLR

an ARM device, because Visual Studio
doesn’t run on ARM devices.

You’re already familiar with the cross-
platform development process if you write
apps for Windows Phone. Visual Studio
runs on your x86 dev box and you launch
your app remotely on the device or an
emulator. Th e app uses a proxy installed
on your device to communicate with your
development machine through an IP con-
nection. Other than the initial setup steps,
the debugging and profi ling experiences
behave the same on all processors.

One other point to be aware of is the
Visual Studio project settings add ARM to
x86 and x64 as a choice of target processor. You’ll normally choose
to target AnyCPU when you write a .NET app for Windows on
ARM, and your app will just run on all Windows 8 architectures.

Going Deep into Supporting ARM
Having made it this far into the article, you already know a lot about
ARM. Now I’d like to share some of the interesting, deep technical
details about the .NET team’s work to support ARM. You won’t
have to do this kind of work in your .NET code—this is just a quick
behind-the-scenes peek at the kind of work we did.

Most of the changes inside the CLR itself were straightforward
because the CLR was designed to be portable across architectures.
We did have to make a few changes to conform to the ARM Appli-
cation Binary Interface (ABI). We also had to rewrite assembly code
in the CLR to target ARM and change our JIT compiler to emit
ARM Th umb 2 instructions.

Th e ABI specifi es the how of a processor’s programmable interface.
It’s similar to the API that specifi es the what of an OS’s programmati-
cally available functions. Th e three areas of the ABI that aff ected our
work are the function calling convention, the register conventions
and call stack unwind information. I’ll discuss each.

Function Calling Convention A calling convention is an agree-
ment between code that calls a function and the function being
called. Th e convention specifi es how parameters and return values
are laid out in memory, as well as what registers need to have their
values preserved across the call. In order for function calls to work
across boundaries (such as a call from a program into the OS), code
generators need to generate function calls that match the conven-
tion that the processor defi nes, including alignment of 64-bit values.

ARM was the fi rst 32-bit processor where the CLR had to handle
aligning parameters and objects on the managed heap on a 64-bit
boundary. Th e simplest solution would be to align all parameters, but
the ABI requires that a code generator not leave bubbles in the stack
when no alignment is required so there’s no performance degrada-
tion. Th us the simple operation of pushing a bunch of parameters
on the stack becomes more delicate on the ARM processor. Because
a user structure can contain an int64, the CLR’s solution was to use
a bit on each type to indicate if it requires alignment. Th is gives the
CLR enough information to ensure that function calls containing
64-bit values don’t accidentally corrupt the call stack.

Register Convention The data-
alignment requirement carries over when
structures are fully or partially registered
on ARM. Th is means we had to modify the
code inside the CLR that moves frequently
used data from memory into registers to
make sure the data is properly aligned in
the registers. Th is work had to be done for
two situations: fi rst, making certain that
64-bit values start in even registers, and sec-
ond, placing homogeneous fl oating-point
aggregates (HFAs) in the proper registers.

If a code generator registers an int64 on
ARM, it must be stored in an even-odd
pair—that is, R0-R1 or R2-R3. Th e protocol

for HFAs allows up to four double or single fl oating-point values
in a homogeneous structure. If these are registered, they must be
stored in either the S (single) or D (double) register sets but not in
the general-purpose R registers.

Unwind Information Unwind information records the eff ects
that a function call has on the stack and records where nonvolatile
registers are saved over function calls. On x86, Windows looks
at FS:0 to view a linked list of each function’s exception registra-
tion information in the event of an unhandled exception. 64-bit
Windows introduced the concept of unwind information that
allows Windows to crawl the stack in case of an unhandled excep-
tion. Th e ARM design extended this unwind information from
64-bit designs. Th e CLR code generators, in turn, had to change
to accommodate the new design.

Assembly Code Even though most of the CLR runtime engine
is written in C++, we have assembly code that must be ported
to each new processor. Most of this assembly code is what we
call “stub functions,” or “stubs.” Stubs serve as interface glue that
enables us to tie together the C++ and JIT-compiled portions of
the runtime. Th e remainder of the assembly code inside the CLR
is written in assembly for performance. For example, the garbage
collector write barrier needs to be extremely fast because it’s called
frequently—any time an object reference is written to an object on
the managed heap.

One example of a stub is what we call the “shuffl e thunk.” We
call it a shuffl e thunk because it shuffl es parameter values across
registers. Sometimes the CLR has to change the placement of

Figure 2 A “Shuffl e Thunk” Shuffl es Value
Parameters Across Registers

R0 foo this pointer R0parameter 0

R1 parameter 0 R1parameter 1

R2 parameter 1 R2parameter 2

R3 parameter 2

Call Through
Instance foo

Call Through
Static Delegate

R3parameter 3

The most signifi cant
issues you’ll see when

porting your app to ARM are
performance differences from

desktop processors.

msdnmagazine.com

parameters in registers just before a function call is made. Th e CLR
uses the shuffl e thunk to do this when invoking delegates.

Conceptually, when you invoke a delegate, you just make a call
to the Invoke method. In reality, the CLR makes an indirect call
through a fi eld of the delegate rather than making a named method
call (except when you explicitly call Invoke through refl ection).
Th is method is far faster than a named method call because the
runtime can simply swap the instance of the delegate (obtained
from the target pointer) for the delegate in the function call. Th at
is, for an instance foo of delegate d, the call
to the d.Member method is mapped to the
foo.Member method.

