
Forms Authentication, Authorization, User
Accounts, and Roles :: Assigning Roles to
Users

Introduction
The previous tutorial examined the Roles framework and the SqlRoleProvider; we

saw how to use the Roles class to create, retrieve, and delete roles. In addition to

creating and deleting roles, we need to be able to assign or remove users from a

role. Unfortunately, ASP.NET does not ship with any Web controls for managing what

users belong to what roles. Instead, we must create our own ASP.NET pages to

manage these associations. The good news is that adding and removing users to

roles is quite easy. The Roles class contains a number of methods for adding one or

more users to one or more roles.

In this tutorial we will build two ASP.NET pages to assist with managing what users

belong to what roles. The first page will include facilities to see what users belong to

a given role, what roles a particular user belongs to, and the ability to assign or

remove a particular user from a particular role. In the second page we will augment

the CreateUserWizard control so that it includes a step to specify what roles the

newly created user belongs to. This is useful in scenarios where an administrator is

able to create new user accounts.

Let’s get started!

Listing What Users Belong To What Roles
The first order of business for this tutorial is to create a web page from which users

can be assigned to roles. Before we concern ourselves with how to assign users to

roles, let’s first concentrate on how to determine what users belong to what roles.

There are two ways to display this information: “by role” or “by user.” We could

allow the visitor to select a role and then show them all of the users that belong to

the role (the “by role” display), or we could prompt the visitor to select a user and

then show them the roles assigned to that user (the “by user” display).

The “by role” view is useful in circumstances where the visitor wants to know the set

of users that belong to a particular role; the “by user” view is ideal when the visitor

needs to know a particular user’s role(s). Let’s have our page include both “by role”

and “by user” interfaces.

We will start with creating the “by user” interface. This interface will consist of a

drop-down list and a list of checkboxes. The drop-down list will be populated with the

set of users in the system; the checkboxes will enumerate the roles. Selecting a user

http://www.asp.net/learn/security/tutorial-09-vb.aspx

from the drop-down list will check those roles the user belongs to. The person

visiting the page can then check or uncheck the checkboxes to add or remove the

selected user from the corresponding roles.

Note: Using a drop-down list to list the user accounts is not an ideal choice

for websites where there may be hundreds of user accounts. A drop-down list

is designed to allow a user to pick one item from a relatively short list of

options. It quickly becomes unwieldy as the number of list items grows. If you

are building a website that will have potentially large numbers of user

accounts, you may want to consider using an alternative user interface, such

as a pageable GridView or a filterable interface that lists prompts the visitor

to choose a letter and then only shows those users whose username starts

with the selected letter.

Step 1: Building the “By User” User
Interface
Open the UsersAndRoles.aspx page. At the top of the page, add a Label Web

control named ActionStatus and clear out its Text property. We will use this Label

to provide feedback on the actions performed, displaying messages like, “User Tito

has been added to the Administrators role,” or “User Jisun has been removed from

the Supervisors role.” In order to make these messages stand out, set the Label’s

CssClass property to “Important”.

<p align="center">

 <asp:Label ID="ActionStatus" runat="server"

CssClass="Important"></asp:Label>

</p>

Next, add the following CSS class definition to the Styles.css stylesheet:

.Important

{

 font-size: large;

 color: Red;

}

This CSS definition instructs the browser to display the Label using a large, red font.

Figure 1 shows this effect through the Visual Studio Designer.

Figure 1: The Label’s CssClass Property Results in a Large, Red Font

Next, add a DropDownList to the page, set its ID property to UserList, and set its

AutoPostBack property to True. We will use this DropDownList to list all of the users

in the system. This DropDownList will be bound to a collection of MembershipUser

objects. Because we want the DropDownList to display the UserName property of the

MembershipUser object (and use it as the value of the list items), set the

DropDownList’s DataTextField and DataValueField properties to “UserName”.

Underneath the DropDownList, add a Repeater named UsersRoleList. This Repeater

will list all of the roles in the system as a series of checkboxes. Define the Repeater’s

ItemTemplate using the following declarative markup:

<asp:Repeater ID="UsersRoleList" runat="server">

 <ItemTemplate>

 <asp:CheckBox runat="server" ID="RoleCheckBox"

AutoPostBack="true" Text='<%# Container.DataItem %>' />

 </ItemTemplate>

</asp:Repeater>

The ItemTemplate markup includes a single CheckBox Web control named

RoleCheckBox. The CheckBox’s AutoPostBack property is set to True and the Text

property is bound to Container.DataItem. The reason the databinding syntax is

simply Container.DataItem is because the Roles framework returns the list of role

names as a string array, and it is this string array that we will be binding to the

Repeater. A thorough description of why this syntax is used to display the contents

of an array bound to a data Web control is beyond the scope of this tutorial. For

more information on this matter, refer to Binding a Scalar Array to a Data Web

Control.

