
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
EDITOR’S NOTE
Over-Educated, Yet 
Under-Qualifi ed?
Keith Ward page 4

CUTTING EDGE
Expando Objects in C# 4.0
Dino Esposito page 6

DATA POINTS
Windows Azure Table 
Storage–Not Your Father’s Database 
Julie Lerman page 16

SECURITY BRIEFS
View State Security
Bryan Sullivan page 82

THE WORKING PROGRAMMER
Going NoSQL with MongoDB, 
Part 3
Ted Neward page 88

UI FRONTIERS
The Fluid UI in Silverlight 4
Charles Petzold page 92

DON’T GET ME STARTED
Rejectionists Rejected
David Platt page 96

JULY 2010 VOL 25 NO 7

OFFICE ADD-INS 
3 Solutions for Accessing SharePoint Data in Offi ce 2010 
Donovan Follette and Paul Stubbs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SHAREPOINT SECURITY 
Trim SharePoint Search Results for Better Security  
Ashley Elenjickal and Pooja Harjani  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ONENOTE 2010  
Creating OneNote 2010 Extensions with the OneNote Object Model  
Andy Gray  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

OFFICE SERVICES 
Merging Word Documents on the Server Side with SharePoint 2010  
Manvir Singh and Ankush Bhatia  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

SMART CLIENT 
Building Distributed Apps with NHibernate and Rhino Service Bus  
Oren Eini  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C# 4.0 
New C# Features in the .NET Framework 4  
Chris Burrows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

DESIGN PATTERNS 
Problems and Solutions with Model-View-ViewModel  
Robert McCarter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Untitled-5   2 3/5/10   10:16 AM

www.infragistics.com


Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go 

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised 
by your own strength!

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. 

Untitled-5   3 3/5/10   10:16 AM

www.infragistics.com


magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
MARTI LONGWORTH Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval 
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group 
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue, 
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at 
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45; 
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment 
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or 
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, 
IL 60076. Canada Publications Mail Agreement No: 40612608.  Return Undeliverable Canadian 
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests 
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media, 
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information 
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy, 
there is no guarantee that the same or similar results may be achieved in all environments. Technical 
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone), 
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact: 
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available 
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000; 
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

JULY 2010 VOLUME 25 NUMBER 7

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com


programmersparadise.com

Your best source for 
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise # 

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler 
r7.3 – Product Plus 1 Year 
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling 
solution that enables you to create and 
maintain databases, data warehouses and
enterprise data resource models. These models
help you visualize data structures so that you
can effectively organize, manage and moderate
data complexities, database technologies and
the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames, 

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free, 
robust and powerful word processing 
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance 
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with 

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise # 
P35 04201A01 
$550.99

Paradise # 
P26 04201E01

$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition SDK
by LEAD Technologies
Develop robust 32/64 bit document 
imaging and recognition functionality into 
your applications with accurate and 
high-speed multi-threaded Forms, OCR, 
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and 

barcode fields
• Auto-registration and clean-up to 

improve recognition results
• Provided as both high and low 

level interface
• Includes comprehensive confidence 

reports to assess performanceParadise # 
L05 26301A01 
$3,214.99

Certified 
for Windows
7/2008R2

VMware vSphere 
Put time back into your day.
Your business depends on how you spend 
your time. You need to manage IT costs 
without losing time or performance. With 
proven cost-effective virtualization solutions 
from VMware, you can:

• Increase the productivity of your existing 
staff three times over

• Control downtime—whether planned 
or not

• Save more than 50% on the cost of 
managing, powering and cooling servers

Make your time (and money) count for 
more with virtualization from VMware. 

VMware 
Advanced

Acceleration Kit 
for 6 processors

Paradise # 
V55 78101A01  

$9,234.99

programmers.com/vmware

Client Licenses
Minimum 500 with
Basic Level Support

Paradise # 
V55 MIGRATION  

$16.99

programmers.com/multiedit

Multi-EditX

by Multi Edit Software

Multi-EditX is “The Solution” 
for your editing needs with 
support for over 50 languages. 
Edit plain text, ANY Unicode, hex, 
XML, HTML, PHP, Java, Javascript,
Perl and more! No more file size
limitations, unlimited line length,
any file, any size Multi-EditX is 
“The Solution”!

Pre-Order Your Copy and Save!

1-49 Users
Paradise # 

A30Z10101A01
$223.20

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and 
Windows applications

Professional Ed.
Paradise # 
D03 04301A01   
$1,310.99

NEW
VERSION

6!

BUILD ON 
VMWARE ESXi
AND VSPHERE 
for Centralized Management, 
Continuous Application 
Availability, and Maximum 
Operational Efficiency in Your 
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend 
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES: 
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

NEW
RELEASE!

NEW
RELEASE!

programmers.com/flexera

InstallShield Professional
for Windows
by Flexera Software
If your software targets Windows®,
InstallShield® is your solution. It makes it 
easy to author high-quality reliable Windows
Installer (MSI) and InstallScript installations
and App-V™ virtual packages for Windows
platforms, including Windows 7. InstallShield,
the industry standard for MSI installations,
also supports the latest Microsoft technologies
including Visual Studio 2010, .NET
Framework 4.0, IIS7.0, SQL Server 2008
SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down. 

Intel Parallel Studio
by Intel
Intel Parallel Studio is a comprehensive
Windows parallelism toolset designed for
Microsoft Visual Studio C/C++ developers.
Parallel Studio is interoperable with the widely
used Microsoft Visual Studio, supports higher-
level parallelism abstractions to simplify and
speed development such as Intel Threading
Building Blocks and Open MP, is fully supported,
and provides an immediate opportunity to real-
ize the benefits of multicore platforms. Tools are
designed so novices can learn as they go, and
professional developers can more easily bring
parallelism to existing and new projects. Create
optimized, innovative parallel applications and
compete in a multicore industry.

Microsoft Office
Professional 2010
by Microsoft
Organize projects, manage finances and 
build a better way to do business with tools
from Microsoft® Office Professional 2010.
This software suite includes 2010 versions 
of Word, Excel®, PowerPoint®, OneNote®,
Outlook®, Publisher® and Access®. It offers 
a Backstage™ view which replaces the 
traditional File menu to give you one 
go-to spot to conveniently save, open and
print documents. Additionally, the server 
integration capabilities make it easier to
track. Besides this, the Office Professional
Plus 2010 also offers complete package
through familiar intuitive tools. 

Upgrade from 
Active IS Pro + 

IS Pro Silver Mtn
Paradise # 

I21 02301S01  

$1,399.00

866-719-1528

VMware ThinApp Windows
7 Migration Promotion 
by VMware

Migration to the new Windows 7 OS is 
forcing companies to rethink their desktop
delivery. VMware ThinApp is the easiest 
and most cost effective way to prepare for 
your Win 7 journey. By virtualizing your
applications first with ThinApp, you will 
mitigate risk, dramatically speed up the
migration process—and save money 
when you migrate to Windows 7!

SAVE
75%!

LIMITED 
TIME OFFER!

programmers.com/microsoftprogrammers.com/intel

Complete 
DVD Windows 

32/64 bit
Paradise # 

M47 2130A01
$447.99

Single User 
Commercial 
Paradise # 

I23 63101A04  

$753.99

NEW
RELEASE!

Untitled-3   1 6/8/10   3:49 PM

www.programmersparadise.com


msdn magazine4

have greatly declined, and schools are trying to 
reverse the trend. Th is includes making the 
programs easier so there will be fewer drop-

outs and it will be more attractive to students who 
don’t want to work hard but still get a degree.”

“Woking,” a manager at a “Fortune 500 company,” 
is similarly unimpressed. “I have never interviewed 

a candidate right out of college who I would hire. No 
recent graduate that I have interviewed has had suffi  cient 

understanding of real-world problems to be useful to me, at least 
for the salary that the interviewees were expecting.”

Woking gives a specifi c example: “Several years ago I interviewed 
candidates for an open position as a data modeler. None of the 
recent college graduates who had even covered Entity Relationship 
Diagramming in their programs had created a data model with more 
than fi ve entities.” Woking says that they have better success hiring 
candidates with three to fi ve years work experience, even if the 
applicant lacks a college degree. Th at’s a pretty damning statement.

“Beney,” with 20-plus years experience and no IT degree, puts it 
succinctly: “Maybe if IT students had to actually write code rather 
than manipulate IDEs, they’d at least be able to handle the real 
world when they get out into the job market.”

Pretty discouraging stuff . What I’d like to do is use the power of 
the MSDN network to help determine if we’re facing a crisis when 
it comes to teaching college kids proper soft ware development 
skills. If you’re a computer science professor, recent computer 
science graduate, hiring manager or anyone else with insight into 
this issue, let me know your thoughts at mmeditor@microsoft .com. 
If you agree that this is a general failing of the education system, 
explain how you’d change things: What are the top two or three 
things you’d do? I’m looking forward to reading your responses. Aft er 
all, if there’s a job to be fi lled, it makes 
sense that it be fi lled with a devel-
oper who can actually do that job.

Over-Educated, Yet Under-Qualifi ed?

As we get going on the latest mini-bounce-back 
on what looks like an extremely long road to eco-
nomic recovery, there is some good news: It looks like 
the tech sector may have a quicker—and higher— 
bounce than other industries. We’re fi nally getting 
some news that shows solid, sustained job growth 
in all areas of IT, including soft ware development.

But as Adrian Monk, my favorite TV detective, 
would say, “Here’s the thing …” Is this great news for you if you’re 
hiring coders but can’t pay them a lot yet, which might mean pluck-
ing fresh fruit off  the college tree? Because I’ve been reading some 
worrisome stuff  about the quality of education computer science 
grads are getting, and the heartburn it’s causing both the grads and 
potential employers.

My concern was piqued by an article I saw on the InfoWorld 
Web site, “Th e sad standards of computer-related college degrees” 
(bit.ly/blp267). A concerned father wrote in about his daughter’s lack 
of preparedness for the world of real work. He writes: “Imagine my 
surprise (and, as it turned out, her relief ) that she could get a four-
year undergraduate degree in “data processing” without having to 
write a single program in any language! 

“Th is seems to be a trend,” the writer continues. “In an eff ort 
to widen and deepen my own skill set, I have had occasion to 
examine computer science course material available online from a 
number of top-tier colleges and some from the lower rungs. In most 
instances, what I remember from my nearly 40-year-old computer 
science education still places me far ahead of what they are now 
teaching.” And he concludes: “We’ve had trouble fi nding qualifi ed 
U.S. job applicants who want to do the work we need done. I 
wonder if there’s a connection.”

Th e comments from readers accompanying the article support 
the writer’s contention, for the most part. Here’s a sampling:

From “rsr,” who claims to be a former computer science professor: 
“Computer Science (and related computer program) enrollments 

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN 
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit 
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The 
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make 
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are 
used by 1105 Media, Inc. under license from owner. 

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
www.bit.ly/blp267
www.microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx


Untitled-1   1 3/10/10   2:49 PM

www.axosoft.com


msdn magazine6

The .NET Framework 4 introduces 
some new features that enable you to go 
beyond static types. I covered the new 
dynamic keyword in the May 2010 issue 
(msdn.microsoft.com/magazine/ee336309). In 
this article, I’ll explore the support 
for dynamically defined types such as 
expando objects and dynamic objects. 
With dynamic objects, you can defi ne the 
interface of the type programmatically 
instead of reading it from a definition 
statically stored in some assemblies. 
Dynamic objects wed the formal clean-
liness of static typed objects with the 
fl exibility of dynamic types. 

Scenarios for Dynamic Objects
Dynamic objects are not here to replace the 
good qualities of static types. Static types 
are, and will remain for the foreseeable 
future, at the foundation of software 
development. With static typing, you can 
fi nd type errors reliably at compile time 

and produce code that, because of this, is free of runtime checks 
and runs faster. In addition, the need to pass the compile step leads 
developers and architects to take care in the design of the soft ware 
and in the defi nition of public interfaces for interacting layers.

There are, however, situations in which you have relatively 
well-structured blocks of data to be consumed programmatically. 
Ideally, you’d love to have this data exposed through objects. But, 
instead, whether it reaches you over a network connection or you 
read it from a disk fi le, you receive it as a plain stream of data. 
You have two options to work against this data: using an indirect 
approach or using an ad hoc type. 

In the fi rst case, you employ a generic API that acts as a proxy 
and arranges queries and updates for you. In the second case, you 
have a specifi c type that perfectly models the data you’re working 
with. Th e question is, who’s going to create such an ad hoc type?

In some segments of the .NET Framework, you already have 
good examples of internal modules creating ad hoc types for 

     Expando Objects in C# 4.0

Most of the code written for the Microsoft  
.NET Framework is based on static typ-
ing, even though .NET supports dynamic 
typing via refl ection. Moreover, JScript 
had a dynamic type system on top of 
the .NET 10 years ago, as did Visual 
Basic. Static typing means that every 
expression is of a known type. Types and 
assignments are validated at compile time 
and most of the possible typing errors are 
caught in advance. 

Th e well-known exception is when you 
attempt a cast at run time, which may 
sometimes result in a dynamic error if 
the source type is not compatible with 
the target type. 

Static typing is great for performance 
and for clarity, but it’s based on the assump-
tion that you know nearly everything 
about your code (and data) beforehand. 
Today, there’s a strong need for relaxing 
this constraint a bit. Going beyond static 
typing typically means looking at three 
distinct options: dynamic typing, dynamic objects, and indirect 
or refl ection-based programming. 

In .NET programming, reflection has been available since 
the .NET Framework 1.0 and has been widely employed to fuel 
special frameworks, like Inversion of Control (IoC) containers. Th ese 
frameworks work by resolving type dependencies at run time, thus 
enabling your code to work against an interface without having to 
know the concrete type behind the object and its actual behavior. 
Using .NET reflection, you can implement forms of indirect 
programming where your code talks to an intermediate object 
that in turn dispatches calls to a fi xed interface. You pass the name 
of the member to invoke as a string, thus granting yourself the 
fl exibility of reading it from some external source. Th e interface 
of the target object is fixed and immutable—there’s always a 
well-known interface behind any calls you place through refl ection.  

Dynamic typing means that your compiled code ignores the static 
structure of types that can be detected at compile time. In fact, 
dynamic typing delays any type checks until run time. Th e interface 
you code against is still fi xed and immutable, but the value you use 
may return diff erent interfaces at diff erent times.

CUTTING EDGE DINO ESPOSITO

Code download available at code.msdn.microsoft.com/mag201007CutEdge.

Figure 1 The Structure of a Dynamically 
Created Web Forms Class

http://msdn.microsoft.com/magazine/ee336309
http://code.msdn.microsoft.com/mag201007CutEdge


Image Formats & Compression: Supports 150+ image formats and  
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing 

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit 

development.
Forms Recognition and Processing: Automatically identify forms and extract 

user lled data.
Barcode: Detect, read and rite 1D and 2D barcodes for multithreaded 32 and 

64 bit development.
Document Cleanup/Preprocessing: Des e , despec le, hole punch, line and 

border removal, inverted text correction and more.
PDF and PDF/A: ead and rite searchable PDF ith text, images and 

annotations.
Annotations: Interactive UI for document mark-up, redaction and image 

measurement (including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly 

build high- uality, full-featured, eb-based medical image delivery and vie er  
applications.
Medical Image Viewer: igh level display control ith built-in tools for image 

mark-up, indo  level, measurement, zoom pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the 200  

DICOM standard (including Encapsulated PDF CDA and a  Data).
PACS Communications: Full support for DICOM messaging and secure 

communication enabling uick implementation of any DICOM SCU and SCP 
services.
JPIP: Client and Server components for interactive streaming of large images 

and associated image data using the minimum possible band idth.
Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver 

settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, re ind and fast-for ard live capture and UDP or TCP IP streams.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, 

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to create 

scalable, robust enterprise applications.

Vector

DICOM Medical

Form Recognition 
& Processing

Multimedia

Barcode

Document

Free 60 Day Evaluation!    www.leadtools.com/msdn     800 637-1840

ig  evel Design  ow evel Control

Develop your application ith the same robust imaging technologies used by 
Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and 
Veterans Affairs Hospitals. 

EADTOO S provides developers easy access to decades of expertise in  
color, grayscale, document, medical, vector and multimedia imaging development.  
Install EADTOO S to eliminate months of research and programming time hile 
maintaining high levels of uality, performance and functionality.

Silverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-1   1 5/28/10   11:41 AM

http://www.leadtools.com/msdn


msdn magazine8 Cutting Edge

specifi c blocks of data. One obvious example is ASP.NET Web Forms. 
When you place a request for an ASPX resource, the Web server 
retrieves the content of the ASPX server fi le. Th at content is then 
loaded into a string to be processed into an HTML response. So you 
have a relatively well-structured piece of text with which to work. 

To do something with this data, you need to understand what 
references you have to server controls, instantiate them properly 
and link them together into a page. Th is can be defi nitely done 
using an XML-based parser for each request. In doing so, though, 
you end up paying the extra costs of the parser for every request, 
which is probably an unacceptable cost. 

Due to these added costs of parsing data, the ASP.NET team 
decided to introduce a one-time step to parse the markup into a 
class that can be dynamically compiled. Th e result is that a simple 
chunk of markup like this is consumed via an ad hoc class derived 
from the code-behind class of the Web Forms page:

<html>
<head runat="server">
  <title></title>
</head>
<body>
  <form id="Form1" runat="server">
    <asp:TextBox runat="server" ID="TextBox1" /> 
    <asp:Button ID="Button1" runat="server" Text="Click" />
    <hr />
    <asp:Label runat="server" ID="Label1"></asp:Label>
  </form>
</body>
</html>

Figure 1 shows the runtime structure of the class created out of 
the markup. Th e method names in gray refer to internal procedures 
used to parse elements with the runat=server elements into 
instances of server controls.

You can apply this approach to nearly any situation in which 
your application receives external data to process repeatedly. 
For example, consider a stream of XML data that fl ows into the 
application. Th ere are several APIs available to deal with XML data, 
from XML DOM to LINQ-to-XML. In any case, you have to either 

proceed indirectly by querying the XML DOM or LINQ-to-XML 
API, or use the same APIs to parse the raw data into ad hoc objects. 

In the .NET Framework 4, dynamic objects off er an alternative, 
simpler API to create types dynamically based on some raw data. 
As a quick example, consider the following XML string:

<Persons>
  <Person>  
    <FirstName> Dino </FirstName>
    <LastName> Esposito </LastName>
  </Person>
  <Person>
    <FirstName> John </FirstName>
    <LastName> Smith </LastName>
  </Person>  
</Persons>

To transform that into a programmable type, in the .NET Frame-
work 3.5 you’d probably use something like the code in Figure 2.

The code uses LINQ-to-XML to load raw content into an 
instance of the Person class:

public class Person {
  public String FirstName { get; set; }
  public String LastName { get; set; }
  public String GetFullName() {
    return String.Format("{0}, {1}", LastName, FirstName);
  }
}

Th e .NET Framework 4 off ers a diff erent API to achieve the same 
thing. Centered on the new ExpandoObject class, this API is more 
direct to write and doesn’t require that you plan, write, debug, test and 
maintain a Person class. Let’s fi nd out more about ExpandoObject.

Using the ExpandoObject Class
Expando objects were not invented for the .NET Framework; in 
fact, they appeared several years before .NET. I fi rst heard the term 
used to describe JScript objects in the mid-1990s. An expando is a 
sort of infl atable object whose structure is entirely defi ned at run 
time. In the .NET Framework 4, you use it as if it were a classic 
managed object except that its structure is not read out of any 
assembly, but is built entirely dynamically. 

var persons = GetPersonsFromXml(file);
foreach(var p in persons)
  Console.WriteLine(p.GetFullName());

// Load XML data and copy into a list object
var doc = XDocument.Load(@"..\..\sample.xml");
public static IList<Person> GetPersonsFromXml(String file) {
  var persons = new List<Person>();

  var doc = XDocument.Load(file);
  var nodes = from node in doc.Root.Descendants("Person")
              select node;

  foreach (var n in nodes) {
    var person = new Person();
    foreach (var child in n.Descendants()) {
      if (child.Name == "FirstName")
        person.FirstName = child.Value.Trim();
      else
        if (child.Name == "LastName")
          person.LastName = child.Value.Trim();
    }
    persons.Add(person);
  }

  return persons;
}

Figure 2 Using LINQ-to-XML to Load Data into a Person Object

public static IList<dynamic> GetExpandoFromXml(String file) { 
  var persons = new List<dynamic>();

  var doc = XDocument.Load(file);
  var nodes = from node in doc.Root.Descendants("Person")
              select node;
  foreach (var n in nodes) {
    dynamic person = new ExpandoObject();
    foreach (var child in n.Descendants()) {
      var p = person as IDictionary<String, object>);
      p[child.Name] = child.Value.Trim();
    }

    persons.Add(person);
  }

  return persons;
}

Figure 3 Using LINQ-to-XML to Load Data into an Expando Object

Dynamic typing delays any type 
checks until run time.



Untitled-2   1 6/10/10   11:54 AM

www.DevExpress.com/grids


msdn magazine10 Cutting Edge

An expando object is ideal to model dynamically changing infor-
mation such as the content of a confi guration fi le. Let’s see how to use 
the ExpandoObject class to store the content of the aforementioned 
XML document. Th e full source code is shown in Figure 3.

Th e function returns a list of dynamically defi ned objects. Using 
LINQ-to-XML, you parse out the nodes in the markup and create 
an ExpandoObject instance for each of them. Th e name of each 
node below <Person> becomes a new property on the expando 
object. Th e value of the property is the inner text of the node. Based 
on the XML content, you end up with an expando object with a 
FirstName property set to Dino. 

In Figure 3, however, you see an indexer syntax used to populate 
the expando object. Th at requires a bit more explanation.

Inside the ExpandoObject Class
Th e ExpandoObject class belongs to the System.Dynamic namespace 
and is defined in the System.Core assembly. ExpandoObject 
represents an object whose members can be dynamically added 
and removed at run time. The class is sealed and implements a 
number of interfaces:

public sealed class ExpandoObject : 
  IDynamicMetaObjectProvider, 
  IDictionary<string, object>, 
  ICollection<KeyValuePair<string, object>>, 
  IEnumerable<KeyValuePair<string, object>>, 
  IEnumerable, 
  INotifyPropertyChanged;

As you can see, the class exposes its content using various enumer-
able interfaces, including IDictionary<String, Object> and IEnumer-
able. In addition, it also implements IDynamicMetaObjectProvider. 
Th is is the standard interface that enables an object to be shared within 
the Dynamic Language Runtime (DLR) by programs written in 
accordance with the DLR interoperability model. In other words, 
only objects that implement the IDynamicMetaObjectProvider 
interface can be shared across .NET dynamic languages. An expando 
object can be passed to, say, an IronRuby component. You can’t do 
that easily with a regular .NET managed object. Or, rather, you can, 
but you just don’t get the dynamic behavior.

Th e ExpandoObject class also implements the INotifyProperty-
Changed interface. Th is enables the class to raise a Property-
Changed event when a member is added or modifi ed. Support of the 
INotifyPropertyChanged interface is key to using expando objects in 
Silverlight and Windows Presentation Foundation application front ends.

You create an ExpandoObject instance as you do with any other .NET 
object, except that the variable to store the instance is of type dynamic:

dynamic expando = new ExpandoObject();

At this point, to add a property 
to the expando you simply assign 
it a new value, as below:
  expando.FirstName = "Dino";

It doesn’t matter that no infor-
mation exists about the FirstName 
member, its type or its visibility. Th is 
is dynamic code; for this reason, it 
makes a huge diff erence if you use the 
var keyword to assign an Expando-
Object instance to a variable:
  var expando = new ExpandoObject();

Th is code will compile and work just fi ne. However, with this defi -
nition you’re not allowed to assign any value to a FirstName property. 
Th e ExpandoObject class as defi ned in System.Core has no such mem-
ber. More precisely, the ExpandoObject class has no public members. 

This is a key point. When the static type of an expando is 
dynamic, the operations are bound as dynamic operations, including 
looking up members. When the static type is ExpandoObject, then 
operations are bound as regular compile-time member lookups. 
So the compiler knows that dynamic is a special type, but does not 
know that ExpandoObject is a special type.

In Figure 4, you see the Visual Studio 2010 IntelliSense options 
when an expando object is declared as a dynamic type and when 
it’s treated as a plain .NET object. In the latter case, IntelliSense 
shows you the default System.Object members plus the list of 
extension methods for collection classes. 

It should also be noted that some commercial tools in some 
circumstances go beyond this basic behavior. Figure 5 shows 
ReSharper 5.0, which captures the list of members currently defi ned 
on the object. Th is doesn’t happen if members are added program-
matically via an indexer.

To add a method to an expando object, you just defi ne it as a 
property, except you use an Action<T> or Func<T> delegate to 
express the behavior. Here’s an example:

person.GetFullName = (Func<String>)(() => { 
  return String.Format("{0}, {1}", 
    person.LastName, person.FirstName); 
});

Th e method GetFullName returns a String obtained by combining 
the last name and fi rst name properties assumed to be available on 

Figure 4 Visual Studio 2010 IntelliSense and Expando Objects

Figure 5 The ReSharper 5.0 IntelliSense at Work with 
Expando Objects



Untitled-2   1 6/10/10   11:55 AM

www.DevExpress.com/reporting


msdn magazine12 Cutting Edge

the expando object. If you attempt to access a missing member on 
expando objects, you’ll receive a RuntimeBinderException exception.  

XML-Driven Programs
To tie together the concepts I’ve shown you so far, let me guide you 
through an example where the structure of the data and the structure 
of the UI are defi ned in an XML fi le. Th e content of the fi le is parsed 
to a collection of expando objects and processed by the application. 
Th e application, however, works only with dynamically presented 
information and is not bound to any static type.

Th e code in Figure 3 defi nes a list of dynamically defi ned 
person expando objects. As you’d expect, if you add a new node to 
the XML schema, a new property will be created in the expando 
object. If you need to read the name of the member from an external 
source, you should employ the indexer API to add it to the expan-
do. Th e ExpandoObject class implements the IDictionary<String, 
Object> interface explicitly. Th is means you need to segregate the 
ExpandoObject interface from the dictionary type in order to use 
the indexer API or the Add method: 

(person as IDictionary<String, Object>)[child.Name] = child.Value;

Because of this behavior, you just need to edit the XML fi le to 
make a diff erent data set available. But how can you consume this 
dynamically changing data? Your UI will need to be fl exible enough 
to receive a variable set of data. 

Let’s consider a simple example where all you do is display data 

through the console. Suppose the XML 
fi le contains a section that describes the 
expected UI—whatever that means in 
your context. For the purpose of example, 
here’s what I have:
  <Settings>
    <Output Format="{0}, {1}" 
      Params="LastName,FirstName" /> 
  </Settings>

Th is information will be loaded into 
another expando object using the follow-
ing code:
  dynamic settings = new ExpandoObject();
  settings.Format = 
    node.Attribute("Format").Value;
  settings.Parameters = 
    node.Attribute("Params").Value; 

Th e main procedure will have the fol-
lowing structure:
  public static void Run(String file) {
    dynamic settings = GetExpandoSettings(file);
    dynamic persons = GetExpandoFromXml(file);
    foreach (var p in persons) {
      var memberNames = 
        (settings.Parameters as String).
        Split(',');
      var realValues = 
        GetValuesFromExpandoObject(p, 
        memberNames);
      Console.WriteLine(settings.Format, 
        realValues);
    }
  }

The expando object contains the for-
mat of the output, plus the names 
o f  t h e  m e m b e r s  w h o s e  v a lu e s 
are to be displayed. Given the person dy-

namic object, you need to load the values for the specifi ed mem-
bers, using code like this:

public static Object[] GetValuesFromExpandoObject(
  IDictionary<String, Object> person, 
  String[] memberNames) {

  var realValues = new List<Object>();
  foreach (var m in memberNames)
    realValues.Add(person[m]);
  return realValues.ToArray();
}

Because an expando object implements IDictionary<String, 
Object>, you can use the indexer API to get and set values.

Finally, the list of values retrieved from the expando object are 
passed to the console for actual display. Figure 6 shows two screens 
for the sample console application, whose only diff erence is the 
structure of the underlying XML fi le. 

Admittedly, this is a trivial example, but the mechanics required 
to make it work are similar to that of more interesting examples. 
Try it out and share your feedback! 

DINO ESPOSITO is the author of “Programming ASP.NET MVC” from Microsoft  
Press and coauthor of “Microsoft  .NET: Architecting Applications for the Enterprise” 
(Microsoft  Press, 2008). Based in Italy, Esposito is a frequent speaker at industry 
events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article: 
Eric Lippert

Figure 6 Two Sample Console Applications Driven by an XML File

http://weblogs.asp.net/despos


Untitled-2   1 6/10/10   11:56 AM

www.DevExpress.com/analytics


Untitled-2   2 3/2/10   10:44 AM

www.xceed.com


Untitled-2   3 3/2/10   10:45 AM

www.xceed.com


msdn magazine16

your table over multiple servers. A table doesn’t have a specifi ed 
schema. It’s simply a structured container of rows (or entities) that 
doesn’t care what a row looks like. You can have a table that stores 
one particular type, but you can also store rows with varying struc-
tures in a single table, as shown in Figure 1.

It All Begins with Your Domain Classes
Our typical development procedure with databases is to create them, 
defi ne tables in them and then, for every table, defi ne a particular 
structure—specifi c columns, each with a specifi ed data type—as 
well as relationships to other tables. Our applications then push 
data into and pull data out of the tables.

With Windows Azure Table services, though, you don’t design a 
database, just your classes. You defi ne your classes and a container 
(table) that one or more classes belong to, then you can save 
instantiated objects back to the store as rows.

In addition to the properties you need in your classes, each class 
must have three properties that are critical in determining how 
Windows Azure Table services do their job: PartitionKey, RowKey 
and TimeStamp. PartitionKey and RowKey are both strings, 
and there’s an art (or perhaps a science) to defi ning them so you 
get the best balance of query and transaction efficiency along 
with scalability at run time. For a good understanding of how to 
defi ne PartitionKeys and RowKeys for the most benefi t, I highly 
recommend the PDC09 session “Windows Azure Tables and 
Queues Deep Dive,” presented by Jai Haridas, which you can watch 
at microsoftpdc.com/sessions/svc09.

PartitionKeys and RowKeys 
Drive Performance and Scalability
Many developers are used to a system of primary keys, foreign keys 
and constraints between the two. With Windows Azure Table stor-
age, you have to let go of these concepts or you’ll have diffi  culty 
grasping its system of keys. 

In Windows Azure Tables, the string PartitionKey and RowKey 
properties work together as an index for your table, so when defi ning 
them, you must consider how your data is queried. Together, the 
properties also provide for uniqueness, acting as a primary key for 
the row. Each entity in a table must have a unique PartitionKey/
RowKey combination.

Windows Azure Table Storage— 
Not Your Father’s Database

Windows Azure Table storage causes a lot of head scratching 
among developers. Most of their experience with data storage is 
with relational databases that have various tables, each containing 
a predefi ned set of columns, one or more of which are typically 
designated as identity keys. Tables use these keys to defi ne relation-
ships among one another.

Windows Azure stores information a few ways, but the two that 
focus on persisting structured data are SQL Azure and Windows 
Azure Table storage. Th e fi rst is a relational database and aligns fairly 
closely with SQL Server. It has tables with defi ned schema, keys, 
relationships and other constraints, and you connect to it using a 
connection string just as you do with SQL Server and other databases.

Windows Azure Table storage, on the other hand, seems a 
bit mysterious to those of us who are so used to working with 
relational databases. While you’ll fi nd many excellent walk-throughs 
for creating apps that use Windows Azure Table storage, many 
developers still find themselves forced to make leaps of faith 
without truly understanding what it’s all about. 

Th is column will help those stuck in relational mode bridge that 
leap of faith with solid ground by explaining some core concepts 
of Windows Azure Table storage from the perspective of relational 
thinking. Also, I’ll touch on some of the important strategies for 
designing the tables, depending on how you expect to query and 
update your data.

Storing Data for Effi cient Retrieval and Persistence
By design, Windows Azure Table services provides the potential to 
store enormous amounts of data, while enabling effi  cient access and 
persistence. Th e services simplify storage, saving you from jumping 
through all the hoops required to work with a relational database—
constraints, views, indices, relationships and stored procedures. You 
just deal with data, data, data. Windows Azure Tables use keys that 
enable effi  cient querying, and you can employ one—the PartitionKey— 
for load balancing when the table service decides it’s time to spread 

DATA POINTS JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201007DataPoints.

Windows Azure Table storage 
seems a bit mysterious to those 
of us who are so used to working 

with relational databases.

http://microsoftpdc.com/sessions/svc09
http://code.msdn.microsoft.com/mag201007DataPoints


Experience how the Altova MissionKit® suite of

integrated XML and database tools can simplify even 

the most advanced Web 2.0 development projects. 

Uncover

Web development

simplicity with the 

complete set of tools 

from Altova® 

The Altova MissionKit includes powerful

Web development tools: 

StyleVision® – graphical stylesheet & electronic forms designer

 • Drag-and-drop XSLT 1.0/2.0 and XSL-FO stylesheet design

• Advanced CSS and JavaScript functionality

 • Precise  electronic forms design

XMLSpy® – advanced XML editor

  • XSLT 1.0/2.0 editing, debugging, and profiling

  • XSLT editing help, support for program code

    in stylesheets

DiffDog® – XML-aware diff / merge utility

  • File, folder, directory, DB comparison and merging 

 • One-click directory syncing

And more…  

e

ols 

Download a 30 day free trial!

Try before you buy with a free, 

fully functional trial from www.altova.com. 

XMLS

• XS

• X

    

D

New in Version 2010:

New in Versi

• 64-bit version

• New design paradigm for creating   

   stylesheets and electronic forms

• True electronic forms design    

   through absolute positioning

• JSON editing & conversion

• SharePoint®  Server support

• And much more

Untitled-1   1 5/24/10   3:17 PM

http://www.altova.com


msdn magazine18 Data Points

But you need to consider more than querying when defi ning 
a PartitionKey, because it’s also used for physically partitioning 
the tables, which provides for load balancing and scalability. For 
example, consider a table that contains information about food 
and has PartitionKeys that correspond to the food types, such as 
Vegetable, Fruit and Grain. In the summer, the rows in the 
Vegetable partition might be very busy (becoming a so-called 
“hot” partition). The service can load  balance the Food 
table by moving the Vegetable partition to a different server to 
better handle the many requests made to the partition. 

If you anticipate more activity on that partition than a single 
server can handle, you should consider creating more-granular 
partitions such as Vegetable_Root and Vegetable_Squash. Th is is 
because the unit of granularity for load balancing is the PartitionKey. 
All the rows with the same PartitionKey value are kept together 
when load balancing. You could even design your table so that 
every single entity in the table has a diff erent partition.