If you make a closed instance delegate
call, the this pointer is stored inside the
first register used for passing parameters,
R0, and the fi rst parameter is stored in the
next register, R1. But this only works when
you have a delegate bound to an instance
method. What happens if you’re calling an
open static delegate? In that case, you expect
that the fi rst parameter is stored in R0 (as
there’s no this pointer.) Th e shuffl e thunk
moves the fi rst parameter from R1 into R0,
the second parameter into R0 and so on, as
show in Figure 2. Because the purpose of
this shuffle thunk is to move values from
register to register, it needs to be rewritten
specifi cally for each processor.

Just Focus on the Code
To review, porting the .NET Framework to
ARM was an interesting project and a lot of
fun for the .NET team. And writing .NET
apps to run on top of the .NET Framework
on ARM should be fun for you as a .NET
developer. Your .NET code might execute
differently on ARM than it does on x86-
based processors in a few situations, but
the .NET Framework virtual execution
environment normally abstracts those
diff erences for you. Th is means you don’t have
to worry about what processor architecture
your .NET app runs on. You can just focus
on writing great code.

I believe having Windows 8 available on
ARM will be great for both developers and
end users. ARM processors are especially
suited for long battery life, so they enable
lightweight, portable, always-connected
devices. The most significant issues you’ll
see when porting your app to ARM are
performance differences from desktop
processors. But make sure to run your code
on ARM before saying it actually works on
ARM—don’t trust that developing on x86 is

enough. For most developers, that’s all that’s needed. And if you do
run into any issues, you can refer back to this article to get some
insight into where to start investigating.

ANDREW PARDOE is a program manager for the CLR team, helping to ship
the Microsoft .NET Framework on all kinds of processors. His personal favorite
remains the Itanium. He can be reached at Andrew.Pardoe@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Brandon Bray, Layla Driscoll, Eric Eilebrecht and Rudi Martin

www.softfluent.com/landings_cfe_msdn
www.softfluent.com
mailto:info@softfluent.com
www.msdnmagazine.com
mailto:Andrew.Pardoe@microsoft.com

msdn magazine78

Amazon’s Dynamo and its data model on Google’s Bigtable” (source:
“Cassandra: Th e Defi nitive Guide,” O’Reilly Media, 2010, p. 14).

Sometimes I think the Greek myths make more sense than my
industry does.

Breaking all that down, we see that:
• Cassandra is built to store lots and lots and lots of data

(hundreds of terabytes seem to be a commonly cited
example) across a variety of machines arranged in a ring, as
opposed to the trend within relational database thinking
that says “buy a bigger box” (for scaling horizontally, rather
than vertically).

• Cassandra has a data model that looks like the relational
database’s data model on the surface, sounds kind of like it
with its discussions of columns, column families and named
values, but acts nothing like it in practice.

More relevant to this discussion, Cassandra has been gaining
momentum within the developer
community as a worthwhile tool to
have in the toolbox, so it seemed
like a good idea to turn our collec-
tive columnar gaze upon a column-
oriented database. (Pun intended.)

Conceptual Overview
Cassandra is not a relational data
store, despite its use of the term
“column-oriented.” In fact, it doesn’t
really look anything at all like a
relational database. Instead of
storing a schema, for example,
that guarantees the various rows
of data in the table are all alike,
Cassandra stores “column families”
in “keyspaces.” A keyspace is really

Cassandra NoSQL Database:
Getting Started

Th e ancient Greeks told the story of Cassandra, the daughter of
King Priam and Queen Hecuba of Troy. She was one of the most
beautiful women of her generation. When offered the gifts of a
prophetess by the Greek god Apollo, she quickly accepted, but
when she later spurned his amorous advances, Apollo cursed her
to always know the truth and never be believed by any to whom
she spoke it. Thanks to her gift of prophesy, Cassandra foresaw
the trap presented by the Trojan horse, but thanks to her curse
of disbelief, no one in Troy would listen to her warnings. They
brought the horse within the city walls, and unwittingly invited the
Greek soldiers hidden therein into the city, which led to Troy’s fall.
Cassandra was taken as a war prize back to Greece by Agamemnon,
where she again foresaw the future: his (and her) death, but was
again disbelieved—and, sure enough, both he and she were killed.

Modern computer science geeks tell the story of Cassandra a
little differently, as Apache Cassandra, another of the “NoSQL”
databases—and a popular one at that—in use at a variety of well-
known Internet-based companies (YouTube, Netfl ix and others),
and presumably one whose reports are actually taken at face value.
(Rumor has it that Cassandra is a pun on another famous proph-
etess, the Oracle of Delphi.)

To the developer, Cassandra the soft ware can be just as confusing as
Cassandra the Trojan. It’s “an open source, distributed, decentralized,
elastically scalable, highly available, fault-tolerant, tuneably consis-
tent, column-oriented database that bases its distribution design on

THE WORKING PROGRAMMER TED NEWARD

Figure 1 Installing Cassandra with the Cassandra.bat File

To the developer, Cassandra the
software can be just as confusing

as Cassandra the Trojan.

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine80 The Working Programmer

just an administrative isolation barrier, in much the same way that
relational database instances are separated from one another on the
same server, but a column family is a completely diff erent beast.
Each column family is made up of “rows” identifi ed by a key, but
within a row, any number of name/va lue pairs (columns) can be
present, and each row can contain entirely diff erent data elements
from the other rows within the column family.