At this point your “by user” interface’s declarative markup should look similar to the

following:

<h3>Manage Roles By User</h3>

<p>

 Select a User:

 <asp:DropDownList ID="UserList" runat="server" AutoPostBack="True"

 DataTextField="UserName" DataValueField="UserName">

 </asp:DropDownList>

</p>

<p>

 <asp:Repeater ID="UsersRoleList" runat="server">

 <ItemTemplate>

 <asp:CheckBox runat="server" ID="RoleCheckBox"

AutoPostBack="true" Text='<%# Container.DataItem %>' />

 </ItemTemplate>

 </asp:Repeater>

</p>

We are now ready to write the code to bind the set of user accounts to the

DropDownList and the set of roles to the Repeater. In the page’s code-behind class,

add a method named BindUsersToUserList and another named BindRolesList,

using the following code:

Private Sub BindUsersToUserList()

 ' Get all of the user accounts

 Dim users As MembershipUserCollection = Membership.GetAllUsers()

 UserList.DataSource = users

 UserList.DataBind()

End Sub

Private Sub BindRolesToList()

 ' Get all of the roles

 Dim roleNames() As String = Roles.GetAllRoles()

 UsersRoleList.DataSource = roleNames

http://aspnet.4guysfromrolla.com/articles/082504-1.aspx
http://aspnet.4guysfromrolla.com/articles/082504-1.aspx
http://aspnet.4guysfromrolla.com/articles/082504-1.aspx

 UsersRoleList.DataBind()

End Sub

The BindUsersToUserList method retrieves all of the user accounts in the system

via the Membership.GetAllUsers method. This returns a

MembershipUserCollection object, which is a collection of MembershipUser

instances. This collection is then bound to the UserList DropDownList. The

MembershipUser instances that makeup the collection contain a variety of properties,

like UserName, Email, CreationDate, and IsOnline. In order to instruct the

DropDownList to display the value of the UserName property, ensure that the

UserList DropDownList’s DataTextField and DataValueField properties have been

set to “UserName”.

Note: The Membership.GetAllUsers method has two overloads: one that

accepts no input parameters and returns all of the users, and one that takes

in integer values for the page index and page size, and returns only the

specified subset of the users. When there are large amounts of user accounts

being displayed in a pageable user interface element, the second overload can

be used to more efficiently page through the users since it returns just the

precise subset of user accounts rather than all of them.

The BindRolesToList method starts by calling the Roles class’s GetAllRoles

method, which returns a string array containing the roles in the system. This string

array is then bound to the Repeater.

Finally, we need to call these two methods when the page is first loaded. Add the

following code to the Page_Load event handler:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then

 ' Bind the users and roles

 BindUsersToUserList()

 BindRolesToList()

 End If

End Sub

With this code in place, take a moment to visit the page through a browser; your
screen should look similar to Figure 2. All of the user accounts are populated in the
drop-down list and, underneath that, each role appears as a checkbox. Because we
set the AutoPostBack properties of the DropDownList and CheckBoxes to True,

changing the selected user or checking or unchecking a role causes a postback. No
action is performed, however, because we have yet to write code to handle these

actions. We’ll tackle these tasks in the next two sections.

http://msdn2.microsoft.com/en-us/library/dy8swhya.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membershipusercollection.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membershipuser.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membershipuser.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getallroles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getallroles.aspx

Figure 2: The Page Displays the Users and Roles

Checking the Roles the Selected User
Belongs To
When the page is first loaded, or whenever the visitor selects a new user from the

drop-down list, we need to update the UsersRoleList’s checkboxes so that a given

role checkbox is checked only if the selected user belongs to that role. To accomplish

this, create a method named CheckRolesForSelectedUser with the following code:

Private Sub CheckRolesForSelectedUser()

 ' Determine what roles the selected user belongs to

 Dim selectedUserName As String = UserList.SelectedValue

 Dim selectedUsersRoles() As String =

Roles.GetRolesForUser(selectedUserName)

 ' Loop through the Repeater's Items and check or uncheck the

checkbox as needed

 For Each ri As RepeaterItem In UsersRoleList.Items

 ' Programmatically reference the CheckBox

 Dim RoleCheckBox As CheckBox =

CType(ri.FindControl("RoleCheckBox"), CheckBox)

 ' See if RoleCheckBox.Text is in selectedUsersRoles

 If Linq.Enumerable.Contains(Of String)(selectedUsersRoles,

RoleCheckBox.Text) Then

 RoleCheckBox.Checked = True

 Else

 RoleCheckBox.Checked = False

 End If

 Next

End Sub

The above code starts by determining who the selected user is. It then uses the

Roles class’s GetRolesForUser(userName) method to return the specified user’s set

of roles as a string array. Next, the Repeater’s items are enumerated and each

item’s RoleCheckBox CheckBox is programmatically referenced. The CheckBox is

checked only if the role it corresponds to is contained within the

selectedUsersRoles string array.

