

Simply Stunning.
Today’s users expect beautiful apps in every part of their lives, from work to home. Now, with

controls into your designs. DXv2 delivers the tools you need to inspire and be inspired.

productivity tools at www.DevExpress.com

Untitled-14 1 12/9/11 4:18 PM

http://www.DevExpress.com

THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
DATA POINTS
A Few of My Favorite
Things … in the Entity
Framework 4.2 DbContext
Julie Lerman, page 6

FORECAST: CLOUDY
Windows Azure
Deployment Domains
Joseph Fultz, page 12

TEST RUN
Ant Colony Optimization
James McCaffrey, page 70

THE WORKING
PROGRAMMER
Talk to Me:
Voice and SMS in the Cloud
Ted Neward, page 76

CLIENT INSIGHT
Getting Started with Knockout
John Papa, page 80

TOUCH AND GO
Background Audio
on Windows Phone 7.5
Charles Petzold, page 84

DON’T GET ME STARTED
Ring Around My Neck
David Platt, page 88

FEBRUARY 2012 VOL 27 NO 2

Asynchronous Programming in C++ Using PPL
Artur Laksberg . 22

Building a Massively Scalable Platform
for Consumer Devices on Windows Azure
Bruno Terkaly and Ricardo Villalobos . 28

Features and Foibles of ASP.NET MVC Model Binding
Jess Chadwick . 36

Practical Cross-Browser HTML5 Audio and Video
John Dyer . 46

Get Your Windows Phone Applications
in the Marketplace Faster
Cheryl Simmons . 54

What’s New in Windows Workfl ow Foundation 4.5
Leon Welicki . 60

Creating a NuGet Gallery
Clark Sell . 66

Write Once, Experience Many

NetAdvantage®

for jQuery

check out infragistics.com/jquery

BUSINESS CHARTING
Combine interactive

Outlook style grids with

rich business charting to

deliver a complete

portable solution.

TREE
Simplify the look of

hierarchical data,

while offering the

experience, design

and functionality

your users will love!

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-5 2 10/12/11 1:24 PM

www.infragistics.com/jquery

COMBO
The fully featured

combo box control

offers intuitive

auto-suggest,

auto-complete and

auto-filtering built in.

HTML EDITOR
Give your users a

powerful HTML

editing experience

by incorporating the

jQuery WYSIWYG

editing tool.

HIERARCHICAL GRID
An expandable data grid

that presents multiple

parent-child relationships

is the backbone of your

data application.

VIDEO PLAYER
When a user finds

what they want to

watch, our HTML5

video player adds

streaming video

right into your

own apps.

Untitled-5 3 10/12/11 1:24 PM

www.infragistics.com/jquery

magazine

Printed in the USA

LUCINDA ROWLEY Director
KIT GEORGE Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS Dino Esposito, Joseph Fultz,
Kenny Kerr, Julie Lerman, Dr. James McCaffrey, Ted Neward,
Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

FEBRUARY 2012 VOLUME 27 NUMBER 2

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-3 1 1/9/12 12:36 PM

www.leadtools.com

msdn magazine4

Conference. He eventually joined Microsoft to help evangelize the
company’s RIA eff orts.

“When I got into Silverlight I saw a great opportunity to work
with patterns, data and client-side RIA technology,” Papa says. “Th e
opportunity I had to be the corporate evangelist for Silverlight/
XAML was awesome. Th ey gave me the freedom to run and try
new ideas like Silverlight TV, running communities, MIXer parties,
open source events, the Silverlight Firestarter and much more.”

So why the Client Insight column, and why now?
For one thing, Papa left Microsoft in November to move back

to his native Florida, where he had lived prior to relocating to
the Redmond area in 2009. More to the point, the emergence of
JavaScript/HTML5, alongside the evolving Microsoft XAML/
Silverlight strategy, has turned the client development space on its
ear. Developers are actively rethinking their positions as they weigh
up-and-coming platforms and technologies against the challenges
posed by an increasingly diverse client space. Papa says developers
must keep things in perspective.

“We need to use the right tool for the right job. A lot has changed just
in the past two years, but that rule hasn’t,” he says, noting that devel-
opers need to stay current even as they work with their existing tools.

“Th e best perspectives I’ve heard are from developers who have
researched many alternatives. This prepares them to be armed
for in-depth discussions on what technology to choose in what
situation,” he says. “Keep an open mind and stay in touch with
the evolution.”

Calling out the Client
A month ago in this space, I wrote about an MSDN Magazine
author and columnist—Charles Petzold—who marked his 25th year
as a contributor to this publication. So it’s appropriate, I suppose,
that I dwell now on another valued columnist who left the maga-
zine aft er more than a decade, only to return to the fold this month.

John Papa first began writing for MSDN Magazine back in
December 1998, and for eight years from 2002 through 2009
authored the popular Data Points column, which continues today
under the stewardship of Julie Lerman. Papa wrote his last column
in February 2009, stepping down when he took on a role with
Microsoft as a corporate evangelist for Silverlight and XAML. Now
Papa is back, penning a new column called Client Insight, which
focuses on the fast-changing arena of rich client development
technologies and platforms.

“Client technology has really changed over the past few years
with XAML, HTML5 and mobile devices,” says Papa, who adds that
he hopes to bring together the best parts of XAML and HTML5.

“I plan on exploring the good, the bad and the challenging
aspects of client technologies,” he continues. “Anyone interested in
writing soft ware for the next generation should enjoy the column
as I plan to cover HTML5, CSS3, JavaScript, patterns, XAML,
mobility, tooling and much more.”

For Papa, the new column is a second chance to pursue a passion.
Th e Data Points column got its start in 1998 because he felt at the
time that data-related topics were being neglected. What started as
a series of data-focused features eventually turned into a monthly
column that ran for the better part of a decade.

“It always seemed like data access got very little play time in
magazines, conferences and books, so I decided to do something
about it,” Papa recalls of launching Data Points.

Silverlight Shuffl e
Of course, Papa is best known as a leading light in the Rich Internet
Application (RIA) space, particularly in the arena of Silverlight devel-
opment. A longtime independent developer, Papa became a fi xture
on the conference circuit, oft en appearing alongside Microsoft key-
noters at events like MIX and the Microsoft Professional Developers

MICHAEL DESMONDEDITOR’S NOTE

© 2012 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

“We need to use the right tool for
the right job. A lot has changed

just in the past two years,
but that rule hasn’t.”

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Everything You Need to

Powerful bug tracking.
Manage bugs, defects, & issues

The best Scrum tool. A beautiful & fast UI.

Plus:

Team up. Collaborate. Build. Ship great software OnTime.

Visit axosoft.com to learn more.

800.653.0024

Ship Software

Free 2-user hosted license. Forever. Did you know?

Find us on:

@axosoft Axosoft OnTime /axosoft

© Copyright 2002 - 2011 Axosoft LLC | All Rights Reserved
All trademarks and registered trademarks are the property of their respective owners.

Untitled-3 1 1/9/12 12:35 PM

www.axosoft.com

msdn magazine6

You could write that more effi ciently with LINQ methods and
a lambda:

var partyHatInstance = context.PartyHats.SingleOrDefault(p => p.Id == 3);

How often have you executed queries that perform this sim-
ple task? You might have even abstracted this code in your own
simpler method.

This is just what the EF team did for you in the DbContext
API. When working with DbContext, PartyHats would be a
DbSet<PartyHat>, and you can use the DbSet.Find method to
quickly achieve the same query execution with:

context.PartyHats.Find(3)

Th is method presumes the value you provide is the key value
for the class you’re searching—in this case, PartyHat. EF will then
execute a SingleOrDefault query on your behalf, searching for the
data where Id is equal to the value passed in—in this case, 3. You’ll
probably pass in a variable, not an actual value.

Th ere’s another benefi t to the DbSet.Find method that you can’t
achieve with a query. Th e Find method will fi rst look in memory
for a matching object that’s being tracked by the context. If that’s
found, then EF won’t bother querying the database. Th is is much
more effi cient than executing a query on the database only to
throw away the results of the query if the object instance is already
in memory—a wasted trip to the database that many developers
trigger without realizing it.

You can also use DbSet.Find with composite keys. Th e signature
of Find is not to take a single object but to take a parameter array.
Th erefore you can pass in a list of values to represent the values
that make up the key.

DbSet.Local
When working with EF, I frequently found myself wanting to do
something with objects that were already in memory and being
tracked by a context. Typical places for this logic are in the
SaveChanges override or SavingChanges method, where I’ll per-
form some validation. (Thanks to the new Validation API that’s
available along with DbContext, I’ve been able to reduce much of
this logic. But I won’t discuss Validation in this column.)

ObjectContext does provide a way to discover the objects that
it’s tracking, but the API logic to do this is neither easy to fi nd nor
easy to code. In fact, in my book, “Programming Entity Framework”
(O’Reilly Media, 2010), I wrote a set of four method extensions to
help make this task simpler and more fl exible.

More commonly, however, developers don’t realize the diff erence
between executing a LINQ to Entities query on the context and

A Few of My Favorite Things … in the Entity
Framework 4.2 DbContext

Even before Entity Framework 4.1 was released in early 2011,
developers were focused on only half of what was given to us in that
package: Code First. Code First lets you express your Entity Data
Model using your domain classes and Code First confi gurations,
a great alternative to developers who don’t want to use the visual
designer to defi ne the model. But every bit of sample code that you
see for using Entity Framework (EF) with those classes and Code
First-defi ned models is driven by another very important feature
that came in EF 4.1: the DbContext class.

Th e ObjectContext class is part of the core EF API in the Micro-
soft .NET Framework 4 and is the class that allows you to perform
queries, change tracking and update the database using the strongly
typed classes that represent your model. Th e DbContext class is
best described as a wrapper around ObjectContext that exposes
the most commonly used features of ObjectContext as well as pro-
vides some simpler “shortcuts” to tasks that are frequently used but
complicated to code directly with ObjectContext.

It’s my guidance and Microsoft ’s that you should consider Db-
Context fi rst when beginning new projects using EF. If you fi nd that
you occasionally need to access some of the more granular logic
that the ObjectContext class provides, there’s a hook to get from a
DbContext instance to its underlying ObjectContext:

var objectContext = (myDbContextInstance as IObjectContextAdapter).ObjectContext

If you know that you’ll be doing work that requires frequent
use of ObjectContext features directly, you might prefer to use
that rather than DbContext. But in general, the EF team recom-
mends that you avoid using ObjectContext directly unless you’re
prevented from using DbContext for some reason.

I’ll add the caveat that this guidance is meant for new projects. When
working with the DbContext API, you get not only the new slim-
mer and smarter DbContext class, but also equally improved DbSet
and DbQuery classes (counterparts to ObjectSet and ObjectQuery).

Although I'm a big fan of the DbContext, a few of its features
have become my favorite little pets.

DbSet.Find
One of the new methods in the API is DbSet.Find. Th is helps with
a common pattern developers use for data access: retrieving a
single object based on its primary key.

With ObjectContext, you would have to create a full query and then
execute the query using a LINQ method such as SingleOrDefault.

Th at would look like:
var partyHatQuery = from p in context.PartyHats where p.Id == 3 select p;
var partyHatInstance = partyHatQuery.SingleOrDefault();

DATA POINTS JULIE LERMAN

INCLUDED IN THE NEW 1&1 SERVER PORTFOLIO:

NEW HARDWARE, NEW CONFIGURATIONS,

NOW WITH INTEL®

Flexibility:
Choose between AMD
or Intel® processors

Security:
All 1&1 servers are
housed in high-tech
data centers owned
and operated by 1&1

Speed:
Unlimited traffi c, high-
speed connectivity

Control:
Parallels® Plesk
Panel 10.4 for
unlimited domains

Value:
More power,
great pricing

Intel® Xeon® E3-1270
4 (8 HT) Cores with up to 3.8 GHz

 (Intel® Turbo Boost Technology 2.0)

24 GB ECC RAM

2 X 1,500 GB SATA HDD

SERVER
XL 8i

$299.99
per month

SERVER
XL6

3 MONTHS

FREE!*

$129.99
per month

 AMD Hexa-Core
 6 Cores with up to 3.3 GHz

(AMD Turbo Core)

 16 GB ECC RAM

2 x 1,000 GB

 SATA HDD

$99.99
per month

SERVER
4i

Intel® Xeon® E3-1220
4 Cores with up to 3.4 GHz

 (Intel® Turbo Boost
 Technology 2.0)

12 GB ECC RAM

2 x 1,000 GB SATA HDD

* 3 Months Free offer valid for a limited time only, 12 month minimum contract term applies. Set-up fee and other terms and conditions may apply. Visit www.1and1.com for full promotional offer details.
Program and pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks are the property of their respective owners.
© 2012 1&1 Internet. All rights reserved.

1-855-221-2631 www.1and1.ca
1-877-461-2631 www.1and1.com

®

Untitled-3 1 1/9/12 12:33 PM

http://www.1and1.com
http://www.1and1.ca
http://www.1and1.com

msdn magazine8 Data Points

interacting with those objects that the context is already tracking.
For example, I’ve seen plenty of code where a developer retrieves
data using a query and then attempts to perform logic on what’s
now being managed by the query:

 var balloons = context.Balloons.Where(b => b.Size == "L").ToList();
 var balloonCount = context.Balloons.Count();

In fact, these are two separate queries. Th e second line of code
executes another query on the database and returns a count of all
balloons. Typically, what the developer had intended was to get a
count of the results—that is, balloons.Count.

If you don’t have access to a variable but still want to fi nd out how
many Balloon objects an ObjectContext is tracking, there’s a way to fi nd
out, but it’s not easy: ObjectContext exposes an ObjectState Manager,
which has a method called GetObjectStateEntries. Th is method
requires that you pass in one or more EntityState enums (for example,
Added, Modifed and so on) so it knows which entries to return.
Although the results are queryable, fi ltering is unwieldy and even
then what it returns is not your entities, but the ObjectStateEntry
instances that represent state information about your objects.

Th is means that without the use of my extension methods, code
to help get the count of the balloons in memory looks like this:

objectContext.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified | EntityState.Unchanged)
 .Where(e => e.Entity is Balloon).Count();

If you want to capture those Balloon objects, not just the Object-
StateEntry instances, then you have to add some casting to return
the ObjectStateEntry.Entity types as Balloons:

objectContext.ObjectStateManager
 .GetObjectStateEntries(EntityState.Added |
 EntityState.Modified | EntityState.Unchanged)
 .Where(e => e.Entity is Balloon)
 .Select(e => e.Entity as Balloon);

Seeing this code might make you appreciate the new property
DbSet.Local almost as much as I do.

Using DbSet.Local to get all of the tracked Balloon instances
from the context, you can simply call:

context.Balloons.Local;

“Local” returns an ObservableCollection that provides two
benefi ts. Th e fi rst is that it’s queryable, so you can return whatever
subset of the locally cached Balloons you want. Th e second is that
your code (or components such as data-binding controls) can listen
for and react to objects being added to or removed from the cache.

Besides the discoverable property and the reduced code, there
are two other notable diff erences between using DbSet.Local and
GetObjectStateEntries. One is that Local returns objects from the
particular DbSet only, whereas GetObjectStateEntries returns
entries regardless of the type of objects they represent. Th e other
diff erence is that Local won’t return objects that the context knows
are marked as Deleted. With GetObjectStateEntries, you have access
to Added, Modifi ed, Unchanged and Deleted objects as specifi ed
in the parameter list that you provide to the method.

NoTracking LINQ Queries
When discussing performance with clients, I oft en recommend they
take advantage of the EF ability to return data that doesn’t need to
be tracked by the context. For example, you may have data you need
to supply for a drop-down selection list. You’ll never need to make

changes to that data, much less persist it to the database. Th ere-
fore, it’s smart to avoid the performance hit taken when EF creates
ObjectStateEntry instances for each object it’s tracking, as well as
forcing the context to be aware of any changes made to those objects.

But with ObjectContext, the NoTracking support is available only
through the ObjectQuery class, not from LINQ to Entities queries.

Here’s a typical example of getting a NoTracking query using an
ObjectContext (called context):

string entitySQL = " SELECT p, p.Filling " +
 "FROM PartyContext.Pinatas AS p " +
 "WHERE p.Filling.Description='Candy'";
var query=context.CreateQuery<DbDataRecord>(entitySQL);
query.MergeOption = System.Data.Objects.MergeOption.NoTracking;
var pinatasWithFilling=query.ToList();

Th e retrieved piñatas and fi llings would be objects in memory,
but the context would have no knowledge of them.

However, if you were to use the following LINQ to Entities query,
which returns an IQueryable, not an ObjectQuery, there would be
no MergeOption property:

context.Pinatas.Include("Filling")
 .Where(p=>p.Filling.Description=="Candy")

One solution is to cast the LINQ query to an ObjectQuery and then
set the MergeOption. Th is is not only not obvious but also clunky.

Recognizing this, the EF team found a way to let you have your
party cake and eat it, too, with the new AsNoTracking extension
method for IQueryables that’s part of the DbContext API. Now I
can tack it on to my LINQ query:

context.Pinatas.Include("Filling")
 .Where(p=>p.Filling.Description=="Candy")
 .AsNoTracking();

Th is will return a set of Pinatas and Fillings that will be ignored by
the context. EF won’t wastethe eff ort of instantiating DbEntityEntry
objects (the DbContext API version of ObjectStateEntry) for each
object. Nor will it waste the eff ort of forcing the context to inspect those
objects when DetectChanges is called.

It’s simple to code and very discoverable through IntelliSense.

Icing on the Cake
Th ese three features—Find, Local and AsNoTracking—don’t enable
me to perform tasks that weren’t achievable with the ObjectCon-
text. But they do make me happy every time I use them. Th ere are
so many coding tasks that the DbContext API simplifi es (compared
to using the ObjectContext) that it has streamlined my application
development quite a bit. I’ve also returned to old ObjectContext
code and re factored it to use DbContext along with Code First and
have been able to signifi cantly reduce the amount of code in those
apps. But for developers who aren’t as intimately familiar with the
EF as I am, the discoverability of so many of its capabilities will
make a big diff erence for getting up and running with it.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) and “Programming Entity Framework: Code First” (2011), both from
O’Reilly Media. Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article:
Arthur Vickers

www.twitter.com/julielerman
www.thedatafarm.com/blog

© 2011 ComponentOne LLC. All rights reserved. All other product and brand names are
trademarks and/or registered trademarks of their respective holders.

ComponentOne Ultimate™ delivers
the tools and resources to build
everything …everywhere. Whether
you're a Windows, Web, or XAML
developer, this ultimate dev tool
collection delivers. Inside you’ll
find: 100s of .NET controls, OLAP
data analysis controls, SharePoint
Web Parts, documentation tools,
LightSwitch extensions, and tools
for ADO.NET Entity Framework and

RIA Services. No job is too big. Bring
speed, style, and functionality to your

all your applications ...it is your destiny.

Untitled-3 1 11/2/11 2:16 PM

http://www.componentone.com/SuperProducts/Ultimate/?utm_medium=c1Print&utm_campaign=MSDNFeb12_Galaxy&utm_source=MSDN

Untitled-1 2 12/1/11 1:58 PM

www.componentArt.com

Untitled-1 3 12/1/11 1:58 PM

www.componentArt.com

msdn magazine12

Upgrade domains are another matter. You have control over these
domains and can perform incremental or rolling upgrades across a
deployment by upgrading a group of instances at a time. Whereas fault
domains are about physical deployment of the roles, upgrade domains
relate to logical deployment. Because an upgrade domain is a logical
grouping of roles, a single Web application could easily exist in fi ve
diff erent upgrade domains divided into only two separate physical
deployments (fault domains). In this case, to update a Web applica-
tion, you might update all roles in group 0 (upgrade domain 0) and
then all roles in group 1 and so on. You can exercise more fi nite control
by updating individual roles one at a time in each Update Domain.

In summary, an application that requires more than one instance
will be split into at least two fault domains. To make upgrading a
Web application across the whole farm easier, roles are combined
into logical groupings that are updated at the same time.

Windows Azure Deployment Domains
Lately, I’ve been giving a lot of thought to the deploy-
ment of applications. It turns out that for applications,
the matrix for fault tolerance and upgrade path gets a
bit tricky—and even trickier when applications have
a mix of services, a Web UI and back-end processes.
Add in geographic distribution and the logistics
become even more muddied.

In large IT organizations, a minimum deployment
of any Web or application server oft en involves two
servers that are geographically separated. Th is easily
moves up to four servers if two servers are specifi ed
for the expected load and you have a mirror site with
the same setup (of course, database and other sup-
porting server infrastructure can push the number higher still).
What if the company serves multiple locations, such as North
America and Europe, the Middle East and Africa (EMEA)? Now
the setup gets replicated to both sides of the Atlantic, turning what
started as two Web servers into eight servers for geo failover and for
staging assets closer to consumers.

Eventually, an application is deployed on all these servers and
everything is running along smoothly—and then some cheeky devel-
oper creates new functionality and wants to update the deployment.

As you can imagine, it takes a good bit of planning to determine
the order in which servers will drain connections, get updated and
tested, and then be put back into the pool. Some folks spend late
nights working through upgrade plans, and that’s even when there
are no real problems.

Windows Azure doesn’t eliminate the need for an upgrade plan,
but it does take much of the complexity out of upgrading by
handling most of it as part of the fabric. In this column, I’m going
to cover fault domains and upgrade domains, and write a little bit
of code to apply an upgrade across the deployment.

Fault and Upgrade Domains
Windows Azure includes the concepts of fault domains and upgrade
domains, both of which are almost fully described by their names.
Fault domains defi ne a physical unit of deployment for an appli-
cation and are typically allocated at the rack level. By placing fault
domains in separate racks, you separate instances of application
deployment to hardware enough that it’s unlikely all would fail at
the same time. Further, a failure in one fault domain should not
precipitate the failure of another. When you deploy a role with
two configured instances, the fabric ensures the instances are
brought up in two diff erent fault domains. Unfortunately, with fault
domains, you have no control over how many domains are used
or how roles are allocated to them.

FORECAST: CLOUDY JOSEPH FULTZ

protected void GetRoleInfo()
{
 List<RoleInfo> RoleInfos = new List<RoleInfo>();

 foreach (var role in RoleEnvironment.Roles)
 {
 RoleInfo info = new RoleInfo();
 info.RoleName = role.Value.Name;

 foreach (RoleInstance roleInstance in role.Value.Instances)
 {
 info.InstanceId = roleInstance.Id;
 info.FaultDomain = roleInstance.FaultDomain.ToString();
 info.UpgradeDomain = roleInstance.UpdateDomain.ToString();

 }
 RoleInfos.Add(info);
 }
 GridView1.DataSource = RoleInfos;
 GridView1.DataBind();

}

Figure 2 Finding Role Information

Figure 1 The Windows Azure Management Console

DESIGN INTERFACE
Optimize your data

presentation and build

attractive reports with

an integrated and

easy-to-use design-time

experience.

EXPORT TO EXCEL,

WORD AND PDF
Export reports from

the client and server

side in the popular

format of your choice!

DATA ACCESS SUPPORT
Create MVVM-friendly reports

with data accessed from an

SQL Server, Oracle or any

Object Data Source.

Less Pain, More Gain

NetAdvantage®

for Reporting

check out infragistics.com/reporting

REPORT VIEWER
View pixel-perfect

reports with vector

graphics in our

Silverlight, ASP.NET,

WPF and Windows

Forms report viewer.

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-4 1 10/12/11 1:25 PM

www.infragistics.com/reporting

msdn magazine14 Forecast: Cloudy

Viewing the Deployment Confi guration
The Windows Azure Management Console shows an Update
Domain column, but not a Fault Domain column (see Figure 1).
(Note that upgrade domain and update domain are interchange-
able terms. Th e documentation oft en refers to upgrade domains,
but in the API it’s called an update domain.)

In Figure 1 you can see that the numbers for my four deployments
run from 0 to 3. By default, Windows Azure uses fi ve update domains
for each service and assigns them in a round-robin style. Th is is some-
thing you can change in the service defi nition fi le by assigning the
desired number of upgrade domains to the upgradeDomainCount
attribute of the ServiceDefi nition element. You’ll fi nd links for each
of the schemas for Web and Worker roles at msdn.microsoft.com/library/
ee758711. To force a WebRole to use only three upgrade domains, for
example, you set the upgradeDomainCount in the service defi nition fi le:

<ServiceDefinition name="<service-name>" xmlns=”http://schemas.
microsoft.com/ServiceHosting/2008/10/
 ServiceDefinition” upgradeDomainCount="3">
 <WebRole name="<web-role-name>" vmsize="[ExtraSmall|Small|Medium|Larg
e|ExtraLarge]"
 enableNativeCodeExecution="[true|false]">
 ...
 </WebRole>
</ServiceDefinition>

Th is is important, because the number of update domains ultimately
aff ects your plan and execution. Unfortunately, there’s no column that
lets you see fault domain assignments. By writing a little code, however,
you can pull back the curtain a bit on the deployment and see both
update domain and fault domain assignments, as Figure 2 shows.

Th is code doesn’t show a small class I defi ned to store the rel-
evant information. And unfortunately, though I have this nice
nested loop that goes through the roles and the instances, the API
allows the code running in the page to return data related to only
the specifi c instance running the code. Th us, the code produces
a small grid with just the current WebRole information in it (see
Figure 3), without any other instance information.

Th is code provides a quick look at the current WebRole’s fault and
upgrade domains, but you’ll need to use the Get Deployment REST
URI to get more comprehensive data. It returns the deployment XML,
which contains, among other things, elements for <Confi guration/>

and for each of the <RoleInstances />. Once you’ve fetched the
confi guration, you can change it and put it back. Take a look at my
October 2010 column (msdn.microsoft.com/magazine/gg232759) for examples
that show many of the same operations that would be involved here.

Upgrade Strategies
Th ere are two basic strategies for updating a Windows Azure deploy-
ment: in-place upgrades and virtual IP (or VIP) swap. VIP swap is the
simpler approach and allows for full testing of the new or updated
application before opening the gates to the public. Moreover, the
application can run at full capacity as soon as it’s live. Should there be
issues when the swap is complete, you can quickly put the previous
version back in place while the new deployment is being worked on.

You’ll fi nd a good reference describing what can and can’t be
done in each deployment model at bit.ly/x7lRO4. Here are the points
that might force a choice:

• In-place update or delete and deploy are required when
changing the type or number of endpoints.

• VIP swap or delete and deploy are required when
changing the role name or update domain count, or
when decreasing the size of local resources.

Other than these points and some SDK version considerations,
it’s up to you to decide.

Swapping the VIP of the staging and production environments
is a pretty good solution for many, if not most, cases when rolling
out a new version. Sometimes it’s the only way to keep the site
mostly available while making changes, though if you’re upgrading
a large deployment, bringing up another full deployment can be
cumbersome. Th ere’s also a cost associated with deploying a com-
plete copy—one compute hour charge for each deployed instance
and then the additional compute hours for the two running copies.

In Web farms nowadays, updates are generally rolled out through
a farm by either: taking one server offl ine at a time, upgrading, bring-
ing the server online and returning it to the farm pool; or dividing the
farm into segments and draining the connections on one segment at a
time, then upgrading each segment, bringing it online and returning
it to the farm, and fi nally moving on to the next segment.

An in-place update works like the second pattern. However,
the more upgrade domains used, the more the pattern resembles
the fi rst option. Th e upside of using a larger number of upgrade
domains is that the site capacity decreases only by the size of the
segment during the entire upgrade.

Figure 3 Current WebRole Information

Deployment Strategy Pros Cons

Delete and Deploy All changes can be made Application unavailable during process
VIP Swap • Full application capacity

• Most service changes can be made
• Can test the new deployment in staging
• Quick to undo by performing VIP swap again

• Hiccup in service at time of swap
• Cumbersome to bring up two full deployments for larger deployments
• Can’t change the number or type of endpoints

In-place Update:
 2 Update Domains

• Only one version running at a time
• Can change number and type of endpoints
• Doesn’t require full deployment

• Site capacity decreased by half
• A few operations can’t be performed

In-place Update:
 3+ Update Domains

• More site capacity during update
• Can change number and type of endpoints
• Doesn’t require full deployment

• Multiple versions running simultaneously
• A few operations can’t be performed

Figure 4 Upgrade Decision Matrix

http://msdn.microsoft.com/library/ee758711
http://msdn.microsoft.com/library/ee758711
http://msdn.microsoft.com/magazine/gg232759
http://bit.ly/x7lRO4

MOTION FRAMEWORK

Create data visualizations

that deliver an animated

user experience that tells

the whole story.

MAP
Ensure your geospatial

data really goes places

with a feature-laden,

interactive Map Control

for your applications.

XAML-IFY YOUR APPS
check out infragistics.com/xaml

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

XAMTRADER
Build high-performance

applications using ultra-

fast grids and charts.

NETWORK NODE
Help your users make

the connection with

visual representations

of simple or complex

network relationships.

NetAdvantage®

for Silverlight Data Visualization

NetAdvantage®

for WPF Data Visualization

NetAdvantage®

for Silverlight

NetAdvantage®

for WPF

Untitled-4 1 10/12/11 1:25 PM

www.infragistics.com/xaml

msdn magazine16 Forecast: Cloudy

Th e primary challenge that traditional non-cloud deployments face
is the same for cloud deployments: when you perform rolling upgrades,
mixed versions of the application will be running. Th e instances might
deliver diff erent visuals, use diff erent data and service connections, and
so forth. Th is can lead to site errors or even undesirable user experi-
ences, and it may be completely unacceptable for your business. More-
over, it puts a heavy burden on the development and test teams to make
sure the application will run when there are multiple versions in play.

What do you do if you can’t use VIP swap and availability require-
ments preclude a delete and deploy? You might try using only two up-
date domains and performing an in-place update, which keeps a single
version of the application running during the deployment. Th e down-
side: half of your site’s capacity will be unavailable during the transition.

Th e grid in Figure 4 might help you consider which approach
to employ in performing an upgrade.

In-Place Upgrade
Nice advancements have been made in the ability to perform the
upgrade both within the management console and via scripting.
For small to midsize organizations with a relatively modest num-
ber of deployments, it’s easiest to manage the updates through the
Windows Azure Management Console, shown in Figure 5.

As you can see in the upper left
corner of the screen, a Manual
Upgrade is running. Th is requires
clicking the Start button to initi-
ate the process for each upgrade
domain—that’s the manual part
of it. Once the update is started,
the console displays what’s going

on in the instances in each domain,
as shown in Figure 6.

Th e manual, push-button meth-
od works well for smaller deploy-
ments. For larger deployments or
those where you want to automate
the build-test-deploy process, you
should choose a scripted approach.
You can automate the process us-
ing the CSManage command-line
tool, which you can download from
bit.ly/A6uQRi. CSManage will initiate
the upgrade and walk through the
process of upgrading one update
domain at a time from the com-
mand line. Th ough this is helpful,
there’s a level of fi ne control that
can only be accomplished using
the REST API directly.

Customizing Your
Upgrade Strategy with
Fault Domains
If for one reason or another you’ve
decided to not walk the update

domains from 0 – n and instead plan to use your own starting
point or order, you’ll need to take a look at the combination of
update and fault domains. Th e grid in Figure 7 makes it obvious
that if you were to update Upgrade Domain 1, and Fault Domain
0 faulted during the update, the site would be completely down.
Th is should normally be covered by the fabric, though, and the
grid shows that if the update happens in order, there will always
be diff erent fault domains running.

Th e lesson here is to consider potential consequences during
planning, and to not “fi x” something that’s already working.

Wrapping Up
When you’re designing a Windows Azure application, you need to
take deployment architecture into account. Windows Azure pro-
vides the functionality of the fabric to ensure that an application
will not fault due to a single hardware failure, while providing an
easy, automatic way to incrementally update the deployment. Still,
support for an in-place update is something that has to be designed
into the application—and the update that’s being pushed.