In practical terms, let’s suppose we’re using Cassandra to store a
collection of people. Within the keystore “Earth,” we’ll have a column
family called “People,” which in turn has rows that look like this:

RowKey: tedneward
 ColumnName:"FirstName", ColumnValue:"Ted"
 ColumnName:"LastName", ColumnValue:"Neward"
 ColumnName:"Age", ColumnValue:41
 ColumnName:"Title", ColumnValue:"Architect"
RowKey: rickgaribay
 ColumnName:"FirstName", ColumnValue:"Rick"
 ColumnName:"LastName", ColumnValue:"Garibay"
RowKey: theartistformerlyknownasprince
 ColumnName:"Identifier", ColumnValue: <image>
 ColumnName:"Title", ColumnValue:"Rock Star"

As you can see, each row contains conceptually similar data, but
not all rows will have the same data (though if the variance grows
too large, it might get confusing for developers to use). Storing pets
in here, for example, would likely create too much chaos. Th is is
why any nontrivial application will likely use dozens or hundreds
of diff erent column families.

By the way, I’m lying (slightly) to you when I say that a row is
made up of name/value pairs; it’s actually made up of name/value/
timestamp triplets, but the Cassandra docs make it pretty clear that
the timestamp part of the triplet is only for confl ict detection and is
never to be used as part of your application logic. Most Cassandra
articles essentially tell new Cassandra developers to ignore it.

Th is all makes more sense once you see it in action, so let’s get
Cassandra running.

Getting Started
Before you can do anything with Cassandra, you have to get it
installed, and therein lies the fi rst hurdle: Cassandra is, as adver-
tised, an open source project, and like many open source projects,
it’s not written in a Microsoft .NET Framework language. Instead,

Cassandra is written in Java, and as such requires a relatively
modern Java runtime to be installed on your machine in order to
execute. Cassandra runs fi ne with Java 6 (and, in fact, most of the
blog posts on the subject suggest it), but should run just as well if
not a touch faster with the most recently released Java 7.

(If you’ve never installed Java on your machine before, just plug
“Java Runtime Environment 6 (or 7) download” into your search
engine of choice and pull down the desired installer for either
32- or 64-bit Windows, depending on your target OS. About the
only other thing you’ll need to do is set an environment variable
called JAVA_HOME to point to the Java Runtime Environment
(JRE) install directory—under a default installation, this will be
in C:\Program Files\Java\jre6—and put the JRE’s “bin” subdirectory
on the PATH if it’s not already.)

Next, pull down the Cassandra binaries from the Cassandra
homepage. Unfortunately for us Windows folks, it’s only available
as a .tar.gz fi le, which, out of the box, Windows isn’t sure what to
do with. Dozens of tools are available to unarchive a .tar.gz fi le,
including the command-line “gunzip” and “tar” utilities in Cygwin,
if you want to start practicing some Unix-Fu on a Windows box.
Dump the contents of the Cassandra download into a convenient
directory, such as C:\Prg\apache-cassandra-1.1.0 (which is the latest
version, as I write this). Th en, as is common with Java projects, you
need to create an environment variable that points to the root of
the Cassandra install directory, so create a CASSANDRA_HOME
environment variable that points to C:\Prg\apache-cassandra-1.1.0
(in my case).

If you’re a little aghast at the
primitive conditions here, remem-
ber that Java projects like to work
on multiple platforms (which
means we have to use mechanisms
that are common to all platforms,
and yeah, environment variables
are everywhere, even on Android).
Th e positive side of this is that if
you ever work with Cassandra on
a non-Windows platform, you’ll
be doing the same setup steps: get
Java, get Cassandra, unarchive and
set environment variables. Unfor-
tunately, it means that our tooling
isn’t quite as fancy and GUI-based
as we might otherwise be used to.Figure 2 Connecting to a Running Cassandra Instance

Cassandra has been gaining
momentum within the developer
community as a worthwhile tool

to have in the toolbox.

81August 2012msdnmagazine.com

Speak to Us, O Prophetess!
Speaking of which, fi ring up Cassandra means hopping on over
to the Cassandra install directory and kicking off the batch file
“cassandra.bat” found in the “bin” subdirectory. Launch that as
“cassandra –f ” (the “-f ” causes it to run in the foreground), and
you should see something like Figure 1.

By default, Cassandra is confi gured to dump data and commit
logs into the “var” directory off the root of your fi lesystem, which
Java interprets as C:\. Th is is more Unix-ism, and is easily confi g-
ured diff erently in the “conf/cassandra.yaml” confi guration fi le.

(Convenience note: A company called DataStax Inc. off ers an
all-in-one installer containing both the Cassandra server and JRE,
as well as an HTML-based operation center product, available as a
free download. If you’re having diffi culties getting it all set up, you
might try that instead.)

A running Cassandra server is expecting incoming connections
on port 9160 and uses port 7199 for its Java Management Exten-
sions monitoring, which is Java’s rough equivalent to Windows
Management Instrumentation. Both ports will, eventually, want
to be accessible to client applications and Cassandra monitoring
utilities, respectively.

Once Cassandra is up and running on your box, we can con-
nect to the running instance using the Cassandra command-line
interface, launched by running “cassandra-cli.bat,” again from the
Cassandra “bin” directory (see Figure 2).