Note: The Linq.Enumerable.Contains(Of String)(...) syntax will not

compile if you are using ASP.NET version 2.0. The Contains(Of String)

method is part of the LINQ library, which is new to ASP.NET 3.5. If you are

still using ASP.NET version 2.0, use the Array.IndexOf(Of String) method

instead.

The CheckRolesForSelectedUser method needs to be called in two cases: when the

page is first loaded and whenever the UserList DropDownList’s selected index is

changed. Therefore, call this method from the Page_Load event handler (after the

calls to BindUsersToUserList and BindRolesToList). Also, create an event handler

for the DropDownList’s SelectedIndexChanged event and call this method from

there.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then

 ' Bind the users and roles

 BindUsersToUserList()

 BindRolesToList()

 ' Check the selected user's roles

 CheckRolesForSelectedUser()

 End If

End Sub

http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getrolesforuser.aspx
http://en.wikipedia.org/wiki/Language_Integrated_Query
http://msdn2.microsoft.com/en-us/library/eha9t187.aspx

...

Protected Sub UserList_SelectedIndexChanged(ByVal sender As Object,

ByVal e As System.EventArgs) Handles UserList.SelectedIndexChanged

 CheckRolesForSelectedUser()

End Sub

With this code in place, you can test the page through the browser. However, since

the UsersAndRoles.aspx page currently lacks the ability to assign users to roles, no

users have roles. We will create the interface for assigning users to roles in a

moment, so you can either take my word that this code works and verify that it does

so later, or you can manually add users to roles by inserting records into the

aspnet_UsersInRoles table in order to test this functionality now.

Assigning and Removing Users from Roles
When the visitor checks or unchecks a CheckBox in the UsersRoleList Repeater we

need to add or remove the selected user from the corresponding role. The

CheckBox’s AutoPostBack property is currently set to True, which causes a postback

anytime a CheckBox in the Repeater is checked or unchecked. In short, we need to

create an event handler for the CheckBox’s CheckChanged event. Since the CheckBox

is in a Repeater control, we need to manually add the event handler plumbing. Start

by adding the event handler to the code-behind class as a Protected method, like

so:

Protected Sub RoleCheckBox_CheckChanged(ByVal sender As Object, ByVal e

As EventArgs)

End Sub

We will return to write the code for this event handler in a moment. But first let’s

complete the event handling plumbing. From the CheckBox within the Repeater’s

ItemTemplate, add OnCheckedChanged="RoleCheckBox_CheckChanged". This syntax

wires the RoleCheckBox_CheckChanged event handler to the RoleCheckBox’s

CheckedChanged event.

<asp:CheckBox runat="server" ID="RoleCheckBox"

 AutoPostBack="true"

 Text='<%# Container.DataItem %>'

 OnCheckedChanged="RoleCheckBox_CheckChanged" />

Our final task is to complete the RoleCheckBox_CheckChanged event handler. We

need to start by referencing the CheckBox control that raised the event because this

CheckBox instance tells us what role was checked or unchecked via its Text and

Checked properties. Using this information along with the UserName of the selected

user, we add or remove the user from the role via the Roles class’s AddUserToRole

or RemoveUserFromRole method.

Protected Sub RoleCheckBox_CheckChanged(ByVal sender As Object, ByVal e

As EventArgs)

 ' Reference the CheckBox that raised this event

 Dim RoleCheckBox As CheckBox = CType(sender, CheckBox)

 ' Get the currently selected user and role

 Dim selectedUserName As String = UserList.SelectedValue

 Dim roleName As String = RoleCheckBox.Text

 ' Determine if we need to add or remove the user from this role

 If RoleCheckBox.Checked Then

 ' Add the user to the role

 Roles.AddUserToRole(selectedUserName, roleName)

 ' Display a status message

 ActionStatus.Text = String.Format("User {0} was added to role

{1}.", selectedUserName, roleName)

 Else

 ' Remove the user from the role

 Roles.RemoveUserFromRole(selectedUserName, roleName)

 ' Display a status message

 ActionStatus.Text = String.Format("User {0} was removed from

role {1}.", selectedUserName, roleName)

 End If

End Sub

The above code starts by programmatically referencing the CheckBox that raised the

event, which is available via the sender input parameter. If the CheckBox is

checked, the selected user is added to the specified role, otherwise they are removed

from the role. In either case, the ActionStatus Label displays a message

summarizing the action just performed.