Digging Deeper into PartitionKeys and Querying
Notice that when I suggested fi ne-tuning the Vegetable Partition-
Keys, I placed Vegetable at the beginning of the key, not the end. 
Th at’s another mechanism for enabling more effi  cient queries. 
Queries to Windows Azure Tables from the Microsoft  .NET Frame-
work use LINQ to REST and a context that derives from the WCF Data 
Services System.Data.Services.Client.DataServiceContext. If you want 
to fi nd any green squash, you can search in the Vegetable_Squash 
partition without wasting resources to search the entire table:

var query = _serviceContext.FoodTable.AsTableServiceQuery()
.Where(c => c.PartitionKey=="Vegetable_Squash"&& c.Color == "Green");

A big diff erence between querying OData (returned by WCF 
Data Services) and querying against Windows Azure Tables is that 
string functions are not supported. If you want to search part of a 
string, you must use String.CompareTo to inspect the beginning 
characters of the string. If you want to query the entire Vegetable 
category, however, you can use the CompareTo method to do a 
prefi x search over the start of the PartitionKey:

var query = _serviceContext.FoodTable.AsTableServiceQuery()
            .Where(c => c.PartitionKey.CompareTo("Vegetable")>=0
            && c.PartitionKey.CompareTo("Vegetablf")<0
            && c.Color == "Green");

Th is would limit the search to only partitions that begin with 
Vegetable—nothing less and nothing more. (Using Vegetablf rather 
than Vegetable in the second predicate defi nes the upper bound, 
preventing foods in partitions such as Yogurt or VegetableLike 
from being returned.) In the code sample accompanying this 
article, you’ll see how I’ve done this replacement dynamically.

Parallel Querying for Full Table Scans
What if you were searching for all green food, regardless of 
type? Windows Azure would have to scan through the entire 
table. If it’s a large table, Windows Azure throws in another 
wrench: It can return only 1,000 rows at a time (or process for 5 
seconds). Windows Azure will return those results along with a 
continuation key, then go back for more. This can be a tedious 
synchronous process. 

Instead you could execute a number of queries, perhaps iterating 
through a known list of categories, then building each query:

_serviceContext.FoodTable.AsTableServiceQuery()
.Where(c => c.PartitionKey == _category && c.Color == "Green");

Th en you can send off  all the queries to run in parallel.

More Design Considerations for Querying
Th e RowKey property serves a number of purposes. In combination 
with PartitionKey, it can define uniqueness within a table for 
each row. For example, I know another Julie Lerman (truly I do). 
So the RowKey will be critical in diff erentiating us when we share 
a PartitionKey of lerman_julie. You can also use RowKey to help 
with sorting, because it acts as part of an index. So then, what 
would be useful RowKeys for Julie Lerman the elder (that’s me) and 
Julie Lerman the younger? A GUID will certainly do the trick for 
identity, but it does nothing for searches or sorting. In this case, a 
combination of values would probably be best.

What else diff erentiates us? We live on opposite ends of the United 
States, but locations can change so that’s not useful for a key. Certainly 
our date of birth is diff erent (by more than 20 years) and that’s a static 
value. But there’s always the chance that another Julie Lerman 
with my birth date exists somewhere in the world and could land 
in my database—highly implausible, but not impossible. Aft er all 
of the deliberation I might go through, birth date may still not be 
a value on which my application is searching or sorting. So in this 
case, RowKey might not be part of queries, and a plain-old GUID 
would suffi  ce. You’ll have to make these kinds of decisions for all 
of your Windows Azure Tables.

Th ere’s much more to learn about defi ning keys, and factors 
such as retrieving data, storing data, scalability and load balancing 
all come into play.

Figure 1 A Single Windows Azure Table Can Contain Rows 
Representing Similar or Different Entities

Contact Table

FirstName

LastName

Street

City

Region

Name

Price

Product

Address

Contact

Product Table

Windows Azure Tables live 
in the cloud, but for me they 

began in a fog.



19July 2010msdnmagazine.com

Rethinking Relationships
In a relational database, we rely on foreign keys and constraints to 
defi ne relationships. We certainly could defi ne a foreign key prop-
erty in a class that refers to another class, but there’s nothing in 
Windows Azure Table storage to enforce relationships. Your code 
will still be responsible for that.

Th is impacts how you perform queries and updates (including 
inserts and deletes) from tables. 

When querying, you can’t perform joins across tables. And when 
persisting data, you can’t have transacted commands that span 
partitions or tables. Th ere is, however, a mechanism for working 
with data in graphs, which is something I pointed out at the 
beginning of this column—you can store rows of varying schemas 
in a single table. 

If your application requires that users work with contacts and 
addresses together, you could store the addresses in the same table 
as the contacts. It would be critical to ensure that the addresses 
have the same PartitionKey—for example, “lerman_julie.” Also, 
the RowKey should contain a value that specifi es the type or kind 
of entity, such as “address_12345,” so you can easily diff erentiate 
between contact types and address types when querying. 

Th e common PartitionKey ensures that the rows will always 
stay together to take advantage of a feature called Entity Group 
Transactions (EGT). Th is allows a single transaction to carry out 
operations atomically across multiple entities as long as all the 
entities have the same PartitionKey value. One of the benefi ts of 
EGT with respect to related data is that you can perform a trans-
acted update on all the entities in a single transaction.

A Base of Understanding from Which to Learn More
Windows Azure Tables live in the cloud, but for me they began in 
a fog. I had a lot of trouble getting my head wrapped around them 
because of my preconceived understanding of relational databases. 
I did a lot of work (and pestered a lot of people) to enable myself 
to let go of the RDBMS anchors so I could embrace and truly 
appreciate the beauty of Windows Azure Tables. I hope my journey 
will make yours shorter.

Th ere’s so much more to learn about Windows Azure Table 
services. Th e team at Microsoft  has some great guidance in place on 
MSDN. In addition to the PDC09 video mentioned earlier, check 
this resource page on the Windows Azure Storage team blog at 
blogs.msdn.com/windowsazurestorage/ archive/2010/03/28/windows-azure-storage-
resources. Th e team continues to add detailed, informative posts to the 
blog, and I know that in time, or even by the time this column is pub-
lished, I’ll fi nd answers to my myriad questions. I’m looking forward to 
providing some concrete examples in a future Data Points column. 

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives 
in the hills of Vermont. You can fi nd her presenting on data access and other 
Microsoft  .NET topics at user groups and conferences around the world. Lerman 
blogs at thedatafarm.com/blog and is the author of the highly acclaimed book, 
“Programming Entity Framework” (O’Reilly Media, 2009). Follow her on 
Twitter.com: julielerman.

THANKS to the following technical experts for reviewing this article: 
Brad Calder and Jai Haridas

www.teoinnovations.com
www.steema.com
www.msdnmagazine.com
http://blogs.msdn.com/windowsazurestorage/archive/2010/03/28/windows-azure-storage-resources
http://blogs.msdn.com/windowsazurestorage/archive/2010/03/28/windows-azure-storage-resources
www.Twitter.com:julielerman


msdn magazine20

OFF ICE  ADD- INS

3 Solutions for 
Accessing SharePoint 
Data in Offi ce 2010

Millions of people use the Microsoft  Offi  ce client applications 
in support of their daily work to communicate, scrub data, crunch 
numbers , author documents, deliver presentations and make busi-
ness decisions. In ever-increasing numbers, many are interacting 
with Microsoft  SharePoint as a portal for collaboration and as a 
platform for accessing shared data and services. 

Some developers in the enterprise have not yet taken advantage 
of the opportunity to build custom functionality into Offi  ce 
appli cations—functionality that can provide a seamless, integrated 
experience for users to directly access SharePoint data from within 
familiar productivity applications. For enterprises looking at ways 
to improve end-user productivity, making SharePoint data available 
directly within Offi  ce applications is a signifi cant option to consider.

With the release of SharePoint 2010, there are a number of new 
ways available to access SharePoint data and present it to the Offi  ce 
user. Th ese range from virtually no-code solutions made possible 

Donovan Follette and Paul Stubbs

via SharePoint Workspace 2010 (formerly known as Groove), 
direct synchronization between SharePoint and Outlook, the new 
SharePoint REST API and the new client object model. Just as in 
Microsoft  Offi  ce SharePoint Server (MOSS) 2007, a broad array of 
Web services is available in SharePoint 2010 for use as well. 

In this article, we’ll describe a couple of no-code solutions and 
show you how to build a few more-complex solutions using these 
new features in SharePoint 2010.

External Data Sources
Let’s start by taking a quick look at the SharePoint list types you 
can employ as data sources. 

One particularly useful data source is an external list that displays 
data retrieved via a connection to a line-of-business (LOB) system. 
MOSS 2007 let you to connect to LOB data using the Business 
Data Catalog (BDC), which provided read-only access to back-end 
systems. SharePoint 2010 provides Business Connectivity Services 
(BCS), which is an evolution of the BDC that supports full read/
write access to your LOB data. 

Why would you want to bring LOB data into SharePoint? 
Consider the use case where you have a customer relationship 
management (CRM) system that only a limited number of people 
in the organization can access directly. However, there’s a customer 
table in the database with name and address data that could be 
used by many others if it were available. In real-life, you prob-
ably end up with users copying this information from various 

This article discusses:
• Using external data sources

• Building a Word add-in

• Using the client object model

• Web services as social services

Technologies discussed:
Offi ce 2010, SharePoint 2010, Windows Communication Foundation



21July 2010msdnmagazine.com

non- authoritative sources and pasting it into 
their Offi  ce documents. It would be better 
to access this customer data from the au-
thoritative CRM system and expose it in 
SharePoint as an external list that Office 
clients can access. 

SharePoint Designer 2010 is the tool 
used for configuring access to a LOB 
system and making its data available in a 
SharePoint external list. Th ere are a couple steps 
required to do this. 

Th e fi rst step is to create a new External 
Content Type (ECT). Th e ECT contains 
metadata describing the structure of the 
back-end data, such as the fi elds and CRUD 
methods that SharePoint will use to interact 
with it. Once the ECT has been created, an 
external list can be generated from it on 
any site within SharePoint. External lists 
look and act like any other standard list 
in SharePoint, but the external list data is 
not stored in SharePoint. Instead, it’s retrieved via the ECT when 
accessed by an end user.

SharePoint Designer includes default support for connecting to 
external data sources including SQL Server, Windows Commu-
nication Foundation (WCF) and the Microsoft  .NET Framework. 
Th erefore, an ECT can be easily created for connecting to any SQL 
Server database table or view, WCF service or Web service. Custom 
.NET solutions can be built in Visual Studio 2010 using the new 
SharePoint 2010 Business Data Connectivity Model project template. 

For the purposes of this article, the SQL Server data source type 
was used to create an ECT for a database table. Th en the ECT 
was used to create an External List. Figure 1 shows the resulting 
“Customers From CRM” ECT aft er completing the confi guration 
in SharePoint Designer. 

Th ere are a couple things to call out here. First, notice in the 
External Content Type Information panel that the Offi  ce Item Type 
property value is set to Contact. During the confi guration process, 
you can map the external data fi elds to a corresponding Offi  ce item 
type like Contact. Th is isn’t a requirement, but because the name 
and address data from the CRM database can be mapped nicely to 
an Outlook Contact, this designation was chosen. You’ll be able to 
use the result of this confi guration option in Outlook later. 

Second, notice in the External Content Type Operations panel 
that full CRUD methods have been enabled for this ECT. Th is was 
due to the selections made in the confi guration wizard. However, 
there certainly may be business reasons to limit the LOB system 

operations to read-only. In that case, you can simply select the Read 
List and Read Item operations during confi guration. Th ese are the 
only two operations required to create an ECT.

Once the ECT is created, it’s a simple step to create an external 
list from it. You can do this by creating a new external list from 
within SharePoint or SharePoint Designer. 

SharePoint Standard Lists 
Of course, you can employ standard SharePoint lists to display 
business data. For example, say your department manages training-
course content. You maintain two SharePoint lists: Course Cate-
gory and Course. Th ese lists contain the course information that 
employees on other teams use to create customer correspondence, 
brochures or advertising campaigns. So the data is maintained by 
a small team, but must be readily available for use by many people 
across the company.

SharePoint 2010 has a new capability whereby lookups form relation-
ships between lists. When creating a new column on a list, one of the 
options is to make the column a lookup type, then indicate another 
list within the site as its source. SharePoint supports single-value 
lookups for one-to-many relationships or multi-value lookups for 
many-to-many relationships. If you choose, SharePoint will also 
maintain referential integrity between the lists supporting restricted 
or cascading deletes. Th is provides a number of options in how 
you set up and use lists in SharePoint. 

Going back to our example, you could easily create a Course list 
lookup column named Category that’s sourced from the Course 
Category list as shown in Figure 2. 

Bringing SharePoint List Data to Offi ce
So far, we’ve looked at how to surface external data as SharePoint 
lists using the new BCS features in SharePoint 2010. Users can 
access the data via the browser on a PC or a mobile device, but 
users will probably appreciate the rich experience of the full Offi  ce 

Figure 1 ECT Confi guration for Accessing External CRM Data

SharePoint Designer 2010 
is the tool used for confi guring 

access to a LOB system.

www.msdnmagazine.com


msdn magazine22 Offi ce Add-Ins

client application. Let’s now turn our attention to using the Share-
Point list data on the client in two ways. First, we’ll see how you 
can access data without writing any code by employing SharePoint 
Workspace and Outlook.

When developing our sample CRM solution, there are two 
Connect & Export buttons in the SharePoint ribbon for the external 
customers list: Sync to SharePoint Workspace and Connect to 
Outlook (see Figure 3). If SharePoint Workspace 2010 is installed 
on the client computer, Sync to SharePoint Workspace lets you 
synchronize lists and document libraries to the client with a single 
click. A local cached copy of the content is then available to the user 
in SharePoint Workspace whether the user is online or offl  ine. When 
the user is in an offl  ine state and modifi es a list item or document 
and saves it locally, the list item or document will be synchronized 
with SharePoint automatically when the user is back online again. 

Th is is a no-code-required solution. Data is made accessible in 
the SharePoint Workspace client application shown in Figure 4. 
And because full CRUD methods were defi ned in the ECT, any 
changes made to the customer data in SharePoint Workspace will 
be updated in the CRM database as well.

Because we mapped the CRM database 
fi elds to the Contact Offi  ce item type during 
ECT confi guration, SharePoint can provide 
our external list data to Outlook as native 
Contact Items. By clicking the Connect to 
Outlook button on the ribbon, SharePoint 

will synchronize this external list directly 
to Outlook. Again, no code required, with 
SharePoint data landing in the Offi  ce client.

Using the REST API
No-code solutions, such as those enabled 
through SharePoint Workspaces and 
Outlook list connectivity, are great, but there 
are some user experiences that require a 
more-customized solution. To accommo-
date these, we need to provide access to the 
list data in the Offi  ce applications in a way 
that permits us to further tailor the solution.

Possibly one of the easiest ways for a devel-
oper to access SharePoint list and doc u ment 
library data is via the new REST API (listdata.
svc). Most of the data in SharePoint is exposed 
as a RESTful endpoint. Th e standard location 
for SharePoint services is _vti_bin, so if you 
simply type into your browser the URL to 
your site and append /_vti_bin.listdata.svc, you 

will get back a standard ATOM services document that describes the 
collections available on the site (see Figure 5). 

Notice that the Course and CourseCategory lists are present. 
By further appending /Course to the URL, you can retrieve all the 
courses in the list or you can retrieve any one specifi c course by 
appending a number. For example, this will return the third course: 

http://intranet.contoso.com/sites/SPC/_vti_bin/listdata.svc/Course(3)

You can do more advanced queries by appending the follow-
ing property fi lter: 

?$filter=startswith(propertyname,'value') 

But an advanced query that’s important here is one that can return 
the Courses with their associated CourseCategory data. By appending 
the following to the site URL, you can retrieve the combined structure 
of Course and CourseCategory in a single payload:

/_vti_bin.listdata.svc/Course?$expand=Category 

You’ll see this implemented in a Word add-in in the next section.

Building a Word Add-In 
Once you know how to leverage the REST APIs to acquire access to 
the data, you can surface the data in the client applications where 
users have a rich authoring experience. For this example, we’ll build 
a Word add-in and present this data to the user in a meaningful 
way. This application will have a dropdown list for the course 
categories, a listbox that loads with courses corresponding to the 
category selection and a button to insert text about the course into 
the Word document. 

In Visual Studio 2010, create a new Office 2010 Word add-in 
project in C#. 

Figure 3 Connect & Export Options in the SharePoint Ribbon

Figure 2 Using a Lookup List to Source Course Category Data

You can employ standard 
SharePoint lists to display 

business data.



Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and 
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12   1 4/9/10   2:27 PM

www.infragistics.com/wow


msdn magazine24 Offi ce Add-Ins

Now add a new service data source. On the Add Service Reference 
panel in the wizard, enter the URL for your SharePoint site and 
append /_vti_bin/listdata.svc to it. For example:

http://intranet.contoso.com/_vti_bin/listdata.svc

Aft er entering the URL, click Go. Th is retrieves the metadata 
for the SharePoint site. When you click OK, WCF Data Services 
will generate strongly typed classes for you by using the Entity 
Framework. Th is completely abstracts away the fact that the data 
source is SharePoint or an OData producer that provides data via 
the Open Data Protocol. From this point forward, you simply work 
with the data as familiar .NET classes.

For the UI, you will create a custom task 
pane, which provides a UI in Offi  ce applica-
tions that can be docked on the top, bottom, 
left  or right of the application. Task panes can 
have Windows Forms controls added to them, 
including the Windows Presentation Founda-
tion (WPF) user control that will be used here. 

Add a WPF user control to the project 
using the Add New Item dialog and name 
it CoursePicker. When the designer opens, 
replace the Grid element with the XAML snip-
pet shown in Figure 6. Th is simply adds the 
ComboBox, Button and ListBox and sets some 
properties. You will add a couple events later.

Open the CoursePicker.xaml.cs fi le. Imme-
diately following the namespace, you’ll add two 
using statements, one for your service reference, 
ServiceReference1, and one for System.Net: 
  namespace Conf_DS {
    using ServiceReference1;
    using System.Net;

In the CoursePicker Class, the fi rst order 
of business is to instantiate the data context 

object. Here, you pass in the URL to your site, again appended by 
the _vti_bin/listdata.svc designation: 

public partial class CoursePicker : UserControl {
  Office2010DemoDataContext dc = new Office2010DemoDataContext(
    new Uri("http://intranet.contoso.com/sites/spc/_vti_bin/listdata.svc"));

Next you’ll have a List class-level variable to cache the retrieved 
course items and save round-trips to the server:

List<CourseItem> courses = null;

Th e code to retrieve the Courses and CourseCategory data is 
in the OnInitialized override method. First, you designate your 
logged-in credentials to pass to the server. Th en the course categories 
are retrieved via the data context object and bound to the category 

ComboBox. Finally, using the expand option, 
courses are returned with their associated 
category and loaded into the courses list 
object. Th is will cache the courses locally 
for better performance: 
  protected override void OnInitialized(EventArgs e) {
    dc.Credentials = CredentialCache.  
  DefaultCredentials;

    // Load Category dropdown list
    cboCategoryLookup.DataContext =  
      dc.CourseCategory;
    cboCategoryLookup.SelectedIndex = 0;

    // To cache data locally for courses 
    // Expand to retrieve the Category as well.
    courses = dc.Course.Expand("Category").ToList();

    base.OnInitialized(e);
  }

Now you need to add a couple events. 
Return to the CoursePicker designer and 
double-click the button to create the button 
click event. Next, click on the ComboBox 
and in the properties menu, click the Events 
tab and double-click the SelectionChanged Figure 5 ATOM Services Document

Figure 4 Accessing External List Data in a SharePoint Workspace



Word Processing Components 
for  Windows Forms & ASP.NET www.textcontrol.com

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0

WORD PROCESSING
COMPONENTS

( WHAT YOU SEE IS WHAT YOU GET )

WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

Untitled-8   1 6/3/10   1:04 PM

http://www.textcontrol.com


msdn magazine26 Offi ce Add-Ins

event. Add code to your SelectionChanged event handler so it 
looks like this:

private void cboCategoryLookup_SelectionChanged(
  object sender, SelectionChangedEventArgs e) {

  courseListBox.DataContext =
    from c in courses
    where c.Category.CategoryName == 
      cboCategoryLookup.SelectedValue.ToString()
    orderby c.CourseID
    select c;
}

Here, a simple LINQ query searches the courses list object (the 
one loaded with data retrieved using the expand option) to fi nd 
all the courses that have a category name that matches the name of 
the course category selected in the ComboBox. It also orders the 
results to provide a clean user experience. 

Finally, add code to the button event handler to cast the selected 
listbox item into a CourseItem object.  Th en you take the various 
data elements you want to present to the user and place them in 
the document at the location of the insertion point:

private void button1_Click(
  object sender, RoutedEventArgs e) {

  CourseItem course = 
    (CourseItem)courseListBox.SelectedItem;
  Globals.ThisAddIn.Application.Selection.InsertAfter(
    String.Format("{0}: {1} \n{2}\n", course.CourseID, 
    course.Name, course.Description));
}

And that’s it—really simple code for accessing the data in 
SharePoint via WCF Data Services.

Now open the ThisAddIn.cs file. This is the main entry point 
for all add-ins for Office. Here you add the code to instantiate 
the task pane:

private void ThisAddIn_Startup(
  object sender, System.EventArgs e) {

  UserControl wpfHost = new UserControl();
  ElementHost host = new ElementHost();
  host.Dock = DockStyle.Fill;
  host.Child = new CoursePicker();
  wpfHost.Controls.Add(host);
  CustomTaskPanes.Add(
    wpfHost, "Training Courses").Visible = true;
}

Th e CoursePicker WPF user control can’t be directly added to 
the custom task pane objects collection. It must be hosted in an 
ElementHost control, which provides the bridge between WPF con-
trols and Windows Forms controls. Notice that the CoursePicker 
object is added as a child of the ElementHost object and then 
the ElementHost object is added to the custom task pane object 
collection. An Offi  ce application can have more than one custom 
task pane installed and available to the user at any given time, 

so the task pane for this add-in will just be one in the collection. 
Figure 7 shows the completed add-in.

With the data appearing in the Office application, you can 
take the solution further by adding code that interacts with the 
Word APIs. For example, you can add code so that when a user 
selects a course, the information is inserted and formatted in 
the document. The Office application APIs are rich and allow 
you to add more features to your custom solution that can 
make users even more productive. Next, we’ll see an example 
of this with Word content controls connected to a client-side 
SharePoint object model.

Using the Client Object Model
Using the REST APIs to gain access to the data is one among a few 
options available to you. For example, there are also three new APIs 
available for SharePoint 2010 that provide a consistent program-
ming model across the JavaScript, .NET managed applications and 
Silverlight clients. Th ese three client object models interact with 
SharePoint using a subset of the server object model capabilities 
and essentially interoperate with SharePoint at the site collection 
level and below: webs, lists, listitems, content types, fields and 
external lists. If you’re familiar with the server object model, you’ll 
be familiar with the client object model. 

To demonstrate using the client object model, we’ll use the exter-
nal list containing the CRM customers to build a document-level 
Word add-in where the action pane is loaded with the customers. 
This is a case where you’ll need to use the client object model 
because the List Data Service doesn’t provide access to external 
lists. In this example, the user can select a customer and insert his 
name and address information into content controls in a quote 
document template. 

Th e previous Course and Category example was an application-
level add-in. An application-level Word add-in will be present every 
time Word is started. Document-level add-ins, however, are bound 
to a document and will only load if a document of a certain type is 

<StackPanel>
  <ComboBox 
    Name="cboCategoryLookup" Width="180" Margin="5" 
    HorizontalAlignment="Center" IsEditable="False" 
    ItemsSource="{Binding}"    
    DisplayMemberPath="CategoryName" 
    SelectedValuePath="CategoryName" />
  <Button Name="button1" 
    Content="Insert Course Information" Margin="5" />
  <ListBox Name="courseListBox" ItemsSource="{Binding}">
    <ListBox.ItemTemplate>
      <DataTemplate>
        <StackPanel>
          <StackPanel Orientation="Horizontal">
            <TextBlock Text="{Binding Path=CourseID}" 
              FontWeight="Bold" />
            <TextBlock Text=": " FontWeight="Bold" />
            <TextBlock Text="{Binding Path=Name}" />
          </StackPanel>
          <TextBlock Text="{Binding Path=Description}" 
            Margin="5 0 0 0" />
        </StackPanel>
      </DataTemplate>
    </ListBox.ItemTemplate>
  </ListBox>
</StackPanel>

Figure 6 Word Add-In UI Markup

One of the easiest ways 
to access SharePoint list and 
document library data is via 

the new REST API.



©2000-2010 Newegg Inc. All rights reserved. Newegg is not responsible for errors 
and reserves the right to cancel orders arising from such errors. All third party logos are the ownership of the respective owner.

ONCE YOU KNOW, YOU NEWEGG.®

Follow us on:
business SM

Save up to $100 on Windows Server Solutions!

Go to:
www.neweggbusiness.com/msserver

Windows Small Business Server 2008
Enhance productivity, access your business desktop virtually anytime, anywhere.

Windows Small Business Server 2008 delivers a range of features and capabilities for small 
businesses. Business owners and employees will benefi t from built-in antivirus and anti-
spam protection, integration with Microsoft®

Offi ce Live Small Business and Windows SharePoint® Services 3.0, and support for Windows 
Mobile® devices. IT managers and technology consultants will appreciate more fl exible and 
costeffective licensing, a more secure infrastructure, and being able to run Microsoft SQL 
Server® 2008 Standard Edition for Small Business and Windows Server 2008 Standard 
technologies on a second hardware server (with SBS Premium Edition).

Designed for Small Business

Standard

Premium

Line-of-Business Application Platform

Windows Server 2008 Standard Technologies

Microsoft Exchange Server 2007 Standard Edition

Windows SharePoint Services 3.0

Windows Server Update Services 3.0

Microsoft ForefrontTM Security for Exchange Server 1, 3

Integration with Offi  ce Live Small Business 2

Intel® SR1630HGP 1U Barebone Server
Microsoft Windows Server 
Standard 2008 32Bit/x64

Intel® SR1630HGP 1U Barebone Server
Microsoft Windows Small Business Server 
2008 SP2 Standard Edition

Includes everything from SBS 2008 Standard, plus:

Windows Server 2008 Standard 4

Microsoft SQL Server 2008 Standard for

Small Business 5

Your Price: $1079.98
Combo Discount: $100

Your Price: $1159.98
Combo Discount: $100

Untitled-1   1 6/11/10   10:39 AM

http://www.neweggbusiness.com


msdn magazine28 Offi ce Add-Ins

opened. In this case, the external customers list 
will only be presented to the user when working 
on a quote document. 

In Visual Studio, start by creating a new Word 
2010 document project. In the wizard, you’ll 
need to select either a default document or a 
document that you’ve already saved. In my case, 
I used a quote document I had already saved. 
Th e document opens inside Visual Studio and 
Word becomes the document designer. 

You can use the toolbox to place controls 
directly on the document surface as you would 
a Windows Forms application. Here you add 
Word content controls for the name and address information. 
Th ese content controls will be populated with data from the user’s 
customer selection at run time. 

To add a content control to the document, select the text on the 
document that you want to wrap in the content control. Th en drag 
a RichTextContentControl from the Word Controls in the tool-
box and drop it on the selected text. Th en provide a Name for the 
control and a Text value in Properties. Do this for customer and 
company name, address, city and customer ID so your document 
looks like Figure 8.

Because the client object model does not provide strongly typed 
data from the server, you need to add a Customer class to the project. 
Th e Customer class will be used to map data returned from the 
client object model: 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CSOM_Quote {
  public class Customer     {
    public string CustomerID { get; set; }
    public string CompanyName { get; set; }
    public string ContactName { get; set; }
    public string Address { get; set; }
    public string City { get; set; }
  }
}

To use the client object model you need 
to reference Microsoft .SharePoint.Client 
and Microsoft .SharePoint.Client.Runtime. 

As with the previous example, data retrieval 
takes place in the OnIntitialized override 
method. Th ere are a couple of major diff erences 
between coding against the client object model 
and WCF Data Services. First, the client object 
model expects that you have familiarity with 
SharePoint and its structure. With WCF Data 
Services, that’s abstracted away and you work 
with the data only. Second, with the client 
object model, the returned data is not 
strongly typed. You’re responsible for getting 
the data into objects that you can use for 
LINQ queries and data binding. 

Th e data access code is shown in Figure 9. 
Th e client context is the central object here. 
Pass the site URL to create a new instance of 

the Client Context. Th en you can start creating 
SharePoint objects using the following steps: 
1. Create a site
2. Create a collection of site lists
3. Get a list with a specifi c name
4. Get all the items in the list
5. Load the query into the context
6. Execute the query

Before calling the ExecuteQuery method, all 
the previous statements are queued and then 
only sent to the server when execute query is 
called. Th is way, you’re in control of the band-
width and payloads. Once the query returns 

with its results, the remaining code maps the data into a custom-
ers list object that can be bound to the customer listbox control.  

A WPF user control is used for this example as well. Because 
the XAML is similar to the previous example, it isn’t shown here. 
However, the code to instantiate a document-level action pane 
rather than an application-level task pane is a bit different, as 
you can see here: 

public partial class ThisDocument {
  private CustomersCRM CustomerActionPane = 
    new CustomersCRM();

  private void ThisDocument_Startup(
    object sender, System.EventArgs e) {

    ElementHost host = new ElementHost();
    host.Dock = DockStyle.Fill;
    host.Child = new CustomerPicker();
    CustomerActionPane.Controls.Add(host);
    this.ActionsPane.Controls.Add(CustomerActionPane);
  }
...

Notice that the customer picker WPF user control is added to 
the ElementHost, the ElementHost object is added to the customer 
action pane controls collection, and then the customer action pane 
is added to the actions pane controls collection. 

Figure 7 The Word Add-In at Work

Figure 8 Creating the Quote Document



Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate  and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software 
requirements into customized 
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF  technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way. 

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1  12/2/09  12:51 PM  Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com


msdn magazine30 Offi ce Add-Ins

Th e last step is to add the button click event to populate the Word 
content controls with the appropriate name and address information, 
as shown in Figure 10. 

First, you cast the selected listbox item to a customer object. 
Then data from the customer object is used to populate the 
content controls. Th e results will look like Figure 11. 

Web Services as Social Services
So far you’ve seen a number of ways you can access SharePoint data 
from Offi  ce client applications. Th e fi nal technique we’ll look at is 
using Web services. SharePoint off ers Web services as the primary 
way to access SharePoint data remotely. Web services in SharePoint 
2010 gives you access to nearly all of the functionality in SharePoint 
Server. Unlike some of the other data technologies you’ve seen, such 
as REST and the client object model, Web services covers both ac-
cessing data and accessing administrative functionality. 

All of the Web services you love are still in there, such as the 
Lists.asmx and Search.asmx services. SharePoint Web services are 
implemented as ASP.NET Web services with the .asmx extension, 
and most of the new services in SharePoint 2010 are also written 
as ASMX services. This was mainly done to have the broadest 
compatibility with other products and tools. 

A new focus of SharePoint Web services is social services. Th e 
center of all social applications is the user. SharePoint has a User-
Profi leService that allows you to access all of the profi le information 
about a user. UserProfi leService includes the standard properties 
such as name and address, but also includes other properties such 

as hobbies, skills, schools and colleagues. Colleagues (or friends 
as they’re called in other public social sites) are a key feature in the 
SharePoint social structure. 

Another important aspect of social applications is what people 
think about content they encounter. SharePoint has a SocialData-
Service that enables users to tag, rate and comment on data, docu-
ments and pages within your sites. 

Th e third important social aspect of SharePoint is publishing 
activities and subscribing to activities that your colleagues gen-
erate. SharePoint provides an ActivityFeed and APIs to publish 
activities as a feed. 

Because this isn’t an article on the new social features in 
SharePoint, we won’t go into more detail on these, but they do 
provide some important context for the examples later in this 
article. See the SharePoint Developer Center (msdn.microsoft.com/

sharepoint) or the “Managing Social Networking with Microsoft 
Office SharePoint Server 2007” white paper (technet.microsoft.com/ 

library/cc262436(offi ce.12)) for more details.

Extending Outlook with Web Services
We’ve seen how SharePoint and Offi  ce provide a lot of choices 
when you’re determining the best way to access data for use in 
Offi  ce applications. Another way includes consuming SharePoint 
Web services. In this example, we’ll create a new Outlook Ribbon 
that lets you pull all of your SharePoint colleagues into Outlook 
as contact items. You’re even able to surface the user’s profile 
picture into Outlook, just as you’re accustomed to seeing with 
contacts provided by Microsoft  Exchange.

Start by creating a new Outlook add-in in Visual Studio 2010. 
We’re going to write it in C#, but you could use Visual Basic if you 
prefer. In previous versions, Visual Basic had a slight advantage 
with support for features such as optional parameters, but C# now 
supports them, too. 

private void button1_Click(
  object sender, RoutedEventArgs e) {
  Customer customer = 
    (Customer)customerListBox.SelectedItem;

  Globals.ThisDocument.wccContactName.Text = 
    customer.ContactName;
  Globals.ThisDocument.wccCompanyName.Text = 
    customer.CompanyName;
  Globals.ThisDocument.wccAddress.Text = 
    customer.Address;
  Globals.ThisDocument.wccCity.Text = 
    customer.City;
  Globals.ThisDocument.wccCustomerID.Text = 
    customer.CustomerID;
}

Figure 10 Adding the Button Click Event 
to Word Content Controls

Take the solution further 
by adding code that interacts 

with the Word APIs.

protected override void OnInitialized(EventArgs e) {
  SPClientOM.ClientContext context = 
    new ClientContext("http://intranet.contoso.com/sites/spc");
  SPClientOM.Web site = context.Web;
  SPClientOM.ListCollection lists = site.Lists;
  var theBCSList = lists.GetByTitle("Customers");
  SPClientOM.CamlQuery cq = new SPClientOM.CamlQuery();
  IQueryable<SPClientOM.ListItem> bcsListItems = 
    theBCSList.GetItems(cq);
  bcsList = context.LoadQuery(bcsListItems);
  context.ExecuteQuery();

  var bcsCustomerData = 
    from cust in bcsList
    select new Customer {
      CustomerID = cust.FieldValues.ElementAt(1).Value.ToString(),
      ContactName = cust.FieldValues.ElementAt(2).Value.ToString() 
        + “ “ 
        + cust.FieldValues.ElementAt(3).Value.ToString(),
      CompanyName = cust.FieldValues.ElementAt(4).Value.ToString(),

      Address = cust.FieldValues.ElementAt(5).Value.ToString(),
      City = cust.FieldValues.ElementAt(6).Value.ToString(),  };

  foreach (var x in bcsCustomerData)  {
    Customer tempCustomer = new Customer();
    tempCustomer.CustomerID = x.CustomerID;
    tempCustomer.CompanyName = x.CompanyName;
    tempCustomer.ContactName = x.ContactName;
    tempCustomer.Address = x.Address;
    tempCustomer.City = x.City;

    customers.Add(tempCustomer);
  }

  customerListBox.DataContext = customers;
  base.OnInitialized(e);
}

Figure 9 CRM Add-In Data Access Code

http://msdn.microsoft.com/sharepoint
http://msdn.microsoft.com/sharepoint
http://technet.microsoft.com/library/cc262436(office.12)
http://technet.microsoft.com/library/cc262436(office.12)


Untitled-1   1 4/28/10   11:21 AM

www.aspose.com


msdn magazine32 Offi ce Add-Ins

Th e Ribbon provides a consistent and easy 
way to interact with all of the Offi  ce applica-
tions. Outlook 2010 now includes a Ribbon 
for the main screen. In this example, you’ll 
add a new Ribbon here. Visual Studio 2010 
makes it easy to create Offi  ce Ribbons with 
a visual Ribbon Designer. You can simply 
drag controls from the toolbox on the left  
and drop them onto the design surface. 