You can update a Windows Azure service using VIP swap or a
two-upgrade-domain, in-place plan where a full in-place update
can’t be supported. Last, there are both UI and programmatic means
to control the deployment and updates so that you can perform
a scheduled update or even use a build-test-deploy schedule or a
scheduled update.

JOSEPH FULTZ is a soft ware architect at Hewlett-Packard Co., working as part of the
HP.com Global IT group. Previously he was a soft ware architect for Microsoft working
with its top-tier enterprise and ISV customers defi ning architecture and designing solutions.

THANKS to the following technical expert for reviewing this article: Don Glover

Figure 5 Windows Azure Management Console

Figure 6 Update Activity

Instance
Upgrade
Domain

Fault
Domain

0 0 0
1 1 1
2 2 0

Figure 7 Domain Matrix

http://bit.ly/A6uQRi

OLAP AXIS CHART
Take your data to new

depths with the

seemingly endless

drilldown capability of

the OLAP Axis Chart.

FINANCIAL

CHARTING
With support for

multiple chart

styles, and technical

indicators built in,

financial charting

capabilities are on

the money.

TREEMAP
Communicate the relative

differences in data weight

more effectively, with

customizable color and

flexible layouts.

Deliver the Ultimate User Experience

NetAdvantage®

check out infragistics.com/ultimate

OLAP GRID

Provide highly-interactive

pivot grid functionality in

all of your applications.

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-4 1 10/12/11 1:26 PM

www.infragistics.com/ultimate

PRODUCED BYPLATINUM SPONSOR SUPPORTED BY

WHAT YOU LEARN
IN VEGAS WON’T
STAY IN VEGAS

Intense Take-Home Training for Developers,
Soft ware Architects and Designers

Las Vegas | March 26-30 | Mirage Resort and Casino

YOUR MAP TO THE .NET DEVELOPMENT PLATFORM

Untitled-5 2 1/10/12 2:08 PM

www.vslive.com/lasvegas

vslive.com/lasvegas

Register Before
February 29 and
Save $300!

Coding, Casinos and More!
Learn how to maximize the development
capabilities of Visual Studio and .NET over
5 information-packed days in Las Vegas.
Join us for 60+ sessions & workshops full of
unbiased, hard-hitting and practical education
lead by industry experts and Microsoft insiders.
Trust us, what you learn in Vegas won’t stay in
Vegas – your boss will thank you!

View the full conference agenda by
scanning this QR code or visiting
vslive.com/lasvegas

“ The sessions were informative and
will prove highly useful in my job.
It really motivated me and gave me
new ides for projects.”

Michael Cross, Niagara Regional Police Service

“ The quality of speakers was
excellent – they were knowledgeable
and interesting. I also really liked
the location – Vegas!”

Kiran P. Mody, ASP.NET programmer, Avail Technologies, Inc.

Las Vegas
March 26-30
Mirage Resort and Casino

Use Promo Code FEBAD before February 29
and Save $300!

Untitled-5 3 1/10/12 2:08 PM

www.vslive.com/lasvegas

Keynote:
The Future of User Experience:
The Natural User Interface (NUI)
Tim Huckaby,
Microsoft RD & MVP, Chairman/Founder, InterKnowlogy,
CEO/Chairman, Actus Interactive Software

Track: Visual Studio 2010+/.NET 4+
Session: Application Lifecycle Management
and Visual Studio: What’s Next
Explore the new features in Team Foundation Server as well
as the new Azure-based Team Foundation Service. You’ll
learn what’s new for work management, including task
boards, how to gather user requirements and ensure better
products and much more.

Track: Silverlight / WPF
Session: Top 7 Lessons Learned
On My First Big Silverlight Project
Hear 7 things instructor Ben Day learned while leading his
 rst big Silverlight application – from unit tests and the

architectural havoc caused by async WCF to real-world
ViewModel tips and "x:Name" code smells.

Track: Web
Session: Hack Proo ng Your
Asp.Net Web Forms and MVC
Developers are notoriously lax with including security in
their applications. In an age of hacking, this talk aims to
arm the developer with an arsenal of protections to use
while developing. Techniques such as Cross Site Scripting,
SQL Injection, Session Hijacking, and Cross Site Request
Forgery will be covered.

Track: Cloud Computing
Session: Architecture Best Practices
on Windows Azure
Learn Architecture Best Practices that will help make your
solutions better in performance, cost, integration, and
security. Leave this session with the knowledge needed to
start using Windows Azure quickly and the best practices
that can help your business.

Track: Data Management
Session: Entity Framework Code First -
Beyond the Basics
Go beyond the basic scenarios – understand performance
analysis tips for Entity framework, learn database scheme
evolution handling techniques and about the organization
of database and conceptual models via complex types
and hierarchies.

Track: HTML5
Session: Building Windows 8 Applications
with HTML5 and jQuery
One of the many new advances in Windows 8 is the ability
to create Windows applications using HTML, CSS and
JavaScript. In this session, take a look at the Windows 8
technology stack on which these applications run, how
HTML/CSS/JS apps actually run, and discuss the implications
of the different ways to utilize third party libraries such as
jQuery. By the end of this session, you'll have a solid idea of
what it means to have a Metro-style application built with
web technologies.

Track: Windows 8/WinRT
Session: Windows 8 Metro-style Application
Contracts and Extensibility
Explore contracts – a new feature of Windows 8 Metro-style
applications that allow applications to interact with the
operating system and other Metro-style applications in
a standard way – and learn how they can be used in any
Windows 8 Metro-style application to provide a seamless,
integrated experience for users.

Track: Windows Phone 7
Session: Making Money on Your WP7 Apps
& Games with the Advertising SDK
Learn how to use the Microsoft Advertising SDK and the
Microsoft PubCenter to create and display ads in your
Windows Phone 7 apps and games.

Track: Cross Platform Mobile
Session: Building Mobile Apps with CSLA .NET
Learn how to create business classes that compile and run
on all three mobile platforms, iPhone/iPad (using
MonoTouch), Android (using Mono for Android), and
Windows Phone (using Silverlight), as well as on .NET. The
result is the ability to reuse large portions of your code
when building mobile apps.

A Peek at What You’ll Learn
at Visual Studio Live! Las Vegas:

Register at vslive.com/lasvegas
Use Promo Code FEBAD

Untitled-5 4 1/10/12 2:08 PM

www.vslive.com/lasvegas

VISUAL STUDIO LIVE! LAS VEGAS AGENDA AT-A-GLANCE

Visual Studio Live! Pre-Conference Workshops: Monday, March 26, 2012 (Separate entry fee required)

MWKS1 Workshop: Full Application Lifecycle
with TFS and CSLA .NET

Rockford Lhotka & Brian Randell

MWKS2 Workshop: Creating Today’s User Experiences - An
Entry Point for Developers

Billy Hollis

MWKS3 Workshop: SQL Server
for Developers

Andrew Brust & Leonard Lobel

Visual Studio Live! Day 1: Tuesday, March 27, 2012
Keynote Microsoft To Be Announced

T1 Introduction to the
Windows Runtime

Rockford Lhotka

T2 HTML5 and Internet Explorer:
A Developer Overview

Ben Hoelting

T3 Introducing SQL Server Data Tools
(Codenamed "Juneau")

Leonard Lobel

T4 Application Lifecycle Management
and Visual Studio: What’s Next

Brian Randell

T5 Windows 8 Metro-style Application
Contracts and Extensibility

Brian Peek

T6 Advanced ASP.NET MVC, HTML5
and the .NET Stack

Ben Hoelting

T7 So Many Choices, So Little Time:
Understanding Your .NET 4.0 Data

Access Options Leonard Lobel
T8 Microsoft - To Be Announced

Lunch & Expo Hall

CTT1 Chalk Talk: Improve Your Code with Anonymous Types
and Lamda Expressions Deborah Kurata

CTT2 Chalk Talk: Slice Development Time with ASP.NET MVC and Razor Philip
Japikse

T9 Building Data Driven Applications
Using WinRT and XAML Sergey Barskiy

T10 HTML5/jQuery On-Ramp
Rich Dudley T11 Microsoft - To Be Announced T12 Microsoft - To Be Announced

T13 A Look at Windows 8 Metro Apps
and WinRT Internals Vishwas Lele

T14 Building Windows 8 Applications
with HTML5 and jQuery Rich Dudley

T15 Entity Framework Code First -
Beyond the Basics Sergey Barskiy

T16 What's New in the .NET 4.5 BCL
Jason Bock

Welcome Reception

Visual Studio Live! Day 2: Wednesday, March 28, 2012

Keynote: The Future of User Experience: The Natural User Interface (NUI)
Tim Huckaby, Microsoft RD & MVP, Chairman/Founder, InterKnowlogy, CEO/Chairman, Actus Interactive Software

W1 Windows Presentation Foundation
for Developers

Philip Japikse

W2 Creating a Data Driven Web Site
Using WebMatrix and ASP.NET Razor

Rachel Appel

W3 Windows Azure
Platform Overview

Vishwas Lele

W4 XNA Games for Windows Phone
Brian Peek

W5 MVVM in Practice aka
"Code Behind"- Free WPF

Tiberiu Covaci

W6 MVC for WebForms Developers:
Comparing and Contrasting

Miguel Castro

W7 Building Your First
Azure Application

Michael Stiefel

W8 Building Mobile Apps
with CSLA .NET
Rockford Lhotka

Birds-of-a-Feather Lunch & Expo Hall

CTW1 Chalk Talk: How Orchard CMS Works Rachel Appel CTW2 Chalk Talk: Parallel Programming 101 Tiberiu Covaci

W9 Silverlight, WCF RIA Services and
Your Business Objects

Deborah Kurata

W10 Getting Started with ASP.NET
MVC3 with a Dash of 4

Philip Japikse

W11 Deciding Between Relational
Databases and Tables in the Cloud

Michael Stiefel

W12 Making Money on Your
WP7 Apps & Games with the

Advertising SDK Chris G. Williams

W13 Top 7 Lessons Learned On My
First Big Silverlight Project

Ben Day

W14 Fast, Faster ... Async ASP.NET
Tiberiu Covaci

W15 Architecture Best Practices
on Windows Azure

Nuno Godinho

W16 Mobile + Cloud: Using
the Windows Azure Toolkit for

Mobile Devices Eric D. Boyd

Wild Wednesday

Visual Studio Live! Day 3: Thursday, March 29, 2012
TH1 WPF Validation -
Techniques & Styles

Miguel Castro

TH2 Entity Framework 4.1 for Real
Web Applications

Adam Tuliper

TH3 Tips & Tricks on Architecting
Windows Azure for Costs

Nuno Godinho

TH4 Consuming Async Web Services In
Your Windows Phone Apps & Games

Chris G. Williams

TH5 In nite Whitespace:
Implementing Viewport Navigation

in XAML Billy Hollis

TH6 Hack Proo ng Your ASP.NET
Web Forms and MVC Applications

Adam Tuliper

TH7 Moving Web Apps to the Cloud
Eric D. Boyd

TH8 Reach The Mobile Masses With
ASP.NET MVC 4 and jQuery Mobile

Keith Burnell

TH9 Writing Asynchronous Code Using
.NET 4.5 and C# 5.0 Brian Peek

TH10 Introduction to jQuery QUnit
John Petersen

TH11 SQL Azure Intro and
What's New Eric D. Boyd

TH12 LightSwitch Onramp
Rich Dudley

Lunch

TH13 Static Analysis in .NET
Jason Bock

TH14 Busy Developer’s
Guide to NodeJS

Ted Neward

TH15 Power View: Analysis
and Visualization for Your

Application’s Data Andrew Brust

TH16 Incorporating LightSwitch Into
Your Existing ASP.NET Applications

Michael Washington

TH17 How to Be a C# Ninja
in 10 Easy Steps Ben Day

TH18 Extending ASP.NET MVC with
jQuery/Ajax and jSON John Petersen

TH19 Microsoft's Big Play
for Big Data Andrew Brust

TH20 Creating LightSwitch Control
Extensions Michael Washington

Visual Studio Live! Post-Conference Workshops: Friday, March 30, 2012 (Separate entry fee required)

FWKS1 Workshop: Programming with WCF in One Day Miguel Castro FWKS2 Workshop: Architecture Katas Ted Neward

HTML5 Web Visual Studio
2010+/.NET 4+

Cloud
Computing

Data
Management

Silverlight /
WPF

Windows Phone
8/WinRT

Windows
Phone 7

Cross Platform
Mobile

For the complete session schedule and full session descriptions, please check the Visual Studio Live! Las Vegas web site at vslive.com/lasvegas
*Speakers and Sessions Subject to Change.

Untitled-5 5 1/10/12 2:08 PM

www.vslive.com/lasvegas

msdn magazine22

A S YN CHR ONOUS PR OGR AM M I NG

Asynchronous
Programming in C++
Using PPL

Hollywood casting directors are oft en said to brush
off aspiring performers with a dismissive “don’t call us; we’ll call
you.” For developers, however, that phrase describes the way many
soft ware frameworks work—instead of letting the programmer
drive the fl ow of control for the whole application, the framework
controls the environment and invokes callbacks or event handlers
provided by the programmer.

In asynchronous systems, this paradigm lets you decouple the
start of the asynchronous operation from its completion. Th e pro-
grammer initiates the operation and then registers a callback that
will be invoked when the results are available. Not having to wait for
completion means you can do useful work while the operation is
in progress—service the message loop or start other asynchronous

Artur Laksberg

operations, for example. Th e “frosted window,” the “spinning donut”
and other such phenomena will become relics of the past if you fol-
low this pattern rigorously for all potentially blocking operations.
Your apps will become—you’ve heard this one before—fast and fl uid.

In Windows 8, asynchronous operations are ubiquitous, and
WinRT off ers a new programming model for dealing with asyn-
chrony in a consistent way.

Figure 1 demonstrates the basic pattern of working with asynchro-
nous operations. In the code, a C++ function reads a string from a fi le.

Th e fi rst thing to notice is that the return type of ReadString is
void. Th at’s right: Th e function doesn’t return a value; instead it
takes a user-provided callback and invokes it when the result is
available. Welcome to the world of asynchronous programming—
don’t call us; we’ll call you!

The Anatomy of a WinRT Asynchronous Operation
At the heart of the asynchrony in WinRT are the four interfaces
defi ned in the Windows::Foundation namespace: IAsyncOperation,
IAsyncAction, IAsyncOperationWithProgress and IAsyncAction-
WithProgress. All potentially blocking or long-running operations
in WinRT are defi ned as asynchronous. By convention, the name of
the method ends with “Async” and the return type is one of the four
interfaces. Such is the method GetFileAsync in the example in Figure
1, returning an IAsyncOperation<StorageFile^>. Many asynchronous
operations do not return a value and their type is IAsyncAction.
Th e operations that can report progress are exposed via IAsync-
OperationWithProgress and IAsyncActionWithProgress.

This article uses prerelease versions of Windows 8 and Visual
Studio 2012. All information is subject to change.

This article discusses:
• Asynchronous programming in WinRT
• The anatomy of a WinRT asynchronous operation
• Composing multiple asynchronous operations
• Using Parallel Patterns Library tasks
• Error handling and cancellation

Technologies discussed:
C++, Windows 8, Visual Studio 2012, Visual Studio Parallel
Patterns Library

23February 2012msdnmagazine.com

To specify the completion callback for an asynchronous opera-
tion, you set the Completed property. Th is property is a delegate
that takes the asynchronous interface and the status of the com-
pletion. Th ough the delegate can be instantiated with a function
pointer, most oft en you’d use a lambda (I expect that by now you’re
familiar with this part of C++11).

To get the value of the operation, you call the GetResults method
on the interface. Notice that though this is the same interface
returned to you from the GetFileAsync call, you can only call
GetResults on it when you’re within the completion handler.

Th e second parameter to the completion delegate is AsyncStatus,
which returns the status of the operation. In a real world applica-
tion, you’d check its value before calling GetResults. In Figure 1, I
omitted this part for brevity.

Very often, you’ll find yourself using multiple asynchronous
operations together. In my example, I first get an instance of
StorageFile (by calling GetFileAsync), then open it using
OpenAsync and getting IInputStream. Next, I load the data
(LoadAsync) and read it using the DataReader. Finally, I get the
string and call the user-provided callback func.

Composition
Separating the start of the operation from the completion is
essential for eliminating blocking calls. Th e problem is, composing
multiple callback-based asynchronous operations is hard, and the

resulting code is diffi cult to reason about and debug. Something
has to be done to rein in the ensuing “callback soup.”

Let’s consider a concrete example. I want to use the ReadString
function from the previous sample to read from two fi les sequen-
tially and concatenate the result into a single string. I’m going to
again implement it as a function taking a callback:

template<typename Callback>
void ConcatFiles1(String^ file1, String^ file2, Callback func)
{
 ReadString(file1, [func](String^ str1) {
 ReadString(file2, [func](String^ str2) {
 func(str1+str2);
 });
 });
}

Not too bad, right?
If you don’t see a fl aw in this solution, though, think about this:

When will you start reading from fi le2? Do you really need to fi nish
reading the fi rst fi le before you start reading the second one? Of
course not! It’s far better to start multiple asynchronous operations
eagerly and deal with the data as it comes in.

Let’s give it a try. First, because I start two operations concurrently
and return from the function before the operations complete, I’ll
need a special heap-allocated object to hold the intermediate
results. I call it the ResultHolder:

ref struct ResultHolder
{
 String^ str;
};

 As Figure 2 shows, the fi rst operation to succeed will set the
results->str member. Th e second operation to complete will use
that to form the fi nal result.

Th is will work … most of the time. Th e code has an obvious race
condition, and it doesn’t handle errors, so we still have a long way
to go. For something as simple as joining two operations, that’s an
awful lot of code—and it’s tricky to get right.

Tasks in the Parallel Patterns Library
Th e Visual Studio Parallel Patterns Library (PPL) is designed to
make writing parallel and asynchronous programs in C++ easy and
productive. Instead of operating at the level of threads and thread

template<typename Callback>
void ReadString(String^ fileName, Callback func)
{
 StorageFolder^ item = KnownFolders::PicturesLibrary;

 auto getFileOp = item->GetFileAsync(fileName);
 getFileOp->Completed = ref new AsyncOperationCompletedHandler<StorageFile^>
 ([=](IAsyncOperation<StorageFile^>^ operation, AsyncStatus status)
 {
 auto storageFile = operation->GetResults();
 auto openOp = storageFile->OpenAsync(FileAccessMode::Read);
 openOp->Completed =
 ref new AsyncOperationCompletedHandler <IRandomAccessStream^>
 ([=](IAsyncOperation<IRandomAccessStream^>^ operation, AsyncStatus status)
 {
 auto istream = operation->GetResults();
 auto reader = ref new DataReader(istream);
 auto loadOp = reader->LoadAsync(istream->Size);
 loadOp->Completed = ref new AsyncOperationCompletedHandler<UINT>
 ([=](IAsyncOperation<UINT>^ operation, AsyncStatus status)
 {
 auto bytesRead = operation->GetResults();
 auto str = reader->ReadString(bytesRead);
 func(str);
 });
 });
 });
}

Figure 1 Reading from a File

template<typename Callback>
void ConcatFiles(String^ file1, String^ file2, Callback func)
{
 auto results = ref new ResultHolder();

 ReadString(file1, [=](String^ str) {
 if(results->str != nullptr) { // Beware of the race condition!
 func(str + results->str);
 }
 else{
 results->str = str;
 }
 });

 ReadString(file2, [=](String^ str) {
 if(results->str != nullptr) { // Beware of the race condition!
 func(results->str + str);
 }
 else{
 results->str = str;
 }
 });
}

Figure 2 Reading from Two Files Concurrently

Very often, you’ll fi nd yourself
using multiple asynchronous

operations together.

www.msdnmagazine.com

msdn magazine24 Asynchronous Programming

pools, users of PPL get to use higher-level abstractions such as
tasks, parallel algorithms like parallel_for and the parallel_sort
and concurrency-friendly containers such as concurrent_vector.

New in Visual Studio 2012, the task class of the PPL allows you
to succinctly represent an individual unit of work to be executed
asynchronously. It allows you to express your program logic in terms
of independent (or interdependent) tasks and let the runtime take
care of scheduling these tasks in the optimal manner.

What makes tasks so useful is their composability. In its sim-
plest form, two tasks can be composed sequentially by declaring
one task to be a continuation of another. This seemingly trivial
 construct enables you to combine multiple tasks in interesting
ways. Many higher-level PPL constructs such as join and choice
(which I’ll talk about in moment) are themselves built using
this concept. Task continuations can also be used to represent
completions of asynchronous operations in a more concise way.
Let’s revisit the sample from Figure 1 and now write it using PPL
tasks, as shown in Figure 3.

Because I’m now using tasks instead of callbacks to represent
asynchrony, the user-provided callback is gone. Th is incarnation
of the function returns a task instead.

In the implementation, I created the getFileTask task from the
asynchronous operation returned by GetFileAsync. I then set up
the completion of that operation as a continuation of the task (the
then method).

Th e then method deserves a closer look. Th e parameter to the
method is a lambda expression. Actually, it could also be a func-
tion pointer, a function object, or an instance of std::function—but
because lambda expressions are ubiquitous in PPL (and indeed in
modern C++), from here on I’ll just say “the lambda” whenever I
mean any type of a callable object.

The return type of the then method is a task of some type T.
Th is type T is determined by the return type of the lambda passed
to then. In its basic form, when the lambda returns an expression
of type T, the then method returns a task<T>. For example, the
lambda in the following continuation returns an int; therefore, the
resulting type is a task<int>:

task<int> myTask = someOtherTask.then([]() { return 42; });

Th e type of the continuation used in Figure 3 is slightly diff er-
ent. It returns a task and performs the asynchronous unwrapping
of that task so that the resulting type is not a task<task<int>> but
a task<int>:

task<int> myTask = someOtherTask.then([]() {
 task<int> innerTask([]() {
 return 42;
 });
 return innerTask;
});

If all this feels a bit dense, don’t let that slow you down. I promise
aft er a few more motivating examples it will make more sense.

Task Composition
Armed with what was covered in the previous section, let’s con-
tinue to build on the fi le-reading example.

Recall that in C++ all local variables residing in functions and
lambdas are lost on returning. To keep the state around, you must
manually copy the variables into the heap or some other long-lived
storage. Th at’s the reason I created the holder class earlier. In lambdas
that run asynchronously, you need to be careful not to capture any
state from the enclosing function by pointer or reference; other-
wise, when the function fi nishes, you’ll end up with a pointer to
an invalid memory location.

I will capitalize on the fact that the then method performs the
unwrapping on the asynchronous interfaces, and rewrite our sample
in a more succinct form—albeit at the cost of introducing another
holder struct, shown in Figure 4.

Compared with the sample in Figure 3, this code is easier to read
because it resembles sequential steps as opposed to a “staircase” of
nested operations.

In addition to the then method, PPL has several other compo-
sitional constructs. One is the join operation, implemented by the
when_all method. Th e when_all method takes a sequence of tasks

ref struct Holder
{
 IDataReader^ Reader;
};
task<String^> ReadStringTask(String^ fileName)
{
 StorageFolder^ item = KnownFolders::PicturesLibrary;

 auto holder = ref new Holder();

 task<StorageFile^> getFileTask(item->GetFileAsync(fileName));
 return getFileTask.then([](StorageFile^ storageFile) {
 return storageFile->OpenAsync(FileAccessMode::Read);
 }).then([holder](IRandomAccessStream^ istream) {
 holder->Reader = ref new DataReader(istream);
 return holder->Reader->LoadAsync(istream->Size);
 }).then([holder](UINT bytesRead) {
 return holder->Reader->ReadString(bytesRead);
 });
}

Figure 4 Chaining Multiple Tasks

task<String^> ReadStringTask(String^ fileName)
{
 StorageFolder^ item = KnownFolders::PicturesLibrary;
 task<StorageFile^> getFileTask(item->GetFileAsync(fileName));
 return getFileTask.then([](StorageFile^ storageFile) {
 task<IRandomAccessStream^> openTask(storageFile->OpenAsync(
 FileAccessMode::Read));
 return openTask.then([](IRandomAccessStream^ istream) {
 auto reader = ref new DataReader(istream);
 task<UINT> loadTask(reader->LoadAsync(istream->Size));
 return loadTask.then([reader](UINT bytesRead) {
 return reader->ReadString(bytesRead);
 });
 });
 });
}

Figure 3 Reading from Files Using Nested PPL Tasks

It’s far better to start multiple
asynchronous operations

eagerly and deal with the data as
it comes in.

vslive.com/lasvegas

➤ Windows 8 / WinRT
➤ Silverlight / WPF
➤ Web
➤ Visual Studio 2010+ / .NET 4.0
➤ Cloud Computing

➤ Data Management
➤ HTML5
➤ Windows Phone 7
➤ Cross Platform Mobile

Check out the hot track topics that will make YOU a more valuable part
of your company’s development team:

Las Vegas | March 26-30 | Mirage Resort and Casino

YOUR MAP TO THE .NET DEVELOPMENT PLATFORM

Intense Take-Home Training for Developers,
Soft ware Architects and Designers

WHAT YOU LEARN IN VEGAS
WON’T STAY IN VEGAS

www.vslive.com/lasvegas

PLATINUM SPONSOR SUPPORTED BY PRODUCED BY

➤ In-depth training for all levels of developers
➤ A stellar speaker lineup that includes top

industry experts and Microsoft insiders
➤ 55+ educational sessions
➤ 9 tracks that cover today’s hot topics
➤ Pre- and post-event full-day workshops
➤ Special events and networking opportunities Scan the QR

code for more
information on
Visual Studio Live!

Use Promo Code MTIP

Register Before
February 29th
and Save $300!

vslive.com/lasvegas

Las Vegas | March 26-30 | Mirage Resort and Casino

www.vslive.com/lasvegas

25February 2012msdnmagazine.com

and returns the resulting task, which collects the output of all the
constituent tasks into an std::vector. For the common case of two
arguments, PPL has a convenient shorthand: the operator &&.

Th is is how I used the join operator to re-implement the fi le
concatenation method:

task<String^> ConcatFiles(String^ file1, String^ file2)
{
 auto strings_task = ReadStringTask(file1) && ReadStringTask(file2);
 return strings_task.then([](std::vector<String^> strings) {
 return strings[0] + strings[1];
 });
}

Th e choice operation is also useful. Given a series of tasks, choice
(implemented by the when_any method) completes when the
fi rst task in the sequence completes. Like join, choice has a two-
argument shorthand in the form of the operator ||.

Choice is handy in scenarios such as redundant or speculative
execution; you launch several tasks and the fi rst one to complete
delivers the required result. You could also add a timeout to an
operation—start with an operation that returns a task and com-
bine it with a task that sleeps for a given amount of time. If the
sleeping task completes fi rst, your operation has timed out and can
therefore be discarded or canceled.

PPL has another construct that helps with composability of
tasks—the task_completion_event, which you can use for interop-
erability of tasks and non-PPL code. A task_completion_event can
be passed to a thread or to an IO completion callback that’s expected

to eventually set it. A task created from the task_completion_event
will be completed once the task_completion_event is set.

Authoring Asynchronous Operations with PPL
Whenever you need to extract the last ounce of performance from
your hardware, C++ is the language of choice. Other languages have
their place in Windows 8: Th e JavaScript/HTML5 combo is great
for writing GUIs; C# off ers a productive developer experience; and
so on. To write a Metro style app, use what works for you; use what
you know. In fact, you can use many languages in the same app.

Oft en, you’ll fi nd yourself writing the front-end of the application
in a language like JavaScript or C#, and the back-end component
in C++ for maximum performance. If the operation exported by
your C++ component is either compute-bound or I/O-bound, it’s
a good idea to defi ne it as an asynchronous operation.

To implement the four WinRT asynchronous interfaces men-
tioned earlier—IAsyncOperation, IAsyncAction, IAsyncOperation-
WithProgress and IAsyncActionWithProgress—PPL defi nes the
create_async method and the progress_reporter class, both in the
concurrency namespace.

In its simplest form, create_async takes a lambda or a function
pointer that returns a value. Th e type of the lambda determines the
type of the interface returned from create_async.

Given a lambda with no parameters that returns a non-void
type T, create_async returns an implementation of the
IAsyncOperation<T>. For a lambda returning void, the resulting
interface is IAsyncAction.

Th e lambda can take a parameter of type progress_reporter<P>.
Th e instance of this type is used to post progress reports of type
P back to the caller. For example, the lambda taking a progress_
reporter<int> can report the percentage of completion as an

IAsyncOperation<float>^ operation = create_async([]() {
 return 42.0f;
});

IAsyncAction^ action = create_async([]() {
 // Do something, return nothing
});

IAsyncOperationWithProgress<float,int>^ operation_with_progress =
 create_async([](progress_reporter<int> reporter) {
 for(int percent=0; percent<100; percent++) {
 reporter.report(percent);
 }
 return 42.0f;
 });

IAsyncActionWithProgress<int>^ action_with_progress =
 create_async([](progress_reporter<int> reporter) {
 for(int percent=0; percent<100; percent++) {
 reporter.report(percent);
 }
 });

Figure 5 Authoring Asynchronous Operations in PPL

var transformer = new ImageCartoonizerBackend.ImageTransformer();
...
transformer.getTransformImageAsync(copiedFile.path, dstImgPath).then(
 function () {
 // Handle completion…
 },
 function (error) {
 // Handle error…
 },
 function (progressPercent) {
 // Handle progress:
 UpdateProgress(progressPercent);
 }
);

Figure 6 Consuming the Image Transformation Routine
in JavaScript

The PPL is designed to
make writing parallel and

asynchronous programs in C++
easy and productive.

task<image> take_picture([]() {
 if (!init_camera())
 throw std::exception("can’t init camera");
 return get_image();
});

take_picture.then([](task<image> antecedent) {
 try
 {
 image img = antecedent.get();
 }
 catch (std::exception ex)
 {
 // Handle exception here
 }
});

Figure 7 Error-handling Continuation

www.msdnmagazine.com

msdn magazine26 Asynchronous Programming

integer value. Th e return type of the lambda in this case determines
whether the resulting interface is IAsyncOperationWithProgress
<T,P> or IAsyncAction<P>. See Figure 5.

To expose an asynchronous operation to other WinRT languages,
defi ne a public ref class in your C++ component and have a func-
tion that returns one of the four asynchronous interfaces. You’ll
fi nd a concrete example of a hybrid C++/JavaScript application
in the PPL Sample Pack (to get it, search online for “Asynchrony
with PPL”). Here’s a snippet that exposes the image transformation
routine as an asynchronous action with progress:

public ref class ImageTransformer sealed
{
public:
 //
 // Expose image transformation as an asynchronous action with progress
 //
 IAsyncActionWithProgress<int>^ GetTransformImageAsync(String^ inFile,
String^ outFile);
}

As Figure 6 shows, the client part of the application is imple-
mented in JavaScript using the promise object.

Error Handling and Cancellation
Attentive readers might have noticed that this treatise on
asynchrony so far completely lacks any notion of error handling
and cancellation. Th is subject can be neglected no longer!

Inevitably, the fi le-reading routine will be presented with a fi le
that doesn’t exist or can’t be opened for one reason or another. Th e
dictionary-lookup function will encounter a word it doesn’t know.
Th e image transformation won’t produce a result fast enough and
will be canceled by the user. In these scenarios, an operation ter-
minates prematurely, before its intended completion.

In modern C++, exceptions are used to indicate errors or other
exceptional conditions. Exceptions work wonderfully within a single
thread—when an exception is thrown, the stack is unwound until the
appropriate catch block down the call stack is encountered. Th ings get
messy when concurrency is thrown into the mix, because an exception
originating from one thread can’t be easily caught in another thread.

Consider what happens with tasks and continuations: when the
body of a task throws an exception, its fl ow of execution is inter-
rupted and it can’t produce a value. If there’s no value that can be
passed to the continuation, the continuation can’t run. Even for
void tasks that yield no value, you need be able to tell whether the
antecedent task has completed successfully.