Take a moment to test out this page through a browser. Select user Tito and then

add Tito to both the Administrators and Supervisors roles.

http://msdn2.microsoft.com/en-us/library/system.web.security.roles.addusertorole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.removeuserfromrole.aspx

Figure 3: Tito Has Been Added to the Administrators and Supervisors Roles

Next, select user Bruce from the drop-down list. There is a postback and the

Repeater’s CheckBoxes are updated via the CheckRolesForSelectedUser. Since

Bruce does not yet belong to any roles, the two checkboxes are unchecked. Next,

add Bruce to the Supervisors role.

Figure 4: Bruce Has Been Added to the Supervisors Role

To further verify the functionality of the CheckRolesForSelectedUser method, select

a user other than Tito or Bruce. Note how the checkboxes are automatically

unchecked, denoting that they do not belong to any roles. Return to Tito. Both the

Administrators and Supervisors checkboxes should be checked.

Step 2: Building the “By Roles” User
Interface
At this point we have completed the “by users” interface and are ready to start

tackling the “by roles” interface. The “by roles” interface prompts the user to select a

role from a drop-down list and then displays the set of users that belong to that role

in a GridView.

Add another DropDownList control to the UsersAndRoles.aspx page. Place this one

beneath the Repeater control, name it RoleList, and set its AutoPostBack property

to True. Underneath that, add a GridView and name it RolesUserList. This GridView

will list the users that belong to the selected role. Set the GridView’s

AutoGenerateColumns property to False, add a TemplateField to the grid’s Columns

collection, and set its HeaderText property to “Users”. Define the TemplateField’s

ItemTemplate so that it displays the value of the databinding expression

Container.DataItem in the Text property of a Label named UserNameLabel.

After adding and configuring the GridView, your “by role” interface’s declarative

markup should look similar to the following:

<h3>Manage Users By Role</h3>

<p>

 Select a Role:

 <asp:DropDownList ID="RoleList" runat="server" AutoPostBack="true">

 </asp:DropDownList>

</p>

<p>

 <asp:GridView ID="RolesUserList" runat="server"

AutoGenerateColumns="false"

 EmptyDataText="No users belong to this role.">

 <Columns>

 <asp:TemplateField HeaderText="Users">

 <ItemTemplate>

 <asp:Label runat="server" id="UserNameLabel"

Text='<%# Container.DataItem %>'></asp:Label>

 </ItemTemplate>

 </asp:TemplateField>

 </Columns>

 </asp:GridView>

</p>

We need to populate the RoleList DropDownList with the set of roles in the system.

To accomplish this, update the BindRolesToList method so that is binds the string

array returned by the Roles.GetAllRoles method to the RolesList DropDownList

(as well as the UsersRoleList Repeater).

Private Sub BindRolesToList()

 ' Get all of the roles

 Dim roleNames() As String = Roles.GetAllRoles()

 UsersRoleList.DataSource = roleNames

 UsersRoleList.DataBind()

 RoleList.DataSource = roleNames

 RoleList.DataBind()

End Sub

The last two lines in the BindRolesToList method have been added to bind the set

of roles to the RoleList DropDownList control. Figure 5 shows the end result when

viewed through a browser – a drop-down list populated with the system’s roles.

Figure 5: The Roles are Displayed in the RoleList DropDownList

Displaying the Users That Belong To the
Selected Role
When the page is first loaded, or when a new role is selected from the RoleList

DropDownList, we need to display the list of users that belong to that role in the

GridView. Create a method named DisplayUsersBelongingToRole using the

following code:

Private Sub DisplayUsersBelongingToRole()

 ' Get the selected role

 Dim selectedRoleName As String = RoleList.SelectedValue

 ' Get the list of usernames that belong to the role

 Dim usersBelongingToRole() As String =

Roles.GetUsersInRole(selectedRoleName)

 ' Bind the list of users to the GridView

 RolesUserList.DataSource = usersBelongingToRole

 RolesUserList.DataBind()

End Sub

This method starts by getting the selected role from the RoleList DropDownList. It

then uses the Roles.GetUsersInRole(roleName) method to retrieve a string array

of the UserNames of the users that belong to that role. This array is then bound to

the RolesUserList GridView.

This method needs to be called in two circumstances: when the page is initially

loaded and when the selected role in the RoleList DropDownList changes.