In this example, you just need to set some 
properties, such as the label for the tab and 
group. Next add a button control onto the 
surface. Once you have a button added to 
your Ribbon group, you can set the size to 
large and set an image for the button. Your 
Ribbon will look similar to Figure 12.

Th e last thing to do is set the property 
to determine when the Ribbon will be dis-
played. By default, the Ribbon is displayed 
on the Mail Explorer. Th is is the window 
you see when you open a mail item. In this 
sample, you want the Ribbon to display 
on the main screen. Select the Ribbon and set the RibbonType 
property to Microsoft .Outlook.Explorer. You can see there are a 
number of places where the Ribbon may appear, including the 
Mail and Contact Explorers. 

Next, double-click on your Ribbon button to create a code- 
behind click event handler. Th is is the event you’ll use to create 
the Outlook contact.

You’re now ready to add the code that creates a contact in 
Outlook. Visual Studio 2010 makes this easy to do. I find it easier 
to break the problem into multiple smaller 
parts. First, you created the Outlook add-in, 
then you created the Ribbon. After each 
of these steps, make sure you press F5 to 
compile and run your application. Now 
you can create an Outlook contact using 
hard-coded values. After you verify that 
this is working, you can add the code that 
calls SharePoint. Again, at each step check 
that everything is working correctly before 
moving on to the next step. 

Figure 13 shows the code to create a new 
hard-coded contact. Th is uses the Create-
Item method to create a new ContactItem 
object. Th en you can set the properties of 
the ContactItem and call the Save method 
to commit the changes.

Th e only really challenging piece is that 
the way to set the contact picture is to call 
the AddPicture method, which takes a path 
to a picture on disk. This is problematic 
because you want to pull images from Share-
Point. You’ll see how to do this in the next 
section. Once you verify that the code works 

and a contact is created in Outlook, you’re ready to call SharePoint 
and add real contacts.

Employing User Profi le Service
UserProfileService is a SharePoint Web service you can use to 
access profi le information, including a list of your colleagues and 
their profile information. To use this service, start by adding a 
reference to your project. Because this is a Web service and not a 
WCF service, you need to click the advanced tab of the Add Service 

Figure 11 The CRM Add-In Within Word

Figure 12 Creating a New Outlook Ribbon



Untitled-6   1 6/9/10   11:48 AM

www.GCPowerTools.com/ActNow


Untitled-6   2 6/9/10   11:42 AM

www.GCPowerTools.com/ActNow


33July 2010msdnmagazine.com

dialog, then click the Add Web Service button. Th is opens the old 
Add Web Service dialog that you remember from Visual Studio 2005. 

Aft er you add the reference, you can add the code to retrieve 
your colleagues:

// Instantiate the Web service.
UserProfileService userProfileService = 
  new UserProfileService();

// Use the current user log-on credentials.
userProfileService.Credentials =
  System.Net.CredentialCache.DefaultCredentials;

This code creates an instance of the service and passes your 
current credentials to the service. Next, call the GetUserColleagues 
method passing the user that you want to retrieve colleagues for. 
Th is will return an array of ContactData objects:

ContactData[] contacts =
  userProfileService.GetUserColleagues(
  "contoso\\danj");

We can now loop through all of the ContactData objects that 
represent profi le data for the user’s colleagues in SharePoint. We 
retrieve the extended properties by calling the GetUserProfi leBy-
Name method, which returns an array of PropertyData that con-
tains key and value pairs for each colleague: 

// Add each Colleague as an Outlook Contact
foreach (ContactData contact in contacts) {
  // Get the users detailed Properties
  PropertyData[] properties =
  userProfileService.GetUserProfileByName(contact.AccountName);

  // Create a new Outlook Contact
  Outlook.ContactItem newContact =
    Globals.ThisAddIn.Application.CreateItem(
    Outlook.OlItemType.olContactItem);

Now we convert those key/value pairs into contact properties:
// Set the Contact Properties
newContact.FullName = contact.Name;
newContact.FirstName = 
  properties[2].Values[0].Value.ToString();
newContact.LastName = 
  properties[4].Values[0].Value.ToString();
newContact.Email1Address = 
  properties[41].Values[0].Value.ToString();
...

Finally, we grab the contact photo and save the new contact:
// Download the users profile image from SharePoint
SetContactImage(properties, newContact);

newContact.Save();

Th e last piece of the puzzle is retrieving the contact’s picture 
from SharePoint. One of the extended properties includes a path 
to a thumbnail of the user’s profi le picture. You need to download 
this picture to a temporary fi le on disk so that the Outlook API can 
add it to the ContactItem object: 

private static void SetContactImage(
  PropertyData[] properties, 
  Outlook.ContactItem newContact){

  // Download image to a temp file
  string userid = properties[16].Values[0].Value.ToString();
  string imageUrl = properties[15].Values[0].Value.ToString();
  string tempImage = string.Format(@"C:\{0}.jpg", userid);
  WebClient Client = new WebClient();
  Client.Credentials = CredentialCache.DefaultCredentials;
  Client.DownloadFile(imageUrl, tempImage);
  newContact.AddPicture(tempImage);
}

Th at’s it! Now you have an Outlook add-in Ribbon that calls 
SharePoint to pull social data into Outlook contacts. When you run 
the application, you’ll see a ContactItem populated with SharePoint 
data, including the user’s profi le information and image. 

Wrap Up
Now you’ve seen how easy it is to get data from SharePoint into 
Offi  ce clients. We’ve shown you a variety of options from no-code 
solutions to highly adaptable solutions using C# or Visual Basic. 

Employing WCF Data Services to access SharePoint list data 
provides a common pattern for .NET developers that’s quick and 
easy to implement. Th e client object model provides the means to 
access SharePoint external lists and opens a world of opportunities 
for bringing LOB data into Office. And, finally, SharePoint Web 
services enables the most fl exible access to data, but also requires 
a bit more commitment in terms of coding and testing. 

Making data in SharePoint available to users as lists is an important 
step as it enables a great experience in the browser. Taking it a step fur-
ther, you can leverage a variety of data access options to then bring the 
data into the Offi  ce applications that are familiar to users. Visual Studio 
2010 makes all of this much easier to build, debug and deploy. As you 
can see, these represent some of the new and important development 
capabilities you can take advantage of with the new product releases. 

More training, examples and information can be found 
online in the Office (msdn.microsoft.com/office) and SharePoint 
(msdn.micro soft.com/sharepoint) developer centers. 

DONOVAN FOLLETTE is a Microsoft  technical evangelist working with technologies 
including Active Directory, Lightweight Directory Services and Active Directory 
Federation Services. He now focuses on Offi  ce development and building integrated 
solutions with SharePoint 2010. Visit his blog at blogs.msdn.com/donovanf.

PAUL STUBBS is a Microsoft  technical evangelist who focuses on the information 
worker development community for SharePoint and Office, Silverlight and Web 
2.0 social networking. He’s authored three books about solution development with 
Offi  ce, SharePoint and Silverlight. Read his blog at blogs.msdn.com/pstubbs.

THANKS to the following technical expert for reviewing this article:
John Durant

Outlook.ContactItem newContact =
  Globals.ThisAddIn.Application.CreateItem(
  Outlook.OlItemType.olContactItem);

newContact.FirstName = "Paul";
newContact.LastName = "Stubbs";
newContact.Email1Address = "pstubbs@microsoft.com";
newContact.CompanyName = "Microsoft";
newContact.JobTitle = "Technical Evangelist";
newContact.CustomerID = "123456";
newContact.PrimaryTelephoneNumber = "(425)555-0111";
newContact.MailingAddressStreet = "1 Microsoft Way";
newContact.MailingAddressCity = "Redmond";
newContact.MailingAddressState = "WA";
newContact.AddPicture(@"C:\me.png");
newContact.Save();

Figure 13 Boilerplate Code to Create a Contact

SharePoint offers Web services 
as the primary way to access 
SharePoint data remotely.

www.msdnmagazine.com
http://msdn.microsoft.com/sharepoint
http://blogs.msdn.com/donovanf
http://blogs.msdn.com/pstubbs
http://msdn.microsoft.com/office


© 1987-2010 ComponentOne LCC.  All rights reserved.  iPhone and iPod are trademarks of Apple Inc.  All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-3   2 5/27/10   11:02 AM

www.componentone.com/here


ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

Untitled-3   3 5/27/10   11:02 AM

www.componentone.com/ajax


msdn magazine36

S H A RE POINT  SEC UR IT Y

Trim SharePoint Search 
Results for Better Security

Microsoft SharePoint search uses an account that usually 
has full read access across the repository to index its contents. So 
it’s important that when a user queries for some content, he should 
be restricted to view only the documents he has permission to see. 
SharePoint uses the access control list (ACL) associated with each 
document to trim out query results that users have no permission 
to view, but the default trimming provided by SharePoint (out-of-
box trimming) may not always be adequate to meet data security 
needs. In that case, you may want to further trim the results 
depending on an organization’s authentication structure. 

Th is is where the SharePoint custom security trimming infra-
structure is useful. SharePoint lets you implement business logic 
in a separate module and then integrate it into the workfl ow of the 

Ashley Elenjickal and Pooja Harjani

query processor that serves the queries. In the security trimming 
path, custom query trimming follows out-of-box security trimming. 
So the number of query results aft er custom trimming must be 
equal to or less than the number of documents recalled before 
registering the custom security trimmer (CST) assembly. 

Before delving into the CST architecture, we’ll provide a quick view 
of SharePoint search and the new claims authentication infrastructure. 

SharePoint Search Overview
At a high level, the search system can be divided into two discrete 
parts: the gatherer pipeline and the query processor pipeline. 
Gatherer Pipeline Th is part is responsible for crawling and 
indexing content from various repositories, such as SharePoint 
sites, HTTP sites, fi le shares, Lotus Notes, Exchange Server and so 
on. Th is component lives inside MSSearch.exe. When a request is 
issued to crawl a repository, the gatherer invokes a fi lter daemon, 
MssDmn.exe, to load the required protocol handlers and fi lters 
necessary to connect, fetch and parse the content. Figure 1 repre-
sents a simplifi ed view of the gatherer pipeline. 

SharePoint can only crawl using a Windows NTLM authentication 
account. Your content source must authorize the Windows account 
sent as part of the crawl request in order to access the document 
content. Th ough claims authentication is supported in SharePoint 
2010, the gatherer is still not a claims-aware application and will 
not access a content source that has claims authentication only.
Query Processor Pipeline In SharePoint 2010, two of the 

This article discusses:
• Claims authentication in SharePoint 2010

• Deploying a custom security trimmer

• Using PowerShell cmdlets

• Troubleshooting

Technologies discussed:
SharePoint, custom security trimmer

Code download available at:
code.msdn.microsoft.com/mag201007Search

http://code.msdn.microsoft.com/mag201007Search


37July 2010msdnmagazine.com

most important changes in the query processor pipeline are in 
its topological scalability and authentication model. In Microsoft  
SharePoint Server (MOSS) 2007, the query processor (search query and 
site settings service, referred to as search query service from here on) 
runs in the same process as Web front end (WFE), but in SharePoint 
2010 it can run anywhere in the farm—and it also runs as a Web service. 

Th e WFE talks to the search query service through Windows 
Communication Foundation (WCF) calls. Th e search query service 
is now completely built on top of the SharePoint claims authentica-
tion infrastructure. Th is decouples SharePoint search from its tight 
integration with Windows authentication and forms authentication. 
As a result, SharePoint now supports various authentication models. 
Th e search query service trims the search results according to the 
rights of the user who issues the query. Custom security trimmers 
are called by the search query service aft er out-of-box trimming 
has completed. See Figure 2 for the various components involved 
when a query is performed.

Custom security trimming is part of the query pipeline, so we’ll 
limit this discussion to components of the query pipeline.

Claims Authentication in SharePoint 2010
A basic understanding of claims authentication support in 
SharePoint 2010 is required to implement custom trimming logic 
inside a CST assembly. In the claims authenticated environment, 
the user identity is maintained inside an envelope called a security 
token. It contains a collection of identity assertions or claims about 
the user. Examples of claims are username, e-mail address, phone 
number, role and so on. Each claim will have various attributes 
such as type and value. For example, in a claim the UserLogonName 
may be the type and the name of the user who is currently logged 
in may be the value.

Security tokens are issued by an entity called a security token 
service (STS). Th is is a Web service that responds to user authen-
tication requests. Once the user is authenticated, STS sends back 
a security token with all the user rights. STS can be configured 
either to live inside the same SharePoint farm or act as a relying party 
to another STS that lives outsides the farm: Identity Provider-STS 
(IP-STS) and Relying Party-STS (RP-STS), respectively. Whether 
you want to use IP-STS or RP-STS has to be carefully considered 
while designing SharePoint deployment. 

SharePoint uses the default claims provider shipped with 
the product in a simple installation. Even if you set up the farm 
completely using Windows authentication, when a query is issued, 
a search service application proxy will talk to STS to extract all the 
claims of the user in a security token. Th is token is then passed to 
the search query service through a WCF call.

Workfl ow of Custom Security Trimming
Th e workfl ow logic of a CST can be represented in a simple 
fl owchart as shown in Figure 3. 

As stated earlier, the search query service fi rst performs out-of- 
box security trimming and then looks for the presence of any CSTs 
associated with the search results. Th e association of a particular 
content source with a CST is done by defi ning a crawl rule for 
that specifi c content source. If the search query service fi nds any 

CST associated with any of the URLs in the search results, it calls 
into that trimmer. Trimmers are loaded into the same IIS worker 
process, w3wp.exe, in which the search query service is running. 

Once the trimmer is loaded, the search query service calls into 
the CheckAccess method implemented inside the trimmer with 
an out-of-box trimming result set associated with the crawl rule that 
you defi ned earlier. Th e CheckAccess method decides whether a 
specifi c URL should be included in the fi nal result set sent back to 
the user. Th is is done by returning a bit array. Setting a bit inside 
this array to either true or false will “include” or “block” the URL 
from the fi nal result set. In case you want to stop processing the 
URLs due to performance or some unexpected reason, you must 
throw a PluggableAccessCheckException. If you throw after 
processing a partial list of URLs, the processed results are sent 
back to the user. The search query service will remove all the 
unprocessed URLs from the fi nal result set.

Steps Involved in Deploying a 
Custom Security Trimmer
In a nutshell, there are fi ve steps involved in the successful deploy-
ment of a CST: 
1. Implement ISecurityTrimmer2 interface.
    a.  Implement Initialize and CheckAccess methods 

using managed code
    b.  Create an assembly signing fi le and include it as 

part of the project
    c.  Build the assembly
2. Deploy the trimmer into the Global Assembly Cache (GAC) 

of all the machines where a search query service is running.
3. Create a crawl rule for the content sources that you want to custom 

trim. You can do this from the Search Administration site.
4. Register the trimmer with the crawl rule using the Windows 

PowerShell cmdlet New-SPEnterpriseSearchSecurityTrimmer.

Figure 1 A Simplifed View of the SharePoint Gatherer Pipeline

MSSearch.exe

Gatherer

CONTENT 
REPOSITORIES

File Share

SharePoint
Sites

HTTP Sites

Exchange
Server

CATALOG/
INDEX

Protocol Handlers
& Filters

FILTER 
DAEMON –

MssDmn.exe

SharePoint can only 
crawl using a Windows NTLM 

authentication account.

www.msdnmagazine.com


msdn magazine38 SharePoint Security

5. Perform a full crawl of the content sources associated with the 
crawl rules that you created in step 3. A full crawl is required 
to properly update all of the related database tables. An incre-
mental crawl will not update the appropriate tables.

Implementing the Custom Security 
Trimmer Interface
MOSS 2007 and Microsoft  Search Server (MSS) 2008 sup-
ported custom security trimming of search results through the
 interface ISecurityTrimmer. This interface has two methods, Ini-
tialize and CheckAccess. Because of the architectural changes in 
SharePoint and the search system in the 2010 versions, both of these 
methods won’t work as they did in MOSS 2007. Th ey need to be 
re-implemented using the ISecurityTrimmer2 interface. As a 
result, if you try to register a MOSS 2007 trimmer in SharePoint 
2010, it will fail, saying ISecurityTrimmer2 is not implemented. 
Other changes from MOSS 2007 include:
Changes in the Initialize Method In MOSS 2007, one of the 
parameters passed was the SearchContext object. SearchContext was 
the entry point into the search system and it provided the search con-
text for the site or search service provider (SSP). Th is class has been 
deprecated in 2010. Instead, use the SearchServiceApplication class: 

void Initialize(NameValueCollection staticProperties, 
SearchServiceApplication searchApplication);

Changes in the CheckAccess Method In both MOSS 2007 
and SharePoint 2010, the search query service calls into the CST 
assemblies. In MOSS 2007, the CheckAccess method took only 
two parameters, but in SharePoint 2010, the search query service 
passes the user identity into CheckAccess using a third parameter 
of type IIdentity:

public BitArray CheckAccess(IList<String>documentCrawlUrls, 
IDictionary<String, Object>sessionProperties, IIdentity passedUserIdentity)

ISecurityTrimmer2::Initialize Method Th is method is called 
the fi rst time a trimmer is loaded into the search query service IIS 
worker process. Th e assembly will live for the duration of the worker 

process. Here's the signature of this method and a description 
of how it works:

void Initialize(NameValueCollection staticProperties, 
SearchServiceApplication searchApplication);

staticProperties–Th e trimmer registration Windows PowerShell 
cmdlet, New-SPEnterpriseSearchSecurityTrimmer, takes a param-
eter called “properties” (in MOSS 2007 this was called “confi gprops”) 
through which you can pass named value pairs separated by ~. Th is 
may be useful to initialize your trimmer class properties. 

For example: When passing “superadmin~foouser~poweruser~
baruser” to the New-SPEnterpriseSearchSecurityTrimmer cmdlet, 
the NameValueCollection parameter will have two items in the 
collection with keys as “superadmin” and ”poweruser” and values 
as “foouser” and “baruser,” respectively.

searchApplication–If your trimmer requires a deeper knowl-
edge about the search service instance and the SharePoint farm, 
use a searchApplication object to determine that information. 
To learn more about the SearchServiceApplication class, refer to 
msdn.microsoft.com/  library/ee573121(v=offi ce.14).
ISecurityTrimmer2::CheckAccess Method Th is implements 
all the trimming logic. Pay special attention to two aspects in this 
method: the identity of the user who issued the query, and the 
performance latency caused by a large returned query set. 

Following are the signature of this method and a description 
of how it works:

public BitArray CheckAccess(IList<String>documentCrawlUrls, 
IDictionary<String, Object>sessionProperties, IIdentitypassedUserIdentity)

documentCrawlUrls–Th e collection of URLs to be security 
trimmed by this trimmer.

sessionProperties–A single query instance is treated as one session. 
If your query fetches many results, the CheckAccess method is 
called multiple times. You can use this parameter to share values 
or to keep track of the URLs processed between these calls. 

passedUserIdentity–Th is is the identity of the user who issued the query. 
It’s the identity by which the code will allow or deny access to content.

Figure 2 Workfl ow of a Query Originating from the Search Center in a SharePoint Site

w3wp.exe

11. OOB Trimmed
Results

13. Final
Search
Results

9. Untrimmed Search Results8. Fetch Results

7.

10.

14.
12.

OOB
Security
Trimmer

Custom
Security

Trimmer(s)

w3wp.exe

6.
WCF
Call
with
User

Claims

WFE – w3wp.exe

5. Security Token4. Get Claims Token for the User

1.
Query – 

HTTP 
Get 

Request 2.

17.

3.

16. 15.18.

Search
Center

Web Part

Query
Object
Model

BROWSER
SEARCH CENTER

Search
Service

App Proxy

STS
Microsoft.

SharePoint.dll

Search
Service

App

Index
Services

MSSearch.exe

Search
Query
Service

http://msdn.microsoft.com/library/ee573121(v=office.14)


(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/07

US Headquarters 
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters 
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE 
United Kingdom

Asia / Pacific Headquarters 
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube    from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server    from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts    from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

BEST SELLER LEADTOOLS Recognition SDK    from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

BEST SELLER

Untitled-1   1 6/1/10   10:43 AM

http://www.componentsource.com


msdn magazine40 SharePoint Security

BitArray–You need to return a bit array equal to the number of 
items in documentCrawlUrls. Setting a bit inside this array to true 
or false will determine whether the URL at that position should be 
included or blocked from the fi nal result set sent back to the user.
UserIdentity Th e SharePoint 2010 search query engine is built 
upon the claims authentication model. Th e search query service 
will pass the query issuer’s claims though the IIdentity parameter. 
In order to get the user name of the user who issued the query, 
you must traverse through a collection of claims to compare the 
claim.ClaimType with the SPClaimTypes.UserLogonName. 

Th e following snippet of code extracts the user logon name from 
the claims token:

IClaimsIdentity claimsIdentity = (IClaimsIdentity)passedUserIdentity;

if (null != claimsIdentity)
{
  foreach (Claim claim in claimsIdentity.Claims)
  {
    if (claim == null)
      continue;
    if (SPClaimTypes.Equals(claim.ClaimType, SPClaimTypes.UserLogonName))
      strUser = claim.Value;
  }
}

You may need information about the type of authentication used 
at the site collection level to correctly call internal APIs. To identify 
if the user logged in using Windows authentication, look for the 
presence of ClaimsType.PrimarySid. Th e following code looks for 
the PrimarySid claim and then extracts the user name from it:

if (SPClaimTypes.Equals(claim.ClaimType, ClaimTypes.PrimarySid))
{
  // Extract SID in the format “S-1-5-21-xxxxx-xxxxx-xxx”
  strUser = claim.Value;
  // Convert SID into NT Format “FooDomain\BarUser”
  SecurityIdentifier sid = new SecurityIdentifier(strUser);
  strUser = sid.Translate(typeof(NTAccount)).Value;
}

For forms or other similar non-Windows authentication 
providers, look at the Claim.OriginalIssuer value inside the claim. 
For example, if the server is confi gured for forms authentication 
using the ASP.NET SQL Membership Provider, the Claim.Original-
Issuer will have the value "Forms:AspNetSqlMembershipProvider":

if (SPClaimTypes.Equals(claim.ClaimType, SPClaimTypes.UserLogonName))
{
  strUser = claim.Value;
  strProvider = claim.OriginalIssuer; // For AspNet SQL Provider value will be
                                      // "Forms:AspNetSqlMembershipProvider"
}

If the query is issued by an anonymous user, the value of the 
IIdentity.IsAuthenticated method will be false. In this case, 
claims Identity.Name will have the value "NT AUTHORITY\\
ANONYMOUS LOGON." 

As a final note on the user context, limit the use of the API 
WindowsIdentity.GetCurrent().Name to retrieve the user identity. 
Th is will always give the application pool identity under which 
search query service is running. System.Th reading.Th read.Current-
Principal.Identity will give you the same identity as the one passed 
to the CheckAccess method.
Performance Considerations Optimize the CheckAccess 
method to its fullest extent. If the query returns many results, the 
trimmer may get called multiple times. One of the common methods 
to take care of this situation is to keep track of the URLs processed 
inside the trimmer through the sessionProperties parameter. Once 
the method processes a certain number of result sets, it can throw a 
PluggableAccessCheckException. When this exception is thrown, 
the URLs processed up to that point are returned to the user. 

Custom Security Trimmer and System Logs
Code inside a trimmer can’t write to the system logs maintained at 
<drive>\ Program Files\Common Files\Microsoft  Shared\Web Server 
Extensions\14\LOGS. Th e trimmer must maintain its own logging 
mechanism for both debugging and auditing. Th e only exception to 
this is when the method throws the PluggableAccessCheckException. 
Th e message string specifi ed while throwing will be logged into the 
system log. Useful information that the search query service logs 

Figure 3 The Workfl ow Logic of a CST

Fetch Search Results

Trim Results According to User Rights

Trim Results if There Are Any Custom Security Trimmers

Yes

No

No

No

Yes

Yes

Query Request from the User

SQS – Process Query Request

SQS – Fetch Results from the Index

SQS – OOB Security Trimming

SQS – Is CST Already Loaded?

CST – Trim Search Results

SQS = Search Query Service

Send Trimmed Results Back to the User

SQS – Any CSTs Registered 
with the Matched Crawl Rules?

SQS – Any URLs in the Search Results
Match with Any of the Crawl Rules?

Load CST

The search query service 
trims the search results 

according to the rights of the 
user who issues the query.



Project3  12/16/09  11:55 AM  Page 1

www.nSoftware.com


msdn magazine42 SharePoint Security

to the fi le includes the number of documents that were security 
trimmed. For example, the following log entry suggests that a query 
passed two documents to the CST, but sent zero documents back 
to the user, which means the CST trimmed those two documents:

04/23/2010 18:13:48.67    w3wp.exe (0x116C)    0x02B4    SharePoint 
Server Search    Query Processor    dm2e    Medium    Trim results: 
First result position = '0', actual result count = '0', total docs found 
= '0', total docs scanned = '2'.    742d0c36-ea37-4eee-bf8c-f2c662bc6a45

Custom Security Trimmers and Alerts Th e SharePoint 
search service has a feature called alerts (available only in Windows 
authentication mode) that can push the changes in the query results 
to the user through e-mails. However, when an alert query is issued 
by the timer service, the search query service will strip out all the 
URLs associated with CSTs.

Assembly Signing Requirement On  fi nding the presence 
of a matching CST, the search query service calls into CST man-
agement code to load the specifi c assembly from the GAC. To do 
this, the assembly needs to be digitally signed. Refer to “Managing 
Assembly and Manifest Signing” (msdn.microsoft.com/library/ms247066) 
for ways to sign an assembly. Once the assembly is built, use the 
sn.exe tool to get the 64-bit hash known as a public key token. Th is 
token is needed at the time of trimmer registration.
Deployment of Custom Security Trimmer Th e CST 
assembly must reside in the GAC of each machine on which the 
search query and site settings service is running. Use Central 
Administration | System Settings | Services on Server to check the 
status of the search query and site settings service in each of the 
machines in the farm. If the service is started, you must import 
the CST to that machine. Don’t confuse the search query and site 
settings service with the machines that contain query components. 
Th e query component lives within MSSearch.exe to pull the results 
from the index. Th e search query and site settings service lives in 
its own IIS worker process of w3wp.exe.

SharePoint Cmdlets to Register, View and Delete CSTs
MOSS 2007 used the stsadm.exe command-line tool to register 
custom trimmers, but this tool is obsolete and not supported in 
SharePoint 2010. Instead, use Windows PowerShell cmdlets to reg-
ister, view and delete CSTs. An assembly should already be available 
in the GAC to register them. Here’s how to use them:

Registration–Use the New-SPEnterpriseSearchSecurityTrimmer 
to register your trimmer, using the assembly’s manifest data such as 
Version, Culture and PublicKeyToken. Th is example registers the 
trimmer to the search application named “search service application”:

New-SPEnterpriseSearchSecurityTrimmer -SearchApplication "Search 
Service Application" -TypeName "SearchCustomSecurityTrimmer.
CustomSecurityTrimmerTest, SearchCustomSecurityTrimmer, Version=14.0.0.0, 
Culture=neutral, PublicKeyToken=4ba2b4aceeb50e6d" -RulePath file://
elenjickal2/* -id 102 -Properties superadmin~foouser~poweruser~baruser

Th e cmdlet takes the crawl rule (RulePath), an integer value as the 
identity (id) of the trimmer, confi guration properties (properties) 

and TypeName, which consists of the manifest data as well as 
the name of the class that implements the interface. Cmdlet 
parameters are:

 • SearchApplication–Name of the search service application 
associated with the content source

 • TypeName–Th is consists of the manifest data such as Version, 
Culture and PublicKeyToken (it also points to the class that 
implements the interface; this will uniquely identify the 
assembly from the GAC)

 • RulePath–Th e crawl rule associated with the trimmer
 • Id–An int data type that uniquely identifi es the trimmer instance
 • Properties–Set of name/value pairs separated by ~

View–Use the Get-SPEnterpriseSearchSecurityTrimmer cmdlet 
and pass the search application name. You can further fi lter it by 
passing trimmer identity or other properties that you used while 
registering (for example: Get-SPEnterpriseSearchSecurityTrimmer 
-SearchApplication "Search Service Application").

Delete–Use the Remove-SPEnterpriseSearchSecurityTrimmer 
cmdlet and pass the search application name as well as identity of 
the trimmer (for example: Remove-SPEnterpriseSearchSecurity-
Trimmer -SearchApplication "Search Service Application" –id 102).

Note: Aft er registering the CST, a full crawl of the content source 
is required.

Troubleshooting Steps
Here are some tips to investigate any unexpected search results:

• Make sure the crawl rule matches the content source location.
• Check the crawl logs to make sure the account used to crawl 

the content source has access to it. Th e crawl would have failed 
if it doesn’t.

• Make sure the query user has permission to view the content.
• Aft er trimmer registration, make sure you performed a full crawl.
• Make sure the trimmer assembly is in the GAC of all machines 

in which search query service is running.
• Check the system logs for the number of documents trimmed 

by the security trimmer.
• Use the utility ProcessExplorer from technet.microsoft.com/sysinternals/ 

bb896653 to make sure the trimmer assembly is loaded into IIS 
worker process w3wp.exe.

• Attach the debugger to the worker process in which the assem-
bly is loaded and step through the trimmer logic.

Query Processing Logic Flexibility
Wrapping up, CSTs provide the fl exibility to extend the query processing 
logic to meet customized enterprise security needs. One should always 
keep in mind that implementation bugs inside the trimmer may cause 
unexpected search results, so it’s important that before the trimmer is 
deployed in a production environment, it’s thoroughly tested against 
diff erent types of content sources and authentication providers. 

ASHLEY ELENJICKAL AND POOJA HARJANI were part of a SharePoint Search 
feature team responsible for Custom Security Trimmer at Microsoft . Th ey can be 
reached at AshleyEl@microsoft .com and PVaswani@microsoft .com, respectively. 

THANKS to the following technical expert for reviewing this article: 
Michal Piaseczny

Use Windows PowerShell cmdlets 
to register, view and  delete CSTs.

http://msdn.microsoft.com/library/ms247066
http://technet.microsoft.com/sysinternals/bb896653
http://technet.microsoft.com/sysinternals/bb896653
mailto:AshleyEl@microsoft.com
mailto:PVaswani@microsoft.com


Untitled-1   1 6/9/10   11:03 AM

www.nevron.com


msdn magazine44

ON E N OTE  20 1 0

Creating OneNote 2010 
Extensions with the 
OneNote Object Model

Microsoft Offi ce OneNote is a powerful digital notebook 
for collecting, organizing, searching and sharing information. With 
the recent release of Microsoft  Offi  ce 2010, not only is the OneNote 
user experience improved, but OneNote notebooks are now more 
universally available. Users can synchronize content among com-
puters via Windows Live; search, edit and share notes from any 
Web browser; and access full notebooks from Windows Mobile 

Andy Gray

(and, soon, Windows Phone 7). Further, OneNote was previously 
included only in some Office editions, but it’s now in every 
edition of Offi  ce 2010. All of these factors create a more compelling op-
portunity than ever before to integrate OneNote into information 
management solutions.

In this article, I’ll provide an overview of developing applications 
that interoperate with data from Microsoft  OneNote 2010 and 2007. 
In the process, I’ll introduce the OneNote Object Model project 
that is freely available on CodePlex and demonstrate how this 
library makes it easy to integrate information from OneNote 
notebooks, sections and pages into client applications.

The Evolution of OneNote Development
Th e initial release of OneNote 2003 didn’t provide an API to external 
applications. Shortly thereaft er, however, OneNote 2003 SP 1 added 
a COM library, called the OneNote 1.1 Type Library, which enabled 
programmatic import of images, ink and HTML into OneNote 
via a simple class called CSimpleImporter. Notably, however, this 
class only provided data import capabilities; you could use it to 
push data into OneNote notebooks, but there was no way to get 
content back out programmatically.

Th e release of OneNote 2007 brought much more powerful 
development capabilities with a new COM API that provides 
the ability to import, export and modify OneNote 2007 content 
programmatically. Th e OneNote Application class in that library 
provides a rich collection of methods for working with:

The OneNote Object Model library on CodePlex, to which 
this article refers, had not been updated for compatibility with 
OneNote 2010 at the time of this writing.

This article discusses:
• The evolution of OneNote development

• Accessing OneNote data using the COM API

• Retrieving and updating page content using the COM API

• The OneNote Object Model Library

• Data binding with the OneNote Object Model Library

Technologies discussed:
OneNote 2010, OneNote 2007, Visual Studio 2010, LINQ, 
OneNote Object Model, XAML Data Binding, Windows 
Presentation Foundation, C#

Code download available at:
code.msdn.microsoft.com/mag201007OneNote

http://code.msdn.microsoft.com/mag201007OneNote


45July 2010msdnmagazine.com

• Notebook structure: discovering, opening, modifying, 
closing and deleting notebooks, section groups and sections

• Page content: discovering, opening, modifying, saving 
and deleting page content

• Navigation: fi nding, linking to and navigating to pages 
and objects
Most of these methods return or accept XML documents that 

represent both notebook structure and page content. Saul Candib 
wrote a two-part series, “What’s New for Developers in OneNote 
2007,” that documents this API at msdn.microsoft.com/library/

ms788684(v=offi ce.12), and the XML schema is detailed at msdn.microsoft.com/

library/aa286798(offi ce.12).
Th e XML schema for OneNote 2010 is substantially similar to that 

in OneNote 2007. OneNote 2010 introduces a fi le format change 
to support some of its new features (such as linked note-taking, 
versioning, Web sharing, multilevel subpages and equation sup-
port). However, OneNote 2010 can continue to work on One-
Note 2007 notebooks without changing the file format. In 
OneNote 2010, retrieving data from sections stored in the 
OneNote 2007 file format will yield XML documents simi-
lar to those in OneNote 2007. Th e primary diff erences in the 
XML schema for OneNote 2010 sections are additive changes 
to support the new features listed earlier. A new XMLSchema 
enumeration is available to represent the OneNote schema version; 
many of the OneNote methods have new overloads that take an 
XMLSchema parameter to indicate the schema version desired.