To create a keyspace, use “create keyspace TestKS” (which must
be a unique name), and to create a column family within that
keyspace, fi rst type “use <keyspace>,” then “create column family
<name>.” No other schema definition is required—the column
family is a collection of name/value pairs from then on, remember.

To insert data into the column family, use the “set” command,
which requires the name of the column family into which you
insert (“TestCF”), the key to use for this row (“TestKey”), the
column within the column family to use as the name for this value
(“column”) and the value to store there (“value”). However, because
Cassandra stores data as binary values, you have to tell Cassandra
to interpret the row key, column name and column value as ASCII
values using the built-in “ascii” function. Th is means the whole
“set” looks like this:

set TestCF[ascii('TestKey')][ascii('column')]=ascii('value');

Retrieving that data is basically the same exercise using the “get”
command, like this:

get TestCF[ascii("TestKey")];

Th is will return with something like this:
(column=636f6c756d6e, value=76616c7565, timestamp=1338798419726000)

Th is demonstrates that Cassandra does, indeed, speak gibberish
(at least, to us humans—if you look carefully, those binary values
are the ASCII values of “column” and “value,” respectively).

The Hardest Part Is Done
We’re out of time, and Cassandra has only been installed. Specifi cally,
a single-node Cassandra cluster is up and running, and nothing has
been done to program against it yet. Fortunately, the hardest part
of getting started with Cassandra has been completed. In the next
installment, I’ll start using .NET libraries to talk to Cassandra, get it to
store some data from the .NET applications, pull it back, and then
show how to set up a three-node cluster and get it up and running.

For now, though, happy coding!

TED NEWARD is an architectural consultant with Neudesic LLC. He has
written more than 100 articles and authored or coauthored a dozen books,
including “Professional F# 2.0” (Wrox, 2010). He is an F# MVP and noted Java
expert, and speaks at both Java and .NET conferences around the world. He
consults and mentors regularly—reach him at ted@tedneward.com if you’re
interested in having him come work with your team. He blogs at blogs.tedneward.
com and can be followed on Twitter at Twitter.com/tedneward.

THANKS to the following technical expert for reviewing this article:
Kelly Sommers

Cassandra is written in Java,
and as such requires a relatively

modern Java runtime to be
installed on your machine in

order to execute.

mailto:ted@tedneward.com
www.godiagram.com
www.msdnmagazine.com
www.Twitter.com/tedneward

msdn magazine82

Positive values of altitude are above the horizon; negative values
are below the horizon. An object located straight up from you has
an altitude of 90°, also called the zenith, and an object straight
down has an altitude of -90°, called the nadir.

Now swing your horizontal outstretched arm so it’s pointing north.
Th e angle your arm swings during this movement is called the azimuth.
Th e altitude and azimuth together constitute a horizontal coordinate.

Notice that the horizontal coordinate gives you no information
about how far away something is. During a solar eclipse, the sun
and moon have the same horizontal coordinate. With any type of
celestial coordinate system, everything is assumed to be on the
interior surface of the celestial sphere.

Th e azimuth must be relative to a particular point on the compass.
Most oft en, the azimuth is set at 0° for north, with increasing angles
moving eastward. However, astronomers tend to set 0° at the south
with increasing angles moving westward; at least that’s how Jean
Meeus sums it up in his classic book, “Astronomical Algorithms”
(Willmann-Bell, 1998).

Horizontal coordinates are analogous to geographic coordinates,
except the perspective is diff erent. Instead of being on the surface
of a sphere, you’re at the center looking out. Th e azimuth is compa-
rable to the longitude and the altitude is comparable to the latitude.
Like circles of longitude, circles of azimuth are always great circles
passing through the poles. Like circles of latitude, circles of altitude
are always parallel to each other. Th e horizon plays the same role in
horizontal coordinates as the equator in geographic coordinates.

Now pick up your Windows Phone and hold it so you’re looking at
the screen while the camera lens points away from you. Th e direction
the camera lens is pointing has a particular altitude and azimuth.
Although that horizontal coordinate is conceptually a location on the
interior of the celestial sphere, it’s also a direction from the viewpoint
of the camera lens—mathematically, a three-dimensional vector.

As I’ve discussed in previous columns, the phone has an implicit
coordinate system, where the positive Z axis extends out from
the screen. Th at means the camera lens on the other side points
in the direction of the 3D vector (0, 0, –1). As I demonstrated in
the previous installment of this column (msdn.microsoft.com/magazine/
jj190811), the Motion sensor in Windows Phone lets you obtain a 3D
rotation matrix that describes how the Earth is rotated relative
to the phone. To obtain a matrix that describes how the phone is
rotated relative to the Earth, the matrix obtained from the Motion
sensor must be inverted:

matrix = Matrix.Invert(matrix);

Viewing a Virtual World
from Your Windows Phone

Until the time of Copernicus—and for many years aft er—people
believed the universe was constructed of a series of concentric
celestial spheres surrounding the Earth. Although that model of
the universe has been abandoned, it’s still convenient to employ the
concept of a celestial sphere for identifying the location of objects
in 3D space relative to ourselves as viewers.

A celestial sphere is particularly handy for programs that let you
use a smartphone for viewing a world of virtual reality or augmented
reality. With such programs, you hold the phone as if you’re taking
a photograph or video through the camera lens, but what you see
on the screen might not have anything to do with the real world.