Therefore, update the Page_Load event handler so that this method is invoked after

the call to CheckRolesForSelectedUser. Next, create an event handler for the

RoleList’s SelectedIndexChanged event, and call this method from there, too.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then

 ' Bind the users and roles

 BindUsersToUserList()

 BindRolesToList()

 ' Check the selected user's roles

 CheckRolesForSelectedUser()

 'Display those users belonging to the currently selected role

 DisplayUsersBelongingToRole()

 End If

End Sub

...

Protected Sub RoleList_SelectedIndexChanged(ByVal sender As Object,

ByVal e As System.EventArgs) Handles RoleList.SelectedIndexChanged

 DisplayUsersBelongingToRole()

End Sub

With this code in place, the RolesUserList GridView should display those users that

belong to the selected role. As Figure 6 shows, the Supervisors role consists of two
members: Bruce and Tito.

http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getusersinrole.aspx

Figure 6: The GridView Lists Those Users That Belong to the Selected Role

Removing Users from the Selected Role
Let’s augment the RolesUserList GridView so that it includes a column of “Remove”

buttons. Clicking the “Remove” button for a particular user will remove them from

that role.

Start by adding a Delete button field to the GridView. Make this field appear as the
left most filed and change its DeleteText property from “Delete” (the default) to

“Remove”.

Figure 7: Add the “Remove” Button to the GridView

When the “Remove” button is clicked a postback ensues and the GridView’s

RowDeleting event is raised. We need to create an event handler for this event and

write code that removes the user from the selected role. Create the event handler

and then add the following code:

Protected Sub RolesUserList_RowDeleting(ByVal sender As Object, ByVal e

As System.Web.UI.WebControls.GridViewDeleteEventArgs) Handles

RolesUserList.RowDeleting

 ' Get the selected role

 Dim selectedRoleName As String = RoleList.SelectedValue

 ' Reference the UserNameLabel

 Dim UserNameLabel As Label =

CType(RolesUserList.Rows(e.RowIndex).FindControl("UserNameLabel"),

Label)

 ' Remove the user from the role

 Roles.RemoveUserFromRole(UserNameLabel.Text, selectedRoleName)

 ' Refresh the GridView

 DisplayUsersBelongingToRole()

 ' Display a status message

 ActionStatus.Text = String.Format("User {0} was removed from role

{1}.", UserNameLabel.Text, selectedRoleName)

End Sub

The code starts by determining the selected role name. It then programmatically

references the UserNameLabel control from the row whose “Remove” button was

clicked in order to determine the UserName of the user to remove. The user is then

removed from the role via a call to the Roles.RemoveUserFromRole method. The

RolesUserList GridView is then refreshed and a message is displayed via the

ActionStatus Label control.

Note: The “Remove” button does not require any sort of confirmation from

the user before removing the user from the role. I invite you to add some

level of user confirmation. One of the easiest ways to confirm an action is

through a client-side confirm dialog box. For more information on this

technique, see Adding Client-Side Confirmation When Deleting.

Figure 8 shows the page after user Tito has been removed from the Supervisors

group.

http://asp.net/learn/data-access/tutorial-42-vb.aspx

Figure 8: Alas, Tito is No Longer a Supervisor

Adding New Users to the Selected Role
Along with removing users from the selected role, the visitor to this page should also

be able to add a user to the selected role. The best interface for adding a user to the

selected role depends on the number of user accounts you expect to have. If your

website will house just a few dozen user accounts or less, you could use a

DropDownList here. If there might be thousands of user accounts, you would want to

include a user interface that permits the visitor to page through the accounts, search

for a particular account, or filter the user accounts in some other fashion.

For this page let’s use a very simple interface that works regardless of the number of

user accounts in the system. Namely, we will use a TextBox, prompting the visitor to

type in the username of the user she wants to add to the selected role. If no user

with that name exists, or if the user is already a member of the role, we’ll display a

message in ActionStatus Label. But if the user exists and is not a member of the

role, we’ll add them to the role and refresh the grid.

Add a TextBox and Button beneath the GridView. Set the TextBox’s ID to

UserNameToAddToRole and set the Button’s ID and Text properties to

AddUserToRoleButton and “Add User to Role”, respectively.

<p>

 UserName:

 <asp:TextBox ID="UserNameToAddToRole" runat="server"></asp:TextBox>

 <asp:Button ID="AddUserToRoleButton" runat="server" Text="Add User

to Role" />

</p>

Next, create a Click event handler for the AddUserToRoleButton and add the

following code:

Protected Sub AddUserToRoleButton_Click(ByVal sender As Object, ByVal e

As System.EventArgs) Handles AddUserToRoleButton.Click

 ' Get the selected role and username

 Dim selectedRoleName As String = RoleList.SelectedValue

 Dim userToAddToRole As String = UserNameToAddToRole.Text

 ' Make sure that a value was entered

 If userToAddToRole.Trim().Length = 0 Then

 ActionStatus.Text = "You must enter a username in the textbox."