Note that the CSimpleImporter class, introduced in OneNote 
2003 and still available in OneNote 2007, has been removed from 
OneNote 2010, so applications that use this class need to be rewritten 
to use the new interfaces in order to work with OneNote 2010.

Accessing OneNote Data Using the COM API
It’s fairly straightforward to start using the OneNote COM API to 
access live data from OneNote notebooks. Start by creating a new 
console application in Visual Studio and then add a reference to 
the Microsoft  OneNote 14.0 Type Library COM component (for 
OneNote 2010) or the Microsoft  OneNote 12.0 Type Library COM 
component (for OneNote 2007).

If you’re using Visual Studio 2010 to develop OneNote 2010 
applications, take note of a couple minor compatibility issues. First, 
due to a mismatch of the OneNote interop assembly that shipped 
with Visual Studio 2010, you should not directly reference the 
Microsoft .Offi  ce.Interop.OneNote component on the .NET tab of the 
Add Reference dialog, but instead reference the Microsoft  OneNote 
14.0 Type Library component on the COM tab. Th is still results in the 
addition of a OneNote interop assembly to your project’s references.

Second, the OneNote 14.0 Type Library is not compatible with 
the Visual Studio 2010 “NOPIA” feature (in which primary interop 
assemblies are not embedded in the application by default). Th ere-
fore, make sure to set the Embed Interop Types property to False 
for the OneNote interop assembly reference. (Both of these 
issues are described in more detail on OneNote Program Manager 
Daniel Escapa’s blog at blogs.msdn.com/descapa/archive/2010/04/27/ 

onenote-2010-and-visual-studio-2010-compatibility-issues.aspx.) With the 
OneNote library reference in place, you’re ready to make calls to 

the OneNote API. The code in Figure 1 uses the GetHierarchy 
method to retrieve an XML document containing a list of One-
Note notebooks, then uses LINQ to XML to extract and print 
the notebook names to the console. 

Th e HierarchyScope enumeration, passed as the second pa-
rameter to the GetHierarchy method, specifi es the depth of the 
notebook structure to retrieve. To retrieve sections in addition to 
the notebooks, simply update this enumeration value to Hierarchy-
Scope.hsSections and process the additional XML child nodes, as 
demonstrated in Figure 2.

Retrieving and Updating Page Content
The GetPageContent method will return an XML document 
containing all of the content on a specified page. The page to 
retrieve is specified using a OneNote object ID, a string-based 

using System;
using System.Linq;
using System.Xml.Linq;
using Microsoft.Office.Interop.OneNote;

class Program
{
  static void Main(string[] args)
  {
    var onenoteApp = new Application();

    string notebookXml;
    onenoteApp.GetHierarchy(null, HierarchyScope.hsNotebooks, out notebookXml);
    
    var doc = XDocument.Parse(notebookXml);
    var ns = doc.Root.Name.Namespace;
    foreach (var notebookNode in 
      from node in doc.Descendants(ns + "Notebook") select node)
    {
      Console.WriteLine(notebookNode.Attribute("name").Value);
    }
  }
}

Figure 1 Enumerating Notebooks

using System;
using System.Linq;
using System.Xml.Linq;
using Microsoft.Office.Interop.OneNote;

class Program
{
  static void Main(string[] args)
  {
    var onenoteApp = new Application();

    string notebookXml;
    onenoteApp.GetHierarchy(null, HierarchyScope.hsSections, out notebookXml);
    
    var doc = XDocument.Parse(notebookXml);
    var ns = doc.Root.Name.Namespace;
    foreach (var notebookNode in from node in doc.Descendants(ns + 
      "Notebook") select node)
    {
      Console.WriteLine(notebookNode.Attribute("name").Value);
      foreach (var sectionNode in from node in 
        notebookNode.Descendants(ns + "Section") select node)
      {
        Console.WriteLine("  " + sectionNode.Attribute("name").Value);
      }
    }
  }
}

Figure 2 Enumerating Sections

www.msdnmagazine.com
http://msdn.microsoft.com/library/ms788684(v=office.12)
http://msdn.microsoft.com/library/ms788684(v=office.12)
http://msdn.microsoft.com/library/aa286798(office.12)
http://msdn.microsoft.com/library/aa286798(office.12)
http://blogs.msdn.com/descapa/archive/2010/04/27/onenote-2010-and-visual-studio-2010-compatibility-issues.aspx
http://blogs.msdn.com/descapa/archive/2010/04/27/onenote-2010-and-visual-studio-2010-compatibility-issues.aspx


msdn magazine46 OneNote 2010

unique identifier for each object in the OneNote notebook 
hierarchy. Th is object ID is included as an attribute on the XML 
nodes returned by the GetHierarchy method.

Figure 3 builds on the previous examples by using the Get-
Hierarchy method to retrieve the OneNote notebook hierarchy 
down to page scope. It then uses LINQ to XML to select the node 
for the page named “Test page” and pass that page’s object ID to 
the GetPageContent method. Th e XML document representing 
the page content is then printed to the console.

Th e UpdatePageContent method can be used to make changes to 
a page. Th e page content is specifi ed by the same XML document 
schema that the code in Figure 3 retrieved; it can contain various 
content elements that defi ne text outlines, inserted fi les, images, 
ink, and audio or video fi les. 

Th e UpdatePageContent method treats the elements in the 
provided XML document as a collection of content that may have 
changed, matching specified content to existing content via its 
OneNote object ID. You can therefore make changes to existing 
content by calling the GetPageContent method, making the 
desired changes to the XML returned, then passing that XML 
back to the UpdatePageContent method. You can also specify new 
content elements to be added to the page.

To illustrate this, Figure 4 adds a date stamp to the bottom of 
our test page. It uses the approach shown in Figure 3 to determine 
the OneNote object ID of the page, and then uses the XDocument 
and XElement classes in System.Xml.Linq to construct an XML 
document containing the new content. Because the Page object 
ID specifi ed in the document matches the object ID of an existing 
page, the UpdatePageContent method will append the new 
content to the existing page.

The OneNote Object Model Library
It isn’t particularly diffi  cult to interact with OneNote data in this 
way, but it’s a bit awkward to parse and construct XML docu-
ments just to perform basic data operations. Th at’s where the One-

Note Object Model comes in. It’s a managed code library that 
provides object-oriented abstractions over the COM-based One-
Note API. Th e library is open source and licensed under the Microsoft  
Public License (Ms-PL).

Th e OneNote Object Model is available for download on Code-
Plex at onom.codeplex.com. Th e library was designed for OneNote 
2007, and by the time you read this, the release downloads should 
be updated to provide compatibility with OneNote 2010. If not, 
you can still use it with OneNote 2007 sections in OneNote 
2010 by downloading the source code, removing the existing Micro-
soft .Offi  ce.Interop.OneNote assembly reference in the OneNote-
Core project and adding a reference to the Microsoft  OneNote 14.0 
Type Library as shown previously.

In addition to some unit test projects and sample code, the 
solution contains two class library projects: OneNoteCore and 
OneNoteFramework. Th e OneNoteCore library is the low-level 
bridge between the OneNote COM API and familiar Microsoft  
.NET Framework metaphors; it exposes real return values instead 
of COM out parameters, converts COM error codes into .NET 
exceptions, exposes a OneNoteObjectId struct and XDocument 
instances instead of raw strings, and more. Studying this code can 
help you understand how the OneNote API works, but in most cases 
you won’t need to interact with the OneNoteCore library directly.

The OneNoteFramework library provides higher-level 
abstractions of OneNote concepts. Here you’ll fi nd classes with 
intuitive names like OneNoteNotebook, OneNoteSection and 
OneNotePage. Th e primary entry point for interacting with the 
OneNote hierarchy structure is a class called OneNoteHierarchy, 
which contains a static member called Current. By adding an 

using System;
using System.Linq;
using System.Xml.Linq;
using Microsoft.Office.Interop.OneNote;

class Program
{
  static void Main(string[] args)
  {
    var onenoteApp = new Application();

    string notebookXml;
    onenoteApp.GetHierarchy(null, HierarchyScope.hsPages, out notebookXml);

    var doc = XDocument.Parse(notebookXml);
    var ns = doc.Root.Name.Namespace;
    var pageNode = doc.Descendants(ns + "Page").Where(n => 
      n.Attribute("name").Value == "Test page").FirstOrDefault();
    var existingPageId = pageNode.Attribute("ID").Value;

    if (pageNode != null)
    {
      var page = new XDocument(new XElement(ns + "Page", 
                                 new XElement(ns + "Outline", 
                                   new XElement(ns + "OEChildren", 
                                     new XElement(ns + "OE", 
                                       new XElement(ns + "T", 
                                         new XCData("Current date: " +
                                           DateTime.Now.
                                             ToLongDateString())))))));
       page.Root.SetAttributeValue("ID", existingPageId);
       onenoteApp.UpdatePageContent(page.ToString(), DateTime.MinValue);
    }
  }
}

Figure 4 Updating Page Content

using System;
using System.Linq;
using System.Xml.Linq;
using Microsoft.Office.Interop.OneNote;

class Program
{
  static void Main(string[] args)
  {
    var onenoteApp = new Application();

    string notebookXml;
    onenoteApp.GetHierarchy(null, HierarchyScope.hsPages, out notebookXml);

    var doc = XDocument.Parse(notebookXml);
    var ns = doc.Root.Name.Namespace;
    var pageNode = doc.Descendants(ns + "Page").Where(n => 
      n.Attribute("name").Value == "Test page").FirstOrDefault();
    if (pageNode != null)
    {
      string pageXml;
      onenoteApp.GetPageContent(pageNode.Attribute("ID").Value, out pageXml);
      Console.WriteLine(XDocument.Parse(pageXml));
    }
  }
}

Figure 3 Getting Page Content



ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set 
of native ActiveX, .NET and Compact Framework components. 
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and 
ASN.1 standards supported. 

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide 
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET 
applications. Develop unique solutions by including streaming file 
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET 
and Compact Framework projects.  Reduce integration costs with 
detailed documentation, hundreds of samples and an expert 
in-house support staff. 

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1   1 1/11/10   11:10 AM

www.dart.com


msdn magazine48 OneNote 2010

assembly reference to the OneNoteFramework library, we can 
rewrite to our program to enumerate the notebook names (Figure 
1) much more concisely as follows:

using Microsoft.Office.OneNote;

class Program
{
  static void Main(string[] args)
  {
    foreach (var notebook in OneNoteHierarchy.Current.Notebooks)
      System.Console.WriteLine(notebook.Name);
  }
}

As you might expect, the OneNoteNotebook class has a property 
called Sections. Th erefore, you can enumerate the section names 
(Figure 2) simply as follows:

using Microsoft.Office.OneNote;

class Program
{
  static void Main(string[] args)
  {
    foreach (var notebook in OneNoteHierarchy.Current.Notebooks)
    {
      System.Console.WriteLine(notebook.Name);
      foreach (var section in notebook.Sections)
      {
        System.Console.WriteLine("  " + section.Name);
      }
    }
  }
}

Collections exposed by OneNote Object Model properties 
are managed with a specialized generic collection class called 
OneNoteObjectCollection<T>. Because OneNoteObjectCollection<T> 
implements IList<T>, as well as IEnumerable<T>, these collections 
can be queried using LINQ.

For example, given a reference to a OneNoteSection instance 
in the section variable, we could determine all of the pages that 
had been modifi ed today with a simple LINQ expression like this:

  var pagesModifiedToday = from page in section.Pages 
                           where page.LastModifiedTime >= DateTime.Today 
                           select page;

Data Binding with OneNote Object Model Library
Th e fact that the OneNote Object Model exposes IEnumerable 
collections also enables XAML-based data binding with Windows 
Presentation Foundation (WPF). Figure 5 d demonstrates the use 
of data binding to display a WPF TreeView of the OneNote note-
book hierarchy purely in XAML markup—without requiring the 
use of code behind.

Th is XAML fi rst references the OneNoteFramework assembly, 
giving it the XML namespace prefi x onf. With this reference in 
place, the DataContext for the TreeView can then be set to the 
static Current property of the OneNoteHierarchy class, provid-
ing the control with the root of the OneNote hierarchy structure. 
HierarchicalDataTemplates are then used to data bind each level 
of the tree with the corresponding collection exposed by the 
OneNote Object Model (see Figure 6). 

Simplifi ed Data Access
Wrapping up, the OneNote Object Model library substantially 
simplifi es access to data in Microsoft  OneNote notebooks, expos-
ing rich object collections that can be queried and manipulated 
with LINQ expressions and WPF data binding. A follow-up ar-
ticle will extend these concepts to explore working with OneNote 
notebooks in Silverlight and Windows Phone applications, and 
accessing OneNote data in the cloud. 

ANDY GRAY is a partner and technology director of Five Talent Soft ware, helping 
nonprofi t organizations operate more eff ectively through strategic technology 
solutions. He writes about OneNote development at onenotedev.com. 

THANKS to the following technical experts for reviewing this article: 
Michael Gerfen and John Guin

<Window x:Class="NotebookTree.MainWindow"
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:onf="clr-namespace:Microsoft.Office.OneNote;assembly=
          OneNoteFramework"
        Title="OneNote Notebook Hierarchy" >
  <Grid>
    <Grid.Resources>
      <DataTemplate x:Key="PageTemplate">
        <StackPanel Orientation="Horizontal">
          <Image Source="Images\Page16.png" Margin="0,0,2,0"/>
          <TextBlock Text="{Binding Name}" />
        </StackPanel>
      </DataTemplate>
            
      <HierarchicalDataTemplate x:Key="SectionTemplate" 
        ItemsSource="{Binding Pages}"
        ItemTemplate="{StaticResource PageTemplate}">
        <StackPanel Orientation="Horizontal">
          <Image Source="Images\Section16.png" Margin="0,0,2,0"/>
          <TextBlock Text="{Binding Name}" />
        </StackPanel>
      </HierarchicalDataTemplate>
            
      <HierarchicalDataTemplate x:Key="NotebookTemplate" 
        ItemsSource="{Binding Sections}"
        ItemTemplate="{StaticResource SectionTemplate}">
        <StackPanel Orientation="Horizontal">
          <Image Source="Images\Book16.png" Margin="0,0,2,0"/>
          <TextBlock Text="{Binding Name}" />
        </StackPanel>
      </HierarchicalDataTemplate>
    </Grid.Resources>
        
    <TreeView Name="NotebookTree" BorderThickness="0"
              HorizontalAlignment="Left" VerticalAlignment="Top"
              ItemsSource="{Binding Notebooks}" 
              ItemTemplate="{StaticResource NotebookTemplate}" 
              DataContext="{Binding Source={x:Static 
                onf:OneNoteHierarchy.Current}}" />
  </Grid>
</Window>

Figure 5 Data Binding with Windows Presentation Foundation

Figure 6 Data Binding the Hierarchy to a Tree View

www.onenotedev.com


Untitled-1   1 1/11/10   10:55 AM

www.alexcorp.com


msdn magazine50

OFF ICE  SER V IC ES

Merging Word 
Documents on the 
Server Side with 
SharePoint 2010  

Business application developers must oft en create 
solutions that automate day-to-day activities for their organizations. 
Th ese activities typically involve processing and manipulating data 
in various documents—for example, extracting and consolidating 
data from multiple source documents, merging data into e-mail 
messages, searching and replacing content in documents, recalcu-
lating data in workbooks, extracting images from presentations ... 
and the list goes on and on.

Microsoft  Offi  ce makes these kinds of repetitive tasks simpler by 
providing a rich API that developers can use to automate them. Because 
such solutions work seamlessly for normal desktop users, developers 
have taken them to the next level: deploying the solutions to servers 

Ankush Bhatia and Manvir Singh

that provide a central point where all of this repetitive work can 
be addressed for multiple users without any human intervention. 

Although moving solutions that complete repetitive Offi  ce tasks 
from the desktop to a server seems straightforward, it’s not quite 
as simple as it sounds.

Microsoft designed the Office application suite for desktop 
computer scenarios where a user is logged on to a machine and 
is sitting in front of it. For reasons of security, performance and 
reliability, Offi  ce applications are not the right tools for server-side 
scenarios. Offi  ce applications in a server environment may require 
manual intervention, and that’s not optimal for a server-side 
solution. Microsoft  recommends avoiding this kind of solution, 
as explained in the Microsoft  Support article, “Considerations for 
server-side Automation of Offi  ce” (support.microsoft.com/kb/257757).

Since the release of Offi  ce 2007, however, the Offi  ce automation 
story has changed a great deal. With Office 2007 Microsoft introduced 
Offi  ce OpenXML and Excel Services for developers who would 
like to develop Offi  ce-based solutions on the server. 

With Offi  ce 2010 and SharePoint 2010, Microsoft  has come up 
with a new set of components called Application Services. Th ese 
put a rich set of tools in a developer’s bag for Offi  ce automation 
solutions. Application Services include Excel Services, Word 
Automation Services, InfoPath Forms Services, PerformancePoint 
Services and Visio Services. You can learn more about the details 
of these services at msdn.microsoft.com/library/ee559367(v=offi ce.14).

This article discusses:
• The status report template

• Creating a SharePoint document library

• Building the Web Part

• Merging the reports

Technologies discussed:
Offi ce 2010, SharePoint 2010

Code download available at:
code.msdn.microsoft.com/mag201007DocMerge

http://code.msdn.microsoft.com/mag201007DocMerge
http://support.microsoft.com/kb/257757
http://msdn.microsoft.com/library/ee559367(v=office.14)


51July 2010msdnmagazine.com

In this article, we will show you how to use Offi  ce OpenXML, 
Word Automation Services and SharePoint to build a simple appli-
cation that merges separate status reports into a single document.

Status Report Workfl ow
Let’s say you’re a developer working at a services-oriented company 
in which many projects are managed by diff erent teams. Every week, 
each project manager uses a common template to create a weekly 
status report and upload it to an internal SharePoint repository. 
Now your Group Manger wants to get a consolidated report that 
will contain all of these of weekly status reports and, guess what, 
you are the chosen one who has to implement this requirement.

You’re lucky, though. As we mentioned earlier, your life is easier 
today because you can implement this requirement with much less 
eff ort using OpenXML and Word 
Automation Services. You’ll be able 
to produce a more robust and sta-
ble solution than you could have 
without these technologies. 

Let’s start by visualizing the sol-
ution. Figure 1 shows a proposed 
workfl ow. Th e process kicks off  
with individual project managers 
fi lling out status reports and up-
loading them to SharePoint on the 
server. Th e Group Manager can 
then initiate the process of merg-
ing any reports stored on the server 
and generating a combined report.

Building a Template
To implement this solution, the 
fi rst step is to provide a common 
template to all the project manag-
ers for fi lling out the weekly status 
reports. When they fi nish fi lling 
in the data, they’ll upload the 
reports to a SharePoint repository. 
On Monday morning, the Group 
Manager can then log into the 
SharePoint site and fi re up the logic 
that performs the following tasks:

1. Reads all of the individual status report documents.
2. Merges them into a single report.
3. Saves the report in the repository for users to access.

Figure 2 shows what the status report template will look like 
(let’s call it WeeklyStatusReport.dotx). As you can see, the template 
includes fi elds to capture a title, dates, the project manager’s name, 

Figure 1 Workfl ow for Generating a Status Report

Upload Weekly Status Reports

Group Manager Requests
Consolidated Status Report

for All Projects

Project Managers SharePoint Stores
Individual

Status Reports

Group Manager

Microsoft originally designed 
the Offi ce application suite for 
desktop computer scenarios.

Figure 2 Weekly Status Report Template

www.msdnmagazine.com


msdn magazine52 Offi ce Services

milestones and associated data, and text fi elds for entering details 
about accomplishments, future plans and problems. In this case 
we’ve used text fi elds and the date picker control for simplicity, but 
you could easily use drop-down lists, check boxes or a variety of 
other controls to streamline data entry.

The Document Library
Th e next step is to create a custom document library that hosts the 
weekly status reports based on this template. 

In the SharePoint navigation pane, click Libraries and then 
Create to create a new library. In the Create dialog, fi lter by Library, 
select Document Library and type a name for the library (we used 
WSR Library). Now click Create.

Now you need to create a content type for the new library. Click 
Site Actions, then Site Settings, and under the Galleries section, 
click Site content types. Click Create and then type a name for the 
content type (we used Weekly Status Report).

In the Select Parent Content Type From list, select Document 
Content Types. In the Parent Content type list, select Document 
and click OK.

Under Settings, select Advanced Settings, then choose the 
“Upload a new document template” radio button and click 
Browse. Find the report template (WeeklyStatusReport.dotx) and 
upload it to the library.

Next, go to WSR Library and 
select Library Settings. Under 
General Settings, select Advanced 
Settings. Select Yes for “Allow 
management of content types,” 
then click OK. 

You’ll see a list of Content types 
shown on the library setting page. 
Select the “Add from Existing Site 
Content Types” link. Select the 
content type you created earlier 
in the available site content types 
list. In my example, this is Weekly 
Status Report. Click Add, and 
click OK.

Again from the content types 
list, click on Document and select 
“Delete this content type.” Select 
OK in the warning message box. 

Now you should see your con-
tent type when you select New 

Document in your WSR Library, as shown in Figure 3.
 At this point you can go ahead and add a couple of status reports 

to the document library.

Creating the Web Part
Next, you need to enable a Group Manager to kick off  the con-
solidation logic. You can do this via a button at the bottom of the 
default view of the document library. 

Th ere are two steps involved here. First, you’ll create a Visual Web 
Part using Visual Studio 2010. Second, you’ll add the Web Part to 
the document library using SharePoint Designer 2010.

To create a custom Web Part, start a new project in Visual Studio 
2010 using the Visual Web Part project template. Give the project 
a name such as DocumentMerge, then click OK.

In the SharePoint Customization Wizard page, select your Web 
application (the URL to the SharePoint site hosting your document 
library), then click Finish.

Once the project is created, open the VisualWebPart1.cs fi le and 
modify the CreateChildControls method with the following code:

protected override void CreateChildControls() {
  Control control = Page.LoadControl(_ascxPath);
  Controls.Add(control);
  base.CreateChildControls();
  Button btnSubmit = new Button();
  btnSubmit.Text = "Merge Reports";
  btnSubmit.Click += new EventHandler(OnSubmitClick);
  Controls.Add(btnSubmit);
}

Also add an event handler for the button click:
void OnSubmitClick(object sender, EventArgs e) {
  // TODO : Put code to merge documents here
}

At this point you can build and deploy your project. We will 
add the implementation to our OnSubmitClick handler a bit later 
in this article.

Th e next step is to add the Web Part to the document library. 
In SharePoint Designer 2010, open the SharePoint site. Click All 
Files | WSR Library | Forms, then click on AllItems.aspx to edit it.

Figure 3 Selecting the Custom Content Type

At this point you have 
the logic in place to generate 
fully functional consolidated 
documents on the server.



You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-12   1 4/9/10   2:28 PM

www.infragistics.com/sldv


msdn magazine54 Offi ce Services

Click the bottom of the page. Click Insert | Web Part, and then 
select More Web Parts. In the search box, type VisualWebPart (the 

name of the Web Part you just created and deployed), and click OK 
(see Figure 4). Figure 5 shows the page with the Web Part in place. 
Save the page and close SharePoint Designer. 

Merging the Reports
Now, let’s add the logic to merge the 
uploaded documents in the doc-
ument library. For simplicity, this 
code will merge all the documents 
uploaded to this folder into a sin-
gle fi le. A more realistic approach 
would be to merge only selected 
items or only items uploaded in a 
specifi ed time period. You could 
also save the merged document 
to a diff erent location or diff erent 
library. Th is is when we’ll add the 
implementation to our OnSubmit-
Click handler of our VisualWeb-
Part project in Visual Studio 2010.

In the OnSubmitClick han-
dler of the Web Part, you need 

to provide logic for reading the 
reports that were uploaded to 
the document library, generating 
an empty OpenXML document, 
and merging the reports into the 
new document.

First, you need to read any 
documents in the current library. 
You can loop through the SPList-
ItemCollection of the current 
SPContext, reading each fi le into a 
byte array using the SPFile.Open-
Binary API:
  SPListItemCollection files = 
    SPContext.Current.List.Items;
  foreach (SPListItem item in files) {
    SPFile inputFile = item.File;
    byte[] byteArray = 
      inputFile.OpenBinary();

    // process each byte array 
  }

Next, generate the empty 
OpenXML document. This 
requires generating the document 
in memory using a MemoryStream 

because the OpenXML SDK does not let you save documents to 
a URI. Instead, the Memory Stream object can dump the docu-
ment into the library as a new fi le. Th e code for creating the fi le is 
shown in Figure 6.

Note that you need to add DocumentFormat.OpenXml.dll and 
WindowsBase.dll in the references and the corresponding using 
statements to the code:

using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;

Th e next step is to implement the logic for saving the merged 
document to the library as a new document. Th is requires a bit of 
eff ort, but you can make it easier by using the SharePoint Managed 
Client Object Model. You’ll need to add two references to the 

Figure 4 Inserting the Web Part

Figure 5 The Web Part in Place on the Page

The altChunks get replaced 
with original content when a 

document is opened in Word. 



Untitled-2   1 6/8/10   10:19 AM

www.techexcel.com


msdn magazine56 Offi ce Services

project, Microsoft .SharePoint.Client.dll and Microsoft .SharePoint.
Client.Runtime.dll, which are found in the following folder: 

%ProgramFiles%\Common Files\Microsoft Shared\web server extensions\14\ISAPI

Create a new document in the SharePoint library with this code:
ClientContext clientContext = 
  new ClientContext(SPContext.Current.Site.Url);
ClientOM.File.SaveBinaryDirect(clientContext, 
  outputPath, memOut, true);

For these instructions to work, you’ll need the following using 
statements in the source fi le: 

using Microsoft.SharePoint.Client;
using ClientOM = Microsoft.SharePoint.Client;

Making the Document Searchable
At this point you have the logic in place to generate fully func-
tional consolidated documents on the server when a user clicks 
the Merge Reports button. 

However, there’s one small catch: the generated docu-
ment is not compatible with the SharePoint crawling mecha-
nism because it contains OpenXML altChunk markup. Th is is 
a by-product of merging the reports into the blank document 
using the code we showed you earlier. Th e altChunks get replaced 
with original content when a document is opened in Word. 

With the new Word Automation Services in SharePoint 2010, 
this task can be performed programmatically using ConversionJob 
class. This class is part of the Microsoft.Office.Word.Server.dll 
assembly, so add the reference to this assembly to the project 
manually. Once you’ve added this reference, you can use the code 
in Figure 7 to perform conversion of the altChunks.

See the code download for this article for additional details of the 
solution, which you can use as the basis of your own reporting system.

Final Steps
In order to test this code, we modified our SharePoint server’s 
confi guration to run the Automation Service aft er one minute of 
getting a run request. By default, this interval is set to fi ve minutes, 
and we didn’t want to wait that long for our conversion to happen. 

If you’d like to change this setting, you can set it in SharePoint 
Central Administration under Application Management | Manage 
Service Applications | Word Automation Services, and set the 
Frequency to start conversions under Conversion Throughput 
to one minute.

Th e fi nal generated report contains all the weekly status reports 
you created, merged into a single new document with each of the 
individual reports stacked one aft er the other.

And that’s it. In a future article we’ll take the concept of server-
side merging of document contents to the next level. We’ll show 
you how to implement a mail-merge type of scenario on the server 
side, again using Offi  ce 2010, SharePoint 2010 and Visual Studio 
2010. Until then, happy coding.

For more information on Offi  ce 2010 and SharePoint 2010, see 
the Offi  ce (msdn.microsoft.com/offi ce) and SharePoint (msdn.microsoft.com/

sharepoint) developer centers. Information about Offi  ce Open XML can be 
found at msdn.microsoft.com/library/bb448854, and you can read about Word 
Automation Services at msdn.microsoft.com/library/ee558278(v=offi ce.14). 

MANVIR SINGH and ANKUSH BHATIA are part of the Visual Studio Developer 
Support Team in Microsoft  Product Support Services (PSS), helping customers 
on programming issues involving Offi  ce client applications. You can reach Singh 
at manvir.singh@microsoft .com or manvirsingh.net. You can reach Bhatia at 
ankush.bhatia@microsoft .com or abhatia.wordpress.com.

THANKS to the following technical expert for reviewing this article: 
Eric White

string docPath = string.Format(@"{0}{1}", 
  SPContext.Current.Site.Url.Replace(@"\\", ""), 
  outputPath);
            
ConversionJobSettings JobSettings = 
  new ConversionJobSettings();
JobSettings.OutputFormat = SaveFormat.Document;
JobSettings.OutputSaveBehavior = 
  SaveBehavior.AlwaysOverwrite;

ConversionJob ConvJob = new ConversionJob(
  "Word Automation Services", JobSettings);
ConvJob.UserToken = SPContext.Current.Site.UserToken;
ConvJob.AddFile(docPath, docPath);
ConvJob.Start();

Figure 7 Converting altChunks in the Merged Document

// String containing the blank document part for our new DOCX
string strEmptyMainPart = 
  "<?xml version='1.0' encoding='UTF-8' standalone='yes'?>" +
  "<w:document xmlns:w='http://schemas.openxmlformats.org/
wordprocessingml/2006/main'>" +
  "<w:body><w:p><w:r><w:t></w:t></w:r></w:p></w:body></w:document>";

// In-memory stream for our consolidated DOCX.
MemoryStream memOut = new MemoryStream();

// Output document's OpenXML object
WordprocessingDocument outputDoc = 
  WordprocessingDocument.Create(memOut, 
  DocumentFormat.OpenXml.WordprocessingDocumentType.Document);

MainDocumentPart mainPart = outputDoc.AddMainDocumentPart();

Stream partStream = mainPart.GetStream();
UTF8Encoding encoder = new UTF8Encoding();

// Add blank main part string to the newly created document
Byte[] buffer = encoder.GetBytes(strEmptyMainPart);
partStream.Write(buffer, 0, buffer.Length);

// Save the document in memory
mainPart.Document.Save();

Figure 6 Creating a New File for the Merged Report

The fi nal generated report 
contains all the weekly status 
reports you created, merged 

into a single new document with 
each of the individual reports 
stacked one after the other.

http://msdn.microsoft.com/office
http://msdn.microsoft.com/sharepoint
http://msdn.microsoft.com/sharepoint
http://msdn.microsoft.com/library/bb448854
http://msdn.microsoft.com/library/ee558278(v=office.14)
http://abhatia.wordpress.com
mailto:ankush.bhatia@microsoft.com
mailto:manvir.singh@microsoft.com
http://manvirsingh.net


Untitled-5   1 6/7/10   12:05 PM

www.codefluententities.com/msdn
www.codefluententities.com


msdn magazine58

S MA RT  C L I ENT

Building Distributed 
Apps with NHibernate 
and Rhino Service Bus

For a long time, I dealt almost exclusively in Web applications. 
When I moved over to build a smart client application, at fi rst I was 
at quite a loss as to how to approach building such an application. 
How do I handle data access? How do I communicate between the 
smart client application and the server?

Furthermore, I already had a deep investment in an existing toolset 
that drastically reduced the time and cost for development, and I 
really wanted to be able to continue using those tools. It took me 
a while to fi gure out the details to my satisfaction, and during that 
time, I kept thinking how much simpler a Web app would be—if 
only because I knew how to handle such apps already. 

Th ere are advantages and disadvantages to smart client applica-
tions. On the plus side, smart clients are responsive and promote 
interactivity with the user. You also reduce server load by moving 
processing to a client machine, and enable users to work even while 
disconnected from back-end systems.

On the other hand, there are the challenges inherent in such 
smart clients, including contending with the speed, security, and 

Oren Eini

bandwidth limitations of data access over the intranet or Internet. 
You’re also responsible for synchronizing data between front-end 
and back-end systems, distributed change-tracking, and handling 
the issues of working in an occasionally connected environment.

A smart client application, as discussed in this article, can be 
built with either Windows Presentation Foundation (WPF) or 
Silverlight. Because Silverlight exposes a subset of WPF features, 
the techniques and approaches I outline here are applicable to both.

In this article, I start the processes of planning and building 
a smart client application using NHibernate for data access and 
Rhino Service Bus for reliable communication with the server. 
Th e application will function as the front end for an online lending 
library, which I called Alexandra. Th e application itself is split into 
two major pieces. First, there’s an application server running a set 
of services (where most of the business logic will reside), accessing 
the database using NHibernate. Second, the smart client UI will 
make exposing those services to the user easy.

NHibernate (nhforge.org) is an object-relational mapping (O/RM) 
framework designed to make it as easy to work with relational 
databases as it is to work with in-memory data. Rhino Service 
Bus (github.com/rhino-esb/rhino-esb) is an open source service bus 
imple mentation built on the Microsoft  .NET Framework, focusing 
primarily on ease of development, deployment and use.

Distribution of Responsibilities
Th e fi rst task in building the lending library is to decide on the 
proper distribution of responsibility between the front-end and 
back-end systems. One path is to focus the application primar-

This article discusses:
• Distribution of responsibilities

• Fallacies of distributed computing

• Queues and disconnected operation

• Session and transaction management

Technologies discussed:
NHibernate, Rhino Service Bus

http://nhforge.org
http://github.com/rhino-esb/rhino-esb


59July 2010msdnmagazine.com

ily on the UI so that most of the processing is done on the client 
machine. In this case the back end serves mostly as a data repository.

In essence, this is just a repetition of the traditional client/server 
application, with the back end serving as a mere proxy for the data 
store. Th is is a valid design choice if the back-end system is just a 
data repository. A personal book catalog, for example, might benefi t 
from such architecture, because the behavior of the application is 
limited to managing data for the users, with no manipulation of 
the data on the server side.

For such applications, I recommend making use of WCF RIA Services 
or WCF Data Services.If you want the back-end server to expose a CRUD 
interface for the outside world, then leveraging WCF RIA Services
 or WCF Data Services allows you to drastically cut down the time 
required to build the application. But while both technologies 
let you add your own business logic to the CRUD interface, any 
attempt to implement signifi cant application behavior using this 
approach would likely result in an unmaintainable, brittle mess. 

I won’t cover building such an application in this article, but Brad 
Adams has shown a step-by-step approach for building just such 
an application using NHibernate and WCF RIA Services on his 
blog at blogs.msdn.com/brada/archive/2009/08/06/business-apps-example-for-
silverlight-3-rtm-and-net-ria-services-july-update-part-nhibernate.aspx.

Going all the way to the other extreme, you can choose to 
implement most of the application behavior on the back end, 
leaving the front end with purely presentation concerns. While 
this seems reasonable at fi rst, because this is how you typically write 
Web-based applications, it means that you can’t take advantage of 
running a real application on the client side. State management 
would be harder. Essentially you’re back writing a Web application, 
with all the complexities this entails. You won’t be able to shift  pro-
cessing to the client machine and you won’t be able to handle in-
terruptions in connectivity.

Worse, from the user perspective, this approach means that you 
present a more sluggish UI since all actions require a roundtrip to 
the server.

I’m sure it won’t surprise you that the approach I’m taking in this 
example is somewhere in the middle. I’m going to take advantage 
of the possibilities off ered by running on the client machine, but 
at the same time signifi cant parts of the application run as services 
on the back end, as shown in Figure 1.