Th at’s why there’s an alternative form of continuation: For a task
of type T, the lambda of the error-handling continuation takes a
task<T>. To get the value produced by the antecedent task, you
must call the get method on the parameter task. If the antecedent
task completes successfully, so will the get method. Otherwise, get
will throw an exception.

I want to emphasize an important point here. For any task in
PPL, including a task created from an asynchronous operation, it
is syntactically valid to call get on it. However, before the result is
available, get would have to block the calling thread, and of course
that would fl y in the face of our “fast and fl uid” mantra. Th erefore,
calling get on a task is discouraged in general and prohibited in
an STA (the runtime will throw an “invalid operation” exception).
The only time you can call get is when you’ve got the task as a
parameter to a continuation. Figure 7 shows an example.

Every continuation in your program can be an error-handling
one, and you may choose to handle exceptions in every continua-
tion. However, in a program composed of multiple tasks, handling
exceptions in every continuation can be overkill. Fortunately, this
doesn’t have to happen. Similar to unhandled exceptions working
their way down the call stack until the frame where they’re
caught, exceptions thrown by tasks can “trickle down” to the next
continuation in the chain to the point where they are eventually
handled. And handled they must be, for if an exception remains
unhandled past the lifetime of the tasks that could have handled it,
the runtime throws the “unobserved exception” exception.

Let’s now return to our fi le-reading example and augment it with
error handling. All the exceptions thrown by WinRT are of type

task<String^> ReadStringTaskWithErrorHandling(String^ fileName)
{
 StorageFolder^ item = KnownFolders::PicturesLibrary;

 auto holder = ref new Holder();

 task<StorageFile^> getFileTask(item->GetFileAsync(fileName));
 return getFileTask.then([](StorageFile^ storageFile) {
 return storageFile->OpenAsync(FileAccessMode::Read);
 }).then([holder](IRandomAccessStream^ istream) {
 holder->Reader = ref new DataReader(istream);
 return holder->Reader->LoadAsync(istream->Size);
 }).then([holder](task<UINT> bytesReadTask) {
 try
 {
 UINT bytesRead = bytesReadTask.get();
 return holder->Reader->ReadString(bytesRead);
 }
 catch (Exception^ ex)
 {
 String^ result = ""; // return empty string
 return result;
 }
 });
}

Figure 8 Read String from File with Error Handling

cancellation_token_source ct;

task<int> my_task([]() {
 // Do some work
 // Check if cancellation has been requested
 if(is_task_cancellation_requested())
 {
 // Clean up resources:
 // ...
 // Cancel task:
 cancel_current_task();
 }
 // Do some more work
 return 1;
}, ct.get_token());
...
ct.cancel(); // attempt to cancel

Figure 9 Canceling and Reaction to the Cancellation Request
in a Task

What makes tasks so useful is
their composability.

27February 2012msdnmagazine.com

Platform::Exception, so this is what I’m going to catch in my last
continuation, as shown in Figure 8.

Once the exception has been caught in a continuation, it’s consid-
ered “handled,” and the continuation returns a task that completes
successfully. So, in Figure 8, the caller of the ReadStringWith-
ErrorHandling will have no way of knowing whether the file
reading completed successfully. Th e point I’m trying to make here
is that handling exceptions too early isn’t always a good thing.

Cancellation is another form of premature termination of a task.
In WinRT, as in the PPL, cancellation requires the cooperation of
two parties—the client of the operation and the operation itself.
Th eir roles are distinct: Th e client requests the cancellation, and the
operation acknowledges the request—or not. Because of a natural
race between the client and the operation, the cancellation request
isn’t guaranteed to succeed.

In PPL, these two roles are represented by the two types, the
cancellation_token_source and the cancellation_token. An instance
of the former is used to request the cancellation by calling the
cancel method on it. An instance of the latter is instantiated from
the cancellation_token_source and passed as the last parameter
into the constructor of the task; the then method; or in the lambda
of the create_async method.

Inside the task’s body, the implementation can poll the cancella-
tion request by calling the is_task_cancellation_requested method,
and acknowledge the request by calling the cancel_current_task
method. Because the cancel_current_task
method throws an exception under the
covers, some resource cleanup is appropriate
before calling cancel_current_task. Figure
9 shows an example.

Notice that many tasks can be canceled by
the same cancellation_token_source. Th is is
very convenient when working with chains
and graphs of tasks. Instead of canceling
every task individually, you can cancel all
the tasks governed by a given cancellation_
token_source. Of course, there’s no guarantee
that any of the tasks will actually respond to
the cancellation request. Such tasks will com-
plete, but their normal (value-based) con-
tinuations will not run. Th e error-handling
continuations will run, but an attempt to get
the value from the antecedent task will result
in the task_canceled exception.

Finally, let’s look at using cancellation
tokens on the production side. Th e lambda
of the create_async method can take a
cancellation_token parameter, poll it using
the is_canceled method, and cancel the opera-
tion in response to the cancellation request:

IAsyncAction^ action = create_async([]
(cancellation_token ct) {
 while (!ct.is_canceled()); // spin until
canceled
 cancel_current_task();
});
...
action->Cancel();

Notice how in the case of the task continuation, it’s the then
method that takes the cancellation token, whereas in the case of
create_async, the cancellation token is passed into the lambda. In
the latter case, cancellation is initiated by calling the cancel method
on the resulting asynchronous interface, and that gets plumbed by
the PPL into a cancellation request through the cancellation token.

Wrapping Up
As Tony Hoare once quipped, we need to teach our programs
to “wait faster.” And yet, wait-free asynchronous programming
remains diffi cult to master and its benefi ts are not immediately
obvious, so developers shun it.

In Windows 8, all blocking operations are asynchronous, and
if you’re a C++ programmer, PPL makes asynchronous program-
ming quite palatable. Embrace the world of asynchrony, and teach
your programs to wait faster!

ARTUR LAKSBERG leads a group of developers working on the Parallel Patterns
Library and the Concurrency Runtime at Microsoft . In the past, he has worked
on the C++ compiler front end and was involved in the implementation of the
Axum programming language. Artur can be reached at arturl@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Genevieve Fernandes and Krishnan Varadarajan

www.cozyroc.com
www.msdnmagazine.com
mailto:arturl@microsoft.com

msdn magazine28

W IN DOWS A ZUR E

Building a Massively
Scalable Platform for
Consumer Devices on
Windows Azure

This article is about scalability and interoperability,
two characteristics that are required in architectures to support the
diversity of today’s popular mobile platforms, which potentially have
millions of users. Figure 1 depicts this diversity, a common—yet
challenging—scenario for today’s developers. Supplying Web-based
services to mobile devices is a daunting task, requiring distinct and
diverse tooling, languages and IDEs. Beyond this diversity is the
need for elastic scale—in terms of available Web services and for
data that can reach terabytes in size.

Developers need to scale their Web applications in two diff erent
dimensions. The first dimension is compute, which simply boils
down to the number of Web service instances made available
by the hosting provider to respond to mobile Web requests. Th e
second dimension is scalable data: Some cloud platforms offer
scalable data through dedicated storage services, letting developers

Bruno Terkaly and Ricardo Villalobos

scale terabytes of data to millions of mobile users and eff ortlessly
partition it across multiple servers, resulting in fast performance,
redundancy and support for petabytes of capacity.

To support communication to as many diverse clients as possible,
an interoperable approach is crucial. Everything from data formats
to network protocols needs careful consideration. A solution must
minimize custom coding and leverage open standards to the great-
est extent possible.

We’re using RESTful Web services hosted in Windows Azure—
the Microsoft cloud platform—in this article to solve both the
interoperability challenges and the elastic scale problem.

A reference architecture based on RESTful Web services is
depicted in Figure 2. RESTful architectures are interoperable
because they’re developed alongside HTTP/1.x and provide consis-
tent communication across a vast array of clients. Th e architecture
alternative to REST is SOAP. We chose not to use SOAP because
it has larger, slower data payloads and additional complexities.This article discusses:

• Using the Windows Azure Portal to provision a RESTful Web service

• Building the Web service

• Deploying the Web service

• Consuming the Web service

Technologies discussed:
Windows Azure, RESTful Web services, JSON

Code download available at:
bit.ly/syTize

Application Type Platform
Development
Environment Language

Mobile Windows Phone Visual Studio C#
Mobile Android Eclipse Java
Mobile iOS Xcode Objective-C
Cloud-Based
Web Server

Windows Azure Visual Studio C#

Figure 1 A Diverse Set of Mobile Technologies Is
a Challenge for Developers

http://bit.ly/syTize

29February 2012msdnmagazine.com

Windows Azure makes it easy to increase and decrease scale on
demand. By simply changing a number—the “Instance Count”—through
either the Windows Azure Portal or a management API, you can scale
RESTful Web services almost eff ortlessly to meet any level of demand.

Our implementation uses JSON (and not XML) as the data
format because it’s compact and widely supported. XML suff ers
from larger payloads.

Although many vendors off er cloud hosting solutions for RESTful
Web services, Windows Azure has some advantages. For starters,
you can choose from among six highly automated datacenters
in Asia, Europe and North America, including support from 24
Content Delivery Networks (CDNs), making it possible to connect
to users with low latency and data locality.

Windows Azure off ers an array of storage and computing options in
addition to powerful developer tooling. A variety of storage mechanisms
are available, from Binary Large Objects (BLOBs) to relational stores.
Windows Azure also provides identity management systems, secure
messaging and hybrid cloud/on-premises connectivity capabilities.

Getting Started
The remainder of this article will divide the architecture and
implementation into four parts:

1. Provision an account using the Windows Azure Portal.
2. Create a Windows Azure Cloud Project and write some

code to defi ne a RESTful Web service.
3. Deploy the cloud project to the account using the

Windows Azure Portal.
4. Build mobile applications for: Windows Phone, Android

and iOS (iPhone/iPad).
Let’s go through these steps together. Th e fi rst one takes place at

the Windows Azure Portal, which you can access at windows.azure.com
if you have a subscription. (For more information, visit azure.com.)

Part 1: Provisioning the Web Service
at the Windows Azure Portal
Th e two key options at the Windows Azure Portal are: New Hosted
Service and New Storage Account.

Figure 3 illustrates the workfl ow for provisioning a “hosted ser-
vice.” Th is process will result in a URL that represents the endpoint
in a Microsoft datacenter where the RESTful Web service will be
deployed. Developers of Windows Phone, Android and iOS apps
will need this URL to communicate with the service.

Th e workfl ow to get all this working is straightforward:
1. Log in to the Windows Azure Portal.
2. Select “New Hosted Service.” Specify an account name, a

URL and a region (location of datacenter).
3. Store the URL the Windows Azure Portal generates; it will

be used—along with the account name—when building
both the RESTful Web service and the mobile clients. Th e
account name will also be used in Part 3.

Note: Th e example in this article uses the account name “fastmotor-
cycleservice,” with the URL “http://fastmotorcycleservice.cloudapp.net.”

The second task at the Windows Azure Portal is creating a
Storage Account. Figure 4 illustrates this process, including the
name and location of the Windows Azure tables. Once again, it’s
possible to choose from among the six datacenters. It makes sense
to host both the Web service and the data in the same datacenter
to reduce cost and improve performance.

Th e workfl ow is similar to the “hosted service” explained previously:
1. Log in to the Windows Azure Portal.
2. Create a new storage account and provide an account

name and a region.
3. Store the access key the Windows Azure Portal generates

and provides, as well as the account name; they’ll be
required when building the RESTful Web service.

Now that Part 1 is complete, the needed Windows Azure Portal
information can be used to write the RESTful Web service as well
as the Windows Phone, Android and iOS applications.

Figure 2 A Solution Based on Open Standards

RESTful Web Service

Cloud-Based
Data Storage

HTTP Verb + URL
Windows Azure

JSON Data

Figure 3 Provisioning the Windows Azure RESTful Web Service

Account Name
First part of URL (fastmotorcycleservice)
Region

URL
http://fastmotorcycleservice.cloudapp.net

URL
http://fastmotorcycleservice.cloudapp.net

Windows Azure Portal

Hosted Service

Account Name
First part of URL (fastmotorcycleservice)
Region

URL
http://fastmotorcycleservice.cloudapp.net

URL
http://fastmotorcycleservice.cloudapp.net

Build Mobile Applications using URL

Figure 4 Provisioning the Windows Azure Storage Account

Account Name (fastmotorcycle)
Region

Access Key

Account Name and Access Key
(fastmotorcycle)

Windows Azure Portal

Storage Account

Account Name (fastmotorcycle)
Region

Access Key

Account Name and Access Key
(fastmotorcycle)

RESTful Web Service Application

www.msdnmagazine.com
http://windows.azure.com
http://azure.com

msdn magazine30 Windows Azure

Part 2: Building the
Windows Azure-Hosted
RESTful Web Service
Building a RESTful Web service in Visual
Studio is simple. Open Visual Studio as
administrator from Start | All Programs |
Microsoft Visual Studio 2010 by right-
clicking the Microsoft Visual Studio
2010 shortcut and choosing “Run as
administrator.” From the File menu,
choose New | Project.

In the New Project dialog, expand the
language of preference in the Installed
Templates list and select Cloud. Choose
the Windows Azure Project template,
set the name of the project to Fast-
MotorcycleProject and set the location
to anything convenient.

A video demonstrating these
steps in detail can be found at bit.ly/
VideoAzureRestfulService.

Th e Solution Explorer will look like
Figure 5.

Figure 6 shows some basic steps not
covered in this article (but which are covered in the referenced video).

These steps are common to almost all Windows Azure proj-
ects. For example, it’s standard practice to use a Web Role to host
RESTful Web services. A DataConnectionString is needed to
access the storage account defi ned previously at the Windows Azure
Portal. Startup code is needed inside the Visual Studio project to
read account names and access keys from the confi guration fi les
to use against the storage accounts.

Once the preliminary steps are complete, a RESTful Web service
can be added using the WCF Service template in Visual Studio.

To add a WCF Service, right-click the FastMotorcycleProject_
WebRole folder, select Add | New Item dialog and set the name of
the class to FastMotorcycleService.

FastMotorcycleService.svc.cs will be generated. Replace the
entire code of the class with the code shown in Figure 7.

Th e key to making this work is to know how to map diff erent
URIs and verbs to RESTful methods. For this, the WebGet and
WebInvoke attributes must be added to the code in Figure 7.

Th ese attributes tell the framework that the method should respond
to HTTP GET requests. WebInvoke is mapped to HTTP POST by
default. Also by default, the URI is determined by the name of the

method (added onto the base URI of the
endpoint). Some experts or REST pur-
ists might argue that our method names
should not be verbs but rather nouns.

Th e WCF REST programming model
shown in Figure 8 allows customization
of URIs for each method by using tem-
plates that can be set via the UriTemplate
property on the WebInvoke and Web-
Get attributes. Th e model is explained
in the following list, with numerals
corresponding to those in Figure 8:
 1. A mobile application uses stan-

dard HTTP to send a message
request, which includes an HTTP
verb plus a URL.

 2. Th e RESTful Web service intercepts
the mobile application message
request (request for data) and makes
a call to GetItems, passing “Bruno”
as a parameter. GetItems queries
for data using a LINQ query, using
“Bruno” as part of the where clause.

 3. Only the records in which the
PartitionKey is equal to “Bruno”

 are returned from the Windows Azure Table Service.
4. Th e data is converted to JSON format (automatically) and

returned to the mobile device.
5. Th e data is available to the mobile application. Th e data

is used to populate a ListBox and presented to the mobile
application user.

Task Covered in Video Notes

Adding an ASP.NET Web Role Will be used to host the RESTful
Web service

Adding a DataConnectionString Will include the account name and
access key

Adding some basic startup code to
initialize data

Add code to global.asax.cs to read
the DataConnectionString

Figure 6 Basic Steps Not Covered in This Article

[ServiceContract]
public class FastMotorcycleListService
{
 private FastMotorcycleListDataProvider _data;

 public FastMotorcycleListService()
 {
 _data = new FastMotorcycleListDataProvider();
 }

 [OperationContract]
 [WebGet(UriTemplate = "/list/{owner}", ResponseFormat =
 WebMessageFormat.Json)]
 public List<string> GetItems(string owner)
 {
 return _data.GetItems(owner);
 }

 [OperationContract]
 [WebInvoke(UriTemplate = "/list/{owner}", Method = "POST",
 RequestFormat = WebMessageFormat.Json)]
 public void AddItem(string owner, string item)
 {
 _data.AddItem(owner, item);
 }

 [OperationContract]
 [WebInvoke(UriTemplate = "/list/{owner}/{item}", Method = "DELETE")]
 public void DeleteItem(string owner, string item)
 {
 _data.DeleteItem(owner, item);
 }
}

Figure 7 FastMotorcycleListService.svc.cs

Figure 5 Creating a New Windows Azure Project

http://bit.ly/VideoAzureRestfulService
http://bit.ly/VideoAzureRestfulService

Untitled-3 1 1/9/12 12:36 PM

www.kendoui.com

msdn magazine32 Windows Azure

Th e next three classes we discuss are helper objects, which are
needed to interact with the Windows Azure Table Service. Fast-
MotorcycleListDataProvider, FastMotorcycleListItem and Fast-
MotorcycleList are classes that abstract away storage and Windows
Azure Table-specific API details from the code in Figure 9,
allowing the application to perform Create, Read, Update and
Delete (CRUD) operations with the Windows Azure Table Service.

In Visual Studio, add a new class module called FastMotorcycle-
ListDataProvider.cs. Replace the code with the code in Figure 9.

Part 3: Deploying the RESTful Web Service
Th is is one of the areas where Windows Azure really shines. It’s
as simple to deploy 100 RESTful Web service instances as it is to
deploy only one. Note the following list of steps:

1. In Visual Studio, right-click on FastMotorcycleProject
and select Package.

2. Return back to the browser with the portal and select
“Hosted Services, Storage Accounts & CDN.”

3. In the top pane, select “Hosted Services.”
4. In the middle pane, select the Hosted Service you

previously created.
5. Right-click and select “New Production Deployment” and

upload the fi les (FastMotorcycleProject.cspkg and ServiceCon-
fi guration.Cloud.cscfg); these were generated in the fi rst step.

Part 4: Consuming the RESTful Web Service
from Mobile Applications
Now we’ll discuss consuming the RESTful Web services from
various mobile applications. Th is section is meant to highlight the
interoperability this approach provides.

Th e JSONKit (github.com/johnezang/JSONKit) makes interacting with the
RESTful Web service from iOS devices easier. With a few lines of code, it’s
possible to call the RESTful Web service, download the JSON-formatted
data, convert it to a more usable format and attach the converted data to a
Table View control, used by iPhone or iPad applications (see Figure 10).

Developing for Android involves the Java programming
language, which has been around for a long time and can natively

public class FastMotorcycleListDataProvider
{
 private FastMotorcycleList _list;

 public FastMotorcycleListDataProvider()
 {
 string configValue = RoleEnvironment.GetConfigurationSettingValue(
 "DataConnectionString");
 var account = CloudStorageAccount.Parse(configValue);

 _list = new FastMotorcycleList(account.TableEndpoint.ToString(),
 account.Credentials);
 }

 public List<string> GetItems(string owner)
 {
 var results = from entity in _list.Items
 where entity.PartitionKey == owner
 select entity;

 var list = new List<string>();
 foreach (var item in results)
 {
 list.Add(item.RowKey);
 }

 return list;
 }

 public void AddItem(string owner, string item)
 {
 _list.AddObject("FastBikes", new FastMotorcycleListItem(owner, item));
 _list.SaveChanges();
 }

 public void DeleteItem(string owner, string item)
 {
 var entity = (from i in _list.Items

 where i.PartitionKey == owner
 && i.RowKey == item
 select i).Single();

 _list.DeleteObject(entity);
 _list.SaveChanges();
 }
}

public class FastMotorcycleListItem : TableServiceEntity
{
 public FastMotorcycleListItem()
 {
 }

 public FastMotorcycleListItem(string partitionKey, string rowKey)
 : base(partitionKey, rowKey)
 {
 }
}

public class FastMotorcycleList : TableServiceContext
{
 public FastMotorcycleList(string baseAddress,
 StorageCredentials storageCredentials)
 : base(baseAddress, storageCredentials)
 {
 }

 public DataServiceQuery<FastMotorcycleListItem> Items
 {
 get
 {
 return this.CreateQuery<FastMotorcycleListItem>("FastBikes");
 }
 }
}

Figure 9 The FastMotorcycleListDataProvider, FastMotorcycleListItem and FastMotorcycleList Classes

Figure 8 Workfl ow for Mobile Application Requesting
RESTful Data

HTTP
Verb

+
URL

Windows
Azure Table

HTTP verb GET

URL http://fastmotorcycleservice.cloudapp.net/FastMotorcycleListService.svc/list/Bruno

The mobile client application issues a GET, sending the following URL:

RESTful Web Service
public List<string> GetItems(string owner)
{
var results = from entity in _list.Items
 where entity.PartionKey == owner
 select entity;

PartitionKey RowKey

Bruno GSXR1000

Bruno Hayabusa

John ZX-10

John Repsol

John Harley

All the
Data

PartitionKey RowKey

Bruno GSXR1000

Bruno Hayabusa

Subset of
the Data

http://github.com/johnezang/JSONKit

Untitled-4 1 1/9/12 3:32 PM

www.perforce.com/free20

msdn magazine34 Windows Azure

parse JSON data. Figure 11 shows an example. The Windows
Phone SDK includes native support to call RESTful Web services
and process the JSON-formatted data. The SDK makes it easy
to process JSON data with DataContractJsonSerializer. Figure
12 shows an example. Finally, if you’d like to see a more robust
toolkit for developing for Android and iOS, you can visit this
Microsoft -sanctioned link: github.com/microsoft-dpe.

Access to Entire Spectrum of Devices
Because Windows Azure-hosted RESTful Web services are based
on HTTP, any client application that supports this protocol is capa-
ble of communicating with them. Th is opens up a wide spectrum
of devices for developers, because the majority of devices fall into
this category. Although we covered mobile platforms in this article,
JavaScript implementations such as jQuery are also capable of
consuming RESTful Web services. Regardless of the path mobile
platforms take in regard to UI diversity, it will always make sense to
build on simple, open, HTTP-based Web service architectures.

BRUNO TERKALY works as a developer evangelist for Microsoft . His depth of
knowledge comes from years of experience in the field, writing code using a
multitude of platforms, languages, frameworks, SDKs, libraries and APIs. He
spends time writing code, blogging and giving live presentations on building
cloud-based applications, specifi cally using the Windows Azure platform.

RICARDO VILLALOBOS is a seasoned soft ware architect with more than 15 years
of experience designing and creating applications for companies in the supply
chain management industry. Holding diff erent Microsoft certifi cations, as well as
an MBA in Supply Chain Management from the University of Dallas, he joined
Microsoft in 2010 as a Windows Azure architect evangelist.

THANKS to the following technical experts for reviewing this article:
Reza Alizadeh and Wade Wegner

// HttpClient used to talk to Web service
HttpClient httpclient = new DefaultHttpClient();

String url =
 "http://your_hosted_service_name.cloudapp.net/"+
 "FastMotorcycleListService.svc/list/Bruno";
// This will be the array we need to convert
// We get the data from the Web service
JSONArray listItems = null;
String jason = null;

// Set up the RESTful call to 'GET' the data
HttpGet request_http_get = new HttpGet(url);

// Read the JSON data and assign it to ListView
try
{
 // Fill a response object using a request
 HttpResponse response_http_get = httpclient.execute(request_http_get);

 // Length represents the number of data items returned
 // by RESTful Web service
 long length = response_http_get.getEntity().getContentLength();

 // "entity" ends up being the data coming back from Web server
 HttpEntity entity = response_http_get.getEntity();

 // Read the bytes, one byte at a time
 InputStream stream = entity.getContent();

 // Allocate a series of bytes
 byte[] buffer = new byte[(int) length];

 // Read bytes from RESTful Web service
 // After this loop, we end up with something like ->
 // ["busa","gxr1000","ninja250"]
 for (int i = 0; i < length; i++)
 {
 buffer[i] = (byte) stream.read();
 }
 // Create an array of strings
 jason = new String(buffer);
 // Convert to JSON array for Android ListBox
 // listItems ends up being a three-element JSON array (see "busa")
 listItems = new JSONArray(jason);
 }
 catch (Exception e)
 {
 System.out.println(e);
 }

Figure 11 Android Code That Parses JSON Data

private void LoadList()
{
 string uri =
 @"http://your_hosted_service_name.cloudapp.net/"+
 "FastMotorcycleListService.svc/list/Bruno";
 var webRequest = (HttpWebRequest)WebRequest.Create(uri);
 webRequest.Method = "GET";

 try
 {
 webRequest.BeginGetResponse(new AsyncCallback((result) =>
 {
 var webResponse =
 (HttpWebResponse)webRequest.EndGetResponse(result);

 if (webResponse.StatusCode == HttpStatusCode.OK)
 {
 var jsonDeserializer =
 new DataContractJsonSerializer(typeof(List<string>));
 List<string> items =
 (List<string>)jsonDeserializer.ReadObject(
 webResponse.GetResponseStream());

 shoppingListBox.Dispatcher.BeginInvoke(new Action(() =>
 {
 shoppingListBox.Items.Clear();
 foreach (var item in items)
 {
 shoppingListBox.Items.Add(item);
 }
 }));
 }

 }), null);
 }
 catch
 {
 // Ignored
 }
}

Figure 12 C# Code That Parses JSON Data

NSString *username = @"Bruno"; // Gets passed to the RESTful Web Service

NSString *serviceUri = "http://your_hosted_service_name.cloudapp.net/"+
 "FastMotorcycleListService.svc/list/";
// Build the service URI (will point to our RESTful Web service
NSString *url = [NSString stringWithFormat:@"%@%@", serviceUri, username];

// Retrieve the data in the form of a JSON array
NSData *json = [NSData dataWithContentsOfURL:[NSURL URLWithString:url]];

// Convert from JSON array to NSArray
// This allows us to populate the table view more easily
NSArray *itemArray = [json objectFromJSONData];

// Assign the array to the TableView
// fastbikes is the name of our TableView control
self.fastbikes = [[NSMutableArray alloc] initWithArray:itemArray];

Figure 10 Objective-C Code That Parses JSON Data

http://github.com/microsoft-dpe

www.DevExpress.com

DXv2 is the next generation of tools that can take your applications to a
whole new level. Your users are ready—what will you build for them?

Download your free 30-day trial at www.DevExpress.com

devvelopment skkills to tap into the groowingg ddemand for stunning tablet & touuch--enabled apps
acrooss all platforrms, including WinForms, WWPF annd ASP.NET. Build for todaay ass you begin to

re-imagine busineess applications for thhe Winddows 88 Metro design aesthetic. DXXvv2 delivers the
gestures, themes,, andd ccontrolss to put Touch within yourr reeaach, right now.

Copyright © 1998-2011 Developer Express Inc. ALL RIGHTS RESERVED. All trademarks or registered trademarks are property of their respective owners.

Untitled-13 1 12/9/11 3:47 PM

http://www.DevExpress.com

msdn magazine36

A S P. N E T MVC

The Features and
Foibles of ASP.NET MVC
Model Binding

ASP.NET MVC model binding simplifi es controller
actions by introducing an abstraction layer that automatically
populates controller action parameters, taking care of the mundane
property mapping and type conversion code typically involved in
working with ASP.NET request data. Th ough model binding seems
simple, it’s actually a relatively complex framework composed of
a number of parts that work together to create and populate the
objects that your controller actions require.

Th is article will take you deep into the heart of the ASP.NET MVC
model binding subsystem, showing each layer of the model binding
framework and the various ways you can extend the model bind-
ing logic to meet your application’s needs. Along the way, you’ll see
a few frequently overlooked model binding techniques as well as
how to avoid some of the most common model binding mistakes.

Jess Chadwick

Model Binding Basics
To understand what model binding is, fi rst take a look at a typical
way to populate an object from request values in an ASP.NET
application, shown in Figure 1.

Then compare the action in Figure 1 with Figure 2, which
leverages model binding to produce the same result.

Th ough the two examples both achieve the same thing—a pop-
ulated Product instance—the code in Figure 2 relies on ASP.NET
MVC to convert the values from the request into strongly typed
values. With model binding, controller actions can be focused on
providing business value and avoid wasting time with mundane
request mapping and parsing.

Binding to Complex Objects
Although model binding to even simple, primitive types can make
a pretty big impact, many controller actions rely on more than just
a couple of parameters. Luckily, ASP.NET MVC handles complex
types just as well as primitive types.

Th e following code takes one more pass at the Create action, skip-
ping the primitive values and binding directly to the Product class:

public ActionResult Create(Product product)
{
 // ...
}

Once again, this code produces the same result as the actions
in Figure 1 and Figure 2, only this time no code was involved at
all—the complex ASP.NET MVC model binding eliminated all of
the boilerplate code required to create and populate a new Product
instance. Th is code exemplifi es the true power of model binding.

This article discusses:
• Model binding basics

• Binding to complex objects

• Examining parts of the framework

• Recursive model binding

• Model binding limitations

• Using custom attributes

Technologies discussed:
ASP.NET MVC

37February 2012msdnmagazine.com

Decomposing Model Binding
Now that you’ve seen model binding in action, it’s time to break
down the pieces that make up the model binding framework.

Model binding is broken down into two distinct steps: collect-
ing values from the request and populating models with those
values. Th ese steps are accomplished by value providers and model
binders, respectively.

Value Providers
ASP.NET MVC includes value provider implementations that cover
the most common sources of request values such as querystring
parameters, form fi elds and route data. At run time, ASP.NET MVC
uses the value providers registered in the ValueProviderFactories
class to evaluate request values that the model binders can use.

By default, the value provider collection evaluates values from
the various sources in the following order:

1. Previously bound action parameters, when the action is
a child action

2. Form fi elds (Request.Form)
3. Th e property values in the JSON Request body (Request.

InputStream), but only when the request is an AJAX request
4. Route data (RouteData.Values)
5. Querystring parameters (Request.QueryString)
6. Posted fi les (Request.Files)

Th e value providers collection, like the Request object, is really
just a glorifi ed dictionary—an abstraction layer of key/value pairs
that model binders can use without needing to know where the
data came from. However, the value provider framework takes this
abstraction a step further than the Request dictionary, giving you
complete control over how and where the model binding framework
gets its data. You can even create your own custom value providers.

Custom Value Providers
Th e minimum requirement to create a custom value provider is
pretty straightforward: Create a new class that implements the
System.Web.Mvc.ValueProviderFactory interface.

For example, Figure 3 demonstrates a custom value provider
that retrieves values from the user’s cookies.

Notice how simple the CookieValueProviderFactory is. Instead
of building a brand-new value provider from the ground up, the
CookieValueProviderFactory simply retrieves the user’s cookies
and leverages the NameValueCollectionValueProvider to expose
those values to the model binding framework.

After you’ve created a custom value provider, you’ll need to
add it to the list of value providers via the ValueProviderFacto-
ries.Factories collection:

var factory = new CookieValueProviderFactory();
ValueProviderFactories.Factories.Add(factory);

It’s pretty easy to create custom value providers, but be cautious
in doing so. Th e set of value providers that ASP.NET MVC ships
out of the box exposes most of the data available in the HttpRequest
(with the exception of cookies, perhaps) pretty well and generally
provides enough data to satisfy most scenarios.

To determine whether creating a new value provider is the right
thing to do for your particular scenario, ask the following question:
Does the set of information provided by the existing value providers
contain all the data I need (albeit perhaps not in the proper format)?

If the answer is no, then adding a custom value provider is prob-
ably the right way to address the void. However, when the answer
is yes—as it usually is—consider how you can fi ll in the missing
pieces by customizing the model binding behavior to access the
data being provided by the value providers. Th e rest of this article
shows you how to do just that.

The main component of the ASP.NET MVC model binding
framework responsible for creating and populating models using
values provided by value providers is called the model binder.