Such a program needs to determine its orientation in 3D space
so that by sweeping the phone in arcs the user can pan through
this virtual world. With the Motion sensor I described in the last
installment of this column, Windows Phone is capable of providing
the necessary orientation information.

How do we translate from the information provided by the Motion
sensor to the celestial sphere? It’s all about the coordinate system.

We’re all familiar with geographic coordinates that allow us describe
a location on the surface of our planet. Any point on the surface of
the Earth can be denoted by two numbers: latitude and longitude,
both of which are angles with a vertex in the Earth’s center. Latitude
is an angle relative to the equator: It’s positive for locations north
of the equator and negative for locations south. The latitude of
the North Pole is 90° and the latitude of the South Pole is -90°.
Longitude involves angles between great circles that pass through
the two poles measured from the Prime Meridian, which is the line
of longitude that passes through Greenwich, England.

We live not only on the surface of a sphere, but also at the center of a
conceptual celestial sphere. Several coordinate systems can be used to
denote locations on this celestial sphere, but the one I’ll be focusing on is
called the horizontal coordinate system because it’s based on the horizon.

Horizontal Coordinates
Using your outstretched arm, point to any object you see around
you. Th at object has a location on the celestial sphere. What is that
location? Move your straight arm up or down so it becomes hori-
zontal—that is, parallel to the surface of the Earth. Th e angle your
arm swings through during this movement is called the altitude.

TOUCH AND GO CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/
mag201208TouchAndGo.

http://archive.msdn.microsoft.com/mag201208TouchAndGo
http://msdn.microsoft.com/magazine/jj190811
http://msdn.microsoft.com/magazine/jj190811

83August 2012msdnmagazine.com

Use this inverted matrix to rotate the (0, 0, –1) vector:
Vector3 vector = Vector3.Transform(new Vector3(0, 0, -1), matrix);

Now you have a 3D vector that describes the direction the
camera lens is pointing. Th at vector needs to be converted to alti-
tude and azimuth angles.

If the phone is held upright—that is, with the transformed vector
horizontal to the surface of the Earth—the Z component is 0, and the
problem reduces to the well-known conversion from two-dimensional
Cartesian coordinates to polar coordinates. In C#, it’s simply:

double azimuth = Math.Atan2(vector.X, vector.Y);

Th at’s an angle in radians. Multiply by 180 and divide by π to
convert to degrees.

Th is formula implies that north has an azimuth of zero, and val-
ues increase in an eastward direction.

If you prefer south to be zero with increasing values in a west-
ward direction, shift the result by 180° by changing the sign of the
X and Y components.

Th at formula for the azimuth is actually valid regardless of the
Z component of the transform vector.

That Z component is the sine of the altitude. Because the al-
titude ranges only between negative and positive 90°, it can be
calculated using the inverse sine function:

double altitude = Math.Asin(vector.Z);

Again, multiply by 180° and divide by π to convert radians
to degrees.

However, we’re still missing something, which you might recognize
when you realize that we’ve translated a three-dimensional rotation
matrix into a coordinate that has only two dimensions because it’s
confi ned to the interior surface of the celestial sphere.

What happens when you aim the phone in a particular direction
described by a 3D vector, and then rotate the phone around the
vector like an axis? Th e vector doesn’t change, nor do the altitude
and azimuth values, but the virtual reality scene on the phone’s
screen should rotate relative to the phone.

Th is extra motion is sometimes referred to as tilt. It’s also an angle,
but the calculation is a little more diffi cult than altitude and azimuth.

You can see that calculation in a HorizontalCoordinate struc-
ture I created that converts a Motion reading into altitude, azimuth
and tilt, all in degrees. Th is structure is included in the Altitude-
AndAzimuth project, which is among the downloadable code for
this article. Th is program simply uses the Motion sensor to obtain
the orientation of the phone, and then converts the information
to horizontal coordinates. Th is project requires references to the
Microsoft .Devices.Sensors assembly (for the Motion class) and the
Microsoft .Xna.Framework assembly (for the 3D vector and matrix).
Th e screen displays the transformed vector and the values from the
HorizontalCoordinates structure. Figure 1 shows the phone held
approximately upright with the lens pointed approximately east,
and tilted clockwise a bit.

Getting the Big Picture
Suppose you want to view an image that’s much larger than the
screen of your computer—or, in this case, your phone.

Traditionally, scrollbars have been involved. On a touchscreen,
the scrollbars can be eliminated and the user can perform a
similar scrolling operation using fi ngers.

But another approach is to conceptually wallpaper the interior
of the celestial sphere with this large image and then view it by
moving the phone itself. (Keep in mind that when you move the
phone to view the image, you’re not moving the phone left and right
or up and down in a plane. Th e movement has to be along arcs so
that the altitude and azimuth are changing.)

How large can such an image be so that it pans across the screen
in a natural way as the phone moves?

An average Windows Phone screen is probably about 2 inches
wide and 3.33 inches tall. If you hold the phone 6 inches from
your face, some simple trigonometry reveals that the phone
occupies a fi eld of view about 19° degrees wide and 31° tall. Hold-
ing the phone in landscape mode, these two fi elds of view are slices
from the total azimuth of 360° degrees and altitude of 180°. Very
roughly, then, the phone’s screen held 6 inches from your face in
landscape mode occupies about 10 percent of the total fi eld of view
horizontally and vertically.