 Exit Sub

 End If

 ' Make sure that the user exists in the system

 Dim userInfo As MembershipUser =

Membership.GetUser(userToAddToRole)

 If userInfo Is Nothing Then

 ActionStatus.Text = String.Format("The user {0} does not exist

in the system.", userNameToAddToRole)

 Exit Sub

 End If

 ' Make sure that the user doesn't already belong to this role

 If Roles.IsUserInRole(userToAddToRole, selectedRoleName) Then

 ActionStatus.Text = String.Format("User {0} already is a member

of role {1}.", UserNameToAddToRole, selectedRoleName)

 Exit Sub

 End If

 ' If we reach here, we need to add the user to the role

 Roles.AddUserToRole(userToAddToRole, selectedRoleName)

 ' Clear out the TextBox

 userNameToAddToRole.Text = String.Empty

 ' Refresh the GridView

 DisplayUsersBelongingToRole()

 ' Display a status message

 ActionStatus.Text = String.Format("User {0} was added to role

{1}.", UserNameToAddToRole, selectedRoleName)

End Sub

The majority of the code in the Click event handler performs various validation

checks. It ensures that the visitor supplied a username in the UserNameToAddToRole

TextBox, that the user exists in the system, and that they don’t already belong to

the selected role. If any of these checks fails, an appropriate message is displayed in

ActionStatus and the event handler is exited. If all of the checks pass, the user is

added to the role via the Roles.AddUserToRole method. Following that, the

TextBox’s Text property is cleared out, the GridView is refreshed, and the

ActionStatus Label displays a message indicating that the specified user was

successfully added to the selected role.

Note: To ensure that the specified user does not already belong to the

selected role, we use the Roles.IsUserInRole(userName, roleName)

method, which returns a Boolean value indicating whether userName is a

member of roleName. We will use this method again in the next tutorial when

we look at role-based authorization.

Visit the page through a browser and select the Supervisors role from the RoleList

DropDownList. Try entering an invalid username – you should see a message

explaining that the user does not exist in the system.

http://msdn2.microsoft.com/en-us/library/system.web.security.roles.isuserinrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.isuserinrole.aspx
http://www.asp.net/learn/security/tutorial-11-vb.aspx

Figure 9: You Cannot Add a Non-Existent User to a Role

Now try adding a valid user. Go ahead and re-add Tito to the Supervisors role.

Figure 10: Tito Is Once Again a Supervisor!

Step 3: Cross-Updating the “By User” and
“By Role” Interfaces
The UsersAndRoles.aspx page offers two distinct interfaces for managing users and

roles. Currently, these two interfaces act independently of one another so it is

possible that a change made in one interface will not be reflected immediately in the

other. For example, imagine that the visitor to the page selects the Supervisors role

from the RoleList DropDownList, which lists Bruce and Tito as its members. Next,

the visitor selects Tito from the UserList DropDownList, which checks the

Administrators and Supervisors checkboxes in the UsersRoleList Repeater. If the

visitor then unchecks the Supervisor role from the Repeater, Tito is removed from

the Supervisors role, but this modification is not reflected in the “by role” interface.

The GridView will still show Tito as being a member of the Supervisors role.

To fix this we need to refresh the GridView whenever a role is checked or unchecked

from the UsersRoleList Repeater. Likewise, we need to refresh the Repeater

whenever a user is removed or added to a role from the “by role” interface.

The Repeater in the “by user” interface is refreshed by calling the

CheckRolesForSelectedUser method. The “by role” interface can be modified in the

RolesUserList GridView’s RowDeleting event handler and the

AddUserToRoleButton Button’s Click event handler. Therefore, we need to call the

CheckRolesForSelectedUser method from each of these methods.

Protected Sub RolesUserList_RowDeleting(ByVal sender As Object, ByVal e

As System.Web.UI.WebControls.GridViewDeleteEventArgs) Handles

RolesUserList.RowDeleting

 ... Code removed for brevity ...

 ' Refresh the "by user" interface

 CheckRolesForSelectedUser()

End Sub

Protected Sub AddUserToRoleButton_Click(ByVal sender As Object, ByVal e

As System.EventArgs) Handles AddUserToRoleButton.Click

 ... Code removed for brevity ...

 ' Refresh the "by user" interface

 CheckRolesForSelectedUser()

End Sub

Similarly, the GridView in the “by role” interface is refreshed by calling the

DisplayUsersBelongingToRole method and the “by user” interface is modified

through the RoleCheckBox_CheckChanged event handler. Therefore, we need to call

the DisplayUsersBelongingToRole method from this event handler.