Default Model Binder
The ASP.NET MVC framework includes default model binder
implementation named the DefaultModelBinder, which is designed
to eff ectively bind most model types. It does this by using relatively
simple and recursive logic for each property of the target model:

1. Examine the value providers to see if the property was dis-
covered as a simple type or a complex type by checking to
see if the property name is registered as a prefi x. Prefi xes are
simply the HTML form fi eld name “dot notation” used to rep-
resent whether a value is a property of a complex object. Th e

public ActionResult Create()
{
 var product = new Product() {
 AvailabilityDate = DateTime.Parse(Request["availabilityDate"]),
 CategoryId = Int32.Parse(Request["categoryId"]),
 Description = Request["description"],
 Kind = (ProductKind)Enum.Parse(typeof(ProductKind),
 Request["kind"]),
 Name = Request["name"],
 UnitPrice = Decimal.Parse(Request["unitPrice"]),
 UnitsInStock = Int32.Parse(Request["unitsInStock"]),
 };
 // ...
}

Figure 1 Retrieving Values Directly from the Request

public ActionResult Create(
 DateTime availabilityDate, int categoryId,
 string description, ProductKind kind, string name,
 decimal unitPrice, int unitsInStock
)
{
 var product = new Product() {
 AvailabilityDate = availabilityDate,
 CategoryId = categoryId,
 Description = description,
 Kind = kind,
 Name = name,
 UnitPrice = unitPrice,
 UnitsInStock = unitsInStock,
 };

 // ...
}

Figure 2 Model Binding to Primitive Values

It’s pretty easy to create
custom value providers, but be

cautious in doing so.

www.msdnmagazine.com

msdn magazine38 ASP.NET MVC

prefi x pattern is [ParentProperty].[Property]. For example,
the form fi eld with the name UnitPrice.Amount contains
the value for the Amount fi eld of the UnitPrice property.

2. Get the ValueProviderResult from the registered value
providers for the property’s name.

3. If the value is a simple type, try to convert it to the target
type. Th e default conversion logic leverages the property’s
TypeConverter to convert from the source value of type
string to the target type.

4. Otherwise, the property is a complex type, so perform a
recursive binding.

Recursive Model Binding
Recursive model binding eff ectively starts the whole model bind-
ing process over again but uses the name of the target property as
the new prefi x. Using this approach, the DefaultModelBinder is
able to traverse entire complex object graphs and populate even
deeply nested property values.

To see recursive binding in action, change Product.UnitPrice
from a simple decimal type to the custom type Currency. Figure
4 shows both classes.

With this update in place, the model binder will look for the
values named UnitPrice.Amount and UnitPrice.Code to populate
the complex Product.UnitPrice property.

Th e DefaultModelBinder recursive binding logic can eff ectively
populate even the most complex object graphs. So far, you’ve seen
a complex object that resided only one level deep in the object
hierarchy, which the DefaultModelBinder handled with ease. To
demonstrate the true power of recursive model binding, add a new
property named Child to Product with the same type, Product:

public class Product {
 public Product Child { get; set; }
 // ...
}

Th en, add a new fi eld to the form and—applying the dot notation
to indicate each level—create as many levels as you’d like. For example:

<input type="text" name="Child.Child.Child.Child.Child.Child.Name"/>

Th is form fi eld will result in six levels of Products! For each level,
the DefaultModelBinder will dutifully create a new Product instance
and dive right into binding its values. When the binder is all done, it
will have created an object graph that looks like the code in Figure 5.

Even though this contrived example sets the value of just a single
property, it’s a great demonstration on how the DefaultModelBinder
recursive model binding functionality allows it to support some very
complex object graphs right out of the box. With recursive model
binding, if you can create a form fi eld name to represent the value
to populate, it doesn’t matter where in the object hierarchy that
value lives—the model binder will fi nd it and bind it.

Where Model Binding Seems to Fall Down
It’s true: Th ere are some models that the DefaultModelBinder simply
won’t be able to bind. However, there are also quite a few scenarios
in which the default model binding logic may not seem to work but
in fact works just fi ne as long as you use it appropriately.

Following are a few of the most common scenarios that developers
oft en assume the DefaultModelBinder can’t handle and how you can
implement them using the DefaultModelBinder and nothing else.

new Product {
 Child = new Product {
 Child = new Product {
 Child = new Product {
 Child = new Product {
 Child = new Product {
 Child = new Product {
 Name = "MADNESS!"
 }
 }
 }
 }
 }
 }
}

Figure 5 An Object Graph Created from Recursive Model Binding

public interface IProduct
{
 DateTime AvailabilityDate { get; }
 int CategoryId { get; }
 string Description { get; }
 ProductKind Kind { get; }
 string Name { get; }
 decimal UnitPrice { get; }
 int UnitsInStock { get; }
}

public ActionResult Create(IProduct product)
{
 // ...
}

Figure 6 Binding to an Interface

public class CookieValueProviderFactory : ValueProviderFactory
{
 public override IValueProvider GetValueProvider
 (
 ControllerContext controllerContext
)
 {
 var cookies = controllerContext.HttpContext.Request.Cookies;

 var cookieValues = new NameValueCollection();
 foreach (var key in cookies.AllKeys)
 {
 cookieValues.Add(key, cookies[key].Value);
 }

 return new NameValueCollectionValueProvider(
 cookieValues, CultureInfo.CurrentCulture);
 }
}

Figure 3 Custom Value Provider Factory that Inspects
Cookie Values

public class Product
{
 public DateTime AvailabilityDate { get; set; }
 public int CategoryId { get; set; }
 public string Description { get; set; }
 public ProductKind Kind { get; set; }
 public string Name { get; set; }
 public Currency UnitPrice { get; set; }
 public int UnitsInStock { get; set; }
}

public class Currency
{
 public float Amount { get; set; }
 public string Code { get; set; }
}

Figure 4 Product Class with Complex Unitprice Property

Untitled-1 1 10/11/11 1:58 PM

www.xceed.com

msdn magazine40 ASP.NET MVC

Complex Collections Th e out-of-the-box ASP.NET MVC value
providers treat all request fi eld names as if they’re form post values.
Take, for example, a collection of primitive values in a form post,
in which each value requires its own unique index (whitespace
added for readability):

MyCollection[0]=one &
MyCollection[1]=two &
MyCollection[2]=three

Th e same approach can also be applied to collections of complex
objects. To demonstrate this, update the Product class to support
multiple currencies by changing the UnitPrice property to a
collection of Currency objects:

public class Product : IProduct
{
 public IEnumerable<Currency> UnitPrice { get; set; }

 // ...
}

With this change, the following request parameters are required
to populate the updated UnitPrice property:

UnitPrice[0].Code=USD &
UnitPrice[0].Amount=100.00 &

UnitPrice[1].Code=EUR &
UnitPrice[1].Amount=73.64

Pay close attention to the naming syntax of the request param-
eters required to bind collections of complex objects. Notice the
indexers used to identify each unique item in the area, and that each
property for each instance must contain the full, indexed reference
to that instance. Just keep in mind that the model binder expects
property names to follow the form post naming syntax, regardless
of whether the request is a GET or a POST.

Th ough it’s somewhat counterintuitive, JSON requests have the
same requirements—they, too, must adhere to the form post nam-
ing syntax. Take, for example, the JSON payload for the previous
UnitPrice collection. The pure JSON array syntax for this data
would be represented as:

[
 { "Code": "USD", "Amount": 100.00 },
 { "Code": "EUR", "Amount": 73.64 }
]

However, the default value providers and model binders require
the data to be represented as a JSON form post:

{
 "UnitPrice[0].Code": "USD",
 "UnitPrice[0].Amount": 100.00,

 "UnitPrice[1].Code": "EUR",
 "UnitPrice[1].Amount": 73.64
}

Th e complex object collection scenario is perhaps one of the most
widely problematic scenarios that developers run into because the
syntax isn’t necessarily evident to all developers. However, once you
learn the relatively simple syntax for posting complex collections,
these scenarios become much easier to deal with.

Generic Custom Model Binders Th ough the DefaultModel-
Binder is powerful enough to handle almost anything you throw
at it, there are times when it just doesn’t do what you need. When
these scenarios occur, many developers jump at the chance to take
advantage of the model binding framework’s extensibility model
and build their own custom model binder.

For example, even though the Microsoft .NET Framework provides
excellent support for object-oriented principles, the DefaultModel-
Binder off ers no support for binding to abstract base classes and
interfaces. To demonstrate this shortcoming, refactor the Product
class so that it derives from an interface—named IProduct—that
consists of read-only properties. Likewise, update the Create con-
troller action so that it accepts the new IProduct interface instead
of the concrete Product implementation, as shown in Figure 6.

Th e updated Create action shown in Figure 6—while perfectly
legitimate C# code—causes the DefaultModelBinder to throw the
exception: “Cannot create an instance of an interface.” It’s quite
understandable that the model binder throws this exception,
considering that DefaultModelBinder has no way of knowing what
concrete type of IProduct to create.

public class ProductModelBinder : IModelBinder
{
 public object BindModel
 (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext
)
 {
 var product = new Product() {
 Description = GetValue(bindingContext, "Description"),
 Name = GetValue(bindingContext, "Name"),
 };

 string availabilityDateValue =
 GetValue(bindingContext, "AvailabilityDate");

 if(availabilityDateValue != null)
 {
 DateTime date;
 if (DateTime.TryParse(availabilityDateValue, out date))
 product.AvailabilityDate = date;
 }

 string categoryIdValue =
 GetValue(bindingContext, "CategoryId");

 if (categoryIdValue != null)
 {
 int categoryId;
 if (Int32.TryParse(categoryIdValue, out categoryId))
 product.CategoryId = categoryId;
 }

 // Repeat custom binding code for every property
 // ...

 return product;
 }

 private string GetValue(
 ModelBindingContext bindingContext, string key)
 {
 var result = bindingContext.ValueProvider.GetValue(key);
 return (result == null) ? null : result.AttemptedValue;
 }
}

Figure 7 ProductModelBinder—a Tightly Coupled Custom
Model Binder

JSON requests must adhere to
the form post naming syntax.

Untitled-4 1 1/9/12 3:32 PM

http://www.aspose.com

msdn magazine42 ASP.NET MVC

Th e simplest way to solve this issue is to create a custom model
binder that implements the IModelBinder interface. Figure 7 shows
ProductModelBinder, a custom model binder that knows how to
create and bind an instance of the IProduct interface.

Th e downside to creating custom model binders that implement
the IModelBinder interface directly is that they oft en duplicate much
of the DefaultModelBinder just to modify a few areas of logic. It’s
also common for these custom binders to focus on specifi c model
classes, creating a tight coupling between the framework and the
business layer and limiting reuse to support other model types.

To avoid all these issues in your custom model binders, consider
deriving from DefaultModelBinder and overriding specifi c behaviors
to suit your needs. Th is approach oft en provides the best of both worlds.

Abstract Model Binder Th e only problem with trying to apply
model binding to an interface with the DefaultModelBinder is
that it doesn’t know how to determine the concrete model type.
Consider the higher-level goal: the ability to develop controller
actions against a non-concrete type and dynamically determine
the concrete type for each request.

By deriving from DefaultModelBinder and overriding only
the logic that determines the target model type, you can not only

address the specifi c IProduct scenario, but also actually create a
general-purpose model binder that can handle most other interface
hierarchies as well. Figure 8 shows an example of a general-purpose
model abstract model binder.

To support model binding to an interface, the model binder
must fi rst translate the interface into a concrete type. To accomplish
this, AbstractModelBinder requests the “__type__” key from the
request’s value providers. Leveraging value providers for this kind
of data provides fl exibility as far as where the “__type__” value is
defi ned. For example, the key could be defi ned as part of the route
(in the route data), specifi ed as a querystring parameter or even
represented as a fi eld in the form post data.

Next, the AbstractModelBinder uses the concrete type name
to generate a new set of metadata that describes the details of the
concrete class. AbstractModelBinder uses this new metadata to
replace the existing ModelMetadata property that described the
initial abstract model type, eff ectively causing the model binder to
forget that it was ever bound to a non-concrete type to begin with.

Aft er AbstractModelBinder replaces the model metadata with
all the information needed to bind to the proper model, it simply
releases control back to the base DefaultModelBinder logic to let
it handle the rest of the work.

Th e AbstractModelBinder is an excellent example that shows
how you can extend the default binding logic with your own
custom logic without reinventing the wheel, by deriving directly
from the IModelBinder interface.

Model Binder Selection
Creating custom model binders is just the first step. To apply
custom model binding logic in your application, you must also
register the custom model binders. Most tutorials show you two
ways to register custom model binders.

The Global ModelBinders Collection Th e generally recommend-
ed way to override the model binder for specifi c types is to register
a type-to-binder mapping to the ModelBinders.Binders dictionary.

The following code snippet tells the framework to use the
AbstractModelBinder to bind Currency models:

ModelBinders.Binders.Add(typeof(Currency), new AbstractModelBinder());

Overriding the Default Model Binder Alternatively, to replace
 the global default handler, you can assign a model binder to the
ModelBinders.Binders.DefaultBinder property. For example:

ModelBinders.Binders.DefaultBinder = new AbstractModelBinder();

Although these two approaches work well for many scenarios,
there are two more ways that ASP.NET MVC lets you register a
model binder for a type: attributes and providers.

public class AbstractModelBinder : DefaultModelBinder
{
 private readonly string _typeNameKey;

 public AbstractModelBinder(string typeNameKey = null)
 {
 _typeNameKey = typeNameKey ?? "__type__";
 }

 public override object BindModel
 (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext
)
 {
 var providerResult =
 bindingContext.ValueProvider.GetValue(_typeNameKey);

 if (providerResult != null)
 {
 var modelTypeName = providerResult.AttemptedValue;

 var modelType =
 BuildManager.GetReferencedAssemblies()
 .Cast<Assembly>()
 .SelectMany(x => x.GetExportedTypes())
 .Where(type => !type.IsInterface)
 .Where(type => !type.IsAbstract)
 .Where(bindingContext.ModelType.IsAssignableFrom)
 .FirstOrDefault(type =>
 string.Equals(type.Name, modelTypeName,
 StringComparison.OrdinalIgnoreCase));

 if (modelType != null)
 {
 var metaData =
 ModelMetadataProviders.Current
 .GetMetadataForType(null, modelType);

 bindingContext.ModelMetadata = metaData;
 }
 }

 // Fall back to default model binding behavior
 return base.BindModel(controllerContext, bindingContext);
 }
}

Figure 8 A General-Purpose Abstract Model Binder

To support model binding
to an interface, the model binder
must fi rst translate the interface

into a concrete type.

(888) 850-9911
Sales Hotline - US & Canada:

/update/2012/02

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2012 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

Spread for .NET Professional from $1,439.04
Includes MultiRow, Stand-Alone Chart, Formula Provider and Runtime Spread Designer.

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $1,045.59
Word processing components for Visual Studio .NET.

NEW RELEASE

Janus WinForms Controls Suite V4.0 from $889.00
Add powerful Outlook style interfaces to your .NET applications.

BEST SELLER

BEST SELLER

Untitled-3 1 1/5/12 3:47 PM

http://www.componentsource.com

msdn magazine44 ASP.NET MVC

Adorning Models with Custom Attributes
In addition to adding a type mapping to the ModelBinders
dictionary, the ASP.NET MVC framework also off ers the abstract
System.Web.Mvc.CustomModelBinderAttribute, an attribute that
allows you to dynamically create a model binder for each class
or property to which the attribute is applied. Figure 9 shows a
CustomModelBinderAttribute implementation that creates an
AbstractModelBinder.

You can then apply the AbstractModelBinderAttribute to any
model class or property, like so:

public class Product
{
 [AbstractModelBinder]
 public IEnumerable<CurrencyRequest> UnitPrice { get; set; }
 // ...
}

Now when the model binder attempts to locate the appropriate
binder for Product.UnitPrice, it will discover the AbstractModel-
BinderAttribute and use the AbstractModelBinder to bind the
Product.UnitPrice property.

Leveraging custom model binder attributes is a great way to
achieve a more declarative approach to confi guring model binders
while keeping the global model binder collection simple. Also, the
fact that custom model binder attributes can be applied to both
entire classes and individual properties means you have fi ne-grain
control over the model binding process.

Ask the Binders!
Model binder providers off er the ability to execute arbitrary code in
real time to determine the best possible model binder for a given type.
As such, they provide an excellent middle ground among explicit
model binder registration for individual model types, static attri-
bute-based registration and a set default model binder for all types.

The following code shows how to create an IModelBinder-
Provider that provides an AbstractModelBinder for all interfaces
and abstract types:

public class AbstractModelBinderProvider : IModelBinderProvider
{
 public IModelBinder GetBinder(Type modelType)
 {
 if (modelType.IsAbstract || modelType.IsInterface)
 return new AbstractModelBinder();

 return null;
 }
}

Th e logic dictating whether the AbstractModelBinder applies
to a given model type is relatively straightforward: Is it a non-
concrete type? If so, the AbstractModelBinder is the appropriate
model binder for the type, so instantiate the model binder and
return it. If the type is a concrete type, then AbstractModelBinder
is not appropriate; return a null value to indicate that the model
binder isn’t a match for this type.

An important thing to keep in mind when implementing
the .GetBinder logic is that the logic will be executed for every
property that’s a candidate for model binding, so be sure to keep
it lightweight or you can easily introduce performance issues into
your application.

In order to begin using a model binder provider, add it to the
list of providers maintained in the ModelBinderProviders.Binder-
Providers collection. For example, register the AbstractModel-
Binder like so:

var provider = new AbstractModelBinderProvider();
ModelBinderProviders.BinderProviders.Add(provider);

And that easily, you’ve added model binding support for non-
concrete types throughout your entire application.

Th e model binding approach makes model binding selection
much more dynamic by taking the burden of determining the
proper model binder away from the framework and placing it in
the most appropriate place: the model binders themselves.

Key Extensibility Points
Like any other method, the ASP.NET MVC model binding allows
controller actions to accept complex object types as parameters.
Model binding also encourages better separation of concerns by
separating the logic of populating objects from the logic that uses
the populated objects.

I’ve explored some key extensibility points in the model binding
framework that can help you leverage it to the fullest. Taking the time
to understand ASP.NET MVC model binding and how to use it prop-
erly can have a large impact, even on the simplest of applications.

JESS CHADWICK is an independent software consultant specializing in Web
technologies. He has more than a decade of development experience ranging
from embedded devices in startups to enterprise-scale Web farms at Fortune
500 companies. He’s an ASPInsider, Microsoft MVP in ASP.NET, and book and
magazine author. He is actively involved in the development community, regu-
larly speaking at user groups and conferences as well as leading the NJDOTNET
Central New Jersey .NET user group.

THANKS to the following technical expert for reviewing this article:
Phil Haack

[AttributeUsage(
 AttributeTargets.Class | AttributeTargets.Enum |
 AttributeTargets.Interface | AttributeTargets.Parameter |
 AttributeTargets.Struct | AttributeTargets.Property,
 AllowMultiple = false, Inherited = false
)]
public class AbstractModelBinderAttribute : CustomModelBinderAttribute
{
 public override IModelBinder GetBinder()
 {
 return new AbstractModelBinder();
 }
}

Figure 9 A CustomModelBinderAttribute Implementation

Taking the time to understand
ASP.NET MVC model binding
and how to use it properly can

have a large impact, even on the
simplest of applications.

PRODUCED BYSUPPORTED BY

YOUR MAP TO THE .NET DEVELOPMENT PLATFORM

Register
Today and

Save
$300!
Use Promo Code

NYFEB

Visit vslive.com/newyork
or scan the QR code to
register and for more

event details.

Brooklyn, NY | May 14-17 | NY Marriott at the Brooklyn Bridge | vslive.com/newyork

Visual Studio Live! is thrilled to be back in New York! Join developers, software
architects and designers in Brooklyn for 4 days of unbiased and cutting-edge education
on the Microsoft Platform with topics such as Windows 8 / WinRT, Silverlight / WPF,
Visual Studio 2010+ / .NET 4.0+, Web, HTML5, Windows Phone 7 and more!

 BIG CODE IN THE
BIG APPLE

Untitled-10 1 1/6/12 3:28 PM

www.vslive.com/newyork

msdn magazine46

B U I LD ING HT ML 5 APPS

Practical Cross-Browser
HTML5 Audio and Video

When the HTML5 audio and video tags were fi rst introduced,
codec and browser incompatibilities made them diffi cult to use and
unrealistic to deploy on large-scale Web sites. Th e tags were great
for companies writing experimental code or doing cross-browser
media development, but the HTML5 media API was too unreliable
for general use.

Today, things are diff erent. Browsers and JavaScript libraries have
matured to the point where you can—and should—use HTML5
media as the default for any projects that will display audio and
video content. Even retrofitting existing Flash and Silverlight
video content for HTML5 playback has become fairly simple. In
this article, I’ll explore the benefits of using HTML5 for media
playback, show some sample code, address some major issues that
developers face and present solutions to those problems.

John Dyer

Benefi ts of HTML5 Media
Th e advantage of using HTML5 for media is that you can leverage
your HTML, CSS and JavaScript skills rather than learning Flash or
Silverlight. If you can create buttons in HTML and control them with
JavaScript, you already know all you need to develop HTML5 media.
HTML5 media has built-in support for captions and subtitles using
the new track element, and proposals for additional features—such as
direct byte access for video manipulation—are already being considered.

Moreover, media that uses HTML5 video and audio performs
better than media played through plug-ins such as Flash or
Silverlight, resulting in longer battery life and smoother playback.
In addition, mobile devices running Windows Phone 7.5, Apple
iOS and Android (as well as the Metro-style browser in Windows 8)
support media playback only through HTML5 video and audio.
Some Android devices include Flash, but Adobe has recently dis-
continued its mobile Flash eff orts, which means that HTML5 will
be the only way to play media on mobile devices in the future.

Simple HTML5 Playback and Controls
In the days of using Flash or Silverlight for video playback, the
simplest possible markup to display a video (video.mp4 in this
case) would have looked something like this:

<object width="640" height="360" classid="clsid:d27cdb6e-ae6d-11cf-
96b8-444553540000" codebase="http://fpdownload.macromedia.com/pub/
shockwave/cabs/flash/swflash.cab#version=8,0,0,0">
 <param name="src" value="player.swf?file=video.mp4">
 <embed src="player.swf?file=video.mp4" width="640"
 height="360"></embed>
</object>

This article discusses:
• Simple HTML5 playback and controls

• HTML5 media attributes

• Issues with HTML5 Media

• HTML5 video and audio JavaScript libraries

Technologies discussed:
HTML5 Video and Audio, JavaScript, MediaElement.js

Code download available at:
code.msdn.microsoft.com/mag201202HTML5

http://code.msdn.microsoft.com/mag201202HTML5

47February 2012msdnmagazine.com

Compare those nested object, param and embed tags with this
HTML5 video tag used to play the same h.264-encoded video:

<video src="video.mp4" controls></video>

It’s much simpler—just plain HTML that needs very little expla-
nation. When the browser has downloaded enough of a video to
determine its native height and width, it resizes the video accord-
ingly. But, just as with img tags, it’s always best to specify the height
and width attributes so that the page doesn’t need to refl ow. You
can also use the style attribute to specify px or % width and height
values (I’ll use both in the examples that follow).

Th e one attribute I added is controls. Th is tells the browser to display
its own built-in playback control bar, which usually includes a play/
pause toggle, a progress indicator and volume controls. Controls is a
Boolean attribute, which means it doesn’t need to have a value assigned
to it. For a more XHTML-like syntax you could write controls="controls",
but the browser always considers controls to be false if it’s not present
and true if it is present or assigned a value.

HTML5 Media Attributes and Child Source Tags
Th e audio and video elements introduce several new attributes
that determine how the browser will present the media content
to the end user.

• src specifi es a single media fi le for playback (for
multiple sources with diff erent codecs, please see the
discussion below).

• poster is a URL to an image that will be displayed before
a user presses Play (video only).

• preload determines how and when the browser will load
the media fi le using three possible values: none means the
video will not download until the user initiates playback;
metadata tells the browser to download just enough data
to determine the height, width and duration of the media;
auto lets the browser decide how much of the video to start
downloading before the user initiates playback.

• autoplay is a Boolean attribute used to start a video as
soon as the page loads (mobile devices oft en ignore this
to preserve bandwidth).

• loop is a Boolean attribute that causes a video to start
over when it reaches the end.

• muted is a Boolean attribute specifying whether the
video should start muted.

• controls is a Boolean attribute indicating whether the
browser should display its own controls.

• width and height tell a video to display at a certain size
(video only; can’t be a percentage).

Timed Text Tracks
Browsers are also beginning to implement the track element, which
provides subtitles, closed captions, translations and commentaries
to videos. Here’s a video element with a child track element:

<video id="video1" width="640" height="360" preload="none" controls>
 <track src="subtitles.vtt" srclang="en" kind="subtitles"
label="English subtitles">
</video>

In this example, I’ve used four of the track element’s five
possible attributes:

• src is a link to either a Web Video Timed Text (WebVTT)
fi le or a Timed Text Markup Language (TTML) fi le.

• srclang is the language of the TTML fi le (such as en, es or ar).
• kind indicates the type of text content: subtitles, captions,

descriptions, chapters or metadata.
• label holds the text displayed to a user choosing a track.
• default is a Boolean attribute that determines the startup

track element.
WebVTT is a simple text-based format that begins with a

single-line declaration (WEBVTT FILE) and then lists start and
end times separated by the --> characters, followed by the text to
display between the two times. Here’s a simple WebVTT fi le that
will display two lines of text at two diff erent time intervals:

WEBVTT FILE

00:00:02.5 --> 00:00:05.1
This is the first line of text to display.

00:00:09.1 --> 00:00:12.7
This line will appear later in the video.

<script>
// Wrap the code in a function to protect the namespace
(function() {
// Find the DOM objects
var video = document.getElementById("video1"),
 playBtn = document.getElementById("video1-play"),
 muteBtn = document.getElementById("video1-mute"),
 current = document.getElementById("video1-current"),
duration = document.getElementById("video1-duration");

// Toggle the play/pause state
playBtn.addEventListener("click", function() {
 if (video.paused || video.ended) {
 video.play();
 playBtn.value = "Pause";
 } else {
 video.pause();
 playBtn.value = "Play";
 }
}, false);

// Toggle the mute state
muteBtn.addEventListener("click", function() {
 if (video.muted) {
 video.muted = false;
 muteBtn.value = "Mute";
 } else {
 video.muted = true;
 muteBtn.value = "Unmute";
 }
}, false);

// Show the duration when it becomes available
video.addEventListener("loadedmetadata", function() {
 duration.innerHTML = formatTime(video.duration);
}, false);

// Update the current time
video.addEventListener("timeupdate", function() {
 current.innerHTML = formatTime(video.currentTime);
}, false);

function formatTime(time) {
 var
 minutes = Math.floor(time / 60) % 60,
 seconds = Math.floor(time % 60);

 return (minutes < 10 ? '0' + minutes : minutes) + ':' +
 (seconds < 10 ? '0' + seconds : seconds);
}

})();
</script>

Figure 1 Controlling Video Playback

www.msdnmagazine.com

msdn magazine48 Building HTML5 Apps

As of this writing, only Internet Explorer 10
Platform Preview and Chrome 19 support the track
element, but other browsers are expected to do so
soon. Some of the JavaScript libraries I discuss later
add support for the track element to browsers that have
not yet implemented it, but there’s also a standalone
track library called captionator.js (captionatorjs.com) that
parses track tags, reads WebVTT and TTML (as well
as SRT and YouTube SBV) fi les and provides a UI for
browsers that don’t yet have native support.

Scripting HTML5 Media
Earlier, I used the controls attribute to tell the browser
to display its native controls on top of the video or
audio tags. Th e problem with this is that each browser
has a diff erent set of controls that are unlikely to match
your Web site’s design. To create a consistent experi-
ence, you can remove the browser’s controls and then add custom
buttons to the page that you control with JavaScript. You can also
add event listeners to track the state of the video or audio playback.
In the following example, I’ve removed the controls attribute and
added markup underneath the video to serve as a basic control bar:

<video id="video1" style="width:640px; height:360px" src="video.mp4"> </video>
<div>
 <input type="button" id="video1-play" value="Play" />
 <input type="button" id="video1-mute" value="Mute" />
 00:00
 00:00
</div>

Th e simple JavaScript in Figure 1 will control video playback
and show the current time in the video, and will create the com-
plete working player depicted in Figure 2 (rendered in Internet
Explorer 9). (Note that in HTML5, the type="text/javascript"
attribute is not required on the script tag.)

Th e code in Figure 1 introduces the play and pause methods,
the timeupdate and loadedmetadata events, and the paused, ended,
currentTime and duration properties. Th e full HTML5 media API
(w3.org/TR/html5/video.html) includes much more that can be used
to build a full-fledged media player. In addition to the HTML5
media tag attributes listed earlier, HTML5 media objects have other
properties accessible only via JavaScript:

• currentSrc describes the media fi le the browser is currently
playing when source tags are used.

• videoHeight and videoWidth indicate the native
dimensions of the video.

• volume specifi es a value between 0 and 1 to indicate the
volume. (Mobile devices ignore this in favor of hardware
volume controls.)

• currentTime indicates the current playback position in seconds.
• duration is the total time in seconds of the media fi le.
• buffered is an array indicating what portions of the media

fi le have been downloaded.
• playbackRate is the speed at which the video is played back

(default: 1). Change this number to go faster (1.5) or slower (0.5).
• ended indicates whether the video has reached the end.
• paused is always true at startup and then false once the

video has started playing.

• seeking indicates the browser is trying to download and
move to a new position.

HTML5 media objects also include the following methods
for scripting:

• play attempts to load and play the video.
• pause halts a currently playing video.
• canPlayType(type) detects which codecs a browser sup-

ports. If you send a type such as video/mp4, the browser
will answer with probably, maybe, no or a blank string.

• load is called to load the new video if you change
the src attribute.

Th e HTML5 media spec provides 21 events; here are some of
the most common ones:

• loadedmetadata fi res when the duration and dimensions
are known.

• loadeddata fi res when the browser can play at the
current position.

• play starts the video when the video is no longer paused
or ended.

• playing fi res when playback has started aft er pausing,
buff ering or seeking

• pause halts the video.
• ended fi res when the end of the video is reached.
• progress indicates more of the media fi le has been

downloaded.
• seeking is true when the browser has started seeking.
• seeked is false when the browser has fi nished seeking.
• timeupdate fi res as the media resource is playing.
• volumechange fi res when muted or volume properties

have changed.
These properties, methods and events are powerful tools for

presenting users with a rich media experience, all driven by HTML,
CSS and JavaScript. In the basic example in Figure 1, I fi rst create
variables for all of the elements on the page:

// Find the DOM objects
var video = document.getElementById("video1"),
 playBtn = document.getElementById("video1-play"),
 muteBtn = document.getElementById("video1-mute"),
 current = document.getElementById("video1-current"),
 duration = document.getElementById("video1-duration");

Figure 2 A Working Video Player That Shows the Time

www.captionatorjs.com
http://w3.org/TR/html5/video.html

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine50 Building HTML5 Apps

Th en I add a click event to my buttons to control media playback.
Here I toggle the play and pause state of the video and change the
label on the button:

// Toggle the play/pause state
playBtn.addEventListener("click", function() {
 if (video.paused || video.ended) {
 video.play();
 playBtn.value = "Pause";
 } else {
 video.pause();
 playBtn.value = "Play";
 }
}, false);

Finally, I add events to the media object to track its current state.
Here, I listen for the timeupdate event and update the control bar
to the current time of the playhead, formatting the seconds to a
minutes:seconds style:

// Update the current time
video.addEventListener("timeupdate", function() {
 current.innerHTML = formatTime(media.currentTime);
}, false);

Issues with HTML5 Media
Unfortunately, getting HTML5 media to work across all browsers
and devices is not quite as simple as in my example. I’ve already
mentioned that not all browsers support the track element, and now
I’ll address three additional issues that you encounter when using
the audio and video tags, along with solutions to overcome them.
At the end of the article, I’ll introduce some JavaScript libraries that
wrap all of these solutions into single, easily deployable packages.

