
Microsoft SDL Cryptographic
Recommendations
October 2016

Table of Contents
Introduction .. 1

Security Protocol, Algorithm and Key Length Recommendations .. 1

SSL/TLS versions .. 1

Symmetric Block Ciphers, Cipher Modes and Initialization Vectors ... 2

Asymmetric Algorithms, Key Lengths, and Padding Modes ... 3

Key Lifetimes ... 3

Random Number Generators ... 3

Platform-supported Crypto Libraries .. 4

Key Derivation Functions .. 5

Certificate Validation .. 5

Cryptographic Hash Functions .. 6

MAC/HMAC/keyed hash algorithms ... 6

Design and Operational Considerations ... 6

Encrypting Sensitive Data prior to Storage ... 7

Introduction
This document contains recommendations and best practices for using encryption on Microsoft

platforms. Much of the content here is paraphrased or aggregated from Microsoft’s own internal

security standards used to create the Security Development Lifecycle. It is meant to be used as a

reference when designing products to use the same APIs, algorithms, protocols and key lengths that

Microsoft requires of its own products and services.

Developers on non-Windows platforms may also benefit from these recommendations. While the API

and library names may be different, the best practices involving algorithm choice, key length and data

protection are similar across platforms.

Security Protocol, Algorithm and Key Length Recommendations
SSL/TLS versions
Products and services should use cryptographically secure versions of SSL/TLS:

 TLS 1.2 should be enabled

 TLS 1.1 and TLS 1.0 should be enabled for backward compatibility only

 SSL 3 and SSL 2 should be disabled by default

Symmetric Block Ciphers, Cipher Modes and Initialization Vectors

Block Ciphers

For products using symmetric block ciphers:

 Advanced Encryption Standard (AES) is recommended for new code.

 Three-key triple Data Encryption Standard (3DES) is permissible in existing code for backward

compatibility.

 All other block ciphers, including RC2, DES, 2-Key 3DES, DESX, and Skipjack, should only be used

for decrypting old data, and should be replaced if used for encryption.

For symmetric block encryption algorithms, a minimum key length of 128 bits is recommended. The only

block encryption algorithm recommended for new code is AES (AES-128, AES-192, and AES-256 are all

acceptable, noting that AES-192 lacks optimization on some processors). Three-key 3DES is currently

acceptable if already in use in existing code; transition to AES is recommended. DES, DESX, RC2, and

Skipjack are no longer considered secure. These algorithms should only be used for decrypting existing

data for the sake of backward-compatibility, and data should be re-encrypted using a recommended

block cipher.

Cipher Modes

Symmetric algorithms can operate in a variety of modes, most of which link together the encryption

operations on successive blocks of plaintext and ciphertext.

Symmetric block ciphers should be used with one of the following cipher modes:

 Cipher Block Chaining (CBC)

 Ciphertext Stealing (CTS)

 XEX-Based Tweaked-Codebook with Ciphertext Stealing (XTS)

Some other cipher modes like those included below have implementation pitfalls that make them more

likely to be used incorrectly. In particular, the Electronic Code Book (ECB) mode of operation should be

avoided. Reusing the same initialization vector (IV) with block ciphers in "streaming ciphers modes"

such as CTR may cause encrypted data to be revealed. Additional security review is recommended if

any of the below modes are used:

 Output Feedback (OFB)

 Cipher Feedback (CFB)

 Counter (CTR)

 Counter with CBC-MAC (CCM)

 Galois/Counter Mode (GCM)

 Anything else not on the "recommended" list above

Initialization Vectors (IV)

All symmetric block ciphers should also be used with a cryptographically strong random number as an

initialization vector. Initialization vectors should never be a constant value. See Random Number

Generators for recommendations on generating cryptographically strong random numbers.

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Ciphertext_stealing
https://en.wikipedia.org/wiki/Disk_encryption_theory#XEX-based_tweaked-codebook_mode_with_ciphertext_stealing_.28XTS.29

Initialization vectors should never be reused when performing multiple encryption operations, as this

can reveal information about the data being encrypted, particularly when using streaming cipher modes

like Output Feedback (OFB) or Counter (CTR).

Asymmetric Algorithms, Key Lengths, and Padding Modes

RSA

 RSA should be used for encryption, key exchange and signatures.

 RSA encryption should use the OAEP or RSA-PSS padding modes. Existing code should use PKCS

#1 v1.5 padding mode for compatibility only.