Th e sample solution is composed of three projects, which you can 
download from github.com/ayende/alexandria. Alexandria.Back end is a 
console application that hosts the back-end code. Alexandria.Client 
contains the front-end code, and Alexandria.Messages contains the 
message defi nitions shared between them. To run the sample, both 
Alexandria.Backend and Alexandria.Client need to be running. 

One advantage of hosting the back end in a console application 
is that it allows you to easily simulate disconnected scenarios by 
simply shutting down the back-end console application and starting 
it up at a later time.

Fallacies of Distributed Computing
With the architectural basics in hand, let’s take a look at the impli-
cations of writing a smart client application. Communication with 
the back end is going to be through an intranet or the Internet. 

Considering the fact that the main source for remote calls in 
most Web applications is a database or another application server 
located in the same datacenter (and oft en in the same rack), this is 
a drastic change with several implications.

Intranet and Internet connections suff er from issues of speed, 
bandwidth limitations and security. Th e vast diff erence in the costs 
of communication dictate a diff erent communication structure 
than the one you’d adopt if all the major pieces in the application 
were residing in the same datacenter.

Among the biggest hurdles you have to deal with in distributed 
applications are the fallacies of distributed computing. Th ese are 
a set of assumptions that developers tend to make when building 
distributed applications, which ultimately prove false. Relying 
on these false assumptions usually results in reduced capabilities 
or a very high cost to redesign and rebuild the system. Th ere are 
eight fallacies: 

• Th e network is reliable.
• Latency is zero.
• Bandwidth is infi nite.
• Th e network is secure.
• Topology doesn’t change.
• Th ere is one administrator.
• Transport cost is zero.
• Th e network is homogeneous.

Any distributed application that doesn’t take these fallacies into 
account is going to run into sever problems. A smart client appli-
cation needs to deal with those issues head on. Th e use of caching 
is a topic of great importance in such circumstances. Even if you 
aren’t interested in working in a disconnected fashion, a cache is 
almost always useful for increasing application responsiveness.

Another aspect you need to consider is the communication 
model for the application. It may seem that the simplest model 
is a standard service proxy that allows you to perform remote 
procedure calls (RPCs), but this tends to cause problems down 
the road. It leads to more-complex code to handle a disconnected 
state and requires you to explicitly handle asynchronous calls if 
you want to avoid blocking in the UI thread.

Database

Application Server
NHibernate &

Rhino Service Bus

Smart Client

Figure 1 The Application’s Architecture

Intranet and Internet 
connections suffer from issues of 
speed, bandwidth and security.

www.msdnmagazine.com
http://blogs.msdn.com/brada/archive/2009/08/06/business-apps-example-for-silverlight-3-rtm-and-net-ria-services-july-update-part-nhibernate.aspx
http://blogs.msdn.com/brada/archive/2009/08/06/business-apps-example-for-silverlight-3-rtm-and-net-ria-services-july-update-part-nhibernate.aspx
http://github.com/ayende/alexandria


msdn magazine60 Smart Client

Back-End Basics
Next, there’s the problem of how to structure the back end of the 
application in a way that provides both good performance and a 
degree of separation from the way the UI is structured. 

The ideal scenario from a performance and responsiveness 
perspective is to make a single call to the back end to get all the 
data you need for the presented screen. Th e problem with going 
this route is that you end up with a service interface that mimics 
the smart client UI exactly. Th is is bad for a whole host of reasons. 
Mainly, the UI is the most changeable part in an application. 
Tying the service interface to the UI in this fashion results in 
frequent changes to the service, driven by purely UI changes. 

Th at, in turn, means deployment of the application just got a lot 
harder. You have to deploy both the front end and the back end at 
the same time, and trying to support multiple versions at the same 
time is likely to result in greater complexity. In addition, the service 
interface can’t be used to build additional UIs or as an integration 
point for third-party or additional services. 

If you try going the other route—building a standard, fi ne-grained 
interface—you’ll run head on into the fallacies (a fine-grained 
interface leads to a high number of remote calls, resulting in issues 
with latency, reliability and bandwidth).

Th e answer to this challenge is to break away from the common 
RPC model. Instead of exposing methods to be called remotely, let’s 
use a local cache and a message-oriented communication model.

Figure 2 shows how you pack several requests from the front 
end to the back end. Th is allows you to make a single remote call, 
but keep a programming model on the server side that isn’t tightly 
coupled to the needs of the UI.

To increase responsiveness, you can include a local cache that can an-
swer some queries immediately, leading to a more-responsive application.

One of the things you have to consider in these scenarios is what 
types of data you have and the freshness requirements for any data 
you display. In the Alexandria application, I lean heavily on the 

local cache because it is acceptable to show the user 
cached data while the application requests fresh data 
from the back-end system. Other applications—stock 
trading, for example—should probably show nothing 
at all rather than stale data.

Disconnected Operations
Th e next problem you have to face is handling dis-
connected scenarios. In many applications, you can 
specify that a connection is mandatory, which means 
you can simply show the user an error if the back-end 
servers are unavailable. But one benefi t of a smart client 
application is that it can work in a disconnected 

manner, and the Alexandria application takes full advantage of that.
However, this means the cache becomes even more important 

because it’s used both to speed communication and to serve data 
from the cache if the back-end system is unreachable.

By now, I believe you have a good understanding of the challenges 
involved in building such an application, so let’s move on to see 
how to solve those challenges.

Queues Are One of My Favorite Things
In Alexandria, there’s no RPC communication between the front 
end and the back end. Instead, as shown in Figure 3, all commu-
nication is handled via one-way messages going through queues.

Queues provide a rather elegant way of solving the communication 
issues identifi ed earlier. Instead of communicating directly between the 
front end and the back end (which means supporting disconnected 
scenarios is hard), you can let the queuing subsystem handle all of that.

Using queues is quite simple. You ask your local queuing sub-
system to send a message to some queue. Th e queuing subsystem 
takes ownership of the message and ensures that it reaches its 
destination at some point. Your application, however, doesn’t wait for 
the message to reach its destination and can carry on doing its work. 

If the destination queue is not currently available, the queuing 
subsystem will wait until the destination queue becomes available 
again, then deliver the message. Th e queuing subsystem usually 

Local Cache

User Interface
Single Request

MyBooks
Query

MyQueue
Query

Recommendations
Query

Subscription
Details Query

Figure 2 A Single Request to the Server Contains Several Messages

Application Server
NHibernate &

Rhino Service Bus

Queue Queue

User Interface

Figure 3 The Alexandria Communication Model

Let’s make use of a local cache 
and a message-oriented 
communication model.



61July 2010msdnmagazine.com

persists the message to disk until it’s delivered, so pending 
messages will still arrive at their destination even if the source 
machine has been restarted.

When using queues, it’s easy to think in terms of messages and 
destinations. A message arriving at a back-end system will trigger 
some action, which may then result in a reply sent to the original 
sender. Note that there’s no blocking on either end, because each 
system is completely independent.

Queuing subsystems include MSMQ, ActiveMQ, RabbitMQ, and 
others. Th e Alexandria application uses Rhino Queues (github.com/
rhino-queues/rhino-queues), an open source, xcopy-deployed queuing sub-
system. I chose Rhino Queues for the simple reason that it requires 
no installation or administration, making it ideal for use in samples 
and in applications that you need to deploy to many machines. It’s 
also worth noting that I wrote Rhino Queues. I hope you like it.

Putting Queues to Work
Let’s see how you can handle getting the data for the main screen 
using queues. Here’s the ApplicationModel initialization routine:

protected override void OnInitialize() {
  bus.Send(
    new MyBooksQuery { UserId = userId },
    new MyQueueQuery { UserId = userId },
    new MyRecommendationsQuery { UserId = userId },
    new SubscriptionDetailsQuery { UserId = userId });
}

I’m sending a batch of messages to the server, requesting several 
pieces of information. Th ere are a number of things to notice here. 
Th e granularity of the messages sent is high. Rather than sending a 

single, general message such as MainWindowQuery, I send many 
messages, (MyBooksQuery, MyQueueQuery, and so on), each for 
a very specifi c piece of information. As discussed previously, this 
allows you to benefi t both from sending several messages in a single 
batch (reducing network roundtrips) and reducing the coupling 
between the front end and the back end. 

Note that all of the messages end with the term Query. Th is is a 
simple convention I use to denote pure query messages that change 
no state and expect some sort of response. 

Finally, notice that I don’t seem to be getting any sort of reply 
from the server. Because I’m using queues, the mode of communication 
is fi re and forget. I fi re off  a message (or a batch of messages) now, 
and I deal with the replies at a later stage. 

Before looking at how the front end deals with the responses, 
let’s see how the back end processes the messages I just sent. 
Figure 4 shows how the back-end server consumes a query for 
books. And here, for the fi rst time, you can see how I use both 
NHibernate and Rhino Service Bus. 

But before diving into the actual code that handles this message, 
let’s discuss the structure in which this code is running.

It’s All About Messages
Rhino Service Bus (hibernatingrhinos.com/open-source/rhino-service-bus) is, 
unsurprisingly, a service bus implementation. It’s a communication 
framework based on a one-way queued message exchange, 
heavily inspired by NServiceBus (nservicebus.com). 

A message sent on the bus will arrive at its destination queue, 
where a message consumer will be invoked. Th at message consumer 
in Figure 4 is MyBooksQueryConsumer. A message consumer is 
a class that implements ConsumerOf<TMsg>, and the Consume 
method is invoked with the appropriate message instance to 
handle the message. 

You can probably surmise from the MyBooksQueryConsumer 
constructor that I’m using an Inversion of Control (IoC) container 
to supply dependencies for the message consumer. In the case of 

One of the most common mistakes in building a distributed 
application is to ignore the distribution aspect of the application. 
WCF, for example, makes it easy to ignore the fact that you’re mak-
ing a method call over the network. While that’s a very simple pro-
gramming model, it means you need to be extremely careful not to 
violate one of the fallacies of distributed computing.

Indeed, it’s the very fact that the programming model offered 
by frameworks such as WCF is so similar to the one you use for 
calling methods on the local machine that leads you to make 
those false assumptions.

A standard RPC API means blocking when making a call over 
the network, higher cost for each remote method call and the 
potential for failure if the back-end server is not available. It’s 
certainly possible to build a good distributed application on top 
of this foundation, but it takes greater care.

Taking a different approach leads you to a programming model 
based on explicit message exchanges (as opposed to the implicit 
message exchanges common in most SOAP-based RPC stacks). 
That model may look strange at fi rst, and it does require you 
to shift your thinking a bit, but it turns out that by making this 
shift, you signifi cantly reduce the amount of complexity to worry 
about overall.

My example Alexandria application is built on top of a one-way 
messaging platform, and it makes full use of this platform so the 
application is aware of the fact it’s distributed and actually takes 
advantage of that.

RPC Is Thy Enemy

public class MyBooksQueryConsumer : 
  ConsumerOf<MyBooksQuery> {

  private readonly ISession session;
  private readonly IServiceBus bus;

  public MyBooksQueryConsumer(
    ISession session, IServiceBus bus) {

    this.session = session;
    this.bus = bus;
  }

  public void Consume(MyBooksQuery message) {
    var user = session.Get<User>(message.UserId);
    
    Console.WriteLine("{0}'s has {1} books at home", 
      user.Name, user.CurrentlyReading.Count);

    bus.Reply(new MyBooksResponse {
      UserId = message.UserId,
      Timestamp = DateTime.Now,
      Books = user.CurrentlyReading.ToBookDtoArray()
    });
  }
}

Figure 4 Consuming a Query on the Back-End System

www.msdnmagazine.com
http://github.com/rhino-queues/rhino-queues
http://github.com/rhino-queues/rhino-queues
http://hibernatingrhinos.com/open-source/rhino-service-bus
http://nservicebus.com


msdn magazine62 Smart Client

MyBooksQueryConsumer, those dependencies are the bus itself 
and the NHibernate session.

Th e actual code for consuming the message is straightforward. 
You get the appropriate user from the NHibernate session and send 
a reply back to the message originator with the requested data. 

Th e front end also has a message consumer. Th is consumer is 
for MyBooksResponse:

public class MyBooksResponseConsumer : 
  ConsumerOf<MyBooksResponse> {

  private readonly ApplicationModel applicationModel;

  public MyBooksResponseConsumer(
    ApplicationModel applicationModel) {
    this.applicationModel = applicationModel;
  }

  public void Consume(MyBooksResponse message) {
    applicationModel.MyBooks.UpdateFrom(message.Books);
  }
}

Th is simply updates the application model with the data from 
the message. One thing, however, should be noted: the consume 
method is not called on the UI thread. Instead, it’s called on a back-
ground thread. Th e application model is bound to the UI, however, 
so updating it must happen on the UI thread. Th e UpdateFrom 
method is aware of that and will switch to the UI thread to update 
the application model in the correct thread.

Th e code for handling the other messages on both the back 
end and the front end is similar. Th is communication is purely 

asynchronous. At no point are you waiting for a reply from the 
back end, and you aren’t using the .NET Framework’s asynchronous 
API. Instead, you have an explicit message exchange, which usually 
happens almost instantaneously, but can also stretch over a longer 
time period if you’re working in a disconnected mode. 

Earlier, when I sent the queries to the back end, I just told the bus to 
send the messages, but I didn’t say where to send them. In Figure 4, 
I just called Reply, again not specifying where the message should 
be sent. How does the bus know where to send those messages?

In the case of sending messages to the back end, the answer is: con-
fi guration. In the App.confi g, you’ll fi nd the following confi guration: 

<messages>
  <add name="Alexandria.Messages"
    endpoint="rhino.queues://localhost:51231/alexandria_backend"/>
</messages>

This tells the bus that all messages whose namespace starts 
with Alexandria.Messages should be sent to the alexandria_
backend endpoint. 

In the handling of the messages in the back-end system, calling 
Reply simply means sending the message back to its originator.

Th is confi guration specifi es the ownership of a message, that 
is, to whom to send this message when it’s placed on the bus and 
where to send a subscription request so you’ll be included in the 
distribution list when messages of this type are published. I’m 
not using message publication in the Alexandria application, so 
I won’t cover that.

public class NHibernateMessageModule : IMessageModule {
  private readonly ISessionFactory sessionFactory;
  [ThreadStatic]
  private static ISession currentSession;

  public static ISession CurrentSession {
    get { return currentSession; }
  }

  public NHibernateMessageModule(
    ISessionFactory sessionFactory) {

    this.sessionFactory = sessionFactory;
  }

  public void Init(ITransport transport, 
    IServiceBus serviceBus) {

    transport.MessageArrived += TransportOnMessageArrived;
    transport.MessageProcessingCompleted 
      += TransportOnMessageProcessingCompleted;
  }

  private static void 
    TransportOnMessageProcessingCompleted(
    CurrentMessageInformation currentMessageInformation, 
    Exception exception) {

    if (currentSession != null)
        currentSession.Dispose();
    currentSession = null;
  }

  private bool TransportOnMessageArrived(
    CurrentMessageInformation currentMessageInformation) {

    if (currentSession == null)
        currentSession = sessionFactory.OpenSession();
    return false;
  }
}

Figure 6 Managing Session Lifetime

public class AlexandriaBootStrapper : 
  AbstractBootStrapper {

  public AlexandriaBootStrapper() {
    NHibernateProfiler.Initialize();
  }

  protected override void ConfigureContainer() {
    var cfg = new Configuration()
      .Configure("nhibernate.config");
    var sessionFactory = cfg.BuildSessionFactory();

    container.Kernel.AddFacility(
      "factory", new FactorySupportFacility());

    container.Register(
      Component.For<ISessionFactory>()
        .Instance(sessionFactory),
      Component.For<IMessageModule>()
        .ImplementedBy<NHibernateMessageModule>(),
      Component.For<ISession>()
        .UsingFactoryMethod(() => 
          NHibernateMessageModule.CurrentSession)
        .LifeStyle.Is(LifestyleType.Transient));

    base.ConfigureContainer();
  }
}

Figure 5 Initializing Messaging Sessions

When using queues, it’s easy 
to think in terms of messages 

and destinations.



Learn more:

Imagine...
...an intranet employees want to use

Copyright © 2010 Ektron, Inc.  All rights reserved. | http://www.ektron.com | 1-877-4-WEB-CMS

http://www.ektron.com/intranet

Why is user adoption 
such a large hurdle for intranets? 
eIntranet overcomes this hurdle by transforming the user 
experience. Employees connect with the right people 
and content instantly. Information fi nds them, no matter 
where they go.

 Collaboration – Complete projects faster in collaborative 
groupspaces with powerful communication and sharing tools

 Timeline and Social Navigation – Find content and collateral 
based on when it was created and who is using it

 Easy to deploy, customize and extend – Integrate with business 
infrastructures and extend the functionality to meet unique needs

 Mobile engagement – Engage employees on the go, delivering 
updates via SMS alerts, e-mail or the eIntranet Mobile App

Untitled-1   1 6/11/10   11:48 AM

http://www.ektron.com
http://www.ektron.com/intranet


msdn magazine64 Smart Client

Session Management
You’ve seen how the communication mechanism works now, but 
there are infrastructure concerns to address before moving forward. 
As in any NHibernate application, you need some way of managing 
the session lifecycle and handling transactions properly. 

Th e standard approach for Web applications is to create a session 
per request, so each request has its own session. For a messaging 
application, the behavior is almost identical. Instead of having a 
session per request, you have a session per message batch.

It turns out that this is handled almost completely by the infrastruc-
ture. Figure 5 shows the initialization code for the back-end system.

Bootstrapping is an explicit concept in Rhino Service Bus, 
implemented by classes deriving from AbstractBootStrapper. Th e 
bootstrapper has the same job as the Global.asax in a typical Web 
application. In Figure 5 I fi rst build the NHibernate session factory, 
then set up the container (Castle Windsor) to provide the NHiber-
nate session from the NHibenrateMessageModule.

A message module has the same purpose as an HTTP module 
in a Web application: to handle cross-cutting concerns across all 
requests. I use the NHibernateMessageModule to manage the 
session lifetime, as shown in Figure 6.

Th e code is pretty simple: register for the appropriate events, create 
and dispose of the session in the appropriate places and you’re done. 

One interesting implication of this approach is that all messages 
in a batch will share the same session, which means that in many 
cases you can take advantage of NHibernate’s fi rst-level cache.

Transaction Management
Th at’s it for session management, but what about transactions? 

A best practice for NHibernate is that all interactions with the 
database should be handled via transactions. But I’m not using 
NHibernate’s transactions here. Why?

Th e answer is that transactions 
are handled by Rhino Service Bus. 
Instead of making each consumer 
manage its own transactions, 
Rhino Service Bus takes a different 
approach. It makes use of Syst em.
Trans actions.TransactionScope to 
create a single transaction that 

encompasses all the consumers for messages in the batch.
Th at means all the actions taken in a response to a message batch 

(as opposed to a single message) are part of the same transaction. 
NHibernate will automatically enlist a session in the ambient trans-
action, so when you’re using Rhino Service Bus you have no need 
to explicitly deal with transactions.

Th e combination of a single session and a single transaction makes 
it easy to combine multiple operations into a single transactional unit. 
It also means you can directly benefi t from NHibernate’s fi rst-level 
cache. For example, here’s the relevant code to handle MyQueueQuery:

public void Consume(MyQueueQuery message) {
  var user = session.Get<User>(message.UserId);

  Console.WriteLine("{0}'s has {1} books queued for reading",
    user.Name, user.Queue.Count);

  bus.Reply(new MyQueueResponse {
    UserId = message.UserId,
    Timestamp = DateTime.Now,
    Queue = user.Queue.ToBookDtoArray()
  });
}

Th e actual code for handling a MyQueueQuery and MyBooks-
Query is nearly identical. So, what’s the performance implication 
of a single transaction per session for the following code?

bus.Send(
  new MyBooksQuery {
    UserId = userId
  },
  new MyQueueQuery {
    UserId = userId
  });

At fi rst glance, it looks like it would take four queries to gather 
all the required information. In MyBookQuery, one query to get 
the appropriate user and another to load the user’s books. Th e same 
appears to be the case in MyQueueQuery: one query to get the user 
and another to load the user’s queue.

Th e use of a single session for the entire batch, however, shows 
that you’re actually using the fi rst-level cache to avoid unnecessary 
queries, as you can see in the NHibernate Profiler (nhprof.com) 
output in Figure 7.

Supporting Occasionally Connected Scenarios
As it stands, the application won’t throw an error if the back-end 
server can’t be reached, but it wouldn’t be very useful, either. 

Client

MyBooksRequest

MyBooksRequest

MyBooksResponse

MyBooksRequest

Cached MyBooksResponse

MyBooksResponse

MyBooksResponse

Back EndCache

Client Back EndCache

Figure 8 Using the Cache in Concurrent Messaging Operations

Figure 7 The NHibnerate Profi ler View of Processing Requests

The standard approach for 
Web applications is to create a 

session per request.

http://nhprof.com


You have the vision, but time, budget and staff
constraints prevent you from seeing it through.  
With rich user interface controls like Gantt Charts 
that Infragistics NetAdvantage® for .NET adds to 
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!”  Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588  
Infragistics Europe Sales +44 (0) 800 298 9055   
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.  All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12   1 4/9/10   2:29 PM

www.infragistics.com/spark


msdn magazine66 Smart Client

Th e next step in the evolution of this application is to turn it into 
a real occasionally connected client by introducing a cache that 
allows the application to continue operating even if the back-end 
server is not responding. However, I won’t use the traditional cach-
ing architecture in which the application code makes explicit calls 
to the cache. Instead, I’ll apply the cache at the infrastructure level. 

Figure 8 shows the sequence of operations when the cache is 
implemented as part of the messaging infrastructure when you send 
a single message requesting data about a user’s books. 

Th e client sends a MyBooksQuery message. Th e message is sent 
on the bus while, at the same time, the cache is queried to see if it 
has the response for this request. If the cache contains the response 
for the previous request, the cache immediately causes the cached 
message to be consumed as if it just arrived on the bus. 

Th e response from the back-end system arrives. Th e mes-
sage is consumed normally and is also placed in the cache. 
On the surface, this approach seems to be complicated, but it 
results in effective caching behavior and allows you to almost 
completely ignore caching concerns in the application code. With 
a persistent cache (one that survives application restarts), you can 
operate the application completely independently without requiring 
any data from the back-end server.

Now let’s implement this functionality. I assume a persistent cache (the 
sample code provides a simple implementation that uses binary serial-

ization to save the values to disk) and defi ne the following conventions:
• A message can be cached if it’s part of a request/response 

message exchange. 
• Both the request and response messages carry the cache key 

for the message exchange. 
The message exchange is defined by an ICacheableQuery 

interface with a single Key property and an ICacheableResponse 
interface with Key and Timestamp properties.

To implement this convention, I write a CachingMessageModule 
that will run on the front end, intercepting incoming and outgoing 
messages. Figure 9 shows how incoming messages are handled.

There isn’t much going on here—if the message is a cacheable 
response, I put it in the cache. But there is one thing to note: 
I handle the case of out-of-order messages—messages that have an 
earlier timestamp arriving aft er messages with later timestamps. 
Th is ensures that only the latest information is stored in the cache.

Handling outgoing messages and dispatching the messages from 
the cache is more interesting, as you can see in Figure 10.

I gather the cached responses from the cache and call Consume-
Messages on them. Th at causes the bus to invoke the usual message 
invocation logic, so it looks like the message has arrived again. 

Note, however, that even though there’s a cached response, you 
still send the message. Th e reasoning is that you can provide a quick 
(cached) response for the user, and update the information shown 
to the user when the back end replies to new messages.

Next Steps
I have covered the basic building blocks of a smart client application: 
how to structure the back end and the communication mode 
between the smart client application and the back end. Th e latter 
is important because choosing the wrong communication mode 
can lead to the fallacies of distributed computing. I also touched 
on batching and caching, two very important approaches to 
improving the performance of a smart client application. 

On the back end, you’ve seen how to manage transactions and the 
NHibernate session, how to consume and reply to messages from 
the client and how everything comes together in the bootstrapper.

In this article, I focused primarily on infrastructure concerns; 
in the next installment I’ll cover best practices for sending data 
between the back end and the smart client application, and 
patterns for distributed change management. 

OREN EINI (who works under the pseudonym Ayende Rahien) is an active member of 
several open source projects (NHibernate and Castle among them) and is the founder 
of many others (Rhino Mocks, NHibernate Query Analyzer and Rhino Commons 
among them). Eini is also responsible for the NHibernate Profi ler (nhprof.com), a 
visual debugger for NHibernate. You can follow Eini’s work at ayende.com/blog.

private void TransportOnMessageSent(
  CurrentMessageInformation 
  currentMessageInformation) {

  var cacheableQuerys = 
    currentMessageInformation.AllMessages.OfType<
    ICacheableQuery>();
  var responses =
    from msg in cacheableQuerys
    let response = cache.Get(msg.Key)
    where response != null
    select response.Value;

  var array = responses.ToArray();
  if (array.Length == 0)
    return;
  bus.ConsumeMessages(array);
}

Figure 10 Dispatching Messages

private bool TransportOnMessageArrived(
  CurrentMessageInformation
  currentMessageInformation) {

  var cachableResponse = 
    currentMessageInformation.Message as 
    ICacheableResponse;
  if (cachableResponse == null)
    return false;

  var alreadyInCache = cache.Get(cachableResponse.Key);
  if (alreadyInCache == null || 
    alreadyInCache.Timestamp < 
    cachableResponse.Timestamp) {

    cache.Put(cachableResponse.Key, 
      cachableResponse.Timestamp, cachableResponse);
  }
  return false;
}

Figure 9 Caching Incoming Connections

Even though there’s a 
cached response, you still 

send the message.

http://ayende.com/blog


Untitled-3   1 6/8/10   11:39 AM

www.vslive.com/redmond


msdn magazine68

C#  4 . 0

New C# Features in 
the .NET Framework 4

Since its initial release in 2002, the C# programming lan-
guage has been improved to enable programmers to write clearer, 
more maintainable code. Th e enhancements have come from the 
addition of features such as generic types, nullable value types, lambda 
expressions, iterator methods, partial classes and a long list of other use-
ful language constructs. And, oft en, the changes were accompanied by 
giving the Microsoft  .NET Framework libraries corresponding support.

Th is trend toward increased usability continues in C# 4.0. Th e addi-
tions make common tasks involving generic types, legacy interop and 
working with dynamic object models much simpler. Th is article aims 
to give a high-level survey of these new features. I’ll begin with generic 
variance and then look at the legacy and dynamic interop features.

Covariance and Contravariance 
Covariance and contravariance are best introduced with an example, 
and the best is in the framework. In System.Collections.Generic, 

Chris Burrows

IEnumerable<T> and IEnumerator <T> represent, respectively, 
an object that’s a sequence of T’s and the enumerator (or iterator) that 
does the work of iterating the sequence. Th ese interfaces have done 
a lot of heavy lift ing for a long time, because they support the imple-
mentation of the foreach loop construct. In C# 3.0, they became even 
more prominent because of their central role in LINQ and LINQ to 
Objects—they’re the .NET interfaces to represent sequences.

So if you have a class hierarchy with, say, an Employee type and 
a Manager type that derives from it (managers are employees, aft er 
all), then what would you expect the following code to do?

IEnumerable<Manager> ms = GetManagers();
IEnumerable<Employee> es = ms;

It seems as though one ought to be able to treat a sequence of 
Managers as though it were a sequence of Employees. But in C# 3.0, the 
assignment will fail; the compiler will tell you there’s no conversion. Aft er 
all, it has no idea what the semantics of IEnumerable<T> are. Th is could 
be any interface, so for any arbitrary interface IFoo<T>, why would an 
IFoo<Manager> be more or less substitutable for an IFoo<Employee>?

In C# 4.0, though, the assignment works because IEnumerable<T>, 
along with a few other interfaces, has changed, an alteration 
enabled by new support in C# for covariance of type parameters.

IEnumerable<T> is eligible to be more special than the arbitrary 
IFoo<T> because, though it’s not obvious at fi rst glance, members 
that use the type parameter T (GetEnumerator in IEnumerable<T> 
and the Current property in IEnumerator<T>) actually use T only 
in the position of a return value. So you only get a Manager out of 
the sequence, and you never put one in.

This article discusses:
• Covariance and contravariance

• Dynamic dispatch

• Named arguments and optional properties

• COM interop

Technologies discussed:
C#, Microsoft .NET Framework 4, COM



69July 2010msdnmagazine.com

In contrast, think of List<T>. Making a List<Manager> substitutable 
for a List<Employee> would be a disaster, because of the following:

List<Manager> ms = GetManagers();
List<Employee> es = ms; // Suppose this were possible
es.Add(new EmployeeWhoIsNotAManager()); // Uh oh

As this shows, once you think you’re looking at a List<Employee>, 
you can insert any employee. But the list in question is actually a 
List<Manager>, so inserting a non-Manager must fail. You’ve lost 
type safety if you allow this. List<T> cannot be covariant in T.

Th e new language feature in C# 4.0, then, is the ability to defi ne 
types, such as the new IEnumerable<T>, that admit conversions 
among themselves when the type parameters in question bear 
some relationship to one another. Th is is what the .NET Framework 
developers who wrote IEnumerable<T> used, and this is what their 
code looks like (simplifi ed, of course):

public interface IEnumerable<out T> { /* ... */ }

Notice the out keyword modifying the defi nition of the type 
parameter, T. When the compiler sees this, it will mark T as 
covariant and check that, in the defi nition of the interface, all 
uses of T are up to snuff  (in other words, that they’re used in out 
positions only—that’s why this keyword was picked). 

Why is this called covariance? Well, it’s easiest to see when 
you start to draw arrows. To be concrete, let’s use the Manager 
and Employee types. Because there’s an inheritance relationship 
between these classes, there’s an implicit reference conversion from 
Manager to Employee:

Manager  Employee
And now, because of the annotation of T in IEnumerable<out T>, there’s 

also an implicit reference conversion from IEnumerable<Manager> 
to IEnumerable<Employee>. Th at’s what the annotation provides for:

IEnumerable<Manager>  IEnumerable<Employee>
Th is is called covariance, because the arrows in each of the 

two examples point in the same direction. We started with two 
types, Manager and Employee. We made new types out of them, 
IEnumerable<Manager> and IEnumerable<Employee>. Th e new 
types convert the same way as the old ones. 

Contravariance is when this happens backward. You might 
anticipate that this could happen when the type parameter, T, is 
used only as input, and you’d be right. For example, the System 
namespace contains an interface called IComparable<T>, which 
has a single method called CompareTo:

public interface IComparable<in T> { 
  bool CompareTo(T other); 
}

If you have an IComparable<Employee>, you should be able to 
treat it as though it were an IComparable<Manager>, because the 
only thing you can do is put Employees in to the interface. Because 
a manager is an employee, putting a manager in should work, and 
it does. Th e in keyword modifi es T in this case, and this scenario 
functions correctly:

IComparable<Employee> ec = GetEmployeeComparer();
IComparable<Manager> mc = ec;

Th is is called contravariance because the arrow got reversed 
this time:

 Manager  Employee
IComparable<Manager>  IComparable<Employee>

So the language feature here is pretty simple to summarize: 
You can add the keyword in or out whenever you define a type 
parameter, and doing so gives you free extra conversions. There 
are some limitations, though.

First, this works with generic interfaces and delegates only. You 
can’t declare a generic type parameter on a class or struct in this 
manner. An easy way to rationalize this is that delegates are very 
much like interfaces that have just one method, and in any case, 
classes would oft en be ineligible for this treatment because of fi elds. 
You can think of any fi eld on the generic class as being both an 
input and an output, depending on whether you write to it or read 
from it. If those fi elds involve type parameters, the parameters can 
be neither covariant nor contravariant.

Second, whenever you have an interface or delegate with a 
covariant or contravariant type parameter, you’re granted new con-
versions on that type only when the type arguments, in the usage of 
the interface (not its defi nition), are reference types. For instance, 
because int is a value type, the IEnumerator<int> doesn’t convert 
to IEnumerator <object>, even though it looks like it should:

IEnumerator <int>  /  IEnumerator <object>
The reason for this behavior is that the conversion must 

preserve the type representation. If the int-to-object conversion 
were allowed, calling the Current property on the result would be 
impossible, because the value type int has a diff erent representation 
on the stack than an object reference does. All reference types 
have the same representation on the stack, however, so only type 
arguments that are reference types yield these extra conversions.

Very likely, most C# developers will happily use this new lan-
guage feature—they’ll get more conversions of framework types and 
fewer compiler errors when using some types from the .NET 
Framework (IEnumerable<T>, IComparable<T>, Func<T>, 
Action<T>, among others). And, in fact, anyone designing a library with 
generic interfaces and delegates is free to use the new in and out 
type parameters when appropriate to make life easier for their users.

By the way, this feature does require support from the runtime—
but the support has always been there. It lay dormant for several 
releases, however, because no language made use of it. Also, previ-
ous versions of C# allowed some limited conversions that were con-
travariant. Specifi cally, they let you make delegates out of methods 
that had compatible return types. In addition, array types have 
always been covariant. Th ese existing features are distinct from the 
new ones in C# 4.0, which actually let you defi ne your own types that 
are covariant and contravariant in some of their type parameters.

Dynamic Dispatch
On to the interop features in C# 4.0, starting with what is perhaps 
the biggest change.

C# now supports dynamic late-binding. The language has 
always been strongly typed, and it continues to be so in version 4.0. 
Microsoft  believes this makes C# easy to use, fast and suitable for 
all the work .NET programmers are putting it to. But there are times 
when you need to communicate with systems not based on .NET.

Traditionally, there were at least two approaches to this. Th e fi rst 
was simply to import the foreign model directly into .NET as a proxy. 
COM Interop provides one example. Since the original release of the 

www.msdnmagazine.com


msdn magazine70 C# 4.0

.NET Framework, it has used this strategy with a tool called TLBIMP,  
which creates new .NET proxy types you can use directly from C#. 

LINQ-to-SQL, shipped with C# 3.0, contains a tool called 
SQLMETAL, which imports an existing database into C# proxy 
classes for use with queries. You’ll also fi nd a tool that imports 
Windows Management Instrumentation (WMI) classes to C#. 
Many technologies allow you to write C# (oft en with attributes) 
and then perform interop using your handwritten code as basis for 
external actions, such as LINQ-to-SQL, Windows Communication 
Foundation (WCF) and serialization.

Th e second approach abandons the C# type system entirely—you 
embed strings and data in your code. Th is is what you do when-
ever you write code that, say, invokes a method on a JScript object 
or when you embed a SQL query in your ADO.NET application. 
You’re even doing this when you defer binding to run time using 
refl ection, even though the interop in that case is with .NET itself.