Or think of it this way: If you want to use your phone in por-
trait mode to pan over the surface of a bitmap, that bitmap can be
somewhere in the region of 8000 pixels wide and 4800 pixels high.

Th at’s the idea of the BigPicture project, which contains links
for downloading eight images (a mix of paintings, photographs,
documents and drawings, mostly from Wikipedia), the largest
of which is 5649 pixels wide and 4000 pixels high. You can easily
add other images by editing an XML fi le, but based on my experi-
ence using the PictureDecoder.DecodeJpeg method, you’re likely
to encounter out-of-memory exceptions if you go much larger.

Background File Transfers
Considering that most of the image fi les referenced by BigPicture
are more than 2MB in size and one of them is 19MB, this seemed
an ideal opportunity to make use of the facility added to Windows
Phone to download fi les in the background.

Figure 1 The AltitudeAnd-
Azimuth Display

Figure 2 The BigPicture
Main Page

www.msdnmagazine.com

msdn magazine84 Touch and Go

In the BigPicture program, most of MainPage is devoted to main-
taining a ListBox that lists the available fi les, and downloading them
to isolated storage. Figure 2 shows the program with some images
already downloaded (which are shown as thumbnails), one download
in progress and others not yet downloaded.

To use the background fi le transfer, you create an object of type
BackgroundTransferRequest, passing to it the URL of the exter-
nal fi le and the URL of a location in isolated storage within the
/shared/transfers directory. You can then obtain changes in status
and progress via events while the program is running, and you can
enumerate the active requests when your program starts up again.

When the BigPicture program starts up, MainPage searches
isolated storage for any images that might have been previously
downloaded. I discovered that fi les are downloaded directly to the
fi lename you specify, and not to a temporary fi le with some other
fi lename. Th is means that my program was encountering fi les that
had not yet been fully downloaded, or whose downloads might
have been canceled. I fi xed several bugs in my program by using
the /shared/transfers directory only for downloading fi les and not
for permanent storage. When a download completes, the program
moves that fi le to another directory and creates a thumbnail in yet
another directory. For convenience, all three fi les have the same
name but are distinguished by the directory in which they’re found.

When a fi le has been downloaded by BigPicture, you can tap the
item in the ListBox and the program navigates to ViewPage, which
is the real heart of the program.

Viewing the Big Image
ViewPage has two viewing modes, which you can alternate
between by tapping on the screen. An animation takes you from
one mode to the other.

In the normal mode, shown in Figure 3, the image is displayed
in its pixel size, conceptually stretched to the interior of a celestial

sphere. You navigate around the image by changing the orientation
of the phone, conceptually pointing the phone toward the area of
the celestial sphere you want to view. (It might help if you stand
up and turn your whole body in diff erent directions, and point the
phone up and down as well.)

When you tap the phone, you shift to the zoom-out mode. Th e
entire image is displayed unrotated in portrait mode, as shown
in Figure 4. A rectangle displays the portion of the image that’s
viewable in the normal mode. In this example, that rectangle is
near the lower-right corner.

What happens at the edges? Because the bitmap is conceptually
stretched to the interior of a celestial sphere, when you move
the phone to the right beyond the right edge of the bitmap, you
should then encounter the left edge. However, the layout system in
Silverlight doesn’t wrap around in this way. If the program allowed
opposite edges of a large bitmap to be visible, then two Image
elements would be required. At the point where all four corners
meet, four Image elements would be required.

I nixed that concept. Beyond the right edge of the bitmap is
a gap equal to the maximum dimension of the phone’s display,
and then the left edge appears. You’ll never see both edges in the
display. Th is also solves the problem of what to do at the poles,
where theoretically the top and bottom of the painting should be
compressed to a point.

Figure 5 shows most of the XAML fi le for ViewPage. Th e Image
element displays the bitmap itself, of course, and the None setting
for the Stretch property indicates that it’s to be displayed in its pixel
size. Normally a large image would be cropped by the layout system

<phone:PhoneApplicationPage ... >

 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Canvas>
 <Grid>
 <Image Name="image" Stretch="None" />

 <Border Name="outlineBorder"
 BorderBrush="White"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">

 <Rectangle Name="outlineRectangle"
 Stroke="Black" />

 <Border.RenderTransform>
 <CompositeTransform x:Name="borderTransform" />
 </Border.RenderTransform>
 </Border>

 <Grid.RenderTransform>
 <CompositeTransform x:Name="imageTransform" />
 </Grid.RenderTransform>
 </Grid>
 </Canvas>

 <TextBlock Name="titleText"
 Style="{StaticResource PhoneTextNormalStyle}"
 Margin="12,17,0,28" />

 <TextBlock Name="statusText"
 Text="creating image..."
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</phone:PhoneApplicationPage>

Figure 5 The XAML File for the BigPicture Image Viewing Page

Figure 4 BigPicture Showing
an Entire Large Painting

Figure 3 BigPicture
Showing One Small Part
of a Large Painting

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com

msdn magazine86 Touch and Go

to the size of the display, and you wouldn’t be able to pan around
the rest of the image. But putting everything inside a Canvas tricks
the layout system into rendering the whole object. Th e Border with
the embedded Rectangle is the rectangle visible in the zoomed-out
mode, but it’s also visible hugging the inside of the screen in the
normal mode. Th e CompositeTransform named imageTransform
applies to both the Image and the Border. Th e other Composite-
Transform named borderTransform applies only to the Border.