HTML5 Audio and Video Codec Support Th e fi rst issue you
face when developing with HTML5 media is the inconsistent sup-
port for video and audio codecs. My examples work in Internet
Explorer 9 and later, Chrome and Safari, but they won’t work in
Firefox or Opera because although those browsers support the
HTML5 video tag, they don’t support the h.264 codec. Due to copy-
right concerns, browser vendors have split into two codec camps,
and that brings us to the familiar HTML5 Media chart in Figure
3, showing which codecs work with which browsers.

Internet Explorer 9+, Safari, Chrome and mobile devices (iPhone,
iPad, Android 2.1+ and Windows Phone 7.5+) all support the h.264
video codec, which is usually placed in an MP4 container. Firefox
and Opera, in contrast, support the VP8 video codec, which is
placed inside the WebM container. Chrome also supports WebM,
and has pledged to remove h.264 support at some point. Internet
Explorer 9+ can render WebM if the codec has been installed by the

end user. Finally, Firefox, Opera and Chrome
also support the Th eora codec placed inside
an Ogg container, but this has been largely
phased out in favor of WebM (unless you need
to support Firefox 3.x), so I’ve left it out of the
chart and examples for simplicity.

For audio, the browser vendors are again
split into two camps, with the first group
(Internet Explorer 9, Chrome and Safari)
supporting the familiar MP3 format and the
second group (Firefox and Opera) support-
ing the Vorbis codec inside an Ogg container.
Many browsers can also play the WAV file

format. See Figure 4.
To deal with these diff erences, the video and audio tags support

multiple child source tags, which lets browsers choose a media fi le
they can play. Each source element has two attributes:

• src specifi es a URL for a media fi le.
• type specifi es the mimetype and optionally the specifi c

codec of the video.
To offer both h.264 and VP8 video codecs, you’d use the

following markup:
<video id="video1" width="640" height="360">
 <source src="video.mp4" type="video/mp4">
 <source src="video.webm" type="video/webm">
</video>

Note that earlier builds of iOS and Android need the MP4 fi le
to be listed fi rst.

Th is markup will work on all modern browsers. Th e JavaScript
code will control whichever video the browser decides it can play.
For audio, the markup looks like this:

<audio id="audio1">
 <source src="audio.mp3" type="audio/mp3">
 <source src="audio.oga" type="audio/oga">
</audio>

If you’re hosting audio or video content on your own server,
you must have the correct MIME type for each media fi le or many
HTML5-ready browsers (such as Internet Explorer and Firefox)
will not play the media. To add MIME types in IIS 7, go to the
Features View, double-click MIME Types, click the Add button
in the Actions pane, add the extension (mp4) and MIME type
(video/mp4), and then press OK. Th en do the same for the other
types (webm and video/webm) you plan to use.

Supporting Older Browsers Including two media fi les (such
as MP4 and WebM for video) makes HTML5 media work in all
modern browsers. But when older browsers (such as Internet
Explorer 8) encounter the video tag, they can’t display the video.
Th ey will, however, render the HTML put between the opening
<video> and closing </video> tags. Th e following example includes
a message urging users to get a newer browser:

<video id="video1" width="640" height="360" >
 <source src="video.mp4" type="video/mp4">
 <source src="video.webm" type="video/webm">
 <p>Please update your browser</p>
</video>

To allow visitors with non-HTML5-ready browsers to play the
video, you can provide an alternative with Flash embedded that
plays the same MP4 you supply for Internet Explorer 9, Safari and
Chrome, as shown in Figure 5.

Video IE8 IE9+ Chrome Safari Mobile Firefox Opera

MP4 (h.264/AAC) no yes yes yes yes no no
WebM (VP8/Vorbis) no install yes no no yes yes

Figure 3 Codec Support in Various Browsers

Audio IE8 IE9+ Chrome Safari Mobile Firefox Opera

MP3 no yes yes yes yes no no
Ogg Theora no install yes no no yes yes
WAV no no maybe yes yes yes yes

Figure 4 Audio Support in Various Browsers

Untitled-1 1 12/9/11 11:40 AM

www.nevron.com

msdn magazine52 Building HTML5 Apps

 Th is markup presents all browsers with some way to play back
video. Browsers with neither HTML5 nor Flash will see a message
urging them to upgrade. For more information on how and why
this nested markup works, see Kroc Camen’s “Video for Everybody”
(camendesign.com/code/video_for_everybody).

Th is approach has some drawbacks, however. First, there’s a lot of
markup to maintain. Second, you have to encode and store at least
two media fi les. And third, any HTML/JavaScript controls you add
to the page will not work with the embedded Flash player. Later,
I’ll suggest several JavaScript libraries that can help you overcome
these issues, but fi rst, let’s address one fi nal issue.

Full-Screen Support Flash and Silverlight both include a
full-screen mode that lets users watch video and other content on
their entire screen. You can implement this feature by creating a
simple button and tying it to an ActionScript (for Flash) or C# (for
Silverlight) full-screen command.

Today’s browsers have a similar full-screen mode that users can
trigger with a keyboard or menu command (oft en F11 or Ctrl+F).
But until recently, no equivalent JavaScript API allowed developers
to initiate full-screen mode from a button on a page. Th is meant
that HTML5 video could be displayed only in a “full window” that
fi lled the browser window but not the entire screen.

In late 2011, Safari, Chrome and Firefox added support for the
W3C proposed FullScreen API, which off ers capabilities similar to
those in Flash and Silverlight. Th e Opera team is currently working
on implementing it, but the Internet Explorer team has, as of this
writing, not yet decided whether it will implement the API. Th e
Metro-style browser in Windows 8 will be full screen by default,
but desktop Internet Explorer users will need to enter full-screen
mode manually using menu options or the F11 key.

To enter full-screen mode in browsers that support it, you call
the requestFullscreen method on the element to be displayed full
screen. Th e command to exit full screen is called on the document
object: document.exitFullscreen method. Th e W3C proposal is still
a work in progress, so I won’t go into more detail here, but I am
tracking the state of the API on my blog: bit.ly/zlgxUA.

HTML5 Video and Audio JavaScript Libraries
A number of developers have created JavaScript libraries that make
HTML5 video and audio easier by integrating all of the relevant
code into a single package. Some of the best open source libraries are
MediaElement.js, jPlayer, VideoJS, Projekktor, Playr and LeanBack. You’ll
fi nd a complete list with feature comparison at praegnanz.de/html5video.

All you need to do is provide a video or audio tag and the library
will automatically build a set of custom controls, as well as insert a
Flash player for browsers that don’t support HTML5 Media. Th e
only problem is that the Flash players many libraries insert don’t
always look or function like the HTML5 player. Th is means that
any HTML5 events you add won’t work with the Flash player and
any custom CSS you use won’t be visible, either.

In my own work, I was asked to create an HTML5 video player
with synchronized slides and transcripts (see online.dts.edu/player for a
demo). We had an existing library of more than 3,000 h.264 video
fi les and it was deemed unfeasible to transcode them to WebM for
Firefox and Opera. We also needed to support older browsers such
as Internet Explorer 8, but a separate Flash fallback wouldn’t work
because it wouldn’t respond to events for the slides and transcripts.

To overcome these difficulties, I created one of the players
mentioned previously called MediaElement.js (mediaelementjs.com).
It’s an open source (MIT/GLPv2) JavaScript library that includes
special Flash and Silverlight players that mimic the HTML5 API.
Instead of a totally separate Flash player, MediaElement.js uses Flash
only to render video and then wraps the video with a JavaScript
object that looks just like the HTML5 API. Th is eff ectively upgrades
all browsers so they can use the video tag and additional codecs
not natively supported. To start the player with a single h.264 fi le
using jQuery, you need only the following code:

<video id="video1" width="640" height="360" src="video.mp4" controls></video>
<script>
jQuery(document).ready(function() {
 $("video1").mediaelementplayer();
});
</script>

For browsers that don’t support the video tag (like Internet
Explorer 8) or those that don’t support h.264 (Firefox and Opera),
MediaElement.js will insert the Flash (or Silverlight, depending
on what the user has installed) shim to “upgrade” those browsers
so they gain the HTML5 media properties and events I’ve covered.

For audio support, you can use a single MP3 fi le:
<audio id="audio1" src="audio.mp3" controls></audio>

Alternatively, you could include a single Ogg/Vorbis fi le:
<audio id="audio1" src="audio.oga" controls></audio>

Again, for browsers that don’t support the audio tag (Internet
Explorer 8) or those that don’t support Ogg/Vorbis (Internet Explor-
er 9+ and Safari), MediaElement.js will insert a shim to “upgrade”
those browsers so they all function as if they supported the codec
natively. (Note: Ogg/Vorbis will not be playable on mobile devices.)

MediaElement.js also includes support for the track element, as
well as native full-screen mode for browsers that have implemented
the JavaScript API. You can add your own HTML5 events or track
properties and it will work in every browser and mobile device.

I hope I’ve shown you that despite a few quirks, the HTML5
video and audio elements, especially when paired with the
excellent libraries I’ve suggested, are easy to add to existing Web
sites and should be the default for any new projects.

JOHN DYER is the director of Web Development for the Dallas Theological
Seminary (dts.edu). He blogs at j.hn.

THANKS to the following technical experts for reviewing this article:
John Hrvatin and Brandon Satrom

<video id="video1" width="640" height="360" >
 <source src="video.mp4" type="video/mp4">
 <source src="video.webm" type="video/webm">
 <object width="640" height="360" classid="clsid:
 d27cdb6e-ae6d-11cf-96b8-444553540000" codebase=
 "http://fpdownload.macromedia.com/pub/
 shockwave/cabs/flash/swflash.cab#version=8,0,0,0">
 <param name="SRC" value="player.swf?file=video.mp4">
 <embed src="player.swf?file=video.mp4" width="640"
 height="360"></embed>
 <p>Please update your browser or install Flash</p>
 </object>
</video>

Figure 5 Video Playback with Flash

http://camendesign.com/code/video_for_everybody
http://bit.ly/zlgxUA
http://praegnanz.de/html5video
http://online.dts.edu/player
http://mediaelementjs.com
www.j.hn
www.dts.edu

Untitled-4 1 1/9/12 4:01 PM

www.installaware.com/landing/msdn.asp

msdn magazine54

W IN DOWS PHONE MAR KET P L ACE

Get Your Windows
Phone Apps into the
Marketplace Faster

The Windows Phone SDK 7.1 includes some great
tools for evaluating the adherence to certification guidelines
and improving the performance of your applications that target
Windows Phone 7.5, prior to submission to the marketplace. In this
article, I’ll walk you through using the Marketplace Test Kit and Per-
formance Analysis tool on a sample application and show how you
can use these tools to evaluate the marketplace-readiness of your
application. I’ll show you how to use data from the tools to make
improvements that will help get it accepted into the marketplace
on the fi rst try. For more information about marketplace certifi -
cation requirements, see the MSDN Library article, “Application
Certifi cation Requirements for Windows Phone” (wpdev.ms/certreq).

All of the tools used in this article are included with the Windows
Phone SDK 7.1, which you can get at wpdev.ms/wpsdk71rtw.

Sample Application and Test Tools
To exercise the Marketplace Test Kit and Performance Analysis tool,
I created a sample application called Examine the Stamen, a simple
fl ower identifi cation application. I created it with my mother in mind;

Cheryl Simmons

she can use it to improve her fl ower identifi cation skills. Th e appli-
cation displays several small images of fl owers on the start screen.
A user taps a fl ower and the application navigates to another page,
where it displays a larger picture of the selected fl ower. Another tap
and the fl ower’s name is displayed in a MessageBox. Figure 1 shows
the images displayed as I navigate through the application. (As a
side note, I used the new screenshot tool in the Windows Phone
Emulator for these screenshots. For more information, see the
MSDN Library article, “How to: Create Screenshots for Windows
Phone Marketplace” (wpdev.ms/rYoZKP).

Although this application isn’t completely real world, it does
represent a reasonable navigation model for a phone application.
I’ll evaluate this application using the Marketplace Test Kit in
Visual Studio and then examine it further with the Windows Phone
Performance Analysis tool. Once I identify any problems, I’ll use
documentation resources to fi gure out how to fi x the problems,
and then I’ll retest with the tools.

Let’s get started.

This article discusses:
• Using the Marketplace Test Kit

• Running monitored tests

• Using the Windows Phone Performance Analysis tool

• Finding and fi xing problems

• Rerunning tests after fi xes

Technologies discussed:
Windows Phone

Figure 1 Images Displayed in the Examine the Stamen Program

http://wpdev.ms/wpsdk71rtw
http://wpdev.ms/certreq
http://wpdev.ms/rYoZKP

55February 2012msdnmagazine.com

Using the Marketplace Test Kit
I created a reasonably attractive UI for Examine the Stamen, and
a reasonable navigation model. I plan to add more fl owers in the
future, but right now I want to get my application into the market-
place. The next step for me is to use the Marketplace Test Kit to
evaluate my application’s marketplace readiness with a suite of
automated, monitored and manual tests.

To run the tests, I open my application project in Visual Studio
and select “Marketplace Test Kit” on the Project menu.

A new tab opens up within Visual Studio, displaying Market-
place Test Kit test suites. Figure 2 shows the fi rst page of the test kit.

Th e available test suites are shown in the tabs on the left . Th e
Application Details tab lets you specify the application images
for the automated tests. Th e automated tests evaluate the appli-
cation XAP size, iconography and screenshots for compliance
with certification requirements and determine the capabilities
used by the application. Th e manual tests provide steps you walk
through to exercise your application and make sure it complies with
additional certifi cation guidelines.

In this article, I’ll focus on the monitored tests. For more informa-
tion about all four test suites, see the “Windows Phone Marketplace
Test Kit” MSDN Library page (wpdev.ms/toHcRb).

Th e monitored test suite evaluates applications for adherence to
important certifi cation guidelines such as:

• Startup time
• Peak application memory usage
• Back button handling
• Sudden application exits due to unhandled exceptions

Running the Monitored Tests
To run the monitored tests, you need to start a Release build of
the application, deploy it to a device (the tests won’t work on the
emulator) and navigate through it. Th e options to confi gure this are
on the Standard toolbar in Visual Studio. Th e goal when running
the monitored tests is to navigate through the application as a user
would, exercising all the possible navigation paths. While you do this,

the test kit monitors the appli-
cation and collects data about it.

When you test your application
with the monitored tests, also
test how it performs when you
terminate and reactivate it within a
short amount of time. Th is termi-
nation and reactivation process is
called “tombstoning.” In Windows
Phone 7.5, your application will go
dormant automatically before it’s
tombstoned.

To force your application to
tombstone immediately for debug-
ging and testing purposes, select
the “Tombstone upon deactivation
while debugging” option on the
Debug tab of the Project proper-
ties. Open the Project properties

by selecting Properties on the Project menu. Figure 3 shows this
option selected. For more information about tombstoning, see the
“Execution Model Overview for Windows Phone” MSDN Library
page (wpdev.ms/ExMod).

After configuring these options, I return to the Marketplace
Test Kit tab. I tether my developer-registered device and click Start
Application on the Monitored Tests page of the test kit.

When the application starts I navigate back and forth, selecting
fl owers, tapping for the name and hitting the Back button to return
to the start page of the application. I tap the Start button and then
the Back button to force the application to tombstone and return.

Figure 2 The First Page of the Marketplace Test Kit in Visual Studio

Figure 3 Selecting the Option to Test Tombstoning
in Project Properties

The goal when running the
monitored tests is to navigate

through the application as a user
would, exercising all the possible

navigation paths.

www.msdnmagazine.com
http://wpdev.ms/toHcRb
http://wpdev.ms/ExMod

msdn magazine56 Windows Phone Marketplace

When I think I’ve navigated around the way a typical user would,
and I’ve tombstoned and reactivated my application, I can stop the
application and test session. For the best results, I exit the applica-
tion by clicking the Back button from the application Start page
to end the test session. I can click the Close Application button on
the Monitored Tests page in the test kit, but for the most accurate
test results I exit the application by using the Back button. When
the application exits, the monitoring sessions ends.

Aft er the test session ends, the test kit results status bar tells me the
suite is analyzing results, and when it’s fi nished the results table updates.

Th e results for my application, shown in Figure 4, shock me.
My application has failed two of the four tests in this test suite.

The startup time is too slow and it’s using too much memory. I
decide to dig deeper.

Using the Performance Analysis Tool
In general, for your applications to be popular in
the marketplace, they should be performant and
responsive. At minimum, you should investigate
and fi x performance issues identifi ed with the test
kit. For either of these scenarios, you can use the
Windows Phone Performance Analysis tool, also
known as the profi ler.

I close the test kit for now and decide to use the
profi ler to look at my startup time and memory is-
sues. It’s a great tool because it will show potential
problems with my application and possible courses
of action to correct them.

Th e profi ler has two options:
 • Execution profi ling: Th e execution profi ler

will evaluate your application’s frame rate,
CPU usage and general memory usage. You
can use it to drill in to the fi ll rate and see
how many visuals are being created and
other execution details of your application
that can aff ect its performance.

 • Memory profi ling: Th e memory profi ler
shows memory usage, image loads and
garbage collection events. You can use the
memory profi ler to look for memory usage
trends, which can indicate a memory leak.

Choose the execution profi ler unless you know
the only issue with your application is a memory
problem. I know I have a memory problem, but
I’m curious about the startup time issue and I
decide to look at my application with the execu-
tion profi ler fi rst.

With my application project open in Visual
Studio, I go to the Debug menu and choose Start
Windows Phone Performance Analysis. (Note: If
you’re using Visual Studio Premium or Ultimate,
do not choose Start Performance Analysis, which
doesn’t apply to phone projects.)

When you open the Performance Analysis tool,
a new tab opens in Visual Studio with the name of
the current profi ling session. Th e name includes

the name of the project and the date/time of the profi ling session,
followed by the .sap suffi x used for profi ling results fi les. Th ese
fi les are always saved in the project, so you can view them mul-
tiple times. Figure 5 shows the Performance Analysis Tab before
any tests have been run.

On the profiler tab, I choose the Execution option. For best
results I ensure Windows Phone Device and Release are still selected
in the deployment and debug options boxes on the Visual Studio
toolbar and make sure my device is tethered and unlocked. (Note:
You can deploy an application to the emulator when using the pro-
fi ler, but results may not be indicative of performance on a device.)

I click Launch Application to start the profi ling session. Similar
to the Marketplace Test Kit, I use my application the way a user
would, and make sure that I tombstone and return to the application

Figure 4 Test Results Showing Two Failures

Figure 5 The Performance Analysis Tab Before Any Tests Have Been Run

Figure 6 Results of a Performance Analysis Test

57February 2012msdnmagazine.com

at least once. I exit the application using the Back button, which is
the preferred method for the most accurate results, although you
can also end the profi ling session using the Stop Profi ling option
in the Performance Analysis tool. Th e profi ler spends some time
analyzing the results and displays them on the page in graph
format (shown in Figure 6). My results are very interesting.

Th e green portion of the graphed CPU usage indicates screen
updates and touch input. I can see high CPU usage initially, which
isn’t surprising given the slow startup time. I also see huge spikes in
CPU usage aligned with images being loaded, and that my mem-
ory usage creeps higher and higher. Viewing these results without
further examination tells me that my memory use problem is
probably related to how I’m handling images in my application.
Although any memory used by my application is released when
my application exits, based on this graph, I’m concerned that my
application could crash a device if it’s left running for more than
the few seconds I spend testing it.

Now I rerun the performance analysis tool with the memory
option selected, and this confi rms my growing memory-use problem.

Finding and
Fixing the Problem
To track down problems using
the profi ling tool, select problem
areas in the graph and review the
instructions in the Observation
Summary section.

In the execution profi ler results,
I click and drag with the mouse
to select a portion of the graph
that shows a CPU usage spike.
The Performance Warning sec-
tion immediately updates with an
issue to investigate (see Figure 7).

According to the Observation
Summary, the application uses a lot
of CPU to execute functions on the
UI thread. Th is would certainly lead
to slow startup time and poor per-
formance overall, but I’m not sure

it would contribute to the memory
problem. Th e profi ler is great in that
it gives me some instructions to fol-
low, so I do this. I select CPU Usage
and then Functions. Th e results table
updates and I sort the results by the
Inclusive Samples (%) column. My
application function calls are displayed
in blue with fully qualifi ed names that
include the namespace (suspiciously,
MemoryLeak in this case), class and
method name. Also, the function calls
are live links to the methods in my
code. Figure 8 shows these results.

I can tell by looking at these results
that the methods executing when I load the second page are using
a lot of CPU. Th is probably won’t fi x my start-time issue, but it defi -
nitely could be contributing to the memory issue.

I click the link to view the FlowerPage.OnNavigatedTo method.
Th is method creates a list of Flower objects and loads a bitmap for
each Flower using the LoadBitmap method. Following is a typical
call I make to the LoadBitmap method:

bitmap = LoadBitmap("/MemoryLeak;component/Images/tulip.jpg");

And the LoadBitmap method, which loads the resource:
private BitmapImage LoadBitmap(string urlString)
{
 var streaminfo = App.GetResourceStream(new Uri(urlString, UriKind.Relative));
 BitmapImage bitmap = new BitmapImage();
 bitmap.SetSource(streaminfo.Stream);
 return bitmap;
}

When a user navigates to the page, I extract the name of the
fl ower that was clicked on the main page from the navigation URI
and load the same fl ower image on the FlowerPage.

It’s clear that loading the images is causing a memory problem,
but it’s not clear to me what I should do next.

Figure 7 A Performance Warning About High CPU Usage on the UI Thread

Figure 8 The Peformance Analysis Tool Shows Methods That Might Be Causing Problems

Figure 9 Changing Image Handling Results in Passing All Four Marketplace Tests

www.msdnmagazine.com

msdn magazine58 Windows Phone Marketplace

If the Observation Summary doesn’t give you enough informa-
tion to solve the performance issues in your application, you should
check MSDN and the Web for performance guidance. Following
are some great resources:

• “Performance Considerations in Applications for Windows
Phone” (under the “Media” section) (wpdev.ms/utCq6h)

• “Performance Techniques for Windows Phone” (wpdev.ms/perfTech)
• Silverlight for Windows Phone Performance team blog

(wpdev.ms/slmperf)
• Analyzing and Improving Windows Phone Application

Performance (video from MIX11) (wpdev.ms/mixwpperf)
• Expert Lessons: Top Tips for Building a Successful Windows

Phone Application (video from MIX11) (wpdev.ms/mixwptoptips)
I start researching performance and loading resources on phone

applications and discover something important. According to the
Media section of the “Performance Considerations in Applications for
Windows Phone” MSDN Library article, I should be specifying my
image fi les as content rather than resources, because the phone is opti-
mized to use fi les. When a media fi le is compiled as a resource, the con-
tent is copied to a fi le before being used, which decreases performance.

I change the build action of my image fi les to Content and make
a small change to my code to accommodate this.

In my LoadBitmap method, I specify the UriSource of the
BitmapImage rather than calling SetSource:

private BitmapImage LoadBitmap(string urlString)
{
 BitmapImage bitmap = new BitmapImage();
 bitmap.UriSource = new Uri(urlString, UriKind.Relative);
 return bitmap;
}

And when I make the call to
LoadBitmap, I pass the relative URL
to each bitmap:
 bitmap = LoadBitmap("/Images/tulip.jpg");

Rerunning the Test
Kit and Performance
Analysis Tools
Once you think you’ve fixed the
issues raised in the Marketplace Test
Kit and the Performance Analysis
tool, you can run these tools again.

I recompile my application and
run the Marketplace Test Kit again, and I can’t believe the diff erence
in the results (see Figure 9). Th e app now passes all four tests. Th e
startup time isn’t great, but at least it’s meeting the bar.

Finally, I run the execution profiler a final time. I see a big
diff erence in results (see Figure 10).

Now instead of big CPU spikes and images being loaded over
and over as the user navigates between pages, the images are
loaded once, when the application starts. This graph also tells
me that my application’s memory use is remaining constant and
relatively low compared to my previous version of the application.
Next, I select some of the smaller CPU spikes and see the results
shown in Figure 11.

I’m relieved to see that the profi ler doesn’t see any performance
problems and I make plans to submit my application to the market-
place. I have confi dence it will be accepted, and I can continue to
improve my application and submit updates if I want.

Follow This Pattern
In this article I’ve described how to identify and fix issues in
a sample Windows Phone application by using the Market-
place Test Kit and the Performance Analysis tool. These tools
are integrated into Visual Studio and install as part of the
Windows Phone SDK. Th e Marketplace Test Kit helps you deter-
mine if your application will meet certifi cation requirements. Th e
Performance Analysis tool will help you identify memory and
CPU performance issues. Before you submit your applications
to the marketplace, I recommend a pattern similar to what I’ve
shown in this article:

1. Use the tools I’ve shown, including all the test suites in the
Marketplace Test Kit.

2. Identify and fi x any issues.
3. Retest to verify fi xes.

If you follow this pattern, you’ll fi nd problems earlier and create
better applications faster. Also, this will help ensure your applica-
tions are accepted into the marketplace on the fi rst attempt.

CHERYL SIMMONS is a senior programming writer on the Windows Phone
Developer Content team at Microsoft .

THANKS to the following technical experts for reviewing this article:
Pratap Lakshman, Raghuram Lanka and Nitin Madnikar

Figure 10 Image Handling Changes Result in CPU and Memory Performance
Analysis Improvements

Figure 11 Investigating a CPU Spike Shows No
Performance Warnings

http://wpdev.ms/utCq6h
http://wpdev.ms/perfTech
http://wpdev.ms/slmperf
http://wpdev.ms/mixwpperf
http://wpdev.ms/mixwptoptips

Word Processing Components
for Windows Forms, WPF & ASP.NET

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

VERSION 17.0 RELEASED

WORD PROCESSING
COMPONENTS

WINDOWS FORMS | WPF | ASP.NET | ACTIVEX

NEW SPELL CHECK COMPONENT

CELL MERGING, COL SELECTION PAGE BORDERS DIGITAL SIGNATURES IN PDF

Untitled-3 1 1/5/12 3:49 PM

www.textcontrol.com

msdn magazine60

W IN DOWS W OR KFLOW FOU NDAT ION 4 . 5

What’s New in Windows
Workfl ow Foundation 4.5

At the BUILD conference last September (buildwindows.com),
Microsoft unveiled the next version of Windows Workfl ow Foundation
(WF 4.5) and made available a public preview as part of the Windows
8 Developer Preview (msdn.microsoft.com/windows/apps/br229516).
In this article, I’ll walk through the key new features added in
WF 4.5. Given the general scope of the article and the size of
the feature set, each discussion will be brief, but I hope you’ll get
excited enough to download the Windows 8 Developer Preview
and start playing with WF 4.5.

WF: Yesterday, Today and Tomorrow
WF 4 shipped in 2010 to a great reception from the developer
community. WF 4 included signifi cant advances over its predecessor
(WF 3.5): improved runtime, better overall performance, simplifi ed
activity authoring, full Windows Communication Foundation
(WCF) integration, declarative authoring and dramatically sim-
plified designer rehosting. 2011 brought a fully featured version
of StateMachine in the Microsoft .NET Framework 4 Platform

Leon Welicki

Update 1, available today with the same quality and support guar-
antees as any other component of the framework. With WF 4.5,
our goal was to solve the major issues we learned about from our
customers. We’ve also been working to take all the power of WF
to the cloud; there’s a great BUILD presentation you can watch to
see what the team has been up to (bit.ly/rbJROw).

As you read through this article, I’m sure you’ll have questions
about compatibility between WF 4 and WF 4.5. Be assured that the
versions are built on the same code base and are fully compatible.
All your WF 4 investments will be preserved in WF 4.5 without
needing any changes.

Aft er we shipped WF 4, we received a lot of great feedback we
used to plan the next release. In WF 4.5, we wanted to address your
top concerns and add features to provide the best framework for
building workfl ow applications. Figure 1 shows customer requests
and the features created in response to those requests.

Notice that the table is organized by themes; I’ll use the same themes
in the upcoming sections to present the most important features.

Authoring Improvements
C# Expressions WF 4 lets you write expressions using Visual Basic
and, when used in Visual Studio, the expression editor provides
all the language services you might expect, such as auto-complete,
IntelliSense and so forth. But our WF 4 customers told us they’d rather
write C# than Visual Basic, so we added support for C# expressions.
Now, if you create a C# project you get C# expressions in your work-
fl ow. Don’t worry, though. You still get Visual Basic expressions if
you create a Visual Basic project. C# support also comes with all
the language services you’d expect, as shown in Figure 2. Notice
the IntelliSense box showing second C# overload for string.Format.

If you want to try C# expressions, just create a C# Workfl ow
project. You can also open the CSharpExpressions project in the
companion code for this article.

Windows Workfl ow Foundation 4.5 is currently a community
technical preview. All information is subject to change.

This article discusses:
• Authoring improvements in WF 4.5

• New versioning support in WF 4.5

• Runtime enhancements in WF 4.5

Technologies discussed:
Windows Workfl ow Foundation, Windows 8 Developer Preview,
Windows Communication Foundation

Code download available at:
code.msdn.microsoft.com/mag201202WF45

http://msdn.microsoft.com/windows/apps/br229516
http://buildwindows.com
http://code.msdn.microsoft.com/mag201202WF45
http://bit.ly/rbJROw

61February 2012msdnmagazine.com

Contract-First Service Authoring WF 4 comes with great WCF
integration. You can create WCF services leveraging all of the WF
capabilities (long-running execution, durable state, declarative au-
thoring and visibility into execution) without writing a single line
of code (see “Visual Design of Workfl ows with WCF and WF 4” at
msdn.microsoft.com/magazine/ff646977). When you author a workfl ow service
in WF 4, service contracts are inferred from the workfl ow defi nition.
When the host starts, it walks through the workfl ow defi nition look-
ing for messaging activities, then exposes the corresponding contract
(for example, each Receive activity translates to a service operation).

Many customers said they’d prefer to create their workflow
services from an existing WCF service contract (the workfl ow is
just one of the possible implementations of that contract), so in WF
4.5 we added support for “contract-fi rst” service authoring. Now
you can import a WCF service contract defi nition in a workfl ow
project and make one or more workfl ow services implement that

contract. Th is new approach to workfl ow service authoring doesn’t
replace the workfl ow-fi rst approach.

Contract-fi rst in WF is a two-step process: You add a reference
to the contract (a regular WCF service contract) in your project
and then implement the contract in your services.

To import the contract, right-click on the project, select the “Import
Service Contract” menu item and choose the contract type. Once the
contract is imported and the project is built, a set of activities repre-
senting each operation is added to the toolbox, as shown in Figure 3.

As Figure 4 shows, you can add activities between the Receive
and SendReply. Th ese activities represent the body of the operation.

Th e second step is to indicate that a given service implements
the contract. To do this, you open the workflow service in the
designer and add the contract to the ImplementedContracts
collection of the Workfl owService root.

 Once the service implements the contract, the designer will run a
new set of validation rules to ensure
the service honors the contract. As a
result, you’ll see warnings and errors
if the contract isn’t fully implemented.

If you want to see contract-fi rst
in action, take a look to the Con-
tractFirst project in the companion
code. For a hands-on experience
follow the steps described in the
previous section.

Use the WF designer more
effectively Th e WF visual designer
provides a graphic representation
of your workfl ows, making them
easier to create and share. The
designer is a key feature of WF and
is the most used authoring tool. In
WF 4.5, we added highly requested
features to enable you to be more
productive using it.