The dynamic keyword in C# is a response to dealing with 
the hassles of these other approaches. Let’s start with a simple 
example—refl ection. Normally, using it requires a lot of boilerplate 
infrastructure code, such as:

object o = GetObject();
Type t = o.GetType();
object result = t.InvokeMember("MyMethod", 
  BindingFlags.InvokeMethod, null, 
  o, new object[] { });
int i = Convert.ToInt32(result);

With the dynamic keyword, instead of calling a method 
MyMethod on some object using refl ection in this manner, you 
can now tell the compiler to please treat o as dynamic and delay all 
analysis until run time. Code that does that looks like this:

dynamic o = GetObject();
int i = o.MyMethod();

It works, and it accomplishes the same thing with code that’s 
much less convoluted. 

Th e value of this shortened, simplifi ed C# syntax is perhaps more 
clear if you look at the ScriptObject class that supports operations 
on a JScript object. Th e class has an InvokeMember method that has 
more and diff erent parameters, except in Silverlight, which actu-
ally has an Invoke method (notice the diff erence in the name) with 
fewer parameters. Neither of these are the same as what you’d need 
to invoke a method on an IronPython or IronRuby object or on 
any number of non-C# objects you might come into contact with. 

In addition to objects that come from dynamic languages, you’ll 
fi nd a variety of data models that are inherently dynamic and 
have diff erent APIs supporting them, such as HTML DOMs, the 
System.Xml DOM and the XLinq model for XML. COM objects 
are oft en dynamic and can benefi t from the delay to run time of 
some compiler analysis.

Essentially, C# 4.0 off ers a simplifi ed, consistent view of dynamic 
operations. To take advantage of it, all you need to do is specify that 
a given value is dynamic, ensuring that analysis of all operations 
on the value will be delayed until run time.

In C# 4.0, dynamic is a built-in type, and a special pseudo-keyword 
signifi es it. Note, however, that dynamic is diff erent from var. Variables 
declared with var actually do have a strong type, but the programmer 
has left  it up to the compiler to fi gure it out. When the programmer 
uses dynamic, the compiler doesn’t know what type is being used—
the programmer leaves fi guring it out up to the runtime.

Dynamic and the DLR
Th e infrastructure that supports these dynamic operations at run 
time is called the Dynamic Language Runtime (DLR). Th is new 
.NET Framework 4 library runs on the CLR, like any other man-
aged library. It’s responsible for brokering each dynamic operation 
between the language that initiated it and the object it occurs on. If a 
dynamic operation isn’t handled by the object it occurs on, a runtime 
component of the C# compiler handles the bind. A simplifi ed and 
incomplete architecture diagram looks something like Figure 1.

The interesting thing about a dynamic operation, such as a 
dynamic method call, is that the receiver object has an oppor-
tunity to inject itself into the binding at run time and can, as a 
result, completely determine the semantics of any given dynamic 
operation. For instance, take a look at the following code:

dynamic d = new MyDynamicObject();
d.Bar("Baz", 3, d);

If MyDynamicObject was defi ned as shown here, then you can 
imagine what happens:

class MyDynamicObject : DynamicObject {
  public override bool TryInvokeMember(
    InvokeMemberBinder binder, 
    object[] args, out object result) {

    Console.WriteLine("Method: {0}", binder.Name);
    foreach (var arg in args) {
      Console.WriteLine("Argument: {0}", arg);
    }

    result = args[0];
    return true;
  }
}

In fact, the code prints: 
Method: Bar
Argument: Baz
Argument: 3
Argument: MyDynamicObject

By declaring d to be of type dynamic, the code that consumes 
the MyDynamicObject instance eff ectively opts out of compile-
time checking for the operations d participates in. Use of dynamic 
means “I don’t know what type this is going to be, so I don’t know 

Figure 1 The DLR Runs on Top of the CLR

C# Dynamic IronPython IronRuby Dynamic APIs

Common Language Runtime (CLR)

Dynamic Language Runtime (DLR) Rest of the
.NET Framework

C# 4.0 offers a simplifi ed, 
consistent view of 

dynamic operations.



71July 2010msdnmagazine.com

what methods or properties there are right now. Compiler, please 
let them all through and then fi gure it out when you really have 
an object at run time.” So the call to Bar compiles even though 
the compiler doesn’t know what it means. Th en at run time, the 
object itself is asked what to do with this call to Bar. Th at’s what 
TryInvokeMember knows how to handle.

Now, suppose that instead of a MyDynamicObject, you used a 
Python object:

dynamic d = GetPythonObject();
d.bar("Baz", 3, d);

If the object is the fi le listed here, then the code also works, and 
the output is much the same: 

 def bar(*args):
  print "Method:", bar.__name__
  for x in args:
    print "Argument:", x

Under the covers, for each use of a dynamic value, the compiler 
generates a bunch of code that initializes and uses a DLR CallSite. 
Th at CallSite contains all the information needed to bind at run 
time, including such things as the method name, extra data, such 
as whether the operation takes place in a checked context, and 
information about the arguments and their types. 

Th is code, if you had to maintain it, would be every bit as ugly 
as the refl ection code shown earlier or the ScriptObject code or 
strings that contain XML queries. Th at’s the point of the dynamic 
feature in C#—you don’t have to write code like that! 

When using the dynamic keyword, your code can look pretty 
much the way you want: like a simple method invocation, a call to 
an indexer, an operator, such as +, a cast or even compounds, like += 
or ++. You can even use dynamic values in statements—for example, 
if(d) and foreach(var x in d). Short-circuiting is also supported, with 
code such as d && ShortCircuited or d ?? ShortCircuited.

Th e value of having the DLR provide a common infrastructure 
for these sorts of operations is that you’re no longer having to deal  
with a diff erent API for each dynamic model you’d like to code 
against—there’s just a single API. And you don’t even have to use 
it. Th e C# compiler can use it for you, and that should give you 
more time to actually write the code you want—the less infrastruc-
ture code you have to maintain means more productivity for you.

Th e C# language provides no shortcuts for defi ning dynamic 
objects. Dynamic in C# is all about consuming and using dynamic 
objects. Consider the following:

dynamic list = GetDynamicList();
dynamic index1 = GetIndex1();
dynamic index2 = GetIndex2();
string s = list[++index1, index2 + 10].Foo();

Th is code compiles, and it contains a lot of dynamic operations. 
First, there’s the dynamic pre-increment on index1, then the dynamic 
add with index2. Th en a dynamic indexer get is called on list. Th e 
product of those operations calls the member Foo. Finally, the total 
result of the expression is converted to a string and stored in s. Th at’s 
fi ve dynamic operations in one line, each dispatched at run time. 

Th e compile-time type of each dynamic operation is itself 
dynamic, and so the “dynamicness” kind of flows from com-
putation to computation. Even if you hadn’t included dynamic 
expressions multiple times, there still would be a number of 
dynamic operations. Th ere are still fi ve in this one line:

string s = nonDynamicList[++index1, index2 + 10].Foo();

Because the results of the two indexing expressions are dynamic, 
the index itself is as well. And because the result of the index 
is dynamic, so is the call to Foo. Th en you’re confronted with 
converting a dynamic value to a string. Th at happens dynamically, 
of course, because the object could be a dynamic one that wants to 
perform some special computation in the face of a conversion request.

Notice in the previous examples that C# allows implicit 
conversions from any dynamic expression to any type. The 
conversion to string at the end is implicit and did not require an 
explicit cast operation. Similarly, any type can be converted to 
dynamic implicitly. 

In this respect, dynamic is a lot like object, and the similarities 
don’t stop there. When the compiler emits your assembly and needs 
to emit a dynamic variable, it does so by using the type object and 
then marking it specially. In some sense, dynamic is kind of an alias 
for object, but it adds the extra behavior of dynamically resolving 
operations when you use it.

You can see this if you try to convert between generic types that 
diff er only in dynamic and object; such conversions will always 
work, because at runtime, an instance of List<dynamic> actually 
is an instance of List<object>:

List<dynamic> ld = new List<object>();

You can also see the similarity between dynamic and object if you 
try to override a method that’s declared with an object parameter:

class C {
  public override bool Equals(dynamic obj) { 
    /* ... */ 
  }
}

Although it resolves to a decorated object in your assembly, I 
do like to think of dynamic as a real type, because it serves as a re-
minder that you can do most things with it that you can do with 
any other type. You can use it as a type argument or, say, as a re-
turn value. For instance, this function defi nition will let you use 
the result of the function call dynamically without having to put 
its return value in a dynamic variable:

public dynamic GetDynamicThing() { 
  /* ... */ }

Th ere are a lot more details about the way dynamic is treated 
and dispatched, but you don’t need to know them to use the 
feature. Th e essential idea is that you can write code that looks like 
C#, and if any part of the code you write is dynamic, the compiler 
will leave it alone until run time.

I want to cover one fi nal topic concerning dynamic: failure. 
Because the compiler can’t check whether the dynamic thing you’re 
using really has the method called Foo, it can’t give you an error. 
Of course, that doesn’t mean that your call to Foo will work at run 
time. It may work, but there are a lot of objects that don’t have a 

Dynamic in C# is all 
about consuming and using 

dynamic objects.

www.msdnmagazine.com


msdn magazine72 C# 4.0

method called Foo. When your expression fails to bind at run time, 
the binder makes its best attempt to give you an exception that’s 
more or less exactly what the compiler would’ve told you if you 
hadn’t used dynamic to begin with. 

Consider the following code:
try 
{
  dynamic d = "this is a string";
  d.Foo();
}
catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException e)
{
  Console.WriteLine(e.Message);
}

Here I have a string, and strings clearly do not have a method 
called Foo. When the line that calls Foo executes, the binding will 
fail and you’ll get a RuntimeBinderException. Th is is what the 
previous program prints:

'string' does not contain a definition for 'Foo'

Which is exactly the error message you, as a C# programmer, expect.

Named Arguments and Optional Parameters
In another addition to C#, methods now support optional parameters 
with default values so that when you call such a method you can 
omit those parameters. You can see this in action in this Car class:

class Car {
  public void Accelerate(
    double speed, int? gear = null, 
    bool inReverse = false) { 

    /* ... */ 
  }
}

You can call the method this way:
Car myCar = new Car();
myCar.Accelerate(55);

Th is has exactly the same eff ect as:
myCar.Accelerate(55, null, false);

It’s the same because the compiler will insert all the default 
values that you omit. 

C# 4.0 will also let you call methods by specifying some argu-
ments by name. In this way, you can pass an argument to an optional 
parameter without having to also pass arguments for all the 
parameters that come before it. 

Say you want to call Accelerate to go in reverse, but you don’t 
want to specify the gear parameter. Well, you can do this:

myCar.Accelerate(55, inReverse: true);

Th is is a new C# 4.0 syntax, and it’s the same as if you had written:
myCar.Accelerate(55, null, true);

In fact, whether or not parameters in the method you’re calling 
are optional, you can use names when passing arguments. For 
instance, these two calls are permissible and identical to one another:

Console.WriteLine(format: "{0:f}", arg0: 6.02214179e23);
Console.WriteLine(arg0: 6.02214179e23, format: "{0:f}");

If you’re calling a method that takes a long list of parameters, you 
can even use names as a sort of in-code documentation to help you 
remember which parameter is which. 

On the surface, optional arguments and named parameters 
don’t look like interop features. You can use them without ever 
even thinking about interop. However, the motivation for these 
features comes from the Offi  ce APIs. Consider, for example, Word 

programming and something as simple as the SaveAs method on the 
Document interface. Th is method has 16 parameters, all of which 
are optional. With previous versions of C#, if you want to call this 
method you have to write code that looks like this:

Document d = new Document();
object filename = "Foo.docx";
object missing = Type.Missing;
d.SaveAs(ref filename, ref missing, ref missing, ref missing, ref 
missing, ref missing, ref missing, ref missing, ref missing, ref 
missing, ref missing, ref missing, ref missing, ref missing, ref 
missing, ref missing);

Now, you can write this:
Document d = new Document();
d.SaveAs(FileName: "Foo.docx");

I would say that’s an improvement for anyone who works with 
APIs like this. And improving the lives of programmers who need 
to write Offi  ce programs was defi nitely a motivating factor for 
adding named arguments and optional parameters to the language.

Now, when writing a .NET library and considering adding 
methods that have optional parameters, you’re faced with a choice. 
You can either add optional parameters or you can do what C# 
programmers have done for years: introduce overloads. In the 
Car.Accelerate example, the latter decision might lead you to 
produce a type that looks like this:

class Car {
  public void Accelerate(uint speed) { 
    Accelerate(speed, null, false); 
  }
  public void Accelerate(uint speed, int? gear) { 
    Accelerate(speed, gear, false); 
  }
  public void Accelerate(uint speed, int? gear, 
    bool inReverse) { 
    /* ... */ 
  }
}

Selecting the model that suits the library you’re writing is up 
to you. Because C# hasn’t had optional parameters until now, the 
.NET Framework (including the .NET Framework 4) tends to use 
overloads. If you decide to mix and match overloads with optional 
parameters, the C# overload resolution has clear tie-breaking rules 
to determine which overload to call under any given circumstances.

Indexed Properties
Some smaller language features in C# 4.0 are supported only when 
writing code against a COM interop API. Th e Word interop in the 
previous illustration is one example.

C# code has always had the notion of an indexer that you 
can add to a class to effectively overload the [] operator on 
instances of that class. Th is sense of indexer is also called a default 
indexer, since it isn’t given a name and calling it requires no name. 
Some COM APIs also have indexers that aren’t default, which is 
to say that you can’t eff ectively call them simply by using []—you 
must specify a name. You can, alternatively, think of an indexed 
property as a property that takes some extra arguments.

Selecting the model that suits the 
library you’re writing is up to you.



73July 2010msdnmagazine.com

C# 4.0 supports indexed properties on COM interop types. You 
can’t defi ne types in C# that have indexed properties, but you can 
use them provided you’re doing so on a COM type. For an example 
of what C# code that does this looks like, consider the Range 
property on an Excel worksheet:

using Microsoft.Office.Interop.Excel;

class Program {
  static void Main(string[] args) {
    Application excel = new Application();
    excel.Visible = true;

    Worksheet ws = 
      excel.Workbooks.Add().Worksheets["Sheet1"];
    // Range is an indexed property
    ws.Range["A1", "C3"].Value = 123; 
    System.Console.ReadLine();
    excel.Quit();
  }
}

In this example, Range[“A1”, “C3”] isn’t a property called Range 
that returns a thing that can be indexed. It’s one call to a Range 
accessor that passes A1 and C3 with it. And although Value might 
not look like an indexed property, it, too, is one! All of its arguments 
are optional, and because it’s an indexed property, you omit them by 
not specifying them at all. Before the language supported indexed 
properties, you would have written the call like this:

ws.get_Range("A1", "C3").Value2 = 123;

Here, Value2 is a property that was added simply because the 
indexed property Value wouldn’t work prior to C# 4.0.

Omitting the Ref Keyword at COM Call Sites
Some COM APIs were written with many parameters passed by refer-
ence, even when the implementation doesn’t write back to them. In the 
Offi  ce suite, Word stands out as an example—its COM APIs all do this. 

When you’re confronted with such a library and you need to pass 
arguments by reference, you can no longer pass any expression that’s 
not a local variable or fi eld, and that’s a big headache. In the Word 
SaveAs example, you can see this in action—you had to declare a 
local called fi lename and a local called missing just to call the SaveAs 
method, since those parameters needed to be passed by reference.

Document d = new Document();
object filename = "Foo.docx";
object missing = Type.Missing;
d.SaveAs(ref filename, ref missing, // ...

You may have noticed in the new C# code that followed, I no 
longer declared a local for fi lename:

d.SaveAs(FileName: "Foo.docx");

Th is is possible because of the new omit ref feature for COM 
interop. Now, when calling a COM interop method, you can 
pass any argument by value instead of by reference. If you do, the 
compiler will create a temporary local on your behalf and pass 
that local by reference for you if required. Of course, you won’t be 
able to see the eff ect of the method call if the method mutates the 
argument—if you want that, pass the argument by ref.

Th is should make code that uses APIs like this much cleaner.

Embedding COM Interop Types
Th is is more of a C# compiler feature than a C# language feature, but 
now you can use a COM interop assembly without that assembly 
having to be present at run time. Th e goal is to reduce the burden 

of deploying COM interop assemblies with your application.
When COM interop was introduced in the original version of 

the .NET Framework, the notion of a Primary Interop Assembly 
(PIA) was created. Th is was an attempt to solve the problem of 
sharing COM objects among components. If you had diff erent 
interop assemblies that defi ned an Excel Worksheet, we wouldn’t 
be able to share these Worksheets between components, because 
they would be diff erent .NET types. Th e PIA fi xed this by existing 
only once—all clients used it, and the .NET types always matched.

Th ough a fi ne idea on paper, in practice deploying a PIA turns 
out to be a headache, because there’s only one, and multiple 
applications could try to install or uninstall it. Matters are complicated 
because PIAs are oft en large, Offi  ce doesn’t deploy them with default 
Offi  ce installations, and users can circumvent this single assembly sys-
tem easily just by using TLBIMP to create their own interop assembly.

So now, in an eff ort to fi x this situation, two things have happened:
• Th e runtime has been given the smarts to treat two structurally 

identical COM interop types that share the same identifying 
characteristics (name, GUID and so on) as though they were 
actually the same .NET type.

• Th e C# compiler takes advantage of this by simply reproducing 
the interop types in your own assembly when you compile, 
removing the need for the interop assembly to exist at run time.
I have to omit some details in the interest of space, but even 

without knowledge of the details, this is another feature—like 
dynamic—you should be able to use without a problem. You tell 
the compiler to embed interop types for you in Visual Studio by 
setting the Embed Interop Types property on your reference to true.

Because the C# team expects this to be the preferred method of 
referencing COM assemblies, Visual Studio will set this property 
to True by default for any new interop reference added to a C# 
project. If you’re using the command-line compiler (csc.exe) to 
build your code, then to embed interop types you must reference 
the interop assembly in question using the /L switch rather than /R.

Each of the features I’ve covered in this article could itself 
generate much more discussion, and the topics all deserve articles 
of their own. I’ve omitted or glossed over many details, but I hope 
this serves as a good starting point for exploring C# 4.0 and you 
fi nd time to investigate and make use of these features. And if you 
do, I hope you enjoy the benefi ts in productivity and program read-
ability they were designed to give you. 

CHRIS BURROWS is a developer at Microsoft  on the C# compiler team. He imple-
mented dynamic in the C# compiler and has been involved with the development 
of Visual Studio for nine years.

THANKS to the following technical expert for reviewing this article: 
Eric Lippert

Though a fi ne idea on paper, 
in practice deploying a PIA turns 

out to be a headache.

www.msdnmagazine.com


msdn magazine74

DE S IGN  PAT T ER NS

Problems and Solutions 
with Model-View-
ViewModel

Windows Presentation Foundation (WPF) and Silverlight 
provide rich APIs for building modern applications, but under-
standing and applying all the WPF features in harmony with 
each other to build well-designed and easily maintained apps 
can be diffi  cult. Where do you start? And what is the right way to 
compose your application?

The Model-View-ViewModel (MVVM) design pattern 
describes a popular approach for building WPF and Silverlight 
applications. It’s both a powerful tool for building applications 
and a common language for discussing application design 
with developers. While MVVM is a really useful pattern, it’s still 
relatively young and misunderstood.

When is the MVVM design pattern applicable, and when is it 
unnecessary? How should the application be structured? How 
much work is the ViewModel layer to write and maintain, and what 
alternatives exist for reducing the amount of code in the ViewModel 

Robert McCarter

layer? How are related properties within the Model handled 
elegantly? How should you expose collections within the Model to 
the View? Where should ViewModel objects be instantiated and 
hooked up to Model objects?

In this article I’ll explain how the ViewModel works, and discuss 
some benefi ts and issues involved in implementing a ViewModel 
in your code. I’ll also walk you through some concrete examples 
of using ViewModel as a document manager for exposing Model 
objects in the View layer.

Model, ViewModel and View
Every WPF and Silverlight application I’ve worked on so far had 
the same high-level component design. Th e Model was the core of 
the application, and a lot of eff ort went into designing it according 
to object-oriented analysis and design (OOAD) best practices. 

For me the Model is the heart of the application, representing 
the biggest and most important business asset because it cap-
tures all the complex business entities, their relationships and 
their functionality.

Sitting atop the Model is the ViewModel. Th e two primary goals 
of the ViewModel are to make the Model easily consumable by the 
WPF/XAML View and to separate and encapsulate the Model from 
the View. Th ese are excellent goals, although for pragmatic reasons 
they’re sometimes broken.

You build the ViewModel knowing how the user will interact 
with the application at a high level. However, it’s an important part 

This article discusses:
• Model, ViewModel, and View

• Why use a ViewModel?

• Using dynamic properties

• A document manager adapter

Technologies discussed:
Windows Presentation Foundation, Silverlight



75July 2010msdnmagazine.com

of the MVVM design pattern that the ViewModel knows nothing 
about the View. Th is allows the interaction designers and graphics 
artists to create beautiful, functional UIs on top of the ViewModel 
while working closely with the developers to design a suitable View-
Model to support their eff orts. In addition, decoupling between 
View and ViewModel also allows the ViewModel to be more unit 
testable and reusable.

To help enforce a strict separation between the Model, View and 
ViewModel layers, I like to build each layer as a separate Visual 
Studio project. Combined with the reusable utilities, the main 
executable assembly and any unit testing projects (you have plenty 
of these, right?), this can result in a lot of projects and assemblies, 
as illustrated in Figure 1.

Given the large number of projects, this strict-separation 
approach is obviously most useful on large projects. For small 
applications with only one or two developers, the benefi ts of this 
strict separation may not outweigh the inconvenience of creating, 
confi guring and maintaining multiple projects, so simply separating 
your code into diff erent namespaces within the same project may 
provide more than suffi  cient isolation.

Writing and maintaining a ViewModel is not trivial and it should 
not be undertaken lightly. However, the answer to the most basic 
questions—when should you consider the MVVM design pattern 
and when is it unnecessary—is oft en found in your domain model.

In large projects, the domain model may be very complex, with 
hundreds of classes carefully designed to work elegantly together 
for any type of application, including Web services, WPF or ASP.
NET applications. The Model may comprise several assemblies 
working together, and in very large organizations the domain model is 
sometimes built and maintained by a specialized development 
team. 

When you have a large and complex domain model, it’s almost 
always benefi cial to introduce a ViewModel layer. 

On the other hand, sometimes the domain model is simple, perhaps 
nothing more than a thin layer over the database. The classes 
may be automatically generated and they frequently implement 
INotify PropertyChanged. Th e UI is commonly a collection of 
lists or grids with edit forms allowing the user to manipulate the 
underlying data. Th e Microsoft  toolset has always been very good 
at building these kinds of applications quickly and easily. 

If your model or application falls into this category, a ViewModel 
would probably impose unacceptably high overhead without 
suffi  ciently benefi tting your application design.

Th at said, even in these cases the ViewModel can still provide value. 
For example, the ViewModel is an excellent place to implement undo 
functionality. Alternatively, you can choose to use MVVM for a portion 
of the application (such as document management, as I’ll discuss later) 
and pragmatically expose your Model directly to the View.

Why Use a ViewModel?
If a ViewModel seems appropriate for your application, there are 
still questions to be answered before you start coding. One of the 
fi rst is how to reduce the number of proxy properties.

Th e separation of the View from the Model promoted by the 
MVVM design pattern is an important and valuable aspect of the 

pattern. As a result, if a Model class has 10 properties that need to 
be exposed in the View, the ViewModel typically ends up having 
10 identical properties that simply proxy the call to the underlying 
model instance. Th ese proxy properties usually raise a property-
changed event when set to indicate to the View that the property 
has been changed. 

Not every Model property needs to have a ViewModel proxy 
property, but every Model property that needs to be exposed in 
the View will typically have a proxy property. Th e proxy properties 
usually look like this:

public string Description {
  get { 
    return this.UnderlyingModelInstance.Description; 
  }
  set {
    this.UnderlyingModelInstance.Description = value;
    this.RaisePropertyChangedEvent("Description");
  }
}

Any non-trivial application will have tens or hundreds of Model 
classes that need to be exposed to the user through the ViewModel 
in this fashion. Th is is simply intrinsic to the separation provided 
by MVVM.

Writing these proxy properties is boring and therefore error-
prone, especially because raising the property-changed event 
requires a string that must match the name of the property (and will 
not be included in any automatic code refactoring). To eliminate 
these proxy events, the common solution is to expose the model 
instance from the ViewModel wrapper directly, then have the 
domain model implement the INotifyPropertyChanged interface: 

public class SomeViewModel {
  public SomeViewModel( DomainObject domainObject ) {
    Contract.Requires(domainObject!=null, 
      "The domain object to wrap must not be null");
    this.WrappedDomainObject = domainObject;
  }
  public DomainObject WrappedDomainObject { 
    get; private set; 
  }
...

Th us, the ViewModel can still expose the commands and addi-
tional properties required by the view without duplicating Model 
properties or creating lots of proxy properties. This approach 
certainly has its appeal, especially if the Model classes already 
implement the INotifyPropertyChanged interface. Having 
the model implement this interface isn’t necessarily a bad thing 
and it was even common with Microsoft  .NET Framework 2.0 
and Windows Forms applications. It does clutter up the domain 
model, though, and wouldn’t be useful for ASP.NET applications 
or domain services. 

With this approach the View has a dependency on the Model, 
but it’s only an indirect dependency through data binding, which 
does not require a project reference from the View project to the 
Model project. So for purely pragmatic reasons this approach is 
sometimes useful.

The Model is the heart 
of the application.

www.msdnmagazine.com


msdn magazine76 Design Patterns

However, this approach does violate the spirit of the MVVM 
design pattern, and it reduces your ability to introduce new View-
Model-specifi c functionality later (such as undo capabilities). I’ve 
encountered scenarios with this approach that caused a fair bit of 
rework. Imagine the not-uncommon situation where there’s a data 
binding on a deeply nested property. If the Person ViewModel is 
the current data context, and the Person has an Address, the data 
binding might look something like this:

{Binding WrappedDomainObject.Address.Country}

If you ever need to introduce additional ViewModel function-
ality on the Address object, you’ll need to remove data binding 
references to WrappedDomainObject.Address and instead use 
new ViewModel properties. Th is is problematic because updates 
to the XAML data binding (and possibly the data contexts as well) 
are hard to test. Th e View is the one component that doesn’t have 
automated and comprehensive regression tests.

Dynamic Properties
My solution to the proliferation of proxy properties is to use the 
new .NET Framework 4 and WPF support for dynamic objects 
and dynamic method dispatch. Th e latter allows you to determine 
at run time how to handle reading or writing to a property that 
does not actually exist on the class. Th is means you can eliminate 
all the handwritten proxy properties in the ViewModel while still 
encapsulating the underlying model. Note, however, that Silverlight 
4 does not support binding to dynamic properties.

Th e simplest way to implement this capability is to have the View-
Model base class extend the new System.Dynamic.Dynamic Object 
class and override the TryGetMember and TrySetMember methods. 
The Dynamic Language Runtime (DLR) calls these two methods 
when the property being referenced does not exist on the class, 
allowing the class to determine at run time how to implement the 
missing properties. Combined with a small amount of reflection, 
the ViewModel class can dynamically proxy the property access 
to the underlying model instance in only a few lines of code:

public override bool TryGetMember(
  GetMemberBinder binder, out object result) {

  string propertyName = binder.Name;
  PropertyInfo property = 
    this.WrappedDomainObject.GetType().GetProperty(propertyName);

  if( property==null || property.CanRead==false ) {
    result = null;
    return false;
  }

  result = property.GetValue(this.WrappedDomainObject, null);
  return true;
}

Th e method starts by using refl ection to fi nd the property on 
the underlying Model instance. (For more details, see the June 
2007 “CLR Inside Out” column “Reflections on Reflection” at 
msdn.microsoft.com/magazine/cc163408.) If the model doesn’t have such 
a property, then the method fails by returning false and the data 
binding fails. If the property exists, the method uses the property 
information to retrieve and return the Model’s property value. Th is 
is more work than the traditional proxy property’s get method, but 
this is the only implementation you need to write for all models 
and all properties.

Th e real power of the dynamic proxy property approach is in 
the property setters. In TrySetMember, you can include common 
logic such as raising property-changed events. Th e code looks 
something like this:

public override bool TrySetMember(
  SetMemberBinder binder, object value) {

  string propertyName = binder.Name;
  PropertyInfo property = 
    this.WrappedDomainObject.GetType().GetProperty(propertyName);

  if( property==null || property.CanWrite==false )
    return false;

  property.SetValue(this.WrappedDomainObject, value, null);

  this.RaisePropertyChanged(propertyName);
  return true;
}

Again, the method starts by using reflection to grab the property 
from the underlying Model instance. If the property doesn’t exist 
or the property is read-only, the method fails by returning false. If the 
property exists on the domain object, the property information is used 
to set the Model property. Then you can include any logic common to 
all property setters. In this sample code I simply raise the 
property-changed event for the property I just set, but you can 
easily do more.

One of the challenges of encapsulating a Model is that the 
Model frequently has what Unifi ed Modeling Language calls 
derived properties. For example, a Person class probably has a Birth-
Date property and a derived Age property. Th e Age property is read-
only and automatically calculates the age based on the birth date 
and the current date:

public class Person : DomainObject {
  public DateTime BirthDate { 
    get; set; 
  }

  public int Age {
    get {
      var today = DateTime.Now;
      // Simplified demo code!
      int age = today.Year - this.BirthDate.Year;
      return age;
    }
  }
...

When the BirthDate property changes, the Age property also 
implicitly changes because the age is derived mathematically from 
the birth date. So when the BirthDate property is set, the View-
Model class needs to raise a property-changed event for both the 
BirthDate property and the Age property. With the dynamic View-
Model approach, you can do this automatically by making this 
inter-property relationship explicit within the model. 

The ViewModel is built 
knowing how the user will 

interact with the application 
at a high level.

http://msdn.microsoft.com/magazine/cc163408


77July 2010msdnmagazine.com

First, you need a custom attribute to capture the property 
relationship:

[AttributeUsage(AttributeTargets.Property, AllowMultiple=true)]
public sealed class AffectsOtherPropertyAttribute : Attribute {
  public AffectsOtherPropertyAttribute(
    string otherPropertyName) {
    this.AffectsProperty = otherPropertyName;
  }

  public string AffectsProperty { 
    get; 
    private set; 
  }
}

I set AllowMultiple to true to support scenarios where a property 
can aff ect multiple other properties. Applying this attribute to 
codify the relationship between BirthDate and Age directly in the 
model is straightforward:

[AffectsOtherProperty("Age")]
public DateTime BirthDate { get; set; }

To use this new model metadata within the dynamic ViewModel 
class, I can now update the TrySetMember method with three 
additional lines of code, so it looks like this:

public override bool TrySetMember(
  SetMemberBinder binder, object value) {
...
  var affectsProps = property.GetCustomAttributes(
    typeof(AffectsOtherPropertyAttribute), true);
  foreach(AffectsOtherPropertyAttribute otherPropertyAttr 
    in affectsProps)
    this.RaisePropertyChanged(
      otherPropertyAttr.AffectsProperty);
}

With the refl ected property information already in hand, the Get-
CustomAttributes method can return any Aff ectsOther Property 
attributes on the model property. Th en the code simply loops over 
the attributes, raising property-changed events for each one. So 
changes to the BirthDate property through the ViewModel now 
automatically raise both BirthDate and Age property-changed events.

It’s important to realize that if you explicitly program a property on 
the dynamic ViewModel class (or, more likely, on model-specifi c de-
rived ViewModel classes), the DLR will not call the TryGetMember 
and TrySetMember methods and will instead call the properties 
directly. In that case, you lose this automatic behavior. However, 
the code could easily be refactored so that custom properties could 
use this functionality as well.

Let’s return to the problem of the 
data binding on a deeply nested 
property (where the ViewModel 
is the current WPF data context) 
that looks like this:

{Binding WrappedDomainObject.
Address.Country}

Using dynamic proxy proper-
ties means the underlying wrapped 
domain object is no longer ex-
posed, so the data binding would 
actually look like this:

{Binding Address.Country}

In this case, the Address proper-
ty would still access the underlying 
model Address instance directly. 
However, now when you want 

to introduce a ViewModel around the Address, you simply add a 
new property on the Person ViewModel class. Th e new Address 
property is very simple:

public DynamicViewModel Address {
  get {
    if( addressViewModel==null )
      addressViewModel = 
        new DynamicViewModel(this.Person.Address);
    return addressViewModel;
  }
}

private DynamicViewModel addressViewModel;

No XAML data bindings need to be changed because the property is 
still called Address, but now the DLR calls the new concrete property 
rather than the dynamic TryGetMember method. (Notice that the 
lazy instantiation within this Address property is not thread-safe. 
However, only the View should be accessing the ViewModel and the 
WPF/Silverlight view is single-threaded, so this is not a concern.)

Th is approach can be used even when the model implements 
INotifyPropertyChanged. Th e ViewModel can notice this and 
choose not to proxy property-changed events. In this case, it listens 
for them from the underlying model instance and then re-raises the 
events as its own. In the constructor of the dynamic ViewModel 
class, I perform the check and remember the result:

public DynamicViewModel(DomainObject model) {
  Contract.Requires(model != null, 
    "Cannot encapsulate a null model");
  this.ModelInstance = model;

  // Raises its own property changed events
  if( model is INotifyPropertyChanged ) {
    this.ModelRaisesPropertyChangedEvents = true;
    var raisesPropChangedEvents = 
      model as INotifyPropertyChanged;
    raisesPropChangedEvents.PropertyChanged +=
      (sender,args) => 
      this.RaisePropertyChanged(args.PropertyName);
  }
}

To prevent duplicate property-changed events, I also need to 
make a slight modifi cation to the TrySetMember method.

if( this.ModelRaisesPropertyChangedEvents==false )
  this.RaisePropertyChanged(property.Name);

So you can use a dynamic proxy property to dramatically simplify 
the ViewModel layer by eliminating standard proxy properties. 

Figure 1 The Components of an MVVM Application

<<library>>
Utilities

<<library>>
WpfUtilities

View Model

Domain Model

Data Access Layer

Main Executable

The Core
Application

<<unit tests>>
ViewModel Tests

<<unit tests>>
Model Tests

<<unit tests>>
Data Access Layer Tests

View (XAML) <<unit tests>>
WpfUtilities Tests

<<unit tests>>
Utilities Tests

www.msdnmagazine.com


msdn magazine78 Design Patterns

Th is signifi cantly reduces coding, 
testing, documentation and long-
term maintenance. Adding new 
properties to the model no longer 
requires updating the ViewModel 
layer unless there is very special 
View logic for the new property. 
Additionally, this approach can 
solve diffi  cult issues like related 
properties. Th e common TrySet-
Member method could also help 
you implement an undo capability 
because user-driven property 
changes all fl ow through the Try-
SetMember method.

Pros and Cons
Many developers are leery of refl ection (and the DLR) because of 
performance concerns. In my own work I haven’t found this to be 
a problem. Th e performance penalty for the user when setting a 
single property in the UI is not likely to be noticed. Th at may 
not be the case in highly interactive UIs, such as multi-touch 
design surfaces.