The codebehind file starts a Motion sensor going and then
applies the rotation matrix to create a HorizontalCoordinate
object that it uses to set the properties of these two transforms. Th e
ViewPage class also defi nes an InterpolationFactor dependency
property that’s the target of an animation to transition between
the two viewing modes. As InterpolationFactor is animated from
0 to 1, the view transitions between the normal and the zoom-out.

Figure 6 shows most of the math involved. One of the most
important calculations occurs when the Motion sensor is updated.
Th is is the calculation of the CenterX and CenterY properties of
the CompositeTransform for the Image, and it’s where the altitude
and azimuth come into play. Although this transform center is the
point around which scaling and rotation occurs, further calculations
put this point in the center of the display in the normal viewing
mode. Th e rectangular border is also aligned with this point.

When the Azimuth is 0 (phone facing north) and the Altitude
is 0 (upright), the CenterX and CenterY properties are set to the
center of the bitmap. Notice the inclusion of the maxDimension
value so that these CenterX and CenterY properties can be set to
values outside the bitmap. Th is allows for the padding when you
sweep past the edges.

Most of the remainder of the calculations occur during the
UpdateImageTransforms method, which is called when the Motion
sensor reports a new value, or when the InterpolationFactor
property changes during transitions. Here’s where the scaling and
translation of the Image transform occurs, as well as rotation.

If you’re interested in understanding the interaction of these
transforms, you might want to clean them up by eliminating all
the interpolation code. Examine the simplifi ed formulas when
InterpolationFactor is 0 and when it’s 1, and you’ll see that they’re
actually quite straightforward.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine, and is
currently updating his classic book “Programming Windows” (Microsoft Press,
1998) for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
Donn Morse

public partial class ViewPage : PhoneApplicationPage
{
 ...
 void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Save the screen dimensions
 screenWidth = this.ActualWidth;
 screenHeight = this.ActualHeight;
 maxDimension = Math.Max(screenWidth, screenHeight);

 // Initialize some values
 outlineBorder.Width = screenWidth;
 outlineBorder.Height = screenHeight;
 borderTransform.CenterX = screenWidth / 2;
 borderTransform.CenterY = screenHeight / 2;

 // Load the image from isolated storage
 ...
 // Save image dimensions
 imageWidth = bitmap.PixelWidth;
 imageHeight = bitmap.PixelHeight;
 ...
 zoomInScale = Math.Min(screenWidth / imageWidth, screenHeight / imageHeight);
 UpdateImageTransforms();
 ...
 }
 ...
 void OnMotionCurrentValueChanged(object sender,
 SensorReadingEventArgs<MotionReading> args)
 {
 ...
 // Get the rotation matrix & convert to horizontal coordinates
 Matrix matrix = args.SensorReading.Attitude.RotationMatrix;
 HorizontalCoordinate horzCoord = HorizontalCoordinate.FromMotionMatrix(matrix);

 // Set the transform center on the Image element
 imageTransform.CenterX = (imageWidth + maxDimension) *
 (180 + horzCoord.Azimuth) / 360 - maxDimension / 2;
 imageTransform.CenterY = (imageHeight + maxDimension) *
 (90 - horzCoord.Altitude) / 180 - maxDimension / 2;

 // Set the translation on the Border element
 borderTransform.TranslateX = imageTransform.CenterX - screenWidth / 2;
 borderTransform.TranslateY = imageTransform.CenterY - screenHeight / 2;

 // Get rotation from Tilt
 rotation = -horzCoord.Tilt;
 UpdateImageTransforms();
 }

 static void OnInterpolationFactorChanged(DependencyObject obj,

DependencyPropertyChangedEventArgs args)
 {
 (obj as ViewPage).UpdateImageTransforms();
 }

 void UpdateImageTransforms()
 {
 // If being zoomed out, set scaling
 double interpolatedScale = 1 + InterpolationFactor * (zoomInScale - 1);
 imageTransform.ScaleX =
 imageTransform.ScaleY = interpolatedScale;

 // Move transform center to screen center
 imageTransform.TranslateX = screenWidth / 2 - imageTransform.CenterX;
 imageTransform.TranslateY = screenHeight / 2 - imageTransform.CenterY;

 // If being zoomed out, adjust for scaling
 imageTransform.TranslateX -= InterpolationFactor *
 (screenWidth / 2 - zoomInScale * imageTransform.CenterX);
 imageTransform.TranslateY -= InterpolationFactor *
 (screenHeight / 2 - zoomInScale * imageTransform.CenterY);

 // If being zoomed out, center image in screen
 imageTransform.TranslateX += InterpolationFactor *
 (screenWidth - zoomInScale * imageWidth) / 2;
 imageTransform.TranslateY += InterpolationFactor *
 (screenHeight - zoomInScale * imageHeight) / 2;

 // Set border thickness
 outlineBorder.BorderThickness = new Thickness(2 / interpolatedScale);
 outlineRectangle.StrokeThickness = 2 / interpolatedScale;

 // Set rotation on image and border
 imageTransform.Rotation = (1 - InterpolationFactor) * rotation;
 borderTransform.Rotation = -rotation;
 }
}

Figure 6 Much of the Transform Math for BigPicture

www.charlespetzold.com

Untitled-1 1 10/13/11 1:15 PM

www.msdnmagazine.com
www.VisualStudioMagazine.com
www.VSLive.com

msdn magazine88

acknowledges, nay, trumpets this fact in its advertising, as you can
see here: bit.ly/MW14OX.