Theme Request Feature

Authoring
Improvements

Expressions in the language of the project C# Expressions
Create workfl ow services based on an existing contract Contract-First
Add comments to activities in the designer surface Annotations

Use the WF designer more effectively, especially navigating large workfl ows Auto-connect, Auto-insert, Pan, Tree view,
Auto-surround with sequence

Search integration in the workfl ow designer Search
Break the build when there’s an error in a workfl ow in the designer Build integration
Create StateMachine workfl ows StateMachine

Versioning
Basic building blocks for a versioning story Workfl owIdentity
Host several versions of a service side by side WFSH versioning support
Update running instances of a workfl ow to a new defi nition Dynamic Update

Runtime
Enhancements

Run my workfl ows in Partial Trust Partial trust support
Be able to plug my own expressions story Expressions extensibility

Better runtime performance Visual Basic expressions performance
enhancements

Figure 1 Customer Requests and New Features for WF 4.5

Figure 2 C# Expressions in a Workfl ow

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/ff646977

msdn magazine62 Windows Workfl ow Foundation 4.5

Annot ations In WF 4, the only place you can add text in the
designer is the DisplayName section of an activity, which is a
one-line text area at the top of the activity. Th ere’s no other way
to add non-structured descriptive information to your workfl ow.
However, you wanted to be able to add comments or text in your
activity designer to convey more than just the workfl ow defi nition
(such as adding a description of the behavior of a process step).

In WF 4.5 we added annotations, which enable you to add textual
comments and descriptions to activities in the designer. Figure 5
shows a workflow with and without annotations. Notice how
you can now add descriptive information to any activity. With
annotations, a printout of the designer can fully convey what the
workfl ow is doing.

You can display annotations as always visible or as a sticky note
in the DisplayName bar of an activity.

Annotations are an opt-in feature and have no execution-time
impact. They’re added to the workflow XAML file as attached
properties, as shown in the following code snippet:

<Activity mc:Ignorable="sap2010"
 x:Class="DesignerImprovements.Annotations"
 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:sap2010="http://schemas.microsoft.com/netfx/2010/xaml/
activities/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Sequence sap2010:Annotation.AnnotationText="This is an example annotation">
 <WriteLine Text="Hello Dev11"/>
 </Sequence>
</Activity>

To see annotations in action, take a look at the attached Annota-
tions project in the companion code. For a hands-on experience,
open a WF 4.5 workfl ow project, add an activity to the designer
and select “Add annotation” in the activity’s context menu.

Enh ancing Flowchart and StateMachine Designers You asked
us to improve aspects of the design experience to make you more
productive, particularly with regard to adding new activ ities to a
Flowchart or StateMachine (available through .NET Framework
Platform Update 1). We listened.

We added auto-connect, which enables automatically connect-
ing a new activity to an existing activity in the designer. And we
added auto-insert, which lets you insert an activity between two
existing activities by dropping the new activity on the connecting
line. Figure 6 shows these features.

To try this, just create a WF project and add a Flowchart or
StateMachine. When adding a new activity, you’ll notice dropping
targets for auto-connect. Aft er you’ve connected two activities, you
can add a third by dropping it on the connecting line.

Large-Workfl ow Navigation In WF 4, when a workfl ow is larger
than the screen, you move around using the vertical and horizontal
scrollbars. You told us that moving around a large workfl ow this
way is painful and limits your productivity.

In WF 4.5 we added panning, which allows moving through
the designer canvas using the mouse. You can enable Pan mode by
clicking the Pan button in the designer. Panning is available as a
general designer feature, so you can use it with any existing activity.

To try panning, open any workfl ow in the designer, click the Pan
button and enjoy panning around!

WF 4.5 also provides a tree view that allows you to visualize the
document outline of your workfl ow. Th is gives you a very succinct
and structured view of your workfl ow, enabling you to navigate
large workfl ows more easily. When you click an activity in this
view, it’s selected in the workfl ow defi nition, as shown in Figure 7.

To try this feature, open a workfl ow in the designer, go to the
View menu, select Other Windows and choose Document Outline.

Search Integration in the
Designer In WF 4 you can use the
Visual Studio search when using
the WF designer, but search
results aren’t integrated with the
WF designer. Clicking a search
result doesn’t take you to a partic-
ular location in a workflow. You
made it clear how this aff ects your
productivity and how important it
was for us to provide this capability.

In WF 4.5 we integrated the
WF designer with Visual Studio
search. Now clicking on a search
result takes you to an activity in a
workfl ow, even if it’s nested several
levels away.

To try this out, create a workfl ow
project and start editing a workfl ow
in the designer. Add some activities Figure 4 A Simple Service Method That Computes a Value

Figure 3 The Generated Activities Are Added to the Toolbox

63February 2012msdnmagazine.com

and confi gure their properties. Now, search for a keyword using
Visual Studio search. The search results should take you to the
activity that matches the keyword.

Auto-Surround with Sequence Th e WF 4 activity model sup-
ports composition at its very core; activities can be composed without
restrictions. For example, the Body property of a While activity
can be a Sequence, Parallel, Flowchart, StateMachine, WriteLine,
Delay or any other existing activity. Often, composite activities
have a Body property that accepts just one activity (instead of a
set), which can be any other leaf or composite activity.

One of the more common activities for Body is Sequence,
especially with control fl ow activities like While, ForEach and so
forth. With these, if you add a single child and then change your
mind in favor of a sequence of elements, you need to cut the child
in the Body, then add a Sequence to the Body and paste the child.
Th is is tedious and error prone.

In WF 4.5, we added an “auto-surround with Sequence” feature. For
example, if you have a While and its Body is a WriteLine, when you
drop another activity, a Sequence containing both the existing activity
and the new one is automatically created, as illustrated in Figure 8.

To try this, follow the steps in Figure 8.
Build I ntegration In WF 4 you can create a new activity

declaratively in the designer. When you do so, you’re actually
defi ning a new type that will be placed in the assembly generated
when the project is compiled. However, if you build a WF 4 project
and there are errors in the XAML, the build still succeeds though
your workfl ow is not included in the resulting assembly.

In WF 4.5 we fi xed this problem. If you build a workfl ow that
has an error, the build will break, as you’d expect.

To implement this solution, we added extensibility to XamlBuild-
Task so it can be accessed during compilation of XAML activities,
breaking the build when a XAML workfl ow fi le has errors.

To try this feature, create a new WF application and add an incor-
rectly confi gured activity to a workfl ow. You’ll get a build error. You
can also try the ErrorBreaksTh eBuild project in the companion code.

State M achine out of the Box StateMachine is a very important
control fl ow activity that didn’t make it to WF 4. Th at brought tons of

feedback about the importance of this activity, so now StateMachine
is available in WF 4 aft er you install the .NET Framework Product
Update 1. In WF 4.5, you won’t need to install any update to take
advantage of StateMachine—it’s included right out of the box.

To try this feature, create a workflow project and add a
StateMachine activity or just open the StateMachine sample
project in the companion code for this article.

Versioning Support
WF 4 doesn’t include support for workfl ow versioning. If you wanted
versioning, you had to write everything on your own, oft en hitting
issues that are hard to work around. WF 4.5 includes new features
that enable versioning.

Workfl o wIdentity In WF 4, the host is responsible for associa-
tions between defi nitions and instances. Once an instance has been
persisted and unloaded from memory, the host must provide the
right defi nition to continue the execution of the instance. One big
challenge is that there is no information in the persisted instance
state that helps the host determine what defi nition has been used
to create the instance. Furthermore, if the host is confi gured with
the wrong defi nition when loading an instance, the user will get an
awkward exception because the error is a side eff ect of not being
able to match the instance state with the defi nition, rather than a
real version mismatch.

WF 4.5 introduces Workfl owIdentity, a new type that refers to
a fully confi gured workfl ow defi nition and is part of the instance
runtime state. A Workfl owIdentity contains a name (string), a ver-
sion (System.Version), and a package (string). Name and version are
self-explanatory; package is an optional string used for disambigu-
ation. It refers to the container of the workfl ow defi nition (assembly
name, service URI, or any string of your choice). Workfl owIdentity
is the cornerstone for all WF versioning features.

One of the most useful traits of Workfl owIdentity is that it’s a
part of the workfl ow instance state and lives through the entire
lifecycle of an activity: It’s saved during persistence, can be queried
from the instance store and is emitted with the tracking informa-
tion for a workfl ow instance.

Using Workfl owIdentity is easy. Th e following snippet shows
how to use it with WorkflowApplication, our single-instance,

Figure 6 Auto-Connect and Auto-Insert

Figure 5 A Workfl ow with and Without Annotations

www.msdnmagazine.com

msdn magazine64 Windows Workfl ow Foundation 4.5

single- defi nition, in-process host (you just have to pass an instance
of Workfl owIdentity to the constructor of Workfl owApplication):

WorkflowIdentity identity = new WorkflowIdentity("Sample", new Version(1, 0, 0, 0),
 "MyPackage");
WorkflowApplication application = new WorkflowApplication(new
MyActivity(), identityV1);

We just confi gured the Workfl owApplication with a Workfl ow-
Identity, but we haven’t yet done anything useful. Th e next code
sample shows how to use the identity to detect a version mismatch
and to provide an actionable error message. In the event of a
version mismatch when trying to load an instance, you’ll get a
VersionMismatchException that states the cause of the problem
and contains the supplied and expected identities. Th is informa-
tion can be used for logging or recovering from the error:

try
{
 WorkflowIdentity wrongIdentity = new WorkflowIdentity("Sample", new
Version(2, 0, 0, 0),
 "MyPackage");

 WorkflowApplication application = new WorkflowApplication(new WrongActivity(),
 identityV2);

 application.Load(instanceId);
}
catch (VersionMismatchException ex)
{
 Console.WriteLine("Version Mismatch! {0}", ex.Message);
 Console.WriteLine("Expected: {0}; Provided: {1}", ex.ExpectedVersion,
ex.ActualVersion);

}

Finally, you can learn the identity of a given workfl ow instance
before loading it from the instance store. To query the identity, you
need to get a Workfl owApplicationInstance, a new type introduced
in WF 4.5 that represents an instance that has not been associated
with a defi nition. It’s used to retrieve metadata about the instance—
in this case, the identity. See bit.ly/ssAYDn for more information.

Note that WorkflowIdentity works not only with Workflow-
Application, but also with Workfl owServiceHost.

If you want to try this feature, open the WorkflowIdentity
project in the companion code.

Workfl ow ServiceHost Workfl owServiceHost (WFSH) is the
out-of-box, single-defi nition, multiple-instances host for work-
fl ows provided in WF 4. However, an unfortunate WF 4 limitation
is that changes to the workfl ow defi nition result in an exception if
you try to load a previously persisted instance into the WFSH. Th is
is because the host is unable to run these instances using the new
defi nition (this is the problem we noted in the Workfl owIdentity
section). Some customers worked around the lack of built-in ver-
sioning support in WF 4 using multiple WFSHs and a WCF routing
service as an intermediary between the client app and the workfl ows.
Clients send messages to the router, which routes the messages to
the corresponding WFSH confi gured with the right version of the
defi nition. Th e downside is that this requires the client application to
be version-aware to successfully send messages to a service instance.

In WF 4.5, WFSH has become a multiversion host; you can
deploy multiple versions of a workfl ow service within the same
WFSH and it will deliver incoming messages to the correct version.

Th e semantics are very simple: New instances start with the latest
version of the service, and running instances continue executing
with the version used to start them. Th ere are some restrictions on
what you can change from one version to the next; you can’t remove
service operations (Receives), but you can add new ones (the rules
are similar to creating a derived interface in the CLR).

Th e key enabler for this feature is Workfl owIdentity. To determine
the version of a service defi nition you need to confi gure its identity.
Old versions of the service must be placed in a “supported versions”
folder, which is a folder in App_Code with the same name as the
workfl ow service (see Figure 9). Alternatively, old versions can also
be loaded explicitly into the Workfl owServiceHost by adding to the
SupportedVersions collection prior to opening the host.

With this new feature, the router is no longer needed, and client
apps don’t have to be version-aware. They just send a message;
the usual correlation mechanism resolves it to the right instance
and the host uses the corresponding defi nition (because the per-

sisted instance state contains the
identity of the defi nition needed
to load it). XCopy deployment
semantics are preserved, so you
don’t need to write a single line of
code to use it. Th is feature is also
available in self-hosting scenarios
(hosting WFSH in your own app).

To try this feature, open the
WFSH_SxS project in the com-
panion code.

Dynamic Update In WF 4, once
a workflow instance has begun,
there’s no supported way to change
the defi nition of the workfl ow. Th is
is oft en a problem when programs
need to be updated due to bug fi xes
or changing requirements.

Our enterprise customers were
emphatic about the importance of
this capability, because they oft en Figure 7 Document Outline View of a Workfl ow

http://bit.ly/ssAYDn

65February 2012msdnmagazine.com

need to change a particular workfl ow instance in long-running
workflows. For example, suppose a workflow that models an
interview process has four interviewers but, given a new company
policy, now needs to be changed to add a fi ft h interviewer. You
can’t do that with WF 4.

You can in WF 4.5. Dynamic Update allows you to make changes
to a running instance of a workfl ow to accommodate a new work-
fl ow defi nition. Such changes might be motivated by omissions at
design time, bugs in the workfl ow, or new requirements. Dynamic
Update isn’t intended for situations that require wholesale changes,
resulting in a workfl ow that diff ers signifi cantly from its original
design. In that sort of case, you should design a new workflow
instead of making changes to a running instance.

Dynamic Update is generally a two-step process: When changing
the workfl ow defi nition, you also need to create an update map: a
structure that contains information about the changes. When the
new version is deployed, the map can be used to update running
instances to the new defi nition. Running instances can be updated
only when they’re idle and persisted.

Dynamic Update, which is available in both Workfl owApplica-
tion and Workfl owServiceHost, is an advanced, complex feature,
and it has far more capabilities than I’ve mentioned. It supports

updating activities, providing
custom update semantics, emit-
ting tracking information and
more. It gives you a rich API you
can use in your applications to pro-
vide update capabilities for your
running instances.

Runtime Enhancements
I want to briefl y describe some run-
time enhancements in WF 4.5.Due
to space constraints, I won’t be delv-
ing into them with the same level
of detail as the other features; these
are more scoped and advanced.

Partial Trust WF 4 requires full-
trust to execute. WF 4.5 can run
in partially trusted AppDomains.

Expressions Extensibility We
modified ExpressionTextBox to
bind to an object instead of a string.
As a result, you can provide your
own expression editing experience
and you’re not limited to a textual
representation. We also exposed
fast-path capabilities that can
be used with code activities for
authoring expression activities with
better performance.

Visual Basic Performance
Enhancements We signifi cantly
improved VisualBasicValue/
VisualBasicReference perfor-

mance by changing their internal implementation.
WF 3 Obsoleted WF 3 types have been marked as obsolete in

WF 4.5 assemblies.

Wrapping Up
We took WF 4 and, based on your feedback, made it better. We added
much-requested features and fi xed some key issues to provide you
with the best workfl ow framework for your .NET applications.

WF 4.5 is an in-place replacement for WF 4 and is fully
compatible with WF 4. We have thoroughly tested that WF 4.5
doesn’t break any WF 4 scenarios; all your WF 4 investments will
be fully preserved in WF 4.5 without need of any changes.

If you’re writing WF 4 applications, keep doing so! When
you’re ready to move to WF 4.5, your code will just work, and
you and your customers will be able to leverage and enjoy all the
improvements described in this article.

LEON WELICKI is a senior program manager on the WF team focusing on the WF
programming model and runtime.

THANKS to the following technical experts for reviewing this article:
Joe Clancy, Dave Cliff e, Dan Glick, Hani Khoshdel Nikkhoo and Isaac Yuen

 Figure 9 Workfl owServiceHost Side-by-Side Versioning

Figure 8 Auto-Surround with Sequence

www.msdnmagazine.com

msdn magazine66

N U GE T

Creating a
NuGet Gallery

This is the third and last article in our series on NuGet,
a new package management ecosystem for developers. NuGet,
a project of the Outercurve Foundation, gives .NET developers
a way to consume, author and publish packages. So far, the
series showed you how to manage project libraries with NuGet
(msdn.microsoft.com/magazine/hh547106) and how to become a NuGet
author (msdn.microsoft.com/magazine/hh708753). In this article, we’ll
take a look at hosting your own NuGet gallery and creating a build
process to help manage your packages.

Why Host the Gallery?
NuGet.org already exists as a public repository for NuGet packages, so
you might question the point of hosting a gallery. Th at’s understand-
able, but what about leveraging that ecosystem infrastructure within
the walls of your own dev environment? Why not set up your own
private gallery not only to facilitate your product’s development eco-
system but, better yet, to tie it directly to your build and deployment
processes? Moreover, anything you see at NuGet.org is available to you free.

In this article, we’ll explore the steps necessary to create and consume
your own NuGet gallery. As we’ve said before, incorporating NuGet into
your development lifecycle isn’t complicated and will be well worth the
eff ort. Once you’ve done it, your package consumption, creation and
distribution problems will become no more than a distant memory.

Clark Sell and Mark Nichols

Before diving in, let’s explore a use case that most developers have
encountered: versioning. Your product, depending on its overall
size and complexity, is very likely the result of many teams, diff ering
release schedules and a variety of assemblies. Of course the released
product is nicely bundled for your customers, but its journey to
completion included hundreds if not thousands of builds, churning
out many diff erent versions of product assets.

Over the past decade, development practices—including auto-
mated build and deployment systems—helped reduce the pain, but
they always fell short in terms of distribution and choice. Package
management systems provide the solution for this.

Th ink of your own development ecosystem, in which diff erent
teams work independently to publish the versions they choose for
consumption. Each team, with its own build and release sched-
ule, wants control and an easy way to publish its products. With a
package management system, each team gets to decide what the
product is and how it should get installed, and the customers get
to decide when they should consume it.

To some degree, this is very similar to how open source
communities operate, using proven practices that easily scale.
Although the packages you fi nd on NuGet.org are fairly “large grained,”
you can follow those same practices for your building your own
applications. A good, concrete example of the type of soft ware this
would be useful for might be a helper library your company builds
and maintains for its public products.

Maybe your company restricts only the libraries and versions its
developers may use. Th is is another great reason for you to host
your own proprietary gallery with the approved packages and
package versions.

Fast and Simple
Th e easiest way to host your own NuGet gallery is to expose a fi le share.
Th is might sound a bit rudimentary, but if you need something fast
and simple, this method works extremely well. Th e share can be struc-
tured as you see fi t, placing your packages—that is, your *.nupkg fi les—
anywhere on the share. You can refer to the share as a package source.

This article relies on beta versions of the NuGet Gallery
and NuGetFeed.org.

This article discusses:
• Why you should host your own NuGet gallery

• A fast and easy way to host a NuGet gallery

• Getting the NuGet Gallery source

• Integrating your NuGet gallery with your existing build processes

Technologies discussed:
NuGet, Visual Studio, Windows PowerShell, ASP.NET MVC,
TFS Nugetter

http://msdn.microsoft.com/magazine/hh547106
http://msdn.microsoft.com/magazine/hh708753
http://NuGet.org
http://NuGetFeed.org
http://NuGet.org

67February 2012msdnmagazine.com

With the package source created, let’s add it to the development
environment. You can have as many package sources as desired and
easily move between each. To edit your package sources in Visual
Studio, navigate to Tools | Options | Package Manager | Package
Sources (see Figure 1). Note that as of this writing, version 1.5 was
current. You should expect slight diff erences across NuGet versions.

Here you can add, remove and change the default package source.
If you prefer, you can do the same in WebMatrix, a free develop-
ment environment. Just click on the NuGet Gallery icon on the
main menu and select Add Source, as shown in Figure 2.

As you can see, both fi gures list two package sources. You can
choose to use just one or all at any given time.

Introducing NuGet Gallery
While the fi le system package source is very easy to set up and start
using, it breaks down pretty quickly when you start scaling out. Luck-
ily, NuGet.org was built with exactly this in mind, to provide an open
platform for people to take, extend and build on for their own needs.
You can fi nd the NuGet Gallery project at github.com/NuGet/NuGetGallery.

Th e NuGet Gallery is an ASP.NET MVC 3 project built
on top of Razor, OData, SQL Server and Windows Azure.

Th e best way to understand the features and function-
ality the NuGet Gallery has to off er your development
ecosystem is to simply explore NuGet.org.

Before you can create and publish a package, you
need to be a registered user. Once you’ve registered, you
have full rights to upload and manage your packages
and edit your profi le. You can also generate the unique
API key that lets you automate publishing packages to
the Gallery (see Figure 3). For more information about
publishing a package, please see the previous article in
this series, “Becoming a NuGet Author.”

When you upload a package to the NuGet Gallery,
it automatically receives its own place in the Gallery,
as shown in Figure 4.

Th is is where you can view all of the important information about
a package. For each package, the NuGet Gallery tracks the version
downloads, total downloads, dates, licenses and so on. Of course,
a package on the NuGet.org site will most likely yield considerably
larger download numbers given its ecosystem, but these statistics
are vital to any package author, regardless of project size.

Th e package feed is clearly the most important feature in the
overall stack. It’s an OData feed you’ll fi nd at http://YourGallery/
api/v2. Th is is the same URL you’ll use as your package source.
Without this feed, all of the power of NuGet is lost.

Getting Started
Before getting started, verify you have the following installed:

• Visual Studio 2010: microsoft.com/visualstudio
• Windows PowerShell 2.0: microsoft.com/powershell
• NuGet: docs.nuget.org/docs/start-here/installing-nuget
• Windows Azure SDK: microsoft.com/windowsazure/sdk

At the time of this writing, there are no installers for the Gallery
and the project is under very active development. Th at means it’s

always best to go to the project’s homepage for the
latest information. You’ll need to download the source
and build it, which is simple.

To get the source, you can either just download a
zipped copy of the latest master branch or clone the
source base with git, like so:
 $ git clone https://github.com/NuGet/NuGetGallery.git

When you’ve done this, you’ll have the entire
source base locally. At its root you’ll fi nd a Windows
PowerShell script called Build-Solution.ps1. Run this
script to set up your machine and build the source.

If you run the source, you’ll notice it looks and feels
exactly like NuGet.org. You might be thinking of tweaking
the UI, perhaps modifying the homepage. Th at’s under-
standable, but be cautious, especially if your intentions
are to stay in sync with the master source base.

Build Process Meets NuGet Gallery
Th e next logical step is integrating your NuGet gallery
with your existing build processes. If you don’t have a Figure 2 Adding a Package Source in WebMatrix

Figure 1 Adding a Package Source in Visual Studio

www.msdnmagazine.com
http://NuGet.org
http://NuGet.org
http://NuGet.org
http://NuGet.org
http://github.com/NuGet/NuGetGallery
http://microsoft.com/visualstudio
http://microsoft.com/powershell
http://docs.nuget.org/docs/start-here/installing-nuget
http://microsoft.com/windowsazure/sdk

msdn magazine68 NuGet

build process and you’re looking for a little “getting started” guidance
with Team Foundation Server (TFS) build processes, check out the
Microsoft Visual Studio ALM Rangers Build Customization Guide
at rabcg.codeplex.com.

All right: You have a library you want to make available on a
gallery, which could be the offi cial NuGet Gallery, a proprietary
gallery or even a local fi le share. No matter which, you’ll have to
perform certain tasks to create the NuGet package, and they’re
generally the same tasks no matter where the gallery resides.

Th rough the course of developing your product, you’ll repetitively
go through the process of coding, compiling, packaging, pushing and
publishing. You’ll also, we hope, include
a couple of healthy doses of testing;
results from that testing might make you
deviate from publishing to the gallery
if you fi nd any issues (see Figure 5).

Keeping consumers happy with
working soft ware is a good thing, and
you’ll have an easier time doing so using
a managed process. Remember, though,
the managed process can’t be entirely
automated; there’s no replacement for
human verifi cation. Don’t assume you
can publish just because your soft ware
passes all the automated tests. You could
easily publish a package that isn’t ready
and make your consumers angry. More-
over, they won’t be happy if you publish
constantly and they can’t keep up with
the ever-changing versions. Make pub-
lishing a conscious decision.

Use the build process to build, pack-
age and push your NuGet library to
a gallery where you perform final
tests and do that human verifi cation.
Th at way, you can choose continuous
integration or a scheduled build to
automatically push the package and
make it ready for you to test. How
might you do that? Here’s an example
using TFS and its workflow-based
automated build capability.

NuGet.exe is a stand-alone, parameter-
driven console application, but it can
easily be called by another process,
such as TFS Team Build. Team Build
executes a workfl ow; in TFS terms, this
is a set of custom activities controlled
through a build template and initiated
by a build definition. One packaged
solution for automating the NuGet
development process is the NuGetter
project at nugetter.codeplex.com. Th is proj-
ect provides an automated shell around
the NuGet.exe application. We’ll use

this package to show what can be done and things to think about
as you work toward automating your own NuGet packages.

As Figure 6 shows, the build defi nition in TFS is where you pro-
vide all the necessary information to do the packaging, push and
publish. Building a fl exible and repeatable build process for NuGet
requires several pieces of data and the switches that turn portions of
the process on or off . Th e data is organized into categories that are
titled to give you a sense of the order in which the steps are executed.

Th e PrePackaging section is used for complicated or multiframe-
work NuGet packaging that requires some initial preparation. NuGetter
can call a Windows PowerShell script (if you desire) to organize the

Figure 4 A Package Uploaded to the NuGet Gallery

Figure 3 A Registered User Account in NuGet

http://rabcg.codeplex.com
http://nugetter.codeplex.com

69February 2012msdnmagazine.com

library fi les to make packaging easier. Th is
step isn’t required, so you can use the fl ag
parameter “Invoke PowerShell Script” to tell
the process whether to execute the script.

You can use a .nuspec file directly to
defi ne how your package will be created or
you can do so indirectly through a .csproj
file. It’s up to you; use the approach that
better suits your needs.

As you can see, all of the parameters
required for packaging are included.
Version, base path (source folder for pack-
aging), API Key and gallery location (called
Source) are all provided as part of the build
definition. However, the security of this
information might be of great importance
to you. For example, the API Key is what allows you and only you
to push NuGet packages to the gallery. If that key becomes public,
anyone could push bogus packages in your name. Because of this,
NuGetter allows you to provide either the actual API Key or a path
to a fi le that contains the key. If you use a fi le path, the build process
reads the fi le, extracts the key and uses it without listing the key in
the log, and security is maintained. Obviously, the build service ID
must have read access to the fi le for this to work.

Another potential issue for you is managing the version of your
package. In Figure 6, the version number is provided in the build
defi nition. But, do you really want to keep changing that number in
the build defi nition? What happens when you have several builds
(continuous integration [CI], daily, other scheduled and various
manual builds)? NuGetter gives you the choice to enter the
version directly or, as with the API Key, you can provide a fi le path
that multiple build defi nitions can use. Th ey will all use the same
version number and you can manage it in just one place.

The Push Destination in the example is the NuGet Gallery,
but this is where you provide the build destination even if you’re

pushing your package to an internal gal-
lery or to a local fi le store. Th is is another
case where the build process might need to
intervene. NuGet.exe expects a URL as the
destination and if you’re pushing to a local
store—which won’t be a URL—the process
needs to interpret the destination format. In
this case, instead of using NuGet.exe to do
the pushing, you have the build process do it.

For reasons of completeness and feature
parity with NuGet.exe, NuGetter does pro-
vide for automated publishing. Just keep in
mind our earlier caveats before deciding to
use this capability.

By the way, you don’t have to worry that
your consumers might miss any package

updates. Th e community has this covered with NuGetFeed (github.com/
NuGetFeed/NuGetFeed). NuGetFeed lets you build a custom RSS feed
based on the packages you select. Your consumers can add a custom
feed to their favorite RSS reader and be informed of any updates.

Another option for creating a NuGet feed is MyGet at MyGet.org.
MyGet might be perfect for those of you who want a private NuGet
feed for your list of approved packages but don’t want to spend
the time, money, and eff ort creating and maintaining your own
gallery infrastructure. MyGet is a hosted solution that allows you
to create galleries very quickly that are specific to your needs.
Refer to the MyGet site for more detailed information.

Finally, as we mentioned earlier, NuGet and NuGet Gallery are
open source projects. Th is means you’re empowered to contribute
anything from documentation to features, or smash a few bugs
along the way. On the github homepage, the project team has
detailed the exact steps you can take to contribute.

Wrapping Up
NuGet has no doubt changed the way we think about our .NET

package management ecosystem, both public and
private. Both NuGet Gallery and NuGetFeed are
essential components to completing that ecosystem.
Bringing these tools into your daily routine opens
new possibilities. As noted, NuGet Gallery is in
active development, so make sure to visit github.com/
NuGet/NuGetGallery for the most up-to-date information.

You can fi nd all of the links used in this article and
more at on.csell.net/HostingNuGet.

CLARK SELL is as a senior Web evangelist for Microsoft outside
of Chicago. He podcasts at DeveloperSmackdown.com, blogs at
csell.net and can be found on Twitter at twitter.com/csell5.

MARK NICHOLS is as a senior soft ware consultant for Microsoft outside
of Chicago. He podcasts at DeveloperSmackdown.com, blogs at logs at
marnick.net and can be found on Twitter at twitter.com/mark_nic.

THANKS to the following technical experts for reviewing this
article: David Ebbo, Phil Haack and Brandon SatromFigure 6 Nugetter Build Template

Figure 5 The NuGet Development Process

Publish Compile

Push Package

Code

Test Test

www.msdnmagazine.com
http://github.com/NuGetFeed/NuGetFeed
http://github.com/NuGetFeed/NuGetFeed
www.MyGet.org
http://github.com/NuGet/NuGetGallery
http://github.com/NuGet/NuGetGallery
http://on.csell.net/HostingNuGet
www.csell.net
http://twitter.com/mark_nic
www.twitter.com/csell5
www.marnick.net

msdn magazine70

algorithm is generally attributed to a 1996 follow-up paper by M.
Dorigo, V. Maniezzo and A. Colorni. Since then, ACO has been
widely studied and modifi ed, but, somewhat curiously, very few
complete and correct implementations are available online.

This column assumes you have intermediate-to-advanced
programming skills. I implement the ACO program using C#,
but you shouldn’t have too much trouble refactoring my code
to a diff erent language, such as JavaScript. I decided to avoid all
use of object-oriented programming (OOP) to keep the ideas of
the algorithm as clear as possible. Because of space limitations,
I can’t present all of the code shown running in Figure 1. I’ll go
over the trickiest parts and you can download the complete code
from code.msdn.microsoft.com/mag201202TestRun. Although you might
never use ACO code directly, many of its techniques, such as rou-
lette wheel selection, can be interesting and useful additions to
your technical skill set.

Ant Colony Optimization
In this month’s column I present C# code that imple-
ments an Ant Colony Optimization (ACO) algorithm
to solve the Traveling Salesman Problem (TSP). An
ACO algorithm is an artifi cial intelligence technique
based on the pheromone-laying behavior of ants; it
can be used to fi nd solutions to exceedingly complex
problems that seek the optimal path through a graph.
Th e best way to see where I’m headed is to take a look
at the screenshot in Figure 1. In this case, the demo
is solving an instance of the TSP with the goal of
fi nding the shortest path that visits each of 60 cities
exactly once. Th e demo program uses four ants; each
ant represents a potential solution. ACO requires the
specifi cation of several parameters such as the pher-
omone infl uence factor (alpha) and the pheromone
evaporation coeffi cient (rho), which I’ll explain later.
Th e four ants are initialized to random trails through
the 60 cities; after initialization, the best ant has a
shortest trail length of 245.0 units. The key idea of
ACO is the use of simulated pheromones, which
attract ants to better trails through the graph. The
main processing loop alternates between updating the
ant trails based on the current pheromone values and
updating the pheromones based on the new ant trails.
Aft er the maximum number of times (1,000) through
the main processing loop, the program displays the best
trail found and its corresponding length (61.0 units).

Th e 60-city graph is artifi cially constructed so that
every city is connected to every other city, and the
distance between any two cities is a random value be-
tween 1.0 and 8.0 arbitrary units (miles, km and so forth). Th ere’s
no easy way to solve the TSP. With 60 cities, assuming you can start
at any city and go either forward or backward, and that all cities are
connected, there are a total of (60 - 1)! / 2 = 69,341,559,272,844,917,
868,969,509,860,194,703,172,951,438,386,343,716,270,410,647,470,
080,000,000,000,000 possible solutions. Even if you could evalu-
ate 1 billion possible solutions per second, it would take about 2.2
* 1063 years to check them all, which is many times longer than the
estimated age of the universe.