Th e only major performance issue is in the initial population 
of the view when there are a large number of fields. Usability 
concerns should naturally limit the number of fields you’re 
exposing on any screen so that the performance of the initial data 
bindings through this DLR approach is undetectable. 

Nevertheless, performance should always be carefully monitored 
and understood as it relates to the user experience. The simple 
approach previously described could be rewritten with reflection 
caching. For additional details, see Joel Pobar’s article in the July 
2005 issue of MSDN Magazine (msdn.microsoft.com/magazine/cc163759).

Th ere is some validity to the argument that code readability 
and maintainability are negatively aff ected using this approach 
because the View layer seems to be referencing properties on 
the ViewModel that don’t actually exist. However, I believe the 
benefi ts of eliminating most of the hand-coded proxy properties 
far outweigh the problems, especially with proper documentation 
on the ViewModel.

Th e dynamic proxy property approach does reduce or eliminate 
the ability to obfuscate the Model layer because the properties on 
the Model are now referenced by name in the XAML. Using tradi-
tional proxy properties does not limit your ability to obfuscate the 
Model because the properties are referenced directly and would 
be obfuscated with the rest of the application. However, as most 
obfuscation tools do not yet work with XAML/BAML, this is largely 
irrelevant. A code cracker can start from the XAML/BAML and 
work into the Model layer in either case.

Finally, this approach could be abused by attributing model 
properties with security-related metadata and expecting the View-
Model to be responsible for enforcing security. Security doesn’t seem 
like a View-specifi c responsibility, and I believe this is placing too many 
responsibilities on the ViewModel. In this case, an aspect-oriented 
approach applied within the Model would be more suitable.

Collections
Collections are one of the most diffi  cult and least satisfactory 
aspects of the MVVM design pattern. If a collection in the under-
lying Model is changed by the Model, it’s the responsibility of the 
ViewModel to somehow expose the change so that the View can 
update itself appropriately. 

Unfortunately, in all likelihood the Model does not expose 
collections that implement the INotifyCollectionChanged 
interface. In the .NET Framework 3.5, this interface is in the 
System.Windows.dll, which strongly discourages its use in the 
Model. Fortunately, in the .NET Framework 4, this interface has 
migrated to System.dll, making it much more natural to use 
observable collections from within the Model. 

Observable collections in the Model open up new possi-
bilities for Model development and could be used in Win-
dows Forms and Silverlight applications. This is currently 
my preferred approach because it’s much simpler than any-
thing else, and I’m happy the INotifyCollectionChanged 
interface is moving to a more common assembly.

Without observable collections in the Model, the best that can be 
done is to expose some other mechanism—most likely custom events—
on the Model to indicate when the collection has changed. Th is should 
be done in a Model-specifi c way. For example, if the Person class had 
a collection of addresses it could expose events such as:

public event EventHandler<AddressesChangedEventArgs> 
  NewAddressAdded;
public event EventHandler<AddressesChangedEventArgs> 
  AddressRemoved;

This is preferable to raising a custom collection event de-
signed specifically for the WPF ViewModel. However, it’s still 
difficult to expose collection changes in the ViewModel. Likely, 
the only recourse is to raise a property-changed event on the 
entire ViewModel collection property. This is an unsatisfactory 
solution at best.

Another problem with collections is determining when or if to 
wrap each Model instance in the collection within a ViewModel 
instance. For smaller collections, the ViewModel may expose a 
new observable collection and copy everything in the underlying 
Model collection into the ViewModel observable collection, 
wrapping each Model item in the collection in a corresponding 
ViewModel instance as it goes. Th e ViewModel might need to 

Figure 2 Document Manager View Adapter

0..*

... etc. ...

View

ViewModel

Document

ViewAllClientsDocument ClientDocument MortgageDocument

<<Singleton>>
DocumentManager

Third Party Tabbed Workspace & Docking Controls

DocumentManagerAdapter

http://msdn.microsoft.com/magazine/cc163759


79July 2010msdnmagazine.com

listen for collection-changed events to transmit user changes back 
to the underlying Model.

However, for very large collections that will be exposed in 
some form of virtualizing panel, the easiest and most pragmatic 
approach is just to expose the Model objects directly. 

Instantiating the ViewModel
Another problem with the MVVM design pattern that’s seldom 
discussed is where and when the ViewModel instances should 
be instantiated. This problem is also frequently overlooked in 
discussions of similar design patterns such as MVC.

My preference is to write a ViewModel singleton that provides 
the main ViewModel objects from which the View can easily 
retrieve all other ViewModel objects as required. Oft en this master 
ViewModel object provides the command implementations so 
the View can support opening of documents.

However, most of the applications I’ve worked with provide a 
document-centric interface, usually using a tabbed workspace similar 
to Visual Studio. So in the ViewModel layer I want to think in terms 
of documents, and the documents expose one or more ViewModel 
objects wrapping particular Model objects. Standard WPF commands 
in the ViewModel layer can then use the persistence layer to retrieve 
the necessary objects, wrap them in ViewModel instances and create 
ViewModel document managers to display them. 

In the sample application included with this article, the ViewModel 
command for creating a new Person is:

internal class OpenNewPersonCommand : ICommand {
...
  // Open a new person in a new window.
  public void Execute(object parameter) {
    var person = new MvvmDemo.Model.Person();
    var document = new PersonDocument(person);
    DocumentManager.Instance.ActiveDocument = document;
  }
}

Th e ViewModel document manager 
referenced in the last line is a singleton 
that manages all open ViewModel doc-
uments. Th e question is, how does the 
collection of ViewModel documents get 
exposed in the View? 

Th e built-in WPF tab control does not 
provide the kind of powerful multiple-
document interface users have come to 
expect. Fortunately, third-party docking 
and tabbed-workspace products are avail-
able. Most of them strive to emulate the 
tabbed document look of Visual Studio, 
including the dockable tool windows, 
split views, Ctrl+Tab pop-up windows 
(with mini-document views) and more. 

Unfortunately, most of these compo-
nents don’t provide built-in support for 
the MVVM design pattern. But that’s 
OK, because you can easily apply the 
Adapter design pattern to link the View-
Model document manager to the third-
party view component.

Document Manager Adapter
Th e adapter design shown in Figure 2 ensures that the ViewModel 
doesn’t require any reference to the View, so it respects the main 
goals of the MVVM design pattern. (However, in this case, the 
concept of a document is defi ned in the ViewModel layer rather 
than the Model layer because it’s purely a UI concept.)

Th e ViewModel document manager is responsible for maintaining
the collection of open ViewModel documents and knowing which 
document is currently active. Th is design allows the ViewModel lay-
er to open and close documents using the document manager, and to 
change the active document without any knowledge of the View. Th e 
ViewModel side of this approach is reasonably straightforward. Th e 
ViewModel classes in the sample application are shown in Figure 3.

Th e Document base class exposes several internal lifecycle methods 
(Activated, LostActivation and DocumentClosed) that are called 
by the document manager to keep the document up-to-date 
about what’s going on. Th e document also implements an INotify-
PropertyChanged interface so that it can support data binding. For 
example, the adapter data binds the view document’s Title property 
to the ViewModel’s DocumentTitle property.

Th e most complex piece of this approach is the adapter class, 
and I’ve provided a working copy in the project accompanying this 
article. Th e adapter subscribes to events on the document manager 
and uses those events to keep the tabbed-workspace control 

Figure 3 The ViewModel Layer’s Document Manager and Document Classes

The real power of the dynamic 
proxy property approach is in 

the property setters.

www.msdnmagazine.com


msdn magazine80 Design Patterns

up-to-date. For example, when the document manager indicates 
that a new document has been opened, the adapter receives an 
event, wraps the ViewModel document in whatever WPF control 
is required and then exposes that control in the tabbed workspace.

Th e adapter has one other responsibility: keeping the View-
Model document manager synchronized with the user’s actions. Th e 
adapter must therefore also listen for events from the tabbed work-
space control so that when the user changes the active document or 
closes a document the adapter can notify the document manager.

While none of this logic is very complex, there are some caveats. 
Th ere are several scenarios where the code becomes re-entrant, and 
this must be handled gracefully. For example, if the ViewModel 
uses the document manager to close a document, the adapter will 
receive the event from the document manager and close the physical 
document window in the view. Th is causes the tabbed workspace 
control to also raise a document-closing event, which the adapter 
will also receive, and the adapter’s event handler will, of course, 
notify the document manager that the document should be closed. 
Th e document has already been closed, so the document manager 
needs to be sympathetic enough to allow this.

Th e other diffi  culty is that the View’s adapter must be able to 
link a View tabbed-document control with a ViewModel Docu-
ment object. Th e most robust solution is to use a WPF attached 
dependency property. The adapter declares a private attached 
dependency property that’s used to link the View window control 
to its ViewModel document instance. 

In the sample project for this article, I use an open source tabbed 
workspace component called AvalonDock, so my attached depen-
dency property looks like the code shown in Figure 4.

When the adapter creates a new View window control, it sets 
the attached property on the new window control to the under-
lying ViewModel document (see Figure 5). You can also see the 
title data binding being confi gured here, and see how the adapter 
is confi guring both the data context and the content of the View 
document control.

By setting the View document control’s content, I let WPF do 
the heavy lift ing of fi guring out how to display this particular 
type of ViewModel document. Th e actual data templates for the 
ViewModel documents are in a resource dictionary included by 
the main XAML window.

I’ve used this ViewModel document-manager approach with 
both WPF and Silverlight successfully. Th e only View layer code 
is the adapter, and this can be tested easily and then left  alone. Th is 
approach keeps the ViewModel completely independent of the 
View, and I have on one occasion switched vendors for my tabbed 
workspace component with only minimal changes in the adapter 
class and absolutely no changes to the ViewModel or Model.

Th e ability to work with documents in the ViewModel layer feels 
elegant, and implementing ViewModel commands like the one I 
demonstrated here is easy. Th e ViewModel document classes also 
become obvious places to expose ICommand instances related to 
the document. 

The View hooks into these commands and the beauty of the 
MVVM design pattern shines through. Additionally, the View-
Model document manager approach also works with the singleton 
approach if you need to expose data before the user has created any 
documents (perhaps in a collapsible tool window).

Wrap Up 
Th e MVVM design pattern is a powerful and useful pattern, but 
no design pattern can solve every issue. As I’ve demonstrated here, 
combining the MVVM pattern and goals with other patterns, such 
as adapters and singletons, while also leveraging new .NET Frame-
work 4 features, such as dynamic dispatch, can help address many 
common concerns around implementing the MVVM design 
pattern. Employing MVVM the right way makes for much more 
elegant and maintainable WPF and Silverlight applications. For further 
reading about MVVM, see Josh Smith’s article in the February 2009 
issue of MSDN Magazine at msdn.microsoft.com/magazine/dd419663. 

ROBERT MCCARTER is a Canadian freelance soft ware developer, architect and 
entrepreneur. Read his blog at robertmccarter.wordpress.com.

THANKS to the following technical expert for reviewing this article: 
Josh Smith

private AvalonDock.DocumentContent CreateNewViewDocument(
  Document viewModelDocument) {

  var viewDoc = new AvalonDock.DocumentContent();
  viewDoc.DataContext = viewModelDocument;
  viewDoc.Content = viewModelDocument;

  Binding titleBinding = new Binding("DocumentTitle") { 
    Source = viewModelDocument };

  viewDoc.SetBinding(AvalonDock.ManagedContent.TitleProperty, 
    titleBinding);
  viewDoc.Closing += OnUserClosingDocument;
  DocumentManagerAdapter.SetViewModelDocument(viewDoc, 
    viewModelDocument);

  return viewDoc;
}

Figure 5 Setting the Attached Property

private static readonly DependencyProperty 
  ViewModelDocumentProperty =
  DependencyProperty.RegisterAttached(
  "ViewModelDocument", typeof(Document),
  typeof(DocumentManagerAdapter), null);

private static Document GetViewModelDocument(
  AvalonDock.ManagedContent viewDoc) {

  return viewDoc.GetValue(ViewModelDocumentProperty) 
    as Document;
}

private static void SetViewModelDocument(
  AvalonDock.ManagedContent viewDoc, Document document) {

  viewDoc.SetValue(ViewModelDocumentProperty, document);
}

Figure 4 Linking the View Control and ViewModel Document

Observable collections in the 
Model open up new possibilities.

http://msdn.microsoft.com/magazine/dd419663
http://robertmccarter.wordpress.com


DynamicPDF Viewer
O u r  n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you  
to display PDF documents within 

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and 
all common Office file formats) to PDF. Events can be 

used to manage the action taken on a successful or failed 
conversion. It is highly intuitive and flexible and 

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter, 
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years.  Our 
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to 
respond to the changing needs of software developers. We back our products with a first class support team trained to 
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download 

Project1  10/30/09  1:28 PM  Page 1

http://www.cete.com/download
www.cete.com


msdn magazine82

decode and deserialize this string using the limited object 
serialization (LOS) formatter class System.Web.UI.LosFormatter:

LosFormatter formatter = new LosFormatter();
object viewstateObj = formatter.Deserialize("/
wEPDwULLTE2MTY2ODcyMjkPFgIeCHBhc3N3b3JkBQlzd29yZGZpc2hkZA==");

A quick peek in the debugger (see Figure 1) reveals that the dese-
rialized view state object is actually a series of System.Web.UI.Pair 
objects ending with a System.Web.UI.IndexedString object with a 
value of “password” and a corresponding string value of “swordfi sh.”

If you don’t want to go to the trouble of writing your own code 
to deserialize view state objects, there are several good view state 
decoders available for free download on the Internet, including Fritz 
Onion’s ViewState Decoder tool available at alt.pluralsight.com/tools.aspx.

Encrypting View State
In “The Security Development Lifecycle: SDL: A Process for 
Developing Demonstrably More Secure Soft ware” (Microsoft  Press, 
2006), Michael Howard and Steve Lipner discuss technologies that 
can be used to mitigate STRIDE threats. Figure 2 shows threat 
types and their associated mitigation techniques.

Because we’re dealing with an information disclosure threat to 
our data stored in the view state, we need to apply a confi dentiality 
mitigation technique; the most eff ective confi dentiality mitigation 
technology in this case is encryption.

ASP.NET version 2.0 has a built-in feature to enable encryp-
tion of view state—the ViewStateEncryptionMode property, 
which can be enabled either through a page directive or in the 
application’s web.confi g fi le:

<%@ Page ViewStateEncryptionMode="Always" %>

Or
<configuration>
   <system.web>
      <pages viewStateEncryptionMode="Always">

View State Security

Effectively managing user state in Web applications can be a 
tricky balancing act of performance, scalability, maintainability 
and security. Th e security consideration is especially evident when 
you’re managing user state stored on the client. I have a colleague 
who used to say that handing state data to a client is like handing 
an ice cream cone to a 5-year-old: you may get it back, but you 
defi nitely can’t expect to get it back in the same shape it was when 
you gave it out!

In this month’s column, we’ll examine some security implications 
around client-side state management in ASP.NET applications; 
specifi cally, we’re going to look at view state security. (Please note: 
this article assumes that you’re familiar with the concept of ASP.NET 
view state. If not, check out “Understanding ASP.NET View State” 
by Scott Mitchell at msdn.microsoft.com/library/ms972976).

If you don’t think there’s any data stored in your applications’ 
view state worth protecting, think again. Sensitive information 
can fi nd its way into view state without you even realizing it. And 
even if you’re vigilant about preventing sensitive information loss 
through view state, an attacker can still tamper with that view state 
and cause even bigger problems for you and your users. Luckily, 
ASP.NET has some built-in defenses against these attacks. Let’s take 
a look at how these defenses can be used correctly.

Threat No. 1: Information Disclosure
At Microsoft , development teams use the STRIDE model to classify 
threats. STRIDE is a mnemonic that stands for:

• Spoofi ng
• Tampering
• Repudiation
• Information Disclosure
• Denial of Service
• Elevation of Privilege

Th e main two STRIDE categories of concern from the view state 
security perspective are Information Disclosure and Tampering 
(although a successful tampering attack can lead to a possible Elevation 
of Privilege; we’ll discuss that in more detail later). Information disclo-
sure is the simpler of these threats to explain, so we’ll discuss that fi rst.

One of the most unfortunately persistent misconceptions around 
view state is that it is encrypted or somehow unreadable by the user. 
Aft er all, a view state string certainly doesn’t look decomposable:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/
wEPDwULLTE2MTY2ODcyMjkPFgIeCHBhc3N3b3JkBQlzd29yZGZpc2hkZA==" />

However, this string is merely base64-encoded, not encrypted 
with any kind of cryptographically strong algorithm. We can easily 

SECURITY BRIEFS BRYAN SULLIVAN

Encryption does not provide 
defense against tampering. 

Even with encrypted data, it’s still 
possible for an attacker to fl ip 

bits in the encrypted data.

http://msdn.microsoft.com/library/ms972976
http://alt.pluralsight.com/tools.aspx


83July 2010msdnmagazine.com

Th ere are three possible values for ViewStateEncryptionMode: 
Always (the view state is always encrypted); Never (the view state 
is never encrypted); and Auto (the view state is only encrypted if 
one of the page’s controls explicitly requests it). Th e Always and 
Never values are pretty self-explanatory, but Auto requires a little 
more explanation.

If a server control persists sensitive information into its page’s 
view state, the control can request that the page encrypt the 
view state by calling the Page.RegisterRequiresViewState-
Encryption method (note that in this case the entire view 
state is encrypted, not just the view state corresponding to the 
control that requested it):

public class MyServerControl : WebControl
{
   protected override void OnInit(EventArgs e)
   {
      Page.RegisterRequiresViewStateEncryption();
      base.OnInit(e);
   }
   ...
}

However, there is a caveat. Th e reason the method is named 
RegisterRequiresViewStateEncryption, and not something like 
EnableViewStateEncryption, is because the page can choose to 
ignore the request. If the page’s ViewStateEncryptionMode is set 
to Auto (or Always), the control’s request will be granted and the 
view state will be encrypted. If ViewStateEncryptionMode is set 
to Never, the control’s request will be ignored and the view state 
will be unprotected.

This is definitely something to be aware of if you’re a control 
developer. You should consider keeping potentially sensitive 
information out of the view state (which is always a good idea). In 
extreme cases where this isn’t possible, you might consider over-
riding the control’s SaveViewState and LoadViewState methods to 
manually encrypt and decrypt the view state there.

Server Farm Considerations
In a single-server environment, it’s suffi  cient just to enable View-
StateEncryptionMode, but in a server farm environment there’s 
some additional work to do. Symmetric encryption algorithms—
like the ones that ASP.NET uses to encrypt the view state—require 
a key. You can either explicitly specify a key in the web.confi g fi le, 
or ASP.NET can automatically generate a key for you. Again, in 
a single-server environment it’s fi ne to let the framework handle 
key generation, but this won’t work for a server farm. Each server 
will generate its own unique key, and requests that get load 
balanced between diff erent servers will fail because the decryp-
tion keys won’t match.

You can explicitly set both the cryptographic algorithm and 
the key to use in the machineKey element of your application’s 
web.confi g fi le:

<configuration>
   <system.web>
      <machineKey decryption="AES" decryptionKey="143a…">

For the encryption algorithm, you can choose AES (the default 
value), DES or 3DES. Of these, DES is explicitly banned by the 
Microsoft  SDL Cryptographic Standards, and 3DES is strongly dis-
couraged. I recommend that you stick with AES for maximum security.

Once you’ve selected an algorithm, you need to create a key. 
However, remember that the strength of this system’s security 
depends on the strength of that key. Don’t use your pet’s name, your 
signifi cant other’s birthday or any other easily guessable value! You 
need to use a cryptographically strong random number. Here’s 
a code snippet to create one in the format that the machineKey 
element expects (hexadecimal characters only) using the .NET 
RNGCryptoServiceProvider class:

RNGCryptoServiceProvider csp = new RNGCryptoServiceProvider();
byte[] data = new byte[24];
csp.GetBytes(data);
string value = String.Join("", BitConverter.ToString(data).Split('-'));

At a minimum, you should generate 16-byte random values 
for your keys; this is the minimum value allowed by the SDL 
Cryptographic Standards. Th e maximum length supported for AES 
keys is 24 bytes (48 hex chars) in the Microsoft  .NET Framework 
3.5 and earlier, and 32 bytes (64 hex chars) in the .NET Framework 
4. DES supports a maximum key length of only 8 bytes and 3DES a 
maximum of 24 bytes, regardless of the framework version. Again, 
I recommend that you avoid these algorithms and use AES instead.

Threat No. 2: Tampering
Tampering is the other signifi cant threat. You might think the same 
encryption defense that keeps attackers from prying into the view state 
would also prevent them from changing it, but this is wrong. Encryp-
tion doesn’t provide defense against tampering: Even with encrypted 
data, it’s still possible for an attacker to fl ip bits in the encrypted data.

Threat Type Mitigation Technique
Spoofi ng Authentication
Tampering Integrity
Repudiation Non-repudiation services
Information Disclosure Confi dentiality
Denial of Service Availability
Elevation of Privilege Authorization

Figure 2 Techniques to Mitigate STRIDE Threats

Figure 1 Secret View State Data Revealed by the Debugger

www.msdnmagazine.com


msdn magazine84 Security Briefs

Take another look at Figure 2. To mitigate a tampering threat, 
we need to use a data integrity technology. Th e best choice here is 
still a form of cryptography, and it’s still built into ASP.NET, but 
instead of using a symmetric algorithm to encrypt the data, we’ll 
use a hash algorithm to create a message authentication code 
(MAC) for the data.

The ASP.NET feature to apply a MAC is called EnableView-
StateMac, and just like ViewStateEncryptionMode, you can 
apply it either through a page directive or through the applica-
tion’s web.confi g fi le:

<%@ Page EnableViewStateMac="true" %>

Or
<configuration>
   <system.web>
      <pages enableViewStateMac="true">

To understand what EnableViewStateMac is really doing under 
the covers, let’s fi rst take a high-level look at how view state is written 
to the page when view state MAC is not enabled:
1. View state for the page and all participating controls is gathered 

into a state graph object.
2. Th e state graph is serialized into a binary format.
3. Th e serialized byte array is encoded into a base-64 string. 
4. The base-64 string is written to the __VIEWSTATE form 

value in the page.
When view state MAC is enabled, there are three additional steps 

that take place between the previous steps 2 and 3:
1. View state for the page and all participating controls is gathered 

into a state graph object.
2. Th e state graph is serialized into a binary format.
  a.  A secret key value is appended to the serialized byte array.
  b.  A cryptographic hash is computed for the new serialized 

byte array.
  c.  Th e hash is appended to the end of the serialized byte array.
3. Th e serialized byte array is encoded into a base-64 string. 
4. Th e base-64 string is written to the __VIEWSTATE form value 

in the page.
Whenever this page is posted back to the server, the page code 

validates the incoming __VIEWSTATE by taking the incoming 
state graph data (deserialized from the __VIEWSTATE value), 
adding the same secret key value, and recomputing the hash 
value. If the new recomputed hash value matches the hash value 
supplied at the end of the incoming __VIEWSTATE, the view 
state is considered valid and processing proceeds (see Figure 3). 
Otherwise, the view state is considered to have been tampered with 
and an exception is thrown.

Th e security of this system lies in the secrecy of the secret key 
value. Th is value is always stored on the server, either in memory 

or in a confi guration fi le (more on this later)—it is never written 
to the page. Without knowing the key, there would be no way for 
an attacker to compute a valid view state hash. 

Th eoretically, with enough computing power an attacker could 
reverse-engineer the key: He has knowledge of a computed hash 
value and knowledge of the corresponding plaintext, and there 
aren’t too many options available for the hash algorithm. He would 
only have to cycle through all the possible key values, re-compute 
the hash for the known plaintext plus the current key and 
compare it to the known hash. Once the values match, he knows 
he’s found the correct key and can now attack the system at will. Th e 
only problem with this is the sheer number of possible values: Th e 
default key size is 512 bits, which means there are 2 to the power of 
512 diff erent possibilities, which is so large a number that a brute 
force attack is completely unfeasible.

Exploiting MAC-Less View State 
Th e default value of EnableViewStateMac is true, so protecting your 
applications is as simple as not setting it to false. Unfortunately, there 
is some misleading documentation concerning the performance 
impact of EnableViewStateMac, and some Web sites are encour-
aging developers to disable view state MAC in order to improve 
the performance of their applications. Even the MSDN online 
documentation for PagesSection.EnableViewStateMacProperty 
is guilty of this, stating: “Do not set EnableViewStateMac to true 
if performance is a key consideration.” Do not follow this advice! 
(Hopefully, by the time you’re reading this, the documentation 
will have been changed to better refl ect security considerations.)

Any page that has its view state MAC-disabled is potentially 
vulnerable to a cross-site scripting attack against the __VIEW-
STATE parameter. Th e fi rst proof-of-concept of this attack was 
developed by David Byrne of Trustwave, and demonstrated by 
Byrne and his colleague Rohini Sulatycki at the Black Hat DC 
conference in February 2010. To execute this attack, the attacker 
craft s a view state graph where the malicious script code he wants 
to execute is set as the persisted value of the innerHtml property of 
the page’s form element. In XML form, this view state graph would 
look something like Figure 4.

Th e attacker then base-64 encodes the malicious view state 
and appends this string as the value of a __VIEWSTATE query 
string parameter for the vulnerable page. For example, if the page 

Figure 3 Applying a Message Authentication Code (MAC)

Hash Function

Plaintext

Plaintext

MAC

Secret Key

DES is explicitly banned by the 
Microsoft SDL Cryptographic 
Standards and 3DES is strongly 

discouraged. I recommend 
that you stick with AES for 

maximum security.



85July 2010msdnmagazine.com

home.aspx on the site www.contoso.com was known to have view state 
MAC disabled, the attack URI would be http://www.contoso.com/
home.aspx?__VIEWSTATE=/w143a... 

All that remains is to trick a potential victim into following this 
link. Th en the page code will deserialize the view state from the 
incoming __VIEWSTATE query string parameter and write the 
malicious script as the innerHtml of the form. When the victim 
gets the page, the attacker’s script will immediately execute in the 
victim’s browser, with the victim’s credentials.

Th is attack is especially dangerous because it completely bypasses 
all of the usual cross-site scripting (XSS) defenses. Th e XSS Filter 
in Internet Explorer 8 will not block it. Th e ValidateRequest feature 
of ASP.NET will block several common XSS attack vectors, but it 
does not deserialize and analyze incoming view state, so it’s also 
no help in this situation. Th e Microsoft  Anti-Cross Site Scripting 
(Anti-XSS) Library (now included as part of the Microsoft  Web 
Protection Library) is even more eff ective against XSS than 
ValidateRequest; however, neither the Anti-XSS Library input 
sanitization features nor its output encoding features will protect 
against this attack either. Th e only real defense is to ensure that 
view state MAC is consistently applied to all pages.

More Server Farm Considerations
Similar to ViewStateEncryptionMode, there are special consider-
ations with EnableViewStateMac when deploying applications in 
a server farm environment. Th e secret value used for the view state 
hash must be constant across all machines in the farm, or the view 
state validation will fail.

You can specify both the validation key and the HMAC algorithm 
to use in the same location where you specify the view state encryption 
key and algorithm—the machineKey element of the web.confi g fi le:

<configuration>
   <system.web>
      <machineKey validation="AES" validationKey="143a...">

If your application is built on the .NET Framework 3.5 or earlier, 
you can choose SHA1 (the default value), AES, MD5 or 3DES as 
the MAC algorithm. If you’re running .NET Framework 4, you 
can also choose MACs from the SHA-2 family: HMACSHA256, 

HMACSHA384 or HMACSHA512. Of these choices, MD5 is 
explicitly banned by the SDL Crypto Standards and 3DES is 
strongly discouraged. SHA1 is also discouraged, but for .NET 
Framework 3.5 and earlier applications it’s your best option. .NET 
Framework 4 applications should defi nitely be confi gured with either 
HMACSHA512 or HMACSHA256 as the validation algorithm.

Aft er you choose a MAC algorithm, you’ll also need to manually 
specify the validation key. Remember to use cryptographically 
strong random numbers: if necessary, you can refer to the key 
generation code specifi ed earlier. You should use at least 128-byte 
validation keys for either HMACSHA384 or HMACSHA512, and 
at least 64-byte keys for any other algorithm.

You Can’t Hide Vulnerable View State
Unlike a vulnerable fi le permission or database command that 
may be hidden deep in the server-side code, vulnerable view state 
is easy to fi nd just by looking for it. If an attacker wanted to test a 
page to see whether its view state was protected, he could simply 
make a request for that page himself and pull the base-64 encoded 
view state value from the __VIEWSTATE form value. If the 
LosFormatter class can successfully deserialize that value, then 
it has not been encrypted. It’s a little trickier—but not much—to 
determine whether view state MAC has been applied.

Th e MAC is always applied to the end of the view state value, and 
since hash sizes are constant for any given hash algorithm, it’s fairly 
easy to determine whether a MAC is present. If HMACSHA512 
has been used, the MAC will be 64 bytes; if HMACSHA384 has 
been used, it will be 48 bytes, and if any other algorithm has been 
used it will be 32 bytes. If you strip 32, 48 or 64 bytes off  of the end 
of the base-64 decoded view state value, and any of these deseri-
alize with LosFormatter into the same object as before, then view 
state MAC has been applied. If none of these trimmed view state 
byte arrays will successfully deserialize, then view state MAC hasn’t 
been applied and the page is vulnerable.

Casaba Security makes a free tool for developers called Watcher 
that can help automate this testing. Watcher is a plug-in for Eric 
Lawrence’s Fiddler Web debugging proxy tool, and it works by 
passively analyzing the HTTP traffi  c that fl ows through the proxy. 
It will fl ag any potentially vulnerable resources that pass through—
for example, an .aspx page with a __VIEWSTATE missing a MAC. 
If you’re not already using both Fiddler and Watcher as part of your 
testing process, I highly recommend giving them a try.

Wrapping Up
View state security is nothing to take lightly, especially consider-
ing the new view state tampering attacks that have recently been 
demonstrated. I encourage you to take advantage of the ViewState-
EncryptionMode and EnableViewStateMac security mechanisms 
built into ASP.NET. 

BRYAN SULLIVAN is a security program manager for the Microsoft Security 
Development Lifecycle team, where he specializes in Web application security 
issues. He’s the author of “Ajax Security” (Addison-Wesley, 2007).

THANKS to the following technical expert for reviewing this article: 
Michael Howard

<viewstate>
  <Pair>
    <Pair>
      <String>…</String>
      <Pair>
        <ArrayList>
          <Int32>0</Int32>
          <Pair>
            <ArrayList>
              <Int32>1</Int32>
              <Pair>
                <ArrayList>
                  <IndexedString>innerhtml</IndexedString>
                  <String>…malicious script goes here…</String>
                </ArrayList>
              </Pair>
            </ArrayList>
          </Pair>
        </ArrayList>
      </Pair>
    </Pair>
  </Pair>
</viewstate>

Figure 4 XML Code for View State MAC Attack

www.msdnmagazine.com


Untitled-4   2 6/8/10   11:38 AM

www.vslive.com/redmond


Untitled-4   3 6/8/10   11:38 AM

www.vslive.com/redmond


msdn magazine88

in the foreach loop), contains a Documents property that’s an 
IEnumerable<Document>. If the query would return too large a 
set of data, the ICursor can be limited to return the fi rst n results 
by setting its Limit property to n.

Th e predicate query syntax comes in four diff erent fl avors, 
shown in Figure 2.

In the second and third forms, “this” always refers to the object 
being examined.

You can send any arbitrary command (that is, ECMAScript code) 
through the driver to the database, in fact, using documents to convey 
the query or command. So, for example, the Count method provided 
by the IMongoCollection interface is really just a convenience around 
this more verbose snippet:

        [TestMethod]
        public void CountGriffins()
        {
          var resultDoc = db["exploretests"].SendCommand(
            new Document()
              .Append("count", "familyguy")
              .Append("query",
                new Document().Append("lastname", "Griffin"))
            );
          Assert.AreEqual(6, (double)resultDoc["n"]);
        }

Th is means that any of the aggregate operations described by 
the MongoDB documentation, such as “distinct” or “group,” for 
example, are accessible via the same mechanism, even though they 
may not be surfaced as methods on the MongoDB.Driver APIs.

You can send arbitrary commands outside of a query to the 
database via the “special-name” syntax “$eval,” which allows any 
legitimate ECMAScript block of code to be executed against the 
server, again essentially as a stored procedure:

        [TestMethod]
        public void UseDatabaseAsCalculator()
        {
          var resultDoc = db["exploretests"].SendCommand(
            new Document()
              .Append("$eval", 
                new CodeWScope { 
                  Value = "function() { return 3 + 3; }", 
                  Scope = new Document() }));
          TestContext.WriteLine("eval returned {0}", resultDoc.ToString());
          Assert.AreEqual(6, (double)resultDoc["retval"]);
        }

Or, use the provided Eval function on the database directly. 
If that isn’t fl exible enough, MongoDB permits the storage of 
user-defi ned ECMAScript functions on the database instance 

Going NoSQL with MongoDB, Part 3

Last time, I continued my exploration of MongoDB via the use of 
exploration tests. I described how to start and stop the server during 
a test, then showed how to capture cross-document references and 
discussed some of the reasoning behind the awkwardness of doing 
so. Now it’s time to explore some more intermediate MongoDB 
capabilities: predicate queries, aggregate functions and the LINQ 
support provided by the MongoDB.Linq assembly. I’ll also provide 
some notes about hosting MongoDB in a production environment.

When We Last Left Our Hero . . .
For reasons of space, I won’t review much of the previous articles; 
instead, you can read them online in the May and June issues 
at msdn.microsoft.com/magazine. In the associated code bundle, 
however, the exploration tests have been fl eshed out to include a 
pre-existing sample set of data to work with, using characters from 
one of my favorite TV shows. Figure 1 shows a previous exploration 
test, by way of refresher. So far, so good.

Calling All Old People . . .
In previous articles, the client code has fetched either all documents 
that match a particular criteria (such as having a “lastname” fi eld 
matching a given String or an “_id” fi eld matching a particular Oid), 
but I haven’t discussed how to do predicate-style queries (such as 
“fi nd all documents where the ‘age’ fi eld has a value higher than 
18”). As it turns out, MongoDB doesn’t use a SQL-style interface 
to describe the query to execute; instead, it uses ECMAScript/ 
JavaScript, and it can in fact accept blocks of code to execute on 
the server to fi lter or aggregate data, almost like a stored procedure.