 Use of null padding is not recommended.

 Keys >= 2048 bits are recommended

ECDSA

 ECDSA with >= 256 bit keys is recommended

 ECDSA-based signatures should use one of the three NIST-approved curves (P-256, P-384, or

P521).

ECDH

 ECDH with >= 256 bit keys is recommended

 ECDH-based key exchange should use one of the three NIST-approved curves (P-256, P-384, or

P521).

Integer Diffie-Hellman

 Key length >= 2048 bits is recommended

 The group parameters should either be a well-known named group (e.g., RFC 7919), or

generated by a trusted party and authenticated before use

Key Lifetimes
 All asymmetric keys should have a maximum five-year lifetime, recommended one-year lifetime.

 All symmetric keys should have a maximum three-year lifetime; recommended one-year

lifetime.

 You should provide a mechanism or have a process for replacing keys to achieve the limited

active lifetime. After the end of its active lifetime, a key should not be used to produce new data

(for example, for encryption or signing), but may still be used to read data (for example, for

decryption or verification).

Random Number Generators
All products and services should use cryptographically secure random number generators when

randomness is required.

CNG

 Use BCryptGenRandom with the BCRYPT_USE_SYSTEM_PREFERRED_RNG flag

CAPI

 Use CryptGenRandom to generate random values.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa375458.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379942.aspx

Win32/64

 Legacy code can use RtlGenRandom in kernel mode

 New code should use BCryptGenRandom or CryptGenRandom.

 The C function Rand_s() is also recommended (which on Windows, calls CryptGenRandom)

 Rand_s() is a safe and performant replacement for Rand(). Rand() should not be used for any

cryptographic applications, but is ok for internal testing only.

 The SystemPrng function is recommended for kernel-mode code.

.NET

 Use RNGCryptoServiceProvider or RNGCng.

Windows Store Apps

 Store Apps can

use CryptographicBuffer.GenerateRandom or CryptographicBuffer.GenerateRandomNumber.

Not Recommended

 Insecure functions related to random number generation

include rand, System.Random (.NET), GetTickCount and GetTickCount64

 Use of the dual elliptic curve random number generator ("DUAL_EC_DRBG") algorithm is not

recommended.

Windows Platform-supported Crypto Libraries
On the Windows platform, Microsoft recommends using the crypto APIs built into the operating system.

On other platforms, developers may choose to evaluate non-platform crypto libraries for use. In

general, platform crypto libraries will be updated more frequently since they ship as part of an operating

system as opposed to being bundled with an application.

Any usage decision regarding platform vs non-platform crypto should be guided by the following

requirements:

1. The library should be a current in-support version free of known security vulnerabilities

2. The latest security protocols, algorithms and key lengths should be supported

3. (Optional) The library should be capable of supporting older security protocols/algorithms for

backwards compatibility only

Native Code

 Crypto Primitives: If your release is on Windows or Windows Phone, use CNG if possible.

Otherwise, use the CryptoAPI (also called CAPI, which is supported as a legacy component on

Windows from Windows Vista onward).

 SSL/TLS/DTLS: WinINet, WinHTTP, Schannel, IXMLHTTPRequest2, or IXMLHTTPRequest3.

o WinHTTP apps should be built with WinHttpSetOption in order to support TLS 1.2
 Code signature verification: WinVerifyTrust is the supported API for verifying code signatures on

Windows platforms.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375458.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379942.aspx
https://msdn.microsoft.com/en-us/library/sxtz2fa8.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379942.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd408060.aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider.aspx
https://clrsecurity.codeplex.com/wikipage?title=Security.Cryptography.RNGCng&referringTitle=Security.Cryptography.dll
https://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
https://msdn.microsoft.com/en-us/library/398ax69y.aspx
https://msdn.microsoft.com/en-us/library/system.random.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724408.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724411.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385331(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa382925(v=VS.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms678421(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh831151.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn376398.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384114(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa388208(v=VS.85).aspx

 Certificate Validation (as used in restricted certificate validation for code signing or

SSL/TLS/DTLS): CAPI2 API; for

example, CertGetCertificateChain and CertVerifyCertificateChainPolicy

Managed Code

 Crypto Primitives: Use the API defined in System.Security.Cryptography namespace---the CNG

classes are preferred.