Protected Sub RoleCheckBox_CheckChanged(ByVal sender As Object, ByVal e

As EventArgs)

 ... Code removed for brevity ...

 ' Refresh the "by role" interface

 DisplayUsersBelongingToRole()

End Sub

With these minor code changes, the “by user” and “by role” interfaces now correctly

cross-update. To verify this, visit the page through a browser and select Tito and

Supervisors from the UserList and RoleList DropDownLists, respectively. Note that

as you uncheck the Supervisors role for Tito from the Repeater in the “by user”

interface, Tito is automatically removed from the GridView in the “by role” interface.

Adding Tito back to the Supervisors role from the “by role” interface automatically

re-checks the Supervisors checkbox in the “by user” interface.

Step 4: Customizing the CreateUserWizard
to Include a “Specify Roles” Step
In the Creating User Accounts tutorial we saw how to use the CreateUserWizard Web

control to provide an interface for creating a new user account. The

CreateUserWizard control can be used in one of two ways:

 As a means for visitors to create their own user account on the site, and

 As a means for administrators to create new accounts

In the first use case, a visitor comes to the site and fills out the CreateUserWizard,

entering their information in order to register on the site. In the second case, an

administrator creates a new account for another person.

When an account is being created by an administrator for some other person, it

might be helpful to allow the administrator to specify what roles the new user

account belongs to. In the Storing Additional User Information tutorial we saw how

to customize the CreateUserWizard by adding additional WizardSteps. Let’s look at

how to add an additional step to the CreateUserWizard in order to specify the new

user’s roles.

Open the CreateUserWizardWithRoles.aspx page and add a CreateUserWizard

control named RegisterUserWithRoles. Set the control’s

ContinueDestinationPageUrl property to “~/Default.aspx”. Because the idea here

is that an administrator will be using this CreateUserWizard control to create new

user accounts, set the control’s LoginCreatedUser property to False. This

LoginCreatedUser property specifies whether the visitor is automatically logged on

as the just-created user, and it defaults to True. We set it to False because when an

administrator creates a new account we want to keep him signed in as himself.

Next, select the “Add/Remove WizardSteps…” option from the CreateUserWizard’s

Smart Tag and add a new WizardStep, setting its ID to SpecifyRolesStep. Move

the SpecifyRolesStep WizardStep so that it comes after the “Sign Up for Your New

Account” step, but before the “Complete” step. Set the WizardStep’s Title property

to “Specify Roles”, its StepType property to Step, and its AllowReturn property to

False.

http://www.asp.net/learn/security/tutorial-05-vb.aspx
http://www.asp.net/learn/security/tutorial-08-vb.aspx

Figure 11: Add the “Specify Roles” WizardStep to the CreateUserWizard

After this change your CreateUserWizard’s declarative markup should look like the

following:

<asp:CreateUserWizard ID="RegisterUserWithRoles" runat="server"

 ContinueDestinationPageUrl="~/Default.aspx"

LoginCreatedUser="False">

 <WizardSteps>

 <asp:CreateUserWizardStep ID="CreateUserWizardStep1"

runat="server">

 </asp:CreateUserWizardStep>

 <asp:WizardStep ID="SpecifyRolesStep" runat="server"

StepType="Step"

 Title="Specify Roles" AllowReturn="False">

 </asp:WizardStep>

 <asp:CompleteWizardStep ID="CompleteWizardStep1"

runat="server">

 </asp:CompleteWizardStep>

 </WizardSteps>

</asp:CreateUserWizard>

In the “Specify Roles” WizardStep, add a CheckBoxList named RoleList. This

CheckBoxList will list the available roles, enabling the person visiting the page to

check what roles the newly created user belongs to.

We are left with two coding tasks: first we must populate the RoleList CheckBoxList

with the roles in the system; second, we need to add the created user to the

selected roles when the user moves from the “Specify Roles” step to the “Complete”

step. We can accomplish the first task in the Page_Load event handler. The following

code programmatically references the RoleList CheckBox on the first visit to the

page and binds the roles in the system to it.

Protected Sub Page_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

 If Not Page.IsPostBack Then

 ' Reference the SpecifyRolesStep WizardStep

 Dim SpecifyRolesStep As WizardStep =

CType(RegisterUserWithRoles.FindControl("SpecifyRolesStep"),

WizardStep)

 ' Reference the RoleList CheckBoxList

 Dim RoleList As CheckBoxList =

CType(SpecifyRolesStep.FindControl("RoleList"), CheckBoxList)

 ' Bind the set of roles to RoleList

 RoleList.DataSource = Roles.GetAllRoles()

 RoleList.DataBind()

 End If

End Sub

The above code should look familiar. In the Storing Additional User Information

tutorial we used two FindControl statements to reference a Web control from within

a custom WizardStep. And the code that binds the roles to the CheckBoxList was

taken from earlier in this tutorial.