ACO is a meta-heuristic, meaning that it’s a general framework
that can be used to create a specifi c algorithm to solve a specifi c
graph path problem. Although ACO was proposed in a 1991
doctoral thesis by M. Dorigo, the fi rst detailed description of the

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201202TestRun.

Figure 1 Ant Colony Optimization in Action

http://code.msdn.microsoft.com/mag201202TestRun
http://code.msdn.microsoft.com/mag201202TestRun

71February 2012msdnmagazine.com

Program Structure
I implemented the ACO demo program as a single C# console
application. The overall structure of the program, with most
WriteLine statements removed, is shown in Figure 2. Although
some parts are tricky, the program isn’t as complicated as Figure
2 suggests because many of the methods are short helper methods.

I used Visual Studio to create a console application program
named AntColony. In the Solution Explorer window I renamed
the default Program.cs fi le to AntColonyProgram.cs, which auto-
matically renamed the single class in the project. I deleted all
the template-generated using statements except for the System
namespace—ACO typically doesn’t need much library support.
Th e two key methods are UpdateAnts and UpdatePheromones.
Method UpdateAnts calls helper BuildTrail, which calls NextCity,
which calls MoveProbs. Method UpdatePheromones calls helper
EdgeInTrail, which calls IndexOfTarget.

I declared a class-scope Random object named random. ACO
algorithms are probabilistic as you’ll see shortly. Th e class-scope
variables alpha, beta, rho and Q control the behavior of the ACO

algorithm. I use these variable names because they were used in
the original description of ACO.

Setting up the Problem
I used method MakeGraphDistances to set up an artifi cial graph:

static int[][] MakeGraphDistances(int numCities)
{
 int[][] dists = new int[numCities][];
 for (int i = 0; i < dists.Length; ++i)
 dists[i] = new int[numCities];
 for (int i = 0; i < numCities; ++i)
 for (int j = i + 1; j < numCities; ++j) {
 int d = random.Next(1, 9); // [1,8]
 dists[i][j] = d; dists[j][i] = d;
 }
 return dists;
}

For a real-world graph problem, you’d probably read graph- adjacency
and distance-between-node data from a text fi le into some sort of
data structure. Here I simulated a graph by creating an array of arrays
where the row index i represents the from-city and the column index j
represents the to-city. Notice that all cities are connected, distances are
symmetric and the distance from a city to itself is 0.

using System;

namespace AntColony
{
 class AntColonyProgram
 {
 static Random random = new Random(0);
 static int alpha = 3;
 static int beta = 2;
 static double rho = 0.01;
 static double Q = 2.0;

 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("\nBegin Ant Colony Optimization demo\n");
 int numCities = 60;
 int numAnts = 4;
 int maxTime = 1000;

 int[][] dists = MakeGraphDistances(numCities);
 int[][] ants = InitAnts(numAnts, numCities);

 int[] bestTrail = BestTrail(ants, dists);
 double bestLength = Length(bestTrail, dists);

 double[][] pheromones = InitPheromones(numCities);

 int time = 0;
 while (time < maxTime)
 {
 UpdateAnts(ants, pheromones, dists);
 UpdatePheromones(pheromones, ants, dists);

 int[] currBestTrail = BestTrail(ants, dists);
 double currBestLength = Length(currBestTrail, dists);
 if (currBestLength < bestLength)
 {
 bestLength = currBestLength;
 bestTrail = currBestTrail;
 }
 ++time;
 }

 Console.WriteLine("\nBest trail found:");
 Display(bestTrail);
 Console.WriteLine("\nLength of best trail found: " +
 bestLength.ToString("F1"));

 Console.WriteLine("\nEnd Ant Colony Optimization demo\n");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 } // Main

 static int[][] InitAnts(int numAnts, int numCities) { . . }

 static int[] RandomTrail(int start, int numCities) { . . }

 static int IndexOfTarget(int[] trail, int target) { . . }

 static double Length(int[] trail, int[][] dists) { . . }

 static int[] BestTrail(int[][] ants, int[][] dists) { . . }

 static double[][] InitPheromones(int numCities) { . . }

 static void UpdateAnts(int[][] ants, double[][] pheromones,
 int[][] dists) { . . }

 static int[] BuildTrail(int k, int start, double[][] pheromones,
 int[][] dists) { . . }

 static int NextCity(int k, int cityX, bool[] visited, double[][] pheromones,
 int[][] dists) { . . }

 static double[] MoveProbs(int k, int cityX, bool[] visited,
 double[][] pheromones, int[][] dists) { . . }

 static void UpdatePheromones(double[][] pheromones, int[][] ants,
 int[][] dists) { . . }

 static bool EdgeInTrail(int nodeX, int nodeY, int[] trail) { . . }

 static int[][] MakeGraphDistances(int numCities) { . . }

 static double Distance(int cityX, int cityY, int[][] dists) { . . }

 static void Display(int[] trail) { . . }

 static void ShowAnts(int[][] ants, int[][] dists) { . . }

 static void Display(double[][] pheromones) { . . }
 }
}

Figure 2 Ant Colony Optimization Program Structure

www.msdnmagazine.com

msdn magazine72 Test Run

Once I have a distances data structure I can use it for a Distance
method:

static double Distance(int cityX, int cityY, int[][] dists)
{
 return dists[cityX][cityY];
}

To minimize the amount of code presented, I’ve omitted
normal error checking, such as making sure that the cityX and
cityY parameters are valid.

Initiating the Ants and the Pheromones
In this non-OOP implementation, an ant is simply an array of int
values that represent the trail, or path, from an initial city through
all other cities. A collection of ants is an array of arrays in which
the fi rst index indicates the ant:

static int[][] InitAnts(int numAnts, int numCities)
{
 int[][] ants = new int[numAnts][];
 for (int k = 0; k < numAnts; ++k) {
 int start = random.Next(0, numCities);
 ants[k] = RandomTrail(start, numCities);
 }
 return ants;
}

Th e initialization method allocates a row for the trail for each ant,
picks a random start city and then calls a helper method RandomTrail:

static int[] RandomTrail(int start, int numCities)
{
 int[] trail = new int[numCities];
 for (int i = 0; i < numCities; ++i) { trail[i] = i; }

 for (int i = 0; i < numCities; ++i) {
 int r = random.Next(i, numCities);
 int tmp = trail[r]; trail[r] = trail[i]; trail[i] = tmp;
 }

 int idx = IndexOfTarget(trail, start);
 int temp = trail[0]; trail[0] = trail[idx]; trail[idx] = temp;

 return trail;
}

Th e RandomTrail helper allocates a trail and initializes it to 0, 1,
2, ... numCities-1. Next, the method uses the Fisher-Yates shuffl e
algorithm to randomize the order of the cities in the trail. Th e spec-
ifi ed start city is then located and swapped into position trail[0].

Pheromones are chemicals ants place on their trails; they attract
other ants. More ants will travel on a shorter trail to a food source—
and deposit more pheromones—than on longer trails. Th e phero-
mones slowly evaporate over time. Here’s method InitPheromones:

static double[][] InitPheromones(int numCities)
{
 double[][] pheromones = new double[numCities][];
 for (int i = 0; i < numCities; ++i)
 pheromones[i] = new double[numCities];
 for (int i = 0; i < pheromones.Length; ++i)
 for (int j = 0; j < pheromones[i].Length; ++j)
 pheromones[i][j] = 0.01;
 return pheromones;
}

Pheromone information is stored in an array-of-arrays-style sym-
metric matrix where the row index i is the from-city and the column
index j is the to-city. All values are initially set to an arbitrary small
value (0.01) to jump start the UpdateAnts-UpdatePheromones cycle.

Updating the Ants
Th e key to the ACO algorithm is the process that updates each ant
and trail by constructing a new—we hope better—trail based on the
pheromone and distance information. Take a look at Figure 3. Sup-
pose we have a small graph with just fi ve cities. In Figure 3 the new
trail for an ant is under construction. Th e trail starts at city 1, then
goes to city 3, and the update algorithm is determining the next city.
Now suppose the pheromone and distance information is as shown
in the image. Th e fi rst step in determining the next city is construct-
ing an array I’ve called “taueta” (because the original research paper
used the Greek letters tau and eta). Th e taueta value is the value of the
pheromone on the edge raised to the alpha power, times one over the
distance value raised to the beta power. Recall that alpha and beta are
global constants that must be specifi ed. Here I’ll assume that alpha is
3 and beta is 2. Th e taueta values for city 1 and city 3 aren’t computed
because they’re already in the current trail. Notice that larger values of
the pheromone increase taueta, but larger distances decrease taueta.

static int NextCity(int k, int cityX, bool[] visited,
 double[][] pheromones, int[][] dists)
{
 double[] probs = MoveProbs(k, cityX, visited, pheromones, dists);

 double[] cumul = new double[probs.Length + 1];
 for (int i = 0; i < probs.Length; ++i)
 cumul[i + 1] = cumul[i] + probs[i];

 double p = random.NextDouble();

 for (int i = 0; i < cumul.Length - 1; ++i)
 if (p >= cumul[i] && p < cumul[i + 1])
 return i;
 throw new Exception("Failure to return valid city in NextCity");
}

Figure 5 The NextCity Method

Figure 3 Updating Ant Information

7.81 x 64.00 x 10.45

taueta

82.26sum

0.09 0.00 0.78 0.00 0.13

probs

0.00 0.09 0.09 0.87 0.87 1.00

[0]

taueta[0] = 5^α * (1/6)^β = 7.81

α = 3 β = 2

pher = 4
dist = 1

pher = 8
dist = 7

pher = x
dist = x

pher = 5
dist = 6

[1] [2] [3] [4]

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4] [5]

cumul

0.538p4

3

2

1

0

trail

1 3 ?

static int[] BuildTrail(int k, int start, double[][] pheromones,
 int[][] dists)
{
 int numCities = pheromones.Length;
 int[] trail = new int[numCities];
 bool[] visited = new bool[numCities];
 trail[0] = start;
 visited[start] = true;
 for (int i = 0; i < numCities - 1; ++i) {
 int cityX = trail[i];
 int next = NextCity(k, cityX, visited, pheromones, dists);
 trail[i + 1] = next;
 visited[next] = true;
 }
 return trail;
}

Figure 4 The BuildTrail Method

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com

msdn magazine74 Test Run

Aft er all the taueta values have been computed, the next step is to
convert those values to probabilities and place them in an array I’ve
labeled probs. Th e algorithm sums the taueta values, getting 82.26 in
this example, and then divides each taueta value by the sum. At this
point, city 0 has a probability of 0.09 of being selected and so on. Next,
the algorithm needs to select the next city based on the computed
probabilities. As I mentioned earlier, the ACO algorithm I’m presenting
in this article uses a neat technique called roulette wheel selec-
tion. I constructed an augmented array called cumul, which holds
cumulative probabilities. Th e size of the augmented array is one
greater than the probs array, and cell [0] is seeded with 0.0. Each
cell in cumul is the cumulative sum of the probabilities. Aft er the
cumul array has been constructed, a random number p between
0.0 and 1.0 is generated. Suppose p = 0.538 as shown. Th at p value
falls between the values at [2] and [3] in the cumul array, which
means that [2], or city 2, is selected as the next city.

Th e top-level method for updating is named UpdateAnts:
static void UpdateAnts(int[][] ants, double[][] pheromones, int[][]
dists)
{
 int numCities = pheromones.Length;
 for (int k = 0; k < ants.Length; ++k) {
 int start = random.Next(0, numCities);
 int[] newTrail = BuildTrail(k, start, pheromones, dists);
 ants[k] = newTrail;
 }
}

Notice that each ant is assigned a new, random starting city
rather than preserving the old start city. Most of the actual work
is performed by helper method BuildTrail, as shown in Figure 4.

BuildTrail maintains an array of Boolean visited, so that the
trail created doesn’t contain duplicate cities. Th e value at trail[0] is
seeded with a start city, then each city is added in turn by helper
method NextCity, shown in Figure 5.

The NextCity method implements the roulette wheel selec-
tion algorithm.Note that the algorithm will fail if the last value
in the cumul array is larger than 1.00 (possibly due to round-
ing errors), and so you might want to add logic to always set

cumul[cumul.Length-1] to 1.00. NextCity requires an array of prob-
abilities produced by helper method MoveProbs, shown in Figure 6.

Th e taueta values can be very small (if the distance value is very
large) or very large (if the pheromone value is large), which can
produce diffi culties for the algorithm. To deal with this, I check the
taueta values and impose arbitrary min and max values.

Updating the Pheromones
Updating pheromone information is much easier than updat-
ing the ant trail information. The key lines of code in method
UpdatePhermones are:

double length = Length(ants[k], dists);
double decrease = (1.0 - rho) * pheromones[i][j];
double increase = 0.0;
if (EdgeInTrail(i, j, ants[k]) == true)
 increase = (Q / length);
pheromones[i][j] = decrease + increase;

Each pheromone value is decreased, simulating evaporation, and
increased, simulating the deposit of pheromones by ants on the trail.
Th e decrease eff ect is produced by multiplying the current phero-
mone value by a factor less than 1.0 that depends on global param-
eter rho. Th e larger rho is, the greater the decrease in pheromone
value. Th e increase eff ect is produced by adding a proportion of the
current ant’s total trail length, where the proportion is determined
by global parameter Q. Larger values of Q increase the amount
of pheromone added. Method UpdatePheromones calls helper
EdgeInTrail, which determines if a segment between two cities is
on the ant’s current trail. You can check out the code download for
this article for the details (code.msdn.microsoft.com/mag201202TestRun).

Wrapping Up
Let me emphasize that there are many variations of ACO; the ver-
sion I’ve presented here is just one of many possible approaches.
ACO advocates have applied the algorithm to a wide range of
combinatorial optimization problems. Other combinatorial opti-
mization algorithms based on the behavior of natural systems
include Simulated Annealing (SA), which I covered last month
(msdn.microsoft.com/magazine/hh708758), and Simulated Bee Colony
(SBC), which I covered in my April 2011 column (msdn.microsoft.com/
magazine/ gg983491). Each approach has strengths and weaknesses. In my
opinion, ACO is best-suited for problems that closely resemble the
Traveling Salesman Problem, while SA and SBC are better for more
general combinatorial optimization problems, such as scheduling.

ACO, in common with other meta-heuristics based on natural
systems, is quite sensitive to your choice of free global parame-
ters—alpha, beta and so on. Although there has been quite a bit
of research on ACO parameters, the general consensus is that
you must experiment a bit with free parameters to get the best
combination of performance and solution quality.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond, Wash.,
campus. He’s worked on several Microsoft products including Internet Explorer and
MSN Search. McCaff rey is the author of ”.NET Test Automation Recipes” (Apress,
2006) and can be reached at jmccaff rey@volt.com or jammc@microsoft .com.

THANKS to the following Microsoft technical experts for reviewing this
article: Dan Liebling and Anne Loomis Th ompson

static double[] MoveProbs(int k, int cityX, bool[] visited,
 double[][] pheromones, int[][] dists)
{
 int numCities = pheromones.Length;
 double[] taueta = new double[numCities];
 double sum = 0.0;
 for (int i = 0; i < taueta.Length; ++i) {
 if (i == cityX)
 taueta[i] = 0.0; // Prob of moving to self is zero
 else if (visited[i] == true)
 taueta[i] = 0.0; // Prob of moving to a visited node is zero
 else {
 taueta[i] = Math.Pow(pheromones[cityX][i], alpha) *
 Math.Pow((1.0 / Distance(cityX, i, dists)), beta);
 if (taueta[i] < 0.0001)
 taueta[i] = 0.0001;
 else if (taueta[i] > (double.MaxValue / (numCities * 100)))
 taueta[i] = double.MaxValue / (numCities * 100);
 }
 sum += taueta[i];
 }

 double[] probs = new double[numCities];
 for (int i = 0; i < probs.Length; ++i)
 probs[i] = taueta[i] / sum;
 return probs;
}

Figure 6 The MoveProbs Method

mailto:jmccaffrey@volt.com
http://code.msdn.microsoft.com/mag201202TestRun
http://msdn.microsoft.com/magazine/hh708758
http://msdn.microsoft.com/magazine/gg983491
http://msdn.microsoft.com/magazine/gg983491
mailto:jammc@microsoft.com

Untitled-1 1 10/13/11 1:15 PM

www.msdnmagazine.com
www.VisualStudioMagazine.com
www.VSLive.com/

msdn magazine76

Tropo: A Testamonial
Fundamentally, Tropo isn’t all that diff erent from some of the other
voice/SMS services available, but it has one distinct advantage
over the others I’ve looked at: during your development cycle, no
money changes hands. Building an app that uses this service during
development is trivial—just wander on over to the Tropo Web site
(tropo.com) and sign up, and the full suite of services is available and
at your fi ngertips for as long as you want.

Naturally, there are other voice/SMS services, and it’s always
worth examining the alternatives. But for this article (and its
successor), I’m going to use Tropo’s services. Caveat emptor.

Getting Started
As with any other of the cloud-based services, getting started with
Tropo requires creating an account on its servers and responding to
the e-mail verifi cation. Once that’s done, logging back in to Tropo

will show the account dashboard, and
it’s here that the fun begins.

Just to show you how much fun
doing this can be, try it now. Pick
up the phone and dial 530-206-0504.

Hello, World!
As most readers of this magazine
well know, tradition and the Gods
of Computer Science both demand
that the fi rst application in any new
language or platform be the “Hello,
world!” application. Far be it from
me to buck tradition (at least, when
it serves my purpose to stay with it,
anyway), so the fi rst step here is to
create a new Tropo application and
create a simple voice greeting with it.
But before we get too far with that,
let’s make sure we’re clear on the
architecture here.

Like most cloud-hosted services,
Tropo owns and maintains the serv-
ers on which the telephony hardware
runs, and as with most cloud-hosted
applications, that means the appli-
cation developers don’t have any

Talk to Me: Voice and SMS in the Cloud

This past October found me doing some charity work with
GiveCamp in Seattle. (Don’t know what GiveCamp is? Take a sec-
ond and have a look: givecamp.org.) While there, I ran across a group
that was interested in doing some SMS messaging as part of an
application the members wanted to build. We got to talking, and
the subject of interactive-voice applications came up. Th ey were
interested in doing something like that (specifically, setting up
some automated thank-you calls to donors), but fi gured you had
to run your own call center and install your own PBX soft ware and
hardware to make it work.

Au contraire, mes amis.
As luck would have it, at the Philadelphia Emerging Technology

Event (also known as Philly ETE) early last year, I met some guys
from Voxeo, an enterprise-class PBX system, and they introduced me
to Tropo, their cloud-hosted voice-and-SMS (among other things)
solution. And for anything telephony-related, folks, it’s worth a look.

THE WORKING PROGRAMMER TED NEWARD

Figure 1 Creating an Application in Tropo

www.givecamp.org
www.tropo.com

77February 2012msdnmagazine.com

hardware—both a blessing and a curse in most scenarios. In this
case, however, most of the “curse” end of the cloud falls away,
because we’re not going to ask Tropo to host any data for us. In fact,
Tropo doesn’t even have to host the scripts that drive the appli-
cation. It can and quite happily will, but if that’s of concern, then
the script can be pulled from any arbitrary URL and executed on
Tropo’s servers. For this piece, we’re going to use Tropo-hosted fi les,
just because that seems easier to start.

Once the e-mail has arrived and verification is taken care of,
logging back in to Tropo should reveal a dashboard.

Click “Create an application,” which will take you to Figure 1.

Choose “Tropo Scripting” and give it a name; I used “HelloMSDN”
for this example. Finally, click on the “Hosted File” link and choose
“Create a new hosted fi le for this application”; a simple text editor
will pop up at that point. As you might guess, you’re building a
small script fi le (in your choice of scripting languages—JavaScript,
PHP, Ruby, Groovy or Python) that will be fi red when Tropo is told
to “execute” this script, which in this case will be when somebody
dials a phone number that Tropo will
give you. (More on this later.)

Call the fi le “HelloMSDNScript.js”
(the .js extension being important,
to tell Tropo that this is a JavaScript
script), and in the body of the fi le,
put the following:

say("Greetings, MSDN fans!")

When that’s done, it should look
like Figure 2.

If all is well, click “Create File,”
and then “Create Application.” Once
that’s done, Tropo will take you back
to the application dashboard, which
will look a little diff erent now, as you
can see in Figure 3.

This dashboard is particularly
important, because this is where you’re
going to have some control over the
channels to which Tropo is listening. In
many respects, the one that generates
the most visceral reaction from non-
technical people is the phone demo, so
let’s get Tropo to assign a phone num-
ber to the application. Th is is done by
clicking “Add a phone number” and
selecting an area code from which the

number will be generated. Naturally, U.S. toll-free (1-800) numbers are
supported as well, but because of the costs involved, that requires set-
ting up a billing plan. Once you’ve selected an area code, Tropo needs a
few minutes to provision the number, and then you can dial the num-
ber and be greeted in fi ne synthesized voice fashion. (Yes, do it now.)

Hi, Honey! Do You Still Love Me?
But that’s not nearly enough. Being as how the Valentine’s season is
approaching, and the holiday season is just past, and you probably
played too much Xbox 360 over Christmas, and that got your sig-
nifi cant other all annoyed with you for not paying attention to him/
her (yes, my wife still brings this up over dinner), you might want to
make sure your loved one (girlfriend/boyfriend/spouse/whatever) is
still in love with you. So let’s fl ip the code around for a bit and make
sure. Editing the running application is pretty easy: going back to the
application dashboard (which should still be up, assuming you’ve
closed the text editor window; if you haven’t, don’t worry, just stay
there), simply click on the “Hosted File” link again and choose the
“Edit this hosted fi le” option to bring the text editor back up. Th is
time, replace the say code with the following (with, of course, your
loved one’s name in place of my wife’s):

say("I love you, Charlotte!");
var results = ask("Do you love me too? Yes or no?", {
 choices: "yes, no"
);
log("results.value: " + results.value)
if (results.value == "yes") {
 say("Yay! That makes me happy.");
}
else {
 say("Oh. Now I'm a sad panda.");
}

Figure 2 Creating a Script in Tropo

Tropo contains some
speech-to-text translators and
will attempt to parse the spoken

response from the caller.

www.msdnmagazine.com

msdn magazine78 The Working Programmer

Th e ask routine is a blocking call,
playing the prompt, and then wait-
ing (up to a configurable timeout
number of seconds) for a voice
response. Th is being a JavaScript API,
we can pass in a number of optional
parameters in the JSON struct at the
end of the ask call, which in this case
contains the “choices” string, which
is a comma-delimited list of accept-
able voice responses. Tropo contains
some speech-to-text translators and
will attempt to parse the spoken
response from the caller—as best it
can, anyway. (When Tropo does its
parsing, it does so with a “confi dence”
factor, indicating how strongly it
thinks it parsed correctly, and the
level of confi dence you demand in
your spoken responses can be confi g-
ured. By default it’s .3, which is pretty
loosey-goosey, but usually suffi cient
for spoken responses when the
acceptable results are prompted, as
in the previous “Yes or no” prompt.)

But wait! The default voice is a
female voice, and that could sound
a little weird when sending it to my wife. So let’s change the voice
over to something more like my own. Th is is done by passing in the
optional “voice” fi eld in the JSON arguments for both say and ask:

say("I love you, Charlotte!", { voice:"victor"});
var results = ask("Do you love me too? Yes or no?", {
 voice: "victor",
 choices: "yes, no"
});
log("results.value: " + results.value)
if (results.value == "yes") {
 say("Yay! That makes me happy.", { voice:"victor"});
}
else {
 say("Oh. Now I'm a sad panda.", { voice:"victor"});
}

Once done editing, save the fi le; Tropo will update the fi le in place,
and the next phone call made will play with the new voice. Note that
“victor” is just one of a number of possible voices, including a vari-
ety of diff erent accents. Make sure you don’t pick one that sounds

sexier than your own natural voice, though, or your chosen loved
one may prefer the phone over you, and that would probably be bad.

Of course, it would be best if it were your own voice, and with a
little preparation, you can make it so. Both say and ask support play-
ing an MP3 or WAV fi le instead of doing the text-to-speech option
currently being used, so grab your trusty computer microphone,
record the prompts and the responses, and upload them to your
favorite Web server. Th en, instead of off ering up the text to parse
and synthesize, provide the URLs for the pre-recorded fi les (which
you’ll have to record and store on an HTTP-accessible server) to
play; the code will read as such (where the URL is your recorded fi le):

say('http://www.tedneward.com/howdy.wav');

Next: Artifi cial Intelligence
I’v e only scratched the surface of what you can do with Tropo—
in fact, I have much more to explore with Tropo before I’m done
with the subject—but to fully understand where I want to go
with this particular example, we’ll have to take a side trip into the
wonderful world of artifi cial intelligence, then revisit Tropo again.

TED NEWARD is an architectural consultant with Neudesic LLC. He’s written
more than 100 articles, is a C# MVP and INETA speaker and has authored and
coauthored a dozen books, including the recently released “Professional F# 2.0”
(Wrox). He consults and mentors regularly. Reach him at ted@tedneward.com
if you’re interested in having him come work with your team, or read his blog
at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Adam Kalsey

Figure 3 The Tropo Application Dashboard

When Tropo does
its parsing, it does so with a

“confi dence” factor, indicating
how strongly it thinks it

parsed correctly.

mailto:ted@tedneward.com
http://blogs.tedneward.com

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine80

No Bindings
Knockout is best explained by fi rst examining how you would write
code to push data from a source object to HTML elements without
using Knockout (the relevant source code can be found in sample
page 01-without-knockout.html in the downloadable code sample).
I’ll then show how to accomplish the same thing using Knockout.
I’ll start with some HTML target elements and push some values
from a source object into these HTML elements:

<h2>Without Knockout</h2>
Item number:

Guitar model:<input id="guitarModel"/>
Sales price:<input id="guitarSalesPrice"/>

If you have an object from which you want to push data into
standard HTML elements, you could use jQuery:

$(document).ready(function () {
 var product = {
 itemNumber: "T314CE",
 model: "Taylor 314ce",
 salePrice: 1199.95
 };
 $("#guitarItemNumber").text(product.itemNumber);
 $("#guitarModel").val(product.model);
 $("#guitarSalesPrice").val(product.salePrice);
});

Th is code sample uses jQuery to locate the HTML elements
with the corresponding IDs and sets their values to each appro-
priate object property.

There are three main points to notice in this code. First, the
values are pushed from the source object into the HTML elements,
thus requiring a line of code for each mapping from source value
to target element. If there were many more properties (or if there
were arrays and object graphs), the code could easily get unwieldy.
Second, if the values in the source object change, the HTML ele-
ments won’t refl ect that change unless the code to push the values
was called again. Th ird, if the values change in the HTML elements
(the target), the changes won’t be refl ected in the underlying source

Getting Started with Knockout

Data binding is one of the most popular features in development
today, and the Knockout JavaScript library brings those features to
HTML and JavaScript development. Th e simplicity of the declar-
ative binding syntax and seamless integration with separation
patterns such as Model-View-ViewModel (MVVM) make common
push-and-pull plumbing tasks much simpler while making code
easier to maintain and enhance. In this inaugural Client Insight
column I’ll discuss the scenarios for which Knockout is ideal,
explain how to get started with it and demonstrate how to use its
fundamental features. Th e code examples, which you can down-
load from code.msdn.microsoft.com/mag201202ClientInsight, demonstrate
how to use declarative binding, create diff erent types of binding
objects and write data-centric JavaScript code that follows good
separation patterns such as MVVM.

Getting Started
Knockout, developed by Steve Sanderson, is a small, open source
JavaScript library with an MIT license. Knockoutjs.com maintains an
updated list of the browsers that Knockout supports (currently
it supports all major browsers including Internet Explorer 6+,
Firefox 2+, Chrome, Opera and Safari). You need a few important
resources to get started developing with Knockout. Start by get-
ting the most recent version of Knockout (currently 2.0.0) from
bit.ly/scmtAi and reference it in your project. If you’re using Visual
Studio 2010, however, I highly recommend that you install and
use the NuGet Package Manager Visual Studio extension to down-
load Knockout (and any other libraries you might use) because it
will manage versions and alert you when a new one is available.
NuGet will download Knockout and put two JavaScript fi les in the
scripts folder of your project. Th e minifi ed fi le is recommended for
production and follows the naming convention knockout-x.y.z.js
where x.y.z is the major, minor and revision number. Th ere’s also a
knockout-x.y.x-debug.js fi le, which contains the Knockout source
code in human-readable form. I recommend referencing this fi le
when learning Knockout and when debugging.

Once you have the fi les, open your HTML page (or Razor fi le
if you’re using ASP.NET MVC), create a script and reference the
knockout library:

<script src="../scripts/knockout-2.0.0.js" type="text/javascript"></script>

CLIENT INSIGHT JOHN PAPA

Code download available at code.msdn.microsoft.com/
mag201202ClientInsight.

Knockout, developed
by Steve Sanderson, is a small,
open source JavaScript library

with an MIT license.

http://code.msdn.microsoft.com/mag201202ClientInsight
www.Knockoutjs.com
www.bit.ly/scmtAi
http://code.msdn.microsoft.com/mag201202ClientInsight

81February 2012msdnmagazine.com

object. Of course, all of this could be resolved with a lot of code,
but I’ll try to resolve it using data binding.

Th e same HTML could be rewritten using Knockout:
<h2>With Knockout</h2>
<span Item number

Guitar model:<input data-bind="value: model"/>
Sales price:<input data-bind="value: salePrice"/>

Notice the id attributes have been replaced with data-bind attri-
butes. Once you call the applyBindings function, Knockout binds
the given object (“product” in this example) to the page. Th is sets
the data context for the page to the product object, which means
that the target elements can then identify the property of that data
context to which they want to bind:

ko.applyBindings(product);

The values in the source object will be pushed to the target
elements in this page. (All of Knockout’s functions exist within
its own namespace: ko.) The linkage between the target elements
and the source object is defi ned by the data-bind attribute. In the
preceding example, Knockout sees the data-bind attribute for the
fi rst span tag is identifying that its text value should be bound to
the itemNumber property. Knockout then pushes the value for the
product.itemNumber property to the element.

You can see how using Knockout could easily reduce code. As
the number of properties and elements increase, the only JavaScript
code required is the applyBindings function. However, this doesn’t
yet solve all of the problems. Th is example doesn’t yet update the
HTML targets when the source changes, nor does the source object
update when the HTML targets change. For this, we need observables.

Observables
Knockout adds dependency tracking through observables, which
are objects that can notify listeners when underlying values have
changed (this is similar to the concept of the INotifyProperty-
Changed interface in XAML technology). Knockout implements

observable properties by wrapping object properties with a cus-
tom function named observable. For example, instead of setting a
property in an object like so:

var product = {
 model: "Taylor 314ce"
}

you can defi ne the property to be an observable property
using Knockout:

var product = {
 model: ko.observable("Taylor 314ce")
}

Once the properties are defi ned as observables, the data binding
really takes shape. Th e JavaScript code shown in Figure 1 demon-
strates two objects that Knockout binds to HTML elements. Th e
fi rst object (data.product1) defi nes its properties using a simple
object literal while the second object (data.product2) defi nes the
properties as Knockout observables.

Th e HTML for this sample, shown in Figure 2, shows four sets
of element bindings. Th e fi rst and second div tags contain HTML
elements bound to non-observable properties. When the values
in the fi rst div are changed, notice that nothing else changes. Th e
third and fourth div tags contain the HTML elements bound to
observable properties. Notice that when the values are changed in
the third div, the elements in the fourth div are updated. You can
try this demo out using example 02-observable.html.

(Note: Knockout doesn’t require you to use observable properties.
If you want DOM elements to receive values once but then not be
updated when the values in the source object change, simple ob-
jects will suffi ce. However, if you want your source object and tar-
get DOM elements to stay in sync—two-way binding—then you’ll
want to consider using observable properties.)