 Use the latest version of the .Net Framework available. At a minimum this should be .Net

Framework version 4.6. If an older version is required, ensure the “SchUseStrongCrypto” regkey

is set to enable TLS 1.2 for the application in question.

 Certificate Validation: Use APIs defined under

the System.Security.Cryptography.X509Certificates namespace.

 SSL/TLS/DTLS: Use APIs defined under the System.Net namespace (for

example, HttpWebRequest).

Key Derivation Functions
Key derivation is the process of deriving cryptographic key material from a shared secret or a existing

cryptographic key. Products should use recommended key derivation functions. Deriving keys from

user-chosen passwords, or hashing passwords for storage in an authentication system is a special case

not covered by this guidance; developers should consult an expert.

The following standards specify KDF functions recommended for use:

 NIST SP 800-108: Recommendation For Key Derivation Using Pseudorandom Functions. In particular,

the KDF in counter mode, with HMAC as a pseudorandom function

 NIST SP 800-56A (Revision 2): Recommendation for Pair-Wise Key Establishment Schemes Using

Discrete Logarithm Cryptography. In particular, the “Single-Step Key Derivation Function” in Section

5.8.1 is recommended.

To derive keys from existing keys, use the BCryptKeyDerivation API with one of the algorithms:

 BCRYPT_SP800108_CTR_HMAC_ALGORITHM

 BCRYPT_SP80056A_CONCAT_ALGORITHM

To derive keys from a shared secret (the output of a key agreement) use the BCryptDeriveKey API with

one of the following algorithms:

 BCRYPT_KDF_SP80056A_CONCAT

 BCRYPT_KDF_HMAC

Certificate Validation
Products that use SSL, TLS, or DTLS should fully verify the X.509 certificates of the entities they connect

to. This includes verification of the certificates’:

 Domain name.

 Validity dates (both beginning and expiration dates).

 Revocation status.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376078(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa377163(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/security/2960358.aspx#ID0ETHAE
https://msdn.microsoft.com/en-us/library/system.security.cryptography.x509certificates.aspx
https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh448506(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375393(v=vs.85).aspx

 Usage (for example, “Server Authentication” for servers, “Client Authentication” for clients).

 Trust chain. Certificates should chain to a root certification authority (CA) that is trusted by the

platform or explicitly configured by the administrator.

If any of these verification tests fail, the product should terminate the connection with the entity.

Clients that trust “self-signed” certificates (for example, a mail client connecting to an Exchange server

in a default configuration) may ignore certificate verification checks. However, self-signed certificates do

not inherently convey trust, support revocation, or support key renewal. You should only trust self-

signed certificates if you have obtained them from another trusted source (for example, a trusted entity

that provides the certificate over an authenticated and integrity-protected transport).

Cryptographic Hash Functions
Products should use the SHA-2 family of hash algorithms (SHA256, SHA384, and SHA512). Truncation of

cryptographic hashes for security purposes to less than 128 bits is not recommended.

MAC/HMAC/keyed hash algorithms
A message authentication code (MAC) is a piece of information attached to a message that allows its

recipient to verify both the authenticity of the sender and the integrity of the message using a secret

key.

The use of either a hash-based MAC (HMAC) or block-cipher-based MAC is recommended as long as all

underlying hash or symmetric encryption algorithms are also recommended for use; currently this

includes the HMAC-SHA2 functions (HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512).

Truncation of HMACs to less than 128 bits is not recommended.

Design and Operational Considerations
 You should provide a mechanism for replacing cryptographic keys as needed. Keys should be

replaced once they have reached the end of their active lifetime or if the cryptographic key is

compromised. Whenever you renew a certificate, you should renew it with a new key.

 Products using cryptographic algorithms to protect data should include enough metadata along

with that content to support migrating to different algorithms in the future. This should include

the algorithm used, key sizes, initialization vectors, and padding modes.

o For more information on Cryptographic Agility, see Cryptographic Agility on MSDN.

 Where available, products should use established, platform-provided cryptographic protocols

rather than re-implementing them. This includes signing formats (e.g. use a standard, existing

format).

 Symmetric stream ciphers such as RC4 should not be used. Instead of symmetric stream

ciphers, products should use a block cipher, specifically AES with a key length of at least 128 bits.

 Do not report cryptographic operation failures to end-users. When returning an error to a

remote caller (e.g. web client, or client in a client-server scenario), use a generic error message

only.

http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
https://msdn.microsoft.com/en-us/magazine/ee321570.aspx

o Avoid providing any unnecessary information, such as directly reporting out-of-range or

invalid length errors. Log verbose errors on the server only, and only if verbose logging is

enabled.