Th is provides some LINQ-like capabilities, even before looking 
at the LINQ capabilities supported by the Mongo.Linq assembly. 
By specifying a document containing a fi eld named “$where” and a 
code block describing the ECMAScript code to execute, arbitrarily 
complex queries can be created:

        [TestMethod]
        public void Where()
        {
          ICursor oldFolks =
            db["exploretests"]["familyguy"].Find(
            new Document().Append("$where", 
            new Code("this.gender === 'F'")));
          bool found = false;
          foreach (var d in oldFolks.Documents)
            found = true;
          Assert.IsTrue(found, "Found people");
        }

As you can see, the Find call returns an ICursor instance, 
which, although itself isn’t IEnumerable (meaning it can’t be used 

THE WORKING PROGRAMMER TED NEWARD

Code download available at code.msdn.microsoft.com/mag201007WorkProg.

http://msdn.microsoft.com/magazine
http://code.msdn.microsoft.com/mag201007WorkProg


89July 2010msdnmagazine.com

for execution during queries and server-side execution blocks by 
adding ECMAScript functions to the special database collection 
“system.js,” as described on the MongoDB Web site (MongoDB.org).

The Missing LINQ
Th e C# MongoDB driver also has LINQ support, allowing developers 
to write MongoDB client code such as what’s shown in Figure 3.

And, in keeping with the dynamic nature of the MongoDB data-
base, this sample requires no code-generation, just the call to Linq to 
return an object that “enables” the MongoDB LINQ provider. At the 
time of this writing, LINQ support is fairly rudimentary, but it’s being 
improved and by the time this article reaches print, it will be signifi -

cantly better. Documentation of the new features and examples will 
be in the wiki of the project site (wiki.github.com/samus/mongodb-csharp/).

Shipping Is a Feature
Above all else, if MongoDB is going to be used in a production environ-
ment, a few things need to be addressed to make it less painful for the poor 
chaps who have to keep the production servers and services running.

To begin, the server process (mongod.exe) needs to be installed 
as a service—running it in an interactive desktop session is typically 
not allowed on a production server. To that end, mongod.exe 
supports a service install option, “--install,” which installs it as a 
service that can then be started either by the Services panel or the 
command line: “net start MongoDB.” However, as of this writing, 
there’s one small quirk in the --install command—it infers the path 
to the executable by looking at the command line used to execute 
it, so the full path must be given on the command line. Th is means 
that if MongoDB is installed in C:\Prg\mongodb, you must install 
it as a service at a command prompt (with administrative rights) 
with the command C:\Prg\mongodb\bin\mongod.exe --install.

However, any command-line parameters, such as “--dbpath, ” 
must also appear in that installation command, which means if 
any of the settings—port, path to the data fi les and so on—change, 
the service must be reinstalled. Fortunately, MongoDB supports a 
confi guration fi le option, given by the “--confi g” command-line 
option, so typically the best approach is to pass the full confi g fi le path 
to the service install and do all additional confi guration from there:

C:\Prg\mongodb\bin\mongod.exe --config C:\Prg\mongodb\bin\mongo.cfg --install
net start MongoDB

As usual, the easiest way to test to ensure the service is running 
successfully is to connect to it with the mongo.exe client that ships 
with the MongoDB download. And, because the server commu-
nicates with the clients via sockets, you need to poke the required 
holes in the fi rewall to permit communication across servers.

These Aren’t the Data Droids You’re Looking For
Of course, unsecured access to the MongoDB server isn’t likely to 
be a good thing, so securing the server against unwanted visitors 
becomes a key feature. MongoDB supports authentication, but the 
security system isn’t anywhere near as sophisticated as that found 
with “big iron” databases such as SQL Server.

Typically, the fi rst step is to create a database admin login by con-
necting to the database with the mongo.exe client and adding an 

        [TestMethod]
        public void LINQQuery()
        {
          var fg = db["exploretests"]["familyguy"];
          var results = 
            from d in fg.Linq() 
            where ((string)d["lastname"]) == "Brown" 
            select d;
          bool found = false;
          foreach (var d in results)
          {
            found = true;
            TestContext.WriteLine("Found {0}", d);
          }
          Assert.IsTrue(found, "No Browns found?");
        }

Figure 3 An Example of LINQ Support

        [TestMethod]
        public void PredicateQuery()
        {
          ICursor oldFolks =
            db["exploretests"]["familyguy"].Find(
            new Document().Append("age",
            new Document().Append("$gt", 18)));
          Assert.AreEqual(6, CountDocuments(oldFolks));

          oldFolks =
            db["exploretests"]["familyguy"].Find(
            new Document().Append("$where",
            new Code("this.age > 18")));
          Assert.AreEqual(6, CountDocuments(oldFolks));

          oldFolks =
            db["exploretests"]["familyguy"].Find("this.age > 18");
          Assert.AreEqual(6, CountDocuments(oldFolks));

          oldFolks =
            db["exploretests"]["familyguy"].Find(
            new Document().Append("$where",
            new Code("function(x) { return this.age > 18; }")));
          Assert.AreEqual(6, CountDocuments(oldFolks));
        }

Figure 2 Four Different Predicate Query Syntaxes

     [TestMethod]
        public void StoreAndCountFamilyWithOid()
        {
          var oidGen = new OidGenerator();
          var peter = new Document();
          peter["firstname"] = "Peter";
          peter["lastname"] = "Griffin";
          peter["_id"] = oidGen.Generate();

          var lois = new Document();
          lois["firstname"] = "Lois";
          lois["lastname"] = "Griffin";
          lois["_id"] = oidGen.Generate();

          peter["spouse"] = lois["_id"];
          lois["spouse"] = peter["_id"];

          var cast = new[] { peter, lois };
          var fg = db["exploretests"]["familyguy"];
          fg.Insert(cast);

          Assert.AreEqual(peter["spouse"], lois["_id"]);
          Assert.AreEqual(
            fg.FindOne(new Document().Append("_id",
              peter["spouse"])).ToString(), lois.ToString());

          Assert.AreEqual(2,
            fg.Count(new Document().Append("lastname", "Griffin")));
        }

Figure 1 An Example Exploration Test

www.msdnmagazine.com
http://MongoDB.org
http://wiki.github.com/samus/mongodb-csharp/


msdn magazine90 The Working Programmer

admin user to the admin database (a database containing data for 
running and administering the entire MongoDB server), like so:

> use admin
> db.addUser("dba", "dbapassword")

Once this is done, any further actions, even within this shell, 
will require authenticated access, which is done in the shell by 
explicit authentication:

> db.authenticate("dba", "dbapassword")

Th e DBA can now add users to a MongoDB database by changing 
databases and adding the user using the same addUser call shown earlier:

> use mydatabase
> db.addUser("billg", "password")

When connecting to the database via the Mongo.Driver, pass the 
authentication information as part of the connection string used 
to create the Mongo object and the same authentication magic will 
happen transparently:

var mongo = new Mongo("Username=billg;Password=password");

Naturally, passwords shouldn’t be hardcoded directly 
into the code or stored openly; use the same password 
discipline as befi ts any database-backed application. 
In fact, the entire confi guration (host, port, password 
and so on) should be stored in a confi guration fi le and 
retrieved via the Confi gurationManager class.

Reaching Out to Touch Some Code
Periodically, administrators will want to look at the 
running instance to obtain diagnostic information 
about the running server. MongoDB supports an HTTP 
interface for interacting with it, running on a port 
numerically 1,000 higher than the port it’s confi gured 
to use for normal client communication. Th us, because 
the default MongoDB port is 27017, the HTTP inter-
face can be found on port 28017, as shown in Figure 4.

Th is HTTP interface also permits a more REST-style 
communication approach, as opposed to the native 
driver in MongoDB.Driver and MongoDB.Linq; the 
MongoDB Web site has full details, but essentially the 
HTTP URL for accessing a collection’s contents is given 
by adding the database name and collection name, 
separated by slashes, as shown in Figure 5.

For more details on creating a REST client using WCF, 
refer to the MSDN article “REST in Windows Com-
munication Foundation (WCF)” at msdn.microsoft.com/ 
netframework/cc950529.

A Word from Yoda
MongoDB is a quickly evolving product and these 
articles, while exploring core parts of MongoDB’s 
functionality, still leave major areas unexamined. While 
MongoDB isn’t a direct replacement for SQL Server, it’s 
proving to be a viable storage alternative for areas where 
the traditional RDBMS doesn’t fare so well. Similarly, 
just as MongoDB is an evolution in progress, so is the 
mongodb-csharp project.  At the time of this writing, many 
new improvements were going into beta, including enhance-
ments for working with strongly typed collections using plain 

objects, as well as greatly improved LINQ support. Keep an eye on both.
In the meantime, however, it’s time to wave farewell to MongoDB 

and turn our attention to other parts of the developer’s world that 
the working programmer may not be familiar with (and arguably 
should be). For now, though, happy coding, and remember, as the 
great DevGuy Master Yoda once said, “A DevGuy uses the Source 
for knowledge and defense; never for a hack.” 

TED NEWARD is a principal with Neward & Associates, an independent fi rm 
specializing in enterprise Microsoft  .NET Framework and Java platform sys-
tems. He’s written more than 100 articles, is a C# MVP, INETA speaker and the 
author and coauthor of a dozen books, including “Professional F# 2.0” (Wrox, 
2010). He consults and mentors regularly. Reach him at ted@tedneward.com and 
read his blog at blogs.tedneward.com.

THANKS to the following technical experts for reviewing this article: 
Sam Corder and Craig Wilson

Figure 4 The HTTP Interface for Interacting with MongoDB

Figure 5 The HTTP URL for Accessing a Collection’s Contents

mailto:ted@tedneward.com
http://msdn.microsoft.com/netframework/cc950529
http://msdn.microsoft.com/netframework/cc950529
http://blogs.tedneward.com


AUGUST 2-6, 2010
REDMOND, WA | MICROSOFT CAMPUS

HOW TO BE  
A GOOD BOSS
You expect a lot from your development team. As their boss, 
give them the tools they need to meet your business objectives 
on time and on budget.  

VSLive! offers 70 conference sessions and workshops over five 
code-packed days. Each session is filled with actionable, 
applicable knowledge — automatically making your team 
more efficient and productive.

This year, VSLive! is being held on the Microsoft campus. 
Attendees will have unprecedented access to the Visual Studio 
development team for questions, tips, and expert advice on 
how to harness the power of Visual Studio 2010.

Be a good boss. Have your team check out the full agenda 
online at vslive.com/agenda.

Let them tell you why they should be there and how your 
investment in them will help your bottom line.

For more information on how to invest in your team, go to 
www.vslive.com/boss

SUPPORTED BY: PLATINUM SPONSORS: GOLD SPONSORS:

Untitled-2   1 6/8/10   10:20 AM

http://www.vslive.com/boss


msdn magazine92

example, you don’t have to fi gure out how the ListBoxItem should 
appear when the mouse is hovering over a selected but unfocused 
item; each group can be handled independently of the others.

Th e code part of ListBoxItem is responsible for changing visual 
states through calls to the static VisualStateManager.GoToState 
method. The control template for ListBoxItem is responsible 
for responding to these visual states. Th e template responds to a 
particular visual state change with a single Storyboard containing 
one or more animations that target elements in the visual tree. If 
you want the control to respond to a visual state change immediately 
without an animation, you can simply defi ne the animation with a 
duration of 0. But why bother? It’s just as easy to use an animation 
to help make the control’s visuals more fl uid. 

Th e new visual states for supporting fl uid UI are BeforeLoaded, 
Aft erLoaded and BeforeUnloaded, all part of the LayoutStates group. 
By associating animations to these visual states, you can make items 
in your ListBox fade in, or grow or glide into view when they’re 
fi rst added to the ListBox, and do something else when they’re 
removed from the ListBox.

Adapting the ListBoxItem Template
Most programmers will probably access the fl uid UI feature of 
ListBoxItem through Expression Blend, but I’m going to show you 
how to do it directly in markup. 

Th e default control template for ListBoxItem has no animations 
associated with the visual states in the LayoutStates group. Th at’s 
your job. Unfortunately, you can’t just “derive from” the existing 
ListBoxItem template and supplement it with your own stuff . You 
must include the whole template in your program. Fortunately, it’s a 
simple matter of copy and paste. In the Silverlight 4 documentation, 
look in the Controls section, and then Control Customization, and 

The Fluid UI in Silverlight 4

Th e term “fl uid UI” has recently become common to describe UI 
design techniques that avoid having visual objects suddenly pop 
into view or jump from one location to another. Instead, visually 
fluid objects make more graceful entrances and transitions— 
sometimes as if emerging from fog or sliding into view.

In the past two installments of this column, I’ve discussed some 
techniques implementing fl uid UI on your own. I was partially 
inspired by the upcoming introduction of a fl uid UI feature in 
Silverlight 4. Now that Silverlight 4 has been offi  cially released, that’s 
what I’ll be covering here. Silverlight 4’s foray into fl uid UI is rather 
narrowly confi ned—it’s restricted to the loading and unloading 
of items in a ListBox—but it gives us some important hints on how 
to extend fl uid UI techniques with our own implementations. More 
fl uid UI behaviors are available in Expression Blend 4.

Templates and the VSM
If you don’t know exactly where to fi nd the new fl uid UI feature in 
Silverlight 4, you might search for many hours. It’s not a class. It’s not a 
property. It’s not a method. It’s not an event. It’s actually implemented 
as three new visual states on the ListBoxItem class. Figure 1 shows the 
documentation for that class, with the TemplateVisualState attribute 
items slightly rearranged in accordance with the group names.

Th e Visual State Manager (VSM) is one of the most signifi cant 
changes made to Silverlight as it was being adapted from Windows 
Presentation Foundation. In WPF, a style or a template (almost 
always defi ned in XAML) can include elements called triggers. Th ese 
triggers are defi ned to detect either a property change or an event, 
and then initiate an animation or a change to another property.

For example, a style defi nition for a control can include a trigger 
for the IsMouseOver property that sets the background of the 
control to a blue brush when the property is true. Or a trigger for 
the MouseEnter and MouseLeave events can initiate a couple of 
brief animations when those events occur.

In Silverlight, triggers have been largely banished and replaced 
with the VSM, partially to provide a more structured approach to 
dynamically changing the characteristics of a control at run time, 
and partially to avoid dealing with all the diff erent combinations 
of possibilities when multiple triggers are defined. The VSM is 
considered to be such an improvement over triggers that it has 
become part of WPF in the Microsoft  .NET Framework 4. 

As you can see in Figure 1, the ListBoxItem control supports 11 
visual states, but they’re apportioned into four groups. Within any 
group, one and only one visual state is active at any time. Th is simple 
rule greatly reduces the number of possible combinations. For 

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201007UIFrontiers.

If you don’t know exactly where 
to fi nd the new fl uid UI feature in 
Silverlight 4, you might search 

for many hours.

http://code.msdn.microsoft.com/mag201007UIFrontiers


93July 2010msdnmagazine.com

Control Styles and Templates, and ListBox Styles and Templates. 
You’ll find the default style definition for ListBoxItem (which 
includes the template defi nition) in the markup that begins:

<Style TargetType="ListBoxItem">

Under the Setter element for the Template property, you’ll see 
the entire ControlTemplate used to build a visual tree for each 
ListBoxItem. Th e root of the visual tree is a single-cell Grid. Th e 
VSM markup occupies a large part of the template at the top of 
the Grid defi nition. At the bottom are the actual contents of the 
Grid: three Rectangle shapes (two fi lled and one just stroked) and 
a ContentPresenter, like so:

<Grid ... >
  ...
  <Rectangle x:Name="fillColor" ... />
  <Rectangle x:Name="fillColor2" ... />
  <ContentPresenter x:Name="contentPresenter" ... />
  <Rectangle x:Name="FocusVisualElement" ... />
</Grid>

Th e fi rst two fi lled Rectangle objects are used to provide back-
ground shading for mouse-over and selection (respectively). Th e third 
displays a stroked rectangle to indicate input focus. Th e visibility of these 
rectangles is controlled by the VSM markup. Notice how each visual 
group gets its own element to manipulate. Th e Content Presenter hosts 
the item as it’s displayed in the ListBox. Generally, the content of the 
ContentPresenter is another visual tree defi ned in a DataTemplate 
that’s set to the ItemTemplate property of ListBox. 

Th e VSM markup consists of elements of type VisualState Manager.
VisualStateGroups, VisualStateGroup and VisualState, all with an 

XML namespace prefi x of “vsm.” In earlier versions of Silverlight, 
it was necessary to defi ne a namespace declaration for that prefi x:

xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"

However, in Silverlight 4 you can simply delete all the vsm prefi xes 
and forget about this namespace declaration. To make changes to 
this template, you’ll want to copy that whole section of markup into 
a resource section of a XAML fi le and give it a key name:

<Style x:Key="listBoxItemStyle" TargetType="ListBoxItem">
  ...
</Style>

 You then set this style to the ItemContainerStyle property of 
the ListBox:

<ListBox ... ItemContainerStyle="{StaticResource listBoxItemStyle}" ....

Th e “item container” is the object the ListBox creates as a wrapper 
for each item in the ListBox, and that’s an object of type ListBoxItem.

Once you have this ListBoxItem style and template in your 
program, you can make changes to it.

Fade in, Fade Out
Let’s see how this works in the context of a simple demo program. 
Th e downloadable code for this article is a solution entitled Fluid-
UserInterfaceDemo. It consists of two programs, which you can run 
from my Web site at charlespetzold.com/silverlight/FluidUserInterfaceDemo. 
Both programs are on the same HTML page, each occupying the 
whole browser window. 

Th e fi rst program is FluidListBox. Visually, it consists of a 
ListBox and two buttons to add and remove items. I’ve used the 
same collection of grocery produce that I’ve used in my last two 
columns, so Main Page.xaml also contains a DataTemplate named 
produceDataTemplate.

I decided I wanted to start off  simple and have the items fade 
into view when they’re added to the ListBox and fade out when 
they’re removed. Th is involves animating the Opacity property of 
the Grid that forms the root of the visual tree. To be the target of 
an animation, that Grid needs a name:

<Grid Name="rootGrid" ...>

First insert a new VisualStateGroup within the VisualState-
Manager.VisualStateGroups tags:

<VisualStateGroup x:Name="LayoutStates">
  ...
</VisualStateGroup>

Th at’s where the markup goes for the BeforeLoaded, Aft erLoaded 
and BeforeUnloaded states in the LayoutStates group.

Th e fade-in is the easier of the two jobs. When an item is fi rst 
added to the visual tree, it’s said to be “loaded” into the visual tree. 
Prior to being loaded, the item has a visual state of BeforeLoaded, 
and then the visual state becomes Aft erLoaded. 

Th ere are several ways to defi ne the fade-in. Th e fi rst requires 
initializing the Opacity to 0 in the Grid tag: 

<Grid Name="rootGrid" Opacity="0" ... >

You then provide an animation for the AfterLoaded state to 
increase the Opacity property to 1 over the course of 1 second:

<VisualState x:Name="AfterLoaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     To="1" Duration="0:0:1" />
  </Storyboard>
</VisualState>

[TemplateVisualStateAttribute(Name = "Normal", GroupName =  
  "CommonStates")]
[TemplateVisualStateAttribute(Name = "MouseOver", GroupName = 
  "CommonStates")]
[TemplateVisualStateAttribute(Name = "Disabled", GroupName = 
  "CommonStates")]
[TemplateVisualStateAttribute(Name = "Unselected", GroupName = 
  "SelectionStates")]
[TemplateVisualStateAttribute(Name = "Selected", GroupName =  
  "SelectionStates")]
[TemplateVisualStateAttribute(Name = "SelectedUnfocused", GroupName = 
  "SelectionStates")]
[TemplateVisualStateAttribute(Name = "Unfocused", GroupName = 
  "FocusStates")]
[TemplateVisualStateAttribute(Name = "Focused", GroupName = 
  "FocusStates")]
[TemplateVisualStateAttribute(Name = "BeforeLoaded", GroupName = 
  "LayoutStates")]
[TemplateVisualStateAttribute(Name = "AfterLoaded", GroupName = 
  "LayoutStates")]
[TemplateVisualStateAttribute(Name = "BeforeUnloaded", GroupName =  
  "LayoutStates")]
public class ListBoxItem : ContentControl

Figure 1 The ListBoxItem Class Documentation

The Visual State Manager is one 
of the most signifi cant changes 

made to Silverlight as it was 
being adapted from WPF.

www.msdnmagazine.com
http://charlespetzold.com/silverlight/FluidUserInterfaceDemo


msdn magazine94 UI Frontiers

Or you can leave the Grid opacity at its default value of 1 and 
provide animations for both BeforeLoaded and Aft erLoaded:

<VisualState x:Name="BeforeLoaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     To="0" Duration="0:0:0" />
  </Storyboard>
</VisualState>
                                    
<VisualState x:Name="AfterLoaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     To="1" Duration="0:0:1" />
  </Storyboard>
</VisualState>

Notice that the Duration on the BeforeLoaded state is 0, which 
eff ectively just sets the Opacity property to 0. Using a whole Story-
board and DoubleAnimation just to set a property might seem like 
overkill, but it also demonstrates the fl exibility of animations. Th e 
overhead is actually not very much.

Th e approach I personally prefer—primarily because it’s the 
simplest—is to leave the Opacity property of the Grid at its default 
value of 1 and provide only an animation for the Aft erLoaded state 
with a From value specifi ed, rather than a To value:

<VisualState x:Name="AfterLoaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     From="0" Duration="0:0:1" />
  </Storyboard>
</VisualState>

Now the animation goes from the value of 0 to its base value, 
which is 1. You can use this identical technique with the Before-
Loaded state. But watch out: Th e BeforeLoaded state occurs aft er 
the ListBoxItem is created and initialized, but before it’s added to 
the visual tree, at which point the Aft erLoaded state occurs. Th at’s 
just a tiny gap of time. You’ll get into trouble if you defi ne an ani-
mation for BeforeLoaded but also defi ne an empty VisualState tag 
for Aft erLoaded:

<VisualState x:Name="BeforeLoaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     From="0" Duration="0:0:1" />
  </Storyboard>
</VisualState>
                                    
<VisualState x:Name="AfterLoaded" />

As soon as the item is loaded, the storyboard for BeforeLoaded 
is terminated and you’ll get no fade-in eff ect. However, you can 
make that markup work if you also add the following:

<VisualStateGroup.Transitions>
  <VisualTransition From="BeforeLoaded"
                    To="AfterLoaded"
                    GeneratedDuration="0:0:1" />
</VisualStateGroup.Transitions>

Th is defi nes a one-second transition period between the Before-
Loaded and the Aft erLoaded states. Th at transition period gives the 
BeforeLoaded animation time to complete before the Aft erLoaded 
state shuts it off .

Th e fade-out process isn’t quite as straightforward. When the 
item is about to be removed from the ListBox, the BeforeUnloaded 
state is set, but then the item is immediately removed so any 
animation that began won’t be visible! I’ve found two approaches 

that work. Th e fi rst defi nes an animation for the BeforeUnloaded 
state together with a transition for that state:

<VisualState x:Name="BeforeUnloaded">
  <Storyboard>
    <DoubleAnimation Storyboard.TargetName="rootGrid"
                     Storyboard.TargetProperty="Opacity"
                     To="0" Duration="0:0:1" />
  </Storyboard>
</VisualState>

<VisualStateGroup.Transitions>
  <VisualTransition From="AfterLoaded" 
                    To="BeforeUnloaded" 
                    GeneratedDuration="0:0:1" />
</VisualStateGroup.Transitions>

Th e second approach defi nes an empty tag for the Before Unloaded 
state and an animation for the VisualTransition:

<VisualState x:Name="BeforeUnloaded" />

<VisualStateGroup.Transitions>
  <VisualTransition From="AfterLoaded" 
                    To="BeforeUnloaded" 
                    GeneratedDuration="0:0:1">
    <Storyboard>
      <DoubleAnimation Storyboard.TargetName="rootGrid"
                       Storyboard.TargetProperty="Opacity"
                       To="0" Duration="0:0:1" />
    </Storyboard>
  </VisualTransition>
</VisualStateGroup.Transitions>

Figure 2 shows the completed markup for the Aft erLoaded and 
BeforeUnloaded states as they appear in the ListBoxItem template 
in the MainPage.xaml fi le of the FluidListBox project.

One more warning: By default, the ListBox stores its items in 
a VirtualizingStackPanel. Th is means the actual items and their 
containers aren’t generated until they’re required to be visually 
displayed. If you defi ne an animation for the Aft erLoaded state, and 
then fi ll the ListBox up with items, the items will fade in as they’re 
scrolled into view. Th is is probably undesirable. Th e easy solution 
is to replace the VirtualizingStackPanel with a regular StackPanel. 
Th e required markup on the ListBox is trivial:

<ListBox.ItemsPanel>
  <ItemsPanelTemplate>
    <StackPanel />
  </ItemsPanelTemplate>
</ListBox.ItemsPanel>

Extending to ItemsControl
Because the fl uid UI feature is implemented as visual states on 
ListBoxItem, it isn’t available in the ItemsControl. As you know, 
ItemsControl simply displays a collection of items and lets the 
user navigate through them. Th ere’s no concept of selection or 
input focus among the items. For that reason, ItemsControl doesn’t 
require a special class like ListBoxItem to host the items. It just 

Because the fl uid UI feature is 
implemented as visual states on 
ListBoxItem, it isn’t available in 

the ItemsControl.



95July 2010msdnmagazine.com

uses a ContentPresenter. Because ContentPresenter derives from 
FrameworkElement rather than Control, it doesn’t have a template 
in which to defi ne the behavior of visual states.

What you can do, however, is derive a class from ItemsControl 
that uses ListBoxItem to host its items. Th is is actually much easier 
than you might assume. Figure 3 shows the entire code for 
FluidableItemsControl. 

Th e crucial method is GetContainerForItemOverride. Th is 
method returns the object used to wrap each item. ItemsControl 
returns ContentPresenter, but ListBox returns ListBoxItem, and 
that’s what FluidableItemsControl returns as well. Th is ListBoxItem 
must have a style applied, and for that reason FluidableItemsControl 
also defi nes the same ItemContainerStyle property as ListBox. 

Th e other method that should be implemented is IsItemItsOwn-
ContainerOverride. If the item in the ItemsControl is already the 
same type as its container (in this case, a ListBoxItem), then there’s 
no reason to put it in another container. Now you can set a List-
BoxItem style definition to the Item ContainerStyle property of 
FluidableItemsControl. Th e template within the style defi nition can 

be drastically simplifi ed. It doesn’t need logic for mouse-over, selec-
tion or input focus, so all those visual states can be eliminated, as well 
as the three Rectangle objects. 

Th e FluidItemsControl program shows the result. It’s pretty much 
the same as FluidListBox but with all the ListBox selection logic 
absent. Th e default panel for ItemsControl is a StackPanel, so that’s 
another simplifi cation. To compensate for these simplifi cations, 
I’ve enhanced the animations for loading and unloading items. 
Now there’s an animation on the PlaneProjection transform that 
makes it appear as if the items are swiveling into and out of view.

Limitations and Suggestions
Even with the facility to defi ne animations on items in an Items-
Control or ListBox, there still exists a crucial limitation: If the control 
incorporates a ScrollViewer, you can’t defi ne transforms that take the 
item out of the box. Th e ScrollViewer imposes a severe clipping region 
that simply can’t be transgressed (as far as I’ve been able to determine). 
Th is means that techniques such as those I demonstrated in last month’s 
column are still valid and important in Silverlight 4.

But the use of the VSM to implement this fl uid UI feature in 
Silverlight 4 is a good indication that the VSM is likely to play an 
increasingly important role in the future to link code and XAML. 
It’s time that we application developers started considering imple-
menting our own visual states for custom behavior. 

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. He’s 
currently writing “Programming Windows Phone 7 Series,” which will be published 
as a free downloadable e-book in the fall of 2010. A preview edition is currently 
available through his Web site, charlespetzold.com.

using System.Windows;
using System.Windows.Controls;

namespace FluidItemsControl
{
  public class FluidableItemsControl : ItemsControl
  {
    public static readonly DependencyProperty ItemContainerStyleProperty =
      DependencyProperty.Register("ItemContainerStyle",
      typeof(Style),
      typeof(FluidableItemsControl),
      new PropertyMetadata(null));

    public Style ItemContainerStyle
    {
      set { SetValue(ItemContainerStyleProperty, value); }
      get { return (Style)GetValue(ItemContainerStyleProperty); }
    }

    protected override DependencyObject GetContainerForItemOverride()
    {
      ListBoxItem container = new ListBoxItem();

      if (ItemContainerStyle != null)
        container.Style = ItemContainerStyle;

      return container;
    }

    protected override bool IsItemItsOwnContainerOverride(object item)
    {
      return item is ListBoxItem;
    }
  }
}

Figure 3 The FluidableItemsControl Class

It’s time that we application 
developers started considering 
implementing our own visual 
states for custom behavior.

<ControlTemplate TargetType="ListBoxItem">
  <Grid Name="rootGrid" Background="{TemplateBinding Background}">
    <VisualStateManager.VisualStateGroups>

      <!-- Additions to standard template -->
      <VisualStateGroup x:Name="LayoutStates">
                                    
        <VisualState x:Name="AfterLoaded">
          <Storyboard>
            <DoubleAnimation Storyboard.TargetName="rootGrid"
                             Storyboard.TargetProperty="Opacity"
                             From="0" Duration="0:0:1" />
          </Storyboard>
        </VisualState>
                                    
        <VisualState x:Name="BeforeUnloaded" />

          <VisualStateGroup.Transitions>
            <VisualTransition From="AfterLoaded" 
                              To="BeforeUnloaded" 
                              GeneratedDuration="0:0:1">
              <Storyboard>
                 <DoubleAnimation Storyboard.TargetName="rootGrid"
                                  Storyboard.TargetProperty="Opacity"
                                  To="0" Duration="0:0:1" />
              </Storyboard>
            </VisualTransition>
          </VisualStateGroup.Transitions>
        </VisualStateGroup>
        <!-- End of additions to standard template -->
            ...
  </Grid>
</ControlTemplate>

Figure 2 An Excerpt from the 
ListBoxItem Template in FluidListBox

www.msdnmagazine.com
http://charlespetzold.com


msdn magazine96

keyboard.” Poppycock. Standards raise the bar for what’s a useful 
innovation and what isn’t. If an alternate keyboard layout were that 
much more effi  cient, we’d use it. If you can make users happier by 
violating a standard, more power to you. An excellent example 
is Microsoft  OneNote, which automatically saves documents 
without needing user action. If users like it, it’ll become the new 
standard. Following most of the standards allows the rest of your 
application to work while you present your new innovation to 
users for their approval or disapproval. Just know what you’re 
doing and why you’re doing it. 

Social manners, such as shaking hands or bowing, are behavioral 
conventions that help people live and work together harmoniously. 
As technology advances, we invent new behavioral conventions 
to cover the innovations; for example, turning off  cell phones in a 
theater. Similarly, UI standards are conventions that help people 
and their computer programs live and work together harmoniously. 
As UI technology advances, we need new conventions as to how 
and when to employ its new features to make users more happy—
not less. And we need them right now, as WPF and Silverlight 
development transitions from pioneer to mainstream. 

David S. Platt teaches Programming .NET at Harvard University Extension 
School and at companies all over the world. He is the author of 11 programming 
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) 
and “Introducing Microsoft  .NET” (Microsoft  Press, 2002). Microsoft  named 
him a Soft ware Legend in 2002. He wonders whether he should tape down two 
of his daughter’s fi ngers so she learns how to count in octal. You can contact him 
at rollthunder.com.

Rejectionists Rejected

Th e response to my last column, calling on Microsoft  to publish 
UI standards for Windows Presentation Foundation (WPF) and 
Silverlight, was quite gratifying, both in praise and scorn. Many 
readers loved it; others detested it and said so quite loudly. Here 
are the most strident objections, with my refutations.

Some readers hated the idea of any sort of standard. “Plattski, you 
Luddite, shut up,” they wrote, “we don’t need no stinkin’ standards. 
Th at’s so 20th century. We’ll do things that are cool and users will 
love them because we love cool and users are just like us.” No they’re 
not, and no they won’t. As I’ve said before in this space, users don’t 
care about your soft ware in and of itself. Never have, never will; 
not even your mother. Th ey don’t want cool, they want fi nished.

Almost all the readers who said this are under age 35. I picture 
them rolling their eyes at me, as my daughter, now 10, practices 
daily for her approaching teen years. Th ey’ve grown up with UI 
commonality as they’ve grown up with the measles vaccine: Never 
experiencing—and rarely even thinking about—the absence of ei-
ther. But I’ve experienced the world both ways, and let me tell you: 
Learning the UI peccadilloes of diff erent applications at best con-
sumes time and eff ort that could be used more productively, and 
at worst drives a user barking mad when the Save command of one 
program is the Delete command of another. And even among oth-
erwise healthy patients in developed countries, measles kills one 
or two out of 1,000 patients and permanently damages more. We’re 
far better off  today having both UI commonality and the measles 
vaccine, and giving up either one of them is a bad idea.

A second cohort wrote: “We don’t want Microsoft  to prescribe 
standards. We want standards to evolve naturally out of the use 
of WPF in our applications.” My response: WPF has been out for 
four years now. Pioneer companies have spent eons of programmer 
time and mountains of money on WPF, some of which made users 
happier and some of which made them less happy. 

The Family.Show sample genealogy application from Vertigo 
offers spectacular examples of both, including excellent subcon-
scious right-brain communication, down to and including the 
speedy infliction of physical pain. (See my article, “Using WPF 
for Good and Not Evil” at tinyurl.com/27anuy7, for details.) We darn 
well better have learned something from examples like this. 
Microsoft is the only entity that can gather the community 
experiences, combine it with their own extensive data and 
promulgate it industry-wide. 

A third cohort wrote: “Standards cramp innovation and are a 
huge barrier to progress, the classic example being the QWERTY 

DON’T GET ME STARTED DAVID S. PLATT

From the Family.Show application. This is what can happen 
without standards.

http://tinyurl.com/27anuy7
http://rollthunder.com


SharePoint 2010 
from the experts.

From beginner to
professional, we have
SharePoint 2010 
covered.

Join us on facebook where you 

can connect with Wrox and learn 

more about the latest books on 

SharePoint 2010!  

facebook.com/wroxpress

Untitled-2   1 6/10/10   2:12 PM

www.facebook.com/wroxpress


Untitled-1   1 4/12/10   2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, July 2010
	Contents
	EDITOR’S NOTE: Over-Educated, Yet Under-Qualified?
	CUTTING EDGE: Expando Objects in C# 4.0
	DATA POINTS: Windows Azure Table Storage–Not Your Father’s Database
	OFFICE ADD-INS: 3 Solutions for Accessing SharePoint Data in Office 2010
	SHAREPOINT SECURITY: Trim SharePoint Search Results for Better Security
	ONENOTE 2010: Creating OneNote 2010 Extensions with the OneNote Object Model
	OFFICE SERVICES: Merging Word Documents on the Server Side with SharePoint 2010
	SMART CLIENT: Building Distributed Apps with NHibernate and Rhino Service Bus
	C# 4.0: New C# Features in the .NET Framework 4
	DESIGN PATTERNS: Problems and Solutions with Model-View-ViewModel
	SECURITY BRIEFS: View State Security
	THE WORKING PROGRAMMER: Going NoSQL with MongoDB, Part 3
	UI FRONTIERS: The Fluid UI in Silverlight 4
	DON’T GET ME STARTED: Rejectionists Rejected