Built-in Bindings
Th e examples thus far have demonstrated how to bind to the
Knockout’s text and value bindings. Knockout has many built-in

$(document).ready(function () {
 var data = {
 product1: {
 id: 1002,
 itemNumber: "T110",
 model: "Taylor 110",
 salePrice: 699.75
 },
 product2: {
 id: ko.observable(1001),
 itemNumber: ko.observable("T314CE"),
 model: ko.observable("Taylor 314ce"),
 salePrice: ko.observable(1199.95)
 }
 };

 ko.applyBindings(data);
});

Figure 1 With and Without Observables

<div>
 <h2>Object Literal</h2>
 Item number

 Guitar model:<input data-bind="value: product1.model"/>
 Sales price:<input data-bind="value: product1.salePrice"/>
</div>
<div>
 <h2>Underlying Source Object for Object Literal</h2>
 Item number

 Guitar model:
 Sales price:
</div>
<div>
 <h2>Observables</h2>
 Item number

 Guitar model:<input data-bind="value: product2.model"/>
 Sales price:<input data-bind="value: product2.salePrice"/>
</div>
<div>
 <h2>Underlying Source Object for Observable Object</h2>
 Item number

 Guitar model:
 Sales price:
</div>

Figure 2 Binding to Observable and Non-Observables

You can see how using Knockout
could easily reduce code.

www.msdnmagazine.com

msdn magazine82 Client Insight

bindings that make it easier to bind object properties to target
DOM elements. For example, when Knockout sees a text binding,
it will set the innerText property (using Internet Explorer) or the
equivalent property in other browsers. When the text binding is
used, any previous text will be overwritten. While there are many
built-in bindings, some of the most common for displaying can be
found in Figure 3. Th e Knockout documentation online contains
a complete list in the left navigation pane (bit.ly/ajRyPj).

ObservableArrays
Now that the previous examples got your feet wet with Knockout,
it’s time to move on to a more practical yet still fundamental
example with hierarchical data. Knockout supports many types
of bindings, including binding to simple properties (as seen in the
previous examples), binding to JavaScript arrays, computed bind-
ings and custom bindings (which I’ll look at in a future article on
Knockout). Th e next example demonstrates how to bind an array
of product objects using Knockout to a list (shown in Figure 4).

When dealing with object graphs and data binding, it’s helpful
to encapsulate all of the data and functions the page requires into
a single object. Th is is oft en referred to as a ViewModel from the
MVVM pattern. In this example the View is the HTML page and
its DOM elements. Th e Model is the array of products. Th e View-
Model glues the Model to the View; the glue it uses is Knockout.

Th e array of products is set up using the observableArray function.
Th is is similar to the ObservableCollection in XAML technologies.
Because the products property is an observableArray, every time
an item is added to or removed from the array, the target elements
will be notifi ed and the item will be added or removed from the
DOM, as shown here:

var showroomViewModel = {
 products: ko.observableArray()
};

Th e showroomViewModel is the root object that will be data bound
to the target elements. It contains a list of products, which come in from
a data service as JSON. Th e function that loads the product list is the
showroomViewModel.load function, which appears in Figure 5 along
with the rest of the JavaScript that sets up the showroomViewModel
object (you’ll fi nd the complete source and sample data for this exam-
ple in 03-observableArrays.html). Th e load function loops through
the sample product data and uses the Product function to create the
new product objects before pushing them into the observableArray.

Although a product’s properties are all defi ned using observ-
ables, they don’t necessarily need to be observable. For example,

these could be plain properties if they’re read-only, and if—when
the source changes—either the target isn’t expected to be updated
or the entire container is expected to be refreshed. However, if
the properties need to be refreshed when the source changes or is
edited in the DOM, then observable is the right choice.

Th e Product function defi nes all of its properties as Knockout
observables (except photoUrl). When Knockout binds the data,
the products array property can be accessed, making it easy to use
standard functions such as length to show how many items are
currently data bound:

Control-of-Flow Bindings
Th e array of products can then be data bound to a DOM element,
where it can be used as an anonymous template for displaying the
list. Th e following HTML shows that the ul tag uses the foreach
control-of-fl ow binding to bind to the products:

<ul data-bind="foreach:products">
 <li class="guitarListCompact">
 <div class="photoContainer">
 <img data-bind="visible: photoUrl, attr: { src: photoUrl }"
 class="photoThumbnail">
 </div>
 <div data-bind="text: salePrice"></div>

The elements inside the ul tag will be used to template each
product. Inside the foreach, the data context also changes from
the root object showroomViewModel to each individual product.
Th is is why the inner DOM elements can bind to the photoUrl and
salePrice properties of a product directly.

Th ere are four main control-of-fl ow bindings: foreach, if, ifnot
and with. These control bindings allow you to declaratively
defi ne the control of fl ow logic without creating a named template.

Example Scenario

text: model Binds the property (model) to the text value for the target element. Often used for read-only elements such as spans.
visible: isInStock Binds the value property (isInStock) to the visibility of the target element. The property value will evaluate to true or false.
value: price Binds the value of the property (price) to the target element. Often used with input, select and textarea elements.
css: className Binds the value of the property (className) to the target element. Often used to set or toggle css class names for DOM elements.
checked: isInCart Binds the value of the property (isInCart) to the target element. Used for checkbox elements.
click: saveData Adds an event handler for the bound JavaScript function (saveData) when the user clicks the DOM element. Works on any

DOM element but is often used for button, input and a elements.
attr: {src: photoUrl, alt: name} Binds any specifi ed attribute for the DOM element to the source object. Often used when the other built-in bindings don’t

cover the scenario, such as with the src attribute of an img tag.

Figure 3 Common Knockout Bindings

When dealing with object graphs
and data binding, it’s helpful to
encapsulate all of the data and
functions required by the page

into a single object.

www.bit.ly/ajRyPj

83February 2012msdnmagazine.com

When the if control-of-fl ow binding is followed by a condition
that is truthy or the ifnot binding is followed by a condition that
evaluates to false, the contents inside of its block are bound and
displayed, as shown here:

<div data-bind="if:onSale">

</div>

Th e with binding changes the data context to whatever object
you specify. Th is is especially useful when diving into object graphs
with multiple parent/child relationships or distinct ViewModels

within a page. For example, if there’s a sale ViewModel object
that’s bound to the page and it has child objects customer and
salesPerson, the with binding could be used to make the bindings
more readable and easier to maintain, as shown here:

<div data-bind="with:customer">

</div>
<div data-bind="with:salesPerson">

</div>

Computed Observables
You might have noticed that the Product function defined the
photoUrl as a special type of computed property. ko.computed
defi nes a binding function that evaluates the value for the data-
binding operation. Th e computed property automatically updates
when any of the observables it depends on for its evaluation change.
Th is is especially useful when the value isn’t clearly represented in
a concrete value in the source object. Another common example
besides creating a URL is creating a fullName property out of fi rst-
Name and lastName properties.

(Note: Previous versions of Knockout referred to computed prop-
erties as dependentObservable. Both still work in Knockout 2.0.0, but
I recommend using the newer computed function.)

A computed property accepts a function for evaluating the value
and the object that will represent the object to which you’re attach-
ing the binding. Th e second parameter is important because Java-
Script object literals don’t have a way of referring to themselves.
In Figure 5 the this keyword (which represents the showroom-
ViewModel) is passed in so the dependent observable’s function
can use it to get the photo property. Without this being passed in,
the photo function would be undefi ned and the evaluation would
fail to produce the expected URL:

this.photoUrl = ko.computed(function () {
 return photoPath + photo(); // photo() will be undefined
});

Understanding Fundamental Binding Properties
This column got you started with data binding using the
Knockout JavaScript library. The most important aspect of
Knockout is to understand the fundamental binding properties:
observable, observableArray and computed. With these observ-
ables you can create robust HTML apps using solid separation
patterns. I also covered the more common built-in bindings
types and demonstrated the control-of-fl ow bindings. However,
Knockout supports much more functionality. Next time, I’ll
explore built-in bindings in more detail.

JOHN PAPA is a former evangelist for Microsoft on the Silverlight and Windows
8 teams, where he hosted the popular Silverlight TV show. He has presented
globally at keynotes and sessions for the BUILD, MIX, PDC, Tech•Ed, Visual
Studio Live! and DevConnections events. Papa is also a columnist for Visual Studio
Magazine (Papa’s Perspective) and author of training videos with Pluralsight.
Follow him on Twitter at twitter.com/john_papa.

THANKS to the following technical expert for reviewing this article:
Steve Sanderson

var photoPath = "/images/";
function Product () {
 this.id = ko.observable();
 this.salePrice = ko.observable();
 this.listPrice = ko.observable();
 this.rating = ko.observable();
 this.photo = ko.observable();
 this.itemNumber = ko.observable();
 this.description = ko.observable();
 this.photoUrl = ko.computed(function () {
 return photoPath + this.photo();
 }, this);
};
var showroomViewModel = {
 products: ko.observableArray()
};
showroomViewModel.load = function () {
 this.products([]); // reset
 $.each(data.Products, function (i, p) {
 showroomViewModel.products.push(new Product()
 .id(p.Id)
 .salePrice(p.SalePrice)
 .listPrice(p.ListPrice)
 .rating(p.Rating)
 .photo(p.Photo)
 .itemNumber(p.ItemNumber)
 .description(p.Description)
);
 });
};
ko.applyBindings(showroomViewModel);

Figure 5 Defi ning the Data to Bind

Figure 4 Binding to an Observable Array

www.msdnmagazine.com
http://twitter.com/john_papa

msdn magazine84

To the MainPage class of the SimpleBackgroundAudio
project I added a Button and a Click handler for that button:

void OnPlayButtonClick(object sender, RoutedEventArgs args)
{
 AudioTrack audioTrack =
 new AudioTrack(new Uri("http://www.archive.org/.../Iv.Presto.mp3"),
 "Symphony No. 9: 4th Movement",
 "Felix Weingartner",
 "Beethoven: Symphony No. 9",
 null,
 null,
 EnabledPlayerControls.Pause);
 BackgroundAudioPlayer.Instance.Track = audioTrack;
}

Th e AudioTrack and BackgroundAudioPlayer classes are in the
Microsoft .Phone.BackgroundAudio namespace. Th e URL (which
I’ve shortened here to accommodate the magazine’s column width)
references an MP3 fi le on the Internet Archive (archive.org) containing
the last movement of Beethoven’s Symphony No. 9 as conducted
by Felix Weingartner in a 1935 recording. (You can alternatively
specify a URL that addresses a file in isolated storage; use the
UriKind.Relative argument to the Uri constructor if that’s the case.)
Th e next three arguments of the AudioTrack constructor provide
album, artist and track information.

Th e BackgroundAudioPlayer class is somewhat similar to the
MediaElement or MediaPlayer classes that play audio fi les in the
foreground. BackgroundAudioPlayer has no constructor; instead
you obtain the only instance with the static Instance property. In this
code, the Track property is set to the AudioTrack object just created.

You can compile and run this program, but it won’t do anything.
To make BackgroundAudioPlayer sing, you need a DLL contain-
ing a class that derives from AudioPlayerAgent. Visual Studio can
create this class and library project for you. For my program, I
right-clicked the SimpleBackgroundAudio solution name in Visual
Studio, selected Add New Project from the menu and then chose
Windows Phone Audio Playback Agent from the template list. I
named this new project SimpleAudioPlaybackAgent.

Visual Studio creates a library project with a class named Audio-
Player that derives from AudioPlayerAgent, initialized with several
skeleton methods. Th is is the class that runs in the background.

Very important: Create a reference from the application to this DLL!
To do this, I right-clicked the References section under the SimpleBack-
groundAudio project, selected Add Reference, and then in the dialog box I
selected the Projects tab and then the SimpleAudioPlaybackAgent project.

In the AudioPlayerAgent derivative, you’ll want to modify at
least two methods: OnPlayStateChanged and OnUserAction.
The complete AudioPlayer class from this project (minus using
directives and comments) is shown in Figure 1.

Background Audio on Windows Phone 7.5

Back in the old days of MS-DOS, programmers could implement
a crude form of task-switching with a technique called Terminate
and Stay Resident (also known as TSR). TSR programs installed
hooks into keyboard interrupts or other OS mechanisms and
then terminated, leaving the program in memory ready to kick
into action when the user pressed a particular key combination or
something else of interest happened.

MS-DOS wasn’t equipped to handle even this level of rudimen-
tary task-switching, so these TSRs created some serious problems.
Th ey would confl ict with each other and frequently crash the whole
OS. This was one of the primary reasons some of us welcomed
Windows to supplement and later replace MS-DOS.

I mention this ancient history because I’m going to show you how
to play music fi les in the background from a Windows Phone 7.5
application, and I know that developers have a tendency to think
outside the box. Generally this is a good thing, but you shouldn’t
use this technique for any purpose other than playing music
fi les. Doing so might cause your application to be rejected by the
Windows Phone Marketplace.

Th e technique I’ll show you is only for playing sound or music
fi les from a Web location or isolated storage. If your application
needs to play songs from the phone’s normal music library, you
can do that using the MediaLibrary and MediaPlayer classes I
discussed in the previous issue (msdn.microsoft.com/magazine/hh708760).

Application Plus DLL
In Windows Phone 7.5, an object that runs in the background to
assist an application is known as an agent. To play music fi les in the
background, you use a class that derives from AudioPlayerAgent. Th is
class must be in a dynamic link library that’s referenced by the pro-
gram. Program code does not itself run in the background; what runs
in the background is this class that derives from AudioPlayerAgent.

Included with the downloadable code for this article is a Visual
Studio solution named SimpleBackgroundAudio. For purposes
of clarity, this program contains just about the minimum amount
of code necessary to get background audio to work. I created the
solution from the New Project dialog box by specifying Windows
Phone Application, and then Windows Phone 7.1. (The 7.1 des-
ignation is used internally within the Windows Phone OS and
Windows Phone applications, but it means the same thing as the
more common 7.5 designation.)

TOUCH AND GO CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201202TouchNGo.

http://msdn.microsoft.com/magazine/hh708760
http://code.msdn.microsoft.com/mag201202TouchNGo
www.archive.org

85February 2012msdnmagazine.com

Look at the OnPlayStateChanged override fi rst. Th is method is
called when the PlayState property of the BackgroundAudioPlayer
changes. Th e fi rst argument is the same BackgroundAudioPlayer
referenced in the program code; the last argument is a member of
the PlayState enumeration.

When the program sets the Track property of the BackgroundAudio-
Player in the Click event handler, the BackgroundAudioPlayer access-
es the music fi le over the Internet; the SimpleAudioPlaybackAgent
DLL is loaded and the OnPlayStateChanged method eventually gets
a call with the playState argument set to PlayState.TrackReady. It is
the responsibility of OnPlayStateChanged to call the Play method
of the BackgroundAudioPlayer object to start playing that track.

If the phone’s regular music player happens to be playing some-
thing at the time, it will be stopped. At this point, you can navigate
away from the program or even terminate it by pressing the phone’s
Back button, and the music will continue playing.

You can run this program in the Windows Phone emulator, but you’ll
want to try it on an actual phone so you can press the phone’s volume
control. Th is invokes a little drop-down known as the Universal Volume

Control (UVC), which is an important part of background audio. Th e
UVC displays the name of the track being played and the artist, based
on the arguments that the application supplied to the AudioTrack con-
structor. Th e UVC also displays buttons for Previous Track, Pause and
Next Track. In this program, only the Pause button is enabled because
that’s what I specifi ed in the last argument to the AudioTrack construc-
tor. When you press the Pause button, it toggles between Pause and Play.

Th e AudioPlayer class handles these Pause and Play commands
in the OnUserAction override shown in Figure 1. Th e UserAction
argument indicates the particular button pressed by the user.
OnUserAction responds by calling the appropriate method in the
BackgroundAudioPlayer object.

When the track finishes playing, OnPlayStateChanged gets a
call with PlayState.TrackEnded. Th e method responds by setting
the Track property of the BackgroundAudioPlayer to null, which
removes the item from the UVC. If you want, you can go back into
the application and start the music playing again.

Notice that both OnPlayStateChanged and OnUserAction con-
clude with calls to NotifyComplete: Th is is required. Also notice
that neither method includes a call to the base class method. Th ese
base class calls are part of the template that Visual Studio creates
for you, but I had a problem with the OnUserAction override when
the base method was called. Th e background audio sample code
from Microsoft (available online from the Windows Phone 7.5
documentation area) also doesn’t include calls to the base methods.

A Very Strange DLL
When experimenting with background audio, you’ll want to keep
a watch on the Output window in Visual Studio. When you run
SimpleBackgroundAudio from the debugger, the Output window
lists all the system libraries that are loaded on the phone to run
the program, as well as the program itself, which is SimpleBack-
groundAudio.dll. Th e lines in the Output window that list these
libraries begin with the words “UI Task,” indicating the program.

When you tap the button in SimpleBackgroundAudio, you’ll
see many of the same DLLs being loaded—but now with each line
prefaced by the words “Background Task.” Th ese DLLs include the
application DLL as well as SimpleAudioPlaybackAgent.dll. Th e
loading of these DLLs is one reason it takes a little bit of time for
the music to begin playing aft er you tap the button.

As you experiment with programs that play background audio,
you’ll probably want to insert Debug.WriteLine statements in all
method overrides in the AudioPlayer class, and then study their
real-time behavior in the Output window.

You also might want to create a constructor for the AudioPlayer
class with another Debug.WriteLine statement. You’ll discover that
a new instance of AudioPlayer is instantiated whenever a call needs
to be made to OnPlayStateChanged or OnUserAction. Every call
gets a new instance!

Th is simple fact has a profound implication: If you need this
AudioPlayer class to maintain information between calls to
OnPlayStateChanged and OnUserAction, you must keep that infor-
mation in static fi elds or properties.

What if you need to pass information from a class in the Simple-
BackgroundAudio program to the AudioPlayer class in the Simple-

namespace SimpleAudioPlaybackAgent
{
 public class AudioPlayer : AudioPlayerAgent
 {
 protected override void OnPlayStateChanged(BackgroundAudioPlayer player,
 AudioTrack track, PlayState playState)
 {
 switch (playState)
 {
 case PlayState.TrackReady:
 player.Play();
 break;

 case PlayState.TrackEnded:
 player.Track = null;
 break;
 }
 NotifyComplete();
 }
 protected override void OnUserAction(BackgroundAudioPlayer player,
 AudioTrack track, UserAction action,
 object param)
 {
 switch (action)
 {
 case UserAction.Pause:
 player.Pause();
 break;

 case UserAction.Play:
 player.Play();
 break;
 }
 NotifyComplete();
 }

 protected override void OnError(BackgroundAudioPlayer player,
 AudioTrack track, Exception error,
 bool isFatal)
 {
 base.OnError(player, track, error, isFatal);
 NotifyComplete();
 }
 protected override void OnCancel()
 {
 base.OnCancel();
 NotifyComplete();
 }
 }
}

Figure 1 The AudioPlayer Class in SimpleBackgroundAudio

www.msdnmagazine.com

msdn magazine86 Touch and Go

AudioPlaybackAgent library? It seems reasonable to defi ne a public
static method in the AudioPlayer class, and then call that method from
MainPage or another class in the program. You can indeed do this, but
it won’t do what you want: Anything saved from this method will not
be available during calls to OnPlayStateChanged and OnUserAction.

Why won’t it be available? Recall the UI Task and Background
Task designations in the Visual Studio Output window. These
are two separate processes. Th e instance of the DLL referenced
by your program is not the same as the instance that runs in the
background, and therefore not even static data in a class in this
DLL will be shared between the UI Task and the Background Task.

When testing a background audio application from the debugger in
Visual Studio, you’ll experience some additional oddities. When you
exit a program that has initiated some background audio, the audio
keeps playing and Visual Studio indicates that code is still running. To
resume editing your program, you’ll want to stop debugging directly
from Visual Studio, and even then the music will oft en keep on playing.
During development of a background audio program, you’ll probably
fi nd yourself frequently uninstalling the program from the phone.

Enhancing the Application
Th e SimpleBackgroundAudio program has a big problem. Although
it has a button to start the music playing, it has no way to pause it
or shut it off . It doesn’t even know when the music concludes or if
anything else is happening. Yes, a user can always invoke the UVC
to control background audio, but any program that starts music
playing should also include its own controls to shut it off .

Th ese enhancements are included in the project named Playlist-
Player. As the name implies, this program plays a series of con-
secutive tracks—in this case, the 12 little piano pieces from Claude
Debussy’s Preludes, Book 1, as performed by Alfred Cortot in a 1949
recording available from the Internet Archive.

I originally wanted to create all the AudioTrack objects within
the program and then hand them off to the background audio
DLL. Th at seemed the more generalized program structure, but I
discovered it didn’t work because the application is accessing a dif-
ferent instance of the DLL than the one running in the background.
Instead, I wrote the AudioPlayer class to create all the AudioTrack
objects itself and store them in a generic List called playlist.

To make the program somewhat more challenging, I decided that
the playlist wouldn’t be circular: I didn’t want to skip from the last
track to the fi rst track, or from the fi rst to the last. For that reason,
the fi rst of the AudioTrack constructors has a last argument that
combines the EnabledPlayerControls.Pause and EnabledPlayer-
Controls.SkipNext fl ags; the last AudioTrack combines the Pause
and SkipPrevious fl ags. All the others have all three fl ags. Th is is
how the three buttons are enabled in the UVC for the various tracks.

Figure 2 shows the OnPlayStateChanged and OnUserAction
overrides. In OnPlayStateChanged, when one track ends, the next
track is set to the Track property of the BackgroundAudioPlayer.
Th e OnUserAction override handles the Previous Track and Next
Track commands from the UVC by setting the Track property to
the previous or next AudioTrack in the playlist.

Th e program’s MainPage class has a series of four standard applica-
tion bar buttons to perform the same functions as the UVC. It also sets

static List<AudioTrack> playlist = new List<AudioTrack>();
static int currentTrack = 0;

...

protected override void OnPlayStateChanged(BackgroundAudioPlayer player,
 AudioTrack track, PlayState playState)
{
 switch (playState)
 {
 case PlayState.TrackReady:
 player.Play();
 break;

 case PlayState.TrackEnded:
 if (currentTrack < playlist.Count - 1)
 {
 currentTrack += 1;
 player.Track = playlist[currentTrack];
 }
 else
 {
 player.Track = null;
 }
 break;
 }
 NotifyComplete();
}

protected override void OnUserAction(BackgroundAudioPlayer player,
 AudioTrack track, UserAction action, object param)
{
 switch (action)
 {
 case UserAction.Play:
 if (player.Track == null)
 {
 currentTrack = 0;
 player.Track = playlist[currentTrack];
 }
 else
 {
 player.Play();
 }
 break;

 case UserAction.Pause:
 player.Pause();
 break;

 case UserAction.SkipNext:
 if (currentTrack < playlist.Count - 1)
 {
 currentTrack += 1;
 player.Track = playlist[currentTrack];
 }
 else
 {
 player.Track = null;
 }
 break;

 case UserAction.SkipPrevious:
 if (currentTrack > 0)
 {
 currentTrack -= 1;
 player.Track = playlist[currentTrack];
 }
 else
 {
 player.Track = null;
 }
 break;

 case UserAction.Seek:
 player.Position = (TimeSpan)param;
 break;
 }
 NotifyComplete();
}

Figure 2 The AudioPlayer Overrides in PlaylistPlayer

87February 2012msdnmagazine.com

an event handler for the PlayStateChanged event
of BackgroundAudioPlayer to update the screen
with current track information, and a Composi-
tionTarget.Rendering handler to update a Slider
with current track progress, as shown in Figure 3.

Th e logic to enable and disable the application
bar buttons is fairly simple: the Previous Track
and Next Track buttons are enabled based on the
PlayerControls property of the current Audio-
Track; thus they should be consistent with the
UVC. Th e Pause button is enabled if the player is
playing; the Play button is enabled if the player
is paused. If the current track is null, Play is
enabled and all the other buttons are disabled.

Th e Click handlers of the four application bar
buttons make calls to the BackgroundAudio-
Player methods SkipPrevious, Play, Pause and
SkipNext, respectively. It’s important to under-
stand that these method calls don’t directly con-
trol the operation of music playback. Instead,
these method calls from the program trigger
OnUserAction calls in the AudioPlayer class,
and it’s the code in AudioPlayer that actually
starts and stops the music.

Th is is somewhat peculiar, because it means that calls to the Play
and Pause methods of BackgroundAudioPlayer behave diff erently
depending whether they’re called from a program or from the
OnUserAction override.

I also added a ValueChanged handler for the Slider to move to a
particular location in the track. Th e handler calculates a new position
for the track and sets an appropriate TimeSpan object to the Position
property of the BackgroundAudioPlayer. Similar to the case with Play
and Pause calls, setting this property does not change the position of
the track. Instead, it generates a call to the OnUserAction override in
AudioPlayer with an action argument of UserAction.Seek and the
TimeSpan encoded in the param argument. Th e OnUserAction over-
ride then sets this TimeSpan object to the Position property of the
BackgroundAudioPlayer, and that’s what actually causes the jump.

In practice, this Slider works fi ne when you just tap it to move
ahead or back in the track by 10 percent. If you try to slide it, mul-
tiple Seek calls seem to build up, and the result is an audible mess.
I would much prefer to use a regular ScrollBar rather than a Slider
because then I could wait for an EndScroll event, which occurs when
the user stops manipulating the control. Unfortunately, I’ve never
been able to persuade the Windows Phone ScrollBar to work at all.

The Limitations
It’s been interesting to see how Windows Phone 7.5 has given
programmers more direct access to the phone’s hardware (such as
the video feed) as well as the ability to perform some background
processing. But I can’t help thinking there’s a piece missing from
this implementation of background audio.

Suppose a program wants to let the user pick from a list of music
fi les to play in sequence. Th e program can’t hand off the entire list
to the DLL, so it needs to take responsibility to setting the Track

property of the BackgroundAudioPlayer when
each track ends. But this can happen only when
the program is running in the foreground.

It’s possible to pass some information
between the application and the background
DLL through the string Tag property of the
AudioTrack class. But don’t bother deriving a
new class from AudioTrack in hopes of passing
additional information to the DLL: A copy is
made of the AudioTrack object created by the
application for passing to the DLL overrides.

Fortunately, the DLL has access to the appli-
cation’s area of isolated storage, so the program
can save a small fi le describing the playlist and
then the DLL can access the playlist from the fi le.
Th e bonus program for this column is a project
named PlaylistFilePlayer, which demonstrates a
simple approach to this technique.

CHARLES PETZOLD is a longtime contributing editor
to MSDN Magazine. His recent book, “Programming
Windows Phone 7” (Microsoft Press, 2010), is available
as a free download at bit.ly/cpebookpdf.

THANKS to the following technical expert for reviewing this article: Mark Hopkins

 Figure 3 The PlaylistPlayer
Program

www.godiagram.com
www.msdnmagazine.com
www.bit.ly/cpebookpdf

msdn magazine88

My phone does the opposite of the Ring—instead of making
me invisible to others, it makes them invisible to me. Th is self-
encapsulation started with the Sony Walkman 30 years ago, when
we started playing music in headphones to isolate ourselves from
our surroundings.

We retreat from physical society and join a virtual one. Former
Economist editor Frances Cairncross called this process “Th e Death
of Distance” in her book of that title. But as technology closes the
distance between people around the world, it simultaneously
creates distance between people in close proximity.

Our smartphones cast a strange field that attracts our hands
strongly within a range of about a meter, like the strong nuclear
force. It then repels other people out to a range of about 5 meters,
like similar electrical charges. Th e fi eld then attracts people with
similar interests, out to infi nity like gravity, but doesn’t vary with
distance. I’ve discovered the fi ft h fundamental force of physics.
My Nobel Prize awaits.

Our thoughts bounce around the world but bypass the people
sitting with us on the couch or standing next to us on the train plat-
form, the ones we’re sharing food with or competing for food against.

Th is much I know: When my daughter sends me a text message
at dinner asking me to pass the salt, things have gone too far.

DAVID S. Platt teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact
him at rollthunder.com.

A Ring Around My Neck

Th is column marks the start of my third year ranting in this space
as MSDN Magazine’s designated curmudgeon. On refl ection, I’d call
this the biennium of the smartphone, which has crossed over from
technophile early adopters to the middle class mainstream. I drank
the Kool-Aid and got mine last summer, the day before Verizon
shut off its unlimited data plan. Now, like any proud geek, I whip
out my phone and demonstrate my cool apps at the slightest excuse,
annoying the heck out of everyone else. (“Have you seen this fl ash-
light app? I use it at night, when I’m fumbling for my keys and …”)

Whenever you buy an expensive toy, you start noticing people
who have the same thing. Take a look at the picture (right) I took
last summer at a commuter rail station near Boston. Every one of
the waiting passengers has his or her nose stuck into a palmtop
device. I did too, until I noticed the others around me, and sur-
faced long enough to snap the picture. I wonder how long it’ll be
before someone drift s onto the tracks and gets crushed like a bug.

We laugh at the Microsoft commercial of the guy checking his
phone at the urinal (bit.ly/ufvwyW), but I see that every day. And I have
seen them get dropped in, more than once. Really.

I wish I had Superman’s X-ray vision to spy on my fellow travelers
and their gadgets. How many are doing mundane tasks such as pay-
ing bills, how many are joining brain power with others into a super-
human Overmind, and how many are just looking at dirty pictures?

What is wrong with us? Can we not be alone with our thoughts
for the five minutes it takes the train to arrive? Can we not
contemplate the summer leaves, or the concept of railroads, or our
families, or tonight’s dinner? Do we have to stream action videos
every instant? Have we irretrievably devolved from admiring a
fellow commuter’s sleek fi gure and wondering how much she paid
for her clothes, to admiring her sleek Droid Razr and wondering
how much she pays for her data plan?

“Daddy, I hope you’re not going to become one of those boring
geeks who always has his nose in his phone,” said my daughter, 11,
who desperately wants one of her own.

I try, but I’m astounded how diffi cult it is. Like Frodo in Tolkien’s
“Lord of the Rings,” carrying the One Ring of Power around his
neck, I fi nd my hand creeping toward my smartphone, and I have
to exert a conscious effort to refrain from pulling it out at the
Thanksgiving dinner table. Boston’s transportation authority
had to ban even the possession of a cell phone while on duty, as
employees seem unable to refrain from using them and causing crashes
(bit.ly/u4D8Yg). Do we need Gollum to save us from ourselves by
biting these things out of our hands?

DON’T GET ME STARTED DAVID PLATT

David Platt looked up from his smartphone during his
commute one morning and took this snapshot.

www.bit.ly/ufvwyW
www.bit.ly/u4D8Yg
www.rollthunder.com

Untitled-3 1 1/9/12 12:35 PM

www.gcpowertools.com/powersuite
http://gvtv.gcpowertools.com

Untitled-1 1 1/12/12 11:15 AM

www.syncfusion.com/evaluation

	Back
	Print
	MSDN Magazine, February 2012
	Cover Tip
	Contents
	DATA POINTS: A Few of My Favorite Things … in the Entity Framework 4.2 DbContext
	FORECAST: CLOUDY: Windows Azure Deployment Domains
	Asynchronous Programming in C++ Using PPL
	Building a Massively Scalable Platform for Consumer Devices on Windows Azure
	Features and Foibles of ASP.NET MVC Model Binding
	Practical Cross-Browser HTML5 Audio and Video
	Get Your Windows Phone Applications in the Marketplace Faster
	What’s New in Windows Workflow Foundation 4.5
	Creating a NuGet Gallery
	TEST RUN: Ant Colony Optimization
	THE WORKING PROGRAMMER: Talk to Me: Voice and SMS in the Cloud
	CLIENT INSIGHT: Getting Started with Knockout
	TOUCH AND GO: Background Audio on Windows Phone 7.5
	DON’T GET ME STARTED: Ring Around My Neck

	Visual Studio Live, Las Vegas - Insert