 Additional security review is highly recommended for any design incorporating the following:

o A new protocol that is primarily focused on security (such as an authentication or

authorization protocol)

o A new protocol that uses cryptography in a novel or non-standard way

o Example considerations include:

 Will a product that implements the protocol call any crypto APIs or methods as

part of the protocol implementation?

 Does the protocol depend on any other protocol used for authentication or

authorization?

 Will the protocol define storage formats for cryptographic elements, such as

keys?

 Self-signed certificates are not recommended for production environments. Use of a self-signed

certificate, like use of a raw cryptographic key, does not inherently provide users or

administrators any basis for making a trust decision.

o In contrast, use of a certificate rooted in a trusted certificate authority makes clear the

basis for relying on the associated private key and enables revocation and updates in

the event of a security failure.

Encrypting Sensitive Data prior to Storage
DPAPI/DPAPI-NG

For data that needs to be persisted across system reboots:

 CryptProtectData

 CryptUnprotectData

 NCryptProtectSecret (Windows 8 CNG DPAPI)

For data that does not need to be persisted across system reboots:

 CryptProtectMemory

 CryptUnprotectMemory

For data that needs to be persisted and accessed by multiple domain accounts and computers:

 NCryptProtectSecret (in CNG DPAPI, available as of Windows 8)

 Microsoft Azure KeyVault

SQL Server TDE

You can use SQL Server Transparent Data Encryption (TDE) to protect sensitive data.

You should use a TDE database encryption key (DEK) that meets the SDL cryptographic algorithm and

key strength requirements. Currently, only AES_128, AES_192 and AES_256 are recommended;

TRIPLE_DES_3KEY is not recommended.

https://azure.microsoft.com/en-us/services/key-vault/

There are some important considerations for using SQL TDE that you should keep in mind:

 SQL Server does not support encryption for FILESTREAM data, even when TDE is enabled.

 TDE does not automatically provide encryption for data in transit to or from the database; you

should also enable encrypted connections to the SQL Server database. Please see Enable

Encrypted Connections to the Database Engine (SQL Server Configuration Manager) for guidance

on enabling encrypted connections.

 If you move a TDE-protected database to a different SQL Server instance, you should also move

the certificate that protects the TDE Data Encryption Key (DEK) and install it in the master

database of the destination SQL Server instance. Please see the TechNet article Move a TDE

Protected Database to Another SQL Server for more details.

Credential Management

Use the Windows Credential Manager API or Microsoft Azure KeyVault to protect password and

credential data.

Windows Store Apps

Use the classes in

the Windows.Security.Cryptography and Windows.Security.Cryptography.DataProtection namespaces to

protect secrets and sensitive data.

 ProtectAsync

 ProtectStreamAsync

 UnprotectAsync

 UnprotectStreamAsync

Use the classes in the Windows.Security.Credentials namespace to protect password and credential

data.

.NET

For data that needs to be persisted across system reboots:

 ProtectedData.Protect

 ProtectedData.Unprotect

For data that does not need to be persisted across system reboots:

 ProtectedMemory.Protect

 ProtectedMemory.Unprotect

For configuration files, use

either RSAProtectedConfigurationProvider or DPAPIProtectedConfigurationProvider to protect your

configuration, using either RSA encryption or DPAPI, respectively.

The RSAProtectedConfigurationProvider can be used across multiple machines in a cluster. See

Encrypting Configuration Information Using Protected Configuration for more information.

https://technet.microsoft.com/en-us/library/gg471497.aspx
https://technet.microsoft.com/en-us/library/ms191192.aspx
https://technet.microsoft.com/en-us/library/ms191192.aspx
https://technet.microsoft.com/en-us/library/ff773063.aspx
https://technet.microsoft.com/en-us/library/ff773063.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374731.aspx#credentials_management_functions
https://azure.microsoft.com/en-us/services/key-vault/
https://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.dataprotection.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.aspx
https://msdn.microsoft.com/en-us/library/system.configuration.rsaprotectedconfigurationprovider.aspx
https://msdn.microsoft.com/en-us/library/system.configuration.dpapiprotectedconfigurationprovider.aspx
https://msdn.microsoft.com/en-us/library/53tyfkaw.aspx