Th e Apple business model resembles that of Whole Foods Market,
an upscale grocery store chain featuring natural and organic foods.
Th e shopping experience is part of the enjoyment, and you pay for
it in the higher prices of items.

The Microsoft business model resembles that of Safeway, a
not-particularly elegant supermarket chain common in Seattle. It’s
nowhere near as nice, but it’s a whole lot cheaper. Th at’s what most
customers choose, and that’s why Safeway has much higher gross
sales than Whole Foods—lower margins, but the volume more than
compensates for it. To keep the Safeway model going, Microsoft
has to sell the Surface for at least 25 percent less than the iPad.

If Microsoft really wants to light a fi re in the industry, it should get
a Windows 8 tablet onto store shelves this Christmas for the $199
price of the Amazon Kindle Fire (as Google is now trying with its
new Nexus 7). Having used Android, I can tell you that Windows
8 and the Metro-style UX is better. Hitting that price point, even
with lower functionality (no keyboard, a stamped-metal case
instead of vapor-deposited magnesium and so on), would capture
Microsoft major market share.

Th at’s what I think Microsoft has in mind for its alliance with
Barnes & Noble (source: bit.ly/L3tM1l). I’m guessing that Microsoft
wants the Nook tablet to run Windows 8. Th e increased sales of
Barnes & Noble media could then allow the company to subsidize
the consumer price somewhat, as phone providers do—and as
Amazon does for the Kindle.

Can Microsoft do it? I don’t know. The market will give the
answer, as it should, and as it always does.

So here’s the brawl I promised you in my November 2011
column (msdn.microsoft.com/magazine/hh547110). Apple versus Google
versus Microsoft , with retail vendors Amazon and Barnes & Noble
jumping in, and Facebook trying to fi gure out where it fi ts. I love
my ringside seat, and I’m ever ready to grease the stairs or pour oil
on troubled fi res for my own amusement and yours. Damn, it’s a
great time to be alive and working in this industry.

DAVID S. PLATT teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Whither Windows 8 Hardware

Th e Microsoft phone team understands that they need good hard-
ware in order for their soft ware to succeed. Th e Microsoft tablet
team is starting to understand this, too.

You don’t need me to tell you about the success of the Apple iPad,
expected to sell its 100-millionth unit this year (source: bit.ly/yyJrIo).
I’ll bet more than half of my readership owns one, as do I.

Most Windows hardware vendors are trying to challenge the
iPad with a hybrid PC, such as the Lenovo Yoga or the Samsung
prototype Microsoft gave out at the BUILD conference last year.
But compared to the iPad, both those machines are heavy, hot and
expensive, and have poor battery life. Compared to a notebook
PC, they’re underpowered and hard to type on. They have the
drawbacks of both form factors and the advantages of neither. As
a Texan student of mine once observed, “There ain’t nothing in
the middle of the road ’cept yellow lines and squashed armadillos.”

I’d like to take a moment to formally coin the term “armadillo”
to denote a technology product that fails because its functionality
falls between two successful niches, off ering the drawbacks of both
but the advantages of neither. As in, “Th e Samsung Series 7 Slate is
too hot, heavy and expensive for a tablet, and too weak and hard
to type on for a notebook. What an armadillo!” Oxford English
Dictionary, please take note.

Not content with these offerings, Microsoft is now attacking
Apple directly with the just-announced Surface tablet PC. The
size, weight and display are roughly equivalent to the iPad, and the
Surface has a foldable keyboard, USB slot and SD card slot, which
the iPad does not.

Assuming that Microsoft can manufacture this device with
reasonable quality, the key to its success will be price. Lament it or
envy it, but you can’t deny it: Customers are willing to pay more
for Apple products than for those of other vendors. Microsoft

DON’T GET ME STARTED DAVID S. PLATT

As a Texan student of
mine once observed, “There
ain’t nothing in the middle of
the road ’cept yellow lines and

squashed armadillos.”

http://bit.ly/yyJrIo
http://bit.ly/MW14OX
http://bit.ly/L3tM1l
http://msdn.microsoft.com/magazine/hh547110
www.rollthunder.com

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:57 PM

http://c1.ms/ultimate

Untitled-1 1 7/11/12 12:25 PM

www.syncfusion.com/metrostudio2

	Back
	Print
	MSDN Magazine, August 2012
	Cover Tip
	Contents
	CUTTING EDGE: Mobile Site Development, Part 3: Routing Requests
	WINDOWS WITH C++: Lightweight Cooperative Multitasking with C++
	DATA POINTS: Pitfalls and Pointers for a Base Logging Class in EF Models
	FORECAST: CLOUDY: Decoupling the Cloud with MEF
	Functional-Style Programming in C++
	Windows Azure Comes to the Rescue
	Build User-Friendly XML Interfaces with Windows PowerShell
	A History (API) Lesson
	Using the Team Foundation Server Client Object Model
	CyberNanny: Remote Access via Distributed Components
	.NET Development for ARM Processors
	THE WORKING PROGRAMMER: Cassandra NoSQL Database: Getting Started
	TOUCH AND GO: Viewing a Virtual World from Your Windows Phone
	DON’T GET ME STARTED: Whither Windows 8 Hardware