In order to perform the second programming task we need to know when the

“Specify Roles” step has been completed. Recall that the CreateUserWizard has an

ActiveStepChanged event, which fires each time the visitor navigates from one step

to another. Here we can determine if the user has reached the “Complete” step; if

so, we need to add the user to the selected roles.

Create an event handler for the ActiveStepChanged event and add the following

code:

http://www.asp.net/learn/security/tutorial-08-cs.aspx

Protected Sub RegisterUserWithRoles_ActiveStepChanged(ByVal sender As

Object, ByVal e As System.EventArgs) Handles

RegisterUserWithRoles.ActiveStepChanged

 'Have we JUST reached the Complete step?

 If RegisterUserWithRoles.ActiveStep.Title = "Complete" Then

 ' Reference the SpecifyRolesStep WizardStep

 Dim SpecifyRolesStep As WizardStep =

CType(RegisterUserWithRoles.FindControl("SpecifyRolesStep"),

WizardStep)

 ' Reference the RoleList CheckBoxList

 Dim RoleList As CheckBoxList =

CType(SpecifyRolesStep.FindControl("RoleList"), CheckBoxList)

 ' Add the checked roles to the just-added user

 For Each li As ListItem In RoleList.Items

 If li.Selected Then

 Roles.AddUserToRole(RegisterUserWithRoles.UserName,

li.Text)

 End If

 Next

 End If

End Sub

If the user has just reached the “Completed” step, the event handler enumerates the

items of the RoleList CheckBoxList and the just-created user is assigned to the

selected roles.

Visit this page through a browser. The first step in the CreateUserWizard is the

standard “Sign Up for Your New Account” step, which prompts for the new user’s

username, password, email, and other key information. Enter the information to

create a new user named Wanda.

Figure 12: Create a New User Named Wanda

Click the “Create User” button. The CreateUserWizard internally calls the

Membership.CreateUser method, creating the new user account, and then

progresses to the next step, “Specify Roles.” Here the system roles are listed. Check

the Supervisors checkbox and click Next.

Figure 13: Make Wanda a Member of the Supervisors Role

Clicking Next causes a postback and updates the ActiveStep to the “Complete” step.

In the ActiveStepChanged event handler, the recently-created user account is

assigned to the Supervisors role. To verify this, return to the UsersAndRoles.aspx

page and select Supervisors from the RoleList DropDownList. As Figure 14 shows,

the Supervisors are now made up of three users: Bruce, Tito, and Wanda.

Figure 14: Bruce, Tito, and Wanda are All Supervisors

Summary
The Roles framework offers methods for retrieving information about a particular

user’s roles and methods for determining what users belong to a specified role.

Furthermore, there are a number of methods for adding and removing one or more

users to one or more roles. In this tutorial we focused on just two of these methods:

AddUserToRole and RemoveUserFromRole. There are additional variants designed to

add multiple users to a single role and to assign multiple roles to a single user.

This tutorial also included a look at extending the CreateUserWizard control to

include a WizardStep to specify the newly-created user’s roles. Such a step could

help an administrator streamline the process of creating user accounts for new users.

At this point we have seen how to create and delete roles and how to add and

remove users from roles. But we have yet to look at applying role-based

authorization. In the following tutorial we will look at defining URL authorization rules

on a role-by-role basis, as well as how to limit page-level functionality based on the

currently logged in user’s roles.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 ASP.NET Web Site Administration Tool Overview

 Examining ASP.NET’s Membership, Roles, and Profile

 Rolling Your Own Website Administration Tool

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer. His latest book is

Sams Teach Yourself ASP.NET 2.0 in 24 Hours. Scott can be reached at

mitchell@4guysfromrolla.com or via his blog at http://ScottOnWriting.NET.

Special Thanks To…
This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this
tutorial was Teresa Murphy. Interested in reviewing my upcoming MSDN articles? If
so, drop me a line at mitchell@4GuysFromRolla.com

http://www.asp.net/learn/security/tutorial-11-vb.aspx
http://msdn2.microsoft.com/en-us/library/ms228053.aspx
http://aspnet.4guysfromrolla.com/articles/120705-1.aspx
http://aspnet.4guysfromrolla.com/articles/052307-1.aspx
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/
file:///C:\Documents%20and%20Settings\piyushp\Local%20Settings\Temporary%20Internet%20Files\Content.IE5\2RLRAFLO\mitchell@4GuysFromRolla.com

